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MONG the numerous media involved in human activities, the electroconductive
media (including metals) are given a prominent place. They are ubiquitous.
Construction industry, power plants, car industry, aeronautics, aerospace indus-

try...every single human activity bears, at some point of a given process or another, on
the ability of a given medium to carry electricity.

The best-known electroconductive media are metals. Extracted from the earth’s crust,
they are melted, purified, quenched, manufactured at will. Their electrical, thermal, me-
chanical properties are hardly matched. They are mostly used at solid state, their most
common state at room temperature. However, their aforementioned interesting physical
properties relies heavily on the way metals are processed at liquid state, during the smelting
process, in the blast furnaces. Besides, there are numerous applications where lignid metals
are directly used, for instance, as reference fluids in fundamental magnerohydrodynamic
experiments, or as coolants for future nuclear power plants in the nuclear industry. Thus,
improving scientific knowledge on the liquid state of metals meets both fundamental and
industrial concerns.

Let us consider a metal at its liquid state. A majority of metals has a special affinity
with oxygen, so that solid particles made of metallic oxides may exist either in the liguid
bath, or at an hypothetical interface berween the liqguid metal and a gaseous phase. The lat-
ter may surround the liquid bath (working atmosphere for free surface layouts). Gaseons
pockets can also be included inside the metal, either involuntarily (accidental boiling,
trapped gas), or on purpose (bubble injection). As such, a metallic bath may form an bet-
erogeneous medium, where liquid, solid and gaseous phases coexist. When put in motion,
a liguid metal flow may therefore constitute an electroconductive multiphase flow.

One outstanding feature of electroconductive flows is that they can be driven by means
of an outer magnetic field. Magnetohydrodynamics (MHD) covers those phenomena where
the velocity and the magnetic fields are coupled. Because of this interaction, an electromag-
netic force appears (called the Lorentz force) strongly influencing the fluid flow. Besides, in
MHD, and contrary to classical hydrodynamics, the role of boundary layers is particularly
enhanced. They indeed govern directly the electromagnetic force, and as such, they are able
to influence actively the core-flow, modifying it by an order of magnitude, depending on
the electrical nature of the boundary conditions.

The MHD of single-phase flows has been extensively studied. However, as far as MHD
multiphase flows are concerned, several issues arise due to the heterogeneous aspect of the
considered medium. More particularly, the critical role played by the boundary layers
in MHD questions the relevance of the modelling of MHD boundary conditions. For
instance, the electrical and mechanical behaviour of a liguid /gas interface may evolve
according to its level of purity, i.e. its state of oxidation for liguid metals. A gradually ox-
idising interface might in turn strongly impact the MHD bulk flow, leading to a variety
of MHD flow patterns. This critical issue leads to the guiding principle of this PhD work.

How does the alteration of the behavionr of a liquid metal /gas interface, through ox-
idation processes, may affect a supporting MHD bulk flow?

Undoubtedly, this common thread arouses a lot of resulting issues: how to model a
liquid metal /gas interface? What are the surface properties characterising this interface?
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Can we measure them? And how to relate them to a MHD bulk flows All these questions
show the necessity to highlight the interactions between MHD and the field of science that
studies the mechanical properties of fluid interfaces, i.e. surface rheology. As a consequence,
we shall consistently emphasize the original coupling between MHD and surface rheology
in this study. This coupling constitutes a background step towards multiphase MHD.

This furst part constitutes the general introduction to this coupling issue. The funda-
mental and industrial applications potentially affected are emphasised. Then, the original-
ity of the coupling between MHD and surface rheology is highlighted, the state-of-the-art
being surprisingly reduced to its smallest portion. Afterwards, the selection of the model
liguid metal, i.e. the eutectic alloy called Galinstan, is justified. Finally, the outlines of
this work are unveiled, along with the overall methodology.
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LA Of electroconductive multiphase flows

Modelling of MHD multiphase flows has recently become an issue of major interest, given the
fundamental and industrial applications potentially affected. This chapter recapitulates some of
these applications, introducing a first distinction between stratified and dispersed flows. Then, the
focus is put on a typical layout of a MHD liquid/gas flow, which allows us to highlight the interest of
(re)considering the interactions between a gradually oxidising interface and a bulk MHD flow.

I.A.1 Stratified and dispersed flows

Basically, there are two asymptotic cases considering the topology of multiphase
flows: the so-called stratified and dispersed topologies. They cover two distinct classes
of multiphase flow layouts: those where, e.g., the liquid and gaseous phases individu-
ally form homogeneous media separated by a unique interface, corresponding to the
stratified layout; and those where the two phases are mingled, with the existence of
more or less large inclusions, depending on the prevailing phase, corresponding to
the dispersed layout. Two typical examples are (stratified) free surface and (dispersed)
bubbly flows, as illustrated in Fig. I.A.1. Such a distinction is not meaningless: MHD
multiphase processes often involve one or the other kind of flows. Let us first focus
on a set of stratified MHD flows, and the associated fundamental and industrial issues.

Air Gas a
%:’ bubbles %
Interface d - € ‘? 1

(a) - Oil/Air stratified flow, on a sand bed [1]. (b) - Water/Gas bubbly flow [2].

Figure .A.1 - Typical stratified and dispersed flows.
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I.A.1.a Stratified MHD flows

Stratiied MHD flows are historically at the root of fundamental MHD. One of
the first laboratory experiments carried out using mercury indeed consisted of a mer-
cury free-surface bath, entrained by a rotating annular strong magnet [3], as shown in
Fig. 1.A.2(a). The conclusions of these experiments "clarified and stimulated research
in MHD" for the following decades, about such concepts as "analogies between MHD
and rotating fluids or two-dimensional flow structures" [4]. Over the past few years,
such stratified flows have received growing attention, in link with the fundamental
study of the interactions between the bulk MHD flow and an oxidising surface (see
e.g. [5]) as displayed in Fig. .A.2(b). We shall go back later on this particular point.

(a) - Experimental evidence of the electromagnetic (b) — Galinstan (eutectic metallic alloy) oxide layer
blocking [3]. and MHD swirling flow [5].

Figure I.A.2 - Fundamental stratified MHD flows.

In the industry, magnetic fields are often used in the processing of liquid metals
to dampen unwanted fluid motion at free surfaces, or stir the liquid in a contactless
way. The best-known illustration of such industrial stratiied MHD flows is the so-
called cold crucible induction melting process, presented in Fig. .A.3. By means of
an alternating current (AC) flowing through an inductor, eddy currents are induced
in the sectored crucible, and then in the metallic load. This allows both for heating
(Joule heating) and stirring (Lorentz force) the melting metal. After quenching, a
typical dome-shaped surface is found at the metal/air interface, due to electromagnetic
pressure, as seen in Fig. |.A.3(b). Some patches of metallic oxides can be noted. One of
the aim of the electromagnetic stirring is to make these oxides adsorb preferentially at
the interface during the smelting process, to reach the highest purity inside the ingot.

I.LA.1.b Dispersed MHD flows

The MHD of dispersed flows has recently become a leading fundamental issue,
given the growing number of publications related to this particular topic. Two cases
must be distinguished, corresponding either to the case of a gaseous phase surround-
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Cold crucible

(a) - Cold crucible induction melting principle.  (b) - Photograph of the dome-shaped oxidised sur-
face of an aluminium bath, under the influ-
ence of an AC field [6].

Figure 1.A.3 - Industrial stratified MHD flows.

ing metallic droplets, or to the case of gaseous inclusions suspended into a supporting
liquid metal flow. The first case can be illustrated by the fundamental issue of elec-
tromagnetic levitation by means of the Lorentz force [6], as shown in Fig. .A.4(a).
The non-spherical shape of the levitating droplet is due to the balance between re-
pulsive electromagnetic pressure (prevailing near the inductors) and capillary effects
(prevailing in the gap). In addition to the stratified layouts previously exposed, this
fundamental application is another occurrence of the competition between surface
properties and bulk MHD. The second case encompasses the MHD of bubbly flows
inside liquid metals. In Fig. |.A.4(b), the typical electric current density distribution
around an Argon bubble rising in Galinstan (eutectic alloy) is numerically investigated
by means of direct numerical simulation (DNS).

B

AC Inductor
————

evitating

ickel dropleg

—

AC Inductor

.-

(a) - Electromagnetic levitation of a Nickel (b)- Direct numerical simultion of the MHD of

droplet [6]. a single gas bubble suspended into Galin-
stan. Arrows: electric current density distri-
bution [7].

Figure 1.A.4 - Fundamental dispersed MHD flows.

From the industrial point of view, the MHD of dispersed flows may become a
critical issue in the next few years, especially in the nuclear industry. In view of the
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fourth generation (GEN-IV) of nuclear power plants, the concept of molten-salt fast-
spectrum reactors (MSFR) has been proposed, of which a conceptual design is dis-
played in Fig. 1.A5(a) (see [8]). The Thorium-based fuel must be retreated and recy-
cled, essentially for corrosion reasons. An original on-line extraction method consists
in capturing the fission products (metallic particles or gaseous products), either by dif-
fusion in He bubbles, or adsorption at the surface of these bubbles, injected inside the
deprecated salt. In parallel, an electromagnetic device for interface melting and stir-
ring of two-phase systems has been developed by a Grenoble team [9], with special
application to pyrometallurgical transfer from the salt to a metallic slag. Its principle
is exposed in Fig. .A.5(b). The two approaches could be combined, to maximise the
waste extraction efficiency. Once again, the interplay between interface conditions
and bulk MHD is vital for the process.

Salt-bubbles
separator 0
Pumps @)
O
— Heat exchangers O
~ Blanket salt
Fuel salt 8
O
Bubbles O—l

injection

Safety tanks

(a) - Schematic MSFR design, showing the imple- (b) - Sketch of the electromagnetic device for in-
mentation of the on-line waste treatment in terface melting and stirring [9]. 1: electric
the nuclear reactor [8]. power unit, with built-in frequency modula-

tion facilities. 2: inductor. 3: coolant. 4: up-
per phase. 5: interface. 6: electromagnetic
stirring. 7: lower phase. 8: cold crucible. 9:
possible bubbles injection.

Figure I.A.5 - Industrial dispersed MHD flows: application to GEN-IV MSER fission reactor.

In a long-term view, the issue of the dispersed MHD flows may appear in link
with the design of nuclear fusion reactors (also called Tokamak, with reference to the
plasma levitating concept). The international thermonuclear experimental reactor
(ITER) project, currently developed next to the Cadarache facility, aims at demon-
strating the sustainability of Deuterium/Tritium fusion for the production of electric
power. Due to the limited supply of Tritium, currently estimated at 20 kg worldwide,
a breeding-blanket concept must be designed in order to generate Tritium, as shown in
Fig. 1.A.6. Tritium can be produced within the Tokamak when neutrons escaping the
plasma interact with a specific element, Lithium, contained in the blanket. In addi-
tion to this necessary feature, the blanket must provide an efficient heat removal from
the levitating plasma, allowing for the conversion of nuclear power [10]. Among the
various test blanket modules (TBM) proposed to address these issues, those based on
Li-containing liquid as breeder and coolant are focusing attention (see, e.g., a review
about a possible concept of liquid Li/Pb TBM in [ 11]).
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Figure I1.A.6 - ITER, the world’s largest Tokamak. Left part: global view of the reactor [12]. Right
part, top: conceptual design of the blanket [10]. Right part, bottom: a possible TBM
design [13].

As shown in Fig. 1.A.6, the ITER magnet system includes 18 superconducting toroidal
field and 6 poloidal field coils, a central solenoid, and a set of correction coils that mag-
netically confine, shape, and control the plasma inside the vacuum vessel [10]. The
interplay between the liquid metal motion and the strong magnetic fields generated
by the magnet system leads to a MHD flow inside liquid Li/Pb. The resultant Lorentz
force generates a pressure drop, which degrades convective heat transfer. The solution
of injecting gas bubbles in the blanket has been proposed [ 14]. It is not obvious that
the flow shall adopt either a dispersed topology (bubbly flow) or a stratified topology
(presence of an annular film around a liquid metal core) topology. The purpose re-
mains nonetheless the same: to lower the MHD pressure drop, either by reducing the
apparent electrical conductivity of the fluid (dispersed flow), or by activating partic-
ular MHD layers, called the Hartmann layers (see hereafter), that are able to increase
the magnitude of the core velocity field (annular flow). Of course, even if this solu-
tion contributes to a better convective heat transfer, the injection of a gaseous phase
degrades the conductive part of heat removal, either by lowering the apparent thermal
conductivity (bubbly flow), or by reducing the conducto-convective coefficient at the
TBM walls (stratified flow). A trade-off must be found between these two phenom-
ena, with the aim to enhance as much as possible the Nusselt number (see, e.g., [15]
for such considerations in the case of an annular flow). Whatever it be, the breeding
blanket heat transfer issue is another point illustrating the industrial and fundamental
needs for a better understanding of MHD multiphase flows, with special care about
the influence of surface properties on bulk MHD.

