F. Erdel, M. Baum, R. , and K. , The viscoelastic properties of chromatin and the nucleoplasm revealed by scale-dependent protein mobility, Journal of Physics: Condensed Matter, vol.27, issue.6, 2015.

M. Ermis, D. Akkaynak, P. Chen, U. Demirci, and V. Hasirci, A high throughput approach for analysis of cell nuclear deformability at single cell level, Scientific Reports, vol.6, issue.1, p.20, 2016.

P. Friedl, K. Wolf, and J. Lammerding, Nuclear mechanics during cell migration, Current Opinion in Cell Biology, vol.23, issue.1, pp.55-64, 2011.

C. Giverso, A. Grillo, P. , and L. , Influence of nucleus deformability on cell entry into cylindrical structures, Biomechanics and Modeling in Mechanobiology, vol.13, issue.3, p.40, 2014.

Y. Gruenbaum, R. D. Goldman, R. Meyuhas, E. Mills, A. Margalit et al., The Nuclear Lamina and Its Functions in the Nucleus, International Review of Cytology, vol.226, pp.1-62, 2003.

F. Guilak, J. R. Tedrow, and R. Burgkart, Viscoelastic properties of the cell nucleus, Biochemical and Biophysical Research Communications, vol.269, issue.3, p.42, 2000.

L. Guillou, A. Babataheri, P. Puech, A. I. Barakat, and J. Husson, Dynamic monitoring of cell mechanical properties using profile microindentation, Scientific Reports, vol.6, issue.1, p.20, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299614

C. Guilluy, L. D. Osborne, L. Van-landeghem, L. Sharek, R. Superfine et al., Isolated nuclei adapt to force and reveal a mechanotransduction pathway within the nucleus, Nature cell biology, vol.16, issue.4, pp.376-381, 2014.

T. Harada, J. Swift, J. Irianto, J. Shin, K. R. Spinler et al., Nuclear lamin stiffness is a barrier to 3d migration, but softness can limit survival, The Journal of Cell Biology, vol.204, issue.5, pp.669-682, 2014.

C. Y. Ho, D. E. Jaalouk, and J. Lammerding, Novel insights into the disease etiology of laminopathies, Rare Diseases, vol.1, issue.1, 2013.

C. Y. Ho and J. Lammerding, Lamins at a glance, J Cell Sci, vol.125, issue.9, p.53, 2012.

H. W. Hou, Q. S. Li, G. Y. Lee, A. P. Kumar, C. N. Ong et al., Deformability study of breast cancer cells using microfluidics, Biomedical Microdevices, vol.11, issue.3, p.34, 2009.

P. Isermann, P. M. Davidson, J. D. Sliz, J. Lammerding, S. Juan et al., Assays to measure nuclear mechanics in interphase cells. Current protocols in cell biology, CHAPTER, vol.34, p.35, 2012.

H. Jung, J. M. Lee, S. H. Yang, S. G. Young, and L. G. Fong, Nuclear Lamins in the Brain-New Insights into Function and Regulation, Molecular Neurobiology, vol.47, issue.1, pp.290-301, 2013.

A. Kamgoue, J. Ohayon, and P. Tracqui, Estimation of Cell Young's Modulus of Adherent Cells Probed by Optical and Magnetic Tweezers: Influence of Cell Thickness and Bead Immersion, Journal of Biomechanical Engineering, vol.129, issue.4, 2007.

A. Kaminski, G. R. Fedorchak, and J. Lammerding, The cellular mastermindmechanotransduction and the nucleus. Progress in molecular biology and translational science, vol.126, pp.157-203, 2014.

M. C. Keeling, L. R. Flores, A. H. Dodhy, E. R. Murray, and N. Gavara, Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization, Scientific Reports, vol.7, issue.1, 2017.

J. Lammerding, Mechanics of the Nucleus, Comprehensive Physiology, 2011.

F. Y. Leong, Q. Li, C. T. Lim, and K. Chiam, Modeling cell entry into a microchannel, Biomechanics and Modeling in Mechanobiology, vol.10, issue.5, pp.755-766, 2011.

