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Titre : Optimisation numérique et statistique pour la microscopie à éclairement structuré non contrôlé 

Mots clés : imagerie super-résolue, optimisation numérique, éclairement de speckle, estimation à minimum 
de contraste, parcimonie conjointe 

Résumé : La microscopie à éclairements structurés 
(structured illumination microscopy, SIM) permet de 
dépasser la limite de résolution en microscopie optique 
due à la diffraction, en éclairant l’objet avec un ensemble 
de motifs périodiques parfaitement connus. Cependant, il 
s’avère difficile de contrôler exactement la forme des 
motifs éclairants. Qui plus est, de fortes distorsions de la 
grille de lumière peuvent être générées par l’échantillon 
lui-même dans le volume d’étude, ce qui peut provoquer 
de forts artefacts dans les images reconstruites. 
Récemment, des approches dites blind-SIM ont été 
proposées, où les images sont acquises à partir de motifs 
d’éclairement inconnus, non-périodiques, de type speckle, 
bien plus faciles à générer en pratique. Le pouvoir de 
super résolution de ces méthodes a été observé, sans 
forcément être bien compris théoriquement.  Cette thèse 
présente deux nouvelles méthodes de reconstruction en 
microscopie à éclairements structurés inconnus (blind-
speckle-SIM) : une approche conjointe et une approche 
marginale. 
Dans l’approche conjointe, nous estimons conjointement 
l’objet et les motifs d’éclairement au moyen d’un modèle 
de type Basis Pursuit DeNoising (BPDN) avec une 
régularisation en norme lp,q où p=>1 et 0<q<=1. La  
 
 

norme lp,q est introduite afin de prendre en compte une 
hypothèse de parcimonie sur l’objet. 
Dans l’approche marginale, nous reconstruisons 
uniquement l’objet et les motifs d’éclairement sont traités 
comme des paramètres de nuisance. Notre contribution 
est double. Premièrement, une analyse théorique 
démontre que l’exploitation des statistiques d’ordre deux 
des données permet d’accéder à un facteur de super-
résolution de deux, lorsque le support de la densité 
spectrale du speckle correspond au support fréquentiel de 
la fonction de transfert du microscope. Ensuite, nous 
abordons le problème du calcul numérique de la solution. 
Afin de réduire à la fois le coût de calcul et les ressources 
en mémoire, nous proposons un estimateur marginal à 
base de patches. L’élément clé de cette méthode à 
patches est de négliger l’information de corrélation entre 
les pixels appartenant à différents patches. 
Des résultats de simulations et en application à des 
données réelles démontrent la capacité de super-
résolution de nos méthodes. De plus, celles-ci peuvent 
être appliquées aussi bien sur des problèmes de 
reconstruction 2D d’échantillons fins, mais également sur 
des problèmes d’imagerie 3D d’objets plus épais 
 

 

Title : Statistical and numerical optimization for speckle blind structured illumination microscopy 

Keywords :  super-resolution imaging, numerical optimization, speckle illumination, minimum contrast 
estimation, joint sparsity. 
 
Abstract : Conventional structured illumination 
microscopy (SIM) can surpass the resolution limit in 
optical microscopy caused by the diffraction effect, 
through illuminating the object with a set of perfectly 
known harmonic patterns. However, controlling the 
illumination patterns is a difficult task. Even worse, strong 
distortions of the light grid can be induced by the sample 
within the investigated volume, which may give rise to 
strong artifacts in SIM reconstructed images.  
Recently, blind-SIM strategies were proposed, where 
images are acquired through unknown, non-harmonic, 
speckle illumination patterns, which are much easier to 
generate in practice. The super-resolution capacity of 
such approaches was observed, although it was not well 
understood theoretically. This thesis presents two new 
reconstruction methods in SIM using unknown speckle 
patterns (blind-speckle-SIM): one joint reconstruction 
approach and one marginal reconstruction approach.  
In the joint reconstruction approach, we estimate the 
object and the speckle patterns together by considering a 
basis pursuit denoising (BPDN) model with lp,q-norm 
regularization, with p=>1 and 0<q<=1. The lp,q-norm 
 

is introduced based on the sparsity assumption of the 
object.  
In the marginal approach, we only reconstruct the object, 
while the unknown speckle patterns are considered as 
nuisance parameters. Our contribution is twofold. First, a 
theoretical analysis demonstrates that using the second 
order statistics of the data, blind-speckle-SIM yields a 
super-resolution factor of two, provided that the support of 
the speckle spectral density equals the frequency support 
of the microscope point spread function. Then, numerical 
implementation is addressed. In order to reduce the 
computational burden and the memory requirement of the 
marginal approach, a patch-based marginal estimator is 
proposed. The key idea behind the patch-based estimator 
consists of neglecting the correlation information between 
pixels from different patches. 
Simulation results and experiments with real data 
demonstrate the super-resolution capacity of our 
methods. Moreover, our proposed methods can not only 
be applied in 2D super-resolution problems with thin 
samples, but are also compatible with 3D imaging 
problems of thick samples. 
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Introduction

Optical microscopy is an important tool in biological science, enabling to access detailed
information about living specimens. However, due to the diffraction effect of light, the
conventional optical microscopy has a resolution limit (Abbe diffraction limit) about λ/2NA ≈
200 nm, with λ denoting the wavelength of light and NA the numerical aperture of the optical
system [Mer10]. It also lacks ability to perform three-dimensional (3D) imaging since the in-
focus information is always blurred by the out-of-focus information in thick samples.

Far-field super-resolution fluorescence microscopy has seen its prosperity over the past
twenty years, making the observation of structures below the Abbe resolution limit possible.
Several techniques have been developed, such as structured illumination microscopy (SIM)
[Gus00], stimulated emission depletion fluorescence scanning microscopy (STED) [HW94],
stochastic optical reconstruction microscopy (STORM) [RBZ06], photo activated localization
microscopy (PALM) [HGM06], and so on. Among them, SIM is a wide-field technique
providing fast data acquisition and it does not require using specific fluorophores. Moreover,
SIM also provides optical sectioning ability in 3D imaging [GSC+08][Wal01].

In standard SIM, the object is illuminated by a set of harmonic patterns with known spatial
frequencies and phases. However, generating a perfect known harmonic illumination is a
difficult task and strong distortions of the light grid can be induced within the sample volume
[JTF+15]. Such uncertainty in the illumination process reduces the super-resolution capacity in
SIM and may generate strong artifacts [AGJ+13]. Hence, a so-called blind-speckle-SIM method
was proposed in [MBG+12], where unknown speckle patterns are used as a substitute for the
harmonic illuminations. A super-resolution capacity has been observed in [MBG+12], although
this super-resolution is relatively weak compared with standard SIM. In this thesis, we explore
the super-resolution capacity and propose new reconstruction methods in a blind-speckle-
SIM approach (that is, with unknown illuminations) in order to obtain better super-resolution
capacity, by exploiting second-order statistics of the data and introducing new regularizers.

This thesis is composed of six chapters. In the first chapter, we introduce the concepts of
point spread function (PSF) and optical transfer function (OTF) in microscopy. Then, we briefly
present the statistical properties of speckle patterns and the existing reconstruction methods in
blind-speckle-SIM.

In Chapter 2, we propose a joint reconstruction method (which jointly estimates the speckle
patterns and the object) by minimizing a data fidelity term penalized with a mixed `p,q-norm
regularizer in order to enforce the joint sparsity of the data. The alternating direction method of
multipliers (ADMM) and the primal-dual algorithm are used to solve the optimization problem.

In Chapter 3, we explore the theoretical super-resolution capacity of blind-speckle-SIM by
exploiting the second-order statistics of the data with minimum prior information on the data.
A marginal estimator is proposed where the estimation is based on the statistics of the nuisance
parameters (the unknown speckle patterns) but not their true values. This marginal estimator is
shown to be an asymptotically consistent estimator.

The computational complexity of the marginal estimator proposed in Chapter 3 is O(N3),
which is too high for realistic image sizes. Thus, in Chapter 4, we propose a patch-based
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marginal approach in order to reduce its computational burden, with computational complexity
O(N2 logN).

In chapter 5, we demonstrate the optical sectioning ability of blind-speckle-SIM with both
the `p,q regularized joint estimator and the patch-based marginal estimator.

Chapter 6 is a conclusion of this thesis and introduces some possible future work.



Introduction

La microscopie optique est un outil important en sciences biologiques, permettant d’accéder
à des informations détaillées au sujet de spécimens vivants. Cependant, en raison de l’effet
de diffraction de la lumière, la microscopie optique conventionnelle a une limite de résolution
(limite de diffraction d’Abbe) de λ/2NA ≈ 200 nm, où λ est la longueur d’onde de la lumière et
NA est l’ouverture numérique du système optique [Mer10]. Elle souffre également d’incapacité
de réaliser une imagerie tridimensionnelle (3D) puisque l’information au plan focal est toujours
perturbée par le contenu défocalisé dans des échantillons épais.

La microscopie super-résolue par fluorescence en champ lointain a connu une période de
prospérité au cours des vingt dernières années, rendant possible l’observation de structures
à une résolution inférieure à la limite de résolution de Abbe. Différentes techniques ont
été développées, telles que la microscopie à illumination structurée (Structured Illumination
Microscopy, SIM) [Gus00], la microscopie à déplétion par émission stimulée (stimulated-
emission-depletion, STED) [HW94], la microscopie de reconstruction optique stochastique
(stochastic optical reconstruction microscopy, STORM) [RBZ06], ou la microscopie de
localisation photo-activée (photo-activated localization microscopy, PALM) [HGM06]. Parmi
ces méthodes, la microscopie à illumination structurée est une technique à large champ
permettant une acquisition rapide des données et ne nécessite pas de fluorophores spécifiques.
De plus, cette méthode possède également une capacité de sectionnement optique en imagerie
3D [GSC+08] [Wal01].

En SIM standard, l’objet est éclairé par un ensemble de motifs harmoniques de fréquences
spatiales et de phases connues. Cependant, générer une illumination harmonique parfaitement
connue est une tâche difficile en pratique et de fortes distorsions de la grille de lumière peuvent
être induites dans le volume étudié [JTF+15]. L’incertitude sur les motifs d’illumination
réduit alors la capacité de super-résolution de cette modalité d’imagerie et peut produire de
forts artéfacts [AGJ+13]. Par conséquent, une méthode dite blind-speckle-SIM a été proposée
dans [MBG+12], où des motifs d’illumination inconnus, de type speckle, sont utilisés à la
place d’illuminations harmoniques. Un pouvoir de super-résolution a ainsi été observé dans
[MBG+12], cependant cette super-résolution est relativement faible comparée à la méthode
SIM standard. Dans cette thèse, nous explorons la capacité de super-résolution et proposons
de nouvelles méthodes de reconstruction dans une démarche aveugle (i.e., à illuminations
inconnues) pour obtenir une meilleure capacité de super-résolution, en exploitant les statistiques
au deuxième ordre des données et en proposant de nouvelles régularisations.

Cette thèse est constituée de six chapitres. Dans le premier chapitre, nous introduisons
les concepts de fonction d’étalement ponctuel (point spread function, PSF) et de fonction
de transfert optique (optical transfer function, OTF) de la microscopie et nous présentons
brièvement les propriétés statistiques des motifs de speckle et les méthodes de reconstruction
existantes de type blind-speckle-SIM.

Dans le Chapitre 2, nous proposons une méthode de reconstruction conjointe (estimation
des motifs de speckle et de l’objet) en minimisant un terme de fidélité des données pénalisé par
une fonction de régularisation en norme mixte `p,q pour imposer la parcimonie conjointe des
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données. La méthode ADMM (Alternating Direction Method of Multipliers) et un algorithme
primal-dual sont utilisés pour résoudre le problème d’optimisation.

Dans le Chapitre 3, nous explorons la capacité de super-résolution théorique d’approches
de type blind-speckle-SIM en exploitant les statistiques de second ordre des données avec un
minimum d’informations préalables sur les données. Un estimateur marginal est proposé,
où l’estimation est basée sur les statistiques des paramètres de nuisance (profils de speckle
inconnus) et non pas sur leurs vraies valeurs. Nous montrons que cet estimateur marginal est
un estimateur asymptotiquement cohérent.

La complexité de calcul de l’estimateur marginal proposé au Chapitre 3 est en O(N3), ce
qui est trop élevé pour des tailles d’image réalistes. Aussi, dans le Chapitre 4, nous proposons
une approche marginale basée sur une décomposition des images en patches afin de réduire le
coût de calcul, permettant d’obtenir une complexité en O(N2 logN).

Dans le Chapitre 5, nous démontrons la capacité de sectionnement optique de blind-speckle-
SIM avec l’estimateur conjoint régularisé `p,q et l’estimateur marginal basé sur la décomposition
en patches précédemment introduite.

Le Chapitre 6 conclut ce travail et propose quelques pistes pour de possibles travaux futurs.



Chapter 1

Basic optical concepts

1.1 Introduction

Optical microscopy is a diffraction-limited system, where the image of a point source is not
resolved as a point. Instead, a spot of finite size is created, together with a series of concentric
bright rings, called the point spread function (PSF), or Airy pattern [Goo05]. When two points
are too close to each other, their images overlap and may become indistinguishable, giving rise
to the resolution limit of conventional microscopy.

Another way to characterize the resolution of an optical system considers its optical transfer
function (OTF), which is defined as the Fourier transform of the PSF. The finer structure of the
object corresponds to high-frequency components in the Fourier domain. The OTF measures
how well each frequency component can be transmitted through the optical system. Only
the frequency components inside the OTF support can pass the optical system, and the high-
frequency part is lost during the imaging process.

My thesis focus on super-resolution microscopy induced by unknown speckle patterns
(blind-speckle-SIM). In this chapter I will briefly introduce where the resolution comes from in
conventional optical microscopy and present the state of the art of the super-resolution methods.
I first give an analytical expression of the light field in Section 1.2. The image formation model
of coherent and incoherent imaging systems are discussed in Sections 1.3. The super-resolution
techniques are presented in Section 1.4, while the existing reconstruction methods proposed in
blind-speckle-SIM are presented in Section 1.5.

1.2 Light field

Light can be characterized as an electromagnetic field u(r, t) varying in space (coordinate
r) and time (coordinate t). The Fourier transform of u(r, t) in both space and time variables
reads:

ũ(κ, v) =

∫
u(r, t)e−j2π(κ·r−vt)drdt, (1.1)

where κ = (κx, κy, κz), the Fourier conjugate variable of the position vector r, is called
wavevector (or k vector) and v denotes the temporal frequency. The wavenumber κ is defined
as:

κ =
n

c
v, (1.2)

1
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in which n is the index of refraction of the medium and c = 3 × 108 m/s denotes the speed of
light in empty space. The wavelength is then given by:

λ =
c

nv
=

1

κ
. (1.3)

According to the energy-momentum relation [Mer10, chapter 1]:

|κ|2 = κ2. (1.4)

We see from (1.2) and (1.4) that the magnitude of the wavevector κ is fixed by the wavelength
λ.

1.2.1 Monochromatic field
Firstly, we focus our attention on a monochromatic field. For the light propagating in a

dielectric medium that is linear, isotropic, homogeneous and nondispersive, the incident field
can be described by a complex-valued analytic signal:

u(r, t) = U(r) exp(−2πjvt) (1.5)

with v the frequency and U(r) the complex phasor amplitude:

U(r) = |U(r)| exp
(
jφ(r)

)
(1.6)

1.2.2 Spatial coherence of polychromatic field
The monochromatic assumption of light is overly restrictive in realistic conditions, even

illumination generated by lasers is not perfectly monochromatic. The polychromatic light
field u(r, t) is defined as narrowband when the bandwidth ∆v is much smaller than its center
frequency v̄. For the narrowband case, the wavefield can be described as [Goo05, chapter 6]:

u(r, t) = U(r, t) exp(−2πjv̄t) (1.7)

with the time varying complex phasor amplitude:

U(r, t) = |U(r, t)| exp
(
jφ(r, t)

)
. (1.8)

Since the phasor amplitude varies randomly with time, it is necessary to introduce some
statistical concepts to describe the wave field. We consider two types of light here. The phasor
amplitudes of the first type of light at all spatial points vary in union, called spatially coherent.
While the second type of light is called spatially incoherent where the phasor amplitudes at all
points vary in an uncorrelated fashion. Mathematically, this spatial coherence is described by
the mutual intensity concept:

Ju(r1, r2) = E
[
U(r1, t)U

∗(r2, t)
]
, (1.9)

where E[·] means expectation in time. The illumination is said to be perfectly coherent when
the time-varying phasor amplitude U(r1, t) and U(r2, t) differ only by a complex constant.
Equivalently, it could be written as:

U(r, t) = U(r)
U(0, t)

〈|U(0, t)|2〉1/2
. (1.10)
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Here the time varying phasor amplitude at origin has been arbitrarily chosen as the phase
reference. Substituting (1.10) into (1.9), we obtain the mutual intensity of coherent light

Ju(r1, r2) = U(r1)U∗(r2). (1.11)

For perfectly incoherent light, the phasor amplitudes vary in a statistically independent way,
and the mutual intensity in this case is:

Ju(r1, r2) = ςI(r1)δ(r1 − r2) (1.12)

in which ς is a real constant and δ(r) is a 2 dimensional Dirac delta function.

1.3 Image formation model in diffraction limited system
Under the narrowband assumption, the amplitude impulse response of the optical system

does not change for different optical spectra v. Therefore, we can write the time-varying phasor
of the image Ui as the convolution of a wavelength-independent impulse response with the time
varying phasor of the object Uo [Goo05, chapter 6]:

Ui(r, t) =

∫
ha(r − r′)Uo(r′, t− δt)dr′ (1.13)

where δt denotes the time of light propagation from the object plane to the image plane and ha
is the amplitude point spread function (APSF).

1.3.1 Coherent imaging system
In practice, we cannot measure the light field directly, instead we measure the intensity of

the field, which is given by

I(r) = lim
T→∞

1

T

∫ T/2

−T/2
|u(r, t)|2dt (1.14)

In the monochromatic case, we have I(r) = |U(r)|2 while in the narrowband non-
monochromatic case, we have:

I(r) = E
[
|U(r, t)|2

]
(1.15)

Combining (1.13) and (1.15), we obtain:

Ii(r) =

∫∫
ha(r − r1)h∗a(r − r2)E

[
Uo(r1, t− δt1), Uo(r2, t− δt2)

]
dr1dr2 (1.16)

The APSF ha is nonzero over only a small region, so the integrand is nonzero only for points
r1 and r2 that are very close to each other. Hence the difference between the time delays δt1
and δt2 is negligible under the narrowband assumption. Therefore, (1.16) can be equivalently
written as:

Ii(r) =

∫∫
ha(r − r1)h∗a(r − r2)Ju(r1, r2)dr1dr2 (1.17)

When the light field is perfectly coherent, by substituting (1.11) into (1.17), we get:

Ii(r) =
∣∣∣ ∫ ha(r − r′)Uo(r′)dr′

∣∣∣2 =
∣∣(ha ∗ Uo)(r)

∣∣2 (1.18)



4 1.4 — Super-resolution fluorescence microscopy

Finally, defining a time invariant phasor amplitude Ui(r) in image space relative to Ui(0, t) as
in (1.10), we can describe the coherent imaging system by:

Ui(r) =

∫
ha(r − r′)Uo(r′)dr′ = (ha ∗ Uo)(r) (1.19)

The coherent imaging system is thus linear in complex amplitude. By applying the convolution
theorem to (1.19), we have:

Ũi(κ) = h̃a(κ)Ũo(κ) (1.20)

where h̃a, the Fourier transform of ha, is called the coherent transfer function, or amplitude
transfer function (ATF).

1.3.2 Incoherent imaging system
When the light emitted from the object plane is totally incoherent, we substitute (1.12) into

(1.16) and get

Ii(r) =

∫
|ha(r − r′)|2Io(r′)dr′. (1.21)

We define the point spread function (PSF) h of the incoherent system as: h = |ha|2. Then,
for the incoherent imaging system, the image intensity is the convolution of PSF h with the
intensity of object:

Ii(r) =

∫
h(r − r′)Io(r′)dr′ = (h ∗ I0)(r) (1.22)

In the frequency domain, we have:

Ĩi(κ) = h̃(κ)Ĩo(κ
′) (1.23)

where h̃(κ) is the optical transfer function (OTF) of the optical system. An illustration of the
OTF is shown in Figure 1.1.

1.4 Super-resolution fluorescence microscopy
Fluorescence microscopy is an optical microscopy method that uses fluorescence to generate

an image. The fluorophores absorbe energy from the incident light at a specific wavelength
and then emit light at longer wavelengths. There is a time delay of about several nanoseconds
between absorption and emission, which can be neglected in the imaging process. The emission
light of the fluorophores is spatially incoherent.

The emission intensity is proportional to the excitation intensity when the excitation
intensity is low, which can be written as: Iout = σIin, where the Iout is the intensity emitted
and the Iin is the intensity of the excitation light. Normally, the fluorophores are much smaller
than the resolution limit of the optical microscopy, thus they can be considered as a continuous
density. One defines the function ρ such that:

ρ(r)dr =
L∑
l=1

σl (1.24)

where L is the number of fluorophores in the volume dr and σl is the emission coefficient of the
l-th fluorophore. For the excitation intensity I , we can thus write the emission light intensity as
ρI . In the linear regime, the following effects are neglected:
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Figure 1.1 – ATF and OTF of the system. (Figure courtesy of [Wic10].) . All k-vectors of
waves in a single wavelength λ lie on a spherical shell. Projecting the system’s pupil function
onto the sphere yielding the k-vectors available for imaging, which is called amplitude transfer
function (ATF). The autocorrelation of ATF gives the optical transfer function (OTF) of the
system.
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— Photobleaching: The coefficient σ decreases with time and gradually, the sample cannot
fluoresce any more. More precisely, the fluorescence decay is proportional to the emitted
energy [SHYT95].

— Photoblinking: The intensity of fluorescence molecules repeatedly drops to zero and
then comes back to normal. This fluctuation is the basis of the super-resolution technique
SOFI [DCI+09].

