, Stratified flow photograph, 2013.

R. Zenit-research-group-website, Bubble flow photograph, 2015.

B. Lehnert, An instability of laminar flow of mercury caused by an external magnetic field, P. Roy. Soc. Lond. A. Mat, vol.233, pp.299-302, 1955.

R. Moreau and . Magnetohydrodynamics, , pp.179-189, 1990.

C. Zhang, V. Shatrov, J. Priede, S. Eckert, and G. Gerbeth, Intermittent behavior caused by surface oxidation in a liquid metal flow driven by a rotating magnetic field, Metall. Mater. Trans. B, vol.42, pp.1188-1200, 2011.

J. Etay and Y. Fautrelle, Contrôle électromagnétique des interfaces libres, Tech. Sci. Ing, vol.1, pp.1-11, 2005.

J. Zhang and M. Ni, Direct simulation of single bubble motion under vertical magnetic field: Paths and wakes, Phys. Fluids, vol.26, pp.102102-102103, 2014.

, Advanced Reactors Information System. Depiction of the MSFR system, IAEA, 2015.

B. Roger, X. Deschanels, F. Lemort, R. Piccinato, Y. Fautrelle et al., Dispositif électromagnétique de fusion et d'agitation interfaciale de systèmes diphasiques, notamment pour l'accélération de processus métallurgiques ou pyrochimiques, 2003.

. Iter-website, Technical description of the ITER machine, 2015.

S. Smolentsev, N. B. Morley, M. A. Abdou, and S. Malang, Dual-Coolant LeadLithium (DCLL) blanket status and R&D needs, Fusion Eng. Des, pp.1-11, 2015.

, Plasma diagnostic group website. View of the ITER reactor, 2015.

Y. Poitevin and . Iter-tbm, Fusion for energy, 2013. References | 205

J. D. Bender and M. A. Hoffman, A two-phase flow cooling concept for fusion reactor blankets, 1977.

F. Li, T. Kunugi, and A. Serizawa, MHD effect on flow structures and heat transfer characteristics of liquid metal-gas annular flow in a vertical pipe, Int. J. Heat Mass. Tran, vol.48, pp.2571-2581, 2005.

D. Delage and R. Ernst, Modélisation électrique d'un système de fusion par induction en creuset froid destiné à l'élaboration de matériaux de haute pureté, Rev. Gen. Elec, vol.4, pp.266-272, 1983.

J. Hartmann, Hg-Dynamics I. Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field, Det. Kgl. Danske Vid. Sels. Mat.-Fys. Medd, vol.15, issue.6, pp.1-27, 1937.

J. Hartmann and F. Lazarus, Hg-Dynamics II. Experimental investigations on the flow of mercury in a homogeneous magnetic field, Det. Kgl. Danske Vid. Sels. Mat.-Fys. Medd, vol.15, issue.7, pp.1-45, 1937.

G. Batchelor, An introduction to fluid dynamics, vol.5, pp.367-370, 1967.

D. A. Edwards, H. Brenner, and D. T. Wasan, Interfacial Transport Processes and Rheology, pp.1-367, 1991.

L. E. Scriven, Dynamics of a fluid interface, Chem. Eng. Sci, vol.12, pp.98-108, 1960.

J. Hadamard, Mouvement permanent lent d'une sphère liquide et visqueuse dans un liquide visqueux, Comp. Rend. Acad. Sci, vol.152, pp.1735-1738, 1911.

W. Rybczynski, Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium, Bull. Int. Acad. Sci. (Cracovice), Ser. A, vol.1, pp.40-46, 1911.

G. G. Stokes, On the effect of the internal friction of fluids on the motion of a pendulum, Trans. Cambr. Phil. Soc, vol.9, pp.8-27, 1851.

R. Clift, J. R. Grace, and M. E. Weber, Bubbles, drops, and particles, vol.2, pp.16-68, 1978.

J. Boussinesq, Vitesse de la chute lente, devenue uniforme, d'une goutte liquide sphérique, dans un fluide visqueux de poids spécifique moindre, Comp. Rend. Acad. Sci, vol.156, pp.1124-1130, 1913.

