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Abstract
With the increased environmental concerns related to carbon emission, and rapid drop in
battery prices (e.g., 35% drop in 2017), the market share of Electric Vehicles (EVs) is
rapidly growing. It is predicted that 2020s will be the decade of EV and the global EV
market share will be up to 10% and 20% by 2020 and 2030, respectively. The growing
number of EVs along with the unprecedented advances in battery capacity and technology
results in drastic increase in the total energy demand of EVs. This large charging demand
makes the EV charging scheduling problem challenging. An apparent challenge is that
even with taking the advantage of deferrable property of charging demands and performing
proper scheduling, the aggregate demand might be beyond the tolerable charging rate of
the station, given physical constraints of charger devices and transformers. The critical
challenge is the need for online solution design since in practical scenario the scheduler has
no information of future arrivals of EVs in a time-coupled underlying problem. This thesis
studies online EV scheduling problem and provides three main contributions.

First, we demonstrate that the classical problem of online scheduling of deadline-
sensitive jobs with partial values is similar to the EV scheduling problem and study the
extension to EV charging scheduling by taking into account the processing rate limit of
jobs as an additional constraint to the original problem. The problem lies in the cate-
gory of time-coupled online scheduling problems without availability of future information.
Using competitive ratio, as a well-established performance metric, two online algorithms,
both of which are shown to be (2− 1

U )-competitive are proposed, where U is the maximum
scarcity level, a parameter that indicates demand-to-supply ratio. The first proposed algo-
rithm is deterministic, whereas the second is randomized and enjoys a lower computational
complexity. The performance of both algorithm matches the state-of-the-art as U grows
large. Nonetheless in realistic cases, where U is typically small, they achieve a much lower
competitive ratio. To carry out the competitive analysis of our algorithms, we present
a proof technique, which is novel to the best of our knowledge. This technique may be
used to simplify the competitive analysis of some existing algorithms, and thus could be of
independent interest.

Second, we formulate a social welfare maximization problem for EV charging scheduling
with charging capacity constraint. Even though the underlying problem is linear, it is diffi-
cult to tackle since the input to the problem, i.e., type of EVs, reveals in online fashion. We
devise charging scheduling algorithms that not only work in online scenario, but also they
address the following two key challenges: (i) to provide on-arrival commitment; respecting
the capacity constraint may hinder fulfilling charging requirement of deadline-constrained
EVs entirely. Therefore, committing a guaranteed charging amount upon arrival of each
EV is highly required; (ii) to guarantee (group)-strategy-proofness as a salient feature to
promote EVs to reveal their true type and do not collude with other EVs. Extensive
simulations using real-world traces demonstrate the effectiveness of our online scheduling
algorithms as compared to the optimal non-committed offline solution.
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Third, we tackle online scheduling of EVs in an adaptive charging network (ACN) with
local and global peak constraints. Given the aggregate charging demand of the EVs and the
peak constraints of the ACN, it might be infeasible to fully charge all the EVs according to
their charging demand. Two alternatives in such resource-limited scenarios are to maximize
the social welfare by partially charging the EVs (fractional model) or selecting a subset of
EVs and fully charge them (integral model). For the fractional model, both offline and
online algorithms are devised. We prove that the offline algorithm is optimal. We prove
the online algorithm achieves a competitive ratio of 2. The integral model, however, is
more challenging since the underlying problem is NP-hard due to 0/1 selection criteria of
EVs. Hence, efficient solution design is challenging even in offline setting. We devise a
low-complexity primal-dual scheduling algorithm that achieves a bounded approximation
ratio. Built upon the offline approximate algorithm, we propose an online algorithm and
analyze its competitive ratio in special cases. Extensive trace-driven experimental results
show that the performance of the proposed online algorithms is close to the offline optimum,
and outperform the existing solutions.

Keywords

Smart grids, electric vehicles, resource allocation, approximation algorithms, competitive
analysis



Résumé
Avec les préoccupations environnementales croissantes liées aux émissions de carbone et
la chute rapide des prix des batteries, la part de marché des véhicules électriques (EV)
augmente rapidement. Le nombre croissant de EV ainsi que les progrès sans précédent
dans la capacité de la batterie et de la technologie enträıne une augmentation drastique
de la demande totale d’énergie destinée aux véhicules électriques. Cette forte demande de
charge rend complexe le problème de planification de la charge. Même en prenant avantage
de la propriété reportable des demandes de charge et d’une planification adéquate, la de-
mande globale pourrait dépasser le taux de charge tolérable des stations, étant donné les
contraintes physiques des dispositifs de charge et des transformateurs. Le principal défi est
la nécessité de concevoir des solutions en ligne puisque, dans la pratique, l’ordonnanceur ne
dispose d’aucune information sur les arrivées futures d’EV. Cette thèse étudie le problème
d’ordonnancement des EV en ligne et fournit trois contributions principales.

Premièrement, nous démontrons que le problème classique de la programmation en ligne
des tâches sensibles aux échéances avec des valeurs partielles est similaire au problème
d’ordonnancement EV et étudions l’extension de la programmation des charges EV en
prenant en compte de la limite de traitement des travaux. Le problème réside dans la
catégorie des problèmes d’ordonnancement en ligne couplés dans le temps sans disponibilité
d’informations futures. Le premier algorithme proposé est déterministe, tandis que le second
est randomisé et bénéficie d’une complexité de calcul plus faible.

Deuxièmement, nous formulons un problème de maximisation du bien-être social pour
la planification de la charge des EV avec une contrainte de capacité de charge. Nous avons
conçu des algorithmes d’ordonnancement de charge qui non seulement fonctionnent dans un
scénario en ligne, mais aussi qui répondent aux deux principaux défis suivants : (i) fournir
un engagement á l’arrivée ; (ii) garantir la résistance aux stratégies (de groupe). Des simu-
lations approfondies utilisant des traces réelles démontrent l’efficacité de nos algorithmes
d’ordonnancement en ligne par rapport á la solution hors-ligne optimale non-engagée.

La troisième contribution concerne la planification en ligne des véhicules électriques
dans un réseau de recharge adaptatif (ACN) avec des contraintes de pics locaux et globaux.
Nous avons conçu un algorithme d’ordonnancement primal-dual de faible complexité qui
atteint un rapport d’approximation borné. Des résultats expérimentaux détaillés basés sur
des traces montrent que les performances des algorithmes en ligne proposés sont proches
de l’optimum hors ligne et surpassent les solutions existantes.

Mots-clés

Smart grids, véhicules électriques, allocation de ressources, algorithmes d’approximation,
analyse concurrentielle
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Classic Job Scheduling Algorithms . . . . . . . . . . . . . . . . . . 20

1.4.2 EV Charging Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1 Motivation

To promote quick adoption of green renewable energy sources, electrification of vehicles

is a trend that has been globally advocated in recent years; the global sale of Electric

Vehicles (EVs) increased by 80% in 2015 [1]. Consequently, it is expected that the EV

charging demand constitute a considerable portion of total energy demand, e.g., currently

transportation consumes 29% of total energy in the US, while electricity, in total, consumes

around 40% [1]. The growing number of EVs along with the unprecedented advances in

battery capacity and technology results in drastic increase in the total energy demand of

EVs. This large charging demand makes the EV charging scheduling problem challenging.

An apparent challenge is that even with taking the advantage of deferrable property of

charging demands and performing proper scheduling, the aggregate demand might be be-

yond the tolerable charging rate of the station, given physical constraints of charger devices

and transformers [2]. For example, the power capacity of a transformer in North America

is limited to 25 kVA [3]. Furthermore, in practice, EVs arrive to charging station in online

16
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fashion and the charging station has no information about the arrival and demand of the

future EVs. This makes the charging scheduling even more challenging.

It turns out that the problem of EV charging scheduling in a charging station and the

cloud job scheduling problem have similar basic structure. Similarly to the job scheduling

problem, EVs arrive to the charging station in an online fashion, each of which with dif-

ferent arrival time, deadline, demand, and value. The resource constraint in EV charging

scenario is the limited power of the charging station to be allocated to the EVs at each

time slot. The power constraint is determined by the chargers’ or transformers’ output

power or is set manually by the station operator. Despite these similarities, EV scheduling

problem poses an additional constraint that makes the corresponding classic job scheduling

problem more challenging. More specifically, the input power of EV’s battery is limited to a

specific amount called maximum charging rate. Therefore, unlike the traditional scheduling

problems, the completion time of a demand in EV scheduling problem not only depends

on the availability of the resources, but it is also dependent to the maximum charging rate

of its battery.

Another challenge is to design algorithms that work well in strategic environments

where users are selfish and try to maximize their benefit by cheating the system. Put it

another way, a user might lie about its preferences (e.g., deadline) to increase its utility.

Hopefully, the field of mechanism design provides us with guidelines to cope with these

users by designing strategyproof and group-strategyproof algorithms.

The goal of this thesis is to develop online scheduling algorithms for EVs with a fo-

cus on the performance and complexity of the algorithms, their application in strategic

environments and in a network of multiple charging stations.

1.2 General Model

We consider one (or multiple) charging station (CS) for EV charging purpose. The time

horizon is divided to T equal length time slots t = {1, 2, . . . , T} (e.g., T = 24 with time slots

of 1 hour length). There are n EVs (user or player, used interchangeably) denoted by set

N . Each EV i is characterized by its “charging profile” πi = 〈ai, di, vi, Di, ki〉 indicating its

arrival time, departure time, valuation of the job or willingness to pay, charging demand,

and maximum charging rate, respectively. The maximum charging rate of an EV is a

parameter dependent to physical properties of its battery. We refer to time interval Ti =

[ai, di] as availability window of EV i. At each time slot t in availability window of EV i,

the scheduler can set the charging rate of i, denoted by yti , to a value less than or equal to

its maximum charging rate, ki. We assume that for each EV i, its charging profile represent

a feasible demand, i.e., we have Di ≤ ki(di − ai + 1). We distinguish between online and
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offline scheduling. In this thesis, we consider online scenarios where the charging profile

of an EV is revealed to the CS only upon its arrival. Therefore, the CS is uncertain about

future demands which makes the scheduling problem challenging. In contrast, an offline

scheduling algorithms has access to all charging profile of current and future EVs which

cannot represent a real world scenario.

The variable vi can carry different meanings in different scheduling problems (e.g.,

priority, revenue, gain and value for the user). When generally speaking, we will refer to

vi as valuation or gain. If EV i is charged before its deadline the gain is vi. Otherwise, the

gain could be zero (integral revenue model) or calculated proportionally (fractional revenue

model) depending on the business model. It is assumed that for each EV i, its demand and

deadline represent a feasible charging profile with respect to its maximum charging rate

ki. More specifically, we have Di ≤ ki(di − ai + 1). At each time slot, the total electricity

flowed to the EVs is restricted to P kW and is referred to as peak constraint. Depending on

the scenario, there might be local and global peak constraint (e.g., in a multiple CS setting

in Chapter 4). The peak constraint is set based on cost effective consumption policy or due

to the fact that charger devices or installed transformers have constraint on the maximum

power that they can output in a time slot [4–6].

A main part of this thesis discusses on the performance of the proposed algorithms. We

use the notion of competitive ratio to evaluate our online algorithms. For a maximization

problem, we say that an online algorithm is c-competitive with optimal offline solution if

for all input sequences, the value of the optimal objective is at most c times the algorithm

result. We have the notion of approximation ratio for the offline algorithms that is defined

similarly.

1.3 Thesis Overview

This thesis is organized as follows. We first start by studying classic job scheduling problem

and consider its extension to EVs in Chapter 2. The main difference is that EVs’ battery

have limitation on their charging rate while in the job scheduling problem where jobs are

normally going to be processed by a CPU, there is no constraint on processing limit of the

jobs (in fact, the processing rate is limited to CPU processing rate which is assumed to be

high enough). The aim of this chapter is to provide performance analysis for some proposed

algorithms that contribute to the classic job scheduling problem as well. In particular,

the notion of competitive ratio is used to evaluate our scheduling algorithms in worst-case

scenarios. The objective function of the optimization problem in this chapter is simply total

valuation of EVs who get charged. This problem considers the profit of the aggregator but

not the users. To extend this work, in Chapter 3, we study the EV scheduling problem
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with the objective of maximizing social welfare for the charging network which includes

the profit of both users and aggregator. To define social welfare we considered two criteria

including on-arrival charging notifications given by charging station to the EVs at their

arrival time and valuation of the demands. To reflect a real-world scenario, we assume

that each EV (or user) is selfish and might try to maximize its utility by misreporting its

private data (including arrival time, deadline, valuation, demand and maximum charging

rate). To cope with this, this chapter relies on the result from mechanism design field that

aims to provide solutions for strategic environments. In both Chapter 2 and Chapter 3

the scheduling problem is solved for a single CS. Therefore, in Chapter 4, we proceed to

address the EV scheduling problem in multiple station scenario where in addition to the

local peak constraint in each CS, there is a global peak constraint where the aggregate

allocated power in all CSs at a single time slot should not exceed the global peak. The

global and local peak constraints could be set according to the maximum output power

of transformers installed in charging network or according to a cost-effective policy. We

inspired the system model from a real-world charging network consisting several CS. Also,

different business models for EV charging is considered.

In what follows, we review the main results of each chapter.

Chapter 2: Competitive Online Scheduling Algorithms for EVs

In this chapter, we revisit the deadline constrained job scheduling problem with par-

tial values and limiting maximum processing rate of the jobs and make the following key

contributions: We propose a deterministic algorithm, WFair, along with a simple ran-

domized algorithm, WRand that take into account the additional maximum charging

rate constraint in EV charging scheduling problem. We show that both algorithms are

(2− 1
U )-competitive, where U is the maximum scarcity level of the system. To the best of

our knowledge, amongst existing algorithms capable of respecting processing limit of the

jobs, none of them attains a competitive ratio better than 2. To accomplish the competitive

analysis of the two algorithms, we propose a new proof technique that can be applied to a

wider class of algorithms beyond this work.

Chapter 3: Online Scheduling to Maximize Social Welfare

In this chapter we aim to study a social welfare maximization problem and tackling

two challenges: (1) Online scheduling with on-arrival commitment. Enforcing capacity

constraint may result in partial or no charging of some EVs. In a proper design, the

scheduling mechanism must provide on-arrival commitment for the EVs, meaning that the

mechanism must notify each EV upon receiving its charging demand whether or not it

can receive (entirely or partially) the requested demand by the submitted departure time.

Without on-arrival commitment, at departure time, an EV may realize that its charging

request is not fulfilled, which definitely degrades user satisfaction. (2) Strategy-proof and
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group-strategy-proof scheduling design. The second challenge is a highly desired feature in

social maximization problems which tries to propose mechanisms that are robust against

selfish users and groups. Generally speaking, algorithmic mechanism design [7] is a field of

game theory, that tries to devise truthful (also known as strategy-proof) mechanisms such

that it is guaranteed that reporting true values is the best strategy for the players (EVs in

our problem) regardless of the behavior of the others. Group-strategy-proofness is a natural

generalization of strategy-proofness that tries to guarantee that not only truth-telling is

the dominant strategy for individual players, but also, no group of players can improve the

utility of at least one member of the group by lying, when the values of the other players

are fixed.

Chapter 4: Online Scheduling in a Network of Charging Stations

This chapter studies EV charging scheduling in an adaptive charging network (ACN)

governed by a single operator in a campus-scale location such as a university, a headquarter,

etc. [8]. A notable example is the Caltech ACN [9] where several charging stations (CSs)

dispersed in a charging network with the capability of adaptive charging of the electric

vehicles. The problem is different from EV charging scheduling in single station scenarios,

because of the essential need to respect the aggregate peak demand of the ACN. More

specifically, the ACN operator might limit the total power drawn from EVs to control

costs [10, 11], reserve the capacity for other loads, and/or participate in demand-response

events. The aim of this thesis is to use the deferrable property of EVs and schedule their

charging jobs, so as to intelligently control the global peak demand of the ACN.

1.4 Related Works

The charging scheduling problem for EVs in smart grids is a variation of classical job shop

scheduling problem [12,13] and thus is studied in a large extent. The job scheduling problem

has appeared in different application domains including task scheduling in processors [14,

15], cloud computing [16–19], and network buffer management [20]. In this problem, a

decision maker aims to maximize the total value of processed jobs in the presence of deadline

and resource constraints under heterogeneity in the value of jobs. In this section, we first

look over the existing works in the related domains (Section 1.4.1), and then review the

EV scheduling problem (Section 1.4.2).

1.4.1 Classic Job Scheduling Algorithms

As there is a plethora of real-world applications for the problem, extensive studies have

been conducted on the basic form of the problem [16, 17, 19–30] with a focus on online

algorithm design. These studies can be classified into full execution and partial execution
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models. We refer to [31] as the offline result, and [17,20,21,24,25,29] as online results.

1.4.1.1 Full Execution Model

A basic challenge in full execution form of the scheduling problem is that there is no partial

gain for partially processed jobs. For the offline setting, efficient algorithms are developed

[31,32] while the online version of the problem is more challenging and addressed in [17,20,

21,24,25,29,33–36]. A primal-dual algorithm in [21] is proposed and its competitive ratio is

computed according to a slackness parameter, s, which indicates how much users can wait.

The competitive ratio is 3+O
(

1
(s−1)2

)
for 1 < s < 2 and 2+O

(
1
3√s
)

for s ≥ 2. The study is

extended in [17] to provide incentive compatible scheduling mechanism design. However, in

practice, the slackness parameter is expected to be close to 1 as users are usually desire to

finish their job as soon as possible. [29] addressed the scheduling problem with commitment

where users are notified in their arrival whether they will receive their demand or not. The

system is still allowed to not complete an accepted job by accepting a penalty related

to job’s value. A simple online algorithm that achieves the optimal competitive ratio of

3 − 2
√

2 is proposed. For packet scheduling problem, [36] is developed a 1.93-competitive

algorithm. When packets are unit-length, it is shown in [35] that the competitive ratio lies

in interval [2, 1.63]. Except [21], non of the above mentioned online solutions considered

jobs’ processing limit (a.k.a parallelism bound) in the formulation.

1.4.1.2 Partial Execution Model

Studies in [16, 19, 22, 23, 26–28, 30] considered partial execution model. Two simple and

natural greedy algorithms named FirstFit and EndFit are proposed in [30], where both

algorithms are 2-competitive and the bound is tight. For non-decreasing concave utility

functions, the ISPEED algorithm in [16] provides competitive ratio of 2 + α, where α is

a shape parameter. The study is extended in [19] to the case of multi-resource scenario

by taking into account the processing limit of jobs and providing a competitive ratio of 2.

In [26], the authors provide a lower bound of 1.236 for the competitive ratio and propose

MIXED, which is shown to be 1.8-competitive. An improvement to this result appears

in [27], where the authors propose MIX, and show that it is e
e−1 ≈ 1.582-competitive.

The idea is that each job receives some resources according to its unit value unless its

unit value is less than a threshold. Furthermore, a lower bound of 1.25 is provided for

the competitive ratio of any randomized (and hence deterministic) online algorithm. We

stress that filling the gap between the lower and the upper bounds is still an open problem.

Moreover, authors provide an upper-bound of 1.618 when time sharing is not allowed (i.e.,

only one job can be processed at each time). [28] studied the problem when time sharing is

not allowed and the number of concurrent jobs, m, is limited. Their proposed algorithm,
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GAP, is 1.618-competitive when there are only two concurrent jobs. However, GAP attains

a larger competitive ratio when the number of concurrent jobs increases. Studies in [22,23]

address scheduling in interactive services such as web servers and finance services but do

not provide competitive analysis for the proposed methods. We emphasize that in our

model jobs (EVs’ charging demand in our case) have limited processing rate, which adds

to the complexity of the problem.

1.4.2 EV Charging Scheduling

There is a growing number of studies in the EV scheduling problem (see, e.g., [37, 38])

to provide efficient algorithms aiming to optimize different objective functions including

aggregator profit, users’ comfort level, etc. In this section, we will focus on the studies that

propose competitive algorithms, i.e., those whose worst-case performance with respect to

the optimal offline solution is bounded.

The EV scheduling problem is a special case of job scheduling problem where the pro-

cessing limit of jobs is an essential constraint to be considered. Therefore, the studies

reviewed in Section 1.4.1 cannot be directly applied to the EV problem. Although there

are some exceptions [19,21,31], yet none of them provide a competitive ratio better than 2.

Moreover, [21, 31] consider a slackness parameter in their model (see Section 1.4.1), which

we believe cannot capture the real world scenarios. Also, the algorithm in [19] reduces to

FirstFit algorithm [30] which is compared to our algorithms in simulation section. An

online e
e−1 ≈ 1.582-competitive algorithm is developed in [39] but the constraint on the

charging speed of the EVs is missing from the formulation. Moreover, the authors assume

that all EVs have the same demand. Assuming that there is no resource constraint in

charging station and the objective is to minimize the cost for the aggregator, [40] and [41]

proposed online algorithms, called SOCA and ORCHARD respectively, that achieve the

optimal competitive ratio of 2.39. The studied problem in this thesis is fundamentally

different than [40] and [41] in the constraint set and the objective function. [42] considers

same model as described in this thesis and proposes a truthful online scheduling algorithm

assuming that discharging of EVs can be done instantaneously in their departure (referred

to as on-departure burning) and EVs have the same charging rate. The authors extended

the work in [43] and [44] for heterogeneous charging rates and proved that the proposed

algorithm is 2-competitive. However, the assumption of on-departure burning is not realis-

tic. [45] proposed TAGS algorithm and proved that the algorithm has optimal competitive

ratio. However, in their model, all EVs have the same unit value and there is no limit

on the charging speed. Under the same model, [46] proposed DSAC, an online scheduling

algorithm with admission control (i.e., on-arrival notification). DSAC achieves an optimal

competitive ratio for the case of linear utility function. In the next chapter, we will propose
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competitive online algorithms for EV scheduling problem where their competitive ratio are

less than the best known results under fairly reasonable assumptions. To the best of our

knowledge, there is no online algorithm achieving a competitive ratio better than 2 that

respects charging rate limitations of the EVs (or jobs).

1.4.2.1 Peak-Constrained EV Charging Scheduling

There is an extensive literature on EV scheduling problem where most of them focused on

single CS [4, 47] and the local and global peak constraints are usually omitted or only the

local peak is considered. As discussed in Section 4.2.2, the global optimal solution cannot be

obtained by separately solving the single station problems. Hence, those solutions cannot

be directly applied to our problem.

A scenario that local and global peak constraints exist is the case that scheduling is

required for a charging network for multiple CSs. Studies in [48–53] addressed charging

scheduling problem in multiple CSs. The authors in [48] tackled a global EV charging

scheduling problem in a system consisting of a central controller and multiple local con-

trollers to minimize total cost. However, there is no limit on the maximum peak demand

that the system can tolerate. Consequently, the peak value can be arbitrary high depending

on the total demand. This may increase the electricity bill of large costumers substantially

mainly due to very high peak demand. In addition, high EV penetration level leads to

high peak which may pose danger for the grid system [51]. Besides, the charger devices

installed in the CSs have limitation on the maximum power that they can transfer in each

time unit [6]. We solve the issue by constraining local and global peaks. However, to meet

the peak constraints, it may not be feasible to respond to all charging demands. Conse-

quently, only a subset of EVs can be charged [5], which is captured in our integral charging

model. [51] considered a multi-microgrid system with global peak constraint where each

microgrid has a CS and the goal is to minimize the operating cost of the system and the

exchanged electricity between microgrids and main grid. The authors assume that charging

aggregators are able to forecast required information about individual EVs which may not

represent a real scenario. A similar assumption is made in [52, 53] where the objective is

to maximize total utility of EVs and aggregators in a distribution network.

To avoid big billing cost in peak hours, [50] proposed a solution based on genetic al-

gorithm to find optimal capacity and location of parking lots for serving demands in peak

hours with the goal of maximizing total benefit of all stations. Although authors stud-

ied the problem under multiple CS setting, their solution is not applicable to our setting

when the CSs are already set up. [49] employed a similar model used in this thesis, where

both local and global peak constraints in a charging network are considered. The objec-

tive in [49] is to maximize user convenience level which is different from the aim of the



24 1.4. RELATED WORKS

problem studied in this work. More importantly, the authors solve the single-slot problem,

which fails to provide a general solution taking into account EVs’ arrival and departure

times which are considered in our study. As an alternative approach to control the peak,

some studies directly targeted minimizing the peak [54,55]. In [54], an online algorithm is

developed for EV charging to minimize the peak by minimizing the impact uncertainty of

renewable energies. [55] proposed a valley filling method by leveraging V2G in peak hours.