1.4.1 Super resolution based on single-molecule fluorescence localization
In conventional microscopy, there is a hidden assumption that two close points emit light at

the same moment. If two points do not emit light synchronously, we can locate them separately
by finding the centroid position of the PSF and thus break through the resolution limit. In the
past twenty years, several super-resolution techniques based on single-molecule fluorescence
localization were proposed.

STORM/PALM – Stochastic optical reconstruction microscopy (STORM) [RBZ06] and
photo activated localization microscopy (PALM) [HGM06] utilize sequential activation of
photo switchable fluorophores to create high resolution images. In each imaging cycle,
only a fraction of fluorophores are activated at any given moment, so that the position of
each fluorophore can be determined with high precision. The fluorophore is subsequently
deactivated, and another subset is activated and imaged. We can reconstruct a super-resolution
image by repeating this process. The drawback of this technique is that it requires special
fluorescent probes and the on-off cycles take a lot of time.

SOFI – Super-resolution optical fluctuation imaging (SOFI) produces highly resolved images
based on fluorescence blinking by exploiting high order statistical analysis of the temporal
fluctuations recorded in a sequence of images [DCI+09]. It requires that the fluorescence
molecules fluctuate repeatedly and independently from each other. A second-order SOFI
computes the empirical variance and this variance corresponds to the square of the original
PSF. Higher resolution is possible by using high order statistics of the data. The disadvantage
of SOFI is that the blinking rate of fluorescent molecules could be faster than the frame rate in
video microscopy.

SPoD/ExPAN – The SPoD technique measures the orientation of the fluorophores by rotating
the polarization of the excitation beam and detecting the periodic signals emitted with different
phases [HGvdH+14]. This approach is not suitable for highly dynamic structures.

1.4.2 Super-resolution based on PSF engineering
STED – Stimulated emission depletion fluorescence scanning microscopy (STED) creates
super-resolution images using two laser pulses. The object is illuminated by a point source
through the objective lens, stimulating the fluorophores inside the region of PSF to their
fluorescent state in the focal plane. With the help of an additional STED pulse, fluorophores
in the outer regions of the excitation focus are quenched [HW94]. In the ideal case, the STED
pulse creates a concentric annulus around the focal point, overlapping with the outer region of
the Airy disk. By scanning this focal spot in the object, one retrieves the image. Since the
super-resolution image is retrieved by scanning, this technique is time-consuming for large size
objects, even with parallelizing STED [BAS+15].
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1.4.3 Super-resolution based on structured illumination

SIM – Structured illumination microscopy (SIM) retrieves the super-resolution image by
illuminating the sample with periodic light patterns, thus transfers otherwise unobservable
high-frequency information about the sample into a lower-frequency region [Gus00]. Suppose
the maximum spatial frequency can pass the microscopy is specified by k0 and the frequency
information contained in illumination patterns is k1, as shown in Figure 1.2, then the frequencies
will be observable as long as |k−k1| < k0, that is, the highest observable frequency is increased
from k0 to k0 + k1. This high frequency information can be extracted by some post-processing
methods. As a wide-field super-resolution technique, the structured illumination microscopy
(SIM) allows us to acquire images much faster than other super-resolution (SR) techniques,
such as STED or STORM. Super-resolution imaging in living samples has been demonstrated
in SIM [KCG+09].

Figure 1.2 – Concept of resolution enhancement by structured illumination. (Figure
courtesy of [Gus05].) (a.) The spatial frequencies that can pass the optical system defines a
circular of radius k0 in frequency space. (b.) If the illumination patterns contains a spatial
frequency k1, then the maximum spatial frequency that can be detected (in this direction)
becomes k0 + k1.

Normally k1 ≤ k0 since the illumination patterns are also limited by the diffraction effect
in the same way as the object. So conventional SIM can improve the resolution by a factor of
two at most. Saturated structured-illumination microscopy (SSIM) (also called non-linear SIM)
[Gus05] generates illumination patterns containing high spatial frequencies taking advantage
of the nonlinear properties of the fluorescent response in saturation status, thus making k1 >
k0. The resolution limit of this technique is only bounded by the signal-to-noise ratio and
photostability of dyes.

Blind-speckle-SIM – In standard SIM, the object is illuminated by a set of harmonic patterns
with known spatial frequencies and phases. However, generating a perfectly known harmonic
illumination is a difficult task and the blurring in the illumination will reduce the SR capacity in
SIM [AGJ+13]. Moreover, the application of SIM is restricted to thin samples or samples with
small refraction indices [MBG+12].

Blind-speckle-SIM achieves super-resolution using unknown speckle patterns as a substitute
for harmonic illuminations. Compared with harmonic illuminations, the speckle patterns are
easier to generate while the super-resolution is still attainable[MBG+12]. We briefly review the
reconstruction methods proposed in speckle-SIM in Section 1.5.
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1.5 Existing reconstruction procedures in blind-speckle-SIM
In SIM using speckle illumination, the sample is successively illuminated byM independent

speckle patterns Im,m = 1, · · · ,M . For each speckle pattern, the recorded data ym can be
modeled as the convolution of the emitted density from the object ρ with the point spread
function (PSF) h:

ym = h ∗ (ρIm) + εm, (1.25)

where ∗ represents the convolution operator and ε stands for noise and model errors. Since we
record digital signals physically, we rewrite Eq. (1.25) in matrix form as:

ym = HRIm + εm (1.26)

with H ∈ RN×N the convolution matrix of PSF h and R ∈ RN×N the diagonal matrix whose
diagonal values identify with the discretized object ρ. Im ∈ RN is the m-th realization of
speckle with homogeneous intensity mean I0. Now the problem is to estimate the object ρ from
a series of low resolution images ym.

1.5.1 Blind-SIM with positivity constraint
The idea of obtaining super-resolution with speckle patterns was first proposed in [MBG+12],

with a reconstruction algorithm called blind-SIM simultaneous inversion (blind-SIM-SI). It
assumes that the sum of speckle patterns is homogeneous and that both the object and speckle
patterns are positive. The reconstruction procedure is based on minimizing the mismatch
between the acquired data and the model:

min
ρ,{Im}

M∑
m=1

‖ym −HRIm‖2

s.t. ρ, Im ≥ 0,
1

M

∑
m

Im = I0

(1.27)

To incorporate the positivity constraint, the auxiliary variables ξ and ηm are introduced with
ρ = ξ2 and Im = η2

m. Then the variables are updated with respect to ξ and ηm alternately using
conjugate gradient algorithm [NW06, chapter 5]. Though we retrieve partial super-resolution
information using this method, the modulation contrast in super-resolution part is relatively
weaker than standard SIM.

1.5.2 Blind-SIM with sparsity and positivity constraint
Our team propose to solve the problem (1.27) in [LNI+17] by breaking it into M separate

deconvolution sub-problems. The auxiliary variables qm = ρ ◦ Im are introduced, with ◦
denoting the element-wise product:

min
qm

‖ym −Hqm‖2 s.t. qm ≥ 0 (1.28)

After all {qm}Mm=1 are obtained, the estimated object is given by ρ̂ =
∑

m qm/(MI0). With the
assumption that the product images qm tends to be a nearly black object [DJHS92], a strictly
convex penalty term is added to the formula (1.28):

ϕ(qm;α, β) = β‖qm‖2
2 + α‖qm‖1 (1.29)
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with ‖·‖p denoting the `p norm and α ≥ 0, β > 0. Now we are led to the optimization problem:

min
qm

f(qm) := ‖ym −Hqm‖2 + ϕ(qm) s.t. qm ≥ 0 (1.30)

The problem (1.30) can be expressed by the sum of two functions: f(qm) = f1(qm) + f2(qm)
with f1 a smooth function and f2 a non-differentiable one:

f1(qm) = ‖ym −Hqm‖2 + β‖qm‖2
2

f2(qm) = α
∑
n

φ(qm,n) (1.31)

where φ is defined as:

φ(u) =

{
u, u ≥ 0

+∞, u < 0

Though function f2 is nondifferentiable, its proximal operator can be written analytically:

proxλf2(x) = vect(max{xn − λα, 0}) (1.32)

with xn the n-th component of vector x. Now the optimization problem (1.30) can be solved
using a proximal gradient descent algorithm, such as FISTA [BT09]. However, the convergence
speed of FISTA in this problem is relatively slow and a preconditioned Primal-Dual splitting
algorithm has been show in [LNI+17] to behave better in terms of convergence rate. The primal-
dual update reads:

qk+1 = qk − ρτBζk (1.33a)

wk+1 = wk + ρ
[
P?(δk)−wk

]
(1.33b)

with ζk = ∇h1(qk) + wk and the preconditioning matrix B is chosen from the Geman and
Yang semi-quadratic construction:

B = (2HtH + 2β1N/a)−1 (1.34)

where a > 0 is a free parameter of the preconditioner. In the dual update (1.33b), we have
δk = wk + σ(qk − 2τBζk) and

P?(x) = vect(min{xn, α}). (1.35)

When some conditions on parameters {ρ, τ, σ, a} are met [Con13], the convergence of PPDS
algorithm is granted. One drawback of this method is that the hyperparameters α and β are not
easy to tune and they will influence the quality of the reconstructed images.

1.5.3 Joint support recovery
In [MJK+13] the object is obtained by assuming that the set of auxiliary vectors {qm}Mm=1

share a common non-zero support, where qm is given by the same definition as in former
Section 1.5.2. The observation model in matrix form reads as:

Y = HQ + E (1.36)
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with Y = [y1, · · · ,yM ] ∈ RN×M , Q = [q1, · · · , qM ] ∈ RN×M and E = [ε1, · · · , εM ]. Then,
the reconstruction approach is based on considering the following optimization problem:

QJS = arg min
Q
‖Y −HQ‖2

F + λ‖Q‖2,0 (1.37)

in which ‖·‖F denotes the Frobenius norm and ‖·‖2,0 is the `2,0 norm defined by:

‖Q‖2,0 =
N∑
n=1

χ(‖qn‖2) (1.38)

where qn denotes the n-th row of Q and χ(u) is the indicator function given by:

χ(u) =

{
1, u 6= 0

0, u = 0
(1.39)

The optimization problem of joint sparsity has received great attention recently and several
methods have been proposed, see [MCW05, TGS06, Tro06]. A multiple sparse Bayesian
learning (M-SBL) algorithm was used in [MJK+13] to approximately solve problem (1.37),
where QJS was viewed as a type II maximum likelihood or evidence maximization problem
The conditional probability density p(ym|qm) is assumed to be Gaussian with noise variance
σ2:

p(ym|qm) = (2πσ2)−N/2 exp
(
− 1

2σ2
‖ym −Hqm‖2

2

)
(1.40)

Next, each row of Q is assigned an M -dimensional Gaussian prior with hyperparameter γn:

p(qn; γn) := N (0, γn1M) (1.41)

where γn is the variance parameter and 1M is the M ×M identity matrix. By combining all
these row priors, we have:

p(Q;γ) = ΠN
n=1 p(q

n; γn) (1.42)

where γ = [γ1, · · · , γN ]T ∈ R+. Then joint sparsity is achieved whenever a γn equals zero
since p(qn = 0|Y; γn = 0) = 1. Thus minimizing the ‖Q‖20 norm is shifted to estimating the
hyperparameter γ with the correct location of nonzero elements. The M-SBL method solves
this problem by treating Q as nuisance parameters, integrates them out and then maximizes the
marginal likelihood function with respect to γ:

min
γ

−2 log

∫
p(Y|Q)p(Q|γ)dQ ∝ 1

M
Tr(Σ−1YYT ) + log |Σ| (1.43)

with Σ = HΓHT + σ2
1N , Γ = diag(γ) and σ2 the noise variance. It is demonstrated in

[WRN11] that the minimization problem in (1.43) is equivalent to the following regularized
least-squares problem:

min
γ,Q

‖Y −HQ‖2
F + σ2Tr(QTΓ−1Q) + σM log|Σ|. (1.44)

Then (1.44) is solved by updating γ and Q alternately. Here, we use the subscript k to
indicate the variable values at k-th iteration:

1. Minimization with respect to Q:

Qk = ΓkH
TΣ−1

k Y (1.45)
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2. Minimization with respect to γ:

γn;k+1 =
1
M
‖qnk‖2

2

1− Σnn;k/γn;k

, for n ∈ 1, · · · , N (1.46)

with qnk the n-th row in Qk and Σnn;k the (n, n) element in Σk.

3. Estimate the noise variance σ2:

σ2
k+1 =

1
M
‖Y −HQ‖2

F∑N
n=1

Σnn;k+1

γn;k+1

(1.47)

Once the matrix Q is obtained, the author choose to estimate the object ρ based on second
order statistics:

ρ(r) =
√
Cov

(
q
)
(r) (1.48)

The advantage of using second order statistics is that it produce an estimator less sensitive to the
background noise. One drawback of this method is that the computational burden and memory
requirement of the M-SBL algorithm is too high for realistic size images due to it involves a
matrix inverse operator of matrix Σ in each iteration, whose size is N ×N .

1.5.4 S-SOFI

The super-resolution optical fluctuation imaging (SOFI) achieves super-resolution taking
advantage of the intrinsic blinking properties of protein fluorophores. An S-SOFI method was
proposed in [KPR+15] where the blinking is induced by speckle patterns. The speckle patterns
are supposed to form a second-order stationary random process with modified correlation
function given by γspec ≈ δ(r), then the second-order correlation of the measured image can be
expressed as:

γy(r) = E[∆ym(r)2] =

∫
r2

∫
r1

h(r − r1)h(r − r2)ρ(r1)ρ(r2)γspec(r1 − r2)dr1dr2

≈ h2 ∗ ρ2

(1.49)
where ∆ym = ym − ȳ. Then the object is estimated from γy(r) with the Fourier reweighting
(FRW) method [DCV+10]. With a simulated object including two points and a Gaussian PSF,
a resolution enhancement factor 1.6 is observed in [KPR+15]. The resolution improvement in
S-SOFI is demonstrated for ρ2, no general conclusion about the super-resolution capacity for ρ
could we make.

1.5.5 PE-SIMS

A so-called PE-SIMS (pattern estimation structured illumination microscopy with a sta-
tistical prior) method was proposed in [YTW17]. This method includes two parts. Firstly
the speckle patterns are estimated based on the deconvolution of the wide field image. Then
the object is estimated from the covariance between the measured images ym and the speckle
patterns Im.
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1.5.5.1 Pattern estimation

A regularized deconvolution of the wide-field image is given by:

ρwd = F−1
{ ˜̄y · h̃
|h̃|2 + β

}
(1.50)

where ȳ represents the average of the measured images and F−1 denote the inverse Fourier
transform and β is a small regularization parameter to make the solution robust with noise.

Then, the speckle patterns are estimated from the low-resolution deconvolved wide-field
image ρwd. To avoid the reconstruction artifacts, the correct Fourier support constraint is added
to the original optimization problem via an indicator function χC:

arg min
Im

‖ym −HRwdIm‖2
2 + χC(Im), (1.51)

where Rwd = diag(ρwd) and χC(Im) is given by:

χC(Im) =

{
0, Im ∈ C
∞, Im 6∈ C

, C =
{

Im | Ĩm(u) = 0, ∀u > 2NA
λillu

}
, (1.52)

where λillu is the wavelength of the excitation light. The indicator function χC ensures that
the frequency support of each speckle pattern is confined within the OTF of the system. The
problem (1.51) is solved by a proximal gradient descent algorithm, which is designed to solve
convex optimization problem with two parts: one being a differentiable term and the other
being a nondifferentiable one. When the nondifferentiable part is an indicator function as in Eq.
(1.51), the method is also named as projected gradient method. The gradient of the differentiable
part in (1.51) with respect to Im in k-th iteration is given by:

gIm,k = −ρwd ◦
[
h ∗

(
ym − h ∗ (ρwd ◦ Im,k)

)]
(1.53)

Then the projection operator Pc is used to force the frequency outside the OTF support be zero
at each iteration. To reduce the high-frequency artifacts, the following soft-edge filter is chosen:

Pc(Im) = F−1
{F{Im} · |γ̃spec|
|γ̃spec|+ δ

}
(1.54)

where γspec is the covariance of speckle patterns as shown in Eq. (A.29) and δ determines how
much the high frequency information is suppressed.

1.5.5.2 Object estimation

In the second part of the PE-SIMS method, the super-resolution object is reconstructed from
the covariance between measured images ym and the estimated speckle patterns Im:

Ccov(r) = E[∆ym(r)∆Im(r)]

=

∫
ρ(r′)E[∆Im(r)∆Im(r′)]h(r − r′)dr′

=

∫
ρ(r′)γspec(r − r′)h(r − r′)dr′

(1.55)

with ∆ym = ym − ȳ and ∆Im = Im − I0. Therefore, we have:
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Ccov = (h ◦ γspec) ∗ ρ. (1.56)

When the fluorescent emission wavelength equals the excitation one, the frequency support
of γspec identifies with h. Then the object is recovered by a standard regularized deconvolution
procedure:

ρ = F−1
{C̃cov ◦O

|O|2 + ε

}
(1.57)

with O given by:
O = F

{
h ◦ γspec

}
(1.58)

The super-resolution capacity analysis of this method is based on a perfect reconstruction of
the unknown speckle patterns, which is impossible in practise. The influence of the imperfect
speckle reconstruction on this estimator is theoretically unclear.

1.6 Conclusion
In this chapter, I have introduced the spatial coherence of the narrowband polychromatic

field and PSF, OTF concepts of a diffraction-limited system, which determine the resolution
limit of conventional optical microscopy. The state of the art super-resolution techniques
in optical fluorescence microscopy are presented including STED, STORM/PALM, SOFI,
and SIM. Specifically, I focused on the blind-speckle-SIM technique and the associated
reconstruction methods that have been proposed are briefly described.





Chapter 2

A new joint reconstruction approach in
blind-speckle-SIM

2.1 Introduction
We note here that the first three reconstruction methods in speckle-SIM presented in Section

1.5 are quite similar, namely they try to minimize the square of the `2 norm of the error between
the measured data and the model, plus different constraints: positivity, sparsity, joint sparsity
or their combinations. In this chapter, I propose a similar model using `p,q regularizer. What is
more, we could combine `p,q regularizer with other prior information of the object, such as total
variation (TV) norm or positivity.

In Section 2.2 we solve the `p,q minimization problem using alternating direction method of
multipliers (ADMM). Recently the ADMM approach has been successfully applied to several
convex or non-convex optimization problems, including `2,1-regularized problem [DYZ12] and
total variation (TV) regularized problem [WYYZ08, ABDF10]. Two different splitting patterns
are presented, one for unconstrained form and the other for constrained form for the basis pursuit
denoising (BPDN) model. When the `p,q norm is combined with TV norm, we choose a primal-
dual approach to solve it as shown in Section 2.3.

2.2 `p,q norm minimization
The data formation model in speckle-SIM is shown in (1.36). To reconstruct the super-

resolution image, we need to incorporate some prior information on the object. Specifically, we
consider the following constrained form of basis pursuit denoising models:

arg min
Q
‖Q‖qpq s.t.

∥∥HQ−Y
∥∥
F
≤ ε (2.1)

where `p,q norm ‖Q‖pq is used to measure the joint sparsity of matrix Q with p ≥ 1, 0 ≤ q ≤ 1:

‖Q‖pq =
(∑

n

‖qn‖qp
)1/q

(2.2)

In our model, we use `p,q norm regularizer to enforce joint sparsity of matrix Q. Here we
describe how this sparsity implicitly correspond to a prior on object ρ. For the n−th line of
matrix Q, we have

‖qn‖p =
[
|ρnI1n|p + · · ·+ |ρnIMn|p

]1/p

(2.3)

15
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when p = 1,
‖qn‖p = ρn(|I1n|+ · · ·+ |IMn|) = MI0ρn (2.4)

when p = 2

‖qn‖p = ρn
(
I2

1n + · · ·+ I2
Mn

)1/2
=
√
Mkρn (2.5)

where k is a constant for the fully developed speckle patterns [Goo15, chapter 7]. So the sparsity
of ‖qn‖p is equivalent with the sparsity of ρn when p = 1 or 2.

We note here that the blind-SIM-SD method presented in Section 1.5.2 is equivalent with
the regularizer α‖Q‖1,1 + β‖Q‖F . To simplify the notation, we express the model in vector
form. Firstly we vectorize the variables {qm}Mm=1 and rewrite the data observation model in
(1.36) as:

y = Hq + e (2.6)

in which

H = 1M ⊗H =


H

H
. . .

H

 , y = vect(Y) =


y1

y2
...
yM

 , q = vect(Q) =


q1

q2
...
qM


(2.7)

Now the minimizing problem (2.1) in vector form is:

arg min
q
‖q‖qGpq s.t. ‖Hq− y‖ ≤ ε (2.8)

where ‖q‖Gpq indicates the `Gpq norm of q defined by:

‖q‖Gpq =
( N∑
n=1

‖qGn‖
q
p

)1/q

(2.9)

in which qGn = qn is the n-th row of Q. Obviously the definition of ‖q‖Gpq is consistent with
‖Q‖pq.

2.2.1 Unconstrained BPDN model
Rather than solving (2.8) directly, I rather consider its unconstrained form:

arg min
q
‖q‖qGpq +

1

2µ
‖Hq− y‖2

2 (2.10)

where µ ∈ R+ is the regularization parameter. (2.8) and (2.10) are equivalent in the following
sense: for any ε > 0, the solution of (2.8) is either the null vector, or otherwise it is a solution
of (2.10) for some µ > 0 [Roc15].

