?. E. Vianello, T. Werner, A. Grossi, E. Nowak, B. De et al., Bioinspired Programming of Resistive Memory Devices for Implementing Spiking Neural Networks, Proc. of GLSVLSI, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01839842

?. E. Vianello, T. Werner, G. Piccolboni, D. Garbin, O. Bichler et al., Binary OxRAM/CBRAM Memories for Efficient Implementations of Embedded Neuromorphic Circuits, Neuro-inspired Computing Using Resistive Synaptic Devices, pp.253-269, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01791253

?. T. Werner, E. Vianello, O. Bichler, A. Grossi, E. Nowak et al., Experimental Demonstration of Short and Long Term Synaptic Plasticity Using OxRAM Multi k-bit Arrays for Reliable Detection in Highly Noisy Input Data, Proc. of IEEE IEDM, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01839875

?. T. Werner, E. Vianello, O. Bichler, D. Garbin, D. Cattaert et al., Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting, Frontiers in Neuroscience, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01846860

?. T. Werner, E. Vianello, O. Bichler, B. Yvert, B. De et al., Exploitation of RRAM variability to improve on-line unsupervised learning in small-scale Spiking Neural Networks, Proc. of SSDM, 2016.

?. G. Piccolboni, G. Molas, D. Garbin, T. Werner, E. Vianello et al.,

. Perniola, Investigation of variability in Vertical Resistive RAM (VRRAM): Physical Model, Proc. of SSDM, 2016.

?. T. Werner, D. Garbin, E. Vianello, O. Bichler, D. Cattaert et al., Real-time decoding of brain activity by embedded Spiking Neural Networks using OxRAM
URL : https://hal.archives-ouvertes.fr/cea-01817861

D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A. Lamantia et al.,

G. Q. Bi and M. M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.18, pp.10464-72, 1998.
DOI : 10.1523/jneurosci.18-24-10464.1998

URL : http://www.jneurosci.org/content/jneuro/18/24/10464.full.pdf

L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. Mukand, M. Saleh et al., Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature, vol.442, pp.164-71, 2006.

L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm, Nature, vol.485, pp.372-377, 2012.
DOI : 10.1038/nature11076

URL : http://mediatum.ub.tum.de/doc/1285796/document.pdf

H. P. Wong and S. Salahuddin, Memory leads the way to better computing, Nature Nanotechnology, vol.10, pp.191-194, 2015.
DOI : 10.1038/nnano.2015.29

URL : http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg et al., Phase Change Memory, Proceedings of the IEEE, vol.98, pp.2201-2227, 2010.

H. P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu et al.,

. Tsai, Metal?ÄìOxide RRAM, Proceedings of the IEEE, vol.100, pp.1951-1970, 2012.

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, vol.21, pp.2632-2663, 2009.
DOI : 10.1002/adma.200900375

R. L. Stamps, S. Breitkreutz, J. Åkerman, A. V. Chumak, Y. Otani et al.,

M. Thiele, S. A. Bowen, M. Majetich, I. L. Kläui, B. Prejbeanu et al., The 2014 Magnetism Roadmap, Journal of Physics D: Applied Physics, vol.47, issue.33, p.333001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01367598

J. Müller, P. Polakowski, S. Mueller, and T. Mikolajick, Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects, ECS Journal of Solid State Science and Technology, vol.4, issue.5, p.30, 2015.

J. Muller, Ferroelectric hafnium oxide : A CMOS compatible and highly scalable approach to future ferroelectric memories, Electron Devices Meeting (IEDM), 2013.
DOI : 10.1109/iedm.2013.6724605

S. Park, M. Yang, and H. Ju, A non-linear ReRAM cell with sub-1µA ultralow operating current for high density vertical resistive memory (VRRAM),". .. (IEDM), 2012 IEEE, pp.501-504, 2012.
DOI : 10.1109/iedm.2012.6479084

A. Chen, A review of emerging non-volatile memory (NVM) technologies and applications, Solid-State Electronics, vol.125, pp.25-38, 2016.

M. Suri, O. Bichler, D. Querlioz, B. Traoreãå, O. Cueto et al., Physical aspects of low power synapses based on phase change memory devices, Journal of Applied Physics, vol.112, issue.5, p.54904, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787372

O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. Desalvo et al., Visual Pattern Extraction Using Energy-Efficient ?Äú2-PCM Synapse?Äù Neuromorphic Architecture, IEEE Transactions on Electron Devices, vol.59, pp.2206-2214, 2012.
DOI : 10.1109/ted.2012.2197951

URL : https://hal.archives-ouvertes.fr/hal-00787385

Y. Wu, S. Yu, H. P. Wong, Y. Chen, H. Lee et al., AlOx-Based Resistive Switching Device with Gradual Resistance Modulation for Neuromorphic Device Application, 4th IEEE International Memory Workshop, vol.1, pp.1-4, 2012.
DOI : 10.1109/imw.2012.6213663

M. Suri, O. Bichler, D. Querlioz, G. Palma, E. Vianello et al., CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: Auditory (Cochlea) and visual (Retina) cognitive processing applications, 2012.
DOI : 10.1109/iedm.2012.6479017

URL : https://hal.archives-ouvertes.fr/hal-00803088

A. F. Vincent, J. Larroque, W. S. Zhao, N. B. Romdhane, O. Bichler et al., Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse, vol.1, pp.1074-1077, 2014.
DOI : 10.1109/iscas.2014.6865325

URL : https://hal.archives-ouvertes.fr/cea-01817867

A. Sengupta and K. Roy, Short-Term Plasticity and Long-Term Potentiation in Magnetic Tunnel Junctions: Towards Volatile Synapses, Physical Review Applied, vol.5, issue.2, 2016.
DOI : 10.1103/physrevapplied.5.024012

URL : https://link.aps.org/accepted/10.1103/PhysRevApplied.5.024012

L. T. Clark, R. Grondin, and S. K. Dey, Integrated Circuit Neural Networks Using Ferroelectric Analog Memory, IPCCC, pp.736-742, 1992.
DOI : 10.1109/pccc.1992.200514

Y. Kaneko and Y. Nishitani, Neural network based on a three-terminal ferroelectric memristor to enable on-chip pattern recognition, Symposium on, vol.99, pp.2012-2013, 2013.

