Functional dynamics of the bacterial flagellar motor driven by fluorescent protein tagged stators and by evolutionary modified foreign stators - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2016

Functional dynamics of the bacterial flagellar motor driven by fluorescent protein tagged stators and by evolutionary modified foreign stators

Dynamique fonctionnelle du moteur flagellaire bactérien entraîné par des stators marqués par des protéines fluorescentes et par des stators étrangers modifiés par évolution

Résumé

The bacterial flagellar motor (BFM) is the macromolecular complex which allows bacteria to swim in liquid media. Located at the base of the flagellum, anchored in the cell membrane, this remarkably small (~45nm) yet powerful rotary motor rotates each flagellum of the cell switching between counterclockwise (CCW) and clockwise (CW) direction. The motor rotation is generated at the interface between the two key components of the motor: the stator protein complexes (each composed of 4 MotA and 2 MotB proteins) and the C- ring protein complex at the base of the rotor. The stator complexes are structurally and functionally discernible modules of the motor, and their dynamical association and dissociation around the rotor controls the generation of torque.The first project of this study aims to investigate how the FP tag on the stator protein modifies the torque generation and switching of the motor. This is particularly important because the fluorescent protein tag lies at the interface between stator and rotor, where torque and switching are produced. Three different FPs (eGFP, YPet, Dendra2) were fused to MotB. Interestingly, despite the high similarity of their structures, our analysis revealed that the three fusion stators generate different torque. Furthermore, in the presence of fusion stators, the motor showed significantly impaired switching abilities. When switching direction of the rotation, the absolute value of the speed of WT motors does not change, whereas this symmetry of speed upon switching is not observed in the fusion stator motors, and switching can be accompanied with a significant (~30%) decrease in absolute speed. Both the impaired torque generation and the switching ability were improved by introducing a rigid linker between the stator and the FP tag. Taken together, this study provides a further insight into the dynamics of the stator and rotor interaction at its interface.When the cells carrying the fluorescently labeled stators were observed in a custom made TIRF-fluorescence microscope with single molecule capability, the fluorescence signals were detected as concentrated clusters in the membrane as expected for these membrane proteins around the motors, together with a population of stators diffusing in the membrane. Fluorescent clusters were visible at the center of rotating cells tethered to the glass slide by a single flagellum, confirming that the fluorescent tags can be visualized in functioning motors.In a second project developed in Bertus Beaumont lab at TU Delft, taking BFM as an experimental evolutionary model system, its modularity and evolvability have been explored to learn the molecular details of the evolution of molecular machines. The stators of E.coli have been exchanged by a set of 21 homologue foreign stators. The experiments revealed that the stator proteins can be exchanged between distant bacteria species, and some of the non-compatible stators can be positively modified by evolution to become functional. Those evolved strains accumulated beneficial mutations in their foreign motA and motB genes, especially on their functional domains. Identical mutations in different stators were common, indicating that evolution is repeatable. The functional investigation at the single motor level revealed that those beneficial mutations improved the torque generation and/or the switching ability of the motor. The detailed genotype and phenotype investigations of the evolutionary modified BFM may bring an insight into how molecular machines such as BFM have evolved as well as the functional effects of the beneficial mutations that facilitate functional integration.
Le moteur flagellaire bactérien (BFM) est un complexe moléculaire qui permet aux bactéries de nager dans un milieu liquide. La rotation du moteur est générée à l’interface entre deux éléments clés: les protéines formant le stator (MotA and MoB) et l’anneau C “switching complex” à la base du rotor. Les stators sont des modules du moteur structurellement et fonctionnellement différentiables du reste du moteur, et leurs association et dissociation dynamique autour du rotor contrôle la génération du couple. Quand une protéine fluorescente (PF) est fusionnée à MotB, le moteur est en état de marche mais une réduction générale de la mobilité de la cellule a été observée. La raison précise d’une telle réduction de mobilité n’a pas été étudiée.Le but de cette étude est de comprendre comment la fusion PF de la protéine du stator modifie la génération du couple et le sens de rotation du moteur. C’est particulièrement important car le tag FP se trouve à l’interface entre le stator et le rotor, là où le couple et le changement du sens de rotation sont produits. Trois différentes PFs (eGFP, YPet, Dendra2) ont été fusionnées à la protéine MotB. Malgré la haute similarité de leurs structures, notre analyse a montré que les trois stators fusionnés génèrent des couples différents. Les stators marqués avec YPet produisent un couple moyen similaire au WT (stators sans tag PF), alors que les stators marqués avec eGFP et Dendra2 produisent respectivement 70% et 40% du couple moyen du WT. De plus, les moteurs utilisant les stators fusionnés ont montré des capacités de changement de sens de rotation réduites. Lors d’un changement de sens de rotation, la valeur absolue de la vitesse des moteurs WT ne change pas. Cette “symétrie” de vitesse lors du changement n’apparaît pas avec les moteurs à stators fusionnés et le changement peut être accompagné d’une importante diminution (~30%) de la vitesse absolue.En observant par microcopie TIRF avec détection de molécules uniques, des stators marqués dans un moteur en état de marche, les signaux de fluorescence sont détectés à la membrane comme prévu pour ces protéines, montrant une population de stators diffusant dans celle-ci. Les clusters fluorescents étaient visibles au centre des cellules en rotation, attachés au couvre-glace par une seule flagelle, confirmant que le tag de fluorescence peut être visualisé dans des moteurs en état de marche. Dans un second projet développé dans le laboratoire Bertus Beaumont à TU Delft, en prenant le BFM en tant que système modèle d’évolution expérimentale, sa modularité et son « évolubilité » ont été explorés pour apprendre les détails au niveau moléculaire de l’évolution de ce type de machine. Les stators de E.coli ont été échangés par un set de 21 stators étrangers homologues. L’expérience a révélé que les protéines du stator peuvent être échangées entre espèces de bactéries distantes et certains stators non compatibles peuvent être modifiés positivement par un procédé d’évolution pour devenir fonctionnels. Au cours de cette évolution, les bactéries ont accumulé des mutations avantageuses dans leurs gènes MotA et MotB étrangers, tout particulièrement dans leur domaine fonctionnel. Des mutations identiques dans des stators différents ont été observées, indiquant que l’évolution peut se reproduire. L’analyse fonctionnelle au niveau d’un seul moteur a révélé que ces mutations avantageuses amélioraient la génération du couple et/ou la capacité du moteur à changer de sens. Les investigations détaillées du génotype et du phénotype du BFM modifié par évolution apportés par cette étude, pourraient donner une idée sur la façon dont des machines moléculaires comme le BFM ont évolué, et les effets fonctionnels des mutations bénéfiques qui facilitent l'intégration fonctionnelle.
Fichier principal
Vignette du fichier
2016_HEO_archivage.pdf (9.86 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01972611 , version 1 (07-01-2019)

Identifiants

  • HAL Id : tel-01972611 , version 1

Citer

Minyoung Heo. Functional dynamics of the bacterial flagellar motor driven by fluorescent protein tagged stators and by evolutionary modified foreign stators. Molecular biology. Université Montpellier, 2016. English. ⟨NNT : 2016MONTT080⟩. ⟨tel-01972611⟩
185 Consultations
291 Téléchargements

Partager

Gmail Facebook X LinkedIn More