C. T. Lim, E. H. Zhou, and S. T. Quek, Mechanical models for living cells-a review, Journal of Biomechanics, vol.39, issue.2, pp.195-216, 2006.

H. Liu, J. Wen, Y. Xiao, J. Liu, S. Hopyan et al., Situ Mechanical Characterization of the Cell Nucleus by Atomic Force Microscopy, vol.8, pp.3821-3828, 2014.

M. L. Lombardi, M. Zwerger, and J. Lammerding, Biophysical Assays to Probe the Mechanical Properties of the Interphase Cell Nucleus: Substrate Strain Application and Microneedle Manipulation, Journal of Visualized Experiments : JoVE, issue.55, 2011.

Y. Luo, D. Chen, Y. Zhao, C. Wei, X. Zhao et al., A constriction channel based microfluidic system enabling continuous 54 BIBLIOGRAPHY characterization of cellular instantaneous Young's modulus, Sensors and Actuators B: Chemical, vol.202, p.34, 2014.

J. F. Marko and E. D. Siggia, Stretching DNA, Macromolecules, vol.28, issue.26, 1995.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani et al., Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques, Light: Science & Applications, vol.7, issue.2, 2018.

A. L. Mcgregor, C. Hsia, and J. Lammerding, Squish and squeeze the nucleus as a physical barrier during migration in confined environments, Current Opinion in Cell Biology, vol.40, p.153, 2016.

J. S. Milner, M. W. Grol, K. L. Beaucage, S. J. Dixon, and D. W. Holdsworth, , 2012.

, Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain, Journal of Functional Biomaterials, vol.3, issue.1, pp.209-224

R. Milo and R. Phillips, Cell Biology by the Numbers. Garland Science, p.43, 2015.

M. Mitchell, C. Denais, M. Chan, Z. Wang, J. Lammerding et al., Lamin A/C Deficiency Reduces Circulating Tumor Cell, 2015.

, American Journal of Physiology-Cell Physiology

M. Monticelli, D. V. Conca, E. Albisetti, A. Torti, P. P. Sharma et al., Magnetic domain wall tweezers: a new tool for mechanobiology studies on individual target cells, Lab Chip, vol.16, issue.15, 2016.

N. Naetar, S. Ferraioli, and R. Foisner, Lamins in the nuclear interior-life outside the lamina, Journal of Cell Science, vol.130, issue.13, pp.2087-2096, 2017.

M. M. Nava, M. T. Raimondi, and R. Pietrabissa, Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells, Biomechanics and Modeling in Mechanobiology, vol.13, issue.5, p.22, 2014.

J. D. Pajerowski, K. N. Dahl, F. L. Zhong, P. J. Sammak, and D. E. Discher, Physical plasticity of the nucleus in stem cell differentiation, Proceedings of the National Academy of Sciences of the United States of America, vol.104, p.40, 2007.

J. L. Philipp-isermann, Nuclear mechanics and mechanotransduction in health and disease, Current biology : CB, vol.23, issue.24, p.34, 2013.

A. Rowat, L. Foster, M. Nielsen, M. Weiss, and J. Ipsen, Characterization of the elastic properties of the nuclear envelope, Journal of the Royal Society Interface, vol.2, issue.2, pp.63-69, 2005.

A. C. Rowat, J. Lammerding, and J. H. Ipsen, Mechanical Properties of the Cell Nucleus and the Effect of Emerin Deficiency, Biophysical Journal, vol.91, issue.12, pp.4649-4664, 2006.

C. Schwartz, M. Fischer, K. Mamchaoui, A. Bigot, T. Lok et al., , 2017.

, Lamins and nesprin-1 mediate inside-out mechanical coupling in muscle cell precursors through FHOD1, Scientific Reports, vol.7, issue.1

J. Schäpe, S. Prausse, M. Radmacher, and R. Stick, Influence of Lamin A on the Mechanical Properties of Amphibian Oocyte Nuclei Measured by Atomic Force Microscopy, Biophysical Journal, vol.96, issue.10, pp.4319-4325, 2009.