I.LA.2 (Re-)considering the MHD/interface interactions

All the previously exposed fundamental and industrial applications share com-
mon features, which yield the definition of a typical layout of MHD multiphase flows
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Figure 1.A.7 - Typical layout of MHD liquid/gas flow.

(whether it be a stratified or dispersed structure), displayed in Fig. .A.7. In this figure,
we can first point out that due to internal motion @ inside the electroconductive fluid,
in interaction with the outer magnetic field B, electric currents are developing, lead-
ing to the emergence of a MHD flow. Moreover, if a gaseous phase is added to form a
heterogeneous liquid/gas medium, complex interactions between the two phases are
expected to influence the overall MHD flow. More particularly, the role that may be
played by the liquid/gas interface is a crucial issue. If the focus is placed on the liquid
surface, particles stemming from physico-chemical processes such as corrosion due
to redox reactions or mechanical abrasion, can adsorb at this interface. Depending
on its level of contamination, the mechanical and electric properties of the interface
can be greatly modified. This interface constituting one boundary condition of the
MHD problem, a major impact is expected on the topology of the supporting MHD
flow, especially as boundary layers in MHD may significantly alter the core-flow (see
Sec. I.B.1.a). Consequently, the particular coupling between MHD and varying sur-
face properties of a liquid metal is worthy of investigation, as the physical insight is
expected to be significant. This leads to the definition of the main issue of this work.

How does the alteration of a liquid metal /gas interface, due to oxidation processes,
may affect a supporting permanent MHD flow?

This main topic encompasses several issues that we should address. The question
of how to model a gradually oxidising interface between a liquid metal and a gas must
be solved. What kind of surface parameters necessarily stem from this modelling?
Have they ever been measured, or, if not, can we implement an existing measurement
method to get access to the values of such parameters? Finally, how can we relate
a change in surface properties to a MHD bulk flow? Do the effects of such a cou-
pling depend on the structure of the multiphase flow, either dispersed or confined?
Prior to any investigation of our own, let us draw up a state-of-the art of the existing
work about such an original coupling between bulk MHD and what we shall call the
surface rheology of a liquid metal, which covers those physico-chemical phenomena
governing the dynamics at a given liquid surface.
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I.B  MHD/Surface rheology: enhancing an original cou-
pling

In this chapter, some basic notions of MHD and surface rheology are separately introduced.
Our purpose is not so much giving a detailed review about physical phenomena, equations, bound-
ary conditions, etc. (see rather Part Il), as showing how the coupling between MHD and surface
rheology can reveal insightful, through a set of selected study cases. This heuristic approach al-
lows us to show that despite promising features, such a coupling constitutes an original approach,
given the relatively reduced literature in link with this particular topic. Finally, the choice of Galin-
stan as the working fluid is motivated, with respect to its promising bulk and surface properties.

I.B.1 Two well-known but distinct fields

I.B.1.a Major features of MHD
Historical development

MHD investigates the interplay between the hydrodynamics of electroconductive
fluids and electromagnetism, and bears on the induction principle. Historically, Fara-
day is considered as the discoverer of MHD, in its attempt to measure the flow-rate
of the Thames (1840), similarly to how it is now measured for liquid metals (the mea-
surement failed due to the low electrical conductivity of water). However, most of
MHD theory and applications were discovered during the twentieth century. Two
main periods can be distinguished, corresponding to the two main classes of MHD
problems: those based on Lorentz induction, or those based on Neumann induction.

Until the early 1980s, a typical MHD system consists in the motion of a given
electroconductive medium, subjected to an outer direct current (DC) magnetic field:
this is Lorentz induction, as illustrated in Fig. 1.B.1(a). The corresponding MHD shall
be qualified as "dynamic" MHD in this study. Alternatively, since the mid-1980s, a
new kind of MHD problems has emerged: currents can also be induced when the
electroconductive medium is subjected to an external alternative current (AC) field,
generated by a conductor crossed by an AC electric current. This is Neumann induc-
tion, described in Fig. 1.B.1(b), which introduces frequency as a new MHD parameter.
The corresponding MHD shall be qualified as "frequency” MHD in this study. For
both types of MHD layouts, there are two main consequences, the first of which being
that an induced magnetic field linked to eddy currents appears, perturbing the origi-
nal magnetic field. The second consequence is that an electromagnetic force appears
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due to the interaction between these currents and the magnetic field, perturbing the
original motion: the Lorentz force.

f /) Copper sectors
forming the crucible

Driving
DC field force
Moving AC electric current
Induced conductor solenoidal inductor

electric current

(a) - Lorentz induction for a moving electrocon- (b) - Neumann induction of electric currents in-
ductive rod. side a cold crucible [16]. Arrows represent
the electric current direction.

Figure 1.B.1 - The induction principle.

In this study, the focus is particularly put on dynamic MHD problems, i.e. with
an outer DC field. Keeping in mind the coupling with varying interface properties
acting as boundary conditions for bulk MHD flows, it seems meaningful to focus our
research on particular MHD effects linked to boundary conditions. And, indeed, one
of the most outstanding features of dynamic MHD involves the active behaviour of
particular boundary layers, called the Hartmann layers. They are now introduced
through a particularly insightful study case: the Hartmann flow.

The Hartmann flow: highlighting active boundary layers

The Hartmann flow is one of the cornerstones of MHD, equivalent to the Poi-
seuille flow in classical hydrodynamics [4]. This study case is named after J. Hart-
mann, who first described this elementary MHD flow when he achieved the first suc-
cess of MHD, iz.e. the electromagnetic pump, in 1918, and then analysed its behaviour
[17, 18]. Let us consider the fully-developed steady laminar flow of an electrocon-
ductive fluid between two infinite and planar parallel walls, subjected to a steady and
homogeneous magnetic field By = Byé,, as described in Fig. 1.8.2. The interplay be-
tween fluid motion ¢ = v, (2)é, and the outer magnetic field induces electric current
densities j = j (2)é, inside the fluid. Then, three flow areas can be distinguished:

- the core-flow region C, essentially governed by the effects stemming from pres-
sure gradient and electromagnetic forces;

- and the two boundary layers, namely H T (top boundary layer) and HB (bot-
tom boundary layer), due to the shear induced by the motionless walls, and
governed by viscous and electromagnetic effects.

Anticipating Sec. Il.A.2.c, where it is more formally defined, let us introduce a dimen-
sionless number that expresses the ratio between electromagnetic and viscous effects,
called the Hartmann number, and denoted Ha. These particular layers, whose nor-
mal is parallel to the outer magnetic field, are called the Hartmann layers. Let us
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Figure 1.B.2 - The Hartmann flow.

now switch to a dimensionless description of the physical problem, the dimension-
less physical quantities being superscripted *. The typical dimensionless thickness of
the Hartmann layers, denoted &% ,is 8 = 1/Ha. Focusing on the bottom

HBHT) S CHBHT)
part of the flow, the velocity field can be expressed as:

v (2") =0 (2") + v p(27).

The first and the second terms on the right-hand side of previous equation represents
the core contribution and the Hartmann layer contribution to the velocity field, re-
spectively. The velocity profile v7,,,(z*) is such that it matches the zero value at the
walls in common with classical hydrodynamics (Blasius layer). However, the Hart-
mann layer has also another striking feature, which makes it differ fundamentally
from "passive" boundary layers. This "active" role is demonstrated by the study of
electric current densities, which can be written, similarly to velocity:

A g

JE) = @) )

The "active" denomination stems from the fact that the electric current flowing in the
Hartmann layer is found to be proportional to the core velocity. If we reason in term

of scaling analysis:

*
Jig
v~ HE
¢ Ha’
where V. is the typical dimensionless core velocity and J}, is the typical order of
magmtude of j* B The previous relation shows how the Hartmann layers controls
the outer ﬂow, by means of the electric current density flowing along them. It is
important to point out that the electric circuit relies heavily on the electrical nature
of the walls. In the vicinity of a very conductive wall, there is no longer the need for
the electric current density to flow in the Hartmann layer, since the electric circuit
o > L . N

closes up inside the walls (see j,y in Fig. 1.8.2). In this case, J;;, ~ O(1/Ha), and
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V¢ ~O(1/Ha?): the Hartmann layers are said electrically inactive. Conversely, if
the walls are insulating, the conservation of electric current leads to:

JexOM) =]+ Spyps
and the typical dimensionless core velocity is then deduced: V ~ O(1/Ha). The
Hartmann layers are said electrically active.

The Hartmann flow study case has allowed us to highlight the particular role
played by the Hartmann layers in classical MHD. The electrical influence of the walls
completely modifies the electric circuit and results in a major impact on the topology
of the MHD flow. Given the unique properties of the Hartmann layers, we could ex-
pect significant changes considering varying dynamic boundary conditions this time.
In order to describe dynamically evolving boundaries and write the corresponding
boundary conditions, and then analyse the impact on bulk MHD, we must turn to
surface rheology, which is now phenomenologically introduced.

I.B.1.b Major features of surface rheology
Historical development

In classical hydrodynamics (e.g. [19]), boundary conditions at free fluid interface
often omit an explicit description of interfacial (or surface) rheology. The normal
stress boundary condition at the liquid surface is seen as a continuity condition im-
posed upon the normal component of the fluid stress tensor, with a possible discon-
tinuity arising at a curved interface due to the interfacial (or surface) tension. This
approximative description of fluid interfaces is often justified, due to a small fluid
surface-to-volume ratio in the considered problems. In this case, bulk hydrodynamics
is not significantly altered by surface boundary conditions. However, when the fluid
system exhibits a large specific surface, as it is the case for instance for colloidal disper-
sions or bubbly flows, there is the need for an accurate description of the interfacial
mechanics, especially when the interface under consideration is gradually populated
by surface-active agents (surfactants, e.g. detergent, wetting agent...), because this in-
terface might in turn strongly interact with bulk flow. The need for such a description
has given birth to surface rheology [20].

Two main periods can be distinguished in the historical development of surface
rheology. Until the beginning of the 1960s, the development of surface rheology was
linked to a historical problem of chemical engineering, i.e. the fluid flow around an in-
sulated bubble, which is introduced hereafter as a study case. The controversy about
the discrepancies between theoretical and experimental work allowed to clarify very
important notions such as the Marangoni effect, due to surface tension gradients, and
the concept of surface viscosities. This intense scientific discussion led to a unified
description of material interfaces of arbitrary curvature, formulated by Scriven [21].
Since this work, the effort has been mainly made on experimental developments in
order to allow consistent measurements of interfacial rheological properties (see here-
after for a collection of experimental techniques). In parallel, recent computational
progress allowed for the investigation of the drainage and stability of thin liquid films,
with potential applications in the dynamical control of foams and emulsions [20].
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Creeping flow around a fluid droplet

A spherical fluid droplet should settle more rapidly under buoyancy than would
a comparable solid sphere, as stated by the Hadamard-Rybczynski theory [22, 23],
which generalised the Stokes’ original law for rigid spheres [24]. As displayed in
Fig. 1.B.3(a), the particle causes significant streamlines curvature. Internal spherical
vortices and a non-zero surface velocity v along the particle surface S are predicted
in the case of a fluid particle. In the case of a rigid sphere, no internal motion and
a vanishing surface velocity are expected. However, experimental observations show
that the settling velocity for small bubbles and drops tend to deviate from Hadamard-
Rybezynski predictions, the internal circulation being hardly noticeable [25]. In or-
der to explain this discrepancy, two explanations were originally proposed. On the
one hand, Boussinesq suggested that the liquid surface could be covered by a mono-
layer which would act as a viscous 2-D membrane. In addition to surface tension,
two surface viscosities, surface shear viscosity and surface dilatational viscosity, were
introduced to describe the retarded fluid motion [26]. On the other hand, Frumkin
and Levich postulated that the anomalous experimental results could be explained by
the presence of surfactants at the surface of the droplets [27]. Because of the droplet
motion, these surfactants could be swept to the rear of the droplet, leading to sur-
face tension gradients. The resulting Marangoni effect would be generated with the
emergence of a tangential (chemical) stress, retarding surface motion (see Fig. 1.B.3(b)).
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:jHadjmard—R/ bézy\llsk1 so\himont Surface tension urfactants
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— gradient

Surface tension
gradient

Surfactant

s Stokes solution ————_ concentration 7 concentration

gradient gradient

(a) - Streamlines relative to sphericle particle sus- (b) — Surface tension gradients created by the con-

pended in a creeping flow. Top: Hadamard- vective sweeping of adsorbed surfactants to
Rybcezynski solution, bottom: Stokes’ solu- the rear of the settling droplet [20].
tion [25].