S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli et al., Learning through ferroelectric domain dynamics in solid-state synapses, Nature Communications, vol.8, p.14736, 2017.
DOI : 10.1038/ncomms14736

URL : https://www.nature.com/articles/ncomms14736.pdf

D. Cattaert and A. E. Manira, Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish, The Journal of neuroscience, vol.19, issue.14, pp.6079-6089, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00330690

D. Henze, Z. Borhegyi, J. Csicsvari, K. D. Mamiya, G. Harris et al., Intracellular features predicted by extracellular recordings in the hippocampus in vivo, Journal of neurophysiology, vol.84, issue.1, pp.390-400, 2000.

M. V. Tsodyks and H. Markram, The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability, Proc. Natl. Acad. Sci. USA, vol.94, pp.719-723, 1997.
DOI : 10.1073/pnas.94.2.719

J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach et al., Real-time prediction of hand trajectory by ensembles of cortical neurons in primates, Nature, vol.408, pp.361-366, 2000.

P. J. Ifft, S. Shokur, Z. Li, M. Lebedev, and M. A. Nicolelis, A brain-machine interface enables bimanual arm movements in monkeys, Science translational medicine, vol.5, pp.210-154, 2013.
DOI : 10.1126/scitranslmed.3006159

URL : http://europepmc.org/articles/pmc3967722?pdf=render

M. E. Spira and A. Hai, Multi-electrode array technologies for neuroscience and cardiology, Nature nanotechnology, vol.8, pp.83-94, 2013.
DOI : 10.1038/nnano.2012.265

M. Yin, D. Borton, J. Komar, N. Agha, Y. Lu et al., Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior, Neuron, vol.84, pp.1170-82, 2014.
DOI : 10.1016/j.neuron.2014.11.010

URL : https://hal.archives-ouvertes.fr/hal-01214888

M. Abeles and M. G. , Multispike train analysis, Proceedings of the IEEE, vol.65, issue.5, 1977.
DOI : 10.1109/proc.1977.10559

J. Von-neumann, First Draft of a Report on the EDAVAC, vol.15, pp.1-10, 1945.

F. Walter, F. Röhrbein, and A. Knoll, Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks, Neural Networks, vol.72, pp.152-167, 2015.
DOI : 10.1016/j.neunet.2015.07.004

URL : http://mediatum.ub.tum.de/doc/1280489/document.pdf

.. B. Schwartz, Direct cortical representation of drawing, Science, vol.265, pp.540-542, 1994.
DOI : 10.1126/science.8036499

G. Buzsáki and A. Draguhn, Neuronal oscillations in cortical networks, Science, vol.304, pp.1926-1935, 2004.

Y. Sakurai, K. Song, S. Tachibana, and S. Takahashi, Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface, Frontiers in Systems Neuroscience, vol.8, p.11, 2014.
DOI : 10.3389/fnsys.2014.00011

URL : https://www.frontiersin.org/articles/10.3389/fnsys.2014.00011/pdf

B. Walmsley, F. Edwards, and D. Tracey, The probabilistic nature of synaptic transmission at a mammalian excitatory central synapse, J. Neurosci, vol.7, issue.4, pp.1037-1046, 1987.

A. Neishabouri and A. A. , Axonal Noise as a Source of Synaptic Variability, PLoS Computational Biology, vol.10, issue.5, 2014.
DOI : 10.1371/journal.pcbi.1003615

URL : https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003615&type=printable

L. L. Squire, Mechanisms of memory, Science, vol.232, 1983.

D. Purves and J. W. Lichtman, Elimination of synapses in the developing nervous system, Science, vol.210, pp.153-160, 1980.

C. W. Cotman and M. Nieto-sampedro, The cell biology of synaptic plasticity, Science, vol.225, pp.1287-1294, 1984.

W. G. Regehr, Short-Term Presynaptic Plasticity, pp.1-19, 2012.

A. Morrison, M. Diesmann, and W. Gerstner, Phenomenological models of synaptic plasticity based on spike timing, Biological Cybernetics, vol.98, issue.6, pp.459-478, 2008.

H. Markram, J. Lubke, M. Frotscher, B. Sakmann, J. Lu et al., Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science, vol.275, issue.5297, pp.213-215, 1997.

G. Le-masson, S. Renaud-le-masson, D. Debay, and T. Bal, Feedback inhibition controls spike transfer in hybrid thalamic circuits, Nature, vol.417, pp.854-862, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00124031

P. K. Stanton, LTD, LTP, and the sliding threshold for long-term synaptic plasticity, Hippocampus, vol.6, issue.1, pp.35-42, 1996.

S. Kellis, L. Sorensen, F. Darvas, C. Sayres, K. O. Neill et al., Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography, Clinical Neurophysiology, vol.127, issue.1, pp.591-601, 2016.

G. Buzsáki, C. Anastassiou, and C. Koch, The origin of extracellular fields and currentsEEG, ECoG, LFP and spikes, Nature reviews. Neuroscience, vol.13, pp.407-427, 2012.

G. Buzsáki, Large-scale recording of neuronal ensembles, Nature neuroscience, vol.7, pp.446-51, 2004.

A. G. Zippo, P. Romanelli, N. R. Torres-martinez, G. C. Caramenti, A. L. Benabid et al., A novel wireless recording and stimulating multichannel epicortical grid for supplementing or enhancing the sensory-motor functions in monkey (Macaca fascicularis), Frontiers in Systems Neuroscience, vol.9, pp.1-12, 2015.

A. Prinz, L. F. Abbott, and E. Marder, The dynamic clamp comes of age, Trends in neurosciences, vol.27, pp.218-242, 2004.

A. Cutrone, J. Valle, D. Santos, J. Badia, C. Filippeschi et al., A three-dimensional self-opening intraneural peripheral interface (SELINE), Journal of neural engineering, vol.12, issue.1, p.16016, 2015.

D. Hill, S. Mehta, and D. Kleinfeld, Quality metrics to accompany spike sorting of extracellular signals, The Journal of Neuroscience, vol.31, issue.24, pp.8699-8705, 2011.

R. Q. Quiroga, Spike sorting, Current biology : CB, vol.22, pp.45-51, 2012.

R. Bestel, A. W. Daus, and C. Thielemann, A novel automated spike sorting algorithm with adaptable feature extraction, Journal of neuroscience methods, vol.211, pp.168-78, 2012.

C. Pedreira, J. Martinez, M. J. Ison, and R. Quian-quiroga, How many neurons can we see with current spike sorting algorithms?, Journal of neuroscience methods, vol.211, pp.58-65, 2012.

M. Lewicki, A review of methods for spike sorting: the detection and classification of neural action potentials, Network: Computation in Neural Systems, vol.9, 1998.