C. T. Skau, R. S. Fischer, P. Gurel, H. R. Thiam, A. Tubbs et al., FMN2 Makes Perinuclear Actin to Protect Nuclei during Confined Migration and Promote Metastasis, Cell, vol.167, issue.6, pp.1571-1585, 2016.

S. B. Smith, L. Finzi, and C. Bustamante, Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, vol.258, issue.5085, pp.1122-1126, 1992.

A. D. Stephens, E. J. Banigan, S. A. Adam, R. D. Goldman, M. et al., , 2017.

, Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus, Molecular Biology of the Cell, vol.28, p.40

J. Swift and D. E. Discher, The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue, Journal of Cell Science, pp.149203-149224, 2014.

J. Swift, I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal et al., Nuclear Lamin-A Scales with Tissue Stiffness and Enhances MatrixDirected Differentiation, Science, vol.341, issue.6149, 2013.

K. Tomankova, P. Kolar, J. Malohlava, and H. Kolarova, Mechanical characterisation of HeLa cells using atomic force microscopy. Current Microscopy Contributions to Advances in Science and Technology, vol.21, pp.549-554, 2012.

S. H. Kappe, C. A. Buscaglia, L. W. Bergman, I. Coppens, and V. Nussenzweig, Apicomplexan gliding motility and host cell invasion: overhauling the motor model, Trends in Parasitology, vol.20, issue.1, p.61, 2004.

H. Karcher, J. Lammerding, H. Huang, R. T. Lee, R. D. Kamm et al., A Three-Dimensional Viscoelastic Model for Cell Deformation with Experimental Verification, Biophysical Journal, vol.85, issue.5, pp.3336-3349, 2003.

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, Atomic force microscopy probing of cell elasticity, Micron, vol.38, issue.8, pp.824-833, 2007.

F. Y. Lim, Y. L. Koon, and K. Chiam, A computational model of amoeboid cell migration, Computer Methods in Biomechanics and Biomedical Engineering, vol.16, issue.10, pp.1085-1095, 2013.

Y. Liu, M. Le-berre, F. Lautenschlaeger, P. Maiuri, A. Callan-jones et al., Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells, Cell, vol.160, issue.4, p.77, 2015.

A. Lorentzen, J. Bamber, A. Sadok, I. Elson-schwab, M. et al., An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells, Journal of Cell Science, vol.124, issue.8, p.67, 2011.

T. Lämmermann, B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-säldner et al., Rapid leukocyte migration by integrin-independent flowing and squeezing, Nature, vol.453, issue.7191, p.63, 2008.

S. E. Malawista, A. De-boisfleury-chevance, and L. A. Boxer, Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes from a patient with Leukocyte Adhesion Deficiency-1: Normal displacement in close quarters via chimneying, Cell Motility and the Cytoskeleton, vol.46, issue.3, pp.183-189, 2000.

B. Maugis, J. Brugués, P. Nassoy, N. Guillen, P. Sens et al., Dynamic instability of the intracellular pressure drives bleb-based motility, J Cell Sci, vol.123, issue.22, pp.3884-3892, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00821337

E. Moeendarbary, L. Valon, M. Fritzsche, A. R. Harris, D. A. Moulding et al., The cytoplasm of living cells behaves as a poroelastic material, Nature Materials, vol.12, issue.3, p.86, 2013.

A. Mogilner and A. Manhart, Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel, Annual Review of Fluid Mechanics, vol.50, issue.1, 2018.

K. Mollaeian, Y. Liu, S. Bi, R. , and J. , Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells, Journal of the Mechanical Behavior of Biomedical Materials, vol.78, pp.65-73, 2018.

A. Moure and H. Gomez, Phase-field model of cellular migration: Threedimensional simulations in fibrous networks, Computer Methods in Applied Mechanics and Engineering, vol.320, pp.162-197, 2017.

K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre et al., Structural determinants of water permeation through aquaporin1, Nature, vol.407, issue.6804, pp.599-605, 2000.

E. K. Paluch and E. Raz, The role and regulation of blebs in cell migration, Current Opinion in Cell Biology, vol.25, issue.5, p.61, 2013.