Figure 1.B.3 - Slow viscous flow past spheres.

The permanent settling of a contaminated bubble is a remarkable system which
enables to introduce the three typical surface rheological properties characterising an
interface between two fluids, gradually contaminated by surfactants: surface tension
y, surface shear viscosity n¢ and surface dilatational viscosity xg. A more extensive
review of the physical phenomena associated with each parameter is given in Sec. I1.B,
along with the presentation of the unified Boussinesq-Scriven theory. These param-
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eters are defined in order to explain significantly different hydrodynamic layouts in
permanent regime. Depending on its level of saturation in surfactants, the rheological
behaviour of a liquid/gas interface can be greatly modified, e.g. evolving from a slip
to a no-slip boundary condition. Now, in the following section, we briefly define the
state-of-the-art of the surface rheology of liquid metals, and the experimental means
at our disposal to access the values of surface tension and viscosities.

Accessing the surface rheology of liquid metals

Whatever the fluid system considered, the best-known rheological parameter is
surface tension y. As previously said, flow layouts with small specific surface do not
need an accurate description of fluid interface, except for surface tension, which gov-
erns the pressure discontinuity occurring at a curved interface. A collection of classi-
cal techniques to measure y is summarised in [20], that we can divide into two main
categories. The first kind of instrumental devices bears on the measurement of the
force that is necessary to stretch the interface, according to the Wilhelmy’s or Du
Nouy’s principle. The Langmuir trough is one of the oldest techniques for measuring
the surface tension of a newly created surfactant monolayer at a liquid/gas interface
(see Fig. 1.B.4(a)). The second category bears on what we generically call the drop shape
method: surface tension is recovered by fitting the shape of a (sessile or pendant) drop
to a constitutive law, the Young-Laplace equation (see Fig. I.B.4(b)). For liquid metals,
the drop-shape methods are favoured, because they do not require a large quantity of
fluid. With such methods, the surface tension of such liquid metals as Galinstan is
known, with respect to temperature [28] and to surface oxidation [29].

Surfactants

(a) - Langmuir trough. The monolayer area is var- (b) - Pendant drop method. The angle ¢ allows for
ied through the moving barrier. The Wil- shape fitting [30].
helmy plate is submitted to the force resulting
from capillarity effects [20].

Figure 1.B.4 - Experimental techniques for determining surface tension y.
With respect to surface shear and dilatational viscosities, a critical issue to be ad-

dressed is the existence of Marangoni stresses due to surface tension gradients, which
could interfere with the measurement of 7 and xg. Among the various designs of
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surface viscometers, the annular channel viscometer "may be regarded as the most ef-
fective, owing to its relative sensitivity, exactness of theoretical description, and sim-
plicity of technique and analysis" [20]. The original design proposed by Mannheimer
and Schechter [31] (see Fig. 1.B.5) can be recommended in order to measure both 7,
and x, independently of y [32].
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Figure 1.B.5 - Schematic cross-section of the deep-channel surface viscometer [31].

I.B.1.c An original coupling

The MHD of single-phase laminar flows has been extensively studied for many
years. The flow can be either confined [33], or may have a free surface [3, 34]. In the
case of duct flows, the walls can have infinite electrical conductivity [4], no conduc-
tivity [33], mixed infinite and vanishing conductivities [35], or arbitrary conductiv-
ity [36]. However, the fundamental issue of varying mechanical boundary conditions
between slip and no-slip conditions still remains an undisclosed topic.

Moreover, little is actually known about the surface rheology of liquid metals
when they are progressively oxidized. The viscoelastic properties of liquid metals have
been experimentally investigated by several authors (see, e.g., [29, 37, 38, 39, 40, 41]).
These authors have highlighted the preponderant role of the interface level of ox-
idation on different mechanical properties, such as the response to imposed elastic
stresses, surface tension, and contact angles... however, these results do not address
neither the issue of surface rheological transport, nor the coupling with MHD.

There are only a couple of articles dealing with the interplay between the oxida-
tion state of a given interface and MHD; see, e.g., the generation of oscillatory flow
patterns influenced by surface oxidation [5], in the case of a liquid metal subjected to
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a rotating magnetic field (Fig. 1.B.6(a)); or the Eurofer (ITER blanket material) corro-
sion by the flow of the eutectic alloy Li/Pb, stimulated by the presence of a strong
magnetic field [42] (Fig. 1.B.6(b)). These two studies omit nonetheless any reference
to interfacial transport. Finally, the reduced literature about this topic leads us to the
conclusion that the coupling between MHD and surface rheology is fairly original.

(a) - Intermittent behaviour caused by surface oxidation in a Galinstan (eutectic Ga-In-Sn) flow driven
by a rotating magnetic field [5]. a): oxide layer at rest, b) oxide layer in motion, c) closed oxide layer
at rest in presence of an intense swirling motion of the fluid beneath.

(b) - Optical microscopy observation of the Eurofer surface [42]. The corroded surface exhibits grooved
aligned with the fluid velocity, with periodic patterns, enhanced by MHD interactions.

Figure 1.B.6 - Experimental evidence of the interaction between oxidation and MHD.

So far, we have been undertaking an intellectual approach, concluding to the in-
sightful aspect of the coupling between MHD and surface rheology. However, all this
thought process would reveal pointless, if we are not able to relate it to a medium ca-
pable of highlighting this particular coupling. This brings us to the following section,
concerning the choice of Galinstan as the model system all along this thesis work.

I.B.2 The choice of Galinstan as working fluid

In this section, the choice of Galinstan as the model system is justified. First, its
bulk physical properties are detailed. Then, its promising interfacial characteristics
are introduced, along with some interesting dedicated applications, making Galinstan
the ideal candidate for investigating the coupling between MHD and surface rheology.
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I.B.2.a Galinstan as the new model fluid system in MHD

Galinstan is a eutectic gallium-indium-tin alloy (Gag;o,Inyg 50,5115 59, for the usual
chemical composition in wt %). Galinstan properties are collected in Tab. 1.B.1, ac-
cording to [28, 43], and are compared to those of mercury. The ternary system
GalnSn involves an eutectic composition which is liquid at room temperature, with
a low-temperature melting point, depending on the chemical composition. Usually,
experimental studies on an industrial scale with liquid metals require special effort
on the test-bench designs, in order to reach the liquidus point. A threshold temper-
ature T > 100 °C can be defined, from which most of standard instrumental devices
should be replaced with heat-resistant devices. The low melting-point of Galinstan
constitutes a decisive advantage for implementing cost-saving model experiments.

Property Galinstan Mercury
Boiling point (°C) > 1300 357
Melting point (°C) -19 -38.8

Vapour pressure (Pa) < 107 (at 500 °C) ~ 1071 (at 20 °C)
Water compatibility Insoluble Soluble
Density (kg:m™—) 6360 (at 20 °C) 13530 (at 20 °C)
Dynamieviscosity ) 14 10-3 (21 20°C)  1.55 x 10~ (at 20 °C)
(Pa-s)
Electrical conductivity 6 o 6 o
S 3.29 x 10° (at 20 °C) 108 (at 20 °C)
Magnetic permeability 4re 5 10~ 7 5 10~
(Hm™) i i

Table 1.B.1 - Bulk physical properties of Galinstan, compared to mercury [28, 43].

Galinstan exhibits attractive handling properties, owing to the low reactivity and
toxicity of its components. Compared to the historical operating fluid in liquid metal
experimental facilities, z.e. mercury, Galinstan does not evaporate at room tempera-
ture; rather, its vapour pressure is extremely low. Unlike many liquid metals, Galin-
stan is chemically compatible with a variety of metals (with the notable exception of
aluminium and its alloys), plastic, rubbers, and glasses at low temperature.

In recent decades, Galinstan has progressively replaced mercury as the classical
MHD model system, in most studies devoted to liquid metal MHD flows (see e.g. [44,
45, 46, 47, 48] for recent applications). First, the ratio 4/ ¢ /7 for Galinstan is roughly
50% higher than for mercury, where o and 7 are the electrical conductivity and the
dynamic viscosity of the liquid metal under consideration, respectively. Moreover,
the ratio p /7 for Galinstan is 3 times as low as for mercury, where p is the fluid den-
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sity. These are very interesting properties, because it allows for a wide range of values
of MHD scaling parameters. Indeed, the Reynolds number Re and the Hartmann
number Ha (see Sec. I1.A.2.c) can reach lower or higher values, respectively, than for
mercury (for a given experimental facility). The difficulty to reach very low velocities
often prevents one from accessing to small Re values, corresponding to the (viscous)
Stokes flow regime. In parallel, large Ha values are difficult to obtain, because impos-
ing a strong outer magnetic field is a challenging issue. Consequently, Galinstan has
generally better MHD parameters than those of mercury. This flexibility about some
MHD scaling parameters is also comfortable, because this gives a physical meaning to
the wide range of values tested for these parameters, in the analytical and numerical
parts of this study.

Finally, one of the rare drawbacks of Galinstan is price, which can vary widely
with world market demand (Fig. 1.B.7). It is a major constraint in the design of in-
dustrial scale MHD experiment, requiring large volumes of fluid, which can reveal
extremely expensive. Recycling techniques are then most valuable [49].

Price $/kg Price $/kg
| 1
1000

J

1000

800

600

07/2005|02/2008|08/2010]03/2013(07 /2015 07/2005|02,/2008|08/2010|03 /201307 /2015
Date Date

(a) - Gallium exchange rate. (b) - Indium exchange rate.

Figure 1.B.7 - Price per kg for gallium and indium over the past 10 years [50].

I.B.2.b The promising surface properties of Galinstan

Galinstan mainly consists of gallium. In the literature, a lot of studies dealing with
the properties of liquid metals involve liquid Ga or other derived alloys (like eutectic
Galn). When exposed to ambient oxygen, the surface oxides primarily consist of gal-
lium oxide Ga,O5, which thermodynamically prevails on other oxides [39], whatever
the liquid metal considered. Consequently, most of the results concerning the surface
properties of derived alloys of gallium can be applied to Galinstan [51].

At room conditions, on a time scale ranging from seconds to hundreds of sec-
onds [41], pure Galinstan forms a thin oxide layer on its surface, with a typical thick-
ness of a few nm [52], when suddenly exposed to ambient air. This oxide layer forms
on Galinstan as long as the O, concentration in the surrounding atmosphere is greater
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than 1 ppm [29], or when subjected to an oxygen dose of 1.8 x 10* Torr-s [52]. This
oxide shell is amphoteric, and can be removed at pH<3, or pH>10 [51]. Despite
its thinness, this oxide skin deeply alters the mechanical behaviour of, e.g., a sessile
droplet. A first effect of this oxide layer is its influence on the wettability of a given
sample of Galinstan, z.e. on surface tension. As shown in Fig. 1.B.8(a), the contact an-
gle of a gallium sessile droplet immersed in an acid bath can be tuned by changing
the HCI concentration of this bath. Whatever the acid concentration, the droplet
configuration is hydrophobic, on the glass substrate. However, the droplet is less hy-
drophobic at lower than at higher acid concentrations, where pure liquid gallium is
perfectly non-wetting. Thus, the surface oxide on Galinstan lowers the surface ten-
sion of the metal (see Fig. 1.B.8(b)), very much like surfactants for aqueous fluids [29].

a) 550
HCI 0.01 CHCl,max

540 F

Gallium

0.1 CHCl,max C)
H

500+ |*® Non-oxidized (< 0.5 ppm O,)

1T RIT Oxidizing (~ 20 ppm O,)

Gallium Gallium Osxidizing (~ 500 ppm CZ)Z)

0 5 10 15 20 25 30 35 40
Time (minutes)

(a) - Gallium wettability on a glass surface, vary- (b) - Effect of oxidation on the surface tension of
ing according to the HCI concentration of Galinstan, according to the O, rate of oxy-
a surrounding acid bath [53] (9=contact an- gen [29].
gle). a): cpye; = 0.01 Cyygy oo gallium is "less”
hydrophobic. b): ¢y = 0.1 ¢y x> gallium
begins to bounce back to a spherical shape.
) Chel = CHclmee Maximum contact angle
0 = 180°, gallium is perfectly non-wetting.

