D. V. Robin, E. Den-hertog, M. Claudon, J. Hocevar, and M. , ? Dislocation-free axial InAs-on-GaAs nanowires on silicon Beznasyuk, vol.28, p.365602, 2017.

, ? Full interface characterization in highly-mismatched dislocation-free axial nanowire heterostructures

P. Daria-v-beznasyuk, M. Stepanov, J. Verheijen, and . Rouvière,

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Reviews of modern physics, vol.74, issue.1, p.145, 2002.

E. Knill, R. Laflamme, and G. Milburn, A scheme for efficient quantum computation with linear optics, nature, vol.409, issue.6816, pp.46-52, 2001.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen et al., Single quantum dots emit single photons at a time: Antibunching experiments, Applied Physics Letters, vol.78, issue.17, pp.2476-2478, 2001.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Triggered single photons from a quantum dot, Physical Review Letters, vol.86, issue.8, p.1502, 2001.

P. Michler, C. Kiraz, . Becher, P. M. Schoenfeld, L. Petroff et al., A quantum dot single-photon turnstile device, science, vol.290, issue.5500, pp.2282-2285, 2000.

K. Høeg-madsen, S. Ates, J. Liu, A. Javadi, . Sm-albrecht et al., Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity, Physical Review B, vol.90, issue.15, p.155303, 2014.

J. M. Gérard, . Sermage, . Gayral, . Legrand, V. Costard et al., Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity, Physical review letters, vol.81, issue.5, p.1110, 1998.

C. Santori, D. Fattal, J. Vuckovic, S. Glenn, Y. Solomon et al., Single-photon generation with inas quantum dots, New Journal of Physics, vol.6, issue.1, p.89, 2004.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou et al., A highly REFERENCES efficient single-photon source based on a quantum dot in a photonic nanowire, Nature Photonics, vol.4, issue.3, pp.174-177, 2010.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida et al., Near-optimal single-photon sources in the solid state, Nature Photonics, vol.10, issue.5, pp.340-345, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386640

V. Magnus-t-borgström, E. Zwiller, A. Müller, and . Imamoglu, Optically bright quantum dots in single nanowires, Nano letters, vol.5, issue.7, pp.1439-1443, 2005.

M. Heiss, A. Fontana, . Gustafsson, C. Wüst, . Magen et al., Self-assembled quantum dots in a nanowire system for quantum photonics, Nature materials, vol.12, pp.439-444, 2013.

G. Michael-e-reimer, N. Bulgarini, M. Akopian, M. B. Hocevar, M. A. Bavinck et al., Bright single-photon sources in bottom-up tailored nanowires, Nature communications, vol.3, p.737, 2012.

F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires, Physical Review B, vol.74, issue.12, p.121302, 2006.

J. Tatebayashi, Y. Ota, S. Ishida, M. Nishioka, S. Iwamoto et al., Optical properties of site-controlled ingaas quantum dots embedded in gaas nanowires by selective metalorganic chemical vapor deposition, Japanese Journal of Applied Physics, vol.51, issue.11S, pp.11-13, 2012.

. Vn-kats, A. V. Vp-kochereshko, . Platonov, . Tv-chizhova, . Ge-cirlin et al., Optical study of gaas quantum dots embedded into algaas nanowires, Semiconductor Science and Technology, vol.27, issue.1, p.15009, 2011.

D. Barettin, A. V. Platonov, A. Pecchia, N. Vladimir, G. E. Kats et al., Model of a gaas quantum dot embedded in a polymorph algaas nanowire, IEEE Journal of Selected Topics in Quantum Electronics, vol.19, issue.5, pp.1-9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00785275

J. Wu, A. Ramsay, A. Sanchez, Y. Zhang, D. Kim et al., Defect-free self-catalyzed gaas/gaasp nanowire quantum dots grown on silicon substrate, Nano letters, vol.16, issue.1, pp.504-511, 2015.

N. Maarten-hm-van-weert, U. Akopian, . Perinetti, . Maarten-p-van-kouwen, E. Rienk et al., Selective excitation and detection of spin states in a single nanowire quantum dot, Nano letters, vol.9, issue.5, pp.1989-1993, 2009.

A. Fuhrer, L. E. Fröberg, J. N. Pedersen, M. W. Larsson, and A. Wacker, Mats-Erik Pistol, and Lars Samuelson. Few electron double quantum dots in inas/inp nanowire heterostructures, Nano letters, vol.7, issue.2, pp.243-246, 2007.