Z. Pan, C. Yan, R. Peng, Y. Zhao, Y. He et al., Control of cell nucleus shapes via micropillar patterns, Biomaterials, vol.33, issue.6, pp.1730-1735, 2012.

A. Pena, M. D. Bolton, and J. D. Pickard, Cellular poroelasticity: A theoretical model for soft tissue mechanics, Proceedings of the Biot Conference on Poromechanics, p.65, 1998.

R. J. Petrie, H. Koo, and K. M. Yamada, Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3d matrix, Science, vol.345, issue.6200, p.83, 2014.

F. Pfeiffer, Mechanical system dynamics, p.71, 2008.

E. Sahai and C. J. Marshall, Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis, Nature Cell Biology, vol.5, issue.8, p.83, 2003.

C. D. Silflow and P. A. Lefebvre, Assembly and Motility of Eukaryotic Cilia and Flagella. Lessons from Chlamydomonas reinhardtii, Plant Physiology, vol.127, issue.4, p.61, 2001.

K. M. Stroka, H. Jiang, S. Chen, Z. Tong, D. Wirtz et al., Water Permeation Drives Tumor Cell Migration in Confined Microenvironments, Cell, vol.157, issue.3, pp.611-623, 2014.

J. Bonet, A. J. Gil, and R. Ortigosa, A computational framework for polyconvex large strain elasticity, Computer Methods in Applied Mechanics and Engineering, vol.283, p.106, 2015.

J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite element analysis, p.103, 1997.

Y. Cai, N. Biais, G. Giannone, M. Tanase, G. Jiang et al., Nonmuscle Myosin IIA-Dependent Force Inhibits Cell Spreading and Drives F-Actin Flow, Biophysical Journal, vol.91, issue.10, pp.3907-3920, 2006.

N. Caille, O. Thoumine, Y. Tardy, and J. Meister, Contribution of the nucleus to the mechanical properties of endothelial cells, Journal of Biomechanics, vol.35, issue.2, pp.177-187, 2002.

X. Cao, Y. Lin, T. P. Driscoll, J. Franco-barraza, E. Cukierman et al., A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size, Biophysical Journal, vol.109, issue.9, p.97, 2015.

D. Cuvelier, M. Théry, Y. Chu, S. Dufour, J. Thiéry et al., The Universal Dynamics of Cell Spreading, Current Biology, vol.17, issue.8, p.154, 2007.

P. M. Davidson, O. Fromigué, P. J. Marie, V. Hasirci, G. Reiter et al., , 2010.

, Topographically induced self-deformation of the nuclei of cells: dependence on cell type and proposed mechanisms, Journal of Materials Science: Materials in Medicine, vol.21, issue.3, pp.939-946

P. M. Davidson, J. Sliz, P. Isermann, C. Denais, and J. Lammerding, Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments, Integr. Biol, vol.7, issue.12, p.98, 2015.

P. M. Davidson, H. Özçelik, V. Hasirci, G. Reiter, A. et al., Microstructured Surfaces Cause Severe but Non-Detrimental Deformation of the Cell Nucleus, Advanced Materials, vol.21, issue.35, 2009.

S. Deveraux, R. Allena, A. , and D. , A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay, Journal of Theoretical Biology, vol.435, p.106, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01832546

H. Döbereiner, B. Dubin-thaler, G. Giannone, H. S. Xenias, and M. P. Sheetz, Dynamic Phase Transitions in Cell Spreading, Physical Review Letters, issue.10, p.93, 2004.

M. Eichhorn, C. Stannard, K. Anselme, R. , and J. , Nucleus deformation of SaOs-2 cells on rhombic µ-pillars, Journal of Materials Science: Materials in Medicine, vol.26, issue.2, p.92, 2015.

M. Ermis, D. Akkaynak, P. Chen, U. Demirci, and V. Hasirci, A high throughput approach for analysis of cell nuclear deformability at single cell level, Scientific Reports, vol.6, issue.1, p.92, 2016.