A. Frumkin and V. G. Levich, On surfactants and interfacial motion, Zh. Fiz. Khim, vol.21, pp.1183-1204, 1947.

Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, and R. Novakovic, Thermophysical properties of the liquid Ga-In-Sn eutectic Alloy, J. Chem. Eng. Data, vol.59, pp.757-763, 2014.

, Bibliography |, p.206

T. Liu, P. Sen, and C. Kim, Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices, J. Microelectromech. S, vol.21, pp.443-450, 2012.

R. P. Woodward, Surface tension measurement using the drop shape method, FTA, 2015.

R. J. Mannheimer and R. S. Schechter, An improved apparatus and analysis for surface rheological measurements, J. Colloid Interf. Sci, vol.32, pp.195-211, 1970.

J. M. Lopez and A. H. Hirsa, Direct determination of the dependence of the surface shear and dilatational viscosities on the thermodynamic state of the interface: theoretical foundations, J. Colloid Interf. Sci, vol.206, pp.231-239, 1998.

J. A. Shercliff, Steady motion of conducting fluids in pipes under transverse magnetic fields, J. Fluid Mech, vol.49, pp.136-144, 1953.

S. Y. Molokov and J. E. Allen, On the theory of the Heiser and Shercliff experiment. I: MHD flow in an open channel in a strong uniform magnetic field, J. Phys. D: Appl. Phys, vol.25, pp.393-400, 1992.

J. C. Hunt and K. Stewartson, Magnetohydrodynamic flows in rectangular ducts, II. J. Fluid Mech, vol.23, pp.563-581, 1965.

P. Tabeling and J. Chabrerie, Magnetohydrodynamic secondary flows at high Hartmann numbers, J. Fluid Mech, vol.103, pp.225-239, 1981.

V. Kolevzon and G. Gerbeth, Light-scattering spectroscopy of a liquid gallium surface, J. Phys. D: Appl. Phys, vol.29, pp.2071-2082, 1996.

V. Kolevzon, G. Gerbeth, and G. Podzniakov, Light-scattering study of the mercury liquid-vapor interface, Phys. Rev. E, vol.55, pp.3134-3142, 1997.

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz et al., Eutectic Gallium-Indium (EGaIn): a liquid metal alloy for the formaiton of stable structures in microchannels at room temperature, Adv. Funct. Mater, vol.18, pp.1097-1104, 2008.

R. J. Larsen, M. D. Dickey, G. M. Whitesides, and D. A. Weitz, Viscoelastic properties of oxide-coated liquid metals, J. Rheol, vol.53, pp.1305-1326, 2009.

K. Doudrick, S. Liu, E. M. Mutunga, K. L. Klein, V. Damle et al., Different Shades of Oxide: From Nanoscale Wetting Mechanisms to Contact Printing of Gallium-Based Liquid Metals, Langmuir, vol.30, pp.6867-6877, 2014.

R. Moreau, Y. Bréchet, and L. Maniguet, Eurofer corrosion by the flow of the eutectic alloy Pb-Li in the presence of a strong magnetic field, Fusion Eng. Des, vol.86, pp.106-120, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00633974

. Geratherm, Safety Data Sheet acc, to Guideline 93/112/EC, Geratherm Medical AG, 2004.

T. Alboussière, P. Cardin, F. Debray, P. La-rizza, J. Masson et al., Experimental evidence of Alfven wave propagation in a gallium alloy, Phys. Fluids, vol.23, p.96601, 2011.

N. Terzija, W. Yin, G. Gerbeth, F. Stefani, K. Timmel et al., Electromagnetic inspection of a two-phase flow of GaInSn and argon, Flow Meas. Instrum, vol.22, pp.10-16, 2010.

C. Zhang, S. Eckert, and G. Gerbeth, Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field, Int. J. Multiphas. Flow, vol.31, pp.824-842, 2005.