J. M. Tanskanen, F. E. Kapucu, and J. A. Hyttinen, On the Threshold Based Neuronal Spike Detection , and an Objective Criterion for Setting the Threshold, Neural Engineering, pp.22-24, 2015.

T. Datta-chaudhuri, An active micro-electrode array with spike detection and asynchronous readout, pp.3-6, 2014.

H. Takahashi, M. Suezawa, and K. Sumino, Charge-state-dependent activation energy for diffusion of iron in silicon, Physical Review B, vol.46, issue.3, pp.1882-1885, 1992.

A. M. Mamlouk, H. Sharp, K. M. Menne, U. G. Hofmann, and T. Martinetz, Unsupervised spike sorting with ICA and its evaluation using GENESIS simulations, Neurocomputing, pp.275-282, 2005.

D. A. Adamos, E. K. Kosmidis, and G. Theophilidis, Performance evaluation of PCA-based spike sorting algorithms, Computer Methods and Programs in Biomedicine, vol.91, issue.3, pp.232-244, 2008.

M. Delescluse and C. Pouzat, Efficient spike-sorting of multi-state neurons using interspike intervals information, Journal of Neuroscience Methods, vol.150, issue.1, pp.16-29, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00005002

A. Bar-hillel, A. Spiro, and E. Stark, Spike sorting: Bayesian clustering of non-stationary data, Journal of Neuroscience Methods, vol.157, issue.2, pp.303-316, 2006.

F. Wood and M. J. Black, A nonparametric Bayesian alternative to spike sorting, Journal of neuroscience, vol.173, issue.1, pp.13-23, 2008.

S. Gibson, J. Judy, and D. Markovi´cmarkovi´c, Comparison of spike-sorting algorithms for future hardware implementation, pp.5015-5020, 2008.

A. Oliynyk, C. Bonifazzi, F. Montani, and L. Fadiga, Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering, BMC neuroscience, vol.13, issue.1, p.96, 2012.

URL : https://hal.archives-ouvertes.fr/hal-00514169

A. Kamboh and A. J. Mason, On-chip feature extraction for spike sorting in high density implantable neural recording systems, pp.13-16, 2010.

B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev et al., Real-Time FPGA-Based Multichannel Spike Sorting Using Hebbian Eigenfilters, Ieee Journal on Emerging and Selected Topics in Circuits and Systems, vol.1, issue.4, pp.502-515, 2011.

W. Hwang, W. Lee, S. Lin, and S. Lai, Efficient architecture for spike sorting in reconfigurable hardware, Sensors, vol.13, pp.14860-87, 2013.

J. Dragas, D. Jackel, A. Hierlemann, and F. Franke, Complexity Optimisation and HighThroughput Low-Latency Hardware Implementation of a Multi-Electrode Spike-Sorting Algorithm, vol.23, pp.149-158, 2014.

K. Kim and S. Kim, Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier, Biomedical Engineering, vol.47, issue.10, pp.1406-1411, 2000.

T. I. Aksenova, O. K. Chibirova, O. Dryga, I. V. Tetko, A. Benabid et al., An unsupervised automatic method for sorting neuronal spike waveforms in awake and freely moving animals, Methods, vol.30, pp.178-187, 2003.

O. K. Chibirova, T. I. Aksenova, A. Benabid, S. Chabardes, S. Larouche et al., Unsupervised Spike Sorting of extracellular electrophysiological recording in subthalamic nucleus of Parkinsonian patients, Bio Systems, vol.79, issue.1-3, pp.159-71, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00390990

F. Öhberg and H. Johansson, A neural network approach to real-time spike discrimination during simultaneous recording from several multi-unit nerve filaments, Journal of neuroscience, vol.64, 1996.

Y. Yang, A. J. Mason, and S. Member, On-Chip Spike Clustering & Classification using Self Organizing Map for Neural Recording Implants, pp.145-148, 2011.

T. Kohonen, The self-organizing map, Proceedings of the IEEE, vol.78, issue.9, pp.1464-1480, 1990.

M. Aghagolzadeh and K. Oweiss, Compressed and distributed sensing of neuronal activity for real time spike train decoding, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.17, issue.2, pp.116-127, 2009.

R. Quiroga, Z. Nadasdy, and Y. Ben-shaul, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering, Neural computation, vol.1687, pp.1661-1687, 2004.
DOI : 10.1162/089976604774201631

URL : https://authors.library.caltech.edu/13699/1/QUInc04.pdf

D. Rinberg, W. Bialek, H. Davidowitz, and N. Tishby, Spike sorting in the frequency domain with overlap detection, p.30, 2003.

B. Zhang, Z. Jiang, Q. Wang, J. Seo, and M. Seok, A neuromorphic neural spike clustering processor for deep-brain sensing and stimulation systems, 2015.
DOI : 10.1109/islped.2015.7273496

H. G. Rey, C. Pedreira, and R. Q. Quiroga, Past, present and future of spike sorting techniques, Brain Research Bulletin, pp.1-12, 2015.
DOI : 10.1016/j.brainresbull.2015.04.007

URL : https://doi.org/10.1016/j.brainresbull.2015.04.007

J. K. Chapin, K. Moxon, R. S. Markowitz, and M. A. Nicolelis, Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex, Nature neuroscience, vol.2, pp.664-70, 1999.

A. K. Bansal, W. Truccolo, C. E. Vargas-irwin, and J. P. Donoghue, Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials, 2012.
DOI : 10.1152/jn.00781.2011

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311686/pdf

M. Spüler, A. Walter, A. Ramos-murguialday, G. Naros, N. Birbaumer et al., Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients, Journal of neural engineering, vol.11, issue.6, p.66008, 2014.

B. Wodlinger, J. E. Downey, E. C. Tyler-kabara, A. B. Schwartz, M. L. Boninger et al., Ten-dimensional anthropomorphic arm control in a human brain?àímachine interface: difficulties, solutions, and limitations, Journal of Neural Engineering, vol.12, issue.1, p.16011, 2015.
DOI : 10.1088/1741-2560/12/1/016011

S. Todorova, P. Sadtler, A. Batista, S. Chase, and V. Ventura, To sort or not to sort: the impact of spike-sorting on neural decoding performance, Journal of neural engineering, vol.11, issue.5, p.56005, 2014.

K. D. Harris, D. Henze, J. Csicsvari, H. Hirase, and G. Buzsáki, Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements, Journal of neurophysiology, vol.84, issue.1, pp.401-414, 2000.