J. Etienne and A. Duperray, Initial Dynamics of Cell Spreading Are Governed by Dissipation in the Actin Cortex, Biophysical Journal, vol.101, issue.3, pp.611-621, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00634252

H. Fan and S. Li, Modeling universal dynamics of cell spreading on elastic substrates, Biomechanics and Modeling in Mechanobiology, vol.14, issue.6, p.105, 2015.

Y. Fang and K. W. Lai, Modeling the mechanics of cells in the cell-spreading process driven by traction forces, Physical Review E, vol.97, issue.4, p.98, 2016.

I. Fried and A. R. Johnson, A note on elastic energy density functions for largely deformed compressible rubber solids, Computer Methods in Applied Mechanics and Engineering, vol.69, issue.1, pp.53-64, 1988.

N. C. Gauthier, M. A. Fardin, P. Roca-cusachs, and M. P. Sheetz, Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading, Proceedings of the National Academy of Sciences, vol.108, issue.35, pp.14467-14472, 2011.

B. Geiger, J. P. Spatz, and A. D. Bershadsky, Environmental sensing through focal adhesions, Nature Reviews Molecular Cell Biology, vol.10, issue.1, p.114, 2009.

B. Geiger and K. M. Yamada, Molecular Architecture and Function of Matrix Adhesions, Cold Spring Harbor Perspectives in Biology, vol.3, issue.5, 2011.

M. Ghibaudo, J. Di-meglio, P. Hersen, and B. Ladoux, Mechanics of cell spreading within 3d-micropatterned environments, Lab on a Chip, vol.11, issue.5, p.119, 2011.

S. Goktepe, O. J. Abilez, K. K. Parker, and E. Kuhl, A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis, Journal of Theoretical Biology, vol.265, issue.3, pp.433-442, 2010.

A. F. Golestaneh, B. ;. Nadler, D. R. Bibliography-gossett, H. T. Tse, S. A. Lee et al., Hydrodynamic stretching of single cells for large population mechanical phenotyping, Proceedings of the National Academy of Sciences, vol.15, issue.2, pp.7630-7635, 2012.

M. Graveleau, N. Chevaugeon, and N. Moës, The inequality level-set approach to handle contact: membrane case. Advanced Modeling and Simulation in Engineering, Sciences, vol.2, issue.1, p.112, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01398280

M. E. Gurtin, An Introduction to Continuum Mechanics, p.101, 1982.

L. Hanson, W. Zhao, H. Lou, Z. C. Lin, S. W. Lee et al., Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells, Nature nanotechnology, vol.10, issue.6, p.120, 2015.

G. A. Holzapfel, Nonlinear solid mechanics : a continuum approach for engineering, p.103, 2000.

G. A. Holzapfel, M. J. Unterberger, and R. W. Ogden, An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins, Journal of the Mechanical Behavior of Biomedical Materials, vol.38, issue.123, pp.78-90, 2014.

H. W. Hou, Q. S. Li, G. Y. Lee, A. P. Kumar, C. N. Ong et al., Deformability study of breast cancer cells using microfluidics, Biomedical Microdevices, vol.11, issue.3, pp.557-564, 2009.

D. E. Ingber, Tensegrity I. Cell structure and hierarchical systems biology, Journal of Cell Science, vol.116, issue.7, p.154, 2003.

P. Isermann, P. M. Davidson, J. D. Sliz, and J. Lammerding, Assays to Measure Nuclear Mechanics in Interphase Cells, Current Protocols in Cell Biology, p.92, 2012.

M. Itskov and N. Aksel, A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function, International Journal of Solids and Structures, vol.41, issue.14, pp.3833-3848, 2004.

K. A. Jansen, P. Atherton, and C. Ballestrem, Mechanotransduction at the cellmatrix interface, Seminars in Cell & Developmental Biology, vol.71, pp.75-83, 2017.

R. P. Jean, C. S. Chen, and A. A. Spector, Analysis of the Deformation of the Nucleus as a Result of Alterations of the Cell Adhesion Area, vol.105, p.132, 2003.

Y. Jiang, Y. Wang, and X. Peng, A Visco-Hyperelastic Constitutive Model for Human Spine Ligaments, Cell Biochemistry and Biophysics, vol.71, issue.2, pp.1147-1156, 2015.