K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, and T. Wondrak, Experimental modelling of the continous casting process of steel using low melting point metal alloys-the LIMMCAST Programm, ISIJ. Int, vol.50, pp.1134-1141, 2010.

J. Mohring and A. Pothérat, Stability of a liquid metal free surface in an annulus affected by an alternating magnetic field, The 6th International pamir conference on fundamental and applied MHD, Aluminium reduction cells, 2005.

N. B. Morley, J. Burris, L. C. Cadwallader, and M. D. Nornberg, GaInSn usage in the research laboratory, Rev. Sci. Instrum, vol.79, pp.56107-56108, 2008.

, Les Echos website. Matières premières, Groupe Les Echos, 2015.

M. D. Dickey, Emerging applications of liquid metals featuring surface oxides, ACS Appl. Mater. Interfaces, vol.6, pp.18369-18379, 2014.

M. J. Regan, H. Tostmann, P. S. Pershan, O. M. Magnussen, E. Dimasi et al., X-ray study of the oxidation of liquid-gallium surfaces, Phys. Rev. B, vol.55, pp.10786-10790, 1997.

Q. Xu, N. Oudalov, Q. Guo, H. M. Jaeger, and E. Brown, Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium, Phys. Fluids, vol.24, p.63101, 2012.

J. A. Shercliff, A textbook of magnetohydrodynamics, pp.9-30, 1965.

J. C. Hunt and G. S. Ludford, Three-dimensional MHD duct flows with strong transverse magnetic field. Part 1. Obstacles in a constant area channel, J. Fluid Mech, vol.33, pp.693-714, 1968.

J. A. Shercliff, The flow of conducting fluids in circular pipes under transverse magnetic fields, J. Fluid Mech, vol.1, pp.644-666, 1956.

, Bibliography |, vol.208

B. Mück, C. Günther, U. Müller, and L. Bühler, Three-dimensional MHD flows in rectangular ducts with internal obstacles, J. Fluid Mech, vol.418, pp.265-295, 2000.

V. Dousset, Numerical simulations of MHD flows past obstacles in a duct under externally applied magnetic field, 2009.

M. Fleischer and H. Meixner, Gallium oxide thin films: a new material for high-temperature oxygen sensors, Sensor. Actuator. B-Chem, vol.4, pp.437-441, 1991.

A. M. Albano and D. Bedeaux, Non-equilibrium electro-thermodynamics of polarizable multicomponent fluids with an interface, Physica A, vol.147, pp.407-435, 1987.

C. Picard, Ondes capillaires à une interface fluide fonctionnalisée: détection micromécanique de brins d'ADN, 2007.

I. Benjamin, Molecular dynamics of liquid surfaces and interfaces. In Solvent Extraction for the 21st century, 2001.

J. C. Slattery, L. Sagis, and E. Oh, Interfacial transport phenomena, vol.360, p.22, 2007.

I. B. Ivanov, K. D. Danov, K. P. Ananthapadmanbhan, and A. Lips, Interfacial rheology of adsorbed layers with surface reaction: On the origin of the dilatational surface viscosity, Adv. Colloid. Interfac, pp.61-92, 2005.

R. Aris, Vectors, Tensors and the basic equations of Fluid Mechanics, 1962.

W. D. Harkins and J. Robert, Viscosity of monomolecular films, Nature, vol.140, p.465, 1937.

A. H. Hirsa, J. M. Lopez, and R. Miraghaie, Determination of surface shear viscosity via deep-channel flow with inertia, J. Fluid Mech, vol.470, pp.135-149, 2002.

J. M. Lopez, R. Miraghaie, and A. H. Hirsa, Non-newtonian behavior of an insoluble monolayer: effects of inertia, J. Colloid Interf. Sci, vol.248, pp.103-110, 2002.