Although the peak is minimized in above works, it cannot guarantee that the minimized

peak is tolerable.

1.4.2.2 Scheduling Under Demand Uncertainty

A main challenge in EV scheduling problems is to cope with demand uncertainty. Many

studies including [5, 47, 54, 56–59] addressed online scheduling problem with different ob-

jectives. [5, 56] studied the problem of maximizing social welfare considering the benefit

for both users and service provider. [47] and [57] developed algorithms to minimize the

charging price for the CS, where the proposed algorithm in [47] is 2.39-competitive. In [59],

an online 2-competitive algorithm is proposed for a single CS which provides incentives for

the users to truthfully report their data.

Our problem in this thesis is unique from above works in different aspects. First, we

study the problem in an ACN where several CSs exist. None of the above studies solve

the problem under this setting. Second, the previous algorithms do not work for both

integral and fractional charging models. In addition, [57, 58] put no limit on the charging

rate of EVs which makes their solution impractical in real scenarios. Also, [47, 54, 56–58]

do not consider the peak limitation of the CS. Finally, the study in [59] assumes that

EVs are capable of getting discharged in a negligible amount of time, resulting in a 2-

competitive algorithm. However, the assumption is not realistic for EVs. In this thesis,

we consider these limitations and develop online and offline algorithms for fractional and

integral revenue models in an ACN and provide theoretical bounds on their performance.
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2.1 Introduction

Online scheduling of heterogeneous deadline-constrained jobs in the presence of limited re-

sources is a fundamental, yet challenging problem in different application scenarios. Notable

examples are network buffer management [20], processors sharing [14, 15], as traditional

applications, and cloud job scheduling [18] and electric vehicle (EV) charging schedul-

ing [37,46,60], as the state-of-the-art examples.

In the classic form of the online scheduling of deadline-sensitive jobs, there is a limited

resource (e.g., router’s buffer, CPU time, or the maximum power capacity of EV charging

station) that is shared among a set of jobs (users, task, or EVs) that arrive over time in

an online fashion. The jobs are heterogeneous in terms of arrival, deadline, demand, and

value (or weight), and the goal is to maximize total value obtained from the jobs, subject

to the resource capacity constraints. The target applications could be categorized into

full [17, 31] and partial [16, 19, 23, 26–28, 30] execution models. In the present work, we

focus on the latter, where partially completed jobs get partial values proportional to their

received resource. Notable examples of partial models are job scheduling in web search

applications [22], multimedia content transmission [30], and EV charging scheduling [37].

The underlying classic problem under partial execution model has been first introduced

in [30] and two simple greedy heuristics are proposed. Our focus in this chapter is on

online algorithms with a bounded worst-case performance determined by their competitive

ratio1 to maximize charging station gain. Using the competitive analysis [61], the authors

in [30] demonstrated that both algorithms achieves the competitive ratio of 2 Using the

ideas of prioritizing the valuable jobs and timesharing among the jobs, in [26] and [27],

the competitive ratio has been improved to 1.8 and 1.582, respectively. With extensive

applications in the recent research topics, the problem has been extended to several other

settings such as multi-resource allocation [19], providing resource commitment [29], and

truthful analysis [17], among others.

This chapter especially focuses on the application of scheduling that is identified with

the advent of EVs. EVs are a promising alternative for the conventional vehicles considering

their significant advantages in energy efficiency, zero emission, and relieve reliance on fossil

fuels. With increasing number of EVs, their charging demand can pose a tremendous

challenge to the power system operation [37, 46, 60]. EV charging demand, however, is

usually deferrable implying that there is often considerable flexibility in charging schedule.

It turns out that the problem of EV charging scheduling in a charging station and the

cloud job scheduling problem have similar basic structure. Similarly to the job scheduling

1An online algorithm A is c-competitive for c ≥ 1 if for any input instance the optimal gain is at most c
times the algorithm’s gain.
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problem, EVs arrive to the charging station in an online fashion, each of which with dif-

ferent arrival time, deadline, demand, and value. The resource constraint in EV charging

scenario is the limited power of the charging station to be allocated to the EVs at each

time slot. The power constraint is determined by the chargers’ or transformers’ output

power or is set manually by the station operator. Despite these similarities, EV scheduling

problem poses an additional constraint that makes the corresponding classic job scheduling

problem more challenging. More specifically, the input power of EV’s battery is limited to a

specific amount called maximum charging rate. Therefore, unlike the traditional scheduling

problems, the completion time of a demand in EV scheduling problem not only depends

on the availability of the resources, but it is also dependent to the maximum charging rate

of its battery.

In this chapter, we revisit the deadline constrained job scheduling problem with par-

tial values and limiting maximum processing rate of the jobs and make the following key

contributions:

1. We propose a deterministic algorithm, WFair, along with a simple randomized

algorithm, WRand that take into account the additional maximum charging rate

constraint in EV charging scheduling problem. We show that both algorithms are

(2− 1
U )-competitive, where U is the maximum scarcity level of the system. To the

best of our knowledge, amongst existing algorithms capable of respecting processing

limit of the jobs, none of them attains a competitive ratio better than 2.

2. We examine the performance of the proposed algorithms by trace-driven experiments.

As our results show, the empirical cost ratios of our algorithms are much better than

the obtained theoretical competitive ratios.

3. To accomplish the competitive analysis of the two algorithms, we propose a new proof

technique that can be applied to a wider class of algorithms beyond this work. In

particular, when applied to derive competitive performance bounds of some existing

algorithm (e.g., [30]), the presented technique recovers the same results using much

simpler proofs. We therefore believe that it could be of independent interest beyond

EV charge scheduling problem as well.

The rest of this chapter is organized as follows. In Section 2.2, the tailored system

model for EV charging application is introduced and the problem is formulated. Section 2.3

proposes two deterministic and randomized algorithms. The deviation method is introduced

in Section 2.4 and used for the competitive analysis. The results of simulations are reported

in Section 2.5. Finally, Section 2.6 concludes the chapter and highlights future directions.
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Table 2.1 – Summary of notations

Notation Description

T Set of time slots with |T | = T , indexed by t
Nt Set of available users at t with |Nt| = nt
Mt Set of active users at t with |Mt| = Mt

Tj Availability window of user j
Dj Demand of user j
vj Value of user j for receiving demand Dj

K The maximum charging rate of users
ρj Unit value of user j, i.e., ρj = vj/Dj

Rj,t Residual demand of user j at t: Dj −
∑

t′∈Tj ,t′≤t yj,t′

P Capacity constraint of the charging station
yj,t decision variable, the amount that user j is charged at t

2.2 System Model and Problem Formulation

We consider a discrete time-slotted system where the time horizon is divided into T time

slots indexed by t ∈ T := {1, . . . , T}. Time slots are assumed to be of equal lengths. We

present our model in the context of EV charging scheduling. Consider a single charging

station with capacity (resource) constraint of P (in kWh, say) to serve a set comprising

n users (EVs, or jobs, used interchangeably) indexed by j. User j is represented by its

demand profile πj = 〈Tj , vj , Dj〉, where Tj denotes the availability window and vj is the

value for receiving demand Dj . The availability window Tj consists of all time slots from

the arrival to the departure of user j. Let K denote the maximum charging rate of the

EV, which is assumed to be fixed for all EVs2. We denote by ρj =
vj
Dj

the unit value

(a.k.a. marginal value [31] or value density [24]) of user j.

We consider an online setting in which the profile of each user is only known to the

scheduler upon its arrival.

We assume a preemptive model in which the scheduler is allowed to pause charging of

an EV at any time and resume it later. We denote by yj,t ∈ [0,K] the allocated resource

to the EV j at slot t. Moreover, Rj,t = Dj −
∑

t′:t′≤t yj,t′ is the residual demand of EV

j at time slot t. We consider the partial charging model, where if EV j receives its total

demand Dj within its availability window, the obtained value is vj . Otherwise, its gain

would be
∑

t∈Tj yj,tρj .

Next we introduce some definitions. We say that EV j is available at time slot t if

2Our algorithms can be straightforwardly extended to the setting with heterogeneous charging rate
demands. We consider fixed rates to facilitate our competitive analysis.
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t ∈ Tj . Moreover, given the scheduling policy, EV j is active at time slot t if it is available

at t but its charging demand is not fulfilled yet. Finally, EV j is said to be selected at

time slot t if yj,t > 0. For any time t, let Nt and Mt denote the set of available and active

EVs at time slot t, respectively. Further, let nt and Mt be the cardinality of Nt and Mt,

respectively. Under a given algorithm A, introduce SA,t as the set of selected EVs at time

t by A:

SA,t := {j : yAj,t > 0} .

Moreover, we define SOpt,t := {j : y?j,t > 0}, where y?j,t is the allocated resource to j at t by

the optimal solution.

The key notations used in this chapter are listed in Table 2.1.

Having introduced these notations and definitions, we may formulate the EV scheduling

problem under partial execution model as follows:

rjsp : max
~y

n∑
j=1

ρj
∑
t∈Tj

yj,t (2.1a)

s.t.
∑
t∈Tj

yj,t ≤ Dj , ∀j (2.1b)

∑
j:t∈Tj

yj,t ≤ P, ∀t (2.1c)

0 ≤ yj,t ≤ K, ∀j, t, (2.1d)

yj,t = 0, ∀(j, t) : t /∈ Tj (2.1e)

The rjsp in Eq. (2.1a) maximizes the charging station gain. The constraint in (2.1b)

limits the total resources received by an EV to its demand as there is no benefit for the

charging station to overcharge the EVs. The second constraint in (2.1c) is the capacity

constraint, and the third and the fourth constraints enforce the charging station to respect

the maximum charging rate and to charge EVs only during their availability window.

First observe that rjsp is a linear program and can hence be solved efficiently in offline

scenarios. Second, in online scenarios the problem is less challenging to solve if the charging

rate constraint in (2.1d) is omitted. In fact, with the charging rate constraint, part of the

resources at some time slots might remain unused while there are some users that have not

received their entire demand yet. Such users may also not receive their total demand in

the next time slots if they are not selected for charging due to resource scarcity. Third,

any c-competitive algorithm for rjsp is also a c-competitive solution for the basic form of

rjsp (i.e., the form without maximum charging rate constraint). However, the inverse is

not necessarily true.
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(a) Jobs 1 and 2 arrive at t =
1.

t=1 t=2

)1,1},2,1({1 
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(b) Scenario 1: No arrival at
t = 2.

t=1 t=2

)1,1},2,1({1 

)1,1},1({2  )1,1},2({3 

(c) Scenario 2: Job 3 arrives
at t = 2.

Figure 2.1 – A simple scheduling scenario. Dotted line indicates a time slot that is not
visited yet and the scheduler has no information about the arriving EVs in that slot.

2.3 Online Scheduling Algorithms

In this section, we propose two online algorithms for rjsp. The competitive ratios of the

two algorithms as well as their computational complexities are summarized in Table 2.2.

Table 2.2 – Summary of the proposed algorithms

Algorithm comp. ratio Complexity Type

WFair 2− 1
U O(n2T ) Deterministic

WRand 2− 1
U O(nT log n) Randomized

2.3.1 The WFair Algorithm

In this subsection, we present a deterministic algorithm, which we refer to as WFair, as

an online algorithm for rjsp. The pseudo-code of WFair is listed as Algorithm 1.

WFair allocates the available resources to the users proportional to their unit values.

More precisely, at each time slot t, the algorithm runs in multiple rounds, where at each

round an active user j receives

min
{ ρj∑

i∈Mt
ρi

(
P −

∑
i∈N

yi,t

)
, Rj,t,K − yj,t

}
(2.2)

units of the resource (Line 6 of the algorithm). The received resource by each user is linearly

correlated to its unit value. Therefore, for all active users at t, it holds that yj,t > 0 as unit

values are non-zero, i.e., no user will be left unallocated but it may receive an infinitesimal

amount if
ρj∑

i∈Mt
ρi

is very small. Note that for some users, the second or the third term in

Eq. (2.2) might be selected. In this case, the aggregate allocated amount might be less than

the total capacity. This potential issue is resolved by re-allocating the residual resource
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Algorithm 1: WFair (for time slot t)

1 Lt ←Mt

2 yj,t ← 0, ∀j
3 while

∑
j yj,t < P and Lt 6= ∅ do

4 for all j ∈ Lt do
5 δj,t ← min

{ ρj∑
i∈Lt

ρi

(
P −

∑
i∈Nt

yi,t
)
, Rj,t,K − yj,t

}
6 for all j ∈ Lt do
7 yj,t ← yj,t + δj,t
8 Rj,t ← Rj,t − δj,t
9 if Rj,t = 0 then

10 Lt ← Lt\j

in multiple iterations until the entire resource allocated or all the active users get their

maximum possible requirements.

We stress that this allocation rule is in contrast to that of FirstFit algorithm [30],

which allocates the resources to the most valuable users first.

Fig. 2.1 shows a general example, which we will refer to frequently to clarify the technical

discussions. If we run WFair over the scenario of Fig. 2.1, it will share the resources in the

first time slot equally between users 1 and 2 (because ρ1 = ρ2) and set y1,1 = y2,1 = 0.5.

Therefore, the gain (i.e., total valuation of allocated resources) of WFair at t = 1 is 1.

The worst-case for WFair happens when no user arrives at t = 2. In this case, Opt = 2

(by allocating user 2 in the first slot and user 1 in the second slot) and WFair will set

y1,2 = 0.5. So, the total gain by WFair is 1.5.

We now illustrate a worst-case instance for WFair. For more in-depth analysis on the

competitive ratio of WFair see Section 2.4.

Worst-case instance for WFair: Consider a single time slot scenario with P = K =

T = 1 and n users where n is sufficiently big. The charging profiles are π1 = 〈{1}, 1
2 ,

1
2〉 and

π2 = · · · = πn = 〈{1}, 1
2n ,

1
2〉. Hence, we have ρ1 = 0.5 and ρ2 = · · · = ρn = 1

2n . Therefore,∑
j ρj = 0.5 + n−1

2n which approximates to 1 as n is large. The optimal solution is to fully

schedule user 1 while giving no resources to the other users. WFair shares the resources

between all the EVs such that EV 1 only receives half of the resource and the other half is

allocated to rest of the users. This leads to a total gain of 0.5 while the optimal gain is 1.

The above example indicates that the competitive ratio of WFair could not be better

than 2. We however note that the presented worst-case scenario is quite unrealistic as

the ratio of demand-to-supply is a small constant in practice. Under this assumption, the

competitive ratio can be improved.
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t=1

)1,2/1},1({ nn 

)1,2/1},1({2 n

...

)1,1},1({1 

)1,2/1},1({3 n

Figure 2.2 – A worst-case instance for WFair.

Next we define the notion of scarcity level:

Definition 2.3.1.1 (Scarcity Level [62]). The scarcity level Ut at time slot t is defined as

Ut = ntK
P . Moreover, the maximum scarcity level of the system is U = maxt Ut.

Indeed the scarcity level Ut is an indication of demand-to-supply ratio, where the demand

is roughly Ut times higher than the available resource.

The following theorem provides the competitive ratio of WFair:

Theorem 2.3.1.1. WFair is (2− 1
U )-competitive.

2.3.2 The WRand Algorithm

In this subsection, we present WRand, a randomized algorithm for rjsp. In general, ran-

domized algorithms bring two main advantages over deterministic ones. First, they are usu-

ally more efficient in terms of the algorithm cost. Second, a randomized algorithm usually

admits a simpler design than deterministic ones, which in turn makes the implementation

easier. The competitive ratio of a randomized algorithm is measured with respect to an

adversary model, which determines the way the input sequence to the problem is generated.

We distinguish between two notions of adversary: oblivious adversary and adaptive online

adversary. An oblivious adversary knows the algorithm code but should choose the entire

input sequence in advance (i.e., before the start of the algorithm), whereas an adaptive

online adversary, can well condition the input at each time step on the algorithm’s history

of plays.

The WRand algorithm is motivated as follows (we refer to Algorithm 2 for its pseudo-

code). At each slot t, the algorithm selects one or multiple active users randomly with a
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Algorithm 2: WRand (for time slot t)

1 Lt ←Mt

2 yj,t ← 0, ∀j
3 while

∑
i yi,t < P and Lt 6= ∅ do

4 Select user j with probability
ρj∑

i∈Lt
ρi
I{j∈Lt}

5 yj,t ← min{K,Rj,t, P −
∑

i yi,t}
6 Lt ← Lt\j

probability proportional to their unit values: the more the unit value of a user, the higher

the probability it will be selected. More specifically, the algorithm maintains a set Lt that

comprises all active users whose demand has not been met. Then, at each round of the

‘while’ loop, it selects a user j with probability proportional to ρjI{j∈Lt}, where for an

event X, IX = 1 if X holds, and IX = 0 otherwise. Then, the selected user is processed

with the highest rate (Line 5). The process continues until no more user can be processed.

Theorem 2.3.2.1. WRand is (2− 1
U )-competitive against an oblivious adversary.

2.3.3 Discussion

We provide some remarks on the proposed algorithms.

• First, WFair and WRand characterize the competitive ratio as a function of the

scarcity level. The worst competitive ratio bound (equal to 2) for these algorithm,

which occurs when U tends to infinity, matches the existing results with maximum

charging rate [19, 21, 31]. In practice, however, the scarcity level is expected to be

a small constant as the capacity is usually set based on the expected demand (as

in, e.g., a cloud). Fig. 2.3 depicts the competitive ratio of the proposed algorithms

against different values of U .

• The time complexity of WFair and WRand are O(n2T ) and O(nT log n), respec-

tively. Thus, WRand is a better choice in terms of computational complexity while

attaining the same competitive ratio. Due to space constraints, we omit the details

of the time complexity analysis.

• Finally, we mention that both our proposed algorithms are deadline-oblivious as they

do not use the users’ deadline in decision making. This property, on the one hand,

proves useful in scenarios where the users’ deadline are not provided to the system. It

also makes the implementation easier. On the other hand, deadline-aware scheduling
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Figure 2.3 – Competitive ratio of proposed algorithms w.r.t. scarcity level (Definition
2.3.1.1).

algorithms may enjoy a better competitive ratio (than that of deadline-oblivious ones)

by utilizing the deadline information. Probably, no deadline-oblivious scheduling

algorithm for rjsp can attain a competitive ratio better than 2 − ε for all ε > 0

when U grows large. An intuitive proof for this could be obtained by considering a

scheduling problem in two time slots (i.e., T = 2) with n+ 2 users, P = K = 1, and

setting π1 = · · · = πn = 〈{1, 2}, 1, 1〉 and πn+1 = 〈{1}, 1, 1〉. Since users 1 to n + 1

only differ in their deadlines, they could not be distinguished by a deadline-oblivious

algorithm. This would lead to a situation in which, with a high probability, user

n + 1 at t = 1 would not be allocated any resource. In this case, the adversary can

set πn+2 = 〈{2}, 1, 1〉, thus resulting in a competitive ratio of 2.

2.4 Competitive Analysis

2.4.1 Preliminaries

The competitive analysis of our proposed algorithms relies on a proof technique, which is

novel to the best of our knowledge. In this subsection, we describe our proof technique and

illustrate it through some examples.

Let A be an online algorithm that outputs a feasible solution for rjsp. Let yAj,t denote

the resource (charging rate) allocated to user j at time t under A, and Alg be the corre-

sponding objective value. Fix an optimal offline algorithm with objective value Opt and

charging rates y�j,t, j ∈ N , t ∈ T . If yAj,t ≥ y�j,t for all j and t, then A is optimal. However,

if there exists a user j and a time slot t such that y�j,t > yAj,t, then the difference y�j,t − yAj,t
might increase the gap between Alg and Opt (by the amount (y�j,t − yAj,t)ρj). Let Bj,t be
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the block3 of the resource that A allocated to user j at t with |Bj,t| = yAj,t. Furthermore,

denote by B̄j,t the block corresponding to the additional resource that the optimal algo-

rithm allocated to user j at t as compared to A, which could be feasibly allocated by A to

user j at t.

We denote by Φj,t the total gain that could be obtained by A if it had allocated Bj,t∪B̄j,t
to j at time t. We have

Φj,t = ρjy
A
j,t + ḡj,t , (2.3)

where ḡj,t denotes the gain of A in block B̄j,t. To calculate ḡj,t, we need to know the

valuation of EV(s) (if any) that occupied block B̄j,t as well as the size of B̄j,t, which we

denote by ∆j,t. Based on the previous discussion, ∆j,t can be determined as follows:

∆j,t =

{
min{y?j,t − yAj,t, Rj,t} y?j,t ≥ yAj,t
0 otherwise.

(2.4)

The gain of A in sum of the two blocks B̄j,t and Bj,t is ρj∆j,t units less than that of

the optimal solution unless A allocates the difference ∆j,t to some other EVs and obtains

the corresponding gain, ḡj,t. If A allocates the whole block B̄j,t to a single EV i, then

ḡj,t = ∆j,tρi. More complex cases where there are more than one EV that occupy B̄j,t will

be considered later in the competitive analysis of our algorithms.

Next we introduce the notions of gain and loss. The gain of algorithm A at time t is

defined as follows:

ΓA,t =
∑
j

ρjy
A
j,t. (2.5)

Furthermore, we note that Alg =
∑

t∈T ΓA,t.

Define LA,t as the loss of A at t expressed as

LA,t = Opt−Opt−tA ,

where Opt−tA is the optimal value of a variant of rjsp where the resource allocated to any

user i at time t coincides to that allocated by A. Equivalently, Opt−tA is the optimal value

of rjsp with the following additional constraint: for all i, yi,t = yAi,t. Moreover, the total

loss of A is given by LA =
∑

t∈T LA,t. The value LA,t characterizes the amount that A
deviates from Opt at slot t. Define the loss of user j at slot t as

Lj,t = ρj∆j,t, t ∈ Tj . (2.6)

3Block is a conceptual term that facilitates our theoretical analysis and is not appeared in the main body
of algorithm design.
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Then an upper bound on LA,t can be obtained as follows:

LA,t ≤
∑

j∈SOpt,t

Lj,t.

In the following theorem, we relate the notion of loss of an algorithmA to its competitive

guarantee.

Theorem 2.4.1.1. If Lj,t ≤ cΦj,t for all j and t, for some c ≥ 0, then A is (1 + c)-

competitive.

Proof. To prove the theorem, we provide lower and upper bounds on LA. First observe

from the definition of LA,t that the gap between Opt and ΓA is less than or equal to the

aggregate loss over the time horizon:

Opt−Alg ≤ LA.

On the other hand, we have

LA =
∑
t∈T

LA,t ≤
∑
t∈T

∑
j∈SOpt,t

Lj,t

≤
∑
t∈T

∑
j∈SOpt,t

cΦj,t

= c
∑
t∈T

ΓA,t = cAlg.

Putting the two bounds together gives Opt ≤ (1 + c)Alg and completes the proof.

In what follows, we first define the notion of work-conserving algorithm and then provide

two examples to illustrate the application of the technical tool described above.

Definition 2.4.1.1 (Work-Conserving Algorithm [63]). A scheduling algorithm is work-

conserving if it processes requests as long as there is some resources to allocate.

Example 1 : Consider a scheduling problem during 2 time slots (T = 2) with P = 1

and K = 1 as shown in Fig. 2.1a. At the first time slot, users 1 and 2 arrive with demand

profiles π1 = ({1, 2}, 1, 1) and π2 = ({1}, 1, 1). Consider an algorithm A that selects user 1

to process at time slot 1. The gain at the first time slot is ΓA,1 = 1. For the second slot, we

consider two scenarios as shown in Figs. 2.1b-2.1c. In the first scenario (Fig. 2.1b), where

no EV arrives, we get Opt = 2 (by setting ~y?1 = [0, 1] and ~y?2 = [1, 0]). Since A already

fully charged EV 1, we get Alg = 1 (with ~y1 = [1, 0] and ~y2 = [0, 0]). To obtain Opt−1
A we

fix algorithm A’s decision at time slot 1 (that is selecting user 1) and find the maximum
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objective value that can be obtained by A which is 1. Therefore, Opt−1
A = 1. The loss

of A at t = 1 is then LA,1 = Opt −Opt−1
A = 2 − 1 = 1. Now let us consider the second

scenario, where user 3 arrives at t = 2 with π3 = ({2}, 1, 1) (in Fig. 2.1c). In this case, if A
sets y3,2 = 1, then ΓA,2 = 1 and thus ΓA = 2. We have Opt = 2 and so, Opt−1

A = 2 and

LA,1 = Opt−Opt−1
A = 2− 2 = 0.

