, Un microusinage ionique est alors eectuée de part et d'autre du dépôt par faisceau d'ions focalisés (30 kV , 43 nA) jusqu'à obtenir une lame préalable d'une épaisseur de l'ordre de 1 µm (Figure A.1c). Enn, la lame est découpée (Figure A.1d) puis transférée sur une grille en cuivre à l'aide d'un micromanipulateur pour procéder à son amincissement par FIB (Figure A.1e) dans les même conditions de tension et avec une intensité variable entre 0,79 nA à 80 pA pour la nition, La préparation des lames minces pour les observations MET a été eectuée par micro-usinage et amincissement ionique par faisceau d'ions focalisés (Focused Ion Beam ou FIB)

, Annexe B Propriétés physico-chimiques

, Acier inoxydable AISI 304L

, Les propriétés physico chimiques de l'acier inoxydable AISI 304L sont présentées dans les Tableaux B.1 et B.2. Les valeurs présentées dans le Tableau B.1 sont issues des travaux de Mills

W. H. Kasner, T. A. Wojcik, and H. E. Feree, Laser decontamination method, December, 1986.

S. Shuttleworth, M. R. Chandratillake, and R. V. , Material removal by laser ablation, 1995.

J. P. Cartry, G. Clar, and A. Martin, Apparatus for working by lasser, especially for the decontamination of a pipe of a nuclear reactor, US Patent, vol.5, p.848, 1993.

A. Leontyev, Laser decontamination and cleaning of metal surfaces : modelling and experimental studies, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00661695

. Ph, M. Delaporte, W. Gastaud, M. Marine, O. Sentis et al., Dry excimer laser cleaning applied to nuclear decontamination, Applied Surface Science, vol.208, p.298305, 2003.

R. L. Demmer, R. L. Ferguson, ;. Eg, . Idaho, and . Inc, Testing and evaluation of light ablation decontamination, 1994.

, R& D and Innovation Needs for Decommissioning Nuclear Facilities, 2014.

A. J. Potiens, J. C. Dellamano, R. Vicente, M. P. Raele, N. U. Wetter et al., Laser decontamination of the radioactive lightning rods. Radiation Physics and Chemistry, vol.95, p.188190, 2014.

F. Brygo, Etude de l'interaction laser-matière appliquée à la décontamination de peintures, 2005.

F. Champonnois, . Ph, M. Cormont, . Geleoc, . Ch et al., Method and device for laser ablation of a surface coating from a wall, such as a coat of paint in a nuclear plant, US Patent, vol.8, p.73, 2012.

, Vocabulaire de l'ingénierie nucléaire, Journal ociel, 2004.

P. Beslu, Corrosion des circuits primaires dans les réacteurs à eaux sous pression : Analyse historique, 2014.

, IRSN. Fonctionnement d'un réacteur nucléaire, 2018.

D. Féron, Nuclear corrosion science and engineering, p.205, 2012.

J. P. Nilaya, P. Raote, A. Kumar, and D. J. Biswas, Laser-assisted decontaminationa wavelength dependent study, Applied Surface Science, vol.254, issue.22, pp.7377-7380, 2008.

D. E. Roberts and T. S. Modise, Laser removal of loose uranium compound contamination from metal surfaces, Applied surface science, vol.253, issue.12, p.52585267, 2007.

D. H. Lister, The transport of radioactive corrosion products in high-temperature water ii. the activation of isothermal steel surfaces, Nuclear Science and Engineering, vol.59, issue.4, p.406426, 1976.

, Nuclear decommissioning : Decontamination techniques used in decommissioning activities : A report by the nea task group on decontamination, 2009.

, Recommended radiological protection criteria for the recycling of metals from the dismantling of nuclear installations. recommendations from the group of experts set up under the terms of article 31 of the euratom treaty, 1998.

, Directive 2013/59/euratom du conseil du 5 décembre 2013 xant les normes de base relatives à la protection sanitaire contre les dangers résultant de l'exposition aux rayonnements ionisants et abrogeant les directives, 2013.

. Autorié-de-sûreté-nucléaire, Guide relatif à l'assainissement des structures dans les installations nucléaires de base, 2016.