L. Drazek, J. Legrand, and L. Davoust, A first attempt to enhance the 2-D single-crystal growth of a protein at an air/water interface from hydrodynamics, J. Cryst. Growth, vol.275, pp.1467-1472, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00203812

L. Davoust, Y. Huang, and S. Chang, Flow-induced melting of condensed domains within a dispersed Langmuir film, Phys. Fluids, vol.20, p.82105, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00383702

L. Davoust, Y. Huang, and S. Chang, Shearing of a stratified layer of amphiphilic (bio)molecules, Surf. Sci, vol.603, pp.2777-2788, 2009.

L. Davoust, J. Achard, and L. Drazek, Low-to-moderate Reynolds number swirling flow in an annular channel with a rotating end wall, Phys. Rev. E, vol.91, pp.23019-23020, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01216769

A. H. Hirsa, J. M. Lopez, and R. Miraghaie, Measurement and computation of hydrodynamic coupling at an air/water interface with an insoluble monolayer, J. Fluid Mech, vol.443, pp.271-292, 2001.

E. Serre, E. Crespo-del-arco, and P. Bontoux, Annular and spiral patterns in flows between rotating and stationary discs, J. Fluid Mech, vol.434, pp.65-100, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00834951

B. Launder, S. Poncet, and E. Serre, Laminar, transitional and turbulent flows in rotor-stator cavities, Ann. Rev. Fluid. Mech, vol.42, pp.229-248, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00678846

J. Delacroix and L. Davoust, Electrical activity of the Hartmann layers relative to surface viscous shearing in an annular magnetohydrodynamic flow, Phys. Fluids, vol.26, pp.37102-37103, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01053449

A. H. Nayfeh, Perturbation methods, pp.56-154, 1973.

M. Van-dyke, Perturbation methods in fluid mechanics, 1975.

L. P. Cook, G. S. Ludford, and J. S. Walker, Corner regions in the asymptotic solution of ?? 2 u = ? u ? y with reference to MHD duct flow, Proc

, Camb. Phil. Soc, vol.72, pp.117-122, 1972.

J. C. Hunt and W. E. Williams, Some electrically-driven flows in magnetohydrodynamics. Part 1. Theory, J. Fluid Mech, vol.31, pp.705-722, 1968.

I. Stakgold, Boundary value problems of mathematical physics, chapter 1, vol.1, pp.64-78, 2000.

A. J. Pintar, The measurement of surface viscosity, 1968.

M. Support, MUltifrontal Massively Parallel Solver (MUMPS 4.10.0) User's guide, 2011.

J. Delacroix and L. Davoust, On the role of surface rheology in a magnetohydrodynamic swirling flow, Phys. Fluids, vol.27, pp.62104-62105, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01220251

G. Vitter, Jauges électrochimiques à oxygène pour contrôles industriels, INPG, 1980.

, Bibliography |, vol.210

I. F. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, J. Struct. Biol, vol.151, pp.182-195, 2005.

D. J. Brown and R. F. Tefft, The densities, equivalent conductances and relative viscosities at 25 ? C, of solution of hydrochloric acid, potassium chloride and sodium chloride, and of their binary and ternary mixtures of constant chlorideion-constituent content, J. Am. Chem. Soc, vol.48, pp.1119-1128, 1926.

J. W. Haverkort and T. W. Peeters, Magnetohydrodynamics of insulating spheres, Magnetohydrodynamics, vol.45, pp.111-126, 2009.

. Lncmi-website, LnCMI hybrid magnet, 2015.

J. Happel and H. Brenner, Low Reynolds number hydrodynamics with special applications to particulate media, vol.4, pp.145-149, 1983.

A. B. , Basset. A Treatise on Hydrodynamics, vol.2, p.248, 1961.

T. A. Johnson and V. C. Patel, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech, vol.378, pp.19-70, 1999.

S. Taneda, Experimental investigation of the wake behind a sphere at low Reynolds numbers, J. Phys. Soc. Jpn, vol.11, pp.1104-1108, 1956.

R. M. Wham, O. A. Basaran, and C. H. Byers, Wall effects on flow past solid spheres at finite Reynolds number, Ind. Eng. Chem. Res, vol.35, pp.864-874, 1996.