Example 2 (Competitive analysis of FirstFit [30]): FirstFit [30] is a natural 2-

competitive greedy scheduling algorithm that sorts the users based on their unit values and

selects them one at a time until no more user can be allocated. Each time, the most valuable

EV from the sorted list is selected and the processing rate is set to the maximum feasible

rate. The algorithm continues until no more feasible allocation is possible (therefore, the

algorithm is work-conserving). According to Theorem 2.4.1.1, the competitive ratio of

FirstFit is (1 + maxj,t Lj,t/Φj,t).

In what follows we apply our technique to derive the competitive ratio of FirstFit.

For selected user j at slot t by the optimal solution, we have Lj,t ≤ ρjy
?
j,t. If ∆j,t = 0, it

means that the block B̄j,t is allocated to some other users with at least the same unit values

as j otherwise, FirstFit would process j with a higher speed. Therefore, ḡj,t ≥ ρj∆j,t.

Thus, noting that yj,t + ∆j,t = y?j,t, we get

Lj,t
Φj,t

=
ρj∆j,t

ρjyj,t + ḡj,t
≤ ρj∆j,t

ρj∆j,t
= 1.

Applying Theorem 2.4.1.1 proves that FirstFit is 2-competitive.

We conclude this subsection by the following definition:

Definition 2.4.1.2 (Saturated Time Slot). A time slot t is said to be saturated if it

satisfies
∑

j yj,t = P .

2.4.2 WFair Analysis (Proof of Theorem 2.3.1.1)

We first note that we assumed U > 1. For the case where U ≤ 1, it is trivial to show that

WFair is optimal as there will always be sufficient resources to schedule all users with the

maximum speed.

To prove the theorem, we compute Lj,t and Φj,t for WFair, and then apply Theorem

2.4.1.1. Without loss of generality, assume 0 < ρi ≤ 1 for all i and
∑

i∈Mt
ρi = 1. This

is always possible through normalization, namely by dividing the unit value of each user

to the sum of unit values of all active users. Moreover, we assume that for any active job

i 6= j at time t, it holds that Ri,t ≤ K. This assumption can be relaxed by temporarily

aggregating multiple demands into a single demand for the current slot and then splitting

them at the next slot.
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Let A = WFair, and to ease notation, in the rest of the proof we omit the dependence

of yAj,t on A for all j and t (so yj,t := yAj,t). Fix an optimal solution and a user j ∈ SOpt,t.

Let y?j,t denote the amount of resource allocated by the optimal solution to j at time t.

Since we consider the worst-case, in the rest of the proof we assume that j is not completed

by WFair (otherwise, Lj,t = 0) and thus, j ∈Mt.

If
∑

i∈Mt
min{K,Ri,t} ≤ P , then all active users can be scheduled with the maximum

feasible rate at t and the gain is ρi min{K,Ri,t} for all i ∈Mt. In this case, LA,t = 0 since

for any available user i, yi,t = min{K,Ri,t} ≥ y?j,t or i is completed in an earlier time slot.

Now, we focus on the case where
∑

j∈Mt
min{K,Ri,t} > P . First, observe that WFair

is work-conserving since the “while” loop in WFair will not terminate if more resources can

be allocated to the users. We further deduce that time slot t is saturated. This implies that

there must be a non-empty set H ⊆ Nt\{j} of users such that they received the difference

∆j,t. Let H = |H| and note that H ≤ nt − 1. Let yi,t, i = 1, . . . ,H be the amount that

WFair allocated to user i ∈ H with

∆j,t =
∑
i∈H

yi,t

Then, we have ḡj,t =
∑

i∈H ρiyi,t. According to allocation strategy of WFair, yj,t = min{ρjP,K,Rj,t}.
Since ∆j,t > 0, thus, yj,t < K. Also, as j is not yet finished by WFair at t, yj,t < Rj,t.

Therefore, yj,t = ρjP . Since yi,t ≤ ρiP for all i ∈ H. Thus,∑
i∈H

ρiyi,t ≥
1

P

∑
i∈H

y2
i,t,

which further gives ḡj,t ≥ 1
P

∑
i∈H y

2
i,t. The right-hand side of the above is minimized with

yi,t = 1
H∆j,t. Hence,

ḡj,t ≥
1

P

∑
i∈H

∆2
j,t

H2
=

∆2
j,t

PH
,

and we get
Lj,t
Φj,t
≤ ρj∆j,t

ρ2
jP +

∆2
j,t

PH

.

Let ∆j,t = aρj where a > 0 is a constant to be identified. By replacing ∆j,t we have
Lj,t

Φj,t
≤ aPH

P 2H+a2
. The maximum value of this term is obtained by setting a = P . Therefore,

Lj,t
Φj,t
≤ P 2H

P 2H + P 2
= 1− 1

H + 1
.

It just remains to find an upper bound for H. To this end, we define the notion of

importance ratio.
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Definition 2.4.2.1 (Importance Ratio [27]). Given a set M of users, the importance

ratio of M is defined as the maximum ratio of unit values of users in M, i.e., rM :=

maxi,j∈M
ρj
ρi

.

In this chapter, we assume that the importance ratio does not grow with the number n

of users. We have:

Lemma 2.4.2.1. Assume that at each time slot t, the unit values of active users are

normalized and add up to 1. Then,

ρj ≥
1

n+ rMt − 1
, ∀j ∈Mt.

Proof. Let ρmax,t and ρmin,t denote the maximum and minimum unit values at t, respec-

tively. Recall that by definition, rMt =
ρmax,t

ρmin,t
. To prove the lemma, it suffices to derive

a lower bound on ρmin,t. Observe that the minimal value of ρmin,t occurs when there are

nt − 1 users with unit value ρmin,t and one user with ρmax,t. It then follows that

(nt − 1)ρmin,t + rMtρmin,t = 1,

since unit values are normalized. Using nt ≤ n gives the desired result.

Having yj,t +
∑H

i=1 yi,t ≤ K and Ri,t ≥ K for all i ∈ H, we get yi,t = ρiP for all i ∈ H.

Using Lemma 2.4.2.1, we get HP
n+rMt−1 + ρjP ≤ K, thus giving

H ≤ K(n+ rMt − 1)− P
P

≈ nK − P
P

= U − 1.

Here, we made the approximation based on the fact that rMt is a constant and n is large.

Therefore,

Lj,t
Φj,t
≤ U − 1

U
.

Finally, applying Theorem 2.4.1.1 we conclude that WFair is (2− 1
U )-competitive. 2

2.4.3 WRand Analysis (Proof of Theorem 2.3.2.1)

To analyze competitive ratio of WRand, we assume an oblivious adversary model [64],

which is reasonable in practical scenarios. Recall that an oblivious adversary has complete

knowledge about the algorithm’s code but has no information about the random choices

made by the algorithm during its execution.

Let A = WRand and for brevity, in the rest of the proof, omit the dependence of

yAj,t on A for all j and t (so yj,t := yAj,t). Fix an optimal solution, and consider a user j

and a time slot t such that j ∈ SOpt,t. Without loss of generality, we make the following

assumptions:
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(i) Using a similar argument as in the proof of Theorem 2.3.1.1 and to consider a worst-

case scenario, we assume that j is not completed by WRand at t and slot t is

saturated.

(ii) We assume that y?j,t > yj,t, since otherwise Lj,t = 0.

(iii) If j ∈ SA,t, then Rj,t > y?j,t. This is because in the otherwise case (i.e., Rj,t ≤ y?j,t), we

get Rj,t ≤ K and considering the fact that WRand allocates the maximum feasible

resource to selected users, then j should be finished at t and thus ∆j,t = 0 and

subsequently Lj,t = 0.

Given that Rj,t > y?j,t, we get ∆j,t = min{Rj,t, y?j,t−yj,t} = y?j,t−yj,t, and using Eq. (2.6),

we have

Lj,t =

{
ρjy

?
j,t j /∈ SA,t,

0 j ∈ SA,t,
(2.7)

thus giving

E[Lj,t] = Pr(j /∈ SA,t)ρjy?j,t.

If j /∈ SA,t, the algorithm prefers another user, name i, with occupied block B̄j,t. Note

that the case that B̄j,t is allocated to more than one user does not affect the analysis

of WRand as in this case the weighted average of users’ unit value can be considered.

Therefore, the gain ḡj,t = ρiy
?
j,t and ρjyj,t = 0. On the other hand, when j ∈ SA,t, since

∆j,t = 0, then ḡj,t = 0. Therefore, using Eq. (2.3), we can calculate Φj,t as

Φj,t =


ρiy

?
j,t j /∈ SA,t,

ρjy
?
j,t j ∈ SA,t, Rj,t ≥ y?j,t,

ρjRj,t j ∈ SA,t, Rj,t < y?j,t.

Using (iii), we ignore the third case and so,

Φj,t ≥

{
ρiy

?
j,t j /∈ SA,t,

ρjy
?
j,t j ∈ SA,t.

(2.8)

Let h : SOpt,t × T → R+ be a function with h(j′, t′) = Lj′,t′/Φj′,t′ if j′ /∈ SOpt,t and

h(j′, t′) = 0, otherwise. Note that Φj′,t′ > 0 as unit values are positive numbers. Using

Eqs. (2.7) and (2.8), we obtain

h(j, t) ≤

{
ρj
ρi

j /∈ SA,t,
0 j ∈ SA,t,

and thus,

E[h(j, t)] ≤ ρj
ρi

Pr(j /∈ SA,t).
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By the design of WRand, the selection probabilities are proportional to the unit values.

Hence,

Pr(j /∈ SA,t) =
ρi
ρj

Pr(i /∈ SA,t).

Lemma 2.4.3.1. Let t be a saturated time slot. Then, under A = WRand,

Pr(j /∈ SA,t) ≤ 1− 1

U
, ∀j ∈Mt.

Proof. Let j ∈ Mt and consider a saturated time slot t. First note that by definition,

at least P/k users are selected in time slot t (i.e., nt ≥ P/k), where at each round the

selected users in previous rounds are excluded from the selection pool. This can be modeled

as a hypergeometric distribution with nt balls, where ρjnt of them are of our interest.

Furthermore, the number of draws is P/k and we will succeed if at least one of those ρjnt

balls are selected (to simplify the presentation, we assume that ρjnt, P/k ∈ N). It then

follows that the probability that user j is not selected is given by:

Pr(j /∈ SA,t) =

(nt−ρjnt

P/k

)(
nt

P/k

) .

Using Lemma 2.4.2.1, ρj ≥ 1
n+rMt−1 ≈

1
n . Moreover, nt

Ut
= P

k so that

Pr(j /∈ SA,t) ≈

(
nt−1
nt/Ut

)(
nt

Ut

) = 1− 1

Ut
≤ 1− 1

U
,

which concludes the proof.

Now applying Lemma 2.4.3.1 gives

E[h(j, t)] ≤ ρj
ρi

1

ρj/ρi
Pr(i /∈ SA,t) ≤ 1− 1

U
.

Applying Theorem 2.4.1.1, we finally conclude that WRand is (2− 1
U )-competitive. 2

2.5 Simulation Results

In this section, we evaluate the average performance of the proposed algorithms. Although

we provided theoretical bounds for the worst-case performance of our methods, the average

case performance is still important. We note that it is possible that an algorithm with poor

competitive ratio can beat another algorithm with a good competitive ratio in the average

case.
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2.5.1 Setup

The default parameter setting, unless otherwise mentioned, is as follows: we consider a

charging station in a time period of 16 hours with T = 16. The resource constraint at

each time slot is 200 kWh. Similarly to [19], we assume that the number of arrivals at

each time slot follows a Poisson distribution with a mean of 10. Moreover, the length of

availability window of an EV is independent from the others and follows an exponential

distribution. For each EV, the maximum charging rate is drawn uniformly at random from

the interval [1, 10]. The demand of each EV j is sampled uniformly at random from the

interval [1
3K|Tj |,K|Tj |], and the value vj is sampled uniformly from the interval [1

2Dj , 5Dj ].

We used Gurobi solver [65] to find the optimal solution and compare the performance

of WFair and WRand to the optimal offline solution as well as two other benchmarks:

• FIFO (First In First Out): At each time slot, the priority is given to the EVs with

earlier arrival time.

• EDF (Earliest Deadline First): At each time slot, the priority is given to the EVs

that are closer to their deadline.

Two major metrics are studied in the simulation: a) the gain of the system which is

identified by the objective function in rjsp, and b) average response time of the EVs,

defined as the average number of time slots to complete EVs’ demand. To compute the re-

sponse time, we only considered EVs who received their total demand and ignored partially

charged EVs.

2.5.2 Impact of Number of Users

In the first scenario in Fig. 2.4, the number of EVs is changed from 50 to 200 while the

other parameters are set to their default values as described in Section 2.5.1. When the

number of EVs is small, the scheduling problem is less challenging. As it can be seen in

Fig. 2.4a, for n = 50 the gain of all methods is close to the optimal one. As n increases,

the gain falls down for all algorithms. On average, WFair has the best performance by

achieving 91% of the optimal while the difference between WRand, EDF and FIFO is

minuscule (86%, 85% and 85% of the optimal, respectively). The average response time of

all methods increases by increasing number of EVs, where WFair and FIFO show more

sensitivity to this change. Another observation is that the response time of WFair is

higher than WRand while this is reverse for the gain in Fig. 2.4a.
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(a) Gain (b) Response time

Figure 2.4 – Varying number of EVs.

2.5.3 Impact of Resource Constraint

In the second scenario, the resource constraint at each time slot, P , is varied from 50 kWh

to 300 kWh and the methods are compared based on their gain and average response time.

By increasing the resource constraint, it is expected that both gain and response time of

the algorithms improve. The reason is that with more available resources, EVs have not to

wait too long to be allocated. Besides, more EVs can be served at each time slot. This is

observable in Figs. 2.5a and 2.5b. Similarly to the scenario of Fig. 2.4, WFair outperforms

WRand in terms of gain while there is a small gap between WRand, EDF, and FIFO.

When the available resource is sufficient to easily serve all EVs (at P = 300), the gain of

all methods converges to the optimal gain.

2.5.4 Confirming the Theoretical Bounds

The analysis in Section 2.3.1 demonstrates that the performance of WFair should not fall

down its competitive ratio under any input scenario. To verify, we generated 50 random

scenarios with n = 100, P = 200 and set K = 5 which gives U = 2.5 and the competitive

ratio of 1.6. Then, we compared the WRand algorithm with the optimal solution in each

single scenario and plotted the result in Fig. 2.6. It can be observed that the gain of WFair

is always significantly better than the worst-case gain suggested by the competitive ratio.

The simulation result here confirms the theory.
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(a) Gain (b) Response time

Figure 2.5 – Varying resource constraint.

Figure 2.6 – Tracking worst-case performance in 50 random scenarios for WFair.

2.6 Conclusion

This chapter tackled deadline constrained job scheduling problem with its application in

electric vehicles. Two deadline-oblivious online algorithms (one deterministic and one ran-

domized) have been developed and their performance are analyzed by a new proof technique

which can be used to find upper bound for competitive ratio of a class of algorithms designed

for the studied problem. Under realistic scenarios where the demand-to-supply ratio is not

too high, the proposed algorithms improve the state of the art result. Further research

should be conducted on the scheduling algorithms which can utilize deadline information

of the users. Moreover, the proposed proof technique could be extended to support a wider

range of problems.



46 2.6. CONCLUSION



Chapter 3
Mechanism Design in Single
Station Scenario

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 System Model and Problem Formulation . . . . . . . . . . . . . 50

3.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Social Welfare Maximization Problem . . . . . . . . . . . . . . . . 52

3.3 Online Scheduling Design with On-arrival Commitment . . . . 54

3.4 Mechanism Design for Self-Interested Users . . . . . . . . . . . 57

3.4.1 Formal Game Model . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Extending the sCommit to a Dominant Strategy Incentive Com-
patible Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Scheduling Design with Group-strategy-proofness . . . . . . . . 64

3.6 On the Competitive Ratio of the Proposed Online Algorithms 69

3.7 Extension: Scheduling Under Partial Availability of Future
Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

47



48 3.1. INTRODUCTION

3.1 Introduction

With the increase in environmental concerns related to carbon emission, and rapid drop

in battery prices (e.g., 35% drop in 2015 [66]), the market share of electric vehicles (EVs)

is rapidly growing. Bloomberg predicts that 2020s will be the decade of EV [66]. Also,

Gartner [67] reports that the global EV market share boosts up to around 10% and 20%

by 2020 and 2030, respectively.

The growing number of EVs along with the unprecedented advances in battery capac-

ity and technology results in drastic increase in the total energy demand of EVs. This

large charging demand makes the EV charging scheduling problem challenging. An ap-

parent challenge is that even with taking the advantage of deferrable property of charging

demands and performing proper scheduling, the aggregate demand might be beyond the

tolerable charging rate of the station, given physical constraints of charger devices and

transformers [2]. For example, the power capacity of a transformer in North America is

limited to 25 kVA [3]. Furthermore, in practice, EVs arrive to charging station in online

fashion and the charging station has no information about the arrival and demand of the

future EVs. This makes the charging scheduling even more challenging.

In the recent years, the EV charging scheduling problem has attracted much attention

from the research community [41,42,45,68–74]. Several studies [41,42,45,69,70,72,73] have

tackled different scenarios of EV charging scheduling problems (with different objectives

and set of constraints) in online scenario. However, none of the above works, explicitly

formulate the problem considering the capacity constraint of the stations. The problems

studied in [75, 76] have considered peak shaving in EV charging problem by trying to

minimize the peak demand. However, the aggregate EV charging requests might be too

large such that even with the goal of minimizing the peak demand, the total demand at

some slots is beyond the charging station’s capacity. Consequently, this approach fails to

guarantee respecting the capacity of the charging station.

In this thesis, we focus on a promising alternative advocated in the recent studies [29,77–

79], where the limited capacity of station is incorporated as a constraint in the underlying

problem. More specifically, we study online EV charging scheduling, where the EVs arrive

at charging station at different times in online manner, and the station has no information

about future arrivals. Upon arrival of an EV, it announces its departure time (or deadline),

charging demand, maximum instantaneous charging rate, and (potentially) willingness to

pay. The goal is to schedule the charging of EVs, such that the social welfare (defined

precisely in Sec. 3.2) is maximized, and the charging capacity of the station is respected.

In addition to the inherent challenge raised by the need for online solution design [80],

we aim to tackle two other challenges as follows:
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(1) Online scheduling with on-arrival commitment. Enforcing capacity constraint may

result in partial or no charging of some EVs. In a proper design, the scheduling mechanism

must provide on-arrival commitment for the EVs, meaning that the mechanism must notify

each EV upon receiving its charging demand whether or not it can receive (entirely or

partially) the requested demand by the submitted departure time. Without on-arrival

commitment, at departure time, an EV may realize that its charging request is not fulfilled,

which definitely degrades user satisfaction. Providing on-arrival commitment, however, is

challenging in online setting since the scheduler has no information about the demand profile

of future arrivals, and giving commitment to the arrived EVs may come at the expense of

loosing more valuable EVs in future, even with “re-optimizing” the offline solutions.

None of the related designs [17,21,29,77], to the best of our knowledge, can support on-

arrival commitment. The authors in [21] focus on scheduling of deadline-constrained jobs

and propose an algorithm that commits to finish a job only once it begins to process it,

that might not be upon the arrival. The study is extended in [17] for a truthful scheduling.

The online algorithm in [77] commits to charge EVs in arbitrarily time after their arrival.

In [29], a competitive online algorithm with on-arrival commitment is proposed for deadline-

constrained jobs. However, instantaneous charging rate limit of EV batteries hinders direct

application of the design in [29] to EV charging scheduling problem.

(2) Strategy-proof and group-strategy-proof scheduling design. The second challenge is a

highly desired feature in social maximization problems which tries to propose mechanisms

that are robust against selfish users and groups. Generally speaking, algorithmic mechanism

design [7] is a field of game theory, that tries to devise truthful (also known as strategy-

proof) mechanisms such that it is guaranteed that reporting true values is the best strategy

for the players (EVs in our problem) regardless of the behavior of the others. Group-

strategy-proofness is a natural generalization of strategy-proofness that tries to guarantee

that not only truth-telling is the dominant strategy for individual players, but also, no

group of players can improve the utility of at least one member of the group by lying, when

the values of the other players are fixed. Studies in [17,77,81] analyze the strategy-proofness

of their scheduling mechanisms, however, their algorithms fail to guarantee group-strategy-

proofness of the scheduling algorithms. To the best of our knowledge, there is no scheduling

mechanism design that can provide full incentive (strategy-proofness and group-strategy-

proofness) for EV charging scheduling problem.

Putting together the above challenges, we aim to propose (group)-strategy-proof online

EV charging scheduling problem with on-arrival commitment. Toward this, we make the

following contributions:

. In Section 3.2, we formulate EV charging scheduling problem to maximize social wel-

fare of the users, with the charging rate capacity constraint of the station and instantaneous
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charging rate constraint of EVs. Even though the problem is a linear one, it is coupled

with the time, thereby challenging to solve in online manner.

. In Section 3.3, we propose a simple, yet effective online scheduling algorithm (sCommit)

that addresses the first challenge and provides on-arrival commitment for the EVs. The

sCommit analyzes the recent demands as a clue to make scheduling and commitment deci-

sions. The sCommit relies only on the information of available EVs and has no assumptions

on the probabilistic modeling of future arrivals.

. In Section 3.4, we tackle the second challenge and propose tCommit that extends the

sCommit to guarantee strategy-proofness. By illustrative examples, we demonstrate that

if users collude, tCommit cannot guarantee the group-strategy-proofness. In Section 3.5,

we design another algorithm (gCommit) that guarantees group-strategy-proofness. To the

best of our knowledge, this is the first work that studies developing group-strategy-proof

algorithms in the context of EV scheduling problems.

. In Section 3.6, we analyze the performance of the proposed algorithms. In particular,

we prove that there is no online competitive algorithm with on-arrival commitment for

the problem, i.e., no online algorithm can simultaneously provide on-arrival commitment

and performance guarantee as compared to the non-committed offline optimum. However,

we demonstrate that in a special case that the charging commitment is excluded from

the definition of the social welfare (defined in Section 3.2), our proposed algorithms are

2-competitive with optimal offline solution.

. In Section 3.7, we extend our basic algorithm, sCommit, when the charging station

has partial access to the future charging demands.

. In Section 3.8 and through extensive simulations, we evaluate the efficiency of the

proposed algorithms and compare them to the optimal offline solution. In a representative

set of simulations, the sCommit, tCommit, and gCommit achieve respectively 84%, 85%,

and 70% of the offline optimum, on average.

3.2 System Model and Problem Formulation

3.2.1 System Model

We consider a time-slotted system model in which the time horizon is divided to T equal

length time slots, e.g., 1 hour, denoted by T = {1, 2, . . . , T}. There are n EVs (user or

player, used interchangeably) denoted by set N .

Definition 3.2.1.1 (Type of each EV). Each EV i is characterized by its “type” πi = 〈ai, di, vi, Di, ki〉
indicating its arrival time, departure time, value for the user or willingness to pay, charging

demand, and maximum charging rate, respectively.
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Table 3.1 – Summary of notations

Notation Description

N Set of all EVs with |N | = n, indexed by i
N t Set of available EVs at t
Ct Set of active EVs at t with yti > 0
Wt Set of active EVs at t with yti = 0, rti > 0
T Number of time slots, indexed by t
T {1, 2, . . . , T}
Ti {ai, ai + 1, . . . , di}
ai Arrival time of EV i
di Departure time of EV i
Di Demand of EV i
vi Valuation of EV i for receiving its demand Di

ki Maximum charging rate of EV i in kW

rti Residual demand of EV i at t i.e., Di −
∑t

t′=ai
yt

′
i

P Capacity constraint (in kWh) in charging station
C Number of charger slots in the station
yti opt. variable, The amount that EV i is charged at t
γi opt. variable, Commitment given to EV i on its arrival
xti auxiliary binary variable, xti = 1, if yti > 0 and 0, otherwise

We refer to time interval Ti = [ai, di] as availability window of EV i. At each time slot t

in availability window of EV i, the scheduler can set the charging rate of i, denoted by yti ,

to a value less than or equal to its maximum charging rate, ki. We also define an auxiliary

binary variable xti with xti = 1, if yti > 0 and xti = 0, otherwise.

We assume that for each EV i, its type represent a feasible demand, i.e., we have

Di ≤ ki(di − ai + 1). The maximum charging rate ki depends on the physical specification

of EV’s battery1 (See Table 3.3 for maximum charging rate of popular EV models). The

valuation vi indicates the worthiness of receiving the submitted demand Di before the

departure time di. Note that vi is the willingness of EV i to pay and it is different from

actual payment (see Section 3.4 for details).