P. Thouvenot, J. L. Alcaraz, J. M. Le, and . Samedy, Validation en actif d'un procédé de décontamination par laser excimère, 2001.

A. Duigou, M. Fattahi, and J. Fazileabasse, Comparaison de l'ecacité de quelques procédés de décontamination surfacique, Radioprotection, vol.44, issue.3, pp.329-344, 2009.

R. Shimizu, K. Sawada, Y. Enokida, and I. Yamamoto, Decontamination of radioactive contaminants from iron pipes using reactive microemulsion of organic acid in supercritical carbon dioxide, Journal of nuclear science and technology, vol.43, issue.6, p.694698, 2006.

C. Dame, . Ch, O. Fritz, S. Pitois, and . Faure, Relations between physicochemical properties and instability of decontamination foams, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.263, issue.13, p.210218, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00328150

C. Dame, Étude des relations entre la stabilité des mousses de décontamination nucléaire et leurs propriétés physico-chimiques, 2006.

G. Boissonnet, M. Faury, and B. Fournel, Decontamination of nuclear components through the use of foams, Foams and Emulsions, p.323334

. Springer, , 1999.

S. Faure, B. Fournel, and P. Fuentes, Composition, mousse et procede de decontamination de surfaces, 2004.

L. Nunez and M. D. Kaminski, Foam and gel methods for the decontamination of metallic surfaces, US Patent, vol.7, p.758, 2007.

I. Yoon, C. Jung, S. B. Yoon, S. Y. Park, J. Moon et al., Eect of silica nanoparticles on the stability of decontamination foam and their application for oxide dissolution of corroded specimens, Annals of Nuclear Energy, vol.73, p.168174, 2014.

R. Castellani, A. Poulesquen, F. Goettmann, . Ph, L. Marchal et al., Eciency enhancement of decontamination gels by a superabsorbent polymer, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.454, p.8995, 2014.

Y. Kameo, M. Nakashima, and T. Hirabayashi, New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel, Journal of nuclear science and technology, vol.41, issue.9, p.919924, 2004.

A. Einstein, Emission and absorption of radiation in quantum theory, Verhandlungen der Deutschen Physikalischen Gesellschaft, vol.18, p.318323, 1916.

T. H. Maiman, Ruby laser systems, US Patent, vol.3, p.115, 1967.

C. Schwob and L. Julien, Le laser : principe de fonctionnement. Reets de la physique, p.1216, 2010.

M. Hanna, Sources laser à bre et applications. Techniques de l'ingénieur Sources laser, 2012.

S. I. Anisimov, B. S. Luk'yanchuk, and A. Luches, An analytical model for threedimensional laser plume expansion into vacuum in hydrodynamic regime, Applied surface science, vol.96, p.2432, 1996.

D. W. Bäuerle, Laser processing and chemistry, 2013.

C. Phipps, Laser ablation and its applications, vol.129, 2007.

M. Stafe, C. Negutu, N. Puscas, and I. M. Popescu, Pulsed laser ablation of solids, Rom. Rep. Phys, vol.62, issue.4, 2010.

M. Sentis, . Ph, W. Delaporte, O. Marine, and . Uteza, Surface oxide removal by a xecl laser for decontamination, Quantum electronics, vol.30, issue.6, p.495, 2000.

V. P. Veiko, T. Y. Mutin, V. N. Smirnov, and E. A. Shakhno, Laser decontamination of radioactive nuclides polluted surfaces, Laser physics, vol.21, issue.3, p.608613, 2011.

X. Ladet and F. Moggia, Du Gardin B. Dispositif permettant l'utilisation d'une source laser au sein d'une enceinte connée sans contamination de ladite source via l'utilisation d'une manche, 2017.

A. Siatou, D. Charalambous, V. Argyropoulos, and P. Pouli, A comprehensive study for the laser cleaning of corrosion layers due to environmental pollution for metal objects of cultural value : preliminary studies on articially corroded coupons, Laser Chemistry, issue.7, 2006.

P. Dewalle, Caracterisation des aerosols emis par interaction laser-matiere dans le cadre d'experiences de decapage de peintures par laser, vol.10, 2009.