Figure 1.B.8 - Interfacial tension of a gradually oxidising Galinstan sample.

Furthermore, the oxide shell is very robust, being able to mechanically stabilize
large deformations, leading to a kind of gel behaviour. As shown in Fig. 1.B.8(a), a
sessile droplet can be moulded into non-spherical shapes. The oxide skin can be re-
moved by means of a hydrochloric acid bath, and the droplet recovers an equilibrium
shape [51]. This behaviour has a consequence not only on surface tension, but also
on the apparent bulk rheology of a Galinstan sample. Ga alloys are indeed Newto-
nian fluids, with a low bulk viscosity (see Tab. 1.B.1). However, the oxide layer changes
the apparent bulk viscosity; measurements carried out with a parallel-plate rheometer
show that the apparent viscosity of an oxidised Galn sample is dominated by a yield
stress, at low shear rates. At higher shear rates, the oxide is broken, and the surface
layer turns over, so that the bulk material becomes exposed to air and has a chance to



CHAPTER |.B | MHD/Surface rheology: enhancing an original coupling | 22

react with O,. This creates more solid and resisting material to the rheometer plate,
causing the increase of shear stress with time [53], emphasised in Fig. 1.B.9(b).

1 mm

c) d)

(a) — Gel behaviour of a Galn droplet, varying ac-
cording to the presence of an oxide skin on
its surface [51]. a): non-equilibrium shape,
b) and c): exposure to acid removes the oxide
skin, d): equilibrium shape.
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(b) - Oxidation of liquid metals exposed to air in
rheometer measurements. Time evolution of
shear stress with respect to time [53]. Open
symbols (bottom): low shear rate, closed
symbols (top): high shear rate.

Figure 1.B.9 - Gel behaviour and varying apparent bulk viscosity of gradually oxidising Galinstan.

These original surface properties have led to numerous emerging applications in
microfluidics, electronics, or optics (see [51] for an extensive review). Within the
scope of this study, such properties make Galinstan the ideal candidate for inves-
tigating the MHD of a gradually oxidising liquid metal. As previously shown in
Fig. 1.B.6(a), Galinstan is the model fluid used in [5], where the interaction between
bulk MHD and the oxidation state of a given interface has been highlighted. Con-
sequently, Galinstan is the working fluid chosen in this thesis work to enhance the
original coupling between MHD and surface rheology.
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I.C Bridging the gap between MHD and surface rheology

In this chapter, the method that we shall adopt in this study to bridge the gap between MHD
and surface rheology is unveiled, along with some determining outlines.

I.C.1 Overall approach

The fundamental issue of gradually changing MHD boundary conditions seems
to have only been considered from an electrical point of view. In this study, our aim is
to take the same kind of general approach for the boundary conditions, but this time
from a mechanical point of view. Surface rheology accounts for the accurate descrip-
tion of interfacial transport, characterised by surface rheological parameters. One of
them, i.e. surface tension ¥, seems to be well-known, but the other two, i.e. surface
viscosities 7¢ and xg, seem totally unknown, as far as liquid metals are concerned.

We must therefore establish the theoretical foundations and draw some scaling
laws in order to implement an experimental test-bench, allowing for the selective mea-
surement of both surface viscosities, relative to a given interfacial oxidation. Besides,
this experimental facility should ideally be designed so that the physical mechanisms
of the coupling between MHD and surface rheology could be particularly highlighted.
All these requirements lead us to the analytical, numerical and experimental investi-
gation of an original device: the so-called annular MHD viscometer, derived from
the promising layout of the classical deep-channel viscometer, emphasised above. The
study of the annular MHD viscometer may give us access to the values of 7¢ and xg
for the reference fluid, z.e. Galinstan. It can also give a first glimpse on stratiied MHD
flow patterns, influenced by varying interfacial boundary conditions.

Once these parameters estimated, we might use their values to feed other MHD
flows concerned with interfacial issues. Stratified MHD flows are one of the asymp-
totic cases of MHD multiphase flows. The other asymptotic case corresponds to dis-
persed MHD flows. As a first-step towards the description of dispersed MHD flows,
the MHD of a single gas bubble suspended in Galinstan with varying interfacial con-
ditions should be worth of investigation. This particular layout would serve as a refer-
ence for more complicated dispersed MHD flow problems (e.g. MHD bubbly flows),
and it is likely to emphasise insightful MHD effects due to the bubble dynamics.
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I.C.2 Main assumptions

The full description of the physical coupling between MHD and surface rheol-
ogy may reveal extremely complicated, potentially involving such different physical
fields as electromagnetism, hydrodynamics, chemical physics...In order to take the
first step towards MHD multiphase flows, we must simplify our approach by making
physical approximations. The main assumptions of this work are justified hereafter.

First, we do not consider any dependence with respect to temperature: d/JdT =0,
so that the bulk physical properties of a given medium are considered to be constant.
All the physical processes described in this study, either thought or true experiments,
are operated at room temperature 7' = 20 °C (if another constant temperature is not

specified). The magneto-hydro-energetic (MHE) coupling is thus not investigated.

With respect to electromagnetic assumptions, we shall focus mainly on "dynamic"
MHD, linked to external DC fields. "Frequency" MHD is induced by outer AC fields,
which tend to have a strong influence on the interface shape, due to the electromag-
netic pressure [6]. The scope of this study is to adopt the simplest approach on the
MHD /surface rheology coupling. In this respect, frequency MHD is left aside from
the reasoning, along with any kind of time-dependence in the electromagnetic equa-
tions, except in App. E, for a specific issue, which is not directly linked to the coupling
between MHD and surface dynamics.

Concerning fluid dynamics, permanent regime is also assumed: consequently,
d/dt =0 throughout the whole study, as far as bulk equations are concerned. The
other purely hydrodynamic assumptions are the following: we shall consistently as-
sume that the flow under consideration is an incompressible and viscous Newtonian;
the flow regime is always laminar, so that no turbulence issues need to be considered.

Finally, the most important approximations affects the modelling of the interfa-
cial behaviour. The first issue deals with the shape of the interface: the geometry of
the interface is always known a priori, which considerably simplifies our investiga-
tion. Indeed, we just need to impose a boundary condition upon normal velocity at
the fluid interface, along with the tangential conditions, to close the problem formu-
lation, and not the full normal stress boundary condition [20]. In practise, this leads
us to leave y aside from the analysis.

The second surface rheology issue is related to the interfacial transport of mo-
mentum: we assume that the interface flow can be modelled within a Newtonian ap-
proach. This is a very strong assumption: the "gel" behaviour, previously highlighted
for Ga-alloys when exposed to air, seems to refute this hypothesis the very moment
it is stated. It is true that the surface oxide imparts the metal with non-Newtonian
rheological properties [51]. However, all the applications where such a visco-plastic
behaviour is highlighted share a common point: all the metallic samples tested are
initially totally oxidised. In parallel, some authors (see, e.g. [29]) have shown that
this gel behaviour tends to disappear under controlled working conditions, and that
Galinstan tends to behave like a true liquid. The Newtonian approach does not seem
totally irrelevant in the light of these observations, and remains the simplest (but not
simplistic) modelling of the interfacial transport of momentum.
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The Newtonian approach requires the determination of surface parameters. As
demonstrated, e.g., by the Marangoni effect, the interfacial transport of surfactants
(oxides in the case of liquid metals) may strongly affect the value of these parameters,
resulting in surface gradients. In this study, these surface parameters are assumed to
depend only on a given O, flux at a given surface, and do not vary over time and space.

First, fast thermodynamic equilibrium is expected (a few hundreds of seconds for
Galinstan oxidation [41], at most). Concerning spatial invariance, this requires the
uniform covering of the interface by metallic oxides. This approximation is equiva-
lent to the following statement: surface chemical diffusion dominates surface convec-
tion, i.e. the surface Péclet number is very small, so that the surface concentration of
metallic oxides is homogeneous. To our knowledge, there are no available data about
the surface mass diffusivity of (gradually oxidising) liquid metals, at a liquid/gas in-
terface. This assumption remains a strong hypothesis of this study, and should be
confirmed (or denied) by future works. Nonetheless, would it reveal to be wrong,
the results presented in this work could be considered as a description "at leading
order". The interfacial gradients of surface parameters would induce spatial modula-
tions around this leading order description. Finally, in this thesis work, such gradients
are neglected: we consider the interface only from the mechanical point of view, and
the interfacial mass transport is disregarded.

1.C.3 Outlines

To deal with the practical conditions of molten metals in metallurgy industry, we
need to investigate surface mechanics separately from bulk flow, especially when the
free surface is gradually oxidising. We must then introduce the fundamental physi-
cal phenomena and the corresponding mathematical descriptions at the root of both
MHD and surface rheology. This review of fundamental MHD and surface rheology
is carried out in Part II.

Once the physical modelling corresponding to each physics introduced, the me-
chanical coupling can be considered between a liquid surface and the underlying bulk,
through the emergence of surface dilatational and shear viscosities. The original lay-
out of the annular MHD viscometer is then analytically, numerically and experimen-
tally investigated in Part III. The analytical and numerical results first allows for de-
termining distinct experimental working conditions, that we shall use to implement
the experimental test-bench, called the Madip experiment. The second objective of
both analytical and numerical calculations is to test a wide range of values for MHD
and surface rheology parameters, in order to enhance some original stratified MHD
flow patterns resulting from the coupling between MHD and surface rheology. The
results of Madip obtained so far are then discussed, highlighting the feasibility of ac-
cessing the values of surface viscosities. This part shall conclude the main matter of
this thesis work.

In order to address the issues linked to MHD multiphase flows from both ends, a
substantial work has been performed about the asymptotic study case of a single gas
bubble immersed in Galinstan with a gradually oxidising liquid/gas interface. Un-
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fortunately, by lack of time, the opportunity has not been given to present some nu-
merical results concerning the MHD flow past a sphere undergoing varying interfa-
cial dynamics. This is the reason why the "bubble MHD" problem is left aside from
the main analysis. However, an insightful state-of-the-art of most significant achieve-
ments about the (electroconductive) flow past a gas bubble has been drawn, including
a variety of (magneto)hydrodynamic effects, and the expected impact of surface dy-
namics. Some developments concerning the numerical implementation, and particu-
larly the full interfacial boundary condition, have also been determined. Finally, this
background approach constitutes a reference material for further prospects about the
bubble MHD problem, and is consequently placed in App. D. It can be thought of as
a first step towards the description of dispersed MHD flows.
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Part Il

Fundamentals
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HIS part gives an introduction on the physical background of both MHD and sur-
face rheology. The equations of MHD and the associated approximations are in-
troduced in the first chapter, along with the definitions of significant dimensionless
groups. A distinction is made between hydrodynamic (linear momentum balance, or
Navier-Stokes equations) and electromagnetic (induction equation) equations, in order to
enhance the coupling terms in MHD, 1.e. the electromotive current and the Lorentz force.
The end of the first chapter addresses the notions of electromagnetic and dynamic boundary
conditions that shall be used in this work.

This review of MHD boundary conditions allows us to introduce surface rheology in
the second chapter. Indeed, the interfacial transport of momentum at a given interface acts
as a boundary condition of the MHD bulk flow. In our Newtonian approach of the inter-
Jace dynamic bebaviour, three parameters are required to model the relationship between
surface stress and surface strain: surface tension, surface shear and surface dilatational vis-
cosities. These three parameters are first phenomenologically introduced, along with a cou-
ple of notions about the definition of excess quantities across the interface. Afterwards, the
equation governing the interfacial transport of momentum, i.e. the jump of momentum
balance (JMB), is produced, and the dimensionless groups characterising surface rheology
are highlighted. It is shown that surface tension can be left aside from the analysis, so that
only the surface viscosities are required to close the mathematical modelling. Finally, the
global model for describing the coupling berween MHD and interfacial dynamics is set up.
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Il.LA Introduction to magnetohydrodynamics

In this chapter, the focus is placed on the fundamental physical mechanisms involved in MHD
processes. First, the electromagnetism and hydrodynamics equations are separately introduced.
The characteristic dimensionless groups of MHD are then produced. Afterwards, the different elec-
tromagnetic and hydrodynamic boundary conditions used in this work are detailed. The coupling
with surface rheology as a particular boundary condition is finally highlighted. For an extensive
introduction to MHD, the reader may refer to MHD classical textbooks, for instance [4, 54].