There is no closed form solution for problem (2.10). To overcome this difficulty, I introduce
an auxiliary variable d and rewrite (2.10) as:

arg min
q
‖d‖qGpq +

β2

2
‖Hq− y‖2

2 s.t. d = q (2.11)

Now the variables q have been split into two blocks of variables q and d and the objective
function is separable in the form of f(q) + g(d). Then the augmented Lagrangian associated
with (2.11) is:

min
q,d
‖d‖qGpq +

β2

2
‖Hq− y‖2

2−λT1 (d− q) +
β1

2
‖d− q‖2

2 (2.12)
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with λ1 ∈ RMN and β1 > 0. The ADMM method is used to solve problem (2.12) by
minimization with respect to q and d alternately. The q-subproblem is given by:

min
q≥0

λT1 q +
β1

2
‖d− q‖2

2+
β2

2
‖Hq− y‖2

2

⇔ min
q≥0

1

2
qT (β11MN + β2HTH)q− (β1d− λ1 + β2HT y)Tq

(2.13)

Note that (2.13) is a convex quadratic problem and it is equivalent to the following linear system:

(β11MN + β2HTH)q = β1d− λ1 + β2HT y (2.14)

An exact solution gives:

q =
(
β11MN + β2HTH

)−1(
β1d− λ1 + β2HT y

)
(2.15)

or we could use a gradient based iteration algorithm to update q:

qk+1 = qk − αk∇qk (2.16)

where the subscript k indicates iteration number and the gradient∇qk is given by:

∇qk = β1(qk − dk) + λ1 + β2HT (Hqk − y) (2.17)

The corresponding d-subproblem of (2.12) is given by:

min
d
‖d‖qGpq − λ

T
1 d +

β1

2
‖d− q‖2

2 (2.18)

According to the definition of the `G,p,q norm, we can reexpress (2.18) as:

min
d

N∑
n=1

[
‖dGn‖qp +

β1

2

∥∥∥∥dGn − qGn −
1

β1

(λ1)Gn

∥∥∥∥2

2

]
(2.19)

Let us denote:
τn = qGn +

1

β1

(λ1)Gn (2.20)

and
fn,p,q(dGn) = ‖dGn‖qp +

β1

2
‖dGn − τn‖2

2 (2.21)

Then the problem (2.19) has closed form solutions for the following (p, q) pairs [HLM+17]:
— for p = 2 and q = 1

dGn = max
{

1− 1

β1‖τn‖2

, 0
}
τn (2.22)

— for p = 2 and q = 0

dGn =


τn, ‖τn‖2 >

√
(2/β1)

0 or τn, ‖τn‖2 =
√

(2/β1)

0, ‖τn‖2 <
√

(2/β1)

(2.23)
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— for p = 2 and q = 1/2

dGn =


16‖τn‖3/22 cos3(π

3
−ψn

3
)

3
√
3

β1
+16‖τn‖3/22 cos3(π

3
−ψn

3
)
τn, ‖τn‖2 >

3
2
(1/β1)2/3

0 or 16‖τn‖3/22 cos3(π
3
−ψn

3
)

3
√
3

β1
+16‖τn‖3/22 cos3(π

3
−ψn

3
)
τn, ‖τn‖2 = 3

2
(1/β1)2/3

0, ‖τn‖2 <
3
2
(1/β1)2/3

(2.24)

with

ψn = arccos

(
1

4β1

( 3

‖τn‖2

)3/2
)

— for p = 2 and q = 2/3

dGn =


3η4

2
β1

+3η4
τn, ‖τn‖2 > 2( 2

3β1
)3/4

0 or 3η4
2
β1

+3η4
τn, ‖τn‖2 = 2( 2

3β1
)3/4

0, ‖τn‖2 < 2( 2
3β1

)3/4

(2.25)

with

η =
1

2

(
|a|+

√
2‖τn‖2

|a|
− a2

)
, a =

2√
3

( 2

β1

)1/4
(

cosh
(φ(τn)

3

))1/2

φ(τn) = arccosh

(
27‖τn‖2

2

16
(

2
β1

)3/2

) (2.26)

— for p = 1 and q = 1/2

dGn =


τ̈n, fn,1,1/2(τ̈n) < fn,1,1/2(0)

0 or τ̈n, fn,1,1/2(τ̈n) = fn,1,1/2(0)

0, fn,1,1/2(τ̈n) > fn,1,1/2(0)

(2.27)

with

τ̈n = τn −
√

3

4β
√
‖τn‖1 cos

(
π
3
− ξ(τn)

3

)sign(τn)

ξ(τn) = arccos

(
M

4β

( 3

‖τn‖1

)3/2
) (2.28)

— for p = 1 and q = 2/3

dGn =


τ̆n, fn,1,2/3(τ̆n) < fn,1,2/3(0)

0 or τ̆n, fn,1,2/3(τ̆n) = fn,1,2/3(0)

0, fn,1,2/3(τ̆n) > fn,1,2/3(0)

(2.29)

with

τ̆n = τn −
4
√
ā

3β
(
ā3/2 +

√
2|τn|1 − ā3

)sign(τn) (2.30)

and

ā =
2√
3

(2M

β

)1/4
(

cosh
(ζ(τn)

3

))1/2

ζ(τn) = arccosh

(
27|τn|21

16
(

2M
β

)3/2

) (2.31)
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Finaly, we update the multiplier λ1 by:

λ1 ← λ1 − α1β1(d− q) (2.32)

where α1 > 0 denotes the step length. Briefly, the ADMM approach for the constrained BPDN
model is shown in Algorithm 1:

Algorithm 1: ADMM algorithm for `p,q minimization of unconstrained BPDN model

1 Initialize λ1,λ2 ∈ RMN , β1 > 0 and α1 > 0 ;
2 while stopping criterion is not met do
3 Update q by (2.15) or (2.16) ;
4 Update d according the number of (p, q) pair;
5 λ1 ← λ1 − α1β1(d− q) ;
6 end

2.2.2 Constrained BPDN model
Although the unconstrained form of BPDN model (2.10) and its constrained form (2.8) are

equivalent, it is not easy to set the parameter µ in (2.10). However, the parameter ε has a
clear meaning related to the energy of the noise. Inspired by the so-called C-SALSA algorithm
[ABDF11], we present an ADMM approach to solve (2.8) directly.

Firstly, we define the ellipsoid feasible set E(ε,H,y) as:

E(ε,H,y) =
{
ρ ∈ RN | ‖Hρ− y‖2 ≤ ε

}
(2.33)

Then the constrained problem (2.8) can be written as an unconstrained problem according to:

arg min
q
‖q‖qGpq + ıE(ε,1,y)(Hq) (2.34)

To solve the problem (2.34), we introduce two auxiliary variables o and z by:

o =

[
o(1)

o(2)

]
=

[
q
Hq

]
, z =

[
q
o

]
(2.35)

Then we can write (2.34) as:

arg min
z

h(z), s.t. Az = 0 (2.36)

where

h(z) = f(q) + g(o); f(q) = 0; g(o) = ‖o(1)‖qGpq + ıE(ε,1,y)(o
(2))

A =
(
B,−12MN

)
, B =

(
1MN

H

) (2.37)

The augmented Lagrangian associated with (2.36) is:

arg min
q

f(q) + g(o)− λAz +
β

2
‖Az‖2

⇔ arg min
q

f(q) + g(o) +
β

2
‖Bq− o− λ

β
‖2

(2.38)
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The q-subproblem is given by:

arg min
q
‖Bq− ζk‖2 = (BTB)−1BTζk

=
(
1MN +HTH

)−1(
ζ

(1)
k +HTζ

(2)
k

)
where k indicates the number of iterations and ζk = ok + λk

β
.

The o-subproblem of (2.38) is given by:

arg min
o

g(o) +
β

2
‖Bqk+1 − o− λk

β
‖2

⇔ arg min
o
‖o(1)‖qGpq + ıE(ε,1,y)(o

(2)) +
β

2
‖o− sk‖2

(2.39)

where sk = Bqk+1 − λk
β

. Clearly, the minimization o-subproblem could be decoupled, leading
to

o
(1)
k+1 = arg min

o(1)
‖o(1)‖qGpq +

β

2
‖o(1) − s

(1)
k ‖

2 (2.40a)

o
(2)
k+1 = arg min

o(2)
ıE(ε,1,y)(o

(2)) +
β

2
‖o(2) − s

(2)
k ‖

2 (2.40b)

which are the proximal operators of the corresponding functions. The proximal operator of
`p,q norm has been shown in previous Section 2.2. The proximal operator of indicator function
ıE(ε,1,y) is [ABDF11]:

proxıE(ε,1,y)/β
(s) = y +

{
ε s−y
‖s−y‖2 , ‖s− y‖ ≥ ε

s− y, ‖s− y‖ ≤ ε
(2.41)

Finally, the multipliers λ are updated by:

λk+1 = λk + β(Azk+1) = λk + β(Bqk+1 − ok+1) (2.42)

The resulting ADMM algorithm to solve the unconstrained BPDN model is as follows:

Algorithm 2: ADMM algorithm for `p,q minimization of constrained BPDN model

1 Initialize λ ∈ R2MN , β > 0 ;
2 while stopping criterion is not met do
3 ζk = ok + λk

β
;

4 qk+1 =
(
1MN +HTH

)−1(
ζ

(1)
k +HTζ

(2)
k

)
;

5 sk = Bqk+1 − λk
β

;

6 o
(1)
k+1 = prox`p,q/β(s

(1)
k );

7 o
(2)
k+1 = proxıE(ε,1,y)/β

(s
(2)
k );

8 λk+1 = λk − β(Bqk+1 − ok+1) ;
9 k ← k + 1;

10 end
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2.3 `p,q norm plus TV norm minimization
In this section we incorporate more prior information on the object to the image reconstruc-

tion model, including positivity and the total variation (TV) regularizer:

arg min
Q
‖Q‖qpq + µ‖ρ‖TV s.t. ‖Y −HQ‖ ≤ ε, Q ≥ 0 (2.43)

where the isotropic TV is adopted. For a N1 ×N2 object ρ, it is defined as:

‖ρ‖TV =

N1∑
n1=1

N2∑
n2=1

√
(ρ[n1 + 1, n2]− ρ[n1, n2])2 + (ρ[n1, n2 + 1]− ρ[n1, n2])2 (2.44)

Let us denote C1,C2 ∈ RN×N the two first-order forward finite difference operators (see their
structures in Appendix C). For the vectorized object ρ ∈ RN , we have:

‖ρ‖TV = ‖Cρ‖G,2,1 =
N∑
n=1

‖(Cρ)Gn‖2 (2.45)

with C = (C1; C2) ∈ R2N×N denoting the total finite difference operator and (Cρ)Gn =
[(C1ρ)n; (C2ρ)n] ∈ R2. According to the property ρ = 1

MI0

∑
m qm, we could write ρ = Aq,

with matrix A ∈ RN×MN given by:

A =
[

1
MI0

1N , · · · , 1
MI0

1N

]
(2.46)

Let us denote D = CA, then the corresponding vectorized form of (2.43) is:

arg min
q
‖q‖qGpq + ıR+(q) + µ‖Dq‖G21 s.t. ‖Hq− y‖ ≤ ε (2.47)

with

ıR+(q) =

{
0, q ≥ 0

+∞, otherwise
, ‖Dq‖G21 =

N∑
n=1

‖(Dq)Gn‖2 (2.48)

2.3.1 Primal-dual algorithm for unconstrained BPDN model
Problem (2.47) can be solved by transforming it to its equivalent unconstrained form:

arg min
q

1

2
‖Hq− y‖2 + β1ıR+(q) + β2‖q‖qGpq + β3‖Dq‖G21 (2.49)

in which β2, β3 ≥ 0. Here we add parameter β1 ∈ {0, 1}, so that the model can be solved with
or without the positivity constraint. When β1 = 1 and β2 = β3 = 0, Eq. (2.49) reduces to the
model presented in Section 1.5.1. Here we choose the primal-dual splitting method proposed
in [Con13] to solve the optimization problem in (2.49). Firstly, we introduce two auxiliary
variables d,p by d = q and p = Dq and we rewrite (2.49) according to:

arg min
q

f(q) + g(q) + h1(d) + h2(p)

with f(q) =
1

2
‖Hq− y‖2, g(q) = β1ıR+(q)

h1(d) = β2‖d‖qGpq h2(p) = β3‖q‖G21

(2.50)
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The dual problem associated with (2.50) is:

arg min
d,p

[
(f + g)∗(−d−D∗p) + h∗1(d) + h∗2(p)

]
≡ arg min

d,p
min
q

[
f ∗(−d−D∗p− q) + g∗(q) + h∗1(d) + h∗2(p)

] (2.51)

where we have used the following property:

(f + g)∗(−d−D∗p) = min
q

f ∗(−d−D∗p− q) + g∗(q) (2.52)

in which D∗ denotes the conjugate transpose of matrix D and f ∗ is the convex conjugate of
function f defined as:

f ∗(x∗) = sup
{
〈x∗, x〉 − f(x)

}
(2.53)

According to classical Karush-Kuhn-Tucker theory, if (q̂, d̂, p̂) is a solution of the monotone
variational inclusion:  0

0
0

 ∈
 ∂g(q̂) + d̂ +D∗p̂ +∇f(q̂)

−q̂ + ∂h∗1(d̂)
−Dq̂ + ∂h∗2(p̂)

 (2.54)

then q̂ is solution to the primal problem (2.50) and d̂, p̂ is the solution to the dual problem
(2.51). The primal-dual splitting method to solve (2.54) is shown in Algorithm 3:

Algorithm 3: Primal-dual splitting method to solve `p,q plus TV norm minimization

1 Initialize the parameter τ, σ, θ > 0 and q0,d0,p0

2 while stopping criterion is not met do
3 if β1 = 1 then
4 q̄k+1 = max

(
qk − τ

(
∇f(qk) + dk +D∗pk

)
, 0
)

;

5 else
6 q̄k+1 = qk − τ

(
∇f(qk) + dk +D∗pk

)
;

7 end
8 qk+1 = θq̄k+1 + (1− θ)qk;
9 d̄k+1 = proxσh∗1

(
dk + σ(2q̄k+1 − qk)

)
;

10 p̄k+1 = proxσh∗2
(
pk + σD(2q̄k+1 − qk)

)
;

11 dk+1 = θd̄k+1 + (1− θ)dk ;
12 pk+1 = θp̄k+1 + (1− θ)pk ;
13 end

The convergence results of algorithm 3 is as follows [Con13]:

Property 2.1. Let L be the Lipschitz constant of the gradient ∇f (or function f is L-smooth)
and τ, σ > 0. When p ≥ 1 and q = 1, the sequence qk generated by Algorithm 3 converges to
a solution of problem (2.50) as long as the following holds:

— τ
(
L
2

+ σ
∥∥1MN +D∗D

∥∥
op

)
< 1, where ‖·‖op is the operator norm.

— θ ∈ (0, 1]

When q < 1, `pq is a nonconvex function and we cannot assure Algorithm 3 converges to its
global minimum.
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The Lipschitz constant of ∇f(q) = H∗
(
Hq − y

)
is: L = ‖H‖2

op = ‖1M‖2
op‖H‖2

op. Since
H is a lowpass convolution operator with symmetric boundary conditions, we have ‖H‖op = 1,
so that L = 1.

According of the definition of norm,∥∥1MN +D∗D
∥∥
op
≤ ‖1MN‖op + ‖D∗D‖op (2.55)

with
‖D∗D‖op = ‖D‖2

op ≤ ‖A‖2
op‖C‖2

op (2.56)

According to the inequality between root-mean square and arithmetic mean, we have:

‖Aq‖2
2 ≤

1

MI0

‖q‖2
2 (2.57)

Since ‖C‖2
op ≤ 8 [CP11], combining Eqs. (2.55)–(2.57):

∥∥1MN +D∗D
∥∥
op
≤ 1 +

8

MI0

(2.58)

The proximal operator for h∗1 could be found through the relation:

proxσh∗1(x) = x− σproxh1/σ(x/σ) (2.59)

2.3.2 Primal-dual algorithm for constrained BPDN model
The constrained form of (2.47) is:

arg min
q

ıE(ε,1,y)(Hq) + β1ıR+(q) + β2‖q‖qGpq + β3‖Dq‖G21 (2.60)

To solve (2.60) with primal-dual algorithm, we introduce the auxiliary variables d,p, r with
d = q and p = Dq and r = Hq. Then (2.60) can be rewritten as:

arg min
q

g(q) + h1(d) + h2(p) + h3(r)

with g(q) = β1ıR+(q), h1(d) = β2‖d‖qGpq
h2(p) = β3‖p‖G21, h3(r) = ıE(ε,1,y)(r)

(2.61)

The primal-dual algorithm to solve (2.60) is as follows:

2.4 Simulation results
To study the numerical performance of the blind-SIM-JSP model, a 2D ’star-like’ simulated

target is used as the true object, with a fluorescence density given by ρ(r, θ) ∝ 1 + cos(40θ) in
polar coordinates, as shown in Figure 2.1. Its spatial frequencies are higher closer to the star
center, making it easy to visualize the resolution improvement. The point spread function is
chosen as:

h(r, θ) =

(
J1(NAk0r)

k0r

)2
k2

0

π
(2.62)

where J1 is the first order Bessel function of the first kind, NA is the objective numerical aperture
set to 1.49 and k0 = 2π

λ
is the free-space wavenumber with λ the emission and the excitation
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Algorithm 4: Primal-dual splitting method to solve `p,q plus TV norm minimization of
form 2
1 Initialize the parameter τ, σ, θ > 0 and q0,d0,p0, r0

2 Set k = 0
3 while stopping criterion is not met do
4 if β1 = 1 then
5 q̄k+1 = max

(
qk − τ

(
dk +D∗pk +H∗rk

)
, 0
)

;

6 else
7 q̄k+1 = qk − τ

(
dk +D∗pk +H∗rk

)
;

8 end
9 qk+1 = θq̄k+1 + (1− θ)qk;

10 d̄k+1 = proxσh∗1
(
dk + σ(2q̄k+1 − qk)

)
;

11 p̄k+1 = proxσh∗2
(
pk + σD(2q̄k+1 − qk)

)
;

12 r̄k+1 = proxσh∗3
(
rk + σH(2q̄k+1 − qk)

)
;

13 dk+1 = θd̄k+1 + (1− θ)dk ;
14 pk+1 = θp̄k+1 + (1− θ)pk ;
15 rk+1 = θr̄k+1 + (1− θ)rk ;
16 k ← k + 1 ;
17 end

wavelengths. The speckle patterns are generated through the same optical device as the recorded
images. The sampling step in the object should be finer than λ/8NA to observe an SR factor of
two. In our simulations, a larger SR factor is expected in some situations. Therefore, a sampling
step of λ/20 is adopted so that aliasing does not destroy the attainable SR. For the sampling rate
in the raw images, we will not lose the SR capacity as long as it is higher than the Nyquist rate
4NA/λ. In the simulations presented in this chapter, we use the same sampling rate for the raw
images and the object.

Firstly, we do simulations under 40dB Gaussian white noise and 300 speckle patterns
with different regularizers. The average of the raw images (wide-field image) ȳ and its
Wiener deconvolution by Eq. (1.50) are shown in Figure 2.2(b,c). It is clear that we see
no super-resolution in the wide-field image and its deconvolution. The reconstructed image
with positivity constraint is shown in Figure 2.2(d). We retrieve partial super-resolution with
weak modulation contrast after introducing positivity constraint, which is consistent with the
result shown in [MBG+12]. Figure 2.2(e,f) are obtained with `2,0 norm regularizer with M-SBL
algorithm as in [MJK+13] and `1 + `2 norm plus positivity regularizer with PPDS algorithm
presented in [LNI+17], respectively. We can see that the image reconstructed by M-SBL
algorithm as in [MJK+13] do not scale well and there are some artifacts in low resolution part.

The reconstructed objects obtained by using `p,q norms with different (p, q) pairs are shown
in Figure 2.3. The positivity constraint and the TV norm are not considered. The images in first
line are obtained by minimizing the unconstrained BPDN model (2.12) with ADMM algorithm
and β1 = β2 = 2. The results in second line are obtained with primal-dual algorithm by
minimizing unconstrained BPDN model (2.49) where we set β1 = β3 = 0 and β2 = 0. 5. Here
σ = θ = 1 and τ = 0. 6 satisfy the convergence conditions of primal-dual algorithm when
p ≥ 1 and q = 1.

While the results shown in third line in Figure 2.3 are obtained by minimizing the
constrained BPDN model (2.60) with β1 = β3 = 0 and β2 > 0. For the hyperparameter ε, we



Chapter 2 — A new joint reconstruction approach in blind-speckle-SIM 25

2 4 6

1

2

3

4

5

6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1 – The true object. The green solid circle corresponds to spatial frequencies
transmitted by OTF support, and red dashed circle corresponds to two times of the OTF support.
The Nyquist limit introduced by discretization is marked by the blue circle.
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Figure 2.2 – Joint reconstruction approach in blind-speckle-SIM using different regular-
izers with 300 speckle patterns and 40dB Gaussian noise. d) is obtained using positivity
constraint as shown in [MBG+12], e) is obtained with `2,0 norm regularizer using M-SBL
algorithm as in [MJK+13] and f) is obtained with `1 + `2 norm regularizer plus positivity
constraint using PPDS algorithm shown in [LNI+17].
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set it equal to its true value εreal =
√
MNν with ν denoting the standard deviation of the noise,

unless otherwise stated. The primal-dual algorithm converges if θ ∈]0, 2[ and στ ≤ 1
2

[Con13].
It shows that the `p,q norm regularizer can induce good super-resolution results. Particularly,
for the constrained BPDN model, we retrieve the super-resolution information twice better than
the conventional wide-field image, as good as standard SIM. However, let us remark that prior
information introduces bias to the joint estimator.
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Figure 2.3 – Reconstructed object with 300 speckle patterns and 40dB Gaussian noise by
minimizing `p,q norm.

To measure the quality of the reconstructed images, we use the normalized radially averaged
power spectrum (RAPS) of the error image and the modulation contrast function of the
reconstructed object.

The normalized RAPS function is defined as:

f(r) =

∫ π
−π

∣∣˜̂ρ(u)− ρ̃∗(u)
∣∣2dθ∫ π

−π|ρ̃∗(u)|2dθ
, with u =

[
r cos θ
r sin θ

]
, r > 0, θ ∈ (0, 2π) (2.63)
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Figure 2.4 – The normalized RAPS and MCF curves of the reconstructed object by joint
estimators.

The period of the pattern taken on a circle of radius R is L(R) = 2πR/40 and the
modulation contrast function (MCF) is defined as:

C(R) = 2f̃R(1/L(R))/f̃R(0) (2.64)

where f̃R is the 1D Fourier transform of fR(s) ∝ 1+cos(2πs/L(R)) with s the arclength along
the circle. We can check that for the true object ρ∗, C(R) = 1 for all radius R.