R. Anufriev, H. Chauvin, . Khmissi, J. Naji, J. Barakat et al., Polarization properties of single and ensembles of inas/inp quantum rod nanowires emitting in the telecom wavelengths, Journal of Applied Physics, vol.113, issue.19, p.193101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01735112

M. Hocevar, G. Immink, M. Verheijen, N. Akopian, V. Zwiller et al., Growth and optical properties of axial hybrid iii-v/si nanowires, 2012.

T. Aichele, A. Tribu, G. Sallen, J. Bocquel, E. Bellet-amalric et al., Cdse quantum dots in znse nanowires as efficient source for single photons up to 220k, Journal of Crystal Growth, vol.311, issue.7, pp.2123-2127, 2009.

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin et al., Evidence for quantum-confined stark effect in gan/aln quantum dots in nanowires, Physical Review B, vol.80, issue.12, p.121305, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00999581

N. Panev, N. Ann-i-persson, L. Sköld, and . Samuelson, Sharp exciton emission from single inas quantum dots in gaas nanowires, Applied Physics Letters, vol.83, issue.11, pp.2238-2240, 2003.

R. S. Wagner and . Ellis, Vapor-liquid-solid mechanism of single crystal growth, Applied Physics Letters, vol.4, issue.5, pp.89-90, 1964.

M. Walter, T. Weber, and . Mikolajick, Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors, Reports on Progress in Physics, vol.80, issue.6, p.66502, 2017.

Y. Li, F. Qian, J. Xiang, and C. Lieber, Nanowire electronic and optoelectronic devices, Materials today, vol.9, issue.10, pp.18-27, 2006.

F. Patolsky, G. Zheng, and C. Lieber, Nanowire-based biosensors, 2006.

X. Bozhi-tian, . Zheng, J. Thomas, Y. Kempa, N. Fang et al., Coaxial silicon nanowires as solar cells and nanoelectronic power sources. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from, World Scientific, pp.58-62, 2011.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg et al., Inp nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit, Science, vol.339, issue.6123, pp.1057-1060, 2013.

J. Peter, P. Pauzauskie, and . Yang, Nanowire photonics. Materials Today, vol.9, issue.10, pp.36-45, 2006.

O. Caballero, -. , and M. Martín-gonzález, Thermoelectric nanowires: A brief prospective, Scripta materialia, vol.111, pp.54-57, 2016.

J. Xiang, A. Vidan, M. Tinkham, M. Robert, C. Westervelt et al.,

, Ge/si nanowire mesoscopic josephson junctions, Nature nanotechnology, vol.1, issue.3, pp.208-213, 2006.

S. Assali, . Zardo, . Plissard, . Kriegner, . Ma-verheijen et al., Direct band gap wurtzite gallium phosphide nanowires, Nano letters, vol.13, issue.4, pp.1559-1563, 2013.

E. Daria-v-beznasyuk and . Robin, Martien Den Hertog, Julien Claudon, and Moïra Hocevar. Dislocation-free axial inas-on-gaas nanowires on silicon, 2017.

U. P. Gomes, . Ercolani, . Zannier, L. Beltram, and . Sorba, Controlling the diameter distribution and density of inas nanowires grown by au-assisted methods. Semiconductor Science and Technology, vol.30, p.115012, 2015.

B. Predel, Au-ga (gold-gallium), pp.1-5, 1991.

M. Koto, Thermodynamics and kinetics of the growth mechanism of vapor-liquid-solid grown nanowires, Journal of Crystal Growth, vol.424, pp.49-54, 2015.

D. Jacobsson, F. Panciera, J. Tersoff, C. Mark, S. Reuter et al., Interface dynamics and crystal phase switching in gaas nanowires, Nature, vol.531, issue.7594, pp.317-322, 2016.

V. G. Dubrovskii and . Sibirev, General form of the dependences of nanowire growth rate on the nanowire radius, Journal of crystal growth, vol.304, issue.2, pp.504-513, 2007.

S. Bhunia, . Kawamura, Y. Fujikawa, and . Watanabe, Systematic investigation of growth of inp nanowires by metalorganic vapor-phase epitaxy, Physica E: Low-dimensional Systems and Nanostructures, vol.24, issue.1, pp.138-142, 2004.

M. I. Mcmahon, Observation of a wurtzite form of gallium arsenide, Physical review letters, vol.95, issue.21, p.215505, 2005.

H. Shtrikman, R. Popovitz-biro, A. Kretinin, and M. Heiblum, Stackingfaults-free zinc blende gaas nanowires, Nano letters, vol.9, issue.1, pp.215-219, 2008.