I.LA.1 Review of electromagnetism in an electroconductive fluid

ll.LA.1.a Maxwell’s equations and Ohm’s law in the quasi-static approximation

From the definition of the electric charge, fields and potentials are defined, which
allow for the description of the interactions between electric charges. As stated in
Sec. 1.C.2, the bulk physical properties of the working fluid are assumed to be con-
stant. With this approximation, the conservation of the electric charge, along with
the definition of the electromagnetic fields, lead to four relationships called Maxwell’s
equations between the magnetic field B, the electric field E, the volume density of
electric charge ¢ and the electric current density ;:

div(B)=0, M) curl(E)=—F (MF,)

div(E)="2, MGy) Ei(é):yfwe?—t, (MA,)

mNR

where € and y are the electric permittivity and the magnetic permeability of the work-
ing fluid, respectively. The electric current density is defined through a constitutive
law called generalised Ohm’s law for matter moving at velocity o:

j=q5+0(E+3xB),

where g7 is the convective current, o <E + 7 X B) the conductive current, o is the
electrical conductivity of the fluid, and x is the mathematical cross product. Finally,
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a conservation equation called continuity equation for electric current can be derived
either from the conservation of electric charge, or from Eqs. (MG,) and (MA,):

@ +div <;) =0.
ar

These equations are true in any medium (vacuum, insulator, conductor...). In the case
of a non-relativistic electroconductive medium, they can be considerably simplified,
by introducing the quasi-static or low-frequency approximation [54]. First, in gen-
eralised Ohm’s law, the typical orders of magnitude of convection and conduction
currents are investigated. Charge density is determined from Eq. (MGy), so that the
convective part of current densities j is of order:

eEV
L b
where |- - | is the Euclidean norm operator, E is a typical value of the electric field, V

is a typical fluid velocity and L is a typical length scale. Besides, as E and ¥ x B are of
same order, an order of magnitude for the conduction current is o E, which yields:

el Vv

la@ll ~

where 7, =€/0 is the typical relaxation time of electric charges. In the case of lig-
uid metals or eutectic alloys, a typical value for 7 is 1077,107 %5 [4]. As a result,
the convective current is fairly neglected all along this study. Now, concerning the
displacement current ¢ JE /Jt, Eq. (MA,) provides:
JE € ¢
e|l=I~—E,
at T,

where 7, is the typical transit time of the electromagnetic field. According to Ohm’s
law, an order of magnitude of the electric current is given by:

o

Obviously, if 7, /7, < 1, the displacement current can be omitted. Within the frame
of the low-frequency assumption, this condition is certainly always fulfilled at labo-
ratory scale, either in the case of AC electromagnetic fields with classical operating
frequencies (T, ~ 1077s), or in the case of DC fields applied to a moving electrocon-
ductive medium (7, ~ 1— 100s). As a result, the displacement current is consistently
neglected in this entire work. Concerning continuity equation, substituting j accord-
ing to Ohm’s law, and considering 7, < 1 implies that dg/Jt can be omitted.

Consequently, assuming the low-frequency approximation, the final set of elec-
tromagnetic equations used for MHD problems is obtained, beginning with the con-
tinuity equation for electric current:

div(D =0, (I.A.1)
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meaning that the current lines must close up inside the electroconductive fluid, 7 being
said solenoidal. Maxwell’s equations write:

dv(B)=0. M®)  wd(B)=uf, MA) wd(E)=-2. ap)

Note that g appears only in Maxwell-Gauss equation div(E #) q/€, which is of no
interest in MHD, and is not used henceforth. However, even if g is not requlred to
solve for MHD problems, this does 7ot mean that div(E) = 0; the equation is simply
left aside [54]. Finally, generalised Ohm’s law applied to moving matter writes:

.

j= <E +7x B) (ILA.2)

The fundamental equations of electromagnetism used in MHD are now established.
From these equations, one single equatlon enhancing the coupling between the mag-
netic field B and the velocity field ¥ can be obtained: the induction equation.

ILA.1.b The magnetic induction equation

Physical meaning

If we combine Eq. (MF) and the curl of Egs. (MA) and (.A.2), the electromagnetic
problem is reduced to a single equation in B, called the induction equation:
é’B — o 1 545
(7x3)

5 = = curl + —AB, (1.A.3)

where A is the vector laplacian operator. A formal analogy can be made with the
equation of vorticity in classical hydrodynamics [4]. In the case of incompressible
fluids, Eq. (I1.A.3) writes:

ag - — >\ - - —> . 1 - >

—+ <fv . grad)B = <B . grad> v+ —AB, (I.A.4)

at uo
When grouped together, the two terms on the left represent the particular derivative
dB /dt, the term (@ - grad)B standing for the magnetic field convection term. The
term (B grad)’u represents the field production by stretching of the flux lines. The
last term on the right represents the diffusion of the magnetic field within the fluid.

Normalised equation and dimensionless numbers

Let us define a typical length scale L, a typical time scale 7, a typical fluid velocity
V, and a typical order of magnitude of the magnetic field B. The induction equation
can be normalised, which leads to:
OB

—_ . - - =
Rw% = Rm curl” <v* ><B*>+A*B*, (I.A.5)
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where B* = E/B, t*=t/r,and o* = 9/V. In Eq. (I.A.5), two dimensionless numbers
appear, the first of which being defined as:

__ field non-stationarity effects  uoL?
“" field diffusion effects ot

(ILA.6)

which is denominated the shielding parameter. The second dimensionless number
resulting from Eq. (1I.A.5) is the magnetic Reynolds number:

_ field advection effects _
" field diffusion effects #

oVL. (LA.7)

The two main classes of MHD problems can be deduced from Eq. (IIl.A.5), based
on the physical meaning of the typical time scale v. The first class deals with the
problems where the transit time of the electromagnetic field is imposed by external
conditions, ie. the case of AC magnetic fields oscillating at typical pulsation w =1/,
corresponding to AC MHD. The second class deals with the problems where the tran-
sit time of the electromagnetic field is the transit time of fluid particles t=L/V in
the domain, i.e. the case of DC MHD.

IlLA.1.c AC electromagnetic fields

At laboratory scale, with typical velocities not exceeding a few cm-s~1, let us as-
sume that the pulsation w of the oscillating magnetic field is such as Rm <R . In
this case, the magnetic field is governed by a non-stationary diffusion equation:

9B _ A*B* (A8

© 9 ’ A8)
where R, = uowL?. Eq. (I1.A.8) shall only be used in App. E, where a sudden decay
of B is imposed in order to access the value of ¢ for a liquid metal sample. In the
main matter of this thesis work, the focus is rather put on DC MHD, which is now
introduced.

IlLA.1.d DC electromagnetic fields and the low-Rm approximation
The induction equation and the low-Rm approximation

When the physical time-scale is T = L/V/, the shielding parameter does not make
sense and only the magnetic Reynolds number (to which R | is equal) is kept. Let us
now consider the general case of an electroconductive flow subjected to a permanent
uniform outer DC field B, = Bye,, €, being the axis of the coordinate s along which
the outer magnetic field is oriented. For this kind of MHD problems, it reveals par-
ticularly fruitful to define B as follows:

B=B,+b, (I.A.9)
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i.e. as the superposition of the imposed uniform DC magnetic field EO and of the vary-
ing magnetic induction b, induced by fluid motion. As explained in Sec. I.C.2, we shall
not consider any time dependence in dynamic MHD problems, so that db/dr = 0.

At laboratory scale, and at moderate velocity values, the magnetic Reynolds num-
ber is fairly assumed to be low (typical value: Rm < 1072). According to Eq. (Il.A.7),
this means that the typical value of the induced magnetic field is much lower than the
external magnetic field: b < B,. The low-Rm approximation results in the fact that
the electromotive current can be approximated as:

T x B ~7xB,, (I.A.10)
a direct consequence of which is:
1<* E) 885 (L.A11
curl (0 X B) ~ By—. A.
° s )

Substituting Eq. (1.A.11) into Eq. (I.A.5) gives the following dimensionless induction
equation at steady state:

‘A*Z*JrR 8085*—0 (1.A.12
" g A2

where b* = Z/b and s* =s/L. Note that, even when Rm < 1, the term multiplied
by B,Rm/b is not neglected (B, > b).

The induction equation: ; formulation

In combination with Eq. (MF), the curl of Eq. (II.A.2) provides another equation,
also called the "magnetic induction equation” in the literature [55], and that we shall
preferentially refer to as the electric current formulation of the induction equation:

Ei<7>:(fcu_ri(5x§). (I1.A13)

This equation can be normalised, within the low-Rm assumption, which yields:

curl* (f) = %} (I1.A.14)

where j* = /],andJ = o V B, according to Eq. (1.A.10).

Potential formulation

The magnetic induction equation constitutes the first classical approach in MHD.
For certain applications, especially for numerical simulations, it reveals more conve-
nient to develop a potential formulation. It is based on the definition of the electric
potential ¢ and the magnetic vector potential A:

—_— —_ -

E= —grad(¢), B =curl <A) : (I.A.15)
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Ohm’s law is then written:
- —_ L o
Ji :0<—grad(¢)+7) xB>. (Il.A.16)
Then, Ampere’s law can be rewritten as:
—_—— > e —_—
curl <cur1 (A>> — pov x curl (A) + uograd(¢) =0, (ILA17)
and the continuity equation as:

div<y05x$rl<g>—fuagr—ad>(¢)>20, (I.A.18)

completed by the Coulomb gauge to define uniquely A, ie div </T) =0. If we substi-
tute Egs. (II.A.10) and (II.A.11) into Egs. (Il.A.17) and (II.A.18), this produces the following
set of normalised equations (assuming the low-Rm approximation):

curl* (Ei* <g*>>+%$<@*(¢*)—5* X Ej> =0, (1.A.19)
A*$* =div' (3" x ), (I1.A.20)

where A* :/T/LBO :/T/A, and ¢* = ¢ /¥, with & = LV B, according to Eq. (I.A.10).
Note that Eq. (I.A.19) is only required when B must be known. If not, Eq. (Il.A.20) is
sufficient to determine ¢, and then j through dimensionless Ohm’s law:

[f* = —grad(¢") +7* x Es,} (LA.21)

where j* = /],andJ = o V B, according to Eq. (1.A.10).

What formulation for what problem?

The choice of a particular formulation strongly depends on the physical layout
and on the related boundary conditions. For the analytical calculations, like those
performed in Secs. I1.B and App. D.3.a, the magnetic induction equation (/I.A.12) is
classically used [4, 34, 55, 56]. For the numerical simulations of Sec. 11I.C, the poten-
tial formulation based on Egs. (1.A.19) and (1.A.20) is favoured [57, 58]. For future
prospects concerning the "bubble MHD problem" (see App. D.4), this potential for-
mulation should be also favoured.

The electromagnetic equations are now established. However, the MHD prob-
lem is not closed, the velocity field 7* remaining unknown. This requires additional
equations, as described hereafter.
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Figure I.A.1 - Electromagnetic interaction between two point charges.

II.LA.2 Review of electroconductive fluid mechanics

Il.LA.2.a Electromagnetic force in the quasi-static approximation

Let two point charges Q and Q’, subjected to an electromagnetic field, as described
in Fig. I.A.1. The motion of Q is influenced by the electromagnetic force:
/ -
! QQ r o/
em 2 1=l QE ’
2 7]
where K is a constant, 7 is the vector pointing from Q to Q’, and E’ is the electric

field generated by the charge Q’, in the system of coordinates attached to Q’. The
Lorentz transformation allows to express this force in the laboratory framework:

F=Q(E+ixH),

where # is the velocity of the charge Q (the latter does not depend on the framework),
in general absolutely different from the velocity field ¥ of the fluid particle carrying
it. QE and Q# x B are the Coulomb and Lorentz parts of F,,, respectively. If we
sum now on a unit volume all the forces to which the charges present in this volume
are subjected, this yields the following expression for the volume density of electro-
magnetic force f,

ﬁm:ZQE-FZQI;XE
This unit volume can always be taken as small as desired, so that E and B can be

considered uniform. Therefore, with g =37 Q the volume density of electric charge,
and j =" Qu the volume density of electric current:

-

fun=qE+] x B.