R. , Q. Quiroga, and S. Panzeri, Extracting information from neuronal populations: information theory and decoding approaches, Nature reviews. Neuroscience, vol.10, pp.173-85, 2009.

J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-kabara et al., High-performance neuroprosthetic control by an individual with tetraplegia, Lancet, vol.381, pp.557-64, 2013.
DOI : 10.1016/s0140-6736(12)61816-9

URL : http://europepmc.org/articles/pmc3641862?pdf=render

S. F. Cogan, Neural stimulation and recording electrodes, Annual review of biomedical engineering, vol.10, pp.275-309, 2008.
DOI : 10.1146/annurev.bioeng.10.061807.160518

V. Gilja, C. Pandarinath, C. H. Blabe, P. Nuyujukian, and J. D. Simeral,

J. Sorice, B. Perge, L. R. Jarosiewicz, K. V. Hochberg, J. M. Shenoy et al., Clinical translation of a high-performance neural prosthesis, Nature Medicine, vol.21, issue.10, pp.1142-1145, 2015.

A. Chen, Emerging Nonvolatile memory (NVM) technologies, pp.109-113, 2015.
DOI : 10.1109/essderc.2015.7324725

L. Chua, Memristor-The missing circuit element, IEEE Transactions on Circuit Theory, vol.18, issue.5, pp.507-519, 1971.
DOI : 10.1109/tct.1971.1083337

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature, vol.453, issue.7191, pp.80-83, 2008.
DOI : 10.1038/nature06932

W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L. Dellmann et al., Projected phase-change memory devices, Nature communications, vol.6, pp.1-7, 2015.
DOI : 10.1038/ncomms9181

URL : https://www.nature.com/articles/ncomms9181.pdf

Y. Lin, Y. Chen, F. Lee, M. Brightsky, H. Lung et al., A Simple New Write Scheme for Low Latency Operation of Phase Change Memory, vol.294, 2011.

H. Lung, Y. Ho, Y. Zhu, W. Chien, S. Kim et al., A novel low power phase change memory using inter-granular switching, 2016 IEEE Symposium on VLSI Technology, vol.692, pp.1-2, 2014.

I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim et al., High performance PRAM cell scalable to sub20nm technology with below 4F2 cell size, extendable to DRAM applications, Digest of Technical Papers-Symposium on VLSI Technology, pp.203-204, 2010.

J. Gibbons and W. Beadle, Switching properties of thin NiO films, Solid-State Electronics, vol.7, issue.2, pp.785-797, 1964.

L. Goux, Y. Chen, L. Pantisano, X. Wang, G. Groeseneken et al., On the Gradual Unipolar and Bipolar Resistive Switching of TiN\HfO

. \pt-memory and . Systems, Electrochemical and Solid-State Letters, vol.13, issue.6, p.54, 2010.

G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli et al., Metal oxide resistive memory switching mechanism based on conductive filament properties, Journal of Applied Physics, vol.110, issue.12, p.124518, 2011.

U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices, IEEE Transactions on Electron Devices, vol.56, issue.2, pp.186-192, 2009.

L. Goux, A. Fantini, G. Kar, Y. Y. Chen, N. Jossart et al., Ultralow sub-500nA operating current high-performance TiN\Al 2O 3\HfO 2\Hf\TiN bipolar RRAM achieved through understanding-based stack-engineering, Digest of Technical Papers-Symposium on VLSI Technology, pp.159-160, 2012.

Y. S. Chen, H. Y. Lee, P. S. Chen, W. S. Chen, K. H. Tsai et al.,

/. Taox and . Hfox, RRAM with reliable self-compliance, high nonlinearity, and ultra-low current, IEEE Electron Device Letters, vol.35, issue.2, pp.202-204, 2014.

W. Kim, J. Kim, and J. Moon, Effect of Inserting Al2O3 Layer and Device Structure in HfO2-Based ReRAM for Low Power Operation, pp.3-6, 2012.

Y. Wu, B. Lee, and H. P. Wong, Al2O3-Based RRAM Using Atomic Layer Deposition (ALD) With 1uA RESET Current, IEEE Electron Device Letters, vol.31, issue.12, pp.1449-1451, 2010.

Y. Wu, B. Lee, and H. Wong, Ultra-low power Al2O3-based RRAM with 1µA reset current, pp.136-137, 2010.

C. Y. Chen, L. Goux, A. Fantini, R. Degraeve, A. Redolfi et al., Engineering of a TiN\Al2O3\(Hf,Al)O2\Ta2O5\Hf RRAM cell for Fast Operation at Low Current, pp.262-265, 2015.

B. Govoreanu and G. Kar, 10x10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation, IEDM, pp.729-732, 2011.

Y. Kim, S. R. Lee, D. Lee, C. B. Lee, M. Chang et al., Bi-layered RRAM with unlimited endurance and extremely uniform switching, Symposium on VLSI Technology-Digest of Technical Papers, pp.52-53, 2011.

L. Zhao, H. Chen, S. Wu, and Z. Jiang, Improved multi-level control of RRAM using pulse-train programming, pp.8-9, 2014.

M. Barlas, B. Traoré, L. Grenouillet, S. Bernasconi, P. Blaise et al., Impact of Si / Al implantation on the forming voltage and pre-forming conduction modes in HfO 2 based OxRAM cells, pp.168-171, 2016.

S. Yu, X. Guan, and H. S. Wong, On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, Monte Carlo simulation, and experimental characterization, Technical Digest-International Electron Devices Meeting, IEDM, pp.413-416, 2011.

L. Goux, N. Raghavan, R. Fantini, S. Nigon, R. Strangio et al., On the bipolar resistive-switching characteristics of Al2O3-and HfO2-based memory cells operated in the soft-breakdown regime, Journal of Applied Physics, vol.116, p.134502, 2014.

D. Garbin, E. Vianello, Q. Rafhay, M. Azzaz, P. Candelier et al., Resistive memory variability: A simplified trap-assisted tunneling model, Solid-State Electronics, vol.115, pp.126-132, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01947671

A. Fantini, G. Gorine, R. Degraeve, L. Goux, C. Y. Chen et al., Intrinsic program instability in HfO2 RRAM and consequences on program algorithms, Electron Devices Meeting, IEDM, 2016.

S. Yu and H. Wong, Compact modeling of conducting-bridge random-access memory (CBRAM)," Electron Devices, IEEE Transactions on, vol.58, issue.5, pp.1352-1360, 2011.