K. Keren, Membrane tension leads the way, Proceedings of the National Academy of Sciences, vol.108, issue.35, 2011.

S. B. Khatau, C. M. Hale, P. J. Stewart-hutchinson, M. S. Patel, C. L. Stewart et al., A perinuclear actin cap regulates nuclear shape, Proceedings of the National Academy of Sciences, vol.106, issue.45, pp.19017-19022, 2009.

D. Kim, S. Cho, and D. Wirtz, Tight coupling between nucleus and cell migration through the perinuclear actin cap, Journal of Cell Science, vol.127, issue.11, 2014.

D. Kim, S. B. Khatau, Y. Feng, S. Walcott, S. X. Sun et al., Actin cap associated focal adhesions and their distinct role in cellular mechanosensing, Scientific Reports, vol.2, issue.1, p.99, 2012.

Y. Li, D. Lovett, Q. Zhang, S. Neelam, R. A. Kuchibhotla et al., Moving Cell Boundaries Drive Nuclear Shaping during Cell Spreading, Biophysical Journal, vol.109, issue.4, pp.670-686, 2015.

P. Liu, Y. W. Zhang, Q. H. Cheng, L. , and C. , Simulations of the spreading of a vesicle on a substrate surface mediated by receptor-ligand binding, Journal of the Mechanics and Physics of Solids, vol.55, issue.6, 2007.

Y. Loosli, R. Luginbuehl, and J. G. Snedeker, Cytoskeleton reorganization of spreading cells on micro-patterned islands: a functional model, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.368, pp.2629-2652, 1920.

H. Lu, L. Y. Koo, W. C. Wang, D. A. Lauffenburger, L. G. Griffith et al., Microfluidic shear devices for quantitative analysis of cell adhesion, Analytical Chemistry, vol.76, issue.18, 2004.

V. A. Lubarda, Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics, Applied Mechanics Reviews, vol.57, issue.2, pp.95-106, 2004.

T. Mammoto and D. E. Ingber, Mechanical control of tissue and organ development, Development, vol.137, issue.9, 2010.

M. Maninova, J. Caslavsky, and T. Vomastek, The assembly and function of perinuclear actin cap in migrating cells, Protoplasma, vol.254, issue.3, pp.1207-1218, 2017.

B. Maurin, P. Canadas, H. Baudriller, P. Montcourrier, and N. Bettache, Mechanical model of cytoskeleton structuration during cell adhesion and spreading, Journal of Biomechanics, vol.41, issue.9, pp.2036-2041, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00665316

J. L. Mcgrath, Cell Spreading: The Power to Simplify, Current Biology, vol.17, issue.10, p.154, 2007.

J. Milan, S. Lavenus, P. Pilet, G. Louarn, S. Wendling et al., Computational model combined with in vitro experiments to analyse mechanotransduction during mesenchymal stem cell adhesion, European cells & materials, vol.25, pp.97-113, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00961227

R. Milo and R. Phillips, Cell Biology by the Numbers. Garland Science. GoogleBooks, 2015.

M. Mokbel, D. Mokbel, A. Mietke, N. Trãber, S. Girardo et al., Numerical Simulation of Real-Time Deformability Cytometry To Extract Cell Mechanical Properties, ACS Biomaterials Science & Engineering, vol.3, issue.11, p.105, 2017.

M. R. Morgan, M. J. Humphries, and M. D. Bass, Synergistic control of cell adhesion by integrins and syndecans, Nature Reviews Molecular Cell Biology, vol.8, issue.12, pp.957-969, 2007.

J. J. Munoz, K. Barrett, and M. Miodownik, A deformation gradient decomposition method for the analysis of the mechanics of morphogenesis, Journal of Biomechanics, vol.40, issue.6, pp.1372-1380, 2007.

N. Nisenholz, K. Rajendran, Q. Dang, H. Chen, R. Kemkemer et al., Active mechanics and dynamics of cell spreading on elastic substrates, Soft Matter, vol.10, issue.37, 2014.