S. Conesa-boj, D. Kriegner, X. Han, S. Plissard, X. Wallart et al., Anna Fontcuberta i Morral, and Philippe Caroff. Gold-free ternary iii-v antimonide nanowire arrays on silicon: twin-free down to the first bilayer, Nano letters, vol.14, issue.1, pp.326-332, 2013.

P. Parkinson, J. Hannah, Q. Joyce, . Gao, X. Hark-hoe-tan et al., Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy, Nano letters, vol.9, issue.9, pp.3349-3353, 2009.

C. Thelander, P. Caroff, S. Plissard, W. Anil, K. Dey et al., Effects of crystal phase mixing on the electrical properties of inas nanowires, Nano letters, vol.11, issue.6, pp.2424-2429, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00603006

M. Murayama and . Nakayama, Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces, Physical Review B, vol.49, issue.7, p.4710, 1994.

N. Akopian, L. Patriarche, J. Liu, V. Harmand, and . Zwiller, Crystal phase quantum dots, Nano letters, vol.10, issue.4, pp.1198-1201, 2010.

F. Glas, J. Harmand, and G. Patriarche, Why does wurtzite form in nanowires of iii-v zinc blende semiconductors? Physical review letters, vol.99, p.146101, 2007.

, Dimo Kashchiev. Nucleation. Butterworth-Heinemann, 2000.

T. Rieger, . Mihail-ion, T. Lepsa, D. Schäpers, and . Grützmacher, Controlled wurtzite inclusions in self-catalyzed zinc blende iii-v semiconductor nanowires, Journal of crystal growth, vol.378, pp.506-510, 2013.

. Abdul-mazid-munshi, L. Dasa, J. Dheeraj, A. T. Todorovic, H. Van-helvoort et al., Crystal phase engineering in self-catalyzed gaas and gaas/gaassb nanowires grown on si (111), Journal of Crystal Growth, vol.372, pp.163-169, 2013.

B. J. O'dowd, . Wojtowicz, . Rouvimov, . Liu, . Pimpinella et al., Effect of catalyst diameter on vapour-liquid-solid growth of gaas nanowires, Journal of Applied Physics, vol.116, issue.6, p.63509, 2014.

P. Krogstrup, S. Curiotto, E. Johnson, M. Aagesen, J. Nygård et al., Impact of the liquid phase shape on the structure of iii-v nanowires, Physical review letters, vol.106, issue.12, p.125505, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00581241

X. Yu, H. Wang, J. Lu, J. Zhao, J. Misuraca et al., Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed gaas nanowires, Nano letters, vol.12, issue.10, pp.5436-5442, 2012.

Y. Wu, R. Fan, and P. Yang, Block-by-block growth of single-crystalline si/sige superlattice nanowires, Nano Letters, vol.2, issue.2, pp.83-86, 2002.

C. Svensson, W. Seifert, . Mw-larsson, . Lr-wallenberg, . Stangl et al., Epitaxially grown gap/gaas1-xpx/gap double heterostructure nanowires for optical applications, Nanotechnology, vol.16, issue.6, p.936, 2005.

J. B. Magnus-w-larsson, M. Wagner, P. Wallin, L. E. Håkansson, L. Fröberg et al., Strain mapping in free-standing heterostructured wurtzite inas/inp nanowires, Nanotechnology, vol.18, issue.1, p.15504, 2006.

A. Kimberly, J. Dick, M. Bolinsson, J. Borg, and . Johansson, Controlling the abruptness of axial heterojunctions in iii-v nanowires: beyond the reservoir effect, Nano letters, vol.12, issue.6, pp.3200-3206, 2012.

B. M. Borg, M. E. Messing, P. Caroff, K. A. Dick, K. Deppert et al., Movpe growth and structural charactrization of extremely latticemismatched inp-insb nanowire heterostructures, Indium Phosphide & Related Materials, 2009. IPRM'09. IEEE International Conference on, pp.249-252, 2009.

O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. Fontcuberta-i-morral, Impact of surfaces on the optical properties of gaas nanowires, Applied Physics Letters, vol.97, issue.20, p.201907, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00997210

X. Bozhi-tian, . Zheng, J. Thomas, Y. Kempa, N. Fang et al., Coaxial silicon nanowires as solar cells and nanoelectronic power sources, nature, vol.449, issue.7164, p.885, 2007.

S. Raychaudhuri and . Yu, Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.24, issue.4, pp.2053-2059, 2006.

D. Lev, E. M. Landau, and . Lifshitz, Theory of elasticity, Course of Theoretical Physics, vol.7, p.109, 1986.

D. Ercolani, F. Rossi, A. Li, S. Roddaro, V. Grillo et al., Inas/insb nanowire heterostructures grown by chemical beam epitaxy, Nanotechnology, vol.20, issue.50, p.505605, 2009.