R. Waser, Resistive non-volatile memory devices, Microelectronic Engineering, vol.86, issue.7-9, pp.1925-1928, 2009.

U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard et al., Imaging the Three-Dimensional Conductive Channel in FilamentaryBased Oxide Resistive Switching Memory, Nano Letters, 2015.

U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet et al., Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices, Nano letters, vol.14, pp.2401-2407, 2014.

U. Celano, L. Goux, A. Belmonte, G. Giammaria, K. Opsomer et al., Progressive vs. Abrupt reset behavior in Conductive Bridging devices : a C-AFM tomography study, pp.351-354, 2014.

R. Waser and M. Aono, Nanoionics-based resistive switching memories, Nature materials, vol.6, pp.833-873, 2007.

M. Barci, J. Guy, G. Molas, E. Vianello, J. Toffoli et al., Impact of SET and RESET conditions on CBRAM high temperature data retention, IEEE International Reliability Physics Symposium Proceedings, pp.3-6, 2014.

A. Belmonte, U. Celano, A. Redolfi, A. Fantini, R. Muller et al., Analysis of the excellent memory disturb characteristics of a hourglass-shaped filament in Al<inf>2</inf>O<inf>3</inf>/Cu-based CBRAM devices, IEEE Transactions on Electron Devices, vol.62, issue.6, pp.2007-2013, 2015.

Y. Huai, Spin-Transfer Torque MRAM ( STT-MRAM ): Challenges and Prospects, vol.18, pp.33-40, 2008.

.. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach et al., Basic principles of STT-MRAM cell operation in memory arrays, Journal of Physics D: Applied Physics, vol.46, issue.7, p.74001, 2013.

N. Nagel, T. Mikolajick, I. Kasko, W. Hartner, M. Moert et al., An Overview of FeRAM Technology for High Density Applications Nicolas Nagel, vol.655, pp.1-10, 2001.

T. Mikolajick and C. Pinnow, The Future of Nonvolatile Memories, Non-Volatile Memory Technology Symposium, pp.4-6, 2002.

S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu, H. Nazarian et al., 3D-stackable Crossbar Resistive Memory based on Field Assisted Superlinear Threshold (FAST)

. Selector, Electron Devices Meeting (IEDM), pp.3-5, 2014.

E. T. Peter-clarke, Crossbar ReRAM in Production at SMIC

E. T. Peter-clarke, Patent Search Supports View 3D XPoint Based on Phase-Change

. Hou, 3D Vertical TaOx/TiO2 RRAM with over 103 Self-Rectifying Ratio and Sub-uA Operating Current, vol.2, pp.264-267, 2013.

L. O. Chua and S. M. Kang, Memristive Devices and Systems, Proceedings of the IEEE, vol.64, issue.2, pp.209-223, 1976.

G. S. Snider, Spike-timing-dependent learning in memristive nanodevices, 2008.

, IEEE/ACM International Symposium on Nanoscale Architectures, pp.85-92, 2008.

F. Galluppi, X. Lagorce, E. Stromatias, M. Pfeiffer, L. A. Plana et al., A framework for plasticity implementation on the SpiNNaker neural architecture, Frontiers in Neuroscience, vol.9, pp.1-20, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221702

B. Vogginger, R. Schüffny, A. Lansner, L. Cederström, J. Partzsch et al., Reducing the computational footprint for real-time BCPNN learning, Frontiers in Neuroscience, vol.9, pp.1-16, 2015.

D. Querlioz, P. Dollfus, O. Bichler, and C. Gamrat, Learning with memristive devices: How should we model their behavior?, Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures, pp.150-156, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01827056

G. Palma, M. Suri, D. Querlioz, E. Vianello, B. De et al., Stochastic neuron design using conductive bridge RAM, IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp.95-100, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01827051

P. Stoliar, J. Tranchant, B. Corraze, E. Janod, M. Besland et al., A Leaky-Integrate-and-Fire Neuron Analog Realized with a Mott Insulator, Advanced Functional Materials, pp.1-7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01720928

G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim et al., Neuromorphic computing using non-volatile memory, Advances in Physics: X, vol.2, issue.1, pp.89-124, 2017.

P. Y. Chen and S. Yu, Partition SRAM and RRAM based synaptic arrays for neuro-inspired computing, Proceedings-IEEE International Symposium on Circuits and Systems, pp.2310-2313, 2016.

S. Saïghi, C. G. Mayr, T. Serrano-gotarredona, H. Schmidt, G. Lecerf et al., Plasticity in memristive devices for spiking neural networks, vol.9, p.51, 2015.

G. Indiveri, B. Linares-barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures, Nanotechnology, vol.24, issue.38, p.384010, 2013.

A. Redaelli, A. Pirovano, and F. Pellizzer, Electronic switching effect and phase-change transition in chalcogenide materials, IEEE Electron Device, vol.25, issue.10, pp.684-686, 2004.

M. Suri, V. Sousa, L. Perniola, D. Vuillaume, and B. Desalvo, Phase change memory for synaptic plasticity application in neuromorphic systems, The 2011 International Joint Conference on Neural Networks, pp.619-624, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00800006

M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola et al., Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00799997

O. Bichler, D. Roclin, C. Gamrat, and D. Querlioz, Design exploration methodology for memristor-based spiking neuromorphic architectures with the Xnet event-driven simulator, Proceedings of the 2013 IEEE/ACM International Symposium on Nanoscale Architectures, pp.7-12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01827049

G. W. Burr, R. M. Shelby, J. W. Jang, R. S. Shenoy, P. Narayanan et al., Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element, IEDM, vol.95120, pp.0-2, 2014.

G. W. Burr, R. M. Shelby, S. Sidler, C. Di-nolfo, J. Jang et al., Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using PhaseChange Memory as the Synaptic Weight Element, IEEE Transactions on Electron Devices, vol.62, issue.11, pp.3498-3507, 2015.

G. W. Burr, P. Narayanan, R. M. Shelby, S. Sidler, I. Boybat et al., Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power), Electron Devices Meeting, IEDM, 2016.