Z. Pan, C. Yan, R. Peng, Y. Zhao, Y. He et al., Control of cell nucleus shapes via micropillar patterns, Biomaterials, vol.33, issue.6, p.154, 2012.

J. T. Parsons, A. R. Horwitz, and M. A. Schwartz, Cell adhesion: integrating cytoskeletal dynamics and cellular tension, Nature reviews. Molecular cell biology, vol.11, issue.9, pp.633-643, 2010.

M. A. Partridge and E. E. Marcantonio, Initiation of attachment and generation of mature focal adhesions by integrin-containing filopodia in cell spreading., 134 BIBLIOGRAPHY Initiation of Attachment and Generation of Mature Focal Adhesions by Integrincontaining Filopodia in Cell Spreading, Molecular biology of the cell, vol.17, issue.10, pp.4237-4248, 2006.

W. J. Polacheck, J. L. Charest, and R. D. Kamm, Interstitial flow influences direction of tumor cell migration through competing mechanisms, Proceedings of the National Academy of Sciences, vol.108, issue.27, 2011.

P. Roca-cusachs, A. D. Rio, E. Puklin-faucher, N. C. Gauthier, N. Biais et al., Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation, Proceedings of the National Academy of Sciences, vol.110, issue.15, 2013.

E. K. Rodriguez, A. Hoger, and A. D. Mcculloch, Stress-dependent finite growth in soft elastic tissues, Journal of Biomechanics, vol.27, issue.4, pp.455-467, 1994.

M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry, Lab on a Chip, vol.8, issue.7, 2008.

C. Roux, A. Duperray, V. M. Laurent, R. Michel, V. Peschetola et al., Prediction of traction forces of motile cells, Interface Focus, vol.6, issue.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01391213

A. S. Sarvestani and E. Jabbari, Modeling the kinetics of cell membrane spreading on substrates with ligand density gradient, Journal of Biomechanics, vol.41, issue.4, pp.921-925, 2008.

R. A. Sauer, A Survey of Computational Models for Adhesion, The Journal of Adhesion, vol.92, issue.2, p.113, 2016.

E. C. Schirmer and J. Heras, Cancer Biology and the Nuclear Envelope: Recent Advances May Elucidate Past Paradoxes, Advances in Experimental Medicine and Biology, p.92, 2014.

S. M. Schoenwaelder and K. Burridge, Bidirectional signaling between the cytoskeleton and integrins, Current Opinion in Cell Biology, vol.11, issue.2, pp.274-286, 1999.

R. W. Style, R. Boltyanskiy, G. K. German, C. Hyland, C. W. Macminn et al., Traction force microscopy in physics and biology, Soft Matter, vol.10, issue.23, 2014.

T. Svitkina, The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harbor, Perspectives in Biology, vol.10, issue.1, 2018.

J. Swift, I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal et al., Nuclear Lamin-A Scales with Tissue Stiffness and Enhances MatrixDirected Differentiation, Science, vol.341, issue.6149, 2013.

L. A. Taber, Biomechanics of Growth, Remodeling, and Morphogenesis, Applied Mechanics Reviews, vol.48, issue.8, pp.487-545, 1995.

M. Vassaux and J. L. Milan, Stem cell mechanical behaviour modelling: substrate's curvature influence during adhesion, Biomechanics and Modeling in Mechanobiology, vol.16, issue.4, 2017.
DOI : 10.1007/s10237-017-0888-4

URL : https://link.springer.com/content/pdf/10.1007%2Fs10237-017-0888-4.pdf

M. Versaevel, T. Grevesse, G. , and S. , Spatial coordination between cell and nuclear shape within micropatterned endothelial cells, Nature Communications, 2012.
DOI : 10.1038/ncomms1668

URL : https://www.nature.com/articles/ncomms1668.pdf

T. Wakatsuki, Mechanics of cell spreading: role of myosin II, Journal of Cell Science, vol.116, issue.8, pp.1617-1625, 2003.

H. Wang, Y. Biao, Y. Chunlai, W. , and L. , Simulation of AFM indentation of soft biomaterials with hyperelasticity, 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), p.105, 2017.