C. María-de-la-mata, P. Magén, J. Caroff, and . Arbiol, Atomic scale strain relaxation in axial semiconductor iii-v nanowire heterostructures, Nano letters, vol.14, issue.11, pp.6614-6620, 2014.

C. Frigeri, D. Scarpellini, A. Fedorov, S. Bietti, C. Somaschini et al., Structure, interface abruptness and strain relaxation in self-assisted grown inas/gaas nanowires, Applied Surface Science, vol.395, pp.29-36, 2017.

. Ge-cirlin, . Vg-dubrovskii, . Ip-soshnikov, Y. B. Sibirev, A. D. Samsonenko et al., Critical diameters and temperature domains for mbe growth of iii-v nanowires on lattice mismatched substrates, physica status solidi (RRL)-Rapid Research Letters, vol.3, issue.4, pp.112-114, 2009.

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, Iii-v nanowires on si substrate: selective-area growth and device applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.4, pp.1112-1129, 2011.

S. Kimberly-a-dick, . Kodambaka, C. Mark, K. Reuter, L. Deppert et al., The morphology of axial and branched nanowire heterostructures, Nano letters, vol.7, issue.6, pp.1817-1822, 2007.

M. Paladugu, J. Zou, Y. Guo, G. J. Auchterlonie, J. Hannah et al., Novel growth phenomena observed in axial inas/gaas nanowire heterostructures, Small, vol.3, issue.11, pp.1873-1877, 2007.

M. Paladugu, J. Zou, Y. Guo, X. Zhang, Y. Kim et al., Nature of heterointerfaces in gaas/inas and inas/gaas axial nanowire heterostructures, Applied Physics Letters, vol.93, issue.10, p.101911, 2008.

J. Maria-e-messing, Z. Wong-leung, . Zanolli, J. Hannah, . Joyce et al., Growth of straight inas-on-gaas nanowire heterostructures, Nano letters, vol.11, issue.9, pp.3899-3905, 2011.

V. Zannier, D. Ercolani, U. P. Gomes, J. David, M. Gemmi et al., Catalyst composition tuning: the key for the growth of straight axial nanowire heterostructures with group iii interchange, Nano letters, vol.16, issue.11, pp.7183-7190, 2016.

V. Zannier, F. Rossi, G. Vladimir, D. Dubrovskii, S. Ercolani et al., Nanoparticle stability in axial inas-inp nanowire heterostructures with atomically sharp interfaces, Nano letters, vol.18, issue.1, pp.167-174, 2017.

N. Li, Y. Teh, U. Tan, and . Gösele, Transition region width of nanowire hetero-and pnjunctions grown using vapor-liquid-solid processes, Applied Physics A, vol.90, issue.4, pp.591-596, 2008.

G. Priante, Formation mechanisms of heterostructures and polytypes in iii-v nanowires. Thesis manuscript, 114 p, p.2016
URL : https://hal.archives-ouvertes.fr/tel-01449370

P. Trevor-e-clark, K. Nimmatoori, L. Lew, J. M. Pan, E. Redwing et al., Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid si/si1-x ge x heterostructure nanowires, Nano letters, vol.8, issue.4, pp.1246-1252, 2008.

G. Priante, G. Patriarche, F. Oehler, F. Glas, and J. Harmand, Abrupt gap/gaas interfaces in self-catalyzed nanowires, Nano letters, vol.15, issue.9, pp.6036-6041, 2015.

V. G. Dubrovskii and . Sibirev, Factors influencing the interfacial abruptness in axial iii-v nanowire heterostructures, Crystal Growth & Design, vol.16, issue.4, pp.2019-2023, 2016.

D. Scarpellini, C. Somaschini, A. Fedorov, S. Bietti, C. Frigeri et al., Inas/gaas sharply defined axial heterostructures in self-assisted nanowires, Nano letters, vol.15, issue.6, pp.3677-3683, 2015.

J. Santino-d-carnevale, . Yang, J. Patrick, . Phillips, J. Michael et al., Three-dimensional gan/aln nanowire heterostructures by separating nucleation and growth processes, Nano letters, vol.11, issue.2, pp.866-871, 2011.

H. Huang, X. Ren, X. Ye, J. Guo, Q. Wang et al., Control of the crystal structure of inas nanowires by tuning contributions of adatom diffusion, Nanotechnology, vol.21, issue.47, p.475602, 2010.