A. Maheshwari, R. P. Chhabra, and G. Biswas, Effect of blockage on drag and heat transfer from a single sphere an an in-line array of three spheres, Powder Technol, vol.168, pp.74-83, 2006.

J. T. Schalbe, F. R. Phelan, P. M. Vlahovska, and S. D. Hudson, Interfacial effects on droplet dynamics in Poiseuille flow, Soft Matter, vol.7, pp.7797-7804, 2011.

R. B. Fdhila and P. C. Duineveld, The effect of surfactants on the rise of a spherical bubble at high reynolds and peclet numbers, Phys. Fluids, vol.8, pp.310-321, 1996.

X. Miao, D. Lucas, Z. Ren, S. Eckert, and G. Gerbeth, Numerical modeling of bubble-driven liquid metal flows with external static magnetic field, Int. J. Multiphas. Flow, vol.48, pp.32-45, 2013.

T. V. Sekhar, T. V. Ravikumar, and H. Kumar, MHD flow past a sphere at low and moderate Reynolds numbers, Comput. Mech, vol.31, pp.437-444, 2003.

J. C. Hunt, Bluff body drag in a strong transverse magnetic field, Magnetohydrodynamics, vol.6, pp.35-38, 1970.

K. Gotoh, Stokes flow of an electrically conducting fluid in a uniform magnetic field, J. Phys. Soc. Jpn, vol.15, pp.696-705, 1960.

J. Reitz and L. Foldy, The force on a sphere moving through a conducting fluid in the presence of a magnetic field, J. Fluid Mech, vol.11, pp.133-142, 1961.

O. Wildlund, Wall functions for numerical modeling of laminar MHD flows, Eur. J. Mech. B-Fluid, vol.22, pp.221-237, 2003.

K. Takatani, Mathematical modeling of incompressible MHD flows with free surface, ISIJ International, vol.4, pp.545-551, 2007.

J. W. Haverkort and T. W. Peeters, Magnetohydrodynamic effects on insulating bubbles and inclusions in the continuous casting of steel, Metall. Mater. Trans. B, vol.41, pp.1240-1246, 2010.

G. Branover, N. Slyusarev, and A. Tsinober, Drag of a sphere in a magnetohydrodynamic flow, Magnetohydrodynamics, vol.2, pp.149-150, 1966.

M. Bertherat, T. Odievre, M. Allibert, and P. Le-brun, A radioscopic technique to observe bubbles in liquid aluminium, Light Met, vol.3, pp.861-867, 2002.

A. Reusken and Y. Zhang, Numerical simulation of incompressible two-phase flows with a Boussinesq-Scriven interface stress tensor, Int. J. Numer. Meth. Fluids, vol.73, pp.1042-1058, 2013.

C. P. Bean, R. W. Deblois, and L. B. Nesbitt, Eddy-current method for measuring the resistivity of metals, J. Appl. Phys, vol.30, 1959.

G. Fleury and M. Davoust, Model selection for inductive conductivity measurement, AIP Conf. Proc, vol.557, pp.1413-1420, 2001.

A. B. Kos and F. R. Fickett, Improved Eddy-current decay method for resistivity characterization, IEEE. T. Magn, vol.30, pp.4560-4562, 1994.

J. Bretonnet, Conductivité électrique des métaux liquides. Tech. Sci. Ing, vol.69, pp.1-8, 2005.

B. Wwedensky, Über die Wirbelströme bei der spotanen Änderung der Magnetisierung, Ann. Phys, vol.369, pp.609-620, 1921.

A. Gray and G. B. Mathews, A treatise on Bessel functions and their applications to physics, p.1895

E. Rostan, Mesure de la conductivité électrique d'un métal liquide, 2015.

J. Delacroix and L. Davoust, On the role of surface viscosity in a magnetohydrodynamic swirling flow, Phys. Fluids, vol.27, p.62104, 2015.