We study the charging scheduling problem in online setting where the type of an EV

is not revealed to the scheduler until it arrives at the station. Also, we do not have any

assumptions on the underlying stochastic process of EV arrivals.

At each time slot, the total power that can be flowed to the EVs is limited to a specific

1We assume that the maximum charging rate of the EVs’ battery is always less than the maximum output
power of the installed chargers in the station. In case that this does not hold, ki is equal to minimum of
the two.
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amount of P kW, which we refer to it as the capacity constraint throughout the chapter.

The capacity parameter P is a system parameter that is identified based on the maximum

power that the chargers in the station are able to deliver at any slot [6,69,82], or set by the

charging station owner through participating in a demand-response program. Moreover,

we denote by C as the number of charging slots available in the station which restricts the

number of EVs that can concurrently get charged at each time slot. As a direct consequence

of the capacity constraint and limited number of charging slots, it may not be feasible to

fulfill all demands of the vehicles within their availability windows. Consequently, some

users may leave the charging station with partial or no charging. Hence, in such a scenario,

it is crucial to notify the user upon its arrival on how much charging amount is guaranteed

during its availability window.

3.2.2 Social Welfare Maximization Problem

In our design, we aim to devise a scheduler that gives on-arrival commitment. More specif-

ically, let 0 ≤ γi ≤ 1 be commitment degree assigned by the charging station to EV i at

the beginning of time slot ai. Once the scheduler decides on the commitment degree γi,

it is committed to deliver at least γiDi kWh of power before the departure time di. The

extreme cases are (i) γi = 0 where there is no commitment on the amount of electricity

that EV i will receive and, (ii) γi = 1 where it is guaranteed that EV i will receive all its

demand Di before departure.

Deciding on the commitment degree is highly challenging in online setting, since we

assume that at each time instance there is no information about the future coming EVs

and it is possible to loose opportunity of charging future high valuable EVs because of

commitments given in the previous time slots (in Section 3.7, we will relax this assumption

by considering the case that some future information is available).

Taking into account the valuation of demands for the EVs and the commitment degrees,

we use two criteria (referred to as J1 and J2) to measure users’ social welfare. The first

criteria measures the aggregate value of allocated resources:

J1 =
n∑
i=1

vi
Di

∑
t∈Ti

yti . (3.1)

Note that in Equation (3.1), we assume that if EV i receives all its demand, i.e.,
∑

t∈Ti y
t
i =

Di, the value for the user is vi, otherwise, the value is proportionally calculated based on

the amount of resource the EV received as (vi ×
∑

t∈Ti y
t
i)/Di.

The second criteria, J2, is defined based on charging commitments given to the users:

J2 =

n∑
i=1

viγi. (3.2)
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Definition 3.2.2.1 (Social welfare maximization problem). Assuming truthful bidding (see

Section 3.4), the social welfare in the EV charging scheduling scenario is defined as the

aggregate utility of the charging station, i.e., the total payments obtained from the EVs, and

the aggregate utility of the users, that is J1 + J2 (as defined in Equations. (3.1) and (3.2))

subtracted by their payment (see Equation (3.4) for the formal definition of utility of each

user). The payments between the charging station and users cancel themselves, hence, the

social welfare of the entire system considering utility of both users and charging station

is equivalent to J1 + J2. Consequently, in the social welfare maximization problem, the

objective is to maximize J1 + J2.

Given the social welfare definition above, we formulate social welfare maximization

problem (SWMP) as follows:

SWMP: max J1 + J2 (3.3a)

s.t.
∑
t∈Ti

yti ≤ Di, ∀i ∈ N , (3.3b)

∑
t∈Ti

yti ≥ γiDi, ∀i ∈ N , (3.3c)

∑
i:t∈Ti

yti ≤ P, ∀t ∈ T , (3.3d)

∑
i

xti ≤ C, ∀t ∈ T , (3.3e)

yti ∈ [0, ki], ∀i, t ∈ Ti, (3.3f)

xti = 1, i, t ∈ {i ∈ N , t ∈ Ti, yti = 1}, (3.3g)

xti = 0, i, t ∈ {i ∈ N , t ∈ T , yti = 0}, (3.3h)

yti = 0, ∀i, t : t /∈ Ti (3.3i)

γi ∈ [0, 1],∀i ∈ N . (3.3j)

The objective function of the SWMP is sum of J1 and J2 with 0 ≤ J1, J2 ≤
∑

i vi.

Note that for each EV i,
∑

t y
t
i is the total power received by the EV where according to

the charging commitment definition (variable γi) and Constraint (3c), it must hold that∑
t y

t
i ≥ γiDi. The difference

∑
t y

t
i − γiDi corresponds to the amount of power that is

delivered but was not committed to user i on its arrival.

The optimization variables are charging commitment γi for each EV i and its charging

rate yti at each slot t in Ti. Note that xti is a function of yti and thus it is an auxiliary

optimization variable to facilitate the formulation of the chapter. Constraint (3.3b) restricts

the charging of each EV to its charging demand. Constraint (3.3c) ensures the charging
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Table 3.2 – Brief description of the algorithms

Algorithm Description

sCommit Online scheduling with on-arrival commitment
tCommit Online scheduling with on-arrival commitment and strategy-proofness
gCommit Online scheduling with on-arrival commitment and group-strategy-

proofness

commitments are adhered to by the scheduler. The capacity constraint is represented

in (3.3d), where at each time slot, total power to be allocated is restricted to P kW.

Constraint (3.3e) restricts the total number of EVs to get charged at each time slot. Finally,

Constraints (3.3g) and (3.3h) restricts the values of auxiliary binary variable as a function

of the original optimization variable.

3.3 Online Scheduling Design with On-arrival Commitment

In this section, we propose sCommit as an online scheduling algorithm for the SWMP,

assuming that all the EVs report their true values. Extension to the case that promotes

truth-telling is addressed in Section 3.4.

Generally speaking, the SWMP problem can be considered as a time-expanded online

version of the well-established fractional knapsack problem [83] where the latter can be

optimally solved using a greedy algorithm that sorts items based on the unit values and

selects the most valuable items until the reaching the capacity of the knapsack. Our problem

is more complicated due to (i) expansion over time, and more importantly, (ii) the online

nature of the problem, i.e., items arrive in online manner. However, the general ideas in

devising our algorithms in this study utilize the similar sorting ideas. An overview of the

proposed algorithms in this chapter is given in Table 3.2.

3.3.0.1 The Details of the sCommit in Algorithm 3

The sCommit runs at each time slot and is developed based on two main ideas. First, the

EVs with higher value-demand ratio (i.e., vi/Di, hereafter, we refer to it as unit value) are

in priority. Second, the commitment decision is made based on whether or not (i) the unit

value of the new EV is higher than a threshold, or (ii) a specific amount of the resource in

availability window of the EV is available.

A high level description of the sCommit and its truthful version, tCommit, is given

in Fig. 3.1 using a flowchart. As we will explain later in Section 3.4, the only difference

between sCommit and tCommit is in SetGamma sub-procedure. The details of the
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Start
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t=1?

New arrival?

New arrival?

YesNo

Set the charging 
rates according to 
the previous time 

slot
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Set charging 

commitments by 
SETGAMMA

A commitment 
is given?

Reserve resources by 
PRESCHEDULEEVs
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Allocate remaining 
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on unit values

No

No

Figure 3.1 – sCommit and tCommit’s charging mechanism at time slot t. In case of
new arrivals, the main algorithm calls SetGamma to assign charging commitments. The
promised resources (if any) are then reserved by PreScheduleEV. Any remaining resource
at time slot t will be allocated then by ReScheduleEVs.
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Algorithm 3: sCommit: ∀t ∈ {1, . . . , T}
Input: EVs to arrive on the fly, capacity constraint P
Output: A feasible charging scheduling

1 N t ← {i ∈ N : t ∈ Ti}
2 rti ← Di −

∑t
u=ai

yui ,∀i ∈ N t

3 Wt ← {i ∈ N t : yti = 0, rti > 0}
4 Ct ← {i ∈ N t : yti > 0}
5 if there are new arrivals then
6 N t ← Sorted list of new arrived EVs in a non-increasing order of their unit

value (i.e., vi
Di

)

7 foreach EV i ∈ N t do
8 γi ← SetGamma(i)
9 if γi > 0 then

10 Ct ← Ct ∪ {i}
11 PreScheduleEV(i)

12 else
13 Wt ←Wt ∪ {i}

14 if Wt 6= ∅ then
15 ReScheduleEVs(N t)

16 else
17 if t > 1 then
18 foreach EV i ∈ N t do
19 if yti is not set yet (by PreScheduleEV) then

20 yti ← min{yt−1
i , rti}

21 Update rti

sCommit are as follows. In Lines 5-6 and given that there are some new arrivals at the

current slot, the algorithm first sorts the new EVs in a non-increasing order of their unit

values. Then, it selects one EV i at a time and decides on the commitment value (i.e.,

γi) by calling the SetGamma procedure (see Section 3.3.0.2 for details) in Line 8 and

provided that γi > 0, the algorithm reserves the promised resources (Line 11) by calling

the PreScheduleEV procedure (see details in Section 3.3.0.3).

If there is no new arrival at the current slot, in Line 20, the sCommit sets the charging

rate of all EVs with γi = 0 to the same amount of the previous time slot (or less if

an EV needs less power to finish its charging). After this step, it is possible that the

aggregate charging amount of EVs is less than the capacity, i.e.,
∑

i∈N t yti < P . In this

case, the procedure ReScheduleEVs is called (Lines 14-15) to allocate the remaining
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resources to the EVs based on their unit value (details in Section 3.3.0.4). Note that in

the ReScheduleEVs, provided that there are enough resources, the scheduler allocates

resources to some EVs which is beyond its commitment.

3.3.0.2 The Details of the SetGamma in Algorithm 4

The SetGamma runs for each EV i upon its arrival and sets the commitment variable

γi to a non-zero value if there is enough resource and one of the following conditions are

satisfied: (i) less than α fraction of the resources in the availability window of EV i are

allocated (or reserved), i.e.,
∑

t∈Ti
∑

j y
t
j ≤ α(di − ai + 1)P ; and (ii) the unit value of EV

i (i.e., vi/Di) is more than average unit value of the previous EVs available in interval

[t−∆, t],∆ ≥ 0 (index these EVs by j) with γj = 1. Here, ∆ and α are parameters to be

set by scheduler and affect the performance of the algorithm. As ∆ grows, the algorithm

looks to more historical data of the previous EVs. Intuitively, rule (ii) states that if a

set of users with average unit value of ρavg deserve full charging commitment, a user with

unit value greater than ρavg deserves some degree of charging commitment as well. In

simulations, we investigate the impact of these design parameters on the performance of

the algorithms.

3.3.0.3 The Details of the PreScheduleEV in Algorithm 5

If the sCommit gives charging commitment to EV i (i.e., γi > 0), then procedure PreSched-

uleEV is called to reserve resources for EV i. The reservation policy applied by PreSched-

uleEV is to charge the EV with the maximum possible charging rate starting from arrival

slot ai.

3.3.0.4 The Details of the ReScheduleEVs in Algorithm 6

If γi = 0, the type of EV i still could be evaluated for an ordinary uncommitted charging.

Therefore, the procedure ReScheduleEVs listed in Algorithm 6 is called to check EV i’s

eligibility to receive resource at the current time slot. The set Wt keeps the list of EVs

waiting to get charged at time slot t. The ReScheduleEVs evaluates EVs’ profile in Wt

for possibility of allocating released resources. The procedure gives priority to the EVs

with higher unit values.

3.4 Mechanism Design for Self-Interested Users

In this section, we first represent the EV scheduling scenario as a game model in Sec-

tion 3.4.1, and then in Section 3.4.2, we extend our algorithm design in the previous section

to satisfy the game theoretical properties.
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Algorithm 4: SetGamma

Input: Profile of EV i, parameters ∆ ∈ Z+, and α ∈ [0, 1]
Output: γi

1 γi ← 0, s← 0
2 for each t in Ti do
3 if

∑
i x

t
i < C then

4 s← s+ min{ki, P −
∑

j∈N t ytj}

5 if
∑

t∈Ti
∑

j∈N t ytj ≤ α(di − ai + 1)P then

6 γi ← min{1, s/Di}
7 else
8 Aj ←

{
j ∈ N : Tj ∩ [ai −∆, ai] 6= ∅ and γj = 1

}
9 th←

∑
j∈Aj

vj/Dj

|Aj |
10 if vi

Di
> th then

11 γi ← min{1, s/Di}

Algorithm 5: PreScheduleEV

Input: EV i to be scheduled for charging
Output: Charging plan for EV i

1 Ri ← γiDi

2 t← ai
3 while Ri > 0 do
4 if

∑
i x

t
i < C then

5 r ← min{ki, Ri, P −
∑

j∈N t ytj}
6 yti ← r
7 Ri ← Ri − r
8 t← t+ 1

3.4.1 Formal Game Model

In the previous section, we assumed that the users report their type (see Definition 3.2.1.1)

truthfully. However, in reality a self-interested user may misreport his preference to increase

his own utility. Such scenario can be modeled as a game, with the players (denote by P)

being EVs and the aggregator (charging station). Denote by πi = 〈ai, di, vi, Di, ki〉 and

π̂i = 〈âi, d̂i, v̂i, D̂i, k̂i〉 the true and reported types of user i, respectively. We consider direct

revelation mechanisms where each user submits its type π̂i chosen from set S of all possible

types. Then, a mechanism denoted by (A, p) is composed of an allocation rule (a.k.a social

choice rule) A : SN → {0, 1}N and a payment rule p : SN → RN . To cope with the selfish



CHAPTER 3. MECHANISM DESIGN IN SINGLE STATION SCENARIO 59

Algorithm 6: ReScheduleEVs

Input: N t

Output: A new charging decision for time slot t

1 Sort EVs in Wt in a non-increasing order of their unit value
2 while (

∑
j∈N t ytj < P ) ∧ (Wt 6= ∅) do

3 i← the next EV in ordered set Wt

4 if (∃j ∈ Ct : vi/Di > vj/Dj)∨
[
(
∑

j∈N t ytj < P ) ∧ (
∑

i x
t
i < C)

]
then

5 Pause charging of EVs with lower priority (if necessary) without violating
charging commitments

6 yti ← min{ki, rti , P −
∑

j∈N t ytj}

users and implement desired allocation rule in a strategic setting, the goal in this section

is to design mechanisms that are able to satisfy the game theoretical propeties such as to

promote truthfulness.

Note that the reported type π̂i may not be equal to the true type πi which is private

for each user. Similar to the prior works [24, 77], we assume no early arrivals and no late

departures. More formally, we assume âi ≥ ai and d̂i ≤ di for all i ∈ N . These assumptions

make sense in practical scenarios. Therefore, the strategy space for each user includes any

type that satisfies above conditions. Let “�” denotes the partial order of types, where

π̂1 � π̂2 ≡ (â1 ≤ â2) ∧ (d̂1 ≥ d̂2) ∧ (v̂1 ≥ v̂2)

∧(D̂1 ≤ D̂2) ∧ (k̂1 ≥ k̂2).

If π̂1 � π̂2, we say π̂1 dominates π̂2. Generally, π̂1 � π̂2 if π̂1 is more valuable and easier to

handle for charging station compared to π̂2. π̂1 � π̂2 is also defined similarly and equals to

(π̂1 6= π̂2) ∧ (π̂1 � π̂2). We also define payment rule pi(π̂N ) which determines the payment

of user i at departure.

We use a quasi-linear utility function for user i as follows:

ui(π̂N ) = (γi +
1

D̂i

di∑
t=ai

yti)v̂i − pi(π̂N ) (3.4)

where π̂N is the set of all reported types. The maximum utility is achieved when the user

receives full commitment (i.e., γi = 1) along with entire demand.

3.4.2 Extending the sCommit to a Dominant Strategy Incentive Com-
patible Mechanism

To design an efficient mechanism, several desirable properties are required by the un-

derlying game theory model. These properties include individual rationality (IR), budget
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balanced (BB), allocative efficiency (AE), and dominant strategy incentive compatibility

(DSIC) (a.k.a truthfulness or strategyproofness), and generally need that the allocation

rule meet some specific conditions. In this chapter, we will focus on IR, BB and particu-

larly DSIC properties where the latter is important for practical mechanism design. First,

we define the above properties formally.

Definition 3.4.2.1 (Individual Rationality). Mechanism (A, p) is “individually rational”

if players always get non-negative utility.

The IR property is important as it ensures that users are not forced to participate.

Definition 3.4.2.2 (Budget Balanced). Mechanism (A, p) is “budget-balanced” if the total

payment by the players (i.e., including EVs and charging station in our scenario) is zero

i.e.,
∑

i∈P pi(π̂i) = 0.

With the BB property, there are no net transfers in or out of the system.

Definition 3.4.2.3 (Dominant Strategy Incentive Compatibility). Mechanism (A, p) is

“dominant strategy incentive compatible”, “truthful”, or “strategyproof” if the best strategy

of each user is to adapt the strategy π̂i = πi, ∀i ∈ P.

The truthfulness property ensures that no user can benefit by deviating from its true

type. Toward our goal to design a mechanism satisfying the aforementioned properties,

we first design a truthful mechanism, then show that it satisfies IR and BB properties, as

well.

The following definition of monotonicity from a celebrated result by Myerson [84] is the

key in the game theoretical analysis in the rest of this section.

Definition 3.4.2.4 (Monotonicity). Allocation rule A is monotone if for any types π̂i and

π̂′i where π̂′i � π̂i, we have ui(π̂−i ∪ {π̂′i}) � ui(π̂−i ∪ {π̂i}).

In above definition, π̂−i denotes all reported types except π̂i and ui(π̂−i∪{π̂i}) is utility

of user i with profile π̂i when the reported types of other users are fixed.

Theorem 3.4.2.1. [24] Let A be a scheduling mechanism. There is a payment rule p such

that the mechanism (A, p) is strategy-proof if and only if A is monotone.

According to [24,77], for a deterministic allocation mechanism to be monotone, pi(π̂N )

for each user who received full service (in our case, all the demand with full charging

commitment) should be equal to its critical value which is essentially the minimum v̂i that

user i can report and receive the same service. In our case where users can be partially

allocated (i.e.,
∑di

t=ai
yti < D̂i) or receive partial charging commitment (i.e., γi < 1) the
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Figure 3.2 – Failure of monotonicity by the SetGamma

payment proportionally calculated according to the received service which is less than the

critical value. More formally, let vcri be the critical value of user i i.e., vcri = min{v′i : v′i ≥
0, γ′i = γi ∧

∑
t y
′t
i =

∑
t y

t
i} where γ′i and

∑
t y
′t
i are respectively the charging commitment

and total received power when the reported valuation is v′i. Then, the payment of user i is

defined as follows:

pi(π̂N ) = (γi +
1

D̂i

∑
t

yti)v
cr
i . (3.5)

If user i receives no resources, pi(π̂N ) = 0. In practical cases, it is straightforward to

calculate pi(π̂N ) at EV i’s departure time by removing the EV from users of interval [ai, di]

and running scheduling algorithm again to find the payment value. For the details, we refer

to [42,85]. Given the definitions of pi(π̂N ) in Equation (3.5) and ui(π̂N ) in Equation (3.4),

it just remains to prove the monotonicity of the proposed algorithm.

The following example, however, shows that the sCommit is not truthful since the

SetGamma as a sub-procedure called in the sCommit is not monotone. In fact, both

conditions that the SetGamma checks for giving commitments can be misused by a selfish

user to increase its utility.

Example 1: Consider the scheduling problem with T = 4 and P = 1 as shown in

Fig. 3.2a and assume that α < 1/3 and th > 1/2 in the SetGamma. At slot 1, EV 1

arrives with type π̂1 = 〈1, 2, 10, 2, 1〉. According to condition specified in Line 5 of the

SetGamma, EV 1 receives charging commitment of γ1 = 1. Subsequently, the scheduler

reserves all resources at slots 1 and 2 for EV 1 by PreScheduleEV. Later at slot 2, EV

2 arrives with type π̂2 = 〈2, 4, 1, 2, 1〉. With this type, however, EV 2 cannot pass any of

two conditions in the SetGamma. Surprisingly, EV 2 can postpone its arrival to slot 3 (as

shown in Fig. 3.2b) without delaying its departure (i.e., π̂′2 = 〈3, 4, 1, 2, 1〉), and receives

charging commitment by passing the first eligibility condition. This violates monotonicity

of the SetGamma since π̂2 � π̂′2.
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The reason that the SetGamma cannot provide monotonicity is that the decision on

commitment degree is made based on the fraction of free resources at the availability

window of the EV and not the actual amount. It is straightforward to construct another

similar example to show that how the monotonicity of the SetGamma can be violated by

the second eligibility condition (Line 10 of the SetGamma) as the threshold is calculated

based on the recent users’ profile and is not a pre-determined value where if a user arrives

just after a group of users with low value demand ratio, he is more likely to receive charging

commitments.

To overcome these issues, our proposal is to replace the “if condition” in Line 5 of the

SetGamma with the following ∑
t∈Ti

∑
j∈N t

ytj ≤ δ1Di, (3.6)

where δ1 is a constant design parameter. Similarly, we change the “if condition” in Line 10

with

vi/Di > δ2, (3.7)

where δ2 is constant. Note that δ1 and δ2 are independent from EVs’ arrival and departure

time.

Based on the above discussion, we can finally propose a mechanism which is truthful.

Theorem 3.4.2.2. Let tCommit be the online algorithm that replaces the if conditions

in Lines 5 and 10 in the SetGamma with Equations (3.6) and (3.7), and uses utility and

payment functions defined in Equations (3.4) and (3.5), respectively. Then, the scheduling

mechanism (tCommit, p) provides DSIC, IR, and BB properties.

Proof. We first prove the truthfulness property by contradiction by utilizing Theorem

3.4.2.1.

Assume tCommit is not monotone. Therefore, there should exists a scenario that if

a user i submits two different types πi and π′i with πi � π′i it should hold that ui(π−i ∪
{π′i}) > ui(π−i ∪ {πi}). πi � π′i requires that at least one of the following cases hold: a)

(ai < a′i) ∧ (di = d′i) ∧ (vi = v′i) ∧ (Di = D′i) ∧ (ki = k′i), b) (di > d′i) ∧ (ai = a′i) ∧ (vi =

v′i) ∧ (Di = D′i) ∧ (ki = k′i), c) (vi > v′i) ∧ (ai = a′i) ∧ (di = d′i) ∧ (Di = D′i) ∧ (ki = k′i),

d) (Di < D′i) ∧ (ai = a′i) ∧ (di = d′i) ∧ (vi = v′i) ∧ (ki = k′i), and e) (ki > k′i) ∧ (ai =

a′i) ∧ (di = d′i) ∧ (vi = v′i) ∧ (Di = D′i). We show that if any of the cases a-e holds then

ui(π−i∪{πi}) ≥ ui(π−i∪{π′i}) which is contradiction. We first prove theorem when exactly

one of the conditions a-e holds and then generalize the proof:

a) In this case, EV i with profile πi arrives to the charging station a′i − ai time slots

earlier. Note that tCommit allocates resources to an EV either by reserving resource
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by SetGammaT or through normal competition of users at each time slot. With earlier

arrival, the probability of meeting first eligibility condition in SetGammaT increases while

it has no effect on the second eligibility condition (See SetGammaT). Therefore, γi cannot

be decreased in this case but might be increased. If SetGammaT does not set γi > 0, the

amount of resources that EV i can receive will be the same for arrival times ai and a′i since

the value demand ratio of the user did not change and the EV preserves the same priority

to receive resources. Hence, in this case ui(π−i ∪ {πi}) ≥ ui(π−i ∪ {π′i}).

b) If a user extend his deadline, it is more likely to receive charging commitment and

resources. The argument here is similar to the previous case.

c) When the valuation of a user increases, its value demand ratio increases and the

EV can get higher priority to receive charging commitment and resources according to

first eligibility condition in SetGammaT and the criterion (i.e., value-demand ratio) used

to determine priority of the user. Therefore, a higher reported valuation by a user may

increase his utility. Consequently, ui(π−i ∪ {πi}) ≥ ui(π−i ∪ {π′i})

d) The argument for this case is similar to the previous one as the value demand ratio

increases by reporting lower demand.

e) In no part of the sCommit algorithm the charging rate of EVs affects the selection

of EVs to charge. Only when sCommit is going to charge an EV, it sets the charging

speed of EVs based on their maximum charging rate. The charging speed is always set to

maximum value according to PreScheduleEV and ReScheduleEVs. ui(π−i ∪ {πi}) ≥
ui(π−i ∪ {π′i}) holds as with higher charging speed, an EV may receive more resources by

its deadline but not less.