X. Zeng, S. Li, and . Alberts, Multiscale modeling and simulation of soft adhesion and contact of stem cells, Journal of the Mechanical Behavior of Biomedical Materials, vol.4, issue.2, p.12, 2011.

. Alberts, 12 3 The force-relationship between adhesion, contraction and polymer network expansion determines the 'amoeboid' phenotype [ Lämmermann and Sixt, 2009.

I. Mcgregor, Internal organization of the nucleus and its connection to the cytoskeleton. Modified from, p.20, 2016.

. , Experimental compression and perfusion setups to be reproduced by simulation

. .. , 25 I.6 Simulation of compression and release of the nucleus

. , Parametric study on E nucl eopl asm,0

, Deviatoric strain for various values of plasticity threshold and ? nucl eopl asm 30

I. , Cell and micro-channel geometry

. , Profile of the fluid velocity inside the device

A. , 33 I.13 Simulation results of the perfusion test in the 5 µm-wide micro-channel for a wild-type cell, 2014.

. , Comparison of the perfusion test results in the 5 µm-wide micro-channel for the wild-type and the lamin-deficient model

I. , Simulation results of the perfusion test in the 1 µm-wide micro-channel for a wild-type cell

. , Comparison of the perfusion test results in the 1 µm-wide micro-channel for wild type and lamin deficient cells

I. C. , 1 Displacement of the mobile upper plate

I. E. , Parametric study on E cl

I. E. ,

I. E. , Parametric study on ? cl

I. E. , Parametric study on E cl

I. E. , Parametric study on E l

I. E. , Parametric study on ? cl

. , Illustration of the chimneying mechanism as a rock climbing method and as a bleb-based migration mode, p.61

L. Of-figures,

. , Illustration of the basic structure of a contractile fiber and myosin's powerstroke

]. .. , 64 II.4 Colorized Scanning Electron Microscope image a neuron, p.65, 2008.

. .. , 72 II.7 Graphical representation of the regularized active strain during four cycles of 30 s each

, Results of the poroelastic migration simulation in the absence of friction, p.76

. .. , 77 II.10 Graphical representation of the total force applied to the cell, p.78

. Ii, 11 Friction force along the cell profile at various time points, p.79

I. .. , Cell front displacement-Parametric study on a) µ f b) E cel l c) c p, f, p.81

. Badique, Example of micro-fabricated PDMS micro-pillars array, 2013.

]. .. , 93 III.3 Illustration of the engagement of the "molecular clutch" when actin filaments connect to integrins to build focal adhesions, p.95, 2007.

. , Push or pull" hypotheses: the cell nucleus is either pushed through the contraction of the perinuclear actin cap or pulled by contractile fibers (in green) towards the pillars

. , Experimental process to test the influence of gravity on nuclear deformation during cell spreading. Modified from, p.99, 2012.

. , III.7 Illustration of the material model and relationship between the configurations

. .. , 111 III.10 Interpenetration depth of the contact between the cell and the pillars during the simulation

. , 11 Illustration of the adhesive layer over the substrate in the case of the micro-pillared substrate

. , 12 Illustration of the spreading force f spr ead , directed radially, thus effectively spreading the cell over the substrate and creating an adhesion, p.114

. , 13 Illustration of the active zones in the cell with the PAC in blue and the bottom zone checkered in green

. , 14 Geometry of the cell in the initial condition of the system, p.117

. .. Overlayer and . Cuvelier, 118 III.16 Contact radius of the cell spreading over a flat substrate as function of time, as defined in, III.15 Cell spreading on a flat substrate with its, 2007.

. , 17 Geometry of the cell and the micro-pillared substrate in the initial configuration of the system

. .. , 18 Displacement d n of the bottom point of the nucleus for different configuration: Push & Pull (blue), Push (green) and Pull (orange), p.120

. .. , Simulation results for Push, Pull and Push & Pull simulation, p.121

. , Displacement of the top point of the cell for different configuration: Upside down (blue) and Control (orange)

. , III.C.1Geometry of the active domains in the cell and definition of ? P AC and ? bot t om

. , Numerical simulation of a self-synchronized pseudo-confined cell migration model