The normalized RAPS of errors and the MCF of the reconstructed object by constrained
BPDN model are shown in Figure 2.4. In the MCF curves, we see that the constrained `2,1/2

or `2,2/3 regularizer give better contrast in high frequency part, however, their error energy in
high frequency part is also stronger, probably caused by the binary effect in the reconstructed
images. The reconstructed object by [MJK+13] is not well scaled, so we do not plot its RAPS
curve. Generally, we can conclude that the constrained `2,1 regularizer gives a balanced result
with respect to the constrast and error energy.
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2.4.1 Influence of the hyperparameter in constrained BPDN model

In this section, we explore how the parameter ε influence the estimator when it is not
correctly set in constrained BPDN form. The reconstruction results with 300 speckle patterns
and 40dB white noise using different ε value are shown in Fig. 2.5. When ε is much lower
than its true value as shown in the second line of Figure 2.5 (ε = 0. 2εreal), we still retrieve good
super-resolution, nevertheless, some artifacts (random dots) appears in low-resolution part when
using `2,1/2 and `2,2/3 norm. When ε = 5εreal as shown in first line of Figure 2.5, we lost partial
super-resolution compared to the case when it is correctly set, however, it is still better than the
results obtained with only positivity constraint (Figure 2.2(c)).
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Figure 2.5 – Reconstructed object with 300 speckle patterns and 40dB Gaussian noise by
minimizing `p,q norm of constrained form.

2.4.2 Resolution under different frequency support of speckle patterns

Surpassing the resolution limit more than a factor of two is possible in saturated structured
illumination microscopy (nonlinear SIM) [Gus05]. In this section the influence by Fourier
support of speckle on the super-resolution imaging is explored. The reconstruction results of
the proposed method with speckle generated with different numerical aperture (NAill) under 300
illumination and 40dB SNR are shown in Fig. 2.6. When the support of power spectral density
of the speckle patterns becomes smaller, we lost partial super-resolution, as shown in the first
column in Fig. 2.6. The super-resolution information beyond a factor of two is still inaccessible
under the situation the support of speckle spectral density is enlarged in the constrained BPDN
model.
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Figure 2.6 – Reconstructed object with 300 speckle patterns and 40dB Gaussian noise with
different frequency support of speckle patterns.

2.4.3 Resolution under Poisson noise

In the previous image formation model in Eq. (1.26), we does not consider the shot noise of
CCD caused by the random arrival of photons. For a given photon, the probability of its arrival
within a given time period is governed by Poisson distribution. In Figure 2.7, we show the
image formation model where a noise-free raw image is corrupted with the mixture of Poisson
and Gaussian noise. The number of photons per pixel on average is assumed to be 100 and the
SNR of Gaussian noise added is 15dB.

The reconstruction results by minimizing Eq. (2.60) with mixture of Poisson and Gaussian
noise using 300 speckle patterns are presented in Figure 2.8. The results shown in the
first line are obtained by considering `p,q norm regularizer and the TV regularizer, with the
hyperparameters β2 = 1, β3 = 0. 1, while the results shown in the second line are obtained by
only considering `p,q norm regularizer with β2 = 1, β3 = 0. We see that the super-resolution
can be retrieved with only `p,q norm regularizer under mixture of Poisson and Gaussian noise,
and after introducing TV norm regularizer, the results become smoother as expected.

2.4.4 The comparison of two estimators

As has been indicated in Section 1.5, once the matrix Q is obtained, we could estimate the
object ρ by either the mean:

ρ̂ =
1

I0

q̄m =
1

MI0

∑
m

qm (2.65)
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Figure 2.7 – Illustration of Gaussion and Poisson noise. (a) A noise-free raw image. (b) The
noise-free image corrupted with Poisson noise. (c) The noise-free image corrupted with the
mixture of Poisson and Gaussian noise.
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Figure 2.8 – Reconstructed object with 300 speckle patterns under mixture of Poisson and
Gaussian noise by minimizing (2.60). The SNR of Gaussian noise is 15dB and the number of
photons per pixel per measurement is set to 100.
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or by its covariance:

ρ̂ =

√
1

M

∑
m

(
qm − q̄m

)2 (2.66)

The measured fluorescence images are always blurred by the non-uniform background
comprising of detector offset, scattered light and the out-of-focus parts in sample. If we assume
the background keep fixed in the imaging process, then the image formation model could be
described by:

ym = Hqm + εm + b (2.67)

with b ∈ RN denoting the background. So what we reconstructed in the m−th column of Q
is in fact q̂m = qm + H+(εm + b) instead of qm, with H+ the pesudo inverse of H. Then the
expectation of q̂m will be blurred by H+b. However, the covariance of q̂m is not influenced by
the presentation of the background. To verify this point, simulation results using 300 speckle
patterns and 40dB Gaussian noise with a fixed background (lena) are shown in figure 2.9. The
second line and the third line are obtained by minimizing the constrained `21 and `11 regularizer,
respectively. As we expected, the mean of Q are blured by the background while the square
root of covariance of Q are rather clear. So in the reconstruction problem by the experimental
data as shown in next section, we choose Eq. (2.66) to estimate the object.

2.5 Experiments with real data
The raw images are obtained with an objective of 1.49 NA and 100× magnification. The

wavelength of excitation is 488 nm and 520 nm for the collection. The PSF used is simulated
using a ICY plug-in called PSF Generator with Gibson & Lanni 3D Optical Model. The
reconstructed objects by minimizing the constrained `p,q regularizer with 80 speckle patterns of
the Podosome and Actin sample are shown in Figure 2.10. Fourier transforms of the Podosome
images are displayed in Figure 2.11. The zoom of a small part of these images are shown in
Figure 2.12. Line sections extracted from the Podosome sample are plotted in Fig. 2.13. Clearly
we see better details using our proposed method compared with the Wiener deconvolution of
the average raw images in Podosome sample. The improvement in Actin sample is not easy to
visualize.

2.6 Conclusion
In this chapter I have presented a super-resolution image reconstruction approach based on

the prior information on the object. Specifically, we use `p,q norm to enforce the joint sparsity
of matrix Q, which is equivalent with the sparsity of object ρ. Both the constraint form and the
unconstraint form of the BNDN model are presented. The hyperparameter in constraint form is
easier to tune than the unconstraint form since it has a clear meaning, which is proportional to
the standard deviation of the noise. The ADMM algorithm and the primal-dual algorithm are
chosen to solve the corresponding BPDN optimization problems. Other prior information of
the object can be incorporated into our method easily without big changes of the optimization
algorithm, such as TV regularizer or the positivity constraint. Simulation results show that our
proposed methods could retrieve good super-resolution information, even under the mixture of
Poisson and Gaussian noise.

Since we reconstruct the unknown speckle patterns and the object together, the proposed
method belongs to a joint reconstruction family. In the following chapters, we will present a
marginal reconstruction approach to speckle SIM, where marginal means that the reconstruction
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Figure 2.9 – Reconstruction results by 300 speckle patterns and 40dB Gaussian noise with
a fixed background.
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Average of Raw images Average of Raw images

Deconvolution of average Deconvolution of average

Reconstruction with `2,1 norm regularizer Reconstruction with `2,1 norm regularizer

Figure 2.10 – Reconstructed object with 80 speckle patterns of Podosome sample (first
column) and Actin (second column) sample.
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Figure 2.11 – Fourier domain plot of Podosome images with 80 speckle patterns.
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Figure 2.12 – Partial enlargement of the reconstructed object with 80 speckle patterns of
Podosome and Actin sample.
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Figure 2.13 – Line section plot extracted from the reconstructions of Podosome sample
shown in Fig. 2.12.

of speckle patterns is not necessary. Contrary to the methods presented in this chapter, only
minimal prior assumptions on the object are needed to produce a super-resolution factor equal
to two. What is more, the parameter of interest does not grow with the increasing number
of measurements in the marginal approach, and we will demonstrate that it is asymptotically
consistent.



Chapter 3

Super-resolution capacity using
second-order statistics

3.1 Introduction
In Section 1.5 and Chapter 2, I have presented some reconstruction methods in blind-

speckle-SIM. As it has been stated, there are no theoretical guarantees about the super-resolution
(SR) capacity in these methods except S-SOFI. In particular, since the number of unknowns
(which include both the unknown object and the speckle patterns) increases with the number of
observations, these methods are not generally reliable from the statistical viewpoint [LR83].

In this chapter we study the SR capacity in blind-speckle-SIM, taking advantage of second-
order statistics. Let us denote the radii of the support of OTF and the speckle power spectral
density by νPSF and νspec. When νspec ≤ νPSF, our theoretical analysis demonstrates that the SR
capacity obtained by blind-speckle-SIM can be 2νspec/νPSF (asymptotically). When νspec =∞,
a SR factor of two could be obtained for the square of the object ρ. No general conclusion could
we make in the case νPSF ≤ νspec <∞. A marginal estimation approach based on such second-
order statistics is proposed in this chapter. Contrary to the reconstruction methods presented
previously, the marginal estimator is shown to be unbiased and consistent.

Section 3.2 gives the expression of the first two moments of the observation data. We
explore the SR capacity under assumptions of uncorrelated and correlated speckle cases in
Section 3.3. A marginal estimation approach is proposed in Section 3.4, together with its
asymptotic statistical analysis, and a possible numerical implementation is discussed. The
influence of using Poisson statistics is considered in Section 3.5. Finally, simulation results
are presented in Section 3.7. It is deserved to be mentioned here that most of the contents in
this chapter has been published in [ILA+17] where I am a co-author.

3.2 First and second-order statistics of the data
i As shown in Eq. (1.26), the observation model in the speckle-SIM framework is given by:

ym(r) = km(r) + εm(r) (3.1a)

with km(r) =

∫
h(r − r′)ρ(r′)Im(r′)dr′ (3.1b)

in which Im is the m-th realization of speckle and εm stands for electronic noise and model
errors. In the analysis below, the following assumptions are adopted:

37
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1. The PSF h is both integrable and square-integrable, and it is positive semidefinite (i.e., its
Fourier transform is real and nonnegative). Moreover, its Fourier transform h̃ takes finite
values and vanishes outside a bounded set that we note DPSF = {u | h̃(u) > 0}.

2. The data grid is fine enough to sample the PSF without discretization error.
3. The object ρ is integrable and takes finite, nonnegative values over Rd.
4. The noise εm and speckle patterns Im are second-order stationary and mutually uncorre-

lated random processes. Without loss of generality, we further assume that the noise is
centered, that is, E[εm(r)] = 0.

5. The noise and illuminations are second-order stationary, mutually decorrelated random
processes.

6. The first two moments of speckle patterns are assumed to be known with homogeneous
mean I0 over the sample and covariance γspec(r). This is true for fully developed speckle
patterns according to our analysis in appendix A.

Our analysis is confined to the second-order statistics, i.e., only the mean and covariance of
the data are concerned. To characterize the SR capacity of second-order methods, we assign
each component of ρ̃(u), the Fourier transform of the object ρ(r), to one of the three classes:

— Non-identifiable components are those for which the second-order data statistics bring
no information.

— Partially identifiable components are those for which the second-order data statistics
bring some information, but for which some ambiguity remains.

— Identifiable spectral components are those which are uniquely determined given the
second-order data statistics.

3.2.1 First-order statistics of data
As can be seen from Eq. (3.1), we can obtain the statistical mean of ym by:

µy(r) = I0

∫
h(r − r′)ρ(r′)dr′. (3.2)

According to the convolution theorem, the Fourier transform of µy gives:

µ̃y(u) = I0h̃(u)ρ̃(u). (3.3)

Therefore, we know that any spectral component of ρ inside the support DPSF is identifiable
from µy provided that I0 6= 0. So, we have the following property:
Property 3.1. The frequency component ρ̃(u) is identifiable from µ̃y if and only if u ∈ D1

with

D1 =

{
DPSF if I0 6= 0

∅ otherwise
(3.4)

In any case, the first-order statistics of the data bring no information of spectral components
outside DPSF.

3.2.2 Second-order statistics of data
Since the noise is centered and both the speckle patterns and noise are second-order

stationary random processes, we write their correlation functions as:

γspec(r) = E[I(x)I(x− r)]− I2
0 , (3.5a)

γε(r) = E[ε(x)ε(x− r)]. (3.5b)
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Then the correlation function of the measured image ym is given by:

γy(r, r
′) = E[ym(r)ym(r′)]− µy(r)µy(r

′). (3.6)

Since we assume that the speckle patterns and noise are mutually uncorrelated, we have:

γy(r, r
′) = γk(r, r

′) + γε(r − r′), (3.7)

where

γk(r, r
′) =

∫∫
ρ(x)ρ(x′)h(r − x)h(r′ − x′)γspec(x− x′)dxdx′. (3.8)

A double Fourier transform of (3.8) with respect to space variables r and r′ gives:

γ̃k(u,u
′) =

∫∫∫∫
ρ(x)ρ(x′)h(r − x)h(r′ − x′)e−2πir·ue−2πir′·u′γspec(x− x′)dxdx′drdr′

(3.9)
According to Fubini’s theorem [Fre00], we have

γ̃k(u,u
′) = (3.10)∫∫
ρ(x)ρ(x′)γspec(x− x′)

(∫
h(r − x)e−2πir·udr

∫
h(r′ − x′)e−2πir′·u′dr′

)
dxdx′

(3.11)

Substitute z = r − x, z′ = r′ − x′, then dz = dr, dz′ = dr′ , so:

γ̃k(u,u
′) =∫∫

ρ(x)ρ(x′)γspec(x− x′)
(∫

h(z)e−2πi(z+x)·udz

∫
h(z′)e−2πi(z′+x′)·u′dz′

)
dxdx′

=

∫∫
ρ(x)ρ(x′)γspec(x− x′)e−2πix·ue−2πix′·u′

(∫
h(z)e−2πiz·udz

∫
h(z′)e−2πiz′·u′dz′

)
dxdx′

= h̃(u)h̃(u′)

∫∫
ρ(x)ρ(x′)γspec(x− x′)e−2πix·ue−2πix′·u′dxdx′

(3.12)
Let us define function g̃(u,u′) as:

g̃(u,u′) =

∫∫
ρ(x)ρ(x′)γspec(x− x′)e−2πix·ue−2πix′·u′dxdx′

=

∫∫
ρ(x)ρ(x′)e−2πix·ue−2πix′·u′

(∫
γ̃spec(u

′′)e2πiu′′·(x−x′)du′′
)
dxdx′

=

∫ (∫
ρ(x′)e−2πix′·(u′+u′′)

(∫
ρ(x)e−2πix·(u−u′′)dx

)
dx′
)
γ̃spec(u

′′)du′′

=

∫
ρ̃(u− u′′)ρ̃(u+ u′′)γ̃spec(u

′′)du′′

(3.13)

where γ̃spec is called the power spectral density function of the speckle pattern, which is
identified by the Fourier transform of the correlation function of γspec according to the Wiener-
Khinchin theorem [Goo15, Section 3.4]. The SR capacity analysis will be studied from the
above equations, which link in the Fourier domain “observable” quantities γ̃y to the available
information of the object ρ.
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3.3 SR capacity using second-order statistics
The noise covariance conveys no information about the object ρ, so the knowledge of

γy is equivalent to that of γk. According to Eqs. (3.12)–(3.13), the spectral density γ̃spec

plays a central role in the identification of the spectral components of the sample. However,
there is no analytical expression to estimate the object from this set of Eqs. (3.12)–(3.13)
in particular because of the quadratic functional dependence of the data correlation on the
unknown sample ρ. Two special cases lend themselves to a deeper analysis, though. The first
one corresponds to “sufficiently” correlated speckles, by saying which we mean the support
of the spectral power density of speckle is contained in the frequency support of the PSF. The
second one corresponds to uncorrelated speckle patterns. For brevity of notations, we introduce
the Minkowski difference of two sets:

A	B = {x− y | x ∈ A, y ∈ B} (3.14)

3.3.1 “Sufficiently” correlated speckle case
First we assume that the frequency support of the speckle correlation is confined to some

frequency domain that we note Dspec. According to expression (3.12), γ̃k(u,u′) vanishes when
either u or u′ is outside DPSF. On the other hand, according to (3.13), g̃(u,u′) conveys no
information on the frequency components ρ̃(v) such that u − v /∈ Dspec or v − u′ /∈ Dspec.
Then, we conclude that the following property holds.
Property 3.2. Any spectral component ρ̃(u) where u 6∈ DPSF 	 Dspec is non-identifiable
from the mean µy(r) and the correlation function γk(r, r′).

Property 3.2 defines a boundary that cannot be surpassed from standard statistical informa-
tion. A further analysis allows us to draw a positive conclusion about what is accessible when
the support of the spectral power density of speckle is not larger than that of the PSF.
Property 3.3. Provided that γspec is such that Dspec ⊆ DPSF, any spectral component ρ̃(u)
is identifiable from the mean µy(r) and the correlation function γk(r, r′) if u ∈ D1 ∪ D2

with D2 = Dspec 	Dspec.

Proof. Let q denote the impulse response of the filter defined in the Fourier domain by:

q̃(u) =

{(
γ̃spec(u)

)1/2
, u ∈ Dspec

0, otherwise.
(3.15)

Similarly to γspec, q is positive semi-definite, and it is a Hermitian symmetric function. So we
have γ̃spec = q̃2, and hence

γspec = q ∗ q. (3.16)

Let us define the following kernels:

f(r, r′) =

∫
q(r − x)q∗(r′ − x)ρ(x)dx (3.17)

F (r, r′) =

∫
f(r, r′′)f ∗(r, r′′)dr′′ (3.18)

and the induced integral operators Kf and KF :

(Kfφ)(·) =

∫
f(·, r)φ(r)dr,

(KFφ)(·) =

∫
F (·, r)φ(r)dr.

(3.19)
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Now let us review Eq. (3.17). f can be seen as the inner product of q(r−x) and q(r′−x) with
the reference measure induced by ρ. According to the Cauchy-Schwarz inequality, we have:

|f(r, r′)|2 ≤
∫
|q(r − x)|2ρ(x)dx

∫
|q(r′ − x)|2ρ(x)dx. (3.20)

As a consequence,∫∫
|f(r, r′)|2drdr′ ≤

∫∫
|q(r − x)|2ρ(x)dxdr

∫∫
|q(r′ − x)|2ρ(x)dxdr′. (3.21)

Now notice that ∫∫
|q(r − x)|2ρ(x)dxdr =

∫
ρ(x)

∫
|q(r − x)|2drdx

=

∫
|q(r)|2dr

∫
ρ(x)dx.

(3.22)

Combining (3.21) and (3.22), we obtain:∫∫
|f(r, r′)|2drdr′ ≤

(∫
|q(r)|2dr

∫
ρ(x)dx

)2

. (3.23)

Since ρ is integrable, and∫
|q(r)|2dr =

∫
γ̃ spec(u)du = γ spec(0) <∞, (3.24)

So, we have ∫∫
|f(r, r′)|2drdr′ <∞ (3.25)

i.e., f(r, r′) ∈ L2(Rd × Rd,C), and consequently, Kf is a Hilbert-Schmidt integral operator
[Ped12]. Now let us go to the heart of the proof, which is threefold. The first step allows us to
show that kernel F is uniquely defined from γk. In a second step, we establish that f is uniquely
defined from F given (3.18). At this point, we conclude that the knowledge of γk implies that
of f , which is a linear functional of ρ (whereas the dependency of γk in ρ is quadratic). The last
step consists in a Fourier analysis of f , in order to determine which spectral components of ρ
are identifiable from the knowledge of f .

Step 1) Given (3.17) and (3.16), we have the following alternate expression for (3.18):

F (r, r′) =

∫∫
ρ(x)ρ(x′) q(r − x)q∗(r′ − x′) γspec(x− x′)dxdx′. (3.26)

Comparing it to (3.8), we can see that F = γk when q = h, i.e., when the correlation function
of speckle is h ∗ h. More generally, the double Fourier transform of (3.26) gives:

F (u,u′) = q̃(u)q̃∗(−u′)g̃(u,u′)

=

{
q̃(u)q̃(−u′)
h̃(u)h̃∗(−u′) γ̃k(u,u

′), (u,u′) ∈ Dspec,

0, otherwise

(3.27)

We note here that h̃(u) 6= 0 since we have assumed Dspec ⊆ DPSF.

Step 2) Kernel f is obviously symmetric. Moreover, it is positive semi-definite, since for
any square integrable function φ,∫∫

f(r, r′)φ(r)φ∗(r′)drdr′ =

∫
|q ∗ φ|2(x)ρ(x)dx ≥ 0. (3.28)
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It is easy to check that kernel F is also positive semi-definite. Moreover KF is bounded,
since it is a Hilbert-Schmidt operator. Being bounded and positive semi-definite, KF admits a
unique square root [Ped12]. In other words, Kf is uniquely defined given KF . Thus, given the
kernel F , there exists a unique kernel f that fulfills (3.18).

Step 3) The Fourier transform of (3.17) gives

f̃(u,u′) = q̃(u)q̃∗(−u′)ρ̃(u+ u′). (3.29)

The latter identity shows that ρ̃(u′+u′′) is identifiable for all couples (u′,u′′) such that u′ and
−u′′ belong to DPSF. We thus conclude that the frequency components ρ̃(u) are identifiable
from kernel f , and thus from the data correlation γk, for all u ∈ Dspec 	Dspec.

In 2D blind-speckle-SIM, DPSF and Dspec are centered disks of radii νPSF and νspec,
respectively. Under these conditions, Dspec 	 Dspec is a disk with radius 2νspec. As a
consequence, when 1

2
νPSF ≤ νspec ≤ νPSF, a SR factor of 2νspec/νPSF is obtained. Considering

the case Dspec = DPSF, which occurs when the speckle illuminations and observations are
performed via the same optical device, the second-order data statistics are sufficient to identify
the frequency components corresponding to a SR factor of two. So we retrieve the same SR
factor as with classical SIM [Gus00] with perfectly controlled illuminations in fluorescence
microscopy.