According to the given discussion, all the above cases result in ui(π−i∪{πi}) ≥ ui(π−i∪
{π′i}) which is a contradiction. If two or more of the above cases hold simultaneously, the

same contradiction still exists as the scenario can be transformed to multiple scenarios

where each one refers to one of the cases a-e.

It remains to show that the proposed mechanism is budget-balanced and individually

rational. Each EV owner pays to the charging station according to the payment rule in

(3.5). If a user receives no resources its payment is zero. Therefore, the total payment

by the EV owners is equal to total money received by the charging station. This ensures

budget-balanced property. We now show that ui(π̂i) in Equation (3.4) is always non-

negative. Using the payment function in Equation (3.5), the utility function is simplified

to ui(π̂N ) = (γi + 1

D̂i

∑di
t=ai

yti)(v̂i − vcr
i ) which is non-negative as vcr

i ≤ v̂i.
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3.5 Scheduling Design with Group-strategy-proofness

As mentioned in the previous section, the aim of designing truthful mechanisms is to

encourage users to report their true profiles. However, this goal cannot be fully achieved

by individual strategy-proofness. More specifically, in a truthful scheduling mechanism, it

might be possible that a group of users collude to increase the utility of members by being

untruthful. In another scenario, it is also possible that a user behaves hostilely against

others by reporting its profile in a way that its own utility does not change but at least one

other user’s utility degrades.

Definition 3.5.0.1. Scheduling mechanism A is weak group-strategy-proof if no group of

users can collude to increase the utility of all members of the group by deviating from their

true values. Also, A is strong group-strategy-proof if none of the members can obtain higher

utility by gaming the system.

Hereafter, when we write group-strategy-proofness it refers to the strong version as a

weak group-strategy-proof mechanism does not provide full incentive for users to not lie.

Now we formally define group-strategy-proofness. Let J ⊆ N be a coalition of users. In

addition, we assume πi = π̂i, ∀i ∈ N\J . Then, group-strategy-proofness states that if

ui(π̂−i ∪ {π̂i}) ≥ ui(π̂−i ∪ {πi}),∀i ∈ J ,

it implies that

ui(π̂−i ∪ {π̂i}) = ui(π̂−i ∪ {πi}),∀i ∈ J .

In other words, if utility of no member of group J has lessen when the group members lie

about their profile then, none of them should end up with a better utility. Truthfulness is

a special case of group-strategy-proofness with |J | = 1.

An investigation on the tCommit reveals that it is not group-strategy-proof. As a

simple example assume that J = N and v̂i = vi
z ,∀i ∈ N , z > 1. Then, considering that the

reported value of all users divided by constant z > 1, the charging priorities stay unchanged

and all users receive the same service as in the first case. However, according to payment

function in Equation (3.5), all users pay 1/z of the price they should have paid in the first

scenario. In fact, users can decrease their payment arbitrarily by choosing larger values of

z.

Unfortunately, it is not straightforward to make the tCommit group-strategy-proof.

Rather, we employ the existing group-strategy-proof algorithms in other domains by ad-

justing them into our model. To this end, we first provide some definitions. Let Qt and

Qi ⊆ N be set of users who get charged at time slot t and interval T̂i = [âi, d̂i] respec-

tively where Qi =
∑

t∈T̂i Q
t. Also, Q is set of all charged EVs in interval [1, T ] satisfying
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Q =
⋃n
i=1Qi =

∑T
t=1Qt. Let C(Q) be the total payment by the users in set Q. Define

pi(π̂Q) as the payment rule (also known as cost sharing method) such that: (i) pi(π̂Q) = 0 if

i /∈ Q, and (ii)
∑

i∈Q pi(π̂Q) = C(Q). The key of designing a group-strategy-proof mecha-

nism is to make payment function cross monotonic [86]. A payment rule is cross monotonic

if for each user i ∈ Q it holds that pi(π̂Q) ≥ pi(π̂N ).

In [86], a general mechanism, called M(p), is designed for a binary system where each

user receives the entire service or nothing. Moreover, it is assumed that the service is always

available for a user unless he is not willing to pay the corresponding bill. The mechanism

M(p) is as follows:

1. Q ← N

2. Select an arbitrary user and drop it from Q if ui(π̂Q) ≤ 0

3. Repeat step 2 until for all users in Q, ui(π̂Q) > 0

Theorem 3.5.0.1. [86] Mechanism M(p) is group-strategy-proof for any cross-monotonic

payment rule p.

To have a group-strategy-proof scheduling algorithm for our problem, mechanism M(p)

should be justified into our model. The main steps include designing a cross-monotonic

payment function and to consider the fact that in our model, some users may not be able

to get their service regardless of the amount they are willing to pay. Besides, in our model

partial charging is allowed and an EV may receive only a fraction of its demand. Developing

a cross-monotonic payment function requires that the total payment C(Q) by the users is

known beforehand. However, in our online setting users arrive on-the-fly and the total

payment cannot be calculated without having information about other types. To overcome

the issue, we develop a time slot based scheduling mechanism. The idea is to design a

mechanism which is group-strategy-proof for group of EVs of a single time slot and run the

mechanism for all time slots t = 1, . . . , T . In this case, uti(π̂Qt) denotes the utility of user i

at time slot t with the set of charged EVs Qt = {i : yti > 0}, i.e.,

uti(π̂Qt) = v̂i(
yti

D̂i

+
γi

d̂i − âi + 1
)− pti(π̂Qt), (3.8)

and ui(π̂N ) =
∑

t∈T̂i u
t
i(π̂Qt). Moreover, pti(π̂Qt) is the price that user i pays for the amount

of resource that he receives at time slot t. The payment for user i at each time slot t ∈ T̂i
is defined as

pti(π̂Qt) =
yti

D̂i

+
γi

d̂i − âi + 1
− |Q

t|
c
, (3.9)
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where c > 0 is a constant set by the charging station. In a case thatQ is empty, pti(π̂Qt) = 0.

The total payment by user i is the summation of its payments at different time slots:

pi(π̂Q) =
∑
t∈T̂i

pti(π̂Qt) = (1/D̂i

∑
t∈T̂i

yti) + γi − |Qi|/c. (3.10)

Corollary 3.5.0.1. The payment function in Equation (3.10) is cross-monotonic.

Proof. Equation (3.9) provides a cross-monotonic definition for payment at each time slot

t since as the number of EVs who get charged at the the time slot grows, the payment for

each user decreases. Similarly, pi(πQ) which is a summation over time slot payments in

Equation (3.9) is cross-monotonic.

Based on the above discussion, we propose an online allocation algorithm with group-

strategy-proofness (gCommit) as listed in Algorithm 7.

Theorem 3.5.0.2. gCommit is group-strategy-proof.

Proof. We first show that gCommit applies a special version of mechanism M(p) at each

time slot and hence is group-strategyproof when T = 1. Then, we extend the proof for

T > 1.

T = 1: Consider a single time slot t. In step 2 of mechanism M(p), users are processed in

an arbitrary order and each user receives the service if its utility is greater than its payment.

Otherwise, it is dropped from set Q. A special form of this step is employed by gCommit

where it processes all users in time slot t according to their marginal valuation and not

randomly. As the information about all EVs who are present in the charging station in time

slot t is available, it is straightforward to identify users who will get charged at the current

time slot denoted by Qt, based on the sorted list and resource constraint P . This is done

in Lines 4− 6 of the algorithm. Once the set Qt is identified, the next step in mechanism

M(p) is to allocate resources to the selected users. The equivalent action in gCommit is

done inside the “for” loop in Line 11. Finally, we drop users from set Q who reach their

deadline and did not receive any resources which is equal to last Step of mechanism M(p).

Notice that we defined the payment function in Equation (3.5) such that the user utility

is always greater than or equal to zero as this is required in mechanism M(p) for selected

users i.e, uti(πQt) > pti(πQt). Moreover, pti(πQt) is cross-monotonic (see proof of Corollary

3.5.0.1). Therefore, it can be observed that gCommit is group-strategyproof for a single

time slot t. That is, in each time slot t = 1, . . . , T if uti(π−i∪{π̂i}) ≥ uti(π−i∪{πi}), ∀i ∈ Qt

then it holds that uti(π−i ∪ {π̂i}) = uti(π−i ∪ {πi}), ∀i ∈ Qt.
T > 1: We assume T = 2 and prove the theorem for a collusion of two users i, j. The

proof is similar when T > 2 and with a larger group of users. For notational convenience,
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Algorithm 7: gCommit:∀t ∈ {1, 2, . . . , T}
Input: Available EVs at time slot t, capacity constraint P , parameter c and

parking size C
Output: A feasible scheduling for time slot t

1 Q ← N , pi(π̂Q)← 0

2 Mt ← the ordered set of EVs available at time slot t such that

v̂1/D̂1 ≥ v̂2/D̂2 ≥ · · · ≥ v̂|Mt|/D̂|Mt|
3 Qt ←Mt

4 si ←
∑i

j=1(k̂j − ytj) for i = 1, . . . , |Mt|
5 nt ← (arg maxsi<P i) + 1
6 Qt ← {j : j ≤ nt}
7 for j = 1, . . . , nt do
8 if

∑
i x

t
i = C then

9 Break the “for” loop

10 δ ← min{k̂j − ytj ,
∑t

τ=âj
yτj − D̂j , P −

∑
j∈Mt ytj}

11 ytj ← δ

12 update xtj
13 if t = âj then

14 γj ← ytj/D̂j

15 ptj(π̂Qt) =
ytj

D̂j
+

γj

d̂j−âj+1
− |Q

t|
c

16 if d̂j = t then

17 pj(π̂Q) =
∑

t′∈T̂j p
t′
j (π̂Qt′ )

18 if
∑

t′∈T̂j y
t′
j = 0 then

19 Drop j from Q
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we define a1 = u1
i (π−i ∪ πi), a′1 = u1

i (π−i ∪ π̂i), a2 = u2
i (π−i ∪ πi) and a′2 = u2

i (π−i ∪ π̂i)
to indicate the utilities of user i with its true and reported type in time slot 1 and 2,

respectively. b1, b
′
1, b2 and b′2 are also defined similarly for user j. Since gCommit is

group-strategyproof for a single time slot, the following deductions are true:

(a′1 ≥ a1) ∧ (b′1 ≥ b1)→ (a′1 = a1) ∧ (b′1 = b1) (3.11)

(a′2 ≥ a2) ∧ (b′2 ≥ b2)→ (a′2 = a2) ∧ (b′2 = b2) (3.12)

The total utility of a user is summation of his utilities in different time slots. Therefore,

to prove that gCommit is group-strategyproof in general, we should show that the following

deduction is true:

(a′1 + a′2 ≥ a1 + a2) ∧ (b′1 + b′2 ≥ b1 + b2)→

(a′1 + a′2 = a1 + a2) ∧ (b′1 + b′2 = b1 + b2) (3.13)

The first part of the hypothesis (i.e.,a′1 +a′2 ≥ a1 +a2) requires that one of the following

cases hold:

A1 ≡ (a′1 ≥ a1) ∧ (a′2 ≥ a2),

A2 ≡ (a′1 ≥ a1) ∧ (a′2 ≤ a2),

A3 ≡ (a′1 ≤ a1) ∧ (a′2 ≥ a2)

Similarly, one of the following cases should hold according to the second part of the

hypothesis (i.e., b′1 + b′2 ≥ b1 + b2):

B1 ≡ (b′1 ≥ b1) ∧ (b′2 ≥ b2),

B2 ≡ (b′1 ≥ b1) ∧ (b′2 ≤ b2),

B3 ≡ (b′1 ≤ b1) ∧ (b′2 ≥ b2)

Considering different combinations of the above cases, the hypothesis of Equation (3.13)

can be stated in 9 different forms. We now show that in all of these forms, the conclusion

in Equation (3.13) holds.

A1 ∧B1: In this case, the hypothesis of Equations (3.11) and (3.12) hold and using the

corresponding conclusions we have (a′1 + a′2 = a1 + a2) ∧ (b′1 + b′2 = b1 + b2).

A1 ∧ B2: Let’s define p1 = b′1 − b1, p2 = b2 − b′2. Then, from definition of B2 and

hypothesis of Equation (3.13) we have p1 ≥ p2. Therefore, b′2 + p1 ≥ b2 and we also
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have a′2 ≥ a2 from A1. With this observation and deduction (3.12) we can write (a′2 =

a2) ∧ (b′2 + p1 = b2) which results in p1 = 0 and turns the case to A1 ∧ B1. Thus, the

conclusion in deduction (3.13) holds.

A1 ∧B3: The argument here is similar to the previous case.

A2 ∧B1: The argument here is similar to the case A1 ∧B2.

A2 ∧ B2: Combining A2 ∧ B2 with (3.11) we have (a′1 = a1) ∧ (b′1 = b1). Therefore,

hypothesis of (3.13) simplifies to (a′2 ≥ a2) ∧ (b′2 ≥ b2) which results (a′2 = a2) ∧ (b′2 = b2)

using (3.12). Thus, the conclusion in deduction (3.13) holds.

A2 ∧ B3: Let p1 = a′1 − a1, p2 = a2 − a′2. Since we have p1 ≥ p2 then, a′2 + p1 ≥ a2.

Similarly, by defining q1 = b1− b′1, q2 = b′2− b2 we have b′1 + q2 ≥ b1. With this observation

and deductions (3.11) and (3.12) we can conclude (a′1 = a1)∧ (b′1 + q2 = b1) and (a′2 + p1 =

a2) ∧ (b′2 = b2). This results in p1 = q2 = 0 and thus the conclusion in (3.13) holds.

The remaining cases A3∧B1, A3∧B2 and A3∧B3 are similar to cases A1∧B3, A2∧B3

and A2 ∧B2, respectively.

3.6 On the Competitive Ratio of the Proposed Online Algo-
rithms

The performance of an online algorithm is determined by its competitive ratio [80] in

which the algorithm is compared to the offline optimal solution in the worst case. Let

UALG and UOPT denote the utility provided by the online algorithm and the offline optimal

solution, respectively. Then, the online algorithm is c-competitive for c ≥ 1, if for any

input sequence we have UOPT
UALG

≤ c. Our proposed online algorithms in this chapter provide

on-arrival commitment. A commitment given at time slot t can be fully adhered at the

same time slot if Di ≤ ki, or it may require resource reservation in subsequent time slots

t+ 1, t+ 2, . . . , which we refer to it in this case as commitment with reservation. When we

talk about commitment it refers to the latter case.

Theorem 3.6.0.1. There is no competitive online scheduling algorithm “with reservation”

for SWMP.

Proof. AssumeA is an online c-competitive algorithm with on-arrival charging commitment

with reservation (c ≥ 1). We show by a counter-example that c can be arbitrary large. Con-

sider the moment that algorithm A gives on arrival charging commitment with reservation

to an EV. Assume that the commitment is given to EV i with type πi = 〈ai, di, vi, Di, ki〉 at

time slot ai and the EV received an amount of y
(ai)
i at the first time slot. Let δ = γiDi−y(ai)

i

be the amount of resource that should be reserved at interval [ai + 1, di] for the EV. Also,

let ∆ be the total amount of resources reserved in interval [ai+1, T ] for EVs arrived before
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time slot ai + 1. Note that since algorithm A is online, it has no information about EVs

arriving in interval [ai+1, T ] and we are allowed to set their type arbitrary as an adversarial

input for the algorithm. We set the adversarial input as follows. At time slot ai + 1, EV n

arrives with type πn = 〈ai+1, dn, vn, Dn, kn〉 as the last EV arriving to the charging station

with dn = T, vn = L,Dn = P (T − ai + 1) −∆ + δ and kn = P where L is a large enough

number to satisfy vn
Dn

>
vj
Dj
,∀j ∈ {1, . . . , n− 1}. Since EV n has the highest value demand

ratio, it should receive all its demand in the optimal solution. Assume that algorithm A
is smart enough to assign all remaining resources (i.e., P (T − ai + 1) − ∆) to EV n and

obtain an objective value of A1 for the SWMP. However, algorithm A could obtain better

result (denote as A2) if it does not reserve δ kWh to EV i and instead allocate Dn kWh

to EV n to fully charge it. By increasing the value of vn the performance gap between

the two cases (i.e., A2 − A1) increases as well. If user n sets vn large enough to satisfy

A2 > c×OPT+A1 which is possible as there is no upper limit on vn, then the competitive

ratio of algorithm A is greater than c which is a contradiction. Therefore, algorithm A
cannot be c-competitive.

The result in Theorem 3.6.0.1 expresses that regardless of how intelligent the scheduling

algorithm with on-arrival commitment is, the adversary can construct a worst-case input,

such that the social welfare obtained by the online algorithm as compared to the offline

optimum is arbitrarily small. Consequently, this result demonstrates that deciding on the

charging commitments is highly challenging and implies that it is not possible to provide an

upper bound for the competitive ratio of the sCommit, tCommit and gCommit. However,

it is possible to obtain a competitive ratio for the algorithms in special case that they give

no charging commitment i.e., J2 is omitted from the definition of the social welfare. In this

case, J1 which reflects total amount of resources received by the EVs represents the social

welfare and SWMP can be simplified as follows:

SWMP-R : max J1 =
n∑
i=1

vi
Di

∑
t∈Ti

yti (3.14a)

s.t.
∑
t∈Ti

yti ≤ Di, ∀i ∈ N , (3.14b)

∑
i:t∈Ti

yti ≤ P, ∀t ∈ T , (3.14c)

∑
i

xti ≤ C, ∀t, (3.14d)

yti ∈ [0, ki], ∀i, t ∈ Ti, (3.14e)

yti = 0, ∀i, t : t /∈ Ti (3.14f)
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Theorem 3.6.0.2. Assume that (i) there is always enough charging slot to charge EVs

and, (ii) sCommit, tCommit and gCommit are modified such that they set γi = 0, ∀i
while the rest of their code remains intact. Then, sCommit, tCommit and gCommit are

2-competitive with optimal offline solution of SWMP-R.

Proof. The proof follows from fact that when sCommit, tCommit and gCommit provide

no charging commitment, they are equal to FirstFit algorithm [30] which is proved to

be 2-competitive. In the FirstFit algorithm, at each time slot with a new arrival, the

jobs (EVs in our case) are sorted in a non-increasing order of their unit values. Then, the

algorithm process jobs according to the sorted list such that for any two jobs i and j with

ρi > ρj , j can only receive some resources if it cannot be allocated to i.

If sCommit set γj = 0,∀j, then the charging decisions are made by ReScheduleEVs.

Observe that ReScheduleEVs uses the same sorted list used by FirstFit and follows the

same allocation policy. Moreover, tCommit is different from sCommit only in the part

that it sets the charging commitment. Therefore, when no charging commitment is given

by the algorithms, tCommit is equal to sCommit. Finally, we can observe that gCommit

also follows the same approach where it sorts the EVs at each time slot and allocates the

maximum resource for each selected EV from the sorted list (Lines 10−11 of Algorithm 7).

Therefore, under SWMP-R (formulated in Section 3.6), our proposed algorithms behave as

the FirstFit.

3.7 Extension: Scheduling Under Partial Availability of Fu-
ture Information

The scheduling algorithms in this chapter are pure online as they are designed based on

the assumption that zero information about the type of future coming EVs is available. In

practice, however, it might be possible that the charging station has some knowledge of the

future demands [87]. For example, mobile EVs in a city can submit their charging demand

using onboard units (OBUs) before they arrive to the charging station [88]. In this case,

the charging station can improve the scheduling by utilizing the amount of the time that it

takes for the EVs to drive to the charging station. In a simple form, we can assume that the

charging station is always aware of the EVs’ type W time slots before their arrival where

0 ≤W ≤ T . With W = 0, the scheduling is pure online while W = T represents the offline

scenario. Our scheduling algorithms can be modified to adapt to this scenario. We give

here explanations to extend sCommit but leave the extension of our truthful algorithms

for the future works.
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(a) Social welfare (b) J1 (c) J2

Figure 3.3 – The impact of the number of EVs on the performance of the proposed algo-
rithms.

Let At be set of EVs which will arrive in time interval [t,min{T, t + W}]). Then, to

extend sCommit, we add following steps in the beginning of SetGamma and after Line

1: (a) sort EVs in set At in non-increasing order of their unit value where t is the current

slot. (b) select one EV (say i) at a time from sorted list and allocate maximum feasible

amount of resource in interval [max{t, ai},min
{
T, t + W

}
]. (c) update γi according to

allocated resources in [ai, di]. (d) set Di ← Di −
∑

t y
t
i and continue running SetGamma

as explained in the algorithm box (Lines 2− 11).

The effect of parameter W on the performance of sCommit is investigated in Section

3.8.2.3. Due to the reasons that are explained in Section 3.4, a similar extension cannot be

applied to tCommit and gCommit without violating their truthfulness.

3.8 Simulation Results

3.8.1 Settings

We consider charging scheduling of EVs during a day divided to 24 time slots of length

1 hour. In the simulations, we use the battery capacity and maximum charging rate of

10 popular EV models in the market as summarized in Table 3.3. As in [41] and [45],

we assume that arrival times follow a Poisson distribution and parking times follow an

exponential distribution with the mean arrival and parking duration indicated in Table 3.4.

The peak intervals include 08:00-10:00, 12:00-14:00 and 18:00-20:00 which is in accordance

to NHTS survey 2009 [41, 89]. Demands are uniform random values from [ki(di − ai +

1)/2s,min{ki(di − ai + 1)/s, ci}] where ci is the battery capacity of EV i. Based on US

national electricity price average ($0.11 per kW) [90] the willingness of a user to pay for 1

kW of electricity is a uniform random number from interval [0.08, 0.2]. The parameters Δ

and α in the sCommit algorithm are set to 3 and 1, respectively. Moreover, δ1 and δ2 in the
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Table 3.3 – Characteristics of popular EV models
Model Max. charging rate Battery capacity

BMW i3 7.4 kW 22 kWh / 33 kWh
Chevy Spark EV 3.3 kW 19 kWh
Fiat 500e 6.6 kW 24 kWh
Ford Focus Electric 6.6 kW 23 kWh
Kia Soul EV 6.6 kW 27 kWh
Mercedes B-Class Electric 10 kW 28 kWh
Mitsubishi i-MiEV 3.3 kW 16 kWh
Nissan LEAF 3.3 kW / 6.6 kW 20 kWh / 24 kWh
Tesla Model S 10 kW / 20 kW 60 kWh / 100 kWh
Tesla Model X 10 kW /20 kW 60 kWh / 100 kWh

Table 3.4 – EV arrival rates and mean parking times
Time interval Arrival rate Mean parking time

08:00-10:00 14 10
10:00-12:00 10 1/2
12:00-14:00 20 2
14:00-18:00 10 1/2
18:00-20:00 20 2
20:00-24:00 10 10
24:00-08:00 0 0

tCommit by default are set to 20 and 0.2, respectively. Recall that when an EV arrives to

the charging station, sCommit tends to give a higher charging commitment as α increase

from 0 to 1. The same holds for tCommit when δ1 increases and δ2 decreases. Therefore,

higher values of α, δ1 and 1/δ2 means that the algorithms give charging commitment blindly.

For the charging station, the default value of capacity constraint is 200 kW and the

number of charging slots is 100. In simulation figures, the results are plotted with a 95%

confidence level and each data point represents average result of 50 random scenarios. We

compared the proposed methods to non-truthful non-committed optimal offline solution

labeled as Opt and two classic scheduling algorithms, i.e., Earliest Deadline First (EDF)

and First-In First-Out (FIFO). As the names suggest, EDF always schedules an EV with

earliest deadline and FIFO gives the priority to a user which is arrived earlier. To obtain

optimal values, we use Gurobi solver [65].

3.8.2 Results

3.8.2.1 The impact of the number of EVs

We investigated the performance of our solution when the number of EVs varies. Toward

this, we changed the number of EVs from 50 to 300 and reported the results in Fig. 3.3.

In Fig. 3.3a, we compared different algorithms based on their social welfare, i.e., the value

of objective function in Equation (3.3a). Generally, higher performance is expected when
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the charging capacity (200 kW) and number of charging slots are enough to charge all or

most of EVs. This is because in such conditions, the scheduling problem is less challenging

and our algorithms need less intelligence to be close to the Opt. However, as the number

of EVs (and thus total demand) grows without increasing capacity constraint and number

of slots, more and more EVs loose the opportunity of getting charged. In such scenarios

the scheduling is more challenging as less number of EVs can get charged. Consequently,

the expansion of solution space makes the scheduling more challenging for the proposed

algorithms and the optimality gap slightly increases. This can be observed in Fig. 3.3a-3.3c.