J. Hannah-j-joyce, Q. Wong-leung, . Gao, C. H-hoe-tan, and . Jagadish, Phase perfection in zinc blende and wurtzite iii-v nanowires using basic growth parameters, Nano letters, vol.10, issue.3, pp.908-915, 2010.

H. Freller and . Günther, Three-temperature method as an origin of molecular beam epitaxy, Thin Solid Films, vol.88, issue.4, pp.291-307, 1982.

J. R. Arthur and . Lepore, Gaas, gap, and gaas x p 1-x epitaxial films grown by molecular beam deposition, Journal of Vacuum Science and Technology, vol.6, issue.4, pp.545-548, 1969.

A. Y. Cho, Epitaxy by periodic annealing, Surface Science, vol.17, issue.2, pp.494-503, 1969.

E. John, T. Davey, and . Pankey, Epitaxial gaas films deposited by vacuum evaporation, Journal of Applied Physics, vol.39, issue.4, pp.1941-1948, 1968.

P. Mccray, Mbe deserves a place in the history books, Nature nanotechnology, vol.2, issue.5, p.259, 2007.

A. Y. Cho, Growth of iii-v semiconductors by molecular beam epitaxy and their properties, Thin Solid Films, vol.100, issue.4, pp.291-317, 1983.

, Scanning electron microscopy (sem/eds)

M. J. Hÿtch, R. Snoeck, and . Kilaas, Quantitative measurement of displacement and strain fields from hrem micrographs, Ultramicroscopy, vol.74, issue.3, pp.131-146, 1998.

E. Jean-luc-rouviere and . Sarigiannidou, Theoretical discussions on the geometrical phase analysis, Ultramicroscopy, vol.106, issue.1, pp.1-17, 2005.

M. Mcclish, R. Farrell, K. Vanderpuye, and K. Shah, A reexamination of silicon avalanche photodiode gain and quantum efficiency, Nuclear Science Symposium Conference Record, vol.5, pp.2959-2962, 2005.

Y. Kang, H. Liu, M. Morse, M. J. Paniccia, M. Zadka et al., Monolithic germanium/silicon avalanche photodiodes with 340 ghz gain-bandwidth product, Nature photonics, vol.3, issue.1, p.59, 2009.

O. Hayden, R. Agarwal, and C. Lieber, Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection, Nature materials, vol.5, issue.5, p.352, 2006.

K. Hillerich, A. Kimberly, C. Dick, . Wen, C. Mark et al., Strategies to control morphology in hybrid group iii-v/group iv heterostructure nanowires, Nano letters, vol.13, issue.3, pp.903-908, 2013.

S. Conesa-boj, S. Dunand, E. Russo-averchi, M. Heiss, D. Ruffer et al., Christophe Ballif, and Anna Fontcuberta i Morral. Hybrid axial and radial si-gaas heterostructures in nanowires, Nanoscale, vol.5, issue.20, pp.9633-9639, 2013.

J. B. Hannon, . Kodambaka, R. M. Ross, and . Tromp, The influence of the surface migration of gold on the growth of silicon nanowires, nature, vol.440, issue.7080, p.69, 2006.

L. Schubert, . Werner, . Zakharov, F. M. Gerth, . Kolb et al., Silicon nanowhiskers grown on< 111> si substrates by molecular-beam epitaxy, Applied Physics Letters, vol.84, issue.24, pp.4968-4970, 2004.

J. Martien-i-den-hertog, F. Rouviere, . Dhalluin, J. Pierre, P. Desré et al., Control of gold surface diffusion on si nanowires, Nano letters, vol.8, issue.5, pp.1544-1550, 2008.

F. Dhalluin, J. Pierre, . Desre, . Martien-i-den, J. Hertog et al., Critical condition for growth of silicon nanowires, Journal of Applied Physics, vol.102, issue.9, p.94906, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00394770

F. Oehler, . Gentile, . Baron, . Hertog, P. Rouviere et al., The morphology of silicon nanowires grown in the presence of trimethylaluminium, Nanotechnology, vol.20, issue.24, p.245602, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00455406

F. Dhalluin, . Baron, . Ferret, . Salem, J. Gentile et al., Silicon nanowires: Diameter dependence of growth rate and delay in growth, Applied Physics Letters, vol.96, issue.13, p.133109, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00623435

C. Wen, K. Tersoff, . Hillerich, J. H. Mc-reuter, . Park et al., Periodically changing morphology of the growth interface in si, ge, and gap nanowires, Physical review letters, vol.107, issue.2, p.25503, 2011.

T. Kawashima, T. Mizutani, T. Nakagawa, H. Torii, T. Saitoh et al., Control of surface migration of gold particles on si nanowires, Nano letters, vol.8, issue.1, pp.362-368, 2008.