3.3.2 Uncorrelated speckle case
In the uncorrelated speckle case, the correlation function of speckle patterns can be written

as: γspec(r) = γspec(0)δ(r), where δ(r) is the Dirac delta function. Then the correlation function
of the data becomes:

γk(r, r
′) = γspec(0)

∫
ρ2(x)h(r − x)h(r′ − x)dx. (3.30)

The Fourier transform of (3.30) gives:

γ̃k(u,u
′) = γspec(0)

∫∫ ∫
ρ2(x)h(r − x)h(r′ − x)e−2πir·ue−2πir′·u′dxdrdr′ (3.31)

Similarly as in (3.12), we have

γ̃k(u,u
′) = γspec(0)

∫
ρ2(x)e−2πix·(u+u′)

(∫∫
h(z)h(z′)e−2πiz·ue−2πiz′·u′dzdz′

)
dx

= γspec(0)h̃(u)h̃(u′)

∫
ρ2(x)e−2πix·(u+u′)dx

= γspec(0)h̃(u)h̃(u′)ρ̃2(u+ u′)
(3.32)

From expression (3.32) we can see that the frequency component at u + u′ of ρ2 is accessible
when both u and u′ are restricted to the support of PSFDPSF. So, the following property holds.

Property 3.4. The frequency component ρ̃2(u) is identifiable from the correlation function
γk(r, r

′) under the uncorrelated speckle assumption if and only if u ∈ DPSF 	DPSF.

We stress here that the spectral components ρ̃2 = ρ̃ ∗ ρ̃ can be retrieved on DPSF 	 DPSF

does not mean that ρ can be retrieved on the same domain, nor in any other domain.
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Remark 3.1. We remark here that Property 3.4 still holds if only the variance γk(r, r) are
considered instead of all cross-correlation values γk(r, r′). Let us denote ν(r) = γk(r, r),
then we can deduce from (3.30):

ν(r) = γspec(0) (ρ2 ∗ h2)(r). (3.33)

So the spectral components of ρ2(u) can be identified from ν(r) as long as u ∈ DPSF 	DPSF.

3.4 A marginal reconstruction procedure
Let us recall that the observation model in discretized form is (1.26):

ym = HRIm + εm (3.34)

with H ∈ RN×N the convolution matrix and R = diag(ρ). Im ∈ RN is the m-th realization of
speckle illumination, with homogeneous intensity mean I0. According to Eqs. (3.3)–(3.8), we
have:

µy = I0Hρ, Γy = HRΓsRH + σ2
1N (3.35)

where µy,Γy are respectively the mean and the covariance matrix of each measured image ym,
while Γs denotes the covariance matrix of speckle patterns. 1N is the N × N identity matrix.
The principle of marginal estimation is to infer the sample ρ from the statistical characteristics
of the collected data. A typical marginal estimation procedure would consist in maximizing the
likelihood of the data as a function of ρ, the unknown speckle illuminations being integrated
out of the likelihood. However, because of the complexity of the speckle statistics, it is hard or
even impossible to express such a likelihood in closed form.

A preferable procedure is to estimate ρ by minimizing the mismatch between the theoretical
second-order data statistics (3.35) and the empirical moments

µ̂y =
1

M

M∑
m=1

ym, Γ̂y =
1

M

M∑
m=1

ymy
t
m − µ̂yµ̂t

y. (3.36)

One possible choice of dissimilarity measure is the Kullback-Leibler (KL) divergenceDM(ρ) =
DKL(N (µ̂y, Γ̂y)‖N (µy,Γy)), in which N (µ,Γ) is the normal distribution of mean µ and
covariance Γ. An explicit expression for DM(ρ) is [Kul97, chapter 9]:

DM(ρ) =
1

2
Tr
(
Γ−1
y Γ̂y

)
+ (µy − µ̂y)t

Γ−1
y

2
(µy − µ̂y) +

1

2
log
|Γy|
|Γ̂y|
− N

2
(3.37)

where |·| and Tr(·) are the determinant and the trace of a square matrix, respectively. According
to the (weak) law of large numbers, we have:

µ̂y
P

−−−−→
M→∞

µ∗y, Γ̂y

P
−−−−→
M→∞

Γ∗y (3.38)

in which P−→ means convergence in probability 1 and µ∗y,Γ
∗
y denote the true values of the

corresponding quantities, that are obtained by Eq. (3.35) for ρ equal to the true object. So,
as M →∞, we have:

DM(ρ)
P−→ D(ρ), for every ρ (3.39)

1. Convergence in probability: µ̂y

P
−−−−−→
M→∞

µ∗y ⇐⇒ ∀ε > 0, limM→∞ Pr
(
|µ̂y − µ∗y|) > ε

)
= 0.
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with
D(ρ) = DKL(N (µ∗y,Γ

∗
y)‖N (µy,Γy)) (3.40)

Let us denote the minimizers of DM(ρ) and D(ρ) by ρ̂M and ρ̂, respectively. According
to the property 3.3, ˜̂ρ(u) is identifiable from D(ρ) as long as u ∈ D1 ∪ D2. However, the
pointwise convergence of (3.39) is not strong enough to assure the convergence: ρ̂M

P−→ ρ̂.
Because the value ρ̂M depends on the whole function DM(ρ). Section 3.4.1 addresses the
consistency analysis of ρ̂M .

3.4.1 Asymptotic analysis

The statistical principle behind such an inferential principle is called minimum contrast
estimation [DCD12, BD15a], or alternatively, M-estimation [VdV00, Chap. 5]. Given a set of
observations (y1, · · · ,yM) and unknown parameters θ ∈ Θ ⊂ RN , the theory of minimum
contrast estimation relies on the following definition.

Definition 1. Let ym, m = 1, . . . ,M, be independent, identically distributed data vectors,
each taking its values in Y , with a common probability distribution depending on a
parameter vector θ∗ in Θ. A function C : Y × Θ → R is a contrast function for θ∗ if
its statistical expectation J(θ∗,θ) = E [C(y,θ)] has a strict minimum at θ∗. Then, the
minimizer θ̂M of the contrast process,

θ̂M = arg min
θ

1

M

M∑
m=1

C(ym,θ), (3.41)

is called a minimum contrast estimate.

The theory of minimum contrast estimation ensures the consistency (and asymptotic
normality) of θ̂M , under appropriate technical conditions [BD15b]. In particular, θ̂M converges
in probability towards θ∗ if the contrast process (3.41) converges uniformly in Θ towards
D(θ∗,θ) when M →∞, Θ being a bounded set. The bounded constraint of Θ may be relaxed,
while still ensuring the consistency of θ̂M [VdV00]. Such technical aspects fall outside the
scope of the thesis.

To continue our asymptotic analysis, in order to get rid of the high-frequency parts in ρ that
cannot be identified (see Section 3.3), we define the variable θ = Sρ, in which S is an ideal
low-pass filter with frequency support given by D1 ∪D2, and we note S+ the pseudo-inverse of
S. Now, consider the related cost function:

JM(θ) = DM(S+θ), with DM defined in Eq. (3.37). (3.42)

Property 3.5. The minimizer θ̂M of Eq. (3.42) is a minimum contrast estimate.

Proof. Let

C(y,θ) =
1

2
(y − µy)tΓ−1

y (y − µy)t +
1

2
log |Γy| . (3.43)

Comparing (3.37) and (3.43), straightforward manipulations yield

JM(θ) =
1

M

M∑
m=1

C(ym,θ) +K,
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where K is a term that does not depend on θ. Moreover, we could define the constrast function
J(θ∗,θ) by

J(θ∗,θ) := E [C(y,θ)] = DKL(N (µ∗y,Γ
∗
y)‖N (µy,Γy))

Compared with Eq. (3.40), we can easily verify that J(θ∗,θ) = D(S+θ). SinceDKL(P1‖P2) ≥
0 for all probability measures P1, P2, and DKL(P1‖P2) = 0 if and only if P1 = P2 almost
everywhere, we deduce that D(θ∗,θ) is minimum if and only if µy = µ∗y and Γy = Γ∗y.
According to Property 3.3, we conclude that J(θ∗,θ) has a strict minimum at θ∗. So θ̂M , the
minimizer of Eq. (3.42), is a minimum contrast estimate.

Within the minimum contrast estimation framework, we can further prove that θ̂m is
consistent.
Property 3.6. θ̂m is a consistent estimator for θ∗.

Proof. To prove that θ̂m is consistent, we need two properties of function JM(θ) in (3.42):
— JM(θ) is a continuous function of θ
— JM(θ) converges uniformly to J(θ∗,θ), i.e.

sup
θ∈Θ
|JM(θ)− J(θ∗,θ)| P−→ 0

Demonstrating the continuity property of JM(θ) is straightforward. We see in Eq. (3.37) that
every component in Dm(ρ) is continuous. According to the rules for constructing continuous
functions [Mun00], it is obvious that DM(ρ) is a continuous function, therefore so is JM(θ).

As for the uniform convergence of JM(θ) to J(θ∗,θ), we note that:

DM(ρ)−D(ρ) =
1

2
Tr
(
Γ−1
y Γ̂y

)
+ (µy − µ̂y)t

Γ−1
y

2
(µy − µ̂y) +

1

2
log
|Γy|
|Γ̂y|

−1

2
Tr
(
Γ−1
y Γ∗y

)
− (µy − µ∗y)t

Γ−1
y

2
(µy − µ∗y)−

1

2
log
|Γy|
|Γ∗y|

=
1

2
Tr
(
Γ−1
y (Γ̂y − Γ∗y)

)
+ µt

yΓ
−1
y (µ∗y − µ̂y) +

1

2
Tr
(
Γ−1
y (µ̂yµ̂

t
y − µ∗yµ∗ty )

)
+

1

2
log
|Γ∗y|
|Γ̂y|

=
1

2
Tr
(
Γ−1
y

(
Γ̂y − Γ∗y + µ̂yµ̂

t
y − µ∗yµ∗ty

))
+ µt

yΓ
−1
y (µ∗y − µ̂y) +

1

2
log
|Γ∗y|
|Γ̂y|
(3.44)

Since the covariance matrix Γk = HRΓsRH is a positive semi-definite matrix, applying Weyl’s
inequality [Ser02] to the definition of Γy in Eq. (3.35), we have:

λmin(Γy) ≥ λmin(Γε), (3.45)

where λmin(A) denotes the smallest eigenvalue of the matrix A and Γε = σ2 IdN is the noise
covariance. Since Γ−1

y is a symmetric, positive definite, matrix, its `2-norm equals its maximum
eigenvalue and: ∥∥Γ−1

y

∥∥ = λmax(Γ−1
y ) =

1

λmin(Γy)
≤ 1

σ2
. (3.46)

Combining Eqs. (3.38), (3.44) and (3.46), we have:

sup
ρ∈RN

|DM(ρ)−D(ρ)| P−→ 0 (3.47)

Restricting the domain of DM(ρ) to {ρ|ρ = S+θ,θ ∈ Θ}, we obtain:

sup
θ∈Θ
|DM(S+θ)−D(S+θ)| P−→ 0 (3.48)

Now we have that JM(θ) converges uniformly to J(θ∗,θ).
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3.5 Applying Poisson noise
The recorded data of detectors in imaging obeys Poisson statistics [BM13]. A more accurate

observation model than Eq. (3.1) is:

ym = P(km) + εm, (3.49)

where km is given in Eq. (3.1) and P(km) denotes a realization of the Poisson process with
mean km. For brevity of expression, we remove the subscript m and write gr = g(r), kr =
k(r), in which r ∈ {1, · · · , N} denotes the spatial index, and gr = P(kr). Since kr are
still random variables, the Poisson variables gr are called doubly stochastic Poisson random
variables [BM13]. The impact of Poisson statistics on the former developments amounts to
how the second-order statistics are modified, i.e., we are considering the knowledge in E[g] and
γg instead of E[k] and γk.

3.5.1 Mean of the Poisson vector
Since E[gr|kr] = kr, it comes directly that

E[gr] =

∫
E[gr|kr] p(kr) dkr

=

∫
kr p(kr) dkr

= E[kr].

Therefore, the mean of the Poisson vector g equals the mean of its parameters, i.e., E[g] =
E[k], with E[k] = E[ym] = I0Hρ.

3.5.2 Covariance of the Poisson vector
Similarly, one can obtain the second-order statistics of g :
— for r 6= r′:

E[grgr′ |kr, kr′ ] = E[gr|kr] E[gr′ |kr′ ] = krkr′ .

Therefore,

E[grgr′ ] =

∫∫
krkr′p(kr, kr′)dkrdkr′ = E[krkr′ ].

Since from Section 3.5.1 we haveE[gr] = E[kr], we conclude that γg(r, r′) = γk(r, r
′).

— for r = r′:
E[g2

r |kr] = Var(g2
r |kr) + (E[g2

r |kr])2 = kr + k2
r .

Therefore,

E[g2
r ] =

∫
(kr + k2

r)p(kr)dkr = E[kr] + E[k2
r ].

We finally get γg(r, r) = E[g2
r ]−E[gr]

2 = E[kr] +E[k2
r ]−E[kr]

2 = γk(r, r) +E[kr].
Consequently, we can see that only the diagonal of the covariance matrix is modified when
the Poisson statistics are taken into consideration. So, the super-resolution analysis in 3.3 still
holds. As the second-order moments have a quadratic dependence in the random vector k, the
difference of the covariance matrix after introducing Poisson statistics can be neglected except
when k is small in low photon counting cases.
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3.6 Numerical optimization
Up to an additive constant K, Eq. (3.37) admits the following alternative expression:

DM(ρ) =
1

2
log |Γy|+

1

2
Tr
(
Γ−1
y W

)
+K (3.50)

where W = 1
M

VVt, with V = (y1 − µy| · · · |yM − µy). In practice, the minimizer ρ̂ of DM

has no closed-form expression. Local optimization methods relying on gradient-based iterations
can be used to minimize DM , whose gradient reads (see appendix E):

∇DM(ρ) =
((

Ωt (Γy −W) Ω
)
◦C
)
ρ− I0

M
ΩtV1N (3.51)

where ◦ denotes the Hadamard (i.e., element-wise) product and Ω = Γ−1
y H. Then we choose a

quasi-Newton method to optimize DM(ρ). Given an approximation H
(k)
e of the Hessian matrix

∇2DM(ρk), a quasi-Newton iteration is given by:

i) Solve H
(k)
e dk = −∇DM(ρk)

ii) Update ρk+1 = ρk + αkdk

where dk is the descent direction at the k-th iteration and αk is step length obtained by a line
search algorithm to satisfy the Wolfe conditions (see [NW06, Chapter 3]). If we set H

(k)
e =

∇2DM(ρk), it becomes a classical Newton method. In quasi-Newton methods, we approximate
the Hessian matrix H

(k)
e using only the gradient of the objective function at each iteration.

Specifically, in our simulations, we use the L-BFGS [NW06, Chapter 6] to optimize DM(ρ) in
Eq. (3.50) and the L-BFGS-B [BLNZ95] algorithm to incorporate positivity constraint of ρ. A
brief discussion about the two algorithms can be found in Appendix D.

The gradient of current value ρk involves the inverse of the N × N covariance matrix Γy,
where the compuputational complexity is O(N3). Thus this method can only be applied for
moderate size problems. A method to reduce the memory and computational burden is proposed
in next chapter.

3.7 Simulation results
We now show simulation results under the same conditions as in Chapter 2 in order to

validate the theoretical developments and the estimator properties of the marginal approach.
Both the asymptotic case (M = ∞) and finite M are considered. The asymptotic case is
simulated by assigning ûy and Γ̂y their true values I0Hρ

∗ and Hdiag(ρ∗)Γsdiag(ρ∗)HT , with
ρ∗ the true value of object. Small-size object (60 × 60) and data are generated so that the
estimator defined in Eq. (3.50) can be computed. The correlation function of the speckle
patterns was set to γspec(r) =

I20
h(0)

h(r), unless stated otherwise.
The L-BFGS algorithm is chosen to optimize the marginal criterion. If the positivity

constraint on ρ is considered, we use the L-BFGS-B algorithm. All simulations were performed
with the same initialization, at the image obtained by averaging all measured images 1

M

∑
m ym.

The number of corrections stored in the limited memory matrix is 20 (parameter L in L-BFGS).
The algorithm will terminate when either one of the following conditions is satisfied:

— The relative descends
∣∣DMP (ρk+1)−DMP (ρk)

DMP (ρk)

∣∣ ≤ 10−5 for finite number of speckle patterns

and
∣∣DMP (ρk+1)−DMP (ρk)

DMP (ρk)

∣∣ ≤ 10−8 for infinite speckle patterns
— The `∞-norm of the gradient ‖∇DMP (ρk)‖∞ ≤ 10−3.
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The reconstructed objects by our marginal approach, using different numbers of speckle
patterns (M = ∞, M = 300 and M = 100), are shown in Figure 3.1. It turned out that the
positivity constraint can not further increase the super-resolution. In real experiments, the raw
images are blured by background noise. However, the reconstruction is still robust if we only
take the covariance information into consideration (see Section 3.8). The reconstructed results
by minimizing Eq. (3.53) are shown in the third line in Fig. 3.1.

The normalized RAPS of error and MCF curves (respectively defined by (2.63) and (2.64))
of the reconstructed objects with 300 speckle patterns and SNR 40dB are shown in Fig. 3.2.
We see that the quality of the reconstructions by marginal approach are similar to that obtained
by the constrained `2,1 regularizer shown in Chapter 2.

The evolution of the normalized RAPS of errors and of the MCF during iterations in the
asymptotic case are shown in Figure 3.3. It shows that the information in low resolution part is
retrieved first, and gradually, the information in super-resolution part is retrieved up to a factor
of two, which confirm the property 3.3 since the radius of Dspec 	 Dspec is twice of the radius
of OTF in this case.

3.8 Experiments with real data
In real data obtained from microscopy, there are three noise sources: photon noise, dark

noise and readout noise. Photon noise and dark noise are independent Poisson processes,
therefore so is their sum. The readout noise usually follows a Gaussian distribution. A more
legitimate data formation model of real data is then:

ym = P(HRIm + b) + εm (3.52)

where P(·) denotes the realization of a Poisson process, εm ∼ N (0, σ2
1N) denotes readout

noise, and b ∈ RN is the mean intensity of the background caused by out-of-focus light. Due
to the presence of background b, our previous objective function DM(ρ) as shown in (3.37) is
not accurate, since the empirical mean of the data is not I0Hρ any more. Instead of estimating
b and then subtracting it from the data, we notice that the empirical covariance of the data is
not affected by b. Therefore, we slightly adapt the objective function introduced in (3.50) and
reconstruct ρ with only the second-order statistics (that is, we do not consider the mean values):

DR(ρ) = DKL(N (0, Γ̂y)‖N (0,Γy)) =
1

2
log |Γy|+

1

2
Tr
(
Γ−1
y Γ̂y

)
+K (3.53)

where K is a constant number. The gradient of DR(ρ) is:

∇DR(ρ) =
((

Ωt
(
Γy − Γ̂y

)
Ω
)
◦ Γs

)
ρ (3.54)

The poisson noise is neglected. To make the reconstruction possible in normal computer, we
select only a small part from the raw images of Podosome sample and actin sample. The
reconstructions are shown in Figures 3.4,3.5,3.6. The spatial sampling rate of raw images is
equal or slightly above the Nyquist rate λ

4NA
. For the final reconstructed object, an up-sampling

factor of two with respect to the camera acquisitions was applied so that the sampling rate
reaches that of the expected super-resolution. The wide field image is plotted by averaging
1000 raw images, and the deconvolution is obtained by:

ρdecon = arg min
ρ
‖ȳ −Hρ‖2 + β‖ρ‖2 (3.55)
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Figure 3.1 – Reconstruction by marginal approach with different number of speckle
patterns and 40dB Gaussian white noise. The first row corresponds to the L-BFGS algorithm,
while the second line is obtained with the L-BFGS-B algorithm including the positivity
constraint. The third row shows the reconstructed objects with only the covariance information
taken into considered and the images shown in last row are obtained after adding positivity
constraint to the KL divergence of covariance .
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Figure 3.2 – Measurements of error (left panel) and of contrast (right panel) as a function
of radial frequency / period of different reconstruction methods with 300 speckle patterns
and SNR 40dB.

with the regularizer parameter β = 0 01. We see that the structure details in images
reconstructed by the marginal approach are clearer than those of the wide-field images and
their deconvolution, even if we use only 50 speckle patterns. In raw images obtained with the
Podosome sample, we can see a strong photobleaching (section 1.4) effect (see Figure 3.7a), that
is why the reconstruction with more speckle patterns does not appear better. On the contrary,
the fluorophores emitted relatively stable light in experiments with Actin sample during the
imaging process (see Figure 3.7b).

3.9 Conclusion
In this chapter, we analyzed the SR capacity of blind-speckle-SIM reconstruction using

second-order moments fitting. Our analysis demonstrates that we can (at most) double the
frequency support by using speckle patterns in asymptotic sense, i.e., with infinite number
of speckle patterns. A marginal estimator is proposed by minimizing the Kullback-Leibler
divergence between the empirical moments and the theoretical ones. A theoretical analysis
showed that this estimator is a minimum contrast estimator and that it is asymptotically
consistent. Our analysis demonstrates that the SR capacity of the marginal approach also holds
under Poisson statistics. These theoretical analysis are demonstrated on both simulated and
experimental data.

Unfortunately, the computations of the objective function and of its gradient require the
explicit inversion of the N × N covariance matrix Γy at each iteration of the optimization
procedure, the cost of which being O(N3), with N the number of pixels. This is clearly an
unaffordable computing task for realistic size problems. Even worse, simply computing and
storing the matrix Γy is impossible in realistic conditions. For example, for a 512× 512 image,
storing Γy with double-precision requires 512 Gigabytes (see appendix B.2). Some possible
variations of the second-order method address this problem in Chapter 4.
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Figure 3.3 – Behavior of L-BFGS iterations in the asymptotic case (infinite number of
speckle patterns). Measurements of error (top panel) and of quality (bottom panel) as a
function of radial frequency / period.
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Wide field Deconvolution 50 speckle patterns

100 speckle patterns 300 speckle patterns 1000 speckle patterns

Figure 3.4 – Marginal reconstruction of a small patch in Posodome sample.