Note that FIFO and EDF only consider J1 (i.e., total valuation of processed demands).

Therefore, they cannot provide a good level of social welfare in Fig. 3.3a. Fig. 3.3b reveals

that the two algorithms, which perform almost similar, do not scale well as number of EVs

increases.

In terms of social welfare, sCommit, tCommit and gCommit are 93%, 92% and 65%

of the optimal solution, on average. The sCommit works better than tCommit when

the EV numbers is “ ≤ 125” and it is reverse for larger values. The reason is that the

value of input parameters α, δ1 and δ2 in sCommit and tCommit are fixed regardless of

the number of EVs. Therefore, depending on the values of the input parameters, either

sCommit or tCommit could act better than the other one.

To investigate the strengths and weaknesses of different methods in more details, in

Figs. 3.3b and 3.3c we reported the performance of the algorithms in terms of different

components of social welfare, i.e., J1 (as a measure of total power received by the EVs)

and J2 (as a measure of given commitments) as defined in Equations (3.1) and (3.2),

respectively. According to the results, the gCommit has very small optimality gap when

the comparison is made based on J1 while in terms of J2, in Fig. 3.3c, the gap is as large

as 76%. This large gap is a result of the gCommit’s behavior which puts the priority to

provide group-strategy-proofness and gives no commitment that requires reservation (See

Section 3.3).

3.8.2.2 The Impact of Design Parameters

In this simulation, we examined the impact of design parameters 0 ≤ α ≤ 1 in the sCom-

mit, and δ1 > 0 and 0 ≤ δ2 ≤ 1 in the tCommit to find appropriate default parameter

setting. In Figs. 3.4a-3.4c, the result for each algorithm is plotted for different number of

EVs and different values of input parameters. An immediate observation is that the per-

formance of both sCommit and tCommit are sensitive to design parameters. The impact

of parameters, however, is different for different number of EVs. The results in Fig. 3.4a

show that when the number of EVs is less than 150, the performance of the sCommit

improves as α increases. Observe that with higher values of α the sCommit gives more
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(a) Effect of α in sCommit (b) Effect of δ1 in tCommit (c) Effect of δ2 in tCommit

Figure 3.4 – The effect of input parameter α on sCommit, and parameters δ1, δ2 on tCom-

mit.

commitments. In low load regime with small number of EVs, always enough resources are

available to charge all or the majority of EVs. Therefore, the best strategy in such scenarios

is to set α to its maximum value. In high load regimes, e.g., n = 200, large values of α may

degrade the performance as the algorithm gives charging commitments to EVs blindly in

the presence of resource shortage. Based on Fig. 3.4a, when n = 200, α has an optimal

value of 0.6.

In the tCommit, δ1 is similar to α in the sCommit but it acts reversely. According

to Equation (3.6), more charging commitments are given with lower values of δ1. With

a similar justification discussed regarding the effect of α in the sCommit, the results for

tCommit in Fig. 3.4b indicate that small (resp. large) values of δ1 should be used for small

(resp. large) number of EVs (approximately, δ1 = n/5 results in maximum social welfare).

Moreover, it can be seen from Fig. 3.4c that 0.15 ≤ δ2 ≤ 0.2 eventuate to the best results

for tCommit. Notice that the online algorithms have no information on the number of

EVs. However, one can estimate the number of EVs based on the historical data and set

the input parameters accordingly.

3.8.2.3 Performance of sCommit with Partial Access to Future Information

In this section, we investigated the performance of an extended version of sCommit ex-

plained in Section 3.7, assuming that at each time slot t the algorithm is aware of the type

of EVs which are available in the next W times slots for W = 0, 1, . . . , 12. It can be seen

from Fig. 3.5 that by increasing W , the sCommit can provide a better scheduling and

achieves a higher social welfare. The improvements for 100, 200 and 300 EVs are 7%, 8%

and 11% respectively when W changes from 0 to 12.
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Figure 3.5 – The effect of parameter W in sCommit.

3.9 Conclusion

This chapter studies online EV charging scheduling with on-arrival commitment and group-

strategy-proofness. Given the rapid increase in EV charging demand, the aggregate request

of deadline-constrained EVs may be beyond the maximum tolerable rate of the charging

station. Consequently, some EVs may leave the station by the deadline without receiving

their charging request, thereby providing on-arrival commitment is vital for a proper design.

We propose several online scheduling algorithms with on-arrival commitment. We then an-

alyze their (group)-strategy-proofness, as a salient feature that simplifies the system design

by enforcing users to report their true profiles. Our extensive simulations demonstrate that

beside the apparent benefit of on-arrival commitment on improving user satisfaction, the

performance of our scheduling algorithms is close to the optimal offline scheduling without

commitment.

As a future work, we plan to study the scheduling problem in a network of charging

stations where the goal is to achieve a global optimal solution or a near-optimal distributed

solution.
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4.1 Introduction

To promote quick adoption of renewable energy sources, electrification of vehicles is a trend

that has been globally advocated in recent years. According to a Bloomberg report, EVs

will account for more than half of the new car sales by 2040 [66]. Consequently, it is

expected that demand from EV charging will constitute a considerable portion of total

energy demand. Currently, transportation consumes 29% of total energy in the US, while

electricity production consumes 40% [54]. Hence, rapid electrification of the vehicles makes

the total electricity demand of EVs significant.

This thesis studies EV charging scheduling in an adaptive charging network (ACN) gov-

erned by a single operator in a campus-scale location such as a university, a headquarters,

etc. [8]. A notable example is the Caltech ACN [9] where individual charging ports are

organized into several charging stations (CSs) which are dispersed in a charging network

with the capability of adaptive charging of the electric vehicles. The problem is different

from EV charging scheduling in single station scenarios [4, 5, 47, 47, 54, 56–59] (We refer

to [91] for detailed discussions on related work), because of the essential need to respect

the aggregate peak demand of the ACN. More specifically, the ACN operator might limit

the total power drawn from EVs to control costs [10, 11], reserve the capacity for other

loads, and/or participate in demand-response events. The aim of this thesis is to use the

deferrable property of EVs and schedule their charging jobs, so as to maximize the revenue

of the ACN.

We consider a scenario with multiple EVs where each EV has different availability,

charging demand, charging rate limit, and valuation of getting charged. We formulate an

online EV charging scheduling problem with the goal of selecting and scheduling a subset

of EVs such that: (1) the charging demand of the selected EVs are (fully or partially)

satisfied; (2) the charging rate limit of EV batteries are respected, (3) the global peak

constraint of the ACN is satisfied [9]; (4) the local peak constraint of each CS is respected;

and finally, (5) the total revenue obtained by the valuation of the EVs is maximized.

There are two main challenges in the design and implementation of scheduling algo-

rithms for EVs satisfying the goals mentioned above. Firstly, the problem calls for online

scheduling design. In practice, EVs arrive to the CS in online fashion and the scheduler

has no information about the arrival and demand of the future EVs. Secondly, the under-

lying optimization problem in integral model is NP-hard (see Section 4.4). This is because

the problem is a mixed integer linear problem and a “time-expanded” extension of knap-

sack problem which is known as a classic NP-hard problem. In this thesis, we tackle the

challenge of online design by following competitive algorithm design [80] and the challenge

of NP-hardness by pursuing approximation algorithm design [92] and make the following
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contributions:

B We first consider a fractional model (where EVs can be charged partially and the

revenue is proportional accordingly) and design an optimal offline scheduling algorithm.

We then develop an efficient online algorithm in which no exact or stochastic information

about the future EV arrivals is given. Despite its simplicity, the algorithm is proved to be 2-

competitive with optimal offline solution, i.e., the revenue of the proposed online algorithm

is at least 1/2 of the offline optimum, regardless of input sequence. Even though there are

competitive algorithms in the literature for similar problems, to the best of our knowledge,

our algorithm is the first 2-competitive algorithm which considers the charging rate limit

of EV batteries.

B We next study the more challenging scenario of the integral model , where EVs must

receive all their demand to make revenue. We first propose a polynomial-time primal-dual

offline approximate algorithm. We analyze the approximation ratio of the algorithm and

by strengthening the linear relaxed version of the mixed integer problem [93], we obtain an

approximation ratio of α = 1+
∑m

j=1
pj

pj−qj .
s
s−1 , where pj is local peak constraint in station

j, qj is the maximum charging rate of the EVs in station j and s is a slackness parameter.

We highlight that when pj � qj and s is large enough, then α ≈ m + 1, where m is the

number of stations in the ACN. Built on top of the offline algorithm, we devise an online

algorithm, and discuss its competitive ratio in special cases.

B We conduct a set of extensive simulations to evaluate the performance of our proposed

algorithms. The results of online algorithms for both integral and fractional settings are

close to the offline algorithms (within 89% and 92% for integral and fractional models in

a representative scenario). In addition, our algorithm outperforms the existing scheduling

algorithm in Caltech ACN [9] by 9% and 3% for integral and fractional revenue models,

respectively.

4.2 System Model and Problem Formulation

4.2.1 System Model

We consider a time-slotted system model in which the time horizon is divided to T equal

length slots t = {1, 2, . . . , T} (e.g., T = 24 with time slots of 1 hour length).

4.2.1.1 Charging Network

Our charging network model is inspired by the Caltech ACN [9] as illustrated in Fig. 4.1a.

In the Caltech EV charging network (located in a parking garage), electricity is distributed

through a two-level transformer architecture from a main switch panel to multiple EV
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Table 4.1 – Summary of key notations

Notation Description

T Number of time slots, indexed by t
m Number of CSs, indexed by j
n Number of EVs, indexed by i

ai Arrival time of EV i
di Departure time of EV i
Di Demand of EV i
vi Valuation of EV i for receiving its demand Di

ki Maximum charging rate of EV i
h(i) CS of EV i

qj Maximum ki among all EVs in CS j
pj Maximum aggregate charging rate in station j
ptotal Maximum aggregated charging rate of all stations

yti opt. variable, The amount that EV i is charged at t

switch panels (2 panels in the current Caltech ACN). Each EV switch panel then is con-

nected to several chargers (≈25 chargers per panel in the Caltech ACN). The total power

drawn from the main switch panel by the charging network has a power limit of ptotal, that

is determined by the facility operator to control the costs, reserve the capacity for other

loads, and/or participate in demand-response events. In other words, ptotal, which we refer

to it as the global peak, hereafter, limits the maximum aggregate EV charging load at each

time slot.

We assume that there are m EV switch panels that represent m CSs. In addition to

the global peak constraint, each CS j has a capacity constraint on its total power drawn,

indicated by pj , and referred to it as the local peak constraint. The value of pj is determined

by the output power limit of the transformers installed between the main switch panel and

EV switch panels and could be different for each EV switch panel. It is often observed that

the charging demand of different CSs (EV switch panels in Fig. 4.1a) are well below the

local peak constraints. To increase the flexibility due to heterogeneous charging demand

of CSs, in the Caltech ACN, the global peak constraint of the main switch can be over-

provisioned, i.e., ptotal is less than the aggregate local peaks, (
∑

j pj ≥ ptotal). While this

increases flexibility, it also couples the problem of EV charging scheduling across different

CSs. Our solutions in this thesis will be centralized ones which can be obtained through

communication between the CSs and a central server as illustrated in Fig. 4.1b.
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Figure 4.1 – System model [9].
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Table 4.2 – Proposed algorithms and their properties.

Alg. Revenue Type Optimality Complexity

fCS fractional offline Optimal O(n2T + nT 2)

iCS integral offline
(

1 +
∑m

j=1
pj

pj−qj .
s
s−1

)
-approximate O(nT log T + n2T )

foCS fractional online 2-competitive O(n2T )

ioCS integral online b(1 + p
p−q .

s
s−1)-competitive, (m = 1) O(n2T )

4.2.1.2 EVs

There are n EVs in the system, indexed by i. EV i is represented by a charging profile

〈ai, di, Di, vi, ki〉 indicating its arrival time, departure time, charging demand, valuation,

and the maximum charging rate, respectively. More specifically, the charging of EV i

can be scheduled within its availability window, [ai, di]. The charging rate at each slot

is bounded to ki, a parameter that depends on the physical constraints of the battery

and on-board charger. It is assumed that the charging profile of each EV is feasible with

respect to its maximum charging rate and a slackness parameter s ≥ 1, which is the

minimum ratio between the park time of the EV and its minimum charging time, i.e.,

Di ≤ ki(di − ai + 1)/s. The slackness parameter is imposed to tune the flexibility of the

charging scheduling. In extreme case s = 1, the flexibility is minimum and the flexibility

improves as s increases. We assume that EV owners select their CS, perhaps the nearest

to them, and so the assignments are given to the problem. Define h(i) as the CS of

EV i. Moreover, qj denotes the maximum ki among all EVs in CS j, i.e., qj = maxh(i)=j ki.

Finally, vi is the revenue of CS given that EV i received its demand Di before the departure

time di.

4.2.1.3 Revenue Models

We consider two revenue models: (i) Fractional revenue model : In this model, the fractional

charging is allowed, i.e., the revenue from each EV is proportional to the fraction of the

demand that is fulfilled [5] (see Eq. (4.2)). We tackle this model in Section 4.3. (ii) Integral

revenue model : In this model, when EV i pays vi when it is fully charged, otherwise it pays

nothing, i.e. no partial revenue is received for partial charging. This is the model that is

considered in [56,57]. We tackle this model in Section 4.4.

4.2.2 Problem Formulation

We formulate an optimization problem to schedule the charging of the EVs with the ob-

jective of maximizing total revenue obtained from charged EVs while respecting local and

global peak constraints. Note that each revenue model makes the underlying optimization
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problem fundamentally different. More specifically, the fractional charging model is a lin-

ear problem. Integral revenue model, however, turns the underlying charging scheduling

problem to a Mixed Integer Linear Program (MILP). The integer nature originates from

the 0/1-selection decision on EVs. We formulate Scheduling Problem for Adaptive charging

Network (SPAN) under fractional revenue model as follows:

SPAN : max
∑n

i=1

vi
Di

∑di

t=ai
yti

s.t.
∑di

t=ai
yti ≤ Di, ∀i, (4.1a)∑n

i=1
yti ≤ ptotal, ∀t, (4.1b)∑

i:h(i)=j
yti ≤ pj , ∀t, j, (4.1c)

yti ≤
ki
Di

∑di

t′=ai
yt

′
i , ∀i, t, (4.1d)

vars. yti ≥ 0, ∀i, t,

where yti is the amount that EV i is charged at slot t. Constraint (4.1a) ensures that the

aggregate amount received by EV i is at most the demand Di. The global and local peak

constraints are represented by constraints (4.1b) and (4.1c), respectively.

The constraint (4.1d) enforces the maximum charging rate of EVs. The straightforward

way to express this constraint is to simply state that at each time slot t, the charging rate of

EV i should be less than or equal to its maximum charging rate, i.e., yti ≤ ki, ∀i, t. However,

for the sake of effective algorithm design for integral model and reducing the integrality

gap of the relaxed linear problem, this constraint is strengthened in the form of Eq. (4.1d).

Note that in case that the aggregated charging of EV i during its availability window is

equal to its demand, i.e.,
∑di

t′=ai
yt

′
i = Di, Eq. (4.1d) reduces to the simple form of yti ≤ ki.

This is a natural way in approximation algorithm design to improve the performance of

the algorithms under linear-relaxation based design [93].

The SPAN is an extension of formulated problem in [94] where a job scheduling problem

in cloud applications is studied. It turns out that the resource allocation problem in cloud

systems and the EV charging scheduling problem in a single station share similar structure.

Indeed, each charging profile in our scheduling problem can be seen as a job in cloud system

with a deadline, value, and CPU demand. The SPAN, however, comes with an additional

constraint (4.1b), which makes it different from the problem in [94], such that the existing

solution does not work in the new setting anymore. More importantly, this thesis studies

both offline and online solutions for the problem in both fractional and integral settings,

while [94] tackles only the offline integral model.
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4.3 Fractional Revenue Model

4.3.1 Overview of Fractional Revenue Model

To develop a solution for the SPAN, we first consider fractional revenue model. In this

model, the revenue of the CS from EV i is directly proportional to the amount of resource

that the EV is received, i.e.,

vfi = min

{
vi,

∑
t y

t
i

Di
vi

}
, (4.2)

where vi is the gain, if the entire demand Di is fulfilled and vfi is the fractional gain.

Under fractional revenue model and without the binary variable of selecting EVs, the

underlying problem turns into a linear one. In Section 4.3.2, we propose a simple algorithm

with low computational complexity for the fractional model that finds the optimal solution

in offline setting. Note that even though linear programs can be solved in polynomial

time in general, the complexity of our proposed algorithm is much lower than the general

linear program algorithms. Moreover, our proposed offline algorithm applies a valley-filling

strategy to reduce the peak. The online algorithm is designed in Section 4.3.3, where no

exact information or stochastic modeling of future inputs of the problem is available. Our

analysis demonstrates that the proposed online algorithm is a 2-competitive one, i.e., the

revenue obtained by the algorithm is at least 1/2 of the offline optimum in worst-case.

4.3.2 Offline Scenario

We refer the proposed algorithm as the fCS and summarize it as Algorithm 8. The fCS

works in two phases. In the first phase (Section 4.3.2.1), the algorithm decides on the

amount of resource to be allocated to each EV within its availability window and reserves

resources accordingly. In this phase, the details of allocation is not known. The actual

resource allocation is done in the second phase (Section 4.3.2.2) by setting variables yti .

Before discussing the details of the algorithm, we introduce some notations that facili-

tate our algorithm design. Let Ri be the amount of resource that is reserved for EV i by

the fCS and It,t′ as time interval [t, t′]. Then, assuming that charging demands are sorted

in non-increasing order of their unit values, Aij(t, t
′) is the aggregate residual resource in

interval It,t′ at station j assuming that the reservation for EVs 1 to i is accomplished with

a dummy A0
j (t, t

′) defined as

A0
j (t, t

′) = (t′ − t+ 1)×min{ptotal, pj},

that indicates the available resource when no charging request is processed.
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Algorithm 8: fCS

Input: n EVs with their profile, local and global peak constraints pj , j = 1, . . . ,m
and ptotal

Output: Optimal scheduling under fractional model

1 Sort charging requests in non-increasing order of their unit values, i.e.,
v1
D1
≥ v2

D2
≥ · · · ≥ vn

Dn

2 L ← ∅
3 //Phase I

4 for i = 1, . . . , n do

5 Ri ← min{Di,min
t,t′

Ai−1
h(i)(t, t

′),∀t, t′ : It,t′ ∈ Iai,di}

6 if Ri > 0 then

7 Aih(i)(t, t
′)← Ai−1

h(i)(t, t
′)−Ri,∀t, t′ : [t, t′] ∈ Iai,di

8 L ← L ∪ i

9 //Phase II

10 Sort EVs in L in increasing order of their charging flexibility i.e., (di−ai+1)ki
Di

, i ∈ L.

11 for i = 1, . . . , |L| do
12 Pick EV i from the sorted list L.

13 feasible←
(∑di

t=ai
min{ki, Ai−1

h(i)(t, t)}
)
−Ri

14 if feasible < 0 then
15 Re-allocate previously allocated EVs such that feasible ≥ 0

16 Arbitrarily allocate Ri to EV i in its availability window

Definition 4.3.2.1. Time interval [δ, δ′] is a “super interval” for interval [t, t′] if 1 ≤ δ ≤
t AND t′ ≤ δ′ ≤ T . Moreover, It,t′ is the set of all super intervals of interval It,t′ i.e.,

It,t′ = {[δ, δ′] : 1 ≤ δ ≤ t AND t′ ≤ δ′ ≤ T}.

The number of super intervals of an interval is at most T 2 and at least one (for interval

[1, T ]). We now explain in detail each phase of the algorithm.

4.3.2.1 Phase I-Reservation

In Line 1, the EVs are sorted in a non-increasing order of their unit values. In Line 5,

the fCS processes demand of EV i, picked from top of the ordered list, and sets Ri as the

amount to be reserved for EV i which will be allocated in Phase II. In Line 7, the residual

resource of all intervals in set Iai,di decreases by Ri and EV i is added to the set of selected

EVs.
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Lemma 4.3.2.1. Provided that for EV i we have

Ri ≤ min

{
Di,min

t,t′
Ai−1
j (t, t′),∀t, t′ : It,t′ ∈ Iai,di

}
, (4.3)

then there is a feasible allocation to allocate Ri to EV i in its availability window [ai, di].

Proof. We prove the theorem by induction.

Base case: When n = 1, there is only one EV that can be easily scheduled in its

interval since all charging profiles represent a feasible demand and all resources are free.

Induction step: Let k ∈ Z+ is given and the claim is true for n = k i.e., EVs 1, . . . , k

can be feasibly scheduled to receive their reserved resources. Now let n = k + 1. We claim

that EV k+1 can be feasibly scheduled in its interval. To prove, assume that this claim does

not hold. Therefore, there should be at least one interval say It,t′ such that Ak+1
h(k+1)(t, t

′) < 0

and Akh(k+1)(t, t
′) ≥ 0. Then, one of the following cases holds: a) It,t′ /∈ Iak+1,dk+1

and b)

It,t′ ∈ Iak+1,dk+1
.

In case a, since It,t′ /∈ Iak+1,dk+1
, reserving resources in interval Iak+1,dk+1

does not affect

remaining resource in It,t′ . Therefore, we have Ak+1
h(k+1)(t, t

′) = Akh(k+1)(t, t
′) ≥ 0.

In case b, according to Eq. (4.3), we have Rk+1 ≤ Akh(k+1)(t, t
′). Also, Ak+1

h(k+1)(t, t
′) =

Akh(k+1)(t, t
′)−Rk+1 which gives Akh(k+1)(t, t

′) ≥ 0.

Consequently, in both cases Akh(k+1)(t, t
′) ≥ 0 which is a contradiction. Therefore, the

original claim holds.

In Eq. (4.3), the second term, i.e., mint,t′ A
i−1
j (t, t′), indicates the minimum remaining

resource in all super intervals of interval Iai,di . For i ≥ 1, Aij(ai, di) is defined as follows:

Aij(ai, di) =

{
Ai−1
j (ai, di)−Ri j = h(i),

Ai−1
j (ai, di) j 6= h(i).

The optimal value of Ri, i = 1, . . . , n is set according to the following lemma:

Lemma 4.3.2.2. Given n EVs sorted in a non-increasing order of the unit values, v1/D1 ≥ v2/D2 ≥ · · · ≥ vn/Dn,

and the value of Ri, where Ri is set after Ri−1, i = 2, . . . , n by Eq. (4.3), then,

Ri = min

{
Di,min

t,t′
Ai−1
h(i)(t, t

′),∀t, t′ : It,t′ ∈ Iai,di
}
,∀i,

is the optimal value for Ri.

Proof. By induction.

Base case: When n = 1, the claim holds since Ri > min{Di,mint,t′ A
i−1
h(i)(t, t

′),∀t, t′ :

[t, t′] ∈ Iai,di} is not feasible and the gain is maximized with maximum value of Ri i.e.,

Ri = min{Di,mint,t′ A
i−1
h(i)(t, t

′),∀t, t′ : [t, t′] ∈ Iai,di}.
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Induction step: Assume the claim holds for n = k, k > 1 i.e., R?i = min{Di,mint,t′ A
i−1
h(i)(t, t

′),∀t, t′ :
[t, t′] ∈ Iai,di}, is the optimal value for Ri, i = 1, . . . , k. Now let n = k + 1. We claim that

R?k+1 = Γ where Γ = min{Dk+1,mint,t′ A
k
h(i)(t, t

′),∀t, t′ : (t, t′) ∈ Iak+1,dk+1
}. To prove,

assume Γ is not the optimal value of Rk+1. Therefore, since according to the definition

of Rk+1 it always holds that Rk+1 ≤ Γ thus, R?k+1 < Γ and the amount of resource to

be reserved for EV i is decreased by Γ − R?k+1. This amount, can be only assigned to

EVs k + 2 to n since Ri is set to its maximum value for i = 1, . . . , k. However, having

vk+1/Dk+1 ≥ vi/Di, i = k + 2, . . . , n the optimal total revenue can be increased by setting

Rk+1 = Γ which is a contradiction.

4.3.2.2 Phase II- Allocation

Lemma 4.3.2.1 shows that there is a feasible scheduling to allocate the reserved resources.