Within the quasi-static approximation, the Coulomb force is negligible. The order of
magnitude of the electric part of the body force is indeed:

e~
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and for the magnetic part (E and 3 x B being of comparable order):
<l
|4
Consequently, the electric and magnetic parts of £, are in ratio of order:

HQEH eV T

r

B et =

Therefore, with 7, /7, < 1 (see above), the volume density of electromagnetic force
is reduced to the Lorentz force:

- - -

fn=/fi =] xB. (I.A.22)

IlLA.2.b Navier-Stokes equation

We shall consistently assume that every electroconductive flow under considera-
tion all along this work is a permanent, incompressible, viscous Newtonian flow, as
stated in Sec. I.C.2. Mass conservation and momentum conservation equations lead
to the following set of equations:

div<5> =0, (Il.A.23)
o N\ T (=Z\. 2, 7
/o<fv . grad)v = d1v< T > +A+], (I.A.24)

which are, respectively, the continuity equation for fluid velocity, and the Navier-
Stokes equations written in their most general form at steady state. Let us define

= = — =
‘ T'=—plI +r)<gradv+gradTv>,

(I.A.25)

where :I> is the unit tensor, grad is the matrix gradient operator, 7 is the bulk
mechanical stress tensor, | is the transpose operator, p and 7 are the bulk density
and shear viscosity of the fluid, respectively, 7 is the pressure, and f* represents non-
electromagnetic volume forces (e.g. gravity). Navier-Stokes equations can be consid-
erably simplified, by considering constant bulk physical properties, where only the
Lorentz force f; is present, and where p is the pressure corrected by gravity:

N —_— o —_— = - -
Je <7} . grad> v =—gradp +nAv+j X B. (I1.A.26)

Il.LA.2.c Dimensionless equations and the low-Rm approximation

The low-Rm assumption has a direct consequence on the mechanical equations,
particularly on the Lorentz force expression. For a moving electroconductive fluid
exposed to a strong outer DC magnetic field Byé,, f; can indeed be approximated as:

fiL=7]XB~jxB,. (I.A.27)
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Consequently, Eq. (I1.A.26) is scaled as such:

o — 0\ L E— 15 N Haz—.’ =
Re Re

where p* = p/p V2. The two dimensionless numbers appearing in the right-hand side
of Eq. (I1.A.28) are defined as:

Inertial effects _ eVL

e (I.A.29)

~ Viscous effects n

that is the well-known (hydrodynamic) Reynolds number, and

Electromagnetic effects o
Ha= =ByL4| —, (1.A.30)
7

Viscous effects

which is the Hartmann number. A third dimensionless number, the Stuart number,
can be defined from Ha and Re:

Electromagnetic effects ~ Ha?

Inertial effects " Re’ (1A 31)
In this work, Eq. (1.A.28) (involving ;*) shall be used in Sec. I1.C, App. D.3.a. For fu-
ture prospects concerning the "bubble MHD problem" (see App. D.4), this formula-
tion should be also favoured. Another formulation expressing the Lorentz force with
respect to the induced magnetic field 5* can be derived using Eq. (MA), and shall be
used in Sec. IIl.B, where a (7, B) formulation is implemented:

Ha? b -
: —cu_ri*<b*>><gs. (I.A.32)

<_>* —(i*) e g —d>* * 1 A* e 4
v v == + —A'v" +
gt BrAC P T Re ReRm B,

IILA.3 Initial and boundary conditions

Initial conditions are required to define all the MHD variables at the initial instant
for time-varying problems. In this study, initial conditions are not required to solve
for the dynamic MHD problems emphasising the coupling between MHD and surface
rheology in permanent regime. In this section, we shall describe the different kinds
of MHD boundary conditions.

There are two types of boundary conditions (BCs) in MHD: mechanical BCs for
9, and electromagnetic BCs for B or j, depending on the chosen formulation. These
BCs are defined at the boundaries of the fluid domain under consideration. We shall
distinguish three kinds of BCs in this work. First, the boundaries can be located at
the interface between the liquid metal and a solid wall, and are referred to as “wall”
BCs. They can also simply represent the boundaries of the computational domain,
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e.g. BCs characterising the fluid at infinity for duct flows. In this case, they are denom-
inated “inlet” or “outlet” BCs. Finally, they can be located at the interface between
two different fluids, e.g. at a liquid/gas interface in this work. This interface can be
assumed as totally free of “polluting species” (i.e. surfactants for aqueous solutions, or
oxides in the case of liquid metals), leading to “free-surface” problems. More gener-
ally, the interface between two fluids may be more or less polluted, which contributes
to generate surface dynamics more or less coupled with bulk dynamics. For a proper
formulation of this last type of BCs, a balance is applied to an infinitesimal control
volume straddling the interface. This point is particularly detailed in Sec. I1.B, dedi-
cated to fundamentals of steady surface rheology. In the following section, we focus
on the description of dynamic and electromagnetic BCs for wall and inlet/outlet BCs.

Il.LA.3.a Wall boundary conditions

Dynamic BCs

At an impermeable, rigid, non-moving wall, the velocity is uniformly zero, due
to viscosity effects. This is the no-slip BC, or Dirichlet BC for vanishing velocity:

3|, =0 (1.A.33)

If the wall is now assumed to be moving along a tangential direction  at a given ve-
locity v, (as in Secs. I1.B.1.a and IIl.B.2.c about a rotating floor BC), the no-slip and
impermeability BCs are written:

‘ 7T =v,, TxI —0. (I1.A.34)

moving wall - moving wall

Electromagnetic BCs

Both B and ; are solenoidal fields. Therefore, the normal component of both
fields is continuous across a given interface. In this study, we shall only focus either
on perfectly insulating walls or on liquid/gas interface. The condition for the electric
current, used when a potential formulation is favoured, is quite straightforward. The
electric current cannot penetrate into the wall, and thus the normal component of j
vanishes at the wall:

=0, (1.A.35)

.
J wall
where 7 is the normal outer to the wall. If the induction equation is preferred, the
previous condition with respect to B yields:

=0.

wall

o (B). 7
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As such, this condition is not usually a useful condition. In some cases, it is possible to
specify more useful boundary conditions for B. For instance, in the case of an electro-
conductive flow subjected to an outer DC field Bye, it is possible to write B = By + b
according to Eq. (I1.A.9), where b is orthogonal to the direction of the outer field, in
link with the low-Rm assumption. Now, following [33], let us suppose that, for some
symmetry reasons, one of the component of b, say the component 4, along a given
e, direction, can be expressed as a "current stream function" using (MA). Hence, the
condition j -7 =0 written at the liquid metal boundaries means, based on the def-
inition of a stream function, that these boundaries constitute a streamline for 7, so
that 5, = Cst along these lines. Consequently, in this particular physical layout, it is
possible to put at the liquid boundaries, with no loss of generality:

It 1s made the most of BC (I1.A.36) in Sec. I1I.B.1.a about the annular MHD viscometer.

II.LA.3.b Inlet/Outlet BCs

The inlet/outlet boundary conditions must address the critical issue of modelling
the flow behaviour at infinity, without introducing non-physical artefacts due to nec-
essary approximations. One typical application of such boundary conditions involves
duct flows, where the focus is put on a particular section of the duct, as shown in
Fig. Il.A.2. In this work, the inlet/outlet BCs shall be mentioned in App. D.4, where
the first approach towards the description of dispersed MHD flows is set up.

Dynamic BCs

The inlet boundary condition often expresses the velocity field of a fully estab-
lished flow, like the Poiseuille flow for pure hydrodynamics. In MHD, a reference
study about MHD duct flows with perfectly insulating walls is given in [33]. Con-
trary to the Hartmann flow detailed in Sec. 1.B.1.a, where the walls perpendicular to
the magnetic field are of infinite extension, the so-called Shercliff flow describes the
MHD flow patterns confined into a rectangular duct. The influence of the confine-
ment is taken into account through the side layers, whose normal is perpendicular to
the outer magnetic field, that are called the Shercliff layers. Contrary to the Hartmann
layers, the Shercliff layers play a more classical passive role of matching the core so-
lution with the no-slip BC at the wall. The analytical solution corresponds to a fully
developed MHD velocity profile, depending on the value of the Hartmann number
(including the Poiseuille profile when Ha = 0). The explicit expression and some hints
at the analytical calculation are given in App. C. The inlet velocity thus writes:

—

D), 1er = Tsh- (.A.37)

The outlet boundary condition is more challenging. The modelling of a duct por-
tion is often justified by the presence of what we generally call an obstacle. This can
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be a geometrical obstacle, but not only: thermal or chemical source or sink, electro-
magnetic obstacle. .. Obstacle means here something that may alter the flow between
the inlet and the outlet of the duct section. The convection of resulting flow struc-
tures through the outlet of the pipe section must be eased without causing artificial
flow distortions. Given these requirements, a zero-pressure, no viscous stress type of
boundary condition is implemented at the outlet of duct flows:

—_—> N :}T R
Poutdec =0 7 <gradv + grad v> -n (ILA.38)

=0,

outlet

where 7 is the normal outer to the outlet section. This boundary condition is phys-
ically equivalent to a boundary that is exiting into a large container. It is stable and
admits total control of the pressure level along the entire boundary [59], provided
some implementation precautions are taken (see App. D.4).

/';l’
Outlet
~_ L e
. Dm/f% Obstacle
.-~ Tnlet .
JshUsn «

Figure II.A.2 - Inlet/outlet boundary conditions for a typical duct flow.

Electromagnetic BCs

Similarly to the mechanical inlet BC, the electromagnetic boundary condition at
the inlet of the duct section must be consistent with the fully established Sherclitf flow
(in practise, the 7 - 7 = 0 condition is still fulfilled, see App. C):

—

= Jep- (1I1.A.39)

inlet

At the outlet, it is usual to implement Eq. (I1.A.35) for ;:

j7 =0. (11.A.40)

outlet

As specified in the literature dedicated to MHD flows around obstacles (see, e.g. [57,
587), this BC is exact only when averaged across the outlet. However, we apply it lo-
cally, which results in neglecting the currents normal to the outlet. These currents
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being of the order 1/Ha, this approximation remains relevant as long as Ha>> 1,
whatever the distance between the obstacle and the outlet cross-section. For small
Ha values, a "buffer" region can be introduced, where the perturbations induced by
the presence of the obstacle may freely expand, until they are totally damped. In this
case, the Shercliff flow is physically representative of the flow patterns at the outlet,
and Eq. (I1.A.40) shall be implemented as the outlet electromagnetic BC.

I.LA.3.c Liquid/gas interface

Special care must be taken to express the electric and mechanical influence of the
oxide layer on core MHD. As such, it is at the heart of the coupling process between
MHD and surface rheology. The following section clarifies the electromagnetic treat-
ment that we shall adopt for the liquid/gas interface. The mechanical interfacial BC
is entirely detailed in the following chapter, devoted to surface dynamics.

Oxide layer and electric current

The electromagnetic boundary conditions that must be written at a gradually oxi-
dising liquid/gas interface are not trivial. Among others, the issue arises as to whether
the oxide layer could question the relevance of a perfectly insulating boundary, by in-
troducing conductivity gradients between the electroconductive fluid and the gas. To
address this issue, let us consider a diffuse interface, and therefore a volume description
of the gradually oxidising interface, as shown in Fig. I.A.3.

Gas Gas
=i o $ 7 g Osidelyer e S
By, Liquid bulk B3| o
Liquid bulk
¢ ® ¢ ®
L L
(a) - Pure interface. (b) - Oxidised interface.

Figure I1.A.3 - Interface oxidation and electromagnetic BCs.