Wide field Deconvolution 50 speckle patterns

100 speckle patterns 300 speckle patterns 1000 speckle patterns

Figure 3.5 – Marginal reconstruction of a small sparse patch in actin sample.
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Figure 3.6 – Marginal reconstruction of a small dense patch in actin sample.
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Figure 3.7 – Mean value of raw images for 1000 speckle patterns. We can see strong
photobleaching effect in the Podosome sample, while the fluorophores emitted relatively stable
with Actin sample.





Chapter 4

A patch-based approach to marginal
estimation

4.1 Introduction

As it has been presented in Chapter 3, the statistical analysis of blind-speckleSIM shows
that a super-resolution (SR) factor equal to two can be reached based on the second-order data
statistics, provided that sufficiently many speckle images are acquired. The marginal algorithm
proposed in Chapter 3 was validated on small size simulated blind-SIM examples. However,
the associated computing cost and storage requirement are in O(N3), with N the number of
pixels in each image, which makes it an unaffordable task for realistic image sizes.

In this chapter, we propose a new marginal blind-speckleSIM algorithm that scales to real-
size two-dimensional SIM. Our key idea is to neglect some of the long-distance correlations
between pixels in the acquired images, so that the resulting approximated covariance becomes
block-diagonal. Equivalently, each image is cut into a set of patches, which contribute
independently to the image formation model. Then, the required inverse matrix computations
and storage are performed in lower dimension, thus reducing the computational burden. In
Section 4.2 we introduce the patch-based marginal algorithm. The computational analysis is
presented in Section 4.3.

4.2 The patch-based marginal approach

Our main proposition consists in dividing the observed image grid into P subgrids. The
pixels belonging to each subgrid are not necessarily contiguous, and the subgrids are possibly
overlapping. For the sake of simplicity, let us consider that all subgrids contain the same number
L of pixels. Each observed image ym then generates P subimages ym = (ym1 , · · · ,ymP ). In
what follows, each subimage will be called a patch.

Since each patch is extracted from ym, whose data formation model is shown in Eq. (3.1),
the observation model for each patch reads:

ymp = HpRIm + εmp (4.1)

where the lines of Hp ∈ RL×N are extracted from H according to the geometry of the p-th
patch. The mean vector and the covariance matrix of ymp take the following form:

µyp = I0Hpρ, Γyp = HpRΓsRHt
p + σ2

1L (4.2)

55
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where 1L denotes the L × L identity matrix. Our proposition consists in modifying the
previously introduced minimum contrast estimator shown in Section 3.4, so that the data are
taken into account independently from one patch to another. For this purpose, we simply replace
the KL divergence criterion (3.37) by a sum of KL divergence terms, each one being specific to
one patch:

DMP (ρ) =
P∑
p=1

DKL(N (µ̂yp , Γ̂yp)‖N (µyp ,Γyp)) + β‖ρ‖2

=
1

2

P∑
p=1

(
log
∣∣Γyp

∣∣+ Tr
(
Γ−1
yp Wp

))
+ β‖ρ‖2 +K ′

(4.3)

where K ′ is an additive constant and Wp = 1
M

VpV
t
p, with Vp = (y1p − µp, · · · ,yMp − µp).

The corresponding gradient expression is:

∇DMP (ρ) =
P∑
p=1

(((
Ωt
p

(
Γyp −Wp

)
Ωp

)
◦ Γs

)
ρ− I0

M
Ωt
pVp1L

)
+ 2βρ (4.4)

with Ωp = Γ−1
yp Hp ∈ RL×N . Now the values of the elements in Γy are assigned to 0 when the

corresponding two pixels are not from the same patch, thus the N ×N matrix inversion Γ−1
y is

replaced by P matrix inversions Γ−1
yp of size L× L.

The geometry shape of the patch could be rectangle, triangle or even irregular shape. The
pixels belonging to each patch are not necessarily contiguous. For the sake of simplicity, let
us consider that all subgrids contain the same number L of pixels. Considering the feasibility
of implementation, we choose rectangle patches in our simulation. The patches could overlap
each other or they could simply correspond to a partition of the plane.

4.3 Algebraic tricks

Now let us review the expression of the gradient in (4.4). We find that, although most
computations involved in the evaluation of the cost function (4.3) and its gradient (4.4) are
matrix operations in size L, the matrix

(
Ωt
p (Γp −Wp) Ωp

)
◦Γs is still a N ×N matrix, which

is difficult to deal with for realistic size images. This problem can be solved by re-expressing
the gradient with its equivalent form.

First, we introduce the auxiliary matrix Zp = Γyp −Wp. For brevity, we abbreviate the
subscript p here. Let us denote zt

` ∈ RL and ω` ∈ RN the `-th line and the `-th column of
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matrices Z and Ωt, respectively. Then, we have:

((
ΩtZΩ

)
◦ Γs

)
ρ =

(( L∑
u=1

ωuz
t
uΩ
)
◦ Γs

)
ρ

=
(( L∑

u=1

L∑
v=1

ωu(zuv)ω
t
v

)
◦ Γs

)
ρ

=
L∑
u=1

L∑
v=1

ωu ◦
(
zuv
[
Γs(ωv ◦ ρ)

])
=

(
Ωt ◦

[
Γs(Ω

t ◦ ρrep)Z
t
])

1L

=

(
Ωt ◦

[
ΓsRΩt(Γ−W)t

])
1L

=

(
Ωt ◦

[
ΓsRHt

p(1L − Γ−1W)
])

1L

(4.5)

where ρrep = ρ1tL ∈ RN×L is obtained by replicating L times the N × 1 column vector ρ
corresponding to the object. Then, an equivalent expression for the gradient∇DMP (ρ) is:

∇DMP (ρ) =
P∑
p=1

((
Ωt
p ◦
[
ΓsRHt

p(1L − Γ−1
yp Wp)

])
1− I0

M
Ωt
pVp1L

)
+ 2βρ (4.6)

One possible implementation for both the objective function and its gradient is given in
algorithm 5. The main costs that are written as comments in the pseudo-code. In line 11 when
we compute ΓsA

t
p, we choose the FFT algorithm since Γs has the same structure as matrix H

according to our analysis in Appendix A. The number of flops for one patch at each iteration
is therefore (reminding that we only take the multiplications into account and that the addition
operations are neglected):

fp(N) = LN logN + 3L2N + 3LN +ML2 + 2L3

If we consider non-overlapping patches, we have P = N
L

patches, and the total number of
flops in one iteration is:

f(N) = N2 logN + (3L+ 3)N2 + (ML+ 2L2)N +N logN

Now the computational complexity for each iteration has reduced to O(N2(logN + L)).
What is more, this algorithm can be highly parallelized since each term in the sum of Eq.
(4.3) for one patch does not rely on the others and thus they can be processed by different
units in parallel. Once the expression of the gradient is obtained, L-BFGS and L-BFGS-
B algorithms are choosen to solve the optimization problem minρDMP (ρ) without and with
positivity constraint, respectively.

4.4 Statistical analysis
Property 4.1. The minimizer of DMP is a minimum contrast estimate, provided that every
pixel pair {u, v} belongs at least to one patch.
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Algorithm 5: Pseudo-code to compute criterion (4.3) and its gradient (4.4).
1 ObjectGradient (ρk) ;

Input : The current value ρk, β, I0

Output: DMP (ρk) and ∇DMP (ρk)
2 Initialize DMP (ρk) and ∇DMP (ρk) ;
3 ρrep = ρk1

t
L;

4 Ȳ = I0Hρk ; // N logN flops
5 for p← 1 to P do
6 generate the matrix Hp ;
7 Yp = (y1p , · · · ,yMp) ;
8 Ap = Hp ◦ ρtrep ; // Ap = HpR, LN flops

9 µp = Ȳp ;
10 Vp = Yp − µp1tL ;
11 Bp = ΓsA

t
p ; // LN logN flops

12 Γyp = ApBp ; // Γyp = HpRΓsRHt
p, L2N flops

13 Γyp = Γyp + σ2
1L ;

14 Tp = 1
M

Γ−1
yp (VpV

t
p) ; // ML2 + 2L3 flops

15 Dp(ρk) = 1
2

log |Γyp |+ 1
2
Tr(Tp) ;

16 Ωp = Γ−1
yp Hp ; // L2N flops

17 ∇Dp(ρk) =
(
Ωt
p ◦
[
Bp(1L −Tp)

])
1L − I0

M
Ωt
p(Vp1L) ; // L2N + 2LN flops

18 end
19 DMP (ρk) =

∑
pDp(ρk) + β‖ρ‖2 ;

20 ∇DMP (ρk) =
∑

p∇Dp(ρk) + 2βρ ;
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Proof. Let µp and Γp denote the mean and the covariance of the collected data in the p-th patch.
Indeed, one can extract µp and Γp from µy and Γy, as a subvector and a submatrix, respectively.
Moreover, we have DMP (ρ) = 1

M

∑M
m=1(

∑
pCp(ym,p,ρ)) up to an additive constant, with

Cp(yp,ρ) =
1

2

P∑
p=1

(yp − µp)tΓ−1
p (yp − µp)t +

1

2
|Γp| , (4.7)

and

Dp(ρ
∗,ρ) = E

[∑
p

Cp(yp,ρ)

]
=
∑
p

DKL(N (µ∗p,Γ
∗
p)‖N (µp,Γp)). (4.8)

It is clear from (4.8) that each E[Cp] is minimal if and only if µp = µ∗p and Γp = Γ∗p. Moreover,
Dp is minimal when all E[Cp] are minimal. If every pixel pair {u, v} belongs at least to one
patch, this is equivalent to µy = µ∗y and Γy = Γ∗y, and we can terminate the proof as the one of
Property 3.5.

4.5 Simulation results

We now evaluate the patch-base approach on simulations performed under similar condi-
tions as in Chapters 3. The same simulated object ρ(r, θ) ∝ [1 + cos(40θ)] is used as shown in
Figure 2.1. The point spread function h is given by Eq. (2.62). The PSF and the reconstructed
objects were discretized with sampling step λ/20. Raw images were also simulated at the same
sampling rate, unless otherwise stated.

4.5.1 Resolution under different patch sizes

First, we consider simulations under “theoretical” conditions (i.e., an infinite number of
speckle patterns and infinite SNR) to test the behavior of the patch-based marginal approach.
The L-BFGS algorithm is used to find the minimizer of function (4.3). The simulations are run
under different patch sizes with the same initialization, at the average of the measured images
1
M

∑
m ym. The number of corrections stored in the limited memory matrix is 20. Termination

tolerances are adopted when either of the following conditions is met:
— The relative descends

∣∣DMP (ρk+1)−DMP (ρk)

DMP (ρk)

∣∣ ≤ 10−8

— The `∞-norm of the gradient ‖∇DMP (ρk)‖∞ ≤ 10−5.
The reconstructed objects are shown in Figure 4.1, and the corresponding normalized RAPS

curves (definition given in (2.63)) for the error images and the MCF (defined by (2.64)) are
shown in Figure 4.2.

It shows that even in the extreme case with one-pixel patches, i.e. only only the diagonal
of the covariance Γy is considere, we still retrieve some super-resolution. As the patch size
increases, the SR effect increases fast and becomes as good as the original marginal estimator
when the patch size reaches 5× 5.

The time elapsed using different patch sizes for a 80× 80 object on a normal computer with
intel CORE i5 CPU implemented by Matlab is plotted in Fig. 4.3. We see that except when
the patch size is very small (due to the inefficienct for-loop processing in Matlab and more Hp

need to be generated), the time elapsed for one iteration increases almost linearly as the patch
size grows.
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Figure 4.1 – Reconstructed objects under theoretical conditions (infinite number of speckle
patterns and infinite SNR) with different patch sizes. Graduations in x and y are in
wavelength λ, and the frequency in green circle (red circle) corresponds to cut-off frequency of
OTF (twice the cut-off frequency, respectively).

4.5.2 Positivity constraint

From Figure 3.1, we have known that the positivity constraint cannot further improve the
super-resolution capacity of marginal estimator. Since the super-resolution of the patch-based
marginal approach can not reach twice the resolution limit when the patch size is small, we
explore the influence of the positivity constraint on patch-based marginal extimator by adding
the constraint ρ ≥ 0 and then solve the minimization problem of Eq. (4.3) with the L-BFGS-B
algorithm (see Appendix D.2). The simulation results performed under theoretical conditions
are shown in Figure 4.4. Compared with the results shown in Figure 4.1, we conclude that
the positivity constraint can not further improve the super-resolution capacity of patch based
marginal estimator under same patch sizes.

4.5.3 Overlapping patches

The former simulations were performed with adjacent square patches. When the patch size
is small (smaller than 3×3 for example), we have sacrificed partial super-resolution information
to accelerate the computational time and reduce the memory required. If the patches overlapped
with each other, equivalently more information in covariance matrix Γy is used and thus we
have the possibility to obtain better super-resolution. Since we know that the overlapping
strategy can not give more informatin than the marginal estimator without patch, i.e. it can not
surpass more than twice the resolution limit, therefore we focus on overlapping small patches
in simulations. Simulation results under asymptotic conditions with overlapping patches are
shown in Figure 4.5. Each pair neighbour patches (left, right, up, down) overlap with each
other by one column or one line. Compared with the results shown in Figure 4.1, it shows
that the overlap patch strategy does not improve the super-resolution capacity compared with a
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Figure 4.2 – The RAPS curves and contrast function of reconstructed object with different
patch sizes under theoretical condition (infinite number of speckle patterns and infinite
SNR).
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Figure 4.3 – The time elapsed for different Patch sizes for a 80× 80 object. X-axis represent
number of pixels in one patch, and Y-axis represents time with units seconds.
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Figure 4.4 – Reconstructed objects under theoretical conditions and different patch sizes
(similar to Figure 4.1), by incorporating the positivity constraint.
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non-overlap adjacent patches under same patch sizes.
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Figure 4.5 – Reconstructed objects under theoretical conditions with overlapping patches.
The overlapping area of neighbour patches (left, right, up, down) is one column or one line.

4.5.4 Resolution as a function of the numerical aperture

In realistic experimental conditions, the support of spectral density of speckle patterns may
differ from the frequency support of PSF due to the Stokes-shift effect in fluorescence [Alb11],
or in total internal reflection fluorescence microscopy (TIRF). We can simulate this effect
by generating the speckle patterns with different numerical aperture, and the corresponding
reconstructed objects are shown in Figure 4.6. Clearly, the resolution improves as the support of
the speckle spectral density increases when the patch size is small (e.g. pixel and 2×2 patches).
The normalized RAPS and MCF curves of the reconstructed objects (Figure 4.7) show that we
can retrieve not only 2νspec when νspec < νPSF as demonstrated in Chapter 3, but also part
of information between 2νspec and νspec + νPSF. For example, when νspec = 0 5νPSF, we can
always retrieve some high frequency information higher than 2νspec = νspec = 2NA

λ
. And when

νspec > νPSF, the resolution beyond 2νPSF is still inaccessible, unlike the nonlinear-SIM which
has theoretically unlimited resolution [Gus05].

In conclusion, enlarging the support of spectral density of the speckle patterns allow us to
retrieve good super-resolution with very small patch sizes (e.g. 2 × 2), however, we do not
observe nonlinear-SIM effect in blind-speckle-SIM using marginal approach.

4.5.5 Resolution as a function of the sampling step

In the previous simulations, the sampling step of the measured images ym was set to the
same value as the oen of the object, that is, λ

20
. Since we know that there are no useful

information in frequencies outside the support of OTF in data, the sampling length finer than
Nyquist rate λ

4NA
≈ 0.168 λ is enough to assure that we do not lose useful information in the

raw images. The simulation results performed under asymptotic conditions (infinite number of
speckle patterns and infinite SNR) with different sampling lengthes of the raw images are shown
in Figure 4.8. It shows that even the sampling rate of raw images is lower than the Nyquist
rate, for example in the second column in Figure 4.8, the marginal approach retrieves super-
resolution information as good as the simulation results performed with raw images sampled at
a finer rate than the Nyquist rate.
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Figure 4.6 – Reconstructed objects under theoretical conditions and varying support of
speckle patterns. The first row corresponds to use 1-pixel patches, the second row is obtained
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Figure 4.7 – Normalized RAPS curves for error images as a function of the frequency (first
column) and MCF of the reconstructed objects as a function of the period (second column)
with varying support of speckle patterns.
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Figure 4.8 – Reconstructed objects under asymptotic conditions with different image
sampling rates. The image sampling step is 0.15 λ in the first column, 0.2 λ in the second
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4.5.6 Simulations under realistic imaging conditions
In this section, we simulate realistic imaging conditions by applying Poisson noise. The

total photon budget detected on one Nyquist pixel (pixel size corresponds to λ/4NA) is fixed,
denoting as Ntp. As the number of speckle patterns increases, the photons per Nyguist pixel
per measurement will be reduced. This can be achieved by reducing the exposure time or by
lowering the laser energy. The electronic noise is assumed to be 3-photon standard deviation
per pixel and per measurement. The noise level in this case is 3M/Ntp, corresponding to
SNR = 20dB when 100 speckle patterns are used for 30 000 photons per Nyguist pixel. In
our simulations the regularizer parameter β is set to 10−6. Optimization is performed by the
L-BFGS algorithm with same configuration as in previous problems. The reconstructed objects
under different number of speckle patterns are shown in Figure 4.9, and the RAPS and MCF
curves of the reconstructed objects are ploted in Figure 4.10. We see that once the total number
of photons per Nyquist pixel is fixed, increasing the number of speckle patterns cannot improve
the resolution, since the SNR decreases at the same time.

4.6 Conclusion
In this chapter, we introduced a patch-based marginal estimator in order to reduce the

computational complexity and memory requirements of the marginal approach proposed
in Chapter 3. By cutting the each image into a set of patches and neglecting the correlation
information of pixels from different patches, we are able to retrieve a super-resolution image
with computational complexity O(N2(logN + L)) with L the number of pixels in each patch,
instead of O(N3) while the memory requirement reduced from O(N2) to O(NL). Moreover,
the patch-based method enables most computations to be parallelized. We also explored the
influence of the patch size, positivity constraint, overlapping strategy, correlation of speckle
patterns and the sampling rate of raw images on the marginal estimator.

Our simulations show that the positivity constraint and the overlapping strategy cannot
enforce the super-resolution capacity of the patch-based marginal estimator for a given patch
size. When the patch size is small, increasing the support of the speckle spectral density function
could help us retrieve better super-resolution information. Finally, even if the data sampling
rate is lower than the Nyquist limit, we could still reconstruct the object with a super-resolution
factor of two using the marginal approach.
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Figure 4.9 – Reconstructed objects with Poisson statistics and Gaussian noise with different
numbers of speckle patterns, with 5 × 5 patches. The first column corresponds to a total
photon budget of 104 photons per pixel on average (3× 104 and 3× 105 for the second column
and third column, respectively). Electronic noise with 3-photon standard deviation per pixel
and per measurement is added. SNRe denotes the signal-to-noise ratio of electronic noise.
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Figure 4.10 – Normalized RAPS curves for error images as a function of the frequency
(first column) and the modulation contrast of the reconstructed objects as a function of
the period (second column) for results shown in Figure 4.9.





Chapter 5

Optical sectioning and super-resolution in
3D imaging

5.1 Introduction

The super-resolution methods presented in previous chapters are 2D imaging techniques
restricted to thin objects. For thick objects, the targeted in-focus image is always blurred
with the out-of-focus information. In frequency domain, the optical transfer function (OTF)
in axial direction uz is highly dependent on lateral frequencies u⊥, as shown in Figure 5.1(a).
In particular, for a uniform plane object, the intensity spectrum contains only zero frequency
component. Because h̃(uz) = 0 when u⊥ = 0, the axial structure is lost during the imaging
process. In other words, a uniform plane can not be axially resolved in conventional microscopy.
This is called the “missing cone” problem [Str84]. Optical sectioning is defined as the capacity
to provide axial resolution for all lateral frequencies within the OTF support to fulfill the
“missing cone”.

In section 5.2 we introduce the existing 3D super-resolution techniques. Simulation results
in Section 5.3 demonstrate the 3D sectioning ability using unknown speckle patterns by
constrained `p,q norm minimization and the patch based marginal approach.

(a) OTF for h in 3D imaging (b) OTF for h2 in 3D imaging

Figure 5.1 – The Fourier transform for h and h2 in 3D imaging. Figure courtesy in [ILA+17].
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5.2 Existing super-resolution 3D imaging techniques

5.2.1 Confocal microscopy

The principle of confocal microscopy to achieve optical sectioning is by illumination-beam
scanning and image detection through a pinhole, as shown in Fig. 5.2. Unlike the widefield
illumination technique, the sample is illuminated in confocal microscopy with a tightly focused
light beam. Correspondingly, only the signal emitted from the focused illuminated region is
detected. The illuminated 3D volume is called a probe volume and a pinhole is put in front of
the detector to reject the our-of-focus background. To obtain the whole 3D image of the sample,
either the probe volume is scanned in three dimension while keep the sample fixed, or the probe
volume is held fixed while the sample is scanned in three dimension. Then the final 3D image
is synthesized from the detected signals.

One requirement of the light source in confocal microscopy is that the light should be
spatially coherent. This can be achieved either by using a laser or adding a pinhole after the
lamp beam. In fluorescence confocal microscopy, the equivalent PSF is h2 under the infinitely
small pinhole assumption where h denotes the PSF of wide-field microscopy [Mer10]. The
difference between the frequency support of h and h2 is shown in Figure 5.1. For more thorough
discussions about confocal microscopy, please refer to [KC96][Dia01].

Figure 5.2 – The geometries for confocal microscopy. (Figure courtesy of wikipedia.)

5.2.2 Two-photon microscopy

Two-photon fluorescence microscopy takes advantage of the fluorescence property that a
fluorophore is excited by simultaneous absorption of two photons. It is an alternative optical
sectioning technique in 3D imaging. Similar as the confocal microscopy, the 3D image is
synthesized by scanning the two-photon excitation volume throughout the sample. Since two-
photon microscopy depends on the nonlinear fluorescence excitation, the size of the scanning
probe volume in two-photon microscopy is governed only by the illumination optics, while in
confocal microscopy it is governed by both illumination and detection optics.