However, despite its feasibility, it is not straightforward to find such scheduling. For ex-

ample, assume that for EV i it is set that Ri = 10 and ki = 4. It is possible that all

available resources are concentrated in a single time slot but EV i cannot use more than 4

kWh of it. In this situation, the previously allocated resources in interval Iai,di should be

re-allocated such that the concentrated resources are dispersed and we have
∑di

t=ai
σt ≥ Ri

where σt = min{ki, Ai−1
h(i)(t, t)} is the maximum resource that can be allocated to EV i

at time slot t. Since the total amount of allocated resource does not change in the inter-

val, such dispersion is possible and can be done by a simple algorithm in which allocates

min{ki, Ai−1
h(i)(t, t)} starting from time slot t = ai until Ri units is allocated. To further

reduce the peak of the system, we will develop SmartAllocate algorithm (See Section

4.4) which acts more intelligent so that Line 16 of the fCS can be replaced by “Run

SmartAllocate(i, Ri)”.

Theorem 4.3.2.1. fCS is an optimal solution under fractional revenue model.

Proof. By utilizing Lemma 4.3.2.2, fCS sets Ri to its optimal value for EV i, i = 1, . . . , n.

Based on Theorem 4.3.2.1, since it is feasible to allocate Ri to EV i, i = 1, . . . , n, the total

gain by fCS is optimal.

The following theorem characterizes the complexity of fCS.

Theorem 4.3.2.2. The time complexity of fCS algorithm is O(n2T + nT 2) where n is

the number of EVs and T is number of time slots.

Proof. The algorithm starts by sorting the charging profiles which costs O(n log n). Then,

in the first “for” loop in Lines 4 − 8, the algorithm calculates Ri for i = 1, . . . , n. This

requires us to check that for each EV i, there are enough available resources in all time
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intervals in the set Iai,di . By definition, number of these times slots is (T − di + 1)ai which

is O(T 2) and their length varies from 1 to T . Therefore, the complexity of the first “for”

is O(nT 2). Finally, in the second “for” loop where the algorithm makes re-allocations, it

should check all previously allocated EVs in their availability interval which can be done in

O(n2T ) and dominates the cost of sub procedure SmartAllocate. Therefore, the total

cost is O(n2T + nT 2).

4.3.3 Online Scenario

In this section, we devise an algorithm for the scenario that EVs arrive in online fashion.

The scheduling decisions at each time slot are made given the information of available EVs

and neither exact values nor stochastic modeling of future arrivals is available. Our goal

is to obtain a competitive ratio for the online algorithm. A scheduling algorithm A has a

competitive ratio of c with c ≥ 1, if for any input sequence, the utility U(A) of A satisfies

that
U?

U(A)
≤ c,

where U? is the maximum revenue over the input instance [80].

Our online algorithm for the fractional revenue model, referred to as foCS, is listed as

Algorithm 9. The foCS is a simple yet efficient algorithm that always selects EVs with

highest unit value to allocate. First, foCS sorts the available EVs at each slot t based

on their unit values (Line 2). Then, it selects the EV with highest unit value and sets

the charging rate of the EV to maximum possible rate taking into account its remaining

demand, maximum charging rate, and peak constraints (Lines 3-4). The allocation is

continued until all resources are allocated or there is no more EV which can receive more

resources at the current time slot according to its maximum charging rate and remaining

demand. For unselected EVs the value of yti will be 0 in Line 4 of the algorithm. The time

complexity of the foCS is O(n2T ), determined by cost of its “for” loop multiplied by the

number of running times of the algorithm i.e., T .

Despite the simplicity of foCS which makes it easy to implement, its performance is

sound and within a constant factor of the offline optimum. We now proceed to analyze the

performance of the foCS by first giving some preliminaries.

Fix an optimal scheduling and let SfoCS,t and SOpt,t be the sets of EVs selected by the

foCS and optimal solution at time slot t, respectively. Let yti and zti be the charging rate

of EV i set by foCS and Opt, respectively. We define ∆t
i as follows:

∆t
i =

{
min{zti − yti , ri,t} i ∈ SOpt,t, z

t
i > yti ,

0 otherwise,
(4.4)
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Algorithm 9: foCS: ∀t ∈ {1, 2, . . . , T}
Input: Available EVs at time slot t, number of CSs m, local peak constraint

pj , j = 1, . . . ,m, global peak constraint ptotal

Output: A feasible charging scheduling

1 Mt ← The set of EVs available but not finished at time slot t
2 Sort EVs in set Mt indexed by i = 1, . . . , |Mt|:

v1/D1 ≥ v2/D2 ≥ · · · ≥ v|Mt|/D|Mt|
3 for i = 1, . . . , |Mt| do

4 yti ← min{ki,
∑t

τ=ai
yτi −Di, ph(i) −

∑
i′:h(i′)=h(i) y

t
i′ , p

total −
∑

i′ y
t
i′}

where ri,t is the remaining demand of EV i by the end of time slot t. ∆t
i > 0 indicates that

the optimal algorithm allocated ∆t
i units more resources to EV i than the foCS by time

slot t that could be feasibly allocated by foCS to the EV i. If for any EV i ∈ SOpt,t and

time slot t ∈ T we have yti = zti , i.e., ∆t
i = 0, then the foCS is obviously optimal because

it gains whatever the optimal solution gains. For the case that ∃i, t : ∆t
i > 0, we define loss

of the foCS imposed by EV i as follows:

li,t = ∆t
i

vi
Di
, (4.5)

When foCS sets charging rate of an EV less than its rate in the optimal solution, it

gains ∆t
ivi/Di less than the optimal solution from that EV. An upper bound for the distance

between the optimal objective value (denote by Opt) and the revenue of the foCS (denote

by Alg) is summation of the losses over all time slots and all EVs, i.e.,

Opt−Alg ≤
T∑
t=1

∑
i∈SOpt,t

li,t. (4.6)

Notice that it is possible that an algorithm does not choose any selected EV by a

particular optimal solution but still provide an optimal or near-optimal solution as there

can be multiple optimal solutions. In particular, SfoCS,t∩SOpt,t = ∅,∀t cannot lead to any

conclusion on the competitive ratio of the foCS. In addition to the amount of loss, the

gain of the algorithm from charging alternative EVs should also be taken into account in

comparison between Opt and Alg.

Let i ∈ SOpt,t, i /∈ SAlg,t and gi,t be the gain that the foCS obtains from charging

another EV instead of i at time slot t. We are going to show that in the foCS, for each

EV i with li,t > 0 there must be another EV (denote by i′) where yti′ ≥ ∆t
i and

vi′
Di′
≥ vi

Di

which means in resource allocation phase for EV i, the foCS allocated the difference ∆t
i

to another EV with the same or higher unit value. This can be proved by considering the
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fact that (i) the selected EVs have higher unit values than the unselected EVs, and (ii) the

charging rate of the selected EVs are set to the maximum feasible value. Moreover, the

foCS does not let any resource to remain unused if there are some EVs that can use it.

Let gi,t denote the gain that foCS obtains from allocating the same amount of resource

that optimal algorithm allocated to EV i (with size zti) to another EV(s). If ∆t
i = 0, the

loss is zero. If ∆t
i > 0, then by the charging strategy that the foCS uses we can conclude

that (i) i is not finished by the foCS, and (ii)
∑

i′ y
t
i′ = min{ph(i), p

total} otherwise, the

foCS could allocate more resources to EV i. Therefore, the ∆t
i units of the resource is

allocated to one or multiple other EVs (denote them by set J ti ) by the foCS. Moreover,

it must hold that all the EVs in set J ti has a unit value equal to or higher than vi/Di

which yields gi,t ≥ li,t, otherwise, the foCS should not prefer the EVs in J ti to i. Having

gi,t ≥ li,t, we obtain the following:

n∑
i=1

T∑
t=1

li,t ≤
n∑
i=1

T∑
t=1

gi,t. (4.7)

The total gain of foCS, i.e., Alg, is equal to sum of its gains from each single EV:

Alg =

n∑
i=1

vi
Di

T∑
t=1

yti =

n∑
i=1

T∑
t=1

gi,t. (4.8)

With the above discussion and using Eq. (4.7) we are able to show that the competitive

ratio of the foCS is 2.

Theorem 4.3.3.1. The foCS is 2-competitive.

Proof. We first prove the theorem for single station scenario and then extend it to multiple

stations. From (4.6), (4.7), and (4.8) we obtain the following result

Opt−Alg ≤
n∑
i=1

T∑
t=1

gi,t ≤ Alg, (4.9)

hence, Opt ≤ 2Alg.

In multi-station setting, the difference with the previous case is that when ∆t
i > 0, i ∈

{1, . . . , n}, then foCS may allocate the difference ∆t
i to one or multiple EVs in any CS that

might not be h(i). However, the inequality li,t ≤ gi,t is still valid as foCS is centralized

and uses a single sorted list for all EVs. Using similar deductions as in the single station

setting, it is easy to verify that the competitive ratio of 2 is preserved.
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Remarks: When there is only one CS and EVs have no limit on their charging rate,

the foCS reduces to the FirstFit algorithm [95] which is known to be 2-competitive

for classic job scheduling problem. However, the charging rate limitation is crucial for EV

charging problem. Moreover, [95] uses “charging argument” to prove the competitive ratio

of the proposed algorithm which cannot be directly applied to our problem. Thus, the foCS

extends the FirstFit and makes it practical for the EV charging scenario. Moreover, the

proof technique used for the competitive analysis of the foCS is fundamentally different

from the one used in [95].

Theorem 4.3.3.2. The time complexity of foCS is O(nT log n).

Proof. The complexity of the algorithm is identified by sorting operation at each time slot

which dominates the O(n) cost of the “for” loop. Therefore, the total time complexity is

O(nT log n).

4.4 Integral Revenue Model

4.4.1 Overview of Integral Revenue Model

The MILP form of the SPAN in integral revenue model is a generalized form of the 0/1-

knapsack problem which is a well-known NP-hard problem. We give an intuition to under-

stand the similarity of these problems in Section 4.4.2.1, however, we skip to prove that

there is a polynomial time algorithm to reduce 0/1-knapsack problem to the MILP form

of the SPAN due to the straightforwardness of the proof. In Section 4.4.2, we propose a

polynomial time approximation algorithm for the general integral problem and analyze its

approximation ratio. Then, in Section 4.4.3, we propose an online algorithm for the integral

model, where the EVs arrive in slot-by-slot fashion, and the scheduler has no information

of the future arrivals.

4.4.2 Offline Scenario

We design our offline smart charging scheduling algorithm under integral revenue model

referred to as iCS, to solve the SPAN with bounded approximation gap. Our algorithm

design is inspired by the basic algorithm proposed in [94]. The algorithm in [94] works for a

single CS where arrival time of all EVs are the same and there is no global peak constraint.

Since the performance analysis of the proposed algorithm relies on a dual fitting method

and utilizes weak duality property, we construct the dual problem of SPAN, referred to as
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dSPAN, as follows:

dSPAN :

min
n∑
i=1

Diαi +
m∑
j=1

T∑
t=1

pjβ(t) +
T∑
t=1

ptotalγ(t)

s.t. αi + β(t) + γi + π(t)− ki
Di

di∑
t′=ai

πi(t
′) ≥ vi

Di
,

∀i, t ∈ [ai, di] (4.10a)

vars. αi, βi, γ, πi(t) ≥ 0, ∀i, t,

In the dSPAN, the dual variables α, γ, β and πi(t) are associated with constraints (4.1a)

(4.1b), (4.1c) and (4.1d) in the SPAN, respectively.

4.4.2.1 Explanation of the Main Algorithm

The iCS algorithm (listed as Algorithm 10) works in two phases. In the first phase it

sorts the charging requests based on their unit values in a non-increasing order. Then, it

selects most valuable demand from top of the list and if the remaining resource is enough

for covering the entire demand of the the EV, it is admitted to receive the demand. When

iCS processes EV i, the algorithm checks for the feasibility of allocating Di units of the

resource within its availability window [ai, di] without violating the constraints related to

the maximum charging rate ki, local and global peaks (Lines 6-8).

Scheduling of the Selected EV: If the feasibility check passed, iCS calls sub-procedure

SmartAllocate to allocate required resources in interval [ai, di]. Then, αi is set to vi/Di

in order to cover dual constraint in Eq. (4.10a) (Lines 9-10).

We explain SmartAllocate in more details. Let us defineW (t, h(i)) =
∑

i′:h(i′)=h(i) y
t
i′

as total workload at time slot t in CS h(i) and W̄ (t, h(i)) as total available load to allo-

cate at time slot t for CS h(i). We always have W̄ (t, h(i)) +W (t, h(i)) = ph(i),∀t, i. For

scheduling, SmartAllocate applies two main policies: 1) flat allocation and, 2) right-to-

left allocation. With flat allocation, time slots with more available resources are preferred

for charging purpose. This is in fact a valley-filling strategy which helps to reduce the peak

of the system. The simulation results in Section 4.5 will confirm this claim. Right-to-left al-

location is used when two or more time slots are equal in terms of their remaining resources.

When this policy applies on scheduling of EV i, any EV i′ with i′ > i and di′ < di has

more chance to get charged since the algorithm tends to charge EV i in interval [di′ + 1, di]

(i.e., right hand part of the EV’s availability window) and keeps resources in [ai′ , di′ ] for

EV i′. A ranking based approach is used to apply the aforementioned policies. To charge

EV i, SmartAllocate ranks time slots in interval [ai, di]. Then, charging is done by
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allocating resources from the higher ranked time slot to lowest one. The rank of a time slot

t is calculated based on remaining resources in the time slot (flat allocation) and value of

t (right-to-left allocation).

Algorithm 10: iCS

Input: n EVs with ai, di, vi, Di, and ki associated with each EV i, m CSs, local
and global peak constraints pj , j = 1, . . . ,m, and ptotal

Output: A feasible scheduling of EVs

1 initialize: y ← 0, α← 0, β ← 0, γ ← 0, π ← 0
2 Sort charging requests in non-decreasing order of their unit values:

v1
D1
≥ v2

D2
≥ · · · ≥ vn

Dn

3 //Use sorted list to process demands

4 for (i=1. . . n) do
5 for t = ai . . . di do

6 σt ← min
{
ph(i) −

∑
i′:h(i′)=h(i) yi′(t),

ptotal −
∑n

i′=1 y
t
i′ , ki

}
7 //if enough resources remain for EV i

8 if Di ≤
∑di

t=ai
σt then

9 SmartAllocate(i,Di)
10 αi ← vi

Di

11 else
12 if (β(di) = 0) then
13 BetaCover(i)

14 for (i=1. . . n) do
15 if EV i is not selected then
16 ReConsider(i);

Dual Feasibility on the EVs that are not Selected: If there is not enough resources to

fully charge EV i, i.e., Di >
∑di

t=ai
σt, the EV cannot be selected. However, we still need

to satisfy constraint (4.10a) in dual problem which is done by calling BetaCover(i). To

cover the constraint (4.10a) for EV i, sum of dual variables for all t ∈ [ai, di] should be

greater than or equal to vi/Di. Towards this, BetaCover(i) sets β(t) to vi/Di for all

time slots t in interval [tcov, R(di)] (Lines 3-4 of Algorithm 3, the definitions of tcov and

R(di) are given in Lines 1 and 2, respectively). Observe that when tcov > 1 we have

β(t′) ≥ vi/Di,∀t′ < tcov considering that the demands are sorted in a non-increasing order

according to their unit values and β(t′) is already set to vi′/Di′ when processing the earlier

charging demand of EV i′ in the list which is not selected. Hence, vi′/Di′ ≥ vi/Di, thereby



CHAPTER 4. FROM SINGLE STATION TO A NETWORK OF CHARGING
STATIONS 95

β(t) ≥ vi/Di, ∀t ∈ [ai, di] and the dual constraint in (4.10a) is satisfied.

Lines 1-4 of algorithm BetaCover(i) is enough to cover dual constraint. However, the

algorithm continues in Lines 5-8 by setting a variable Φi′(t) for time slots t = 1, . . . , R(di)

to a value dependent to amount of the resource that a selected EV i′ received at slot t.

Φi′(t) will be used in approximation analysis of the main algorithm in Section 4.4.2.2 and

has no effect on the scheduling of EVs.

Algorithm 11: SmartAllocate(i,Di)

Input: EV i to receive Di

1 Rank time slots in interval [ai, di] such that for t1 and t2: rank(t1) > rank(t2) iff
W̄ (t1, h(i)) > W̄ (t2, h(i)) OR W̄ (t1, h(i)) == W̄ (t2, h(i)) ∧ t1 > t2

2 while
∑di

t′=ai
yt

′
i 6= Di do

3 Select time slot t with highest rank which is not selected before
4 Allocate min

{
ki, W̄ (t, h(i))

}
for EV i at slot t

Algorithm 12: BetaCover(i)

Input: EV i which is not selected to charge

1 tcov ← min{t : β(t) = 0}
2 R(di) = max{t ≥ di : ∀t′ ∈ (di, t], W̄ (t′) < qh(i)}
3 for (t = tcov . . . R(di)) do
4 β(t)← vi

Di

5 for (t = 1 . . . R(di)) do
6 for (i′ = 1 . . . n)) do
7 if yti′ > 0 ∧ Φi′(t) = 0 then

8 Φi′(t)←
[ ph(i)
ph(i)−ki

s
s−1

]
. viDi

yti′

Improving the Peak-demand: In the second phase of iCS, the algorithm tries to increase

total value of selected EVs by calling ReConsider(i) on every unselected EV i (Lines 14-

16). Before giving the details of ReConsider(i), we first explain the intuition behind this

algorithm. Note that if in the scheduling problem we set T = 1,m = 1, ki = ptotal, ai =

di = 1 ∀i, then the problem is equal to the well-known 0-1 knapsack problem [92]. In the

knapsack problem, a widely used greedy approach sorts items based on their unit values

and selects items accordingly. It turns out that in this approach the approximation factor

can be arbitrarily bad. For example, consider a knapsack problem with two items with

v1 = 2, v2 = ptotal, D1 = 1, and D2 = ptotal. Given these values we have v1/D1 > v2/D2.

To maximize total value of selected items, the optimal solution chooses item 2 while greedy

algorithm selects item 1 which results in a worst-case approximation factor of c/Opt in
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Algorithm 13: ReConsider(i)

Input: EV i
Output: Updated schedule

1 L ← ∅
2 vinc ← vi
3 σt ← 0, t = ai, . . . , di
4 for (i′ = i− 1 . . . 1) do
5 if EV i′ is selected ∧(h(i′) = h(i)) ∧ (vinc − vi′) > 0 then
6 Add EV i′ to list L
7 vinc ← vinc − vi′
8 for (t = ai . . . di) do
9 σt ← σt + min{ki, yti′}

10 if
∑di

t=ai
σt ≥ Di then

11 Remove EVs in list L from charging schedule
12 SmartAllocate(i,Di)

general where c is a constant (in this example c = 2). To resolve it, one approach is

to re-consider unselected items after running greedy algorithm and replace some selected

items in the knapsack with unselected ones and then check whether the result is improved

or not. In a simple case, only the largest unselected item can be examined which makes

a significant theoretical improvement by providing a worst case approximation factor of

Opt/2.

iCS algorithm leverages the same idea but using a more intelligent replacing method

called ReConsider(i). ReConsider(i) is called on every unselected EV i. It tries to find

some selected EVs that if they are replaced by EV i, total revenue from the selected EVs

increases.

4.4.2.2 Analysis

In primal-dual algorithm, the goal is to design an algorithm in a way that it produces a

good solution for primal problem (with primal value Γ) and a feasible solution for the dual

problem (with dual value Λ). Then, assuming that the primal problem is a maximization

problem, to prove that the algorithm is c−approximation (for c ≥ 1), the important part

is to show that Λ ≤ cΓ. Then, based on weak duality theorem we have Λ ≥ Opt, and it is

concluded that Γ ≥ 1
c ×Opt where Opt is the optimal value.

Based on the above understanding, we now analyze the approximation ratio of iCS

algorithm assuming that arrival times are the same for all EVs. First note that the designed

scheduling algorithm outputs a feasible scheduling since it respects the constraints in the
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primal problem. Also, the algorithm produces a feasible solution for the dual problem by

covering the dual problem constraint in (4.10a) through setting αi to vi
Di

when EV i is

accepted and, β(t) to a value greater than or equal to vi
Di

for t ∈ [ai, di] (according to the

discussion in Section 4.4.2.1) if EV i is not selected. To obtain an approximation factor for

the algorithm, it is enough to bound the total covering cost of the dual constraints.

Theorem 4.4.2.1. iCS algorithm is a
(

1 +
∑m

j=1
pj

pj−qj .
s
s−1

)
-approximation when EVs

have same arrival time.

Proof. Without loss of generality we assume that ai = 1, ∀i, however, the proof holds for

any other constant value for arrival time. We sum up all costs of covering dual constraints

and then provide a bound for it.

Each EV is either selected or not selected. For the unselected EVs,
∑m

j=1

∑T
t=1 pjβ(t)

determines the cost. When BetaCover(i) is running as a result of charging request

disapproval of EV i, for any previously accepted request i′ the algorithm sets Φi′(t) to a

value proportional to yti′ for t ≤ R(di) (Line 8 of BetaCover(i) algorithm). The followings

are proved in [94] for a single station h(i′) = h(i) = j:

n∑
i′=1

dj∑
t=1

Φi′(t) ≤
[

pj
pj − qj

.
s

s− 1

]
.

n∑
i′=1

vi′ (4.11)

T∑
t=1

pjβ(t) ≤
n∑

i′=1

dj∑
t=1

Φi′(t). (4.12)

For m CSs, we can obtain the following inequality based on (4.11) and (4.12),

m∑
j=1

T∑
t=1

pjβ(t) ≤
m∑
j=1

( pj
pj − qj

.
s

s− 1

∑
i:h(i)=j

vi

)
. (4.13)

Now for notational convenience let’s define Aj , Bj and C as follows:

Aj =
pj

pj − qj
.
s

s− 1
,

Bj =
∑

i:h(i)=j

vi,

C =
m∑
j=1

Bj =

n∑
i=1

vi.

We can write the right hand side of Eq. (4.13) as follows:
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m∑
j=1

AjBj =

m∑
j=1

[
Aj
(
C −

∑
i:h(i)6=j

Bh(i)

)]

=
m∑
j=1

AjC −
m∑
j=1

[
Aj

∑
i:h(i)6=j

Bh(i)

]

=
m∑
j=1

AjC −
m∑
j=1

[
Aj
(
C −Bj

)]
≤

m∑
j=1

AjC −
m∑
j=1

[
Aj
(
C −max

j
{Bj}

)]
= max

j
{Bj}

m∑
j=1

Aj . (4.14)

From (4.13) and (4.14) we get

m∑
j=1

T∑
t=1

pjβ(t) ≤ max
j
{Bj}

m∑
j=1

pj
pj − qj

.
s

s− 1
(4.15)

For the selected EVs, the covering cost is determined by the term
∑

iDiαi in the dual

objective which equals to
∑

i∈S vi where S is the set of selected EVs. Therefore, the total

cost of covering dual constraints equals to

Λ =
∑
i∈S

vi + max
j
{Bj}

m∑
j=1

pj
pj − qj

.
s

s− 1

≤
∑
i∈S

vi +
∑
i∈S

vi

m∑
j=1

pj
pj − qj

.
s

s− 1

=
[
1 +

m∑
j=1

pj
pj − qj

.
s

s− 1

]∑
i∈S

vi (4.16)

Given that the primal value obtained from iCS is Γ =
∑

i∈S vi, we get

Λ ≤
[
1 +

m∑
j=1

pj
pj − qj

.
s

s− 1

]
Γ. (4.17)

Finally, considering the fact that Λ ≥ Opt, we conclude that iCS is
[
1 +

∑m
j=1

pj
pj−qj .

s
s−1

]
-

approximation.
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Note that in the case that the system is flexible enough, i.e., s � 1, and the maxi-

mum charging rates of stations are much bigger than those of EVs, i.e., pj � qj , ∀j, the

approximation ratio approaches m+ 1. And in the case that there is one single station, the

approximation ration is 2. Finally, we provide the time complexity of the iCS.

Theorem 4.4.2.2. The time complexity of the iCS algorithm is O(nT log T + n2T ).

Proof. iCS starts by sorting demands which costs O(n log n). The inner “for” loop in Line

5 costs O(nT ) and running SmartAllocate(i,Di) and BetaCover(i) costs O(T log T )

and O(nT ), respectively. Therefore, the total cost of outer “for” loop (Line 4) equals to

O(nT log T + n2T ). The complexity of ReConsider(i) called in the “for” loop in Line 14

is O(nT ). Therefore, the total cost is O(nT log T + n2T ).

4.4.3 Online Scenario

Due to existence of binary selection variable, the online solution design under integral

revenue model is fundamentally more challenging than the one for fractional model. In this

section, we propose the ioCS that is built upon the offline iCS algorithm. In particular,

the ioCS calls the iCS at each time slot for the set of available EVs, however, any other

algorithm that is designed for offline integral model can be used alternatively. Hereinafter,

A refers to iCS or a similar algorithm and ρ denotes the approximation factor of A.