R. C. Henderson, Silicon cleaning with hydrogen peroxide solutions: A high energy electron diffraction and auger electron spectroscopy study, Journal of the Electrochemical Society, vol.119, issue.6, pp.772-775, 1972.

K. Miki, T. Sakamoto, and . Sakamoto, Surface preparation of si substrates for epitaxial growth, Surface science, vol.406, issue.1-3, pp.312-327, 1998.

P. Walker and . William-h-tarn, CRC handbook of metal etchants, 1990.

A. Christou, Z. Varmazis, and . Hatzopoulos, High mobility gaas/alas/(211) si structures grown by mbe, Journal of Crystal Growth, vol.81, issue.1-4, pp.226-230, 1987.

G. S. Higashi, Y. J. Becker, A. J. Chabal, and . Becker, Comparison of si (111) surfaces prepared using aqueous solutions of nh4f versus hf, Applied physics letters, vol.58, issue.15, pp.1656-1658, 1991.

M. Lublow, Combined afm and brewster-angle analysis of gradually etched ultrathin sio2-comparison with srpes results, Surface Science, vol.601, issue.7, pp.1693-1700, 2007.

M. Tchernycheva, J. C. Harmand, . Patriarche, G. E. Travers, and . Cirlin, Temperature conditions for gaas nanowire formation by au-assisted molecular beam epitaxy, Nanotechnology, vol.17, issue.16, p.4025, 2006.

. Vg-dubrovskii, . Sibirev, . Suris, J. C. Ge-cirlin, V. M. Harmand et al., Diffusioncontrolled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition, Surface science, vol.601, issue.18, pp.4395-4401, 2007.

X. Yu, L. Li, H. Wang, J. Xiao, C. Shen et al., Two-step fabrication of self-catalyzed ga-based semiconductor nanowires on si by molecular-beam epitaxy, Nanoscale, vol.8, issue.20, pp.10615-10621, 2016.

. Dk-biegelsen, A. J. Ponce, J. C. Smith, and . Tramontana, Initial stages of epitaxial growth of gaas on (100) silicon, Journal of applied physics, vol.61, issue.5, pp.1856-1859, 1987.

S. Breuer, . Hilse, . Trampert, H. Geelhaar, and . Riechert, Vapor-liquid-solid nucleation of gaas on si (111): Growth evolution from traces to nanowires, Physical Review B, vol.82, issue.7, p.75406, 2010.

F. M. Ross, M. C. Tersoff, and . Reuter, Sawtooth faceting in silicon nanowires, Physical review letters, vol.95, issue.14, p.146104, 2005.

L. Vincent, R. Boukhicha, C. Gardès, C. Renard, V. Yam et al., Faceting mechanisms of si nanowires and gold spreading, Journal of Materials Science, vol.47, issue.4, pp.1609-1613, 2012.

I. P. Soshnikov, G. E. Cirlin, A. A. Tonkikh, V. N. Nevedomski?-i, Y. B. Samsonenko et al., Electron diffraction on gaas nanowhiskers grown on si (100) and si (111) substrates by molecular-beam epitaxy, Physics of the Solid State, vol.49, issue.8, pp.1440-1445, 2007.

J. Soo-ghang-ihn, T. Song, D. Kim, T. Leem, S. Lee et al., Morphology-and orientation-controlled gallium arsenide nanowires on silicon substrates, Nano letters, vol.7, issue.1, pp.39-44, 2007.

J. H. Paek, . Nishiwaki, N. Yamaguchi, and . Sawaki, Mbe-vls growth of gaas nanowires on (111) si substrate, physica status solidi (c), vol.5, issue.9, pp.2740-2742, 2008.

M. A. Aarnoud-l-roest, O. Verheijen, S. Wunnicke, and . Serafin, Harry Wondergem, and Erik PAM Bakkers. Position-controlled epitaxial iii-v nanowires on silicon, Nanotechnology, vol.17, issue.11, p.271, 2006.

X. Bao, C. Soci, D. Susac, J. Bratvold, P. R. David et al., Heteroepitaxial growth of vertical gaas nanowires on si (111) substrates by metal-organic chemical vapor deposition, Nano letters, vol.8, issue.11, pp.3755-3760, 2008.

S. Breuer, Molecular beam epitaxy of gaas nanowires and their suitability for optoelectronic applications: Comparing au-and self-assisted growth methods. Doctoral dissertation, 2011.

J. C. Harmand, . Patriarche, . Péré-laperne, . Mn-merat-combes, F. Travers et al., Analysis of vapor-liquid-solid mechanism in au-assisted gaas nanowire growth, Applied Physics Letters, vol.87, issue.20, p.203101, 2005.