One typical optics geometry of two-photon microscopy is shown in Fig. 5.3, compared with
that of confocal microscopy, the pinhole in front of the detector is disappeared. The optical
sectioning capacity of two-photon microscopy is identical to a confocal microscopy, with an
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equivalent PSF of h2. For a more detailed description of two-photon microscopy, please see
[Dia01],[XW02].

Figure 5.3 – The geometry for typical two-photon microscopy. (Figure courtesy of Peter TC
So, Massachusetts Institute of Technology.)

5.2.3 3D STED
STED technique can be applied to 3D imaging with a 4Pi illumination geometry, where

the sample is placed in the common focus of two opposing lenses [DH02]. 33 nm axial
resolution was obtained in STED-4π microscopy, however, the lateral resolution does not
improve in STED-4π. STED microscopy with super-resolution in all three dimensions are
proposed in [WMKH09]. By introducing a two phase plate, a PSF with reduced length in all
three dimensions is obtained.

5.2.4 3D STORM/PALM
5.2.4.1 Astigmatism-based 3D STORM

The super-resolution 3D STORM was introduced in [HWBZ08] by adding a weak cylin-
drical lens into the imaging path as shown in figure 5.4. As a result, the PSF has an ellipticity
shape and its orientation varies as the position changes along the axial direction. By fitting the
measured image with an elliptical Gaussian function, we can locate the position of fluorophore
in lateral and axial coordinates. Since the axial location is based on the shape of the PSF,
the axial scanning is unnecessary in 3D STORM. One drawback of astigmatism-based axial
location is that the lateral resolution varies as a function of depth due to the changes of the lateral
shape in astigmatic PSF. A similar 3D super-resolution technique was presented in [PTB+09]
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where a double-helix PSF (DH-PSF) is generated through a spatial light modulator (SLM). The
individual fluorophore is identified by the angular orientation of the 2 lobes of the DH-PSF,
as shown in figure 5.5. The DH-PSF has deeper imaging depth than astigmatism-based 3D
STORM, which can be applied to thick samples > 2 µm with a resolution 10 nm laterally and
> 20 nm axially.

Figure 5.4 – The geometries of 3D STORM. (Figure courtesy of [HWBZ08])

5.2.4.2 Biplane FPALM

Another 3D super-resolution imaging technique is called biplane (BP) FPALM [JGL+08].
Two axially separated planes are simultaneously detected by a 50:50 beam splitter to accelerate
the imaging process. Once the 3D data stack is obtained, the particles are identified in axial
coordinate by iteratively searching for the brightest pixels and eliminating regions within a
fixed distance. The lateral resolution does not change as the image depth varies in BP FPALM
scheme.

5.2.5 3D SIM
The wide-field fluorescence microscopy using speckle patterns proposed in [Wal01][JW04]

has an optical sectioning ability in theory as good as the confocal microscopy by recording
a sequence of reference speckle patterns Im together with the images of speckle-illuminated
object ym. Taking advantage of the equality :

Cov(ym, Im) = h2 ∗ ρ (5.1)

it is possible to retrieve the object with the equivalent point spread function h2, as good as the
ideal confocal microscopy.

SIM using harmonic patterns has been demonstrated to be able to enhance the spatial
resolution in all three dimensions [GSC+08]. Although fewer illumination patterns are used
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Figure 5.5 – DH-PSF imaging system. (Figure courtesy of [PTB+09])

in [GSC+08] than speckle-SIM, the illumination patterns are not maintained fixed in relation to
the object in the imaging process, making the design of the devices quite complex. Moreover,
this technique and the speckle-SIM proposed in [Wal01] could not be applied in scattering
media, just as the standard 2D-SIM.

Recently, a 3D super-resolution technique using saturated-speckle patterns is proposed
in [PGK+17] by illuminating the object with saturated speckle patterns. Super-resolution is
observed after a direct deconvolution of the recorded data with the 3D saturated speckle PSF
(hIs).

A technique called dynamic speckle illumination microscopy (DSI) produce optical section-
ing with totally unknown speckle patterns [VM05][VM06][VHM07][LCM08][LFCM11]. The
basic idea behind this technique is that the changing of the speckle patterns will cause a large
variation of the in-focus light but a small variation in the out-of-focus light. So the variation in
a sequence of images ym preferentially extracts the information from the focal plane.

5.3 3D super-resolution in blind-speckle-SIM
To check the optical sectioning ability of our proposed methods in blind-speckle-SIM, we

use the same 2D star-like object and put it in the y = 0 plane. The fluorescence density is given
by:

ρ(x, y, z) ∝ [1 + cos(40θ)]δ(y) (5.2)

with tan θ = z/x. The normalized bandwidth limit of h is set to fmax

fS/2
= 0. 5 in lateral

direction and 0. 25 in axial direction, with fmax the cut-off frequency of the microscopy and
fS the spatial sampling frequency. The PSF and OTF used in simulation are shown in Fig. 5.7
and the reconstruction results by constrained `p,q norm minimization and patch based marginal
estimator are displayed in figure 5.8. We can see that the resolution in both the lateral and axial
direction are improved compared with the average wide-field image ȳ and its deconvolution.
The ideal confocal image is simulated by convolving the actual fluorescence distribution of the
sample with the square of the point spread function h2 and then deconvolve it.
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Figure 5.6 – The concept of resolution improvement in 3D SIM with harmonic patterns.
(Figure courtesy of [GSC+08].) (a and b) Observable regions for the conventional microscopy.
Resolution enhancement using two illumination beams (c), and three illumination beams in
one (d,e). (f) The three wave vectors corresponding to the three illumination beam directions
to generate 3D harmonic pattern. (g–h) The resulting spatial frequency components of the
illumination intensity for the two-beam (g) and three-beam (h) case. (i, j): xz (i) and xy (j)
sections through the OTF supports.

The other 3D simulations are performed with the synthetic volume 128 × 128 × 128 of
spherical beads and hollow bars as shown in Fig. 5.9, which are available online [3D 17].
The beads are getting closer and closer in the Y and Z directions and the 3D bars data consist
of six parallel hollow bars. The normalized bandwidth limit of PSF is set to fmax

fS/2
= 0 4 in

lateral direction and 0 2 in axial direction. The deconvolution with Tikhonov regularizator and
reconstruction with the `2,1 regularizer of the proposed method using 90 speckle patterns are
shown in Fig. 5.11 and 5.12. In the Tikhonov regularized deconvolution, we see no structure
information in axial direction with 3D beads sample, while the beads in axial direction can be
well separated in low frequency part using our proposed method. The improvement in axial
resolution with hollow bars is also observed as shown in Fig. 5.12.
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Figure 5.7 – PSF and OTF in XZ axis.
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Figure 5.8 – Reconstruction results with 300 speckle patterns and 40dB Gaussian white
noise of 2D object in y = 0 plane. The second line are obtained by joint reconstruction
approach with `p,q norm regularizer, and the third line are obtained by patch based marginal
estimator.
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Figure 5.9 – Synthetic data of 128× 128× 128 cube of spherical beads and hollow bars.
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Figure 5.10 – The 64th slice of spherical beads (first line) and the 68th slice of hollow bars
(second line) in the XY, XZ, YZ dimension shown in figure 5.9.
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Figure 5.11 – Reconstruction of cube of spherical beads with 90 3D speckles. The first line
corresponds to certain slides in XY, XZ, YZ directions about the 3D deconvolution of the mean,
while the second and third lines show the slides in the same positions of the reconstructed object
using constraint `2,1 and `2,1/2 regularizer.
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Figure 5.12 – Reconstruction of hollow bars with 90 3D speckles. The first line corresponds
to certain slides in XY, XZ, YZ directions about the 3D deconvolution of the mean, while the
second line and third line show the slides in the same positions of the reconstructed object using
constraint `2,1 and `2,1/2 regularizers.
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5.4 Conclusion
In this chapter we briefly introduce the optical sectioning techniques in microscopy and

demonstrate the 3D imaging ability of blind-speckle-SIM using the constrained `p,q regularizer.
The simulation results show an evident improvement in axial resolution compared with the 3D
Wiener deconvolution.





Chapter 6

Conclusion and perspectives

This thesis proposes two new reconstruction methods in SIM using unknown speckle
patterns (blind-speckle-SIM). One joint reconstruction approach uses `p,q regularizer with p ≥ 1
and 0 < q ≤ 1. Both the constrained form and the unconstrained form of the `p,q regularizer
are presented in Chapter 2. For the constrained form, the hyperparameter is easy to tune and
its associated optimization algorithm is assured to converge. The simulation results show that
we could retrieve better super-resolution using `p,q norm regularizer than the reconstruction
method shown in [MBG+12] with positivity constraint regularizer. Moreover, the other prior
information about the object can be easily incorporated into our method, such as TV norm or
positivity constraint, without big changes of the associated primal-dual algorithm.

The theoretical analysis of the super-resolution capacity using second-order statistics of data
are presented in Chapter 3. Our analysis shows that it allows us to retrieve super-resolution with
equivalent PSF h2 by using fully developed speckle patterns with covariance identifying with
PSF h. Together with this theoretical analysis, a consistent marginal estimator is proposed by
minimizing the dissimilarity between the empirical and theoretical second-order statistics of
the data. The computational complexity of the marginal estimator is O(N3) and the memory
requirement is O(N2), which is too high to apply it in realistic size imaging problems.

A patch-based marginal estimator is proposed in Chapter 4 by neglecting the correlation
information of pixels from different patches. Thus the computational complexity and the
memory request can be reduced toO

(
N2(logN+L)

)
andO(LN), respectively. The simulation

results show that we could reach good super-resolution using relatively small patch sizes. Under
asymptotic conditions, even with pixel patch we can retrieve partial super-resolution. Besides
the theoretical assurance of the super-resolution capacity, the marginal estimator is more robust
to the background noise, since the covariance of data does not change when a stable background
noise is presented.

The conventional SIM and blind-SIM is a 2D super-resolution technique compatible with
very thin samples. In 3D imaging problems with thick samples, the image of a given focal plane
is plagued by out-of-focus fluorescence. The optical sectioning ability of blind-speckle-SIM is
demonstrated in Chapter 5. Simulation results show that our proposed methods can improve
both the lateral and the axial resolution in 3D imaging.

Surpassing the resolution limit beyond a factor of two is possible in saturated structured
illumination microscopy (nonlinear SIM) [Gus05]. However, we do not find method to reach
resolution more than a factor of two in blind-speckle-SIM using speckle patterns with frequency
support higher than that of PSF h as shown in Section 4.5.4. Whether we could surpass the
traditional resolution limit more than a factor of two in blind-speckle-SIM is still unclear.

When the support of the speckle spectral density is lower than the frequency support of PSF
νspec < νPSF, the simulations show that we can not only retrieve frequency information interior
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of the circle with radius 2νspec as predicted by the theoretical analysis in Chapter 4 using the
marginal estimator, but also the information between 2νspec and νspec + νPSF. The theoretical
reason behind this phenomena deserve to be better understood.

Both the joint reconstruction approach with `p, q norm regularizer and the patch based
marginal approach allow parallel computing in optimization part. In the joint reconstruction
approach presented in Chapter 2, the variable Q and the auxiliary variables can be decoulpled
column-wise or line-wise, so they can be processed by different cores in parallel. In the
patch based marginal approach, the gradient for the objective function of each patch could
be processed independently.

For the numerical optimization algorithms we used in the manuscript, the preconditioning
technique has the possibility to accelerate the ADMM and primal-dual algorithm presented
in Chapter 2. And the Majorize-Minimize algorithm for subspace optimization normally
converges faster than the L-BFGS algorithm used in Chapter 3 and Chapter 4 [CIM11].

Finally, the speckle patterns can not only be used in fluorescence microscopy, its application
in other imaging system, such as tomographic diffraction microscopy [HBGS10], photoacoustic
imaging [CGA+16], should be explored in future.



Appendix A

Statistical properties of speckle patterns

It was noted in the early 1960s that when an object is illuminated by coherent light (see
section 1.2.2), a high-contrast, fine-scale granular pattern would be observed [Goo07]. This
type of granularity pattern is known as “speckle”. Speckle also appears when coherent light is
transmitted through diffusers.

The origin of the speckle phenomenon is due to the roughness of the object surface at the
scale of optical wavelengths. The observed field is composed of multiple randomly phased
elementary contributions, and these contributions interfere with each other to produce the
observed granular pattern.

Speckle is also found in other coherent imaging systems, including synthetic-aperture radar
[ALBA13], ultrasound medical imaging of organs [HAB13], and coherent X-ray imaging
[SMG+91]. Initially, speckle was considered mainly due to its negative impact and was treated
as a phenomenon that had to be suppressed. Recently, the positive impact of speckle has been
considered and it turned out that speckle can help us obtain better resolution in diffraction
limited systems [ILA+17]. Chapter 3 of the current manuscript is dedicated to such analysis.

Since the micro-structure of the surface roughness which generates speckle is unknown,
we cannot describe the speckle information exactly. However, it can be dscribed through
its statistical properties. Here we explore the statistical properties of the polarized fully
developed speckle patterns. It shows that for fully developed speckle patterns, the intensity
is homogeneous in average and that its image covariance has the same shape as the PSF of an
unaberrated system (where the pupil function is either 0 or 1). For more detailed description,
please see [Goo15, Section 7.7] and [Goo07, Section 4.4].

A.1 Statistical properties of speckle at a single point
As has been discussed in section 1.2.2, the complex phasor amplitude of coherent light can

be written as U(r). The optical field at a single point in speckle is the superposition of multiple
randomly phased “elementary” complex components:

U(r) =
∑
n

Un(r) =
Nc∑
n=1

an(r)ejφn(r) (A.1)

with Nc the number of components and an(r) = |Un(r)|. For brevity of expression, the
dependence on (r) of Un is dropped and we write:

U =
∑
n

ane
jφn (A.2)
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Throughout our discussions, the fully developed speckle patterns are concerned, that is, the
following assumptions about an are adopted [Goo07]:

1. The amplitudes an and phases φn are statistically independent of am and φm provided that
n 6= m.

2. For any n, an and φn are statistically independent.

3. For any n, φn are uniformly distributed on (−π, π).

A.1.1 First and second moments of real and imaginary parts of speckle
Given the assumptions above, we can write the mean of the real (uR) and imaginary (uI)

parts of U as:
E[uR] =

∑
n

E[an cosφn] =
∑
n

E[an]E[cosφn] = 0, (A.3)

E[uI ] =
∑
n

E[an sinφn] =
∑
n

E[an]E[sinφn] = 0, (A.4)

where both the expectations of cosφn and sinφn are zero due to the uniform distribution of φn.
Since the means are zero, the variance of uR and uI are given by their second moments:

σ2
R = E[u2

R] =
N∑
n=1

N∑
m=1

E[anam]E[cosφn cosφm]

=
N∑
n=1

E[a2
n]E[cos2 φn] =

∑
n

E[a2
n]E[

1

2
+

1

2
cos 2φn]

=
∑
n

E[a2
n]

2

(A.5)

in which we use the fact that E[cosφn cosφm] = E[cosφn]E[cosφm] = 0 when n 6= m.
Similarly, we could obtain that:

σ2
I =

∑
n

E[a2
n]

2
(A.6)

The correlation between the real and imaginary parts of the speckle are given by:

ΓR,I = E[uRuI ] =
∑
n

E[a2
n]E[cosφn sinφn]

=
∑
n

1

2
E[a2

n]E[sin 2φn] = 0.
(A.7)

A.1.2 Circular complex Gaussian variable
When the number of elementary components Nc is very large, uR and uI are given by sums

of a large number of independent random variables. According to the Central Limit Theorem
[Haj15], uR and uI are asymptotically Gaussian as Nc → ∞. Given the mean, variance and
correlation of uR and uI , we can write the joint probability density function of the speckle u
by:

p(uR, uI) =
1

2πσ2
exp(−u

2
R + u2

I
2σ2

) (A.8)
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with σ2 = σ2
R = σ2

I . This complex phasor U is called circular complex Gaussian variable.
Concerning the amplitude a and phase θ of the resultant phasor u, we have:

a =
√
u2
R + u2

I

θ = arctan
{ uI
uR

} (A.9)

The joint probability density function with respect to a and θ is related to that of uR, uI by:

p(a, θ) = p
(
uR(a, θ), uI(a, θ)

)
|J | (A.10)

in which |J | represents the Jacobian matrix given by:

|J | =
∣∣∣ ∂uR

∂a
∂uR
∂θ

∂uI
∂a

∂uR
∂θ

∣∣∣ =
∣∣∣ cos θ −a sin θ

sin θ a cos θ

∣∣∣ = a. (A.11)

Therefore, the joint probability density function of u and θ is:

p(a, θ) =
a

2πσ2
exp(− a2

2σ2
) (A.12)

for a ≥ 0 and −π ≤ θ ≤ π, zero otherwise. The marginal probability density function of
amplitude a is:

p(a) =

∫ π

−π
p(a, θ)dθ =

a

σ2
exp(− a2

2σ2
) (A.13)

for a ≥ 0 and p(a) is called the Rayleigh probability density function [Haj15].

A.1.3 Statistical properties of speckle intensity
Here we focus on intensity of speckle patterns. For the coherent illumination, we have

I = U2 = a2. Combining with the probability density function p(a) in Eq. (A.13), we have:

p(I) = p(
√
a)|da

dI
| = 1

2σ2
exp

(
− I

2σ2

)
(A.14)

for I ≥ 0. The i-th order moment of this distribution is given by [Goo07]:

Iq = (2σ2)qq! (A.15)

Then we could express the first and second moments of speckle intensity by:

Ī = 2σ2, I2 = 8σ4 = 2Ī 2 (A.16)

Now we can conclude that the intensity for fully developed speckle patterns is homogeneous in
average with Ī(r) = 2σ2.

A.2 Joint statistical properties of speckle at two points
After the discussion of statistical properties of one point in speckle, we explore the joint

properties of speckle patterns at two points in this subsection.
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A.2.1 Multivariate Gaussian statistics
The mathematical model to describe a fully developed speckle is a circular complex

Gaussian random process, with real and imaginary parts being real-valued Gaussian random
processes. Let U = [U1, · · · , UN ]t be an N -dimensional random vector subject to circular
complex Gaussian distribution, its probability density function is given by [Goo15]:

p(U) =
1

(2π)N/2|C|1/2
exp

[
− 1

2
(U− Ū)tC−1(U− Ū)

]
(A.17)

with C denoting the covariance matrix and Ū the expectation of U. The joint moments of a
zero-mean complex Gaussian random process can be found by the complex Gaussian moment
theorem [Ree62]:

E
[
U∗1U

∗
2 · · ·U∗kUk+1Uk+2 · · ·U2k

]
=
∑

Π

E[U∗1Up1 ]E[U∗2Up2 ] · · ·E[U∗kUpk ] (A.18)

where the symbol
∑

Π

represents the sum over all possible k! permutations (p1, · · · , pk) of

(1, · · · , k).

A.2.2 Correlation of speckle through the imaging system
Now we turn attention to the speckle passing through an imaging system as shown in

Fig. A.1. A rough object is illuminated by coherent light. The light passes through the imaging
system and is then focused in the image plane.

Figure A.1 – Speckle formation in imaging system. Figure courtesy from [Goo15, chapter 7]

Let ha denote the amplitude point spread function (APSF) of the system , then the complex
amplitude in the image plane is given by:

S(r) = (ha ∗ U)(r) =

∫
ha(r − r′)U(r′)dr′ (A.19)

The correlation of complex phasor amplitude in image plane, sometimes also called ensemble-
averaged mutual intensity to distinguish from the time-averaged mutual intensity shown in
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Eq. (1.9) , is given by:

E[SkS
∗
r ] = E

[ ∫
ha(k − x)Uxdx

∫
h∗a(r − y)U∗ydy

]
=

∫ ∫
h∗a(r − y)ha(k − x)E[UxU

∗
y ]dxdy

(A.20)

The correlation of the light in the source plane is determined by the surface-height
correlation function and the wavelength of incident light [Goo15, chapter 8]. For the moment,
we assume it can be represented by delta function:

E[UxU
∗
y ] = Īδ(x− y) (A.21)

where Ī is the ensemble average of the light intensity. Then we have:

E[SkS
∗
r ] = Ī

∫
h∗a(r − x)ha(k − x)dx

= Ī Γha(r − k)

(A.22)

in which Γha denotes the autocorrelation of ha:

Γha(τ) =

∫
ha(x)h∗a(x− τ)dx. (A.23)

The intensity of the speckle in the image plane is given by I(r) = |S(r)|2. Then the mean
intensity of speckle patterns in image plane is:

E[I(r)] = E[SrS
∗
r ] = Ī Γha(0) (A.24)

It is clear from (A.24) that the average intensity does not depend on the position r, so the
intensity mean of speckle in image plane is still homogeneous and we denote it as I0, to
distinguish from the intensity mean in source plane Ī . The covariance of the speckle intensity
in the image plane is :

E[(Ik − I0)(Ir − I0)] =E[IkIr]− I2
0 (A.25a)

=E[SkS
∗
kSrS

∗
r ]− I2

0 (A.25b)
=E[SkS

∗
k ]E[SrS

∗
r ] + E[SkS

∗
r ]E[SrS

∗
k ]− I2

0 (A.25c)
=E[SkS

∗
r ]E[SrS

∗
k ] (A.25d)

=|E(SkS
∗
r )|2 (A.25e)

=Ī 2
∣∣Γha(r − k)

∣∣2 (A.25f)

=
I2

0

|Γha(0)|2
∣∣Γha(r − k)

∣∣2 (A.25g)

where (A.25c) is obtained by applying the complex Gaussian moment theorem to (A.25b).
We see from(A.25) that the covariance of the intensity of speckle patterns can be totally
characterized by the difference of the position of two points. Let’s denote the covariance of
speckle intensity by γspec, we have :

γspec(r) =
I2

0

|Γha(0)|2
∣∣∣Γha(r)∣∣∣2 (A.26)
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The Fourier transform of γspec gives:

γ̃spec(u) =
I2

0

|Γha(0)|2
(

Γ̃ha ? Γ̃ha

)
(u)

=
I2

0

|Γha(0)|2
(
|h̃a|2 ? |h̃a|2

)
(u)

(A.27)

in which ? denotes the autocorrelation operator and h̃a is the amplitude transfer function of the
system, which is the projection of the scaled pupil function on the Ewald sphere [Goo05]. When
the lens is not apodized, the pupil function equals either 1 or 0, so that we have |h̃a|2 = h̃a. Thus
the shape of the Fourier transform of the covariance of speckle intensity identifies with the OTF
of the unaberrated system, up to a normalizing factor:

γ̃spec(u) =
I2

0

h(0)
h̃(u) (A.28)

According to the Wiener-Khinchin theorem, γ̃spec is identified by the power spectral density of
the speckle patterns [Goo15, Section 3.4]. Taking the inverse Fourier transform of (A.28), we
have:

γspec(r) =
I2

0

h(0)
h(r) (A.29)

A.3 Simulation of speckle patterns
To simulate the speckle patterns with given mean i0 and covariance γspec(r), a simple way

is to pass a independent and identically distributed (i.i.d) gaussian field U with a specific filter
φ:

S(r) = (U ∗ φ)(r) (A.30)

with
U(r) = a(r)ejθ(r)

a(r) ∼ N (0, σ2)

θ(r) = U(0, 2π)

(A.31)

where U denotes uniform distribution. According to our previous analysis, let

I(r) =
i0

2σ2φ(0)
|S|2(r) (A.32)

We have:
E[I(r)] = i0

Cov
(
I(r), I(k)

)
=

i20
|φ(0)|2

|φ(r − k)|2
(A.33)

For non-apodized lens, the covariance of I(r) is identified with γspec as long as:

φ(r) =
γspec(0)

i0

√
γspec(r) (A.34)

Three specific speckle realizations are shown in the first line of Fig. A.2, and the empirical
mean and covariance of 300 speckle patterns are shown in the second line of Fig. A.2. We can
see that they match their theorical values (shown in the third line of Fig. A.2 ) very well.
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Figure A.2 – The speckle realizations (first line) and its empirical and theoretical mean and
covariance of 300 speckle patterns .