M. Suri, O. Bichler, Q. Hubert, L. Perniola, V. Sousa et al., Interface Engineering of PCM for Improved Synaptic Performance in Neuromorphic Systems, 4th IEEE International Memory Workshop, pp.1-4, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00801096

M. Suri, O. Bichler, Q. Hubert, L. Perniola, V. Sousa et al., Addition of HfO2 interface layer for improved synaptic performance of phase change memory (PCM) devices, Solid-State Electronics, vol.79, pp.227-232, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00795982

M. Suri, D. Garbin, O. Bichler, D. Querlioz, D. Vuillaume et al., Impact of PCM resistance-drift in neuromorphic systems and drift-mitigation strategy, 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp.140-145, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877744

D. Kuzum, R. G. Jeyasingh, S. Yu, and H. P. Wong, Low-Energy Robust Neuromorphic Computation Using Synaptic Devices, IEEE Transactions on Electron Devices, vol.59, pp.3489-3494, 2012.
DOI : 10.1109/ted.2012.2217146

Y. Li, Y. Zhong, L. Xu, J. Zhang, X. Xu et al., Ultrafast synaptic events in a chalcogenide memristor, Scientific reports, vol.3, p.1619, 2013.

D. Garbin, M. Suri, O. Bichler, and D. Querlioz, Probabilistic neuromorphic system using binary phase-change memory (pcm) synapses: Detailed power consumption analysis, IEEE, pp.91-94, 2013.
DOI : 10.1109/nano.2013.6721057

URL : https://hal.archives-ouvertes.fr/cea-01839868

S. Wozniak, T. Tuma, A. Pantazi, and E. Eleftheriou, Learning spatio-temporal patterns in the presence of input noise using phase-change memristors, Proceedings-IEEE International Symposium on Circuits and Systems, pp.365-368, 2016.

K. Seo, I. Kim, S. Jung, M. Jo, S. Park et al., Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device, Nanotechnology, vol.22, p.254023, 2011.

S. Yu, Y. Wu, and R. Jeyasingh, An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation, vol.58, pp.2729-2737, 2011.
DOI : 10.1109/ted.2011.2147791

S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation, Advanced materials, vol.25, pp.1774-1783, 2013.

S. Ambrogio, S. Balatti, F. Nardi, S. Facchinetti, and D. Ielmini, Spike-timing dependent plasticity in a transistor-selected resistive switching memory, Nanotechnology, vol.24, issue.38, p.384012, 2013.

S. Park, J. Noh, M. Choo, A. M. Sheri, M. Chang et al.,

B. H. Lee, H. Lee, and . Hwang, Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device, Nanotechnology, vol.24, p.384009, 2013.

S. Park, J. Sheri, J. Kim, J. Noh, M. Jang et al., Neuromorphic speech systems using advanced ReRAM-based synapse, 2013 IEEE International Electron Devices Meeting, 2013.
DOI : 10.1109/iedm.2013.6724692

O. Kavehei, Highly Scalable Neuromorphic Hardware with 1-bit Stochastic nanoSynapses, pp.1-9, 2013.
DOI : 10.1109/iscas.2014.6865468

URL : http://arxiv.org/pdf/1309.6419.pdf

M. Prezioso, F. Merrikh-bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors, Nature, vol.521, pp.61-64, 2015.

B. Yan, A. M. Mahmoud, J. J. Yang, Q. Wu, Y. Chen et al., A neuromorphic ASIC design using one-selector-one-memristor crossbar, Proceedings-IEEE International Symposium on Circuits and Systems, pp.1390-1393, 2016.
DOI : 10.1109/iscas.2016.7527509

J. Bill and R. Legenstein, A compound memristive synapse model for statistical learning through STDP in spiking neural networks, Frontiers in Neuroscience, vol.8, pp.1-18, 2014.

M. Prezioso, Y. Zhong, D. Gavrilov, F. Merrikh-bayat, B. Hoskins et al., Spiking neuromorphic networks with metal-oxide memristors, Proceedings-IEEE International Symposium on Circuits and Systems, pp.177-180, 2016.
DOI : 10.1109/iscas.2016.7527199

M. Prezioso, F. M. Bayat, B. Hoskins, K. Likharev, and D. Strukov, Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors, Scientific Reports, vol.6, p.21331, 2016.

D. Garbin, E. Vianello, O. Bichler, Q. Rafhay, C. Gamrat et al., HfO2-Based OxRAM Devices as Synapses for Convolutional Neural Networks, IEEE Transactions on Electron Devices, pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01947647

E. Covi, S. Brivio, M. Fanciulli, and S. Spiga, Synaptic potentiation and depression in Al:HfO2-based memristor, Microelectronic Engineering, vol.147, pp.41-44, 2015.

E. Covi, S. Brivio, A. Serb, T. Prodromakis, M. Fanciulli et al., HfO2-based memristors for neuromorphic applications, Proceedings-IEEE International Symposium on Circuits and Systems, pp.393-396, 2016.

T. Chang, S. Jo, and W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor, ACS nano, vol.5, pp.7669-76, 2011.

R. Yang, K. Terabe, G. Liu, T. Tsuruoka, T. Hasegawa et al., On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration, ACS nano, vol.6, pp.9515-9536, 2012.

S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi et al., Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity, Nano Letters, vol.15, issue.3, pp.2203-2211, 2015.

R. Berdan, E. Vasilaki, A. Khiat, G. Indiveri, A. Serb et al., Emulating short-term synaptic dynamics with memristive devices, Scientific Reports, vol.6, p.18639, 2015.

V. Milo, G. Pedretti, R. Carboni, A. Calderoni, N. Ramaswamy et al., Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity, IEDM, 2016.

Z. Wang, S. Ambrogio, S. Balatti, and D. Ielmini, A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems, Frontiers in Neuroscience, vol.9, pp.1-11, 2015.

D. Ielmini, S. Ambrogio, V. Milo, S. Balatti, and Z. Q. Wang, Neuromorphic computing with hybrid memristive/CMOS synapses for real-time learning, Proceedings-IEEE International Symposium on Circuits and Systems, pp.1386-1389, 2016.

H. Mostafa, C. Mayr, and G. Indiveri, Beyond spike-timing dependent plasticity in memristor crossbar arrays, Proceedings-IEEE International Symposium on Circuits and Systems, pp.926-929, 2016.

W. Zhao, J. Portal, W. Kang, M. Moreau, Y. Zhang et al., Design and analysis of crossbar architecture based on complementary resistive switching nonvolatile memory cells, Journal of Parallel and Distributed Computing, vol.74, pp.2484-2496, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01744000

I. T. Wang, Y. C. Lin, Y. F. Wang, C. W. Hsu, and T. H. Hou, 3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation, Technical Digest-International Electron Devices Meeting, IEDM, 2015.

G. Piccolboni, G. Molas, J. M. Portal, R. Coquand, M. Bocquet et al., Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications, Technical Digest-International Electron Devices Meeting, IEDM, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01804658

D. Mahalanabis, M. Sivaraj, W. Chen, S. Shah, H. J. Barnaby et al., Demonstration of spike timing dependent plasticity in CBRAM devices with silicon neurons, Proceedings-IEEE International Symposium on Circuits and Systems, pp.2314-2317, 2016.