B. Ressel, . Prince, Y. Heun, and . Homma, Wetting of si surfaces by au-si liquid alloys, Journal of Applied Physics, vol.93, issue.7, pp.3886-3892, 2003.

S. Sakong, A. Yaojun, P. Du, and . Kratzer, Atomistic modeling of the au droplet-gaas interface for size-selective nanowire growth, Physical Review B, vol.88, issue.15, p.155309, 2013.

M. C. Plante and R. R. Lapierre, Control of gaas nanowire morphology and crystal structure, Nanotechnology, vol.19, issue.49, p.495603, 2008.

X. Li, . Guo, . Yin, . Shi, . Wen et al., Morphology and crystal structure control of gaas nanowires grown by au-assisted mbe with solid as4 source, Journal of Crystal Growth, vol.324, issue.1, pp.82-87, 2011.

Y. Nomura, . Morishita, Y. Goto, T. Katayama, and . Isu, Surface diffusion length of ga adatoms on (111) b surfaces during molecular beam epitaxy, Applied physics letters, vol.64, issue.9, pp.1123-1125, 1994.

M. W. Ann-i-persson, S. Larsson, J. Stenström, L. Ohlsson, . Samuelson et al., Solid-phase diffusion mechanism for gaas nanowire growth, Nature materials, vol.3, issue.10, pp.677-681, 2004.

Z. Zhang, Z. Lu, H. Xu, P. Chen, W. Lu et al., Structure and quality controlled growth of inas nanowires through catalyst engineering, Nano Research, vol.7, issue.11, pp.1640-1649, 2014.

. Dl-dheeraj, . Munshi, . Scheffler, H. Atj-van-helvoort, B. O. Weman et al., Controlling crystal phases in gaas nanowires grown by au-assisted molecular beam epitaxy, Nanotechnology, vol.24, issue.1, p.15601, 2012.

K. Hiruma, H. Murakoshi, M. Yazawa, and T. Katsuyama, Selforganized growth of gaasinas heterostructure nanocylinders by organometallic vapor phase epitaxy, Journal of Crystal Growth, vol.163, issue.3, pp.226-231, 1996.

Y. Xin, Z. Xia, L. Jun-shuai, L. Xiao-long, R. Xiao-min et al., Growth and characterization of straight inas/gaas nanowire heterostructures on si substrate, Chinese Physics B, vol.22, issue.7, p.76102, 2013.

M. Tchernycheva, L. Travers, G. Patriarche, F. Glas, J. Harmand et al., Au-assisted molecular beam epitaxy of inas nanowires: Growth and theoretical analysis, Journal of Applied Physics, vol.102, issue.9, p.94313, 2007.

F. Martelli, S. Rubini, F. Jabeen, L. Felisari, and V. Grillo, On the growth of inas nanowires by molecular beam epitaxy, Journal of Crystal Growth, vol.323, issue.1, pp.297-300, 2011.

I. Karen-l-kavanagh, M. Saveliev, G. Blumin, H. E. Swadener, and . Ruda, Faster radial strain relaxation in inas-gaas core-shell heterowires, Journal of Applied Physics, vol.111, issue.4, p.44301, 2012.

A. Kelrich, O. Sorias, Y. Calahorra, Y. Kauffmann, R. Gladstone et al., Inp nanoflag growth from a nanowire template by in situ catalyst manipulation, Nano letters, vol.16, issue.4, pp.2837-2844, 2016.

S. Hertenberger, . Rudolph, M. Becker, . Bichler, . Finley et al., Rate-limiting mechanisms in high-temperature growth of catalyst-free inas nanowires with large thermal stability, Nanotechnology, vol.23, issue.23, p.235602, 2012.

D. Xu-qiang-shen, T. Kishimoto, and . Nishinaga, Arsenic pressure dependence of surface diffusion of ga on nonplanar gaas substrates, Japanese journal of applied physics, vol.33, issue.1R, p.11, 1994.

S. Cahangirov and S. Ciraci, First-principles study of gaas nanowires, Physical Review B, vol.79, issue.16, p.165118, 2009.

J. C. González, . Malachias, J. D. Andrade, M. Sousa, A. D. Moreira et al., Direct evidences of enhanced ga interdiffusion in inas vertically aligned free-standing nanowires, Journal of nanoscience and nanotechnology, vol.9, issue.8, pp.4673-4678, 2009.