Appendix B

The structure of 2D convolution matrix

B.1 The 2D convolution methods
Suppose we have an object ρ ∈ R

√
n×
√
n and the bluring kernel h ∈ R

√
m×
√
m, where

m ≤ n, there are several ways to evaluate discrete convolution z = h ∗ ρ. According to the
definition of discrete convolution:

z(r1, r2) =

√
m∑

r′1=1

√
m∑

r′2=1

ρ(r1 − r′1, r2 − r′2)h(r′1, r
′
2) (B.1)

A straightforward computation requires
√
m×
√
mmultiplications and addations for each pixel

of z. Here the circular convolution is considered, i.e. the signal is supposed to be periodic. The
size of z is the same as the object ρ, the computation complexity of convolution by definition
is O(mn).

B.1.1 Convolution by FFT
Circular convolution could be implemented with the help of discrete Fourier transform:

z = F−1(ρ̃ ◦ h̃) (B.2)

Taking advantage of the fast Fourier transform (FFT) algorithm, the computation complexity
to evaluate 2D convolution is O(n log n). Linear convolution could also be implemented with
FFT by padding zeros to the original object and kernel to avoid overlap between one period and
the next. In the case where m � n, separate convolution and overlap convolution are strong
candidates for efficient implementation.

B.1.2 Fast 2D convolution by SVD
The 2D fast convolution is based on the fact that when the convolution kernel has a product

decomposition, i.e. h = uvT , with u,v ∈ Rm×1, we have more efficient ways to do the
convolution [HS91, 298-299].

h11 h12 . . . h1m

h21 h22 . . . h2m
...

... . . . ...
hm1 hm2 . . . hmm

 =


u1

u2
...
um

 [v1 v2 · · · vm
]
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Simple manipulation of (B.1) gives:

z(r1, r2) =

√
m∑

r′1=1

√
m∑

r′2=1

ρ(r1 − r′1, r2 − r′2)h(r′1, r
′
2)

=

√
m∑

r′1=1

√
m∑

r′2=1

ρ(r1 − r′1, r2 − r′2)u(r′1)v(r′2)

=

√
m∑

r′2=1

[ √m∑
r′1=1

ρ(r1 − r′1, r2 − r′2)u(r′1)

]
v(r′2)

(B.3)

The bracketed term is the object convolving with column vector u, then the result convolve
again with the line vector vT . As a result, the original 2D convolution are separated into 2
convolutions:

z = (ρ ∗ u) ∗ vT (B.4)

The number of multiplications and additions required is O(2n
√
m). Next support the kernel h

can be expressed as the sum of K separable kernels:

h =
K∑
k=1

hk =
K∑
k=1

ukv
T
k (B.5)

We have:

z =
K∑
k=1

(hk ∗ ρ) =
K∑
k=1

(ρ ∗ uk) ∗ vk (B.6)

Such a separable representation is possible for any kernel h by using singular value
decomposition (SVD):

h = UΛVT =

√
m∑

i=1

λiuiv
T
i (B.7)

Let the singular values λi arrange in a decreasing order. Since λi decay to zero rapidly,
only the first few large values need to be kept. Suppose κ singular values are retained, the
computational complexity for 2D convolution by using separate convolution is O(κn

√
m).

B.1.3 Overlap methods
When we implement convolution by FFT, zeros are appended to the kernel h to get the

same size as the object. For large size object and small size kernels, a more efficient way to
implement it is using blockwise linear convolution, which is the basic idea behind the overlap
methods.

In overlap add method, the blocks are non-overlapping and the linear convolution for each
block is achieved with circulant convolution by adding zeros to both the block data and the
kernel.

While in overlap save method, no zero padding is performed on the input data. The object
is cut into overlapping blocks, and then convolve each block with the kernel using circulant
convolution. The portions that “wrap around” are discarded and the left equivalent with linear
convolution is saved.

Suppose each block has l pixels (l ≥ m), the computational complexity for overlap methods
is O(n log l). In practice, l is often chosen to be an integer power of 2 to achieve good
performance of FFT.



Chapter B — The structure of 2D convolution matrix 95

B.2 Generating the convolution matrix for specific patch
For the 2D convolution y = h ∗ ρ, with y, h, ρ ∈ Rm×n, the associated matrix form is:

y = Hρ (B.8)

where y,ρ ∈ Rmn and H ∈ Rmn×mn. If only partial part yp of y is concerned, we have:

yp = Hpρ (B.9)

In the patch based marginal approach as presented in chapter 4, we need to generate the
convolution matrix Hp given the location index of the corresponding patch. One possible
method is to construct the whole convolution matrix H ∈ RN×N first, then extract Hp according
to the patch locations. However, when the object size is big, storing matrix H is very memory
consuming. For example, for a 512× 512 image, if we store H with double-precision (8 bytes),
the memory required is:

5122 × 5122 × 8

210 × 210 × 210
= 512(GB) (B.10)

which is unaffordable for normal computers, even for supercomputers. Next, we will introduce
a generation approach for patch convolution matrix Hp, based on the natural structure of H,
where constructing H is not necessary.

B.2.1 Construct Hp with BCCB H

With periodic boundary conditions of the object ρ, H is a block circulant with circulant
blocks (BCCB) matrix. Otherwise with zero boundary assumption, H has a block Toeplitz with
Toeplitz blocks (BTTB) structure [HNO06]. Firstly we focus on BCCB H. A mn×mn BCCB
matrix has the following form:

B =


B0 Bm−1 . . . B1

B1 B0 . . . B2
...

... . . . ...
Bm−1 Bm−2 . . . B0


in which each Bj , j = (0, 1, · · · ,m−1), is a n×n circulant matrix. To generate the convolution
matrix Hp for p-th patch, we firstly construct the convolution matrix H1 explicitly for the first
patch. Then we use H1 as reference and construct Hp by circulating the lines and columns of
H1 according to their relatively position difference of the patch p and the first patch.





Appendix C

Implementing TV regularizer by FFT

For a discrete 2D object ρ2D ∈ RN1×N2 , the anisotropic TV is defined as:

TVa(ρ2D) =

N1∑
n1=1

N2∑
n2=1

∣∣ρ[n1 + 1, n2]− ρ[n1, n2]
∣∣+
∣∣ρ[n1, n2 + 1]− ρ[n1, n2]

∣∣ (C.1)

and the so-called isotropic TV is defined as:

TVi(ρ2D) =

N1∑
n1=1

N2∑
n2=1

√
(ρ[n1 + 1, n2]− ρ[n1, n2])2 + (ρ[n1, n2 + 1]− ρ[n1, n2])2 (C.2)

It is well known that the anisotropic TV is a poor definition of discrete TV since it favors
horizontal and vertical structures, while the isotropic TV has good isotropic property in practical
application as its name implies. Some other formulation of the discrete TV has also been
proposed, such as upwind TV [CLL11], Shannon TV [AM16] to enforce the isotropic property.
In the method presented in section 2.3, we use isotropic TV.

C.1 Mixed norm representation of TV
First we vectorize the object ρ2D in lexicological order and write it as ρ ∈ RN with N =

N1N2. Then we note that the TVi(ρ2D) can be expressed as the mixed norm `G,2,1 norm of Cρ :

TVi(ρ2D) = ‖Cρ‖G,2,1 =
N∑
n=1

‖(Cρ)Gn‖2 (C.3)

with C = (C1; C2) and C1,C2 the first-order horizontal and vertical finite difference
operators. The n-th group (Cρ)Gn = [(C1ρ)n; (C2ρ)n] ∈ R2.

C.2 Implementing the finite difference operator by FFT
Now let us zoom in the structure of C1 and C2. Under the periodic boundary conditions for

ρ2D, C1,C2 have a block Circulant with Circulant blocks (BCCB) structure:

C1 =


−1N1 1N1 0 . . . 0

0 −1N1 1N1 . . . 0
...

...
... . . . ...

1N1 0 0 . . . −1N1


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where 1N1 is a N1 ×N1 identity matrix. Similarly,

C2 =


A0 0 0 . . . 0
0 A0 0 . . . 0
...

...
... . . . ...

0 0 0 . . . A0


where A0 is a N1 ×N1 circulant matrix:

A0 =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
... . . . ...

1 0 0 . . . −1


A BCCB matrix can be diagonalized by 2D discrete Fourier transform [Dav12]. Let the first
column of C1 be c1, we can write:

C1 = (FN1 ⊗ FN2)
−1diag(c̃1)(FN1 ⊗ FN2) (C.4)

with F the discrete Fourier transform matrix and c̃1 = (FN1 ⊗ FN2)c1. Then C1ρ could be
implemented by:

C1ρ = (FN1 ⊗ FN2)
−1diag(c̃1)(FN1 ⊗ FN2)ρ = F−1

(
c̃1 ◦ ρ̃

)
(C.5)

The implementation of C2ρ can be treated similarly. On the other hand, under the Neumann
boundary condition of the object ρ2D, C1 and C2 has a block Toeplitz-plus-Hankel structure,
and C1ρ could be implemented with the help of discrete cosine transforms (DCTs) [HNO06].

C.3 The transpose of finite difference operator
Let us denote p = Cρ ∈ R2N . The operation CTp is required sometimes. Instead of

implementing it directly, we could split p into two parts [p1;p2] where p1 = C1ρ and p2 =
C2ρ. Then CTp could be expressed as the sum of two items:

CTp = CT
1 p1 + CT

2 p2 (C.6)

where each item could be implemented with FFT:

CT
1 p1 = F−1

(
c̃∗1 ◦ p̃1

)
(C.7)



Appendix D

Numerical optimization methods

D.1 L-BFGS method
In this section we briefly present the L-BFGS algorithm to solve the optimization problem:

arg min
ρ

DM(ρ) (D.1)

In each iteration of BFGS algorithm, we require the approximation of inverse of Hessian
matrix B(k) to satisfy the secant equation:

B(k+1)zk = sk, where sk = ρk+1 − ρk, zk = ∇DM(ρk+1)−∇DM(ρk) (D.2)

Only the secant equation is not enough to determine a unique solution of B(k+1). Thus we
impose additional conditions as well as the secant equation to B(k+1), that B(k+1) should be
symmetric and the difference between successive B(k) and B(k+1) should have low rank. In
particular, B(k+1) is specified by the following conditions:

B(k+1) = arg min
B
‖B−B(k)‖F s.t. B = BT , Bzk = sk (D.3)

Then the BFGS updating formula is given as:

B(k+1) = (1N − tkskzTk )B(k)(1N − tkzksTk ) + tksks
T
k (D.4)

where
tk =

1

zTk sk
(D.5)

Given an initial inverse Hessian approximation B(0), by repeating equation (D.4), the BFGS
updating formula reads:

B(k) =
(
STk−1 · · ·STk−m(k)

)
B(0)

(
Sk−m(k) · · ·Sk−1

)
+ tk−m(k)

(
STk−1 · · ·STk−m(k)+1

)
sk−m(k)s

T
k−m(k)

(
Sk−m(k)+1 · · ·Sk−1

)
+ tk−m(k)+1

(
STk−1 · · ·STk−m(k)+2

)
sk−m(k)+1s

T
k−m(k)+1

(
Sk−m(k)+2 · · ·Sk−1

)
+ · · ·
+ tk−1sk−1s

T
k−1

(D.6)

in which
Sk = 1N − tkskzTk (D.7)
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In the BFGS updating scheme, m(k) = k and the initial inverse Hessian approximation B(0) is
often set a constant multiply the identify matrix.

When the dimension of ρ is large, storing and manipulating B(k) is prohibitive. To
circumvent this problem, we set a number M2 and only the recent M2 pairs of {sk, zk} are
stored, which gives limited-memory BFGS (L-BFGS) algorithm. The updating of B(k) in L-
BFGS is same as shown in (D.6) withm(k) = min(k,M2) and initial approximation B(0) could
vary from iteration to iteration. For instance, B(0) is typically replaced by B

(0)
k where:

B
(0)
k = γk1N , with γk =

zTk−1sk−1

zTk−1zk−1

(D.8)

The L-BFGS algorithm does not require to construct B(k) explicitly. In practice, the product
B(k)∇DM(ρk), rather than B(k) is updated. Specially, this is done by a two-loop recursion
algorithm as shown in algorithm 6. A complete statement of L-BFGS algorithm is presented in
algorithm 7.

Algorithm 6: L-BFGS two-loop recursion
1 g ← ∇DM(ρk) ;
2 for i ∈ {k − 1, · · · , k −M2} do
3 µi ← tis

T
i g ; // store µi

4 g ← g − µizi ;
5 end
6 r = B

(0)
k g ;

7 for i ∈ {k −M2, · · · , k − 1} do
8 β ← tiz

T
i r ;

9 r ← r + si(µi − β) ;
10 end
11 B(k)∇DM(ρk) = r;

Algorithm 7: L-BFGS algorithm
1 Initialize starting point ρ0, integer M2 > 0 ;
2 k ← 0 ;
3 while stopping criterion is not met do
4 Choose B

(0)
k ; // for example using (D.8)

5 Compute dk = −B(k)∇DM(ρk) by two-loop recursion shown in algorithm 6 ;
6 Update ρk+1 = ρk + αkdk where αk is chosen to satisfy Wolfe conditions;
7 if k > M2 then
8 Discard the pairs {sk−m, zk−m} ;
9 Compute and store sk = ρk+1 − ρk, zk = ∇DM(ρk+1)−∇DM(ρk) ;

10 k ← k + 1 ;
11 end
12 end
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D.2 L-BFGS-B algorithm

Since we know that the fluorescence object is non-negative, we can add positivity constraint
ρ ≥ 0 to the marginal approach (3.50) and then solve the optimization problem with
bound constrained limited memory BFGS algorithm (L-BFGS-B) [BLNZ95]. The L-BFGS-B
algorithm is designed to iteratively solve optimization problem min f(x) with bound constraints
l ≤ x ≤ u, where l,u,x ∈ RN . At the beginning of each iteration, the variable value xk, the
function value f(xk), the gradient gk and an approximation of Hessian matrix Hk obtained as
in L-BFGS method are given. Then the function can be approximated by the quadratic model:

mk(x) = f(xk) + gTk (x− xk) +
1

2
(x− xk)THk(x− xk) (D.9)

The L-BFGS-B algorithm approximately minimize mk(x) subject to the bound constraints l ≤
x ≤ u. This is done by firstly find a generalized Cauchy point xc, and then do a subspace
minimization along the free variables.

Generalized Cauchy point The generalized Cauchy point is defined as the first local
minimizer of the piece-wise quadratic mk(x(t)) where x(t) is a piece-wise linear path obtained
by projecting the steepest descent direction onto the feasible region:

x(t) = proj(xk − tgk, l,u) (D.10)

The projection operation is defined as:

proj(xk − tgk, l,u)i =


li, xi < li

xi, li ≤ xi ≤ ui

ui, xi > ui

(D.11)

To simplify notation, we use x0 to denote xK and g for gk in this subsection. Each
coordinate xi(t) of the piece-wise linear path is given by:

xi(t) = x0
i − tgi, t ∈ [0, ti] (D.12)

The breakpoint ti is:

ti =


(x0

i − ui)/gi, gi < 0

(x0
i − li)/gi, gi > 0

∞, otherwise

(D.13)

Then we sort {ti | i = 1, · · · , N} in a ordered set {tj | tj ≤ tj+1, j = 1, · · · , N}. The
piece-wise linear path x(t) can be reexpressed using ti as:

xi(t) =

{
x0
i − tgi, t ≤ ti

x0
i − tigi, otherwise

(D.14)

In the line interval [x(tj−1), x(tj)], the quadratic modelmk(x(t)) can be written in ∆t = t−tj−1

as:

mj
k(∆t) = fj−1 + f ′j−1∆t+

1

2
f ′′j−1∆t2 (D.15)
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where

fj−1 = f(x0) + gT (x(tj−1)− x0) +
1

2
(x(tj−1)− x0)THk(x(tj−1)− x0)

f ′j−1 = gTdj−1 + (dj−1)THk(x(tj−1)− x0)

f ′′j−1 = (dj−1)THkd
j−1

(D.16)

The definition of dj−1 is:

dj−1
i =

{
−gi, tj−1 < ti

0, otherwise
(D.17)

Setting the gradient of mj
k(∆t) to zero, we obtain ∆t = −f ′j−1/f

′′
j−1.

Subspace minimization Once the generalized Cauchy point xc is obtained, the variables
whose value are at the lower or upper bounds, comprising the active set A(xc), are held fixed.
The quadratic model is minimized over the subspace of free variables in xc. A few methods
could be used to solve the minimization problem. For example, a direct primal method based on
the Sherman-Morrison-Woodbury formula gives a unconstrained solution x̄k+1 in subspace. We
then find the next iteration value by a line search method along the direction dk = x̄k+1−xk that
satisfy the strong Wolfe conditions [NW06]. To prevent the line search method from generating
infeasible points, we define a maximum step length as the step to the closest bounds alone the
search direction.

This procedure is repeated until the convergence condition is reached.



Appendix E

Gradient of Kullback-Leibler divergence

Here we derive the expression of the gradient of Kullback-Leibler divergence as shown in
(3.50)

DM(ρ) =
1

2
log |Γy|+

1

2
Tr
(
Γ−1
y W

)
+K (E.1)

with W = 1
M

VVt and V = (y1 − µy| · · · |yM − µy). Our derivation of the gradient are based
on the following equations [PP+08, Section 2] :

∇θ log|A| = Tr(A−1(∇θA))

∇θ(A
−1) = −A−1(∇θA)A−1

∇θ(AB) = (∇θA)B + A(∇θB)

∇θTr(A) = Tr(∇θ(A))

∇θ(A
T ) = (∇θA)T

(E.2)

where A and B are two matrix depending on a real scalar parameter θ. From these relations,
we have:

∂nDM(ρ) =
1

2
Tr(Γ−1

y (∂nΓy)) +
1

2
Tr
(

(∂nΓ
−1
y )W + Γ−1

y ∂nW
)

(E.3)

with ∂n = ∇ρn and
∇DM(ρ) = vec

{
∂nDM(ρ)

}
(E.4)

Where vec{vn} = [v1, · · · , vN ]T . According to (E.2,E.3), the expression of ∂nΓy and ∂nW are
required to derive the expression of ∇DM(ρ). Let en be the n-th canonical vector, hn be the
n-th column of H and 1M = (1, · · · , 1)T ∈ RM . From (3.35) we have:

∂nΓy = HRΓs∂n(RHT ) + ∂n(HRΓs)RH

= HRΓs∂n(RHT ) +
(
HRΓs∂n(RHT )

)T
= HRΓsenh

T
n + (HRΓsenh

T
n )T

(E.5)

and similarly,

∂nW = − I0

M

(
V1Mh

T
n + (V1Mh

T
n )T
)

(E.6)

The derivative of the three terms in (E.3) could now be obtained. According to the identity:

Tr(BaaT ) = aTBa (E.7)

with matrix B ∈ RN×N ,a ∈ RN , we have:

Tr
(
Γ−1
y (∂nΓy)

)
= 2Tr(Γ−1

y HRΓsenh
T
n )

= 2eTnXhn
(E.8)
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where we define X = ΓsRHTΓ−1
y . For the second and third term in (E.3)

Tr
(

(∂nΓ
−1
y )W

)
= −2eTn (Γ−1

y WX)hn (E.9)

and
Tr(Γ−1

y ∂nW) = −2I0

M
hTnΓ−1

y V1M (E.10)

To obtain the full gradient of DM(ρ), we deduce from (E.8) that

vec
{

Tr
(
Γ−1
y (∂nΓy)

)}
= 2
(
(XH) ◦ IN

)
1N

= 2
(
(HTΓ−1

y H) ◦ Γs

)
ρ

(E.11)

where in the second step we have used the identity:(
(Adiag(ρ)BT ) ◦ IN

)
1N = (A ◦B)ρ (E.12)

Similarly, we have

vec
{

Tr
(

(∂nΓ
−1
y )W

)}
= −2

(
(ΩTWΩ) ◦ Γs

)
ρ (E.13)

and
vec
{

Tr(Γ−1
y ∂nW)

}
= − 2

M
I0Ω

TV1M (E.14)

where Ω = Γ−1
y H. Plugging (E.3,E.11,E.13,E.14) into (E.4) reads:

∇DM(ρ) =
((

Ωt (Γy −W) Ω
)
◦ Γs

)
ρ− I0

M
ΩtV1M (E.15)
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