M. Suri, D. Querlioz, and O. Bichler, Bio-inspired stochastic computing using binary CBRAM synapses, vol.60, pp.2402-2409, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00871918

S. L. Barbera, D. Vuillaume, and F. Alibart, Filamentary switching: Synaptic plasticity through device volatility, ACS Nano, vol.9, issue.1, pp.941-949, 2015.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems, Nano letters, vol.10, pp.1297-301, 2010.

S. Yu and H. Wong, Modeling the switching dynamics of programmablemetallization-cell (PMC) memory and its application as synapse device for a neuromorphic computation system, 2010.

S. Choi, G. Kim, K. Lee, K. Kim, W. Yang et al., Synaptic behaviors of a single metal?Äìoxide?Äìmetal resistive device, Applied Physics A, vol.102, pp.1019-1025, 2011.

H. Choi, H. Jung, J. Lee, J. Yoon, J. Park et al., An electrically modifiable synapse array of resistive switching memory, Nanotechnology, vol.20, p.345201, 2009.

W. Lu, K. Kim, T. Chang, and S. Gaba, Two-terminal resistive switches (memristors) for memory and logic applications, pp.217-223, 2011.

C. Zhang, Y. Tai, J. Shang, G. Liu, K. Wang et al., Synaptic plasticity and learning behaviours in flexible artificial synapse based on polymer/viologen system, J. Mater. Chem. C, vol.4, issue.15, pp.3217-3223, 2016.

A. F. Vincent, S. Member, N. Locatelli, J. Klein, W. S. Zhao et al., Analytical Macrospin Modeling of the Stochastic Switching Time of Spin-Transfer Torque Devices, vol.62, pp.164-170, 2015.

A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler et al., Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems, IEEE Transactions on Biomedical Circuits and Systems, vol.9, issue.2, pp.166-174, 2015.
DOI : 10.1109/tbcas.2015.2414423

URL : https://hal.archives-ouvertes.fr/hal-01822200

A. Thomas, S. Niehörster, S. Fabretti, N. Shepheard, O. Kuschel et al., Tunnel junction based memristors as artificial synapses, Frontiers in Neuroscience, vol.9, pp.1-9, 2015.
DOI : 10.3389/fnins.2015.00241

URL : https://www.frontiersin.org/articles/10.3389/fnins.2015.00241/pdf

H. J. Kelley, Gradient Theory of Optimal Flight Paths, ARS Journal, vol.30, issue.10, pp.947-954, 1960.
DOI : 10.2514/8.5282

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by backpropagating errors, Nature, vol.323, issue.6088, pp.533-536, 1986.
DOI : 10.1038/323533a0

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

T. Masquelier, R. Guyonneau, and S. J. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains, PloS one, vol.3, p.1377, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00229791

T. Masquelier, R. Guyonneau, and S. J. Thorpe, Competitive STDP-based spike pattern learning, Neural computation, vol.21, pp.1259-76, 2009.
DOI : 10.1162/neco.2008.06-08-804

URL : https://hal.archives-ouvertes.fr/hal-00383703

K. Dhoble, N. Nuntalid, ;. , and T. .. , Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning, Networks (IJCNN), pp.10-15, 2012.
DOI : 10.1109/ijcnn.2012.6252439

D. Roclin, O. Bichler, C. Gamrat, S. J. Thorpe, and J. O. Klein, Design study of efficient digital order-based STDP neuron implementations for extracting temporal features, Proceedings of the International Joint Conference on Neural Networks, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01839869

T. Masquelier and S. J. Thorpe, Unsupervised learning of visual features through spike timing dependent plasticity, PLoS computational biology, vol.3, p.31, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00135582

S. J. Thorpe, A. Brilhault, and J. A. Perez-carrasco, Suggestions for a biologically inspired spiking retina using order-based coding, ISCAS 2010-2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, pp.265-268, 2010.

O. Bichler, D. Querlioz, S. J. Thorpe, J. Bourgoin, and C. Gamrat, Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity, Neural networks : the official journal of the International Neural Network Society, vol.32, pp.339-387, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00706681

X. Lagorce, S. H. Ieng, X. Clady, M. Pfeiffer, and R. B. Benosman, Spatiotemporal features for asynchronous event-based data, Frontiers in Neuroscience, vol.9, issue.FEB, pp.1-13, 2015.
DOI : 10.3389/fnins.2015.00046

URL : https://hal.archives-ouvertes.fr/hal-01221778

V. Chan, S. C. Liu, and A. Van-schaik, AER EAR: A matched silicon cochlea pair with address event representation interface, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, issue.1, pp.48-59, 2007.

E. Covi, S. Brivio, A. Serb, T. Prodromakis, M. Fanciulli et al., Analog memristive synapse in spiking networks implementing unsupervised learning, Frontiers in Neuroscience, vol.10, issue.OCT, pp.1-13, 2016.
DOI : 10.3389/fnins.2016.00482

URL : https://www.frontiersin.org/articles/10.3389/fnins.2016.00482/pdf

A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein et al., Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses, Nature Communications, vol.7, p.12611, 2016.
DOI : 10.1038/ncomms12611

URL : https://www.nature.com/articles/ncomms12611.pdf

H. Mostafa, A. Khiat, A. Serb, C. G. Mayr, G. Indiveri et al., Implementation of a spike-based perceptron learning rule using TiO2?àíx memristors, Frontiers in Neuroscience, vol.9, pp.1-11, 2015.
DOI : 10.3389/fnins.2015.00357

URL : https://doi.org/10.3389/fnins.2015.00357

D. Querlioz, O. Bichler, and C. Gamrat, Simulation of a memristor-based spiking neural network immune to device variations, Proceedings of the International Joint Conference on Neural Networks, pp.1775-1781, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01827055

D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, Immunity to device variations in a spiking neural network with memristive nanodevices, IEEE Transactions on Nanotechnology, vol.12, issue.3, pp.288-295, 2013.
DOI : 10.1109/tnano.2013.2250995

URL : https://hal.archives-ouvertes.fr/hal-01826840

D. Garbin and O. Bichler, Variability-tolerant convolutional neural network for pattern recognition applications based on oxram synapses, IEEE, pp.8-10, 2014.
DOI : 10.1109/iedm.2014.7047126