When it is pure, there is a priori no reason to distinguish it from the sub-phase.
The gas-liquid interface S is located at a given altitude, say, s = A, and its electrical
conductivity is supposed to be o (see Fig. Il.A.3(a)). When an oxide layer with thickness
e is formed, and with a conductivity o, (see Fig. I1.A.3(b)), an additional liquid-solid
interface appears, between the liquid bulk and the solid interface. Classically, to take
the influence of a wall with normal €, thickness e, typical length L and conductivity
00y 7 O into account, the condition at the fluid boundary is written as:

: B T
/ wall wall
for the electric current and
, — ¢%0x ab,
t — b
Lo s
wall
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for the electric current stream function b, [56]. As previously exposed in Sec. I.B.2.b,
the oxide forms a thin layer that prevents the oxidation from diffusing further into the
liquid sub-phase, and the thickness e ~ a few nm [52]. These values are usually much
smaller than the typical length value, ranging from L ~ 10 m to 1m. In practise,
0oy < 1Sm™!1 <K o (see [60] for an evaluation of gallium oxide conductivity), and we
assume that the electric current flowing through the oxide layer (proportional to o)
can be neglected compared to the current flowing in the liquid metal (proportional
to o). As such, the condition eo, /Lo < 1 is always fulfilled. Consequently, both
Egs. (1.A.35) and (1I.A.36) (provided the previously mentioned prerequisites) are valid
at a liquid/gas interface, as well as the assumption that the location of the interface
remains fixed at s = .

The electromagnetic boundary condition at a liquid/gas interface is thus consid-
ered equivalent to the classical electromagnetic boundary condition written at a non-
conducting wall'. This approximation implies a significant modelling simplification:
the impact of a gradually oxidising interface is therefore only considered from the me-
chanical point of view. Surface dynamics acts as a particular boundary condition for

bulk MHD, through the surface velocity ¥:

[ ‘v}interface = Ts- ] (.A.41)

This general formulation encompasses the wide range of fluid surface behaviours,
from slip to no-slip conditions, by means of a momentum balance applied to an in-
finitesimal control volume straddling the interface. There are other existing bound-
ary conditions available in the literature, used for describing fluid-fluid interfaces, the
best-known being the mixed Navier slip BC:

g+ i =0,
n |,

where [3 is referred to as the "slip length", though it could be rather thought of as
a "slip depth". However, the determination of the coefficient [ is often based on
heuristic reasons, and leads to the vanishing of the tangential velocity component
at the distance [ outside the wall. As such, this method lacks somewhat of physical
background, contrary to the approach based on the jump momentum balance, that we
shall consistently adopt all along this thesis work. The governing physical phenomena
and equations of surface rheology must now be introduced, in order to determine ¥g
and close the mathematical problem.

!Strictly speaking, this is an approximate description of the "true" micro-scale electromagnetic be-
haviour of the liquid/gas interface. Anticipating on Sec. I1.B.1.b, one could actually formally define in-
excess surface electromagnetic quantities, involving such parameters as, e.g., an interfacial electrical con-
ductivity 0. By definition, these surface-excess electromagnetic quantities would represent the amount
of the corresponding quantity assigned to the interface, in order to model their strong variability across
the interface. They do not correspond to the bulk quantities valued at the interface, in which case they
would be simply called surface (and not surface-excess) quantities. Within the scope of this study, the
choice is made to leave such considerations about surface-excess electromagnetism aside from the anal-
ysis, as an insightful outlook of the present thesis work. With this respect, the theoretical foundations
introduced by Albano and Bedeaux [61] could be a relevant starting point.
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Il.B Introduction to surface rheology

Surface rheology is "the field of science that studies the response of mobile interfaces to de-
formation" [20]. This field is classically encountered in problems focusing on the interplay between
the conventional 3-D hydrodynamics of a supporting sub-phase flow, and the 2-D dynamics of
a so-called fluid surface, which acts as a boundary condition for the bulk flow. In the literature,
this boundary condition is classically influenced by a (mono)layer of molecules called "surfactants”
(detergents, lipids, proteins...), which introduces additional interfacial stresses and may experi-
ence interfacial transport. Interfacial (or surface) rheology describes the complex mechanisms
governing this transport, and the influence upon the 2-D (and thus 3-D) flow.

In this study, the focus is placed upon the interface between a liquid metal and a gaseous
phase. Here, the presence of metallic oxides over a bath of liquid metal is appraised as an original
source of surface contamination. As previously emphasised in Sec. |.C.2, thermodynamic equilib-
rium is assumed all along this work, in link with a uniform coverage of the liquid metal/gas interface
by the metallic oxides. Thus, there is no need to consider the surface transport of these metallic
oxides. Besides, as already shown at the end of the previous chapter, surface electromagnetism
is not taken into account, partly because of the low electrical conductivity and the thinness of the
oxide layer. As a consequence, only the surface dynamics of the liquid/gas surface is investigated
in the following text.

In this chapter, the fundamental physical mechanisms involved in surface dynamics are thus
highlighted. First, the concept of 2-D “zero-thickness” interface is introduced. This concept results
in the introduction of physical quantities characterising the interface, i.e. the rheological parame-
ters, which are then phenomenologically described. Finally, the governing equations are given,
along with the dimensionless groups characterising the interfacial transport of momentum.

11.B.1 From the microscale to the macroscale view of a fluid interface

Il.B.1.a Guggenheim and Gibbs approaches

A fluid/fluid interface may be intuitively conceptualised as a very thin membrane,
which separates two distinct media defined by their own bulk properties. This transi-
tion area, through which the properties of each fluid are subjected to sudden changes,
may be described according to two different approaches, as described in Fig. 11.B.1. The
first approach, named Guggenheim approach, bears on a microscale description of the
interface. The latter is seen as a diffuse area of interpenetration of the two adjacent
sub-phases. The second approach, named Gibbs approach, is based on a macroscale
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view of the interface. The latter is seen as a zero-thickness surface, strictly separating
the two adjacent media [62].

Bulk phase 2
,;\ Bulk phase 1
% Diffuse .
V- microscale
interface
/~—Macroscale Magnifying glass

interface §

Figure I.B.1 - Gibbs (macroscale) and Guggenheim (microscale) view of a fluid inter-
face [20]. Zoom: example of molecular dynamics simulation [63].

The Guggenheim approach does not require a particular modelling effort, the
bulk variables being locally conserved everywhere. However, the strong gradients of
physical properties limit the geometrical extent of this description, typically a few
times the interface thickness. Such a limited spatial extent prevent us from mod-
elling both the bulk and interfacial dynamics. In order to investigate the coupling be-
tween bulk MHD and surface rheology, the Gibbs approach is favoured in this work.
This approach, compatible with continuum fluid mechanics at standard length scale
(> 1pm), requires the introduction of surface properties, as it is now explained.

II.B.1.b In-excess surface quantities

Following [20], let P be a generic physical quantity. From the point of view of a
macroscopic observer, the total amount ¥, of P contained within a control volume V
(excluding the interface S) defined in phase 7(z = 1,2, see Fig. 11.B.1) can be expressed
in terms of the generally discontinuous volumetric density field ¢; (amount of the

property P per unit volume):
\/i

Besides, from the microscale point of view, a "true" field density ¢ can be defined,
tully continuous throughout the volume V =V, ® V,® S (where @ stands for the
mathematical union of geometrical subspaces). The true total amount & of P in V
writes with respect to the continuous volumetric density field ¢:

v=|| gav.

In the vicinity of the interface S, differences between the densities ¢ and ¢; emerge,
due to the large normal gradients of ¢ in the transitional zone. In order to reconcile
the usual (discontinuous) macroscale view of fluid interfaces with the true (continu-
ous) microscale view, the residual difference:
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is assigned to the macroscale surface S as representing the total surface-excess amount
of P in §. As shown in Fig. 1.B.2, this leads to the definition of the surface-excess

density field ¢, such as:
Vs = f f ¢sdS
)

Distance above “\. Macroscale bulk-phase field ¢,
interface, 7 \

A

! Medium 2

,(0%) ! "True", microscale field ¢
Inr.erf.a.cml 0 \\“\ N — Volumetric
transition — Jensic
zone Macroscale J $,(07) RM( | vy
singular surface " acroscaie
surface-excess" field ¢ ¢
(integral of the shaded region)

o

Medium 1

Macroscale bulk-phase field ¢, \_

Figure I1.B.2 - The macroscale bulk and surface excess fields, and the interfacial transition zone [20].

As pointed out in [20], ¢ is not to be regarded as the actual amount of P per
unit area at a given point of the interface (in which case it should only be qualified as
a surface field, not surface-excess). ¢ is the amount of P per unit area assigned to the
interface, resulting from the discontinuous macroscale approach. However, velocity
is a notable exception to this statement. Indeed, as the thermodynamic equilibrium
is consistently assumed (see Sec. I.C.2), there is no mass-transfer through S. Thus, the
bulk-phase velocity is always continuous across the interface. Consequently, the sur-
face velocity o actually represents the "true" velocity at a given point of the interface.

It is obvious from Fig. 11.B.2 that the definition of surface-excess quantities depends
on the (arbitrary) choice of the location of the zero-thickness separating surface §.
In the practical case of liquid metals, the gradually oxidising interfacial layer (repre-
senting the interfacial transition area) is certainly extremely thin (a few nm), but the
interface must be positioned in this thinness. Let us consider the surface property
P = Mass, which leads to the definition of surface density pg. To clear up the posi-
tioning ambiguity, in this thesis work, the location of the dividing surface is set such
as pg =0, according to Gibbs convention. Surface density is then vanishingly small,
and is not taken into account all along this study. Within the Gibbs approximation,
the interface is considered as non-massive.

Now, apart from density fields, the previous analysis can be extended to density
fluxes of a given surface property P across the fluid/fluid interface. This identification
process lead to the definition of the surface-excess pressure dyadic (or surface stress
tensor) for P = Linear momentum. The modelling of this tensor, which implies the
definition of the three remaining interfacial parameters of interest, z.e. surface tension
and the two surface viscosities, is now introduced.
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II.B.2 Interfacial transport of momentum

II.B.2.a The surface mechanical stress tensor

The Navier-Stokes equations (I1.A.24) for a Newtonian incompressible fluid bring
into play the bulk mechanical stress tensor, defined in Eq. (1.A.25). Similarly to bulk
dynamics, and stemming from the previous analysis about in-excess surface quantities,
a surface-excess mechanical stress tensor can be defined, within the Gibbs approach of
a Newtonian interface [64]:

= = _\ = = [=.
‘ ﬁ:[)/'*‘(’fs_'?s)les(”s)] Iy + 75 [(grads’vs>'ls + Is‘<gradgT7’s>]>

(I.B.1)

where ?;, 7; -7 - n®n and gfaés are the surface-excess mechanical stress tensor,
the surface projection (or identity) tensor and the surface (matrix) gradient operator,
respectively; divg is the surface divergence operator, 7 is the unitary vector normal
to the interface, and @ and ® stand for the mathematical (ordinary) matrix product
and tensor product, respectively. This linear expression for the surface mechanical
stress tensor is called the Boussinesq-Scriven constitutive expression. This surface-
excess stress tensor can then be written as the sum of the isotropic surface-excess ten-
sor based on the surface tension y, and the surface-excess viscous stress tensor based
on the surface viscosities 7 and x¢. These three rheological parameters are now phe-
nomenologically introduced.

For the sake of convenience, the "surface-excess" denomination will be replaced
by the single term "surface", e.g., the surface-excess mechanical stress tensor shall be
consistently referred to as the surface mechanical stress tensor, or merely, the surface
mechanical tensor. We remind that this (now implicit) notation does not correspond
to the mechanical tensor valued at the interface, but assigned to it.

I.B.2.b Phenomenological approach of the basic properties of interfacial rheology
Interfacial tension

Let us (mentally) carry out the simple experiment consisting in stretching a film
attached to an inert wall, as depicted in Fig. 11B.3. The external operator stretches
the film by means of a rod, by applying the force F. . on the system. In doing so,
he experiences a kind of opposite spring force, such as when he stops moving the
rod, this opposite force F exactly cancels F,_ , and the rod reaches statical equilibrium
(Fig. 11.B.3(a)). When the rod is released, a mechanical relaxation of t_he film occurs,
and the rod goes back to its initial equilibrium position, as a result of F (Fig. I.B.3(b)).
Let L be the typical longitudinal extent of the film, and e, the axis aligned with the
rod displacement. It can be observed that the force F is proportional to L:

F= yLe,.
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Wall L Stretched ~ Static ro'd Wall L Re]axing \Moving
film at mechanical film rod
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x x

(a) - Stretched soap film at mechanical equilibrium.  (b) - Relaxing film, and motion induced by sur-
face tension.