A. Anthofer, W. Lippmann, and A. Hurtado, Development and testing of a laser-based decontamination system, Optics & Laser Technology, vol.48, p.589598, 2013.

A. Leontyev, A. Semerok, D. Farcage, P. Y. Thro, C. Grisolia et al., Theoretical and experimental studies on molybdenum and stainless steel mirrors cleaning by high repetition rate laser beam, Fusion Engineering and Design, vol.86, issue.9, p.17281731, 2011.

Y. F. Lu, M. Takai, S. Komuro, T. Shiokawa, and Y. Aoyagi, Surface cleaning of metals by pulsed-laser irradiation in air, Applied Physics A, vol.59, issue.3, p.281288, 1994.

D. Grojo, Laser-assisted particle removal mechanisms : application to the microelectronics cleaning, 2006.
URL : https://hal.archives-ouvertes.fr/tel-00118348

R. L. Ferguson, M. C. Edelson, and H. Pang, Laser ablation system, and method of decontaminating surfaces, US Patent, vol.5, p.806, 1998.

J. R. Costes, A. Briand, B. Remy, and M. Mauchien, Decontamination by ultraviolet laser : The lexdin prototype, Spectrum, vol.96, p.17601764, 1996.

B. Turco and M. Fisher, Decontamination laser de la surface d'une piece prolée, 2006.

M. Dutzer, Procede de decontamination de tubes de generateur de vapeur, 2014.

L. Petit, S. Delepine-lesoille, and F. Leboine, Procédé de décontamination de la surface interne d'un tube et installation pour eectuer une telle décontamination, 2016.

Y. Fukui, M. Nemoto, K. Shimizu, and S. Sato, Laser decontamination method, US Patent, vol.6, p.827, 2000.

E. Minehara, Method of decontaminating radioisotope-contaminated surface vicinity region by use of nonthermal laser peeling without re-melting, without rediusion and without re-contamination, and apparatus therefor, US Patent, vol.8, p.765, 2012.

E. Minehara, Laser decontamination device, US Patent, vol.9, p.430, 2015.

K. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, Metal ablation with short and ultrashort laser pulses, Physics Procedia, vol.12, p.230238, 2011.

B. N. Chichkov, C. Momma, S. Nolte, F. Von-alvensleben, and A. Tünnermann,

. Femtosecond, picosecond and nanosecond laser ablation of solids, Applied Physics A, vol.63, issue.2, p.109115, 1996.

C. Seo, D. Ahn, and D. Kim, Removal of oxides from copper surface using femtosecond and nanosecond pulsed lasers, Applied Surface Science, vol.349, pp.361-367, 2015.

A. Kearns, C. Fischer, K. G. Watkins, M. Glasmacher, H. Kheyrandish et al., Laser removal of oxides from a copper substrate using q-switched nd : Yag radiation at 1064 nm, 532 nm and 266 nm, Applied surface science, vol.127, p.773780, 1998.

Y. Kameo, M. Nakashima, and T. Hirabayashi, Removal of metal-oxide layers formed on stainless and carbon steel surfaces by excimer laser irradiation in various atmospheres, Nuclear technology, vol.137, issue.2, p.139146, 2002.

B. H. Christensen, K. Vestentoft, and P. Balling, Short-pulse ablation rates and the two-temperature model, Applied Surface Science, vol.253, issue.15, p.63476352, 2007.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, Accumulation eects in laser ablation of metals with high-repetition-rate lasers, Proc. SPIE, vol.7005, p.70052, 2008.

J. Byskov-nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, Ultrashort pulse laser ablation of metals : threshold uence, incubation coecient and ablation rates, Applied Physics A, vol.101, issue.1, p.97101, 2010.

A. Dupont, Ablation de couches supercielles de matériaux métalliques par rayonnement laser impulsionnel, 1994.

A. Dupont, P. Caminat, P. Bournot, and J. P. Gauchon, Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water lm on the treated surface, Journal of Applied Physics, vol.78, issue.3, p.20222028, 1995.

A. Sollier, Etude des plasmas générés par interaction laser-matière en régime conné. Application au traitement des matériaux par choc laser, 2002.

A. Kruusing, Underwater and water-assisted laser processing : Part 2etching, cutting and rarely used methods, Optics and Lasers in Engineering, vol.41, issue.2, pp.329-352, 2004.

H. W. Kang and A. J. Welch, Eect of liquid thickness on laser ablation eciency, Journal of applied physics, vol.101, issue.8, 2007.

H. W. Kang, H. Lee, and A. J. Welch, Laser ablation in a liquid-conned environment using a nanosecond laser pulse, Journal of Applied Physics, vol.103, issue.8, p.83101, 2008.

J. Gauchon, . Ph, P. Bournot, . Caminat, and A. Dupont, Procede et installations de decontamination d'une surface radioactive au moyen d'un faisceau de lumiere coherente, 1994.

. Ph, M. Delaporte, W. Gastaud, M. Marine, O. Sentis et al., Radioactive oxide removal by xecl laser, Applied surface science, vol.197, p.826830, 2002.

A. Kumar, T. Prakash, M. Prasad, S. Shail, R. B. Bhatt et al., Laser assisted removal of xed radioactive contamination from metallic substrate, Nuclear Engineering and Design, vol.320, p.183186, 2017.

Z. Homonnay, E. Kuzmann, K. Varga, Z. Németh, A. Szabó et al., Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. part ii. chemical composition and structure of tube surfaces, Journal of Nuclear Materials, vol.348, issue.12, p.191204, 2006.

K. Varga, Z. Németh, A. Szabó, K. Radó, D. Oravetz et al., Comprehensive investigation of the corrosion state of the heat exchanger tubes of steam generators. part i. general corrosion state and morphology, Journal of Nuclear Materials, vol.348, issue.12, p.181190, 2006.

S. Ono, M. Haginuma, M. Kumagai, M. Kitamura, K. Tachibana et al., Distribution of cobalt in surface oxide lm of type 304 stainless steel exposed to high-temperature water, Journal of Nuclear Science and Technology, vol.32, issue.2, pp.125-132, 1995.

D. Feron, C. Richet, and B. Bonin, Corrosion et altération des matériaux du nucléaire. Une monographie de la Direction de l'énergie nucléaire, 2010.

A. Atkinson, Transport processes during the growth of oxide lms at elevated temperature, Reviews of Modern Physics, vol.57, issue.2, p.437, 1985.

N. Karimi, Etude par diraction des rayons X in situ des mécanismes d'oxydation de l'acier AISI 304 entre 800° C et 1000° C. Inuence des dépôts sol-gel de lanthane et de cérium. Apport de la spectroscopie infrarouge à l'identication des oxydes mixtes, 2007.

D. J. Young, High temperature oxidation and corrosion of metals, Elsevier, vol.1, 2008.

C. E. Reis-de-carvalho, G. M. Magela-da, A. B. Costa, E. H. Cota, and . Rossi, High temperature oxidation behavior of aisi 304 and aisi 430 stainless steels, Materials Research, vol.9, p.393397, 2006.

F. Riard, H. Buscail, E. Caudron, R. Cue, C. Issartel et al., The inuence of implanted yttrium on the cyclic oxidation behaviour of 304 stainless steel, Applied Surface Science, vol.252, issue.10, p.36973706, 2006.

D. P. Adams, V. C. Hodges, D. A. Hirschfeld, M. A. Rodriguez, J. P. Mcdonald et al., Nanosecond pulsed laser irradiation of stainless steel 304l : Oxide growth and eects on underlying metal, Surface and Coatings Technology, vol.222, p.18, 2013.

C. Y. Cui, C. D. Xia, X. G. Cui, J. Z. Zhou, X. D. Ren et al., Novel morphologies and growth mechanism of cr2o3 oxide formed on stainless steel surface via nd : Yag pulsed laser oxidation, Journal of Alloys and Compounds, vol.635, p.101106, 2015.

M. Wautelet, Laser-assisted reaction of metals with oxygen, Applied Physics a-Materials Science & Processing, vol.50, issue.2, p.131139, 1990.

S. Forget, Optique des lasers et faisceaux gaussiens. Laboratoire de Physique des Lasers

H. Hocquaux, Caractérisation des surfaces par SDL, 1997.

R. Muñiz, L. Lobo, T. Kerry, C. A. Sharrad, and R. Pereiro, Depth prole analysis of rare earth elements in corroded steels by pulsed glow dischargetime of ight mass spectrometry, Journal of Analytical Atomic Spectrometry, vol.32, issue.7, p.13061311, 2017.

J. Carpentier, F. Serna, and J. Lagneau, Diraction des rayons x et catalyse, 2014.

J. Ruste, Microscopie électronique à balayage-Principe et équipement, 2013.

M. Karlík and B. Jourey, Étude des métaux par microscopie électronique en transmission (MET)-Microscope, échantillons et diraction, Editions TI| Techniques de l'Ingénieur, 2008.

J. P. Pérez and M. Françon, Optique : fondements et applications avec 200 exercices et problèmes résolus/J.-P. Pérez ; préf. de Maurice Françon, 2000.

M. Young, Optics and lasers : including bers and optical waveguides, vol.5, 2000.

U. Ehrnstén, Corrosion and stress corrosion cracking of austenitic stainless steels

, Comprehensive Nuclear Materials, p.93104, 2012.

K. Ishida, Y. Wada, M. Tachibana, H. Hosokawa, and M. Nakamura, Eects of noble metal deposition upon corrosion behavior of structural materials in nuclear power plants, (i), Journal of Nuclear Science and Technology, vol.42, issue.9, p.799808, 2005.

W. N. Liu, X. Sun, E. Stephens, and M. Khaleel, Eect of substrate thickness on oxide scale spallation for solid oxide fuel cells, Corrosion Science, vol.53, issue.7, pp.2406-2412, 2011.

. Sk-mitra, S. K. Roy, and . Bose, Inuence of supercial coating of ceo 2 on the oxidation behavior of aisi 304 stainless steel, Oxidation of metals, vol.39, issue.3-4, pp.221-229, 1993.

A. Paúl and J. A. Odriozola, Development of a modied cvd coating process for the enhancement of the high temperature oxidation resistance of cr2o3 and al2o3 forming alloys, Materials Science and Engineering : A, vol.300, issue.1, p.2233, 2001.

F. Pan, J. Zhang, H. Chen, Y. Su, C. Kuo et al., Eects of rare earth metals on steel microstructures, Materials, vol.9, issue.6, p.417, 2016.

J. A. Bearden, X-ray wavelengths, Rev. Mod. Phys, vol.39, p.78124, 1967.

S. E. Ziemniak and R. A. Castelli, Immiscibility in the fe3o4fecr2o4 spinel binary, Journal of Physics and Chemistry of Solids, vol.64, issue.11, p.20812091, 2003.

B. Salle, Etude de l'interaction laser-materiau appliquee a l'analyse elementaire des solides, 1999.

L. F. Da, A. Silva, R. D. Öchsner, and . Adams, Handbook of adhesion technology, 2011.

. Bibliographie,

A. Galerie, F. Toscan, E. N'dah, K. Przybylski, Y. Wouters et al., Measuring adhesion of cr2o3 and al2o3 scales on fe-based alloys, Materials Science Forum, vol.461, p.631638, 2004.

S. Chandra-ambhorn, F. Roussel-dherbey, F. Toscan, Y. Wouters, A. Galerie et al., Determination of mechanical adhesion energy of thermal oxide scales on aisi 430ti alloy using tensile test, Materials science and technology, vol.23, issue.4, p.497501, 2007.

J. Mougin, M. Dupeux, L. Antoni, and A. Galerie, Adhesion of thermal oxide scales grown on ferritic stainless steels measured using the inverted blister test, Materials Science and Engineering : A, vol.359, issue.1, p.4451, 2003.

D. P. Moon and M. J. Bennett, The eects of reactive element oxide coatings on the oxidation behaviour of metals and alloys at high temperatures, Materials Science Forum, vol.43, p.269298, 1989.

Y. Huang, Y. Shibata, and M. Morita, Micro laser ablation-inductively coupled plasma mass spectrometry. 1. instrumentation and performance of micro laser ablation system, Analytical Chemistry, vol.65, issue.21, p.29993003, 1993.

V. Hola, M. Konecna, P. Mikuska, V. Kaiser, and J. Kanicky, Inuence of physical properties and chemical composition of sample on formation of aerosol particles generated by nanosecond laser ablation at 213nm, Spectrochimica Acta Part B : Atomic Spectroscopy, vol.65, issue.1, p.5160, 2010.

M. Ullmann, S. K. Friedlander, and A. Schmidt-ott, Nanoparticle formation by laser ablation, Journal of Nanoparticle Research, vol.4, issue.6, p.499509, 2002.

F. A. Barreda, Étude expérimentale et modélisation des potentialités de la technique libs (ablation laser couplée à la spectroscopie) pour l'analyse directe des solides, 2010.

J. J. Gonzalez, C. Liu, S. Wen, X. Mao, and R. E. Russo, Metal particles produced by laser ablation for icpms measurements, Talanta, vol.73, issue.3, p.567576, 2007.

H. Kuhn, J. Koch, R. Hergenröder, K. Niemax, M. Kalberer et al., Evaluation of dierent techniques for particle size distribution measurements on laser-generated aerosols, Journal of Analytical Atomic Spectrometry, vol.20, issue.9, pp.894-900, 2005.

C. Liu, A study of particle generation during laser ablation with applications, 2005.

M. T. Swihart, Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science, vol.8, pp.127-133, 2003.

M. O. Bomati, M. P. Morales, C. J. Serna, and S. Veintemillas-verdaguer, Magnetic nanoparticles prepared by laser pyrolysis, IEEE transactions on magnetics, vol.38, issue.5, p.26162618, 2002.

R. Hergenröder, Laser-generated aerosols in laser ablation for inductively coupled plasma spectrometry, Spectrochimica Acta Part B : Atomic Spectroscopy, vol.61, issue.3, pp.284-300, 2006.

D. Autrique, G. Clair, D. L'hermite, V. Alexiades, A. Bogaerts et al., The role of mass removal mechanisms in the onset of ns-laser induced plasma formation, Journal of Applied Physics, vol.114, issue.2, p.23301, 2013.

N. M. Bulgakova and A. V. Bulgakov, Pulsed laser ablation of solids : transition from normal vaporization to phase explosion, Applied Physics A, vol.73, issue.2, 2001.

J. Koch, H. Lindner, A. Von-bohlen, R. Hergenröder, and K. Niemax, Elemental fractionation of dielectric aerosols produced by near-infrared femtosecond laser ablation of silicate glasses, Journal of Analytical Atomic Spectrometry, vol.20, issue.9, p.901906, 2005.

W. Pacquentin, N. Caron, and R. Oltra, Nanosecond laser surface modication of aisi 304l stainless steel : Inuence the beam overlap on pitting corrosion resistance, Applied Surface Science, vol.288, p.3439, 2014.

H. Pommier, E. Busso, T. F. Morgeneyer, and A. Pineau, Intergranular damage during stress relaxation in aisi 316l-type austenitic stainless steels : Eect of carbon, nitrogen and phosphorus contents, Acta Materialia, vol.103, p.893908, 2016.

S. Pommier, A study of the relationship between variable level fatigue crack growth and the cyclic constitutive behaviour of steel, International Journal of Fatigue, vol.23, p.111118, 2001.

S. Pommier, Fatigue crack propagation and history eects induced by plasticity, Advanced Engineering Materials, vol.11, issue.9, p.717722, 2009.

H. Okada, Y. Hosoi, and S. Abe, Formation of cracks in austenitic stainless steels cathodically charged with hydrogen, Corrosion, vol.26, issue.7, p.283286, 1970.

M. Stafe, C. Negutu, and I. M. Popescu, Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime, Applied surface science, vol.253, issue.15, p.63536358, 2007.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diaction of Light, 1959.

H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 1959.