URL : https://hal.archives-ouvertes.fr/cea-01839848

E. Vianello, D. Garbin, N. Jovanovic, O. Bichler, O. Thomas et al., Oxide based Resistive Memories for Low Power Embedded Applications and Neuromorphic Systems, ECS, vol.69, pp.3-10, 2015.
DOI : 10.1149/06903.0003ecst

URL : https://hal.archives-ouvertes.fr/cea-01837009

Y. Wang, L. Xia, T. Tang, B. Li, S. Yao et al., Low Power Convolutional Neural Networks on a Chip, IEEE International Symposium on Computer Architecture, pp.129-132, 2016.
DOI : 10.1109/iscas.2016.7527187

G. Piccolboni, G. Molas, D. Garbin, T. Werner, E. Vianello et al., Investigation of variability in Vertical Resistive RAM ( VRRAM ): Physical Model, SSDM, vol.1, pp.3-4, 2016.
DOI : 10.1109/iedm.2015.7409717

URL : https://hal.archives-ouvertes.fr/hal-01804658/file/Piccolboni_Giuseppe%20_IEDM_2015__WEBSITE.pdf

R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried, Invariant visual representation by single neurons in the human brain, Nature, vol.435, pp.1102-1109, 2005.

J. Secco, M. Farina, D. Demarchi, F. Corinto, and M. Gilli, Memristor cellular automata for image pattern recognition and clinical applications, Proceedings-IEEE International Symposium on Circuits and Systems, pp.1378-1381, 2016.
DOI : 10.1109/iscas.2016.7527506

F. Corradi and G. Indiveri, A Neuromorphic Event-Based Neural Recording System for Smart Brain-Machine-Interfaces, IEEE Transactions on Biomedical Circuits and Systems, vol.9, issue.5, pp.699-709, 2015.
DOI : 10.1109/tbcas.2015.2479256

URL : http://www.zora.uzh.ch/id/eprint/121693/6/8752947.pdf

I. Gupta, A. Serb, A. Khiat, and T. Prodromakis, Practical operation considerations for memristive integrating sensors, Proceedings-IEEE International Symposium on Circuits and Systems, pp.2322-2325, 2016.
DOI : 10.1109/iscas.2016.7539049

R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha, The Cat is Out of the Bag : Cortical Simulations with 10?9 Neurons , 10?13 Synapses, Matrix, vol.2, issue.c, pp.1-12, 2009.

P. Merolla, J. V. Arthur, R. Alvarez-icaza, A. S. Cassidy, J. Sawada et al., A million spiking-neuron integrated circuit with a scalable communication network and interface, Science, vol.345, pp.668-673, 2014.
DOI : 10.1126/science.1254642

D. Kuzum, S. Yu, and H. P. Wong, Synaptic electronics: materials, devices and applications, Nanotechnology, vol.24, p.382001, 2013.
DOI : 10.1088/0957-4484/24/38/382001

E. Vianello, O. Thomas, G. Molas, D. Garbin, G. Palma et al., Resistive memories for ultra-low-power embedded computing design, IEDM, pp.144-147, 2014.
DOI : 10.1109/iedm.2014.7046995

D. Ielmini, F. Nardi, and S. Balatti, Evidence for voltage-driven set/reset processes in bipolar switching RRAM, IEEE Transactions on Electron Devices, vol.59, issue.8, pp.2049-2056, 2012.
DOI : 10.1109/ted.2012.2199497

A. Fantini, L. Goux, R. Degraeve, D. J. Wouters, N. Raghavan et al., Intrinsic switching variability in HfO2 RRAM, 5th IEEE International Memory Workshop, IMW 2013, pp.30-33, 2013.
DOI : 10.1109/imw.2013.6582090

D. Goldberg, G. Cauwenberghs, and A. Andreou, Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-and-fire neurons, Neural Networks, vol.14, pp.781-793, 2001.

E. M. Izhikevich, Simple model of spiking neurons, IEEE Neural Networks Council, vol.14, pp.1569-72, 2003.
DOI : 10.1109/tnn.2003.820440

URL : http://www.nsi.edu/users/izhikevich/publications/spikes.pdf

W. Gerstner and W. M. Kistler, Spiking Neuron Models, 2002.
DOI : 10.1017/cbo9780511815706

B. Joubert, O. Belhadj, R. Temam, and . Heliot, Hardware spiking neurons design: Analog or digital?, The 2012 International Joint Conference on Neural Networks (IJCNN), pp.1-5, 2012.
DOI : 10.1109/ijcnn.2012.6252600

URL : https://zenodo.org/record/1273289/files/article.pdf

D. Cattaert, J. Delbecque, D. H. Edwards, and F. A. Issa, Social interactions determine postural network sensitivity to 5-HT, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.30, pp.5603-5619, 2010.
DOI : 10.1523/jneurosci.0367-10.2010

URL : http://www.jneurosci.org/content/30/16/5603.full.pdf

J. Gasthaus, Y. W. Teh, F. Wood, and G. Dilan, Dependent Dirichlet Process Spike Sorting, Neural Information Processing Systems (NIPS), pp.1-8, 2008.

J. A. Gasthaus and F. Wood, Spike sorting using time-varying Dirichlet process mixture models, 2008.

M. Mahvash and A. C. Parker, Synaptic variability in a cortical neuromorphic circuit, IEEE Transactions on Neural Networks and Learning Systems, vol.24, issue.3, pp.397-409, 2013.

C. H. Bennett, S. L. Barbera, A. F. Vincent, F. Alibart, and D. Querlioz, Exploiting the Short-term to Long-term Plasticity Transition in Memristive Nanodevice Learning Architectures, Arxiv, pp.947-954, 2016.

P. Lichtsteiner, C. Posch, and T. Delbruck, A 128 x 128 120 dB 15 us latency asynchronous temporal contrast vision sensor, IEEE Journal of Solid-State Circuits, vol.43, issue.2, pp.566-576, 2008.

M. Noack, J. Partzsch, C. G. Mayr, S. Hänzsche, S. Scholze et al., Switched-capacitor realization of presynaptic short-term-plasticity and stop-learning synapses in 28 nm CMOS, Frontiers in Neuroscience, vol.9, issue.FEB, pp.1-14, 2015.

N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini et al., A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses, Frontiers in Neuroscience, vol.9, pp.1-17, 2015.

R. Escolá, C. Pouzat, A. Chaffiol, B. Yvert, I. E. Magnin et al., IEEE transactions on neural systems and rehabilitation engineering : a publication of the, IEEE Engineering in Medicine and Biology Society, vol.16, pp.149-60, 2008.