Figure 11.B.3 - Highligthing interfacial tension effects through the example of a liquid film.

The coetficient y that links Fand L represents the interfacial tension of the film.
The surface tension can then be interpreted as a force per unit length. Now, if the
relaxed film moves along an elementary differential line dxé,, then the elementary
mechanical work 8 W due to this displacement is

SW =yLdx = odS,

where dS is the differential area element generated by the elementary displacement
dx of the line whose length is Z, along the ¢, direction. The quantity y is thus homo-
geneous to an energy per unit surface, and can also be called surface energy. This last
interpretation matches the thermodynamic description of y: surface tension origi-
nates from short-range intermolecular interactions. These interactions statistically
balance in the bulk, but near the interfacial region, a given elementary molecule will
have less partners for molecular interactions, resulting in "surface molecules” with
a higher energy than the interior molecules. Now, in order to minimise the energy
state of the liquid, the number of surface molecules must be contained, leading to a
minimal surface area. The interfacial tension y corresponds to the additional surface
energy that must be provided in order to create interfacial area [62].

The magnitude of interfacial tension strongly relies on the quantity of surfactants
that are adsorbed at the interface. It diminishes significantly when surface-active ma-
terials accumulate at the interface. Indeed, the surfactants are preferentially located at
the interface, where they minimise their energy state. The surface energy associated
to a surfactant is inferior to the surface energy of a given sub-phase molecule: con-
sequently, owing to the energetic interpretation of surface tension given above, the
global surface energy associated to the interface, z.e. y, diminishes. As previously en-
hanced in Sec. I.B.2.b, this behaviour has been confirmed for liquid metals, the oxides
gradually covering the metal surface playing a role similar to surfactants.

Surface shear viscosity

Following [20], let us imagine a simple shear imposed upon a planar fluid surface.
As described on the right-hand side of Fig. 11.B.4, there are surface stresses acting upon
the lineal boundaries of a two-dimensional differential surface fluid element AxAy.



CHAPTER II.B | Introduction to surface rheology | 48

TSxy X

Figure I1.B.4 - Surface shear imposed upon a planar fluid surface by the motion of the left-
hand wall[20]. On the right: stresses acting upon a differential surface element.

These surface stresses are represented by the component T, of the surface mechani-
cal tensor. In the absence of any external forces, the net force acting upon the surface
element can be written as:

<T5xy x>Ay:O.

If now, we divide the previous equation by the surface element AxAy, and that we
allow this element to become vanishingly small, this yields:

aT.
Sxy —o,
dx

which stands for the balance of surface linear momentum for a highly-viscous insol-
uble monolayer subjected to a simple shearing. In order to close the modelling, a
constitutive relation between the surface shear dv, /Jx and the stress 7, must be
given. It is assumed that this relation consists of a simple proportionality (Newtonian
approach), through the coefficient 7, corresponding to a surface shear viscosity:

Jv,
s Ix
Note that the origin of surface shear viscosity is similar to that of the bulk shear
viscosity, in link with jumps of the molecules from one equilibrium position to an-
other, by molecular diffusion [65]. Surface shear viscosity is negligible in the case
of a surfactant-free interface, its magnitude increasing monotonically with adsorbed
surfactant concentration, until an equilibrium state is reached [20]. As previously en-

hanced, there seems to be no available data in the literature concerning the evolution
of n¢ with respect to the level of oxidation of a metallic interface.

— T
x+Ax Sxy

TSxy =

Surface dilatation viscosity

Following [20, 65], let us consider the uniform expansion at constant deformation
rate of a circular, flat interface, whose surface area § is time-dependent (see Fig. 11.B.5).
The surface deformation «a and the rate of surface deformation da/dt are defined as:

S(t)—S, da  1dS

a=———, —==—=Cst=A4,
SO
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Figure I1.B.5 - Uniform dilatation of a planar interface [20]. On the
right: stresses acting upon a differential surface element.

where S, is the initial surface area. Besides, the balance of forces acting upon the
elementary surface element r AGA7:

(TSrr|r+Ar - TSrr|r> rAf =0.

which leads to, when dividing by the vanishingly small elementary surface:

dTSV‘V

=0. 11.B.2
dr ( )

The dependence of the surface stress on o and A, i.e. the rheological constitutive
equation, must now be given. Let us imagine that the force required to expand the
highly viscous monolayer is instantaneously removed. Interfacial tension will then act
to contract the interface, causing an elastic stress to change the area by a certain value.
This surface deformation is related to rearrangement of the molecules, which perform
Brownian motion and interact with each other. Let 7,,¢ be the typical time of this
rearrangement process, needed for the molecules to take their new positions upon
deformation. When the surface shrinks with rate A, the characteristic time of surface
deformation is 74,4 = 1/A. In a quasi-static process, Tjufs > Treass
time enough to reach their new equilibrium positions, so that the system is virtually
at equilibrium during the entire process. The purely elastic process, directly linked to
surface deformation, is only governed by surface tension.

However, in practical situations, the surface deformation is always performed
with finite speed, so that 7y¢¢ < 7., the rearrangement may lag behind the defor-
mation. In order to maintain the speed A, an extra-stress must be exerted to force the
molecules to go quickly to their new positions (the latter corresponding to ). This
extra stress is a viscous stress, proportional to the deformation rate A. The propor-
tionality coefficient is the surface dilatational viscosity x [65]. The surface dilata-
tional viscosity offers an additional dissipation mechanism to the interfacial contrac-
tion driven by interfacial tension. Consequently, the constitutive equation for T, ,
in the present case is:

the molecules have

TSrr = }/+%SA'
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The experimental detection of x¢ is much more difficult than 7y, because of the
coupling that arises in interfacial dilatational flows between interfacial dilatational
viscous and elastic effects. The experimental layout of the annular MHD viscometer
theoretically circumvents this difficulty, as explained in Part III. The rare available
experimental data tend to show that x ¢ and ¢ have an identical qualitative behaviour;
x¢ is negligible in the case of a pure (surfactant-free) surface, and tends to increase
with the surface contamination, up to an equilibrium state [20]. To our knowledge,
the determination of x for liquid metals is an original approach.

Now that the basic rheological parameters have been phenomenologically intro-
duced, let us go back to the modelling of the interfacial rheology, and particularly to
the equations governing the interfacial transport of momentum.

I.B.2.c Governing equations of surface rheology
Jump momentum balance

Surface dynamics brings a new unknown into play, namely, in-plane surface ve-
locity o, through BC (I1.A.41). This stands as the first term of the two-way coupling
between the MHD bulk flow and surface equations. The latter can be derived from a
momentum balance written on an elementary heterogeneous volume straddling the
dividing interface of zero thickness, in accordance with the Gibbs approach (see [ 64]).
As previously said, this allows us to circumvent the issue of the strong and often
unknown variability of physical variables across a diffuse interface. In return, the
surface-excess quantities, i.e. surface tension and surface viscosities, must be intro-
duced to balance the jump in shear stress at the singular interface [20]. To model
the relationship between surface stress and surface strain, the Boussinesq-Scriven con-
stitutive law is used [66]. The jump momentum balance at the interface separating
medium 1 from medium 2 writes generally:

d_i\)ls <?§> +ffg = |[:T> : iz’]‘ (1.B.3)

where ES is the (vector) surface divergence operator, ];; is the surface excess force
density vector, 7 is the normal vector pointing from medium 1 to medium 2, and -
stands for the scalar product. The first term on the left-hand side of Eq. (11.B.3) repre-
sents the balance of surface stresses. f expresses the influence of body forces per unit
surface acting on a surface element (e.g. electrostatic or magnetic surface forces). Note
that, in this study, surface body forces are not taken into account, so that f shall be
consistently dropped off the equations. Finally, the term on the right-hand side of
Eq. (11.B.3) stands for the jump in stresses exerted on both sides of the interface by the
adjacent phases, due to the discontinuity between them. It stands as the second cou-
pling term of the aforementioned two-way coupling. The [--] notation is equivalent
to the jump operation (--+; —--+,)|¢. Note that the electromagnetic Maxwell stress
tensor jump is neglected. The reason is given in [54]: media with "finite conductivity
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preclude the occurrence of current sheets”, leading to the continuity of the magnetic
field across the interface, and the jump of the "Maxwell stress vanishes".

Afterwards, Eq. (11.B.3) can be resolved into vectors normal (tangential) to (along)
the interface. This yields:

[?ﬁ]:[?ﬁ]o(ﬁ@ﬁ)ﬂ[?ﬁ]‘of (1.B.4)

The first term on the right-hand side of Eq. (I1.B.4) is linked to the normal stress bound-
ary condition, while the second term is linked to the tangential stress boundary con-
ditions. Now, let us remind that in Sec. I.C.2, we have assumed that the geometrical
configuration of the interface remains constant in time. As highlighted in [20], "spec-
ifying the interface shape prior to solution of the relevant is tantamount to specifi-
cation of the normal velocity ¥ -7 at each point of the interface". In the case of a
stratified interface between a liquid metal and a gaseous phase with no mass-transfer,
this normal velocity is vanishingly small:

71|, =0. (I.B.5)

In this case, imposing the normal stress as a BC overspecifies the problem. Either the
geometry of the interface is known a priori and a boundary condition upon normal
velocity at the fluid interface is imposed, or else the normal stress is imposed, the latter
being in such circumstances responsible for the geometrical configuration of the fluid
interface. Thus, we shall only focus on the tangential stress as a BC at the interface:

= =
F(R)E=[T )T

(1.B.6)

where T and T are given in Egs. (1.A.25) and (11.B.1), respectively. This very general
form, sometimes referred to as the tangential component of the jump momentum
balance, can be declined for a variety of reference layouts, see e.g. [ 20, 64] for a review.

Let us focus on the contribution of the interfacial tension to this tangential stress
BC. As shown in Eq. (11.B.1):

=
?5 =yl +...
Thus, the specific contribution of y to the tangential JMB is:
TN =\ = — =1 = - [= =
divg <Y Ig >’ Iy = [gfads (r)els } o/ + |:)/le§ < Ig ﬂ o /. (1.B.7)

It can be shown that the divg( /g ) term is only oriented along the normal direction.
Consequently, the second term on the right-hand side of Eq. (I1.B.7) vanishes. Fur-
thermore, as stated in Sec. I.C.2, the hypothesis of a uniform coverage of the interface

by metallic oxides leads us to neglect surface gradients of rheological parameters. The

'There is no reason to take the contribution due to electrostatics into account, because of the large
typical size of systems under consideration.
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first term on the right-hand side of Eq. (11.B.7), often known as the Marangoni effect,
vanishes as well. Therefore, in combination with Eq. (1.B.5), surface tension can be
fairly left aside from the analysis. This is the consequence of imposing a priori the
geometrical shape of the interface, which bypasses the contribution of y, and of ne-
glecting the Marangoni effect (generated by surface tension gradients), which cancels
the contribution of y-gradients. Nonetheless, it was important to introduce y among
the other rheological parameters. For future prospects, one possible improvement to
our modelling would be to loosen the constraint imposed by (11.B.5), which would im-
ply the necessity of implementing the normal surface stress BC, where y is present.
Egs. (11.B.1) and (11.B.3) supply the necessary theoretical material to address this future
issue. Finally, only the surface viscosities 7 and x are kept in the following parts.

I.B.2.d Scaling parameters

According to Eq. (11.B.1), the left-hand side of Eq. (11.B.6) scales as such:
- [=

depending on the relative weight of surface shear and surface dilatation. The scales
L and V are the typical length and velocity, respectively. Now, according to (II.A.25),
the right-hand side of Eq. (I1.B.6) scales:

=
[7417

From the balance (11.B.6), two rheological dimensionless numbers can be put forward:

B and/or T

~

(.B.8)

A%
~. 11.B.9
7 (1.B.9)

Bo :ﬁ,Bo :ﬁ, (1.B.10)
s nL xs nL

which are the surface shear and surface dilatational Boussinesq numbers, respectively.
The Bons number describes the balance between bulk and surface viscous shears,
while Bo,, expresses the ratio between the dilatational stress along the interface and
the bulk viscous shear. When Bo ,Bo;{s < 1, the surface flow is entirely controlled
by the sub-phase shear, and the interface acts as a classical free surface in fluid dynam-
ics