C. Bonacina, G. Comini, A. Fasano, and M. Primicerio, Numerical solution of phase-change problems, International Journal of Heat and Mass Transfer, vol.16, issue.10, p.18251832, 1973.

M. Dal, Modélisation magnéto-thermo-hydraulique d'une pièce soumise à un procédé de soudage tig et estimation d'évolution d'un front de fusion, 2011.

S. Morville, Modélisation multiphysique du procédé de Fabrication Directe par Projection Laser en vue d'améliorer l'état de surface nal, 2012.

M. Dal and R. Fabbro, An overview of the state of art in laser welding simulation, Optics & Laser Technology, vol.78, p.214, 2016.

. Bibliographie,

H. Ki, J. Mazumder, and P. S. Mohanty, Modeling of laser keyhole welding : Part i. mathematical modeling, numerical methodology, role of recoil pressure, multiple reections, and free surface evolution, vol.33, p.18171830, 2002.

M. Courtois, M. Carin, P. Le-masson, S. Gaied, and M. Balabane, A new approach to compute multi-reections of laser beam in a keyhole for heat transfer and uid ow modelling in laser welding, Journal of Physics D : Applied Physics, vol.46, issue.50, p.505305, 2013.

J. Girardot, Interaction laser/matière en régime de perçage par percussionanalyse expérimentale, modélisation et simulation numérique, Ecole nationale supérieure d'arts et métiers-ENSAM, 2014.

K. Hirano, R. Fabbro, and M. Muller, Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure, Journal of Physics D : Applied Physics, vol.44, issue.43, p.435402, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00915592

M. Stafe, Theoretical photo-thermo-hydrodynamic approach to the laser ablation of metals, Journal of Applied Physics, vol.112, issue.12, p.123112, 2012.

K. Antony and N. Arivazhagan, Studies on energy penetration and marangoni effect during laser melting process, Journal of Engineering Science and Technology, vol.10, issue.4, p.509525, 2015.

T. Sahoo, P. Debroy, and M. J. Mcnallan, Surface tension of binary metal surface active solute systems under conditions relevant to welding metallurgy

, Metallurgical Transactions B, vol.19, issue.3, p.483491, 1988.

K. C. Mills, Recommended values of thermophysical properties for selected commercial alloys, 2002.

C. W. Hirt, A. A. Amsden, and J. L. Cook, An arbitrary lagrangianeulerian computing method for all ow speeds, Journal of Computational Physics, vol.135, issue.2, pp.203-216, 1997.

L. Gouton, Formation par traitement de surface par laser d'une couche de chromine sur un alliage base nickel pour limiter le relâchement des cations en circuit primaire, 2015.

L. Wang and S. Felicelli, Analysis of thermal phenomena in lens— deposition, Materials Science and Engineering : A, pp.625-631, 2006.

A. Semerok, S. V. Fomichev, J. Weulersse, F. Brygo, P. Thro et al., Heating and ablation of tokamak graphite by pulsed nanosecond ndyag lasers, Journal of Applied Physics, vol.101, issue.8, p.84916, 2007.

P. Guiraldenq, Diusion dans les métaux, p.551, 1994.

J. Philibert, Diusion et transport de matière dans les solide. Les éditions de physique, vol.127, 1985.

A. D. Pasternak and D. R. Olander, Diusion in liquid metals, AIChE Journal, vol.13, issue.6, p.10521057, 1967.

L. Kjellqvist, M. Selleby, and B. Sundman, Thermodynamic modelling of the cr-fe-ni-o system, Calphad, vol.32, issue.3, p.577592, 2008.

B. Sundman, An assessment of the fe-o system, Journal of Phase Equilibria, vol.12, issue.2, p.127140, 1991.

L. Blaney, Magnetite (Fe 3 O 4 ) : Properties, synthesis, and applications, 2007.

M. Torres and R. Colás, A model for heat conduction through the oxide layer of steel during hot rolling, Journal of Materials Processing Technology, vol.105, issue.3, pp.258-263, 2000.

G. V. Samsonov, The Oxide Handbook, 2013.

L. D. Landau and E. M. Lifshitz, Electrodynamique des milieux continus, 1969.

M. N. Polyanskiy, Refractive index database