R. Andrade, . Malachias, . Kellerman, . Fr-negreiros, N. A. Santos et al., Experimental evidence and modified growth model of alloying in in x ga1-x as nanowires, The Journal of Physical Chemistry C, vol.116, issue.46, pp.24777-24783, 2012.

K. M. Daniel-m-lyons, . Ryan, A. Michael, J. D. Morris, and . Holmes, Tailoring the optical properties of silicon nanowire arrays through strain, Nano Letters, vol.2, issue.8, pp.811-816, 2002.

J. Eymery, F. Rieutord, V. Favre-nicolin, and O. Robach, Strain and shape of epitaxial inas/inp nanowire superlattice measured by grazing incidence x-ray techniques, Nano letters, vol.7, issue.9, pp.2596-2601, 2007.

M. Hanke, . Eisenschmidt, . Werner, . Zakharov, . Syrowatka et al., Elastic strain relaxation in axial si/ ge whisker heterostructures, Physical Review B, vol.75, issue.16, p.161303, 2007.

J. L. Taraci, . Hÿtch, . Clement, M. R. Peralta, J. Mccartney et al., Strain mapping in nanowires, Nanotechnology, vol.16, issue.10, p.2365, 2005.

X. Zhang, B. Haas, J. Rouvière, E. Robin, and B. Daudin, Growth mechanism of ingan nano-umbrellas, Nanotechnology, vol.27, issue.45, p.455603, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02016562

J. Grandal, M. Wu, X. Kong, M. Hanke, E. Dimakis et al., Plan-view transmission electron microscopy investigation of gaas/(in, ga) as core-shell nanowires, Applied Physics Letters, vol.105, issue.12, p.121602, 2014.

T. Kehagias, . Gp-dimitrakopulos, J. Becker, . Kioseoglou, . Furtmayr et al., Nanostructure and strain in ingan/gan superlattices grown in gan nanowires, Nanotechnology, vol.24, issue.43, p.435702, 2013.

J. Bartolomé, M. Hanke, D. Van-treeck, and A. Trampert, Strain driven shape evolution of stacked (in, ga) n quantum disks embedded in gan nanowires, Nano letters, vol.17, issue.8, pp.4654-4660, 2017.

M. De, L. Mata, C. Magen, J. Gazquez, M. Utama et al., Polarity assignment in znte, gaas, zno, and gan-aln nanowires from direct dumbbell analysis, Nano letters, vol.12, issue.5, pp.2579-2586, 2012.

P. Caroff, J. B. Wagner, K. A. Dick, H. A. Nilsson, M. Jeppsson et al., Highquality inas/insb nanowire heterostructures grown by metal-organic vapor-phase epitaxy, Small, vol.4, issue.7, pp.878-882, 2008.

L. Lugani, D. Ercolani, F. Rossi, G. Salviati, F. Beltram et al., Faceting of inas-insb heterostructured nanowires, Crystal Growth & Design, vol.10, issue.9, pp.4038-4042, 2010.

A. Kimberly, P. Dick, J. Caroff, M. E. Bolinsson, J. Messing et al., Control of iii-v nanowire crystal structure by growth parameter tuning, Semiconductor Science and Technology, vol.25, issue.2, p.24009, 2010.

M. C. Plante and R. R. Lapierre, Growth mechanisms of gaas nanowires by gas source molecular beam epitaxy, Journal of crystal growth, vol.286, issue.2, pp.394-399, 2006.

. Josef-a-czaban, R. David-a-thompson, and . Lapierre, Gaas core-shell nanowires for photovoltaic applications, Nano letters, vol.9, issue.1, pp.148-154, 2008.

J. Chung, G. Lian, and L. Rabenberg, Practical and reproducible mapping of strains in si devices using geometric phase analysis of annular dark-field images from scanning transmission electron microscopy, IEEE Electron Device Letters, vol.31, issue.8, pp.854-856, 2010.

F. Oehler, . Gentile, . Baron, . Ferret, J. M-den-hertog et al., The importance of the radial growth in the faceting of silicon nanowires, Nano letters, vol.10, issue.7, pp.2335-2341, 2010.

Y. Siew-li-tan, . Genuist, . Martien-i-den, E. Hertog, H. Bellet-amalric et al., Highly uniform zinc blende gaas nanowires on si (111) using a controlled chemical oxide template, Nanotechnology, vol.28, issue.25, p.255602, 2017.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil et al., Nextnano: general purpose 3-d simulations, IEEE Transactions on Electron Devices, vol.54, issue.9, pp.2137-2142, 2007.

S. Q. Wang, First-principles study on elastic properties and phase stability of iii-v compounds. physica status solidi (b), vol.240, pp.45-54, 2003.