The ioCS is summarized as Algorithm 14 and explained in the following. At each time

slot t, the ioCS compares two scheduling results returned by A and chooses among them.

In the first scheduling, the ioCS keeps all reserved resources in interval [t, T ] intact. Then,

for utilizing the remaining resources, the algorithm runs A over arrived EVs at time slot

t to allocate them. In this case, the total gain that can be obtained by the active EVs

(i.e., EVs that are available but not received their entire demand yet) is denoted by Γ̂A,Rt

(Line 7 of the algorithm). In the second scheduling, the ioCS considers the case that it

can sacrifice the previously admitted EVs by canceling their reservations and allocating the

freed resources to more valuable demands. For this purpose, the algorithm modifies the

demand and valuation of the previously admitted EVs such that each demand is replaced by

the EV’s remaining demand, and the valuation of the EV is proportionally calculated based

on the remaining demand (Line 10 of the algorithm) so that the unit values of EVs does

not change. Then, the ioCS runs A over Mt (defined in Line 3) where the corresponding

gain is denoted by ΓA,Mt . If ΓA,Mt > Γ̂A,Rt , the ioCS forgets the previously admitted

EVs and follows the second scheduling.

Let SioCS,t and SOpt,t be set of active EVs at time slot t that are selected for charging

by ioCS and Opt (fix a particular optimal solution), respectively. Note that the set of

active EVs for ioCS and Opt might be different. Having i ∈ SioCS,t means that based on
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Algorithm 14: ioCS: ∀t ∈ {1, 2, . . . , T}
Input: n EVs to arrive on the fly, number of CSs m, global peak constraint ptotal,

local peak constraints pj , j = 1, . . . ,m
Output: A feasible charging scheduling

1 Let A be an algorithm that solves SPAN efficiently with a1 = · · · = an
2 Rt ← set of EVs arrived at time slot t

3 Mt ← Rt ∪ {i : t ∈ Ti AND
∑

t′ y
t′
i < Di}

4 \\Schedule 1

5 Based on the remaining resources in interval [t, T ], use algorithm A to allocate
EVs in set Rt assuming no further arrivals

6 SioCS,t ← {i : i ∈Mt AND i is admitted at t}
7 Γ̂A,Rt ←

∑
i∈SioCS,t

vi

8 Assume all reserved resources are freed at time slots t, t+ 1, . . . , T
9 ri,t ← remaining demand of i at t,∀i

10 D′i ← ri,t, v′i ←
ri,t
Di
vi, ∀i ∈Mt

11 \\Schedule 2

12 Run A on Mt using D′i and v′i, ∀i and reconstruct SioCS,t

13 ΓA,Mt ←
∑

i∈SioCS,t
vi \\Use original values

14 if ΓA,Mt > Γ̂A,Rt then
15 Use the second schedule

16 else
17 Use the first schedule
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the updated schedule at time slot t, enough resources reserved for EV i so that the EV will

receive its demand Di before the deadline di. However, the schedule may change at each

time slot and i ∈ SioCS,t cannot be a guarantee for EV i to fully receive its demand. In

fact, users and the scheduler itself have to wait until the deadline of the EV to find out that

the demand is fulfilled or not. This is because the scheduler may cancel some reservations

in the next time slots and allocate the freed resources to other EVs (when Algorithm 14

uses the second schedule in Line 15).

The following theorem characterizes the performance of the ioCS when EVs arrive in

batch mode and m = 1.

Theorem 4.4.3.1. Let A be iCS in ioCS algorithm and m = 1. Assuming that EVs are

released in b distinct groups where arrival time of EVs in each group are the same then,

the ioCS is b
(

1 + p
p−q

s
s−1

)
-competitive with optimal offline solution, where p is the station

peak and q = maxi ki, i = 1, . . . , n.

Proof. In the worst case b = T i.e., there are T groups where at each time slot, a group of

EVs arrive. Observe that

Opt ≤ ρΓA,R1 + · · ·+ ρΓA,RT .

Put it simply, the increase in optimal gain at each time slot is at most equal to maximum

gain that can be obtained from arrived EVs at time slot t. Moreover, according to the ioCS,

the gain of the algorithm obtained from set of active jobs at each time slot t, ΓtioCS, is as

follows:

ΓtioCS = max{Γ̂A,Rt ,ΓA,Mt}.

Therefore,

ΓA,Rt ≤ ΓtioCS, t = 1, . . . , T

Thus, Opt ≤ T
(

1 + p
p−q

s
s−1

)
. If b < T , we can obtain Opt ≤ b

(
1 + p

p−q
s
s−1

)
by the

same analysis.

Theorem 4.4.3.2. Let A be iCS in Line 1 of ioCS. Then, the time complexity of the

ioCS is O(n2T ).

Proof. The time complexity of ioCS is determined by the cost of algorithm A that it calls

at each time slot. Assuming that A is iCS, the complexity of ioCS in a single time slot is

O(n2), according to Theorem 4.4.2.2. Therefore, the complexity of ioCS is O(n2T ).
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4.5 Simulation Results

In this section, we perform simulation experiments to evaluate the performance of our

proposed scheduling algorithms.

Table 4.3 – Arrival rates and mean parking times.

Interval Arrival rate Mean parking time

08:00-10:00 14 10

10:00-12:00 10 1/2

12:00-14:00 20 2

14:00-18:00 10 1/2

18:00-20:00 20 2

20:00-24:00 10 10

24:00-08:00 0 0

Table 4.4 – Acronyms for the algorithms

Notation Description

iOpt Optimal value under integral revenue model

iCS Proposed offline algorithm for SPAN under integral revenue
model

fCS Proposed optimal algorithm for SPAN under fractional rev-
enue model

ioCS Proposed online algorithm for SPAN under integral revenue
model

foCS Proposed online algorithm for SPAN under fractional rev-
enue model

ioLP OLP algorithm [9] for integral revenue model

foLP OLP algorithm [9] for fractional revenue model

GreedyRTL The algorithm in [94] for single station scenario without
global peak constraint

4.5.1 Simulation Setup and Overview

We consider charging scheduling of EVs during a day divided into 24 time slots of length 1

hour. We gathered information of 10 popular EV models in the market to use in the simu-

lation. Each EV model is characterized by its battery capacity and maximum charging rate

as shown in Table 3.3. Battery capacity varies from 16 kWh to 100 kWh and the maximum

charging rate from 3.3 kW to 20 kW. As in [47, 58], we assume that arrival times follow a

Poisson distribution and parking times follow an exponential distribution with the mean ar-
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(a) m = 2 (b) m = 4 (c) m = 8

Figure 4.2 – Comparison results for 2, 4, and 8 CSs for fractional revenue model.

(a) m = 2 (b) m = 4 (c) m = 8

Figure 4.3 – Comparison results for 2, 4, and 8 CSs for integral revenue model.

rival and parking duration indicated in Table 4.3. The peak intervals include 08:00-10:00,

12:00-14:00, and 18:00-20:00 which is in accordance to national household travel survey

(NHTS) 2009 [47, 96]. Demands are uniform random values from [min{di−ai+1
ski

, Ui}, Ui]

where Ui is the battery capacity for EV i. The minimum electricity cost is $0.11 per kWh

based on US national electricity price average [90]. In our setting, users can submit higher

prices than the minimum price in order to ensure receive their requested demand. For each

CS, the default value of local peak constraint is 30 kW and the global peak constraint is

200 kW. The slackness parameter is set by default to 1.2, however, in Section 4.5.4, we

investigate the effect of this parameter on total revenue and response time of the algorithms

in detail.

In the simulation figures, the results are plotted with 95% confidence level and each data

point represents average result of 50 random scenarios. Table 4.4 explains the comparison

algorithms. The measured performance metrics are total revenue (i.e.,
∑

i∈S vi), percentage

of EVs that received all their requested demand, total peak of all CSs and response time

which is only calculated for EVs who received their whole demand and defined as time

length between an EV’s arrival and the time that its charging is finished.
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4.5.2 Total Revenue

Figs. 4.2-4.3 depict the comparison results based on total revenue under fractional and

integral models respectively while the total number of EVs increases from 50 to 100 for 2,

4, and 8 CSs. The proposed algorithms for fractional revenue model, fCS and foCS, are

compared to fractional version of OLP algorithm (referred to as foLP), which is imple-

mented in Caltech ACN [9]. OLP [9] is a greedy algorithm that works as follows: (i) at

t = 1 compute the optimal solution (e.g., by a solver) for the current set of EVs assuming

that there will be no further arrival. (ii) use the solution until there is a new arrival. (iii)

when an EV arrives, construct and solve a new problem by considering the new arrivals and

the remaining demand of previously arrived EVs which are still active. (iv) go back to (ii).

The original OLP algorithm which is implemented in Caltech ACN works only for integral

revenue model and under different cost functions including the revenue of the charging sta-

tions, which is the case of our study. In this thesis, we implemented the algorithm for both

integral and fractional model. The difference between the two versions is in the constraint

set of the optimization problem that should be solved such that in integral model, the total

amount of resource that an EV receives can only be equal to zero or its demand while in

fractional model it can be any non-negative value less than or equal to the demand.

Recall that fCS is optimal offline solution. The notable observations are as follows: (i)

the general trend in both scenarios of Fig. 4.2 and 4.3 is that by increasing the number of

EVs, total revenue increases. This is because with more number of EVs, the scheduler has

more freedom to choose more valuable EVs. (ii) as explained in Section 4.3, under fractional

charging model, better results are expected due to increased scheduling flexibility in CSs.

According to the simulation data that we extracted from Fig. 4.2 and Fig. 4.3, the gain

obtained by fCS, foCS, and foLP in Fig. 4.2 are respectively 9%, 4% and 10% more

than the gain of the iCS, ioCS and ioLP in Fig. 4.3. (iii) in fractional revenue model (Fig.

4.2), foLP performs better than foCS for n ≥ 90, implying that foLP (foCS) is better

option when the density of EVs in the CSs is high (low). (iv) in integral revenue model

(Fig. 4.3), the proposed ioCS algorithm acts significantly better than ioLP. In particular,

ioCS improves ioLP by 8%, 8% and 9% for m = 2, m = 4 and m = 8, respectively. We

highlight that ioCS (foCS) is also better choice in terms of the algorithm complexity

compared to ioLP (foLP). (v) iCS approximates iOpt by 96%, 94%, and 91% for m = 2,

m = 4, and m = 8, respectively. On average, ioCS is 89% of iOpt and, foCS is 92% of its

optimal offline solution, fCS. (vi) finally, the results depict that iCS achieves much better

results in practice as compared to the theoretical approximation ratio that characterizes

the performance in worst-case scenario.
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4.5.3 Actual Peak

The constraint set in the SPAN assures that any feasible solution respects the local and

global peak constraints, i.e., at each time slot, the electricity consumed by station j is less

than or equal to pj and accumulative charging rate of all stations are less than or equal

to ptotal (note that there is no assumption that
∑

j pj ≤ ptotal, in general). An efficient

scheduling algorithm may take a further step by not only satisfying the peak constraints

but to further reduce the peak as much as possible. As explained in Sections 4.3 and

4.4, our proposed offline algorithms (i.e., iCS and fCS) apply flat scheduling policy to

reduce the peak. The online algorithms (i.e., ioCS and foCS) do not apply the same

policy as at each time slot they do not have knowledge of future EV arrivals to be able

to balance allocated resources. Besides, due to uncertainties in future EV charging load

in online scheduling design, it is a natural heuristic to charge EVs at earliest time (i.e.,

setting the charging rates to the maximum feasible value at each time slot) as applied

by ioCS an foCS. This heuristic works well as the uncertainty in EVs’ arrival time and

demands may not give a second opportunity to the scheduler to charge the current EVs at

the next time slots. Therefore, although it is expected that ioCS and foCS have higher

peak values compared to the proposed offline algorithms, using maximum charging rate

and left-to-right allocation can decrease their average response time (see Section 4.5.4).

To show how flat scheduling policy improves the peak, we conducted a set of simula-

tions by varying local peak constraints from 50 kWh to 120 kWh and 200 EVs which are

dispersed in 4 different CSs. For this scenario, the results of iCS is compared to ioCS and

GreedyRTL [94] where the latter is an approximation scheduling for single station scenario

with EVs having same arrival time and no global peak constraint (see remark (i) after

formulating the SPAN). The GreedyRTL algorithm works under integral revenue model.

Therefore, results for fCS and foCS are not plotted. Since GreedyRTL assumes all EVs

arrive at the same time, we set all arrival times to 1. Moreover, we assume that global

peak constraint is big enough (i.e.,
∑m

j=1 pj ≤ ptotal) such that the solution of GreedyRTL

is feasible. We run GreedyRTL in each CS separately and combine the results. The final

results are shown in Fig. 4.4. Along with total revenue in Fig. 4.4a, we also report total

actual peak in Fig. 4.4b and percentage of fully charged EVs in Fig. 4.4c. As a high level

trend, the results show that as the peak values increase, total revenue, total actual peak,

and the number of EVs who received all their demand increase.

In Fig. 4.4a, the results for iCS and GreedyRTL are almost equal while ioCS is 84%

of the other two algorithms, on average. When pj ≥ 100, the total revenue for iCS and

GreedyRTL does not increase in Fig. 4.4a and percentage of fully charged EVs is 100 for

both algorithms according to Fig. 4.4c. From this point and onward, the scheduling is not

challenging for offline methods to obtain optimal answer because of resource sufficiency.
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Figure 4.4 – Comparison in terms of total revenue, actual peak, and percentage of fully
charged EVs by varying local peak value.
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Figure 4.5 – The impact of slackness parameter on total revenue and response time when
users react by adjusting their demand.

However, it is still a challenge to control total actual peak for the system. As a result

of proper scheduling policy through flat and right-to-left scheduling (see Section 4.4), the

value of actual peak of iCS in Fig. 4.4b remains almost unchanged for pj ≥ 100. ioCS (as

discussed earlier in this section) and GreedyRTL, however, continuously increase the peak

demand, since they are not using a peak shaving method and only try to maximize total

revenue. According to Fig. 4.4b, ioCS always reaches to the maximum peak of
∑

j pj .

4.5.4 The Impact of Slackness Parameter

This section discusses on the benefits and disadvantages that can be brought by using

slackness parameter. To give the charging scheduler more flexibility, a slackness parameter

s ≥ 1 is used and set by the system designer. Recall that charging profile of EV i is

feasible if Di ≤ ki
di−ai+1

s holds. Since users have no control on the slackness parameter
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Figure 4.6 – The impact of slackness parameter on total revenue and response time when
users react by adjusting their deadline.

and the maximum charging rate, they must adjust their demand and availability according

to the imposed slackness value. Based on the charging profile feasibility equation, when

the slackness value increases users have two choices to react: (i) decrease the demand and

depart at the desired deadline or, (ii) extend the deadline and receive the desired demand.

In the remaining of this section, we investigate the effects of either case by simulation.

To have a clear picture of effects caused by slackness parameter, we generated 100 initial

charging profiles 〈ai, di, vi, Di, ki〉 for 100 EVs randomly and uniformly chosen from 10

different models in Table 3.3 such that the initial profiles are set up assuming that the CS

allows the charging operations to be finished at earliest possible time (i.e., Di
ki

) with s = 1.

For each EV, its demand is randomly chosen from 25% to 100% of its battery capacity and

departure in interval [ai + sDi
ki
, T ], where ai + sDi

ki
is the earliest feasible deadline. Then,

the EVs are uniformly assigned to 4 CSs and should choose one of the above strategies to

submit a feasible demand according to imposed slackness.

4.5.4.1 Case I- Adjusting Demands

In this case, if the initial charging profile of an EV does not reflect a feasible charging

request based on the slackness parameter, the EV owner decreases its demand so it will be

able to leave CS at its initial desired deadline. Note that the valuation of EVs decreases

proportionally, as well. Fig. 4.5 depicts the result under this policy applied by users. As

it can be seen in Fig. 4.5a and Fig. 4.5b, the general trend is that both total revenue

and average response time decrease when slackness value increases. This is justifiable

based on users reaction. When users decrease their demand, less electricity is sold which

results in less revenue. When total demand decreases, charging can be finished in shorter

time which decreases response time. Therefore, if users choose the first policy (adjusting
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their demand), total revenue degrades while response time improves. Notice that for the

algorithms working under integral revenue model (i.e., iOPT, iCS and ioCS) the total

revenue increases with slackness parameter at first (when s grows from 1 to 1.4) but then

it decreases when the slackness increases more (for s > 1.4). In our view, this happens

because increasing the slackness in integral revenue model makes it possible to fully charge

more EVs at the beginning as the demands decrease. However, when the slackness increases

more, it results in opposite effect because the valuation of demands decreases along with

the demands’ size.

4.5.4.2 Case II- Adjusting Deadlines

In this case, we assume that users are reluctant to decrease their desired demands. In-

stead, they can extend their departure. In Fig. 4.6 it can be observed that under this

behavior of the users, the results are opposite as compared to the previous case (Fig. 4.5).

When deadlines are extended without demand decrement, the scheduler has more chance to

compliance the demands through improved scheduling flexibility. Consequently, the total

revenue increases by increasing slackness value while average response time degrades.

We can conclude that when total revenue is more important than the response time,

the CS should impose small values of slackness for users that apply the policy of the first

case and impose higher values of slackness for the users that apply the second policy. The

conclusion is reverse for the case that the objective is to have lower response times.

4.6 Conclusion

This chapter proposed offline and online algorithms for the EV charging scheduling problem

under fractional and integral revenue models in an adaptive charging network (ACN). The

problem is different, and more challenging than the existing single station EV charging

scheduling problems since it requires respecting the aggregate peak charging demand of the

ACN. As the notable contributions, our proposed online algorithm for fractional revenue

model achieves constant competitive ratio of 2. Moreover, the offline integral algorithm

achieves a theoretical bound on the optimality gap and approximates the optimum by

92%, on average in experiments. As a future work, we plan to study the problem under

posted pricing mechanism where the charging station publishes the unit price of the power

(which can be varied over time) and the users can accept or reject the offer.



CHAPTER 4. FROM SINGLE STATION TO A NETWORK OF CHARGING
STATIONS 109



Chapter 5
Summary

Contents

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Competitive scheduling algorithm for EVs . . . . . . . . . . . . . . 111

5.1.2 Scheduling with On-Arrival Commitment . . . . . . . . . . . . . . 111

5.1.3 Scheduling in a Network of Charging Stations . . . . . . . . . . . . 111

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Model-based Online Scheduling . . . . . . . . . . . . . . . . . . . . 112

5.2.2 Deadline-Aware Scheduling Algorithms . . . . . . . . . . . . . . . 112

5.2.3 Optimal Posted Price . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.4 Competitive Analysis for Scheduling with On-Arrival Commitment 113

5.2.5 Scheduling Mobile EVs . . . . . . . . . . . . . . . . . . . . . . . . 113

In this thesis, we developed efficient online charging scheduling algorithms for EVs

where the power resource at charging station is limited. We first revisited the classic job

scheduling problem in Chapter 2 by adding a constraint to the problem representing the

maximum input power of the EVs’ battery and proposed deterministic and randomized

competitive algorithms. Next, in Chapter 3, we extended the problem from maximizing

total valuation of charged EVs to maximizing social welfare of the users. In particular, we

took into account both on-arrival charging commitment and valuation of demands for the

users in the objective function. Finally, in chapter 4, we extended the scheduling problem

to multiple-station setting where the goal is to find a globally optimal solution for the

scheduling of EVs which are dispersed in different charging stations. We summarize the

contribution of this thesis as follows.

110
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5.1 Summary of Contributions

5.1.1 Competitive scheduling algorithm for EVs

In chapter 2, we focused on developing competitive online scheduling algorithms for charg-

ing scheduling of EVs which could be directly used in similar type of problems in other

domains including cloud computing. The contributions of this chapter are twofold. First,

we introduced a new proof technique for competitive analysis of scheduling algorithms de-

vised for the studied problem in this thesis. Then, we proposed a deterministic algorithm,

WFair, and a randomized algorithm, WRand, for the problem. We proved that both

algorithms are 2 − 1
U -competitive with optimal offline solution, where U is scarcity level

indicating the ratio of demand to supply. When U grow large, the competitive ratio is

2 which confirms the state of the art result. However, in practice, U is expected to be a

constant which makes our result attractive.

5.1.2 Scheduling with On-Arrival Commitment

In Chapter 3, we addressed an interesting social welfare maximization problem by demon-

strating that during peak hours, the charging station should be able to inform the users

at their arrival time, about the minimum amount of resource that they will receive by

their deadline (i.e., providing on-arrival charging commitment). We then formulate a so-

cial welfare maximization problem that has the charging commitment and valuation of

the demands in the objective. In the second part of the chapter, the game theoretical

aspects of the problem is studied to propose mechanisms that provide strategy-proofness

and group-strategy-proofness. To the best of our knowledge, this is the first study that

provides group-strategyproof scheduling algorithm for the EVs.

5.1.3 Scheduling in a Network of Charging Stations

In Chapter 4, we aim to employ the deferrable feature of high demand charging jobs of EVs

and tackle EV charging scheduling problem in a network of charging stations to control

the peak-demand of the network. In particular, we assume that in a charging network,

multiple charging stations are available for a set of EVs to be charged. The goal is to select

and schedule a subset of EVs such that: (i) the charging demand of the selected EVs are

fulfilled; (ii) global and local peak constraints of the charging network are respected; and

finally, (iii) the total charging network revenue obtained by the valuation of the selected

EVs is maximized. As solution, we provided online and offline algorithms for two different

business models and derived theoretical bounds for their worst-case performance.
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5.2 Future Directions

In the remaining section, we describe what we learned from the thesis and give some open

problems for future research.

5.2.1 Model-based Online Scheduling

The online scheduling algorithms proposed in this thesis are model-free i.e., they assume

that information about future demand is neither available nor can be modeled. Although

this is true for some cases in practice, there are scenarios that the aggregator can rely on

some stochastic information about the future demand. In particular, the future demand

can be modeled as a stochastic process and to be feed to the scheduling algorithm. In this

way, more efficient scheduling can be generated that could increase the performance of the

algorithms. It remains an open problem to extend the developed algorithms in this thesis

to mode-based scheduling algorithms.

5.2.2 Deadline-Aware Scheduling Algorithms

Our proposed scheduling algorithms in this thesis are deadline-oblivious, meaning that they

do not use deadline information of the users in their decision making at each time instance.

Put it simply, our algorithms respect deadline but do not utilize it. In one hand, deadline-

oblivious algorithms have some advantages. First, they are easier to implement in practice.

Second, there might be some cases that the deadline information is not available where

the deadline-oblivious algorithms can be still useful. On the other hand, in the scenarios

that the deadline information is available, deadline-aware scheduling algorithms could be

more efficient by utilizing the deadline information. Therefore, more research is needed to

improve the proposed algorithms by making them deadline-aware.

5.2.3 Optimal Posted Price

In this thesis we assumed that each demand is determined by its valuation which is an input

to the system. However, in realistic cases, the valuation of the demands may be determined

by the charging system. Consider a posted pricing mechanism where the charging system

announces a unit price for the power which may vary over time. Then, each user upon

submitting its request to the system (e.g., mobile EVs in a city using ob-board units) either

accepts the offer or refuses it without charging its EV. In such scenarios, one important

challenge is to determine optimal power prices to be published at each time instance such

that the revenue of the charging system is maximized during a time period.
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5.2.4 Competitive Analysis for Scheduling with On-Arrival Commitment

We proved in this thesis that no scheduling algorithm can has a performance guarantee

when giving on-arrival charging commitment. However, under some assumptions, it could

be possible to derive performance bound for the algorithms in this case. For example, one

could assume that given charging commitments can be violated in presence of a penalty.

In particular, a penalty function can be added to objective function. Another example is

to assume that importance ratio (i.e., the ratio of more valuable demand to less valuable

one) is bounded. In these cases, a performance guarantee can be provided while keeping

the practicality of the algorithms.

5.2.5 Scheduling Mobile EVs

In near feature, mobile EVs in the cities will be equipped with on-board units which to be

able to submit their charging demand to the charging system or a central aggregator. The

responsibility of the central aggregator in this case will be to process the received demands

and produce an efficient scheduling which should include deciding on accepting/rejecting

of each demand and assigning accepted demands to a charging station considering users’

travel time and convenient level. This model is more complex than the multiple station

setting that we studied in this thesis as the assignments of the EVs to the charging station

is not given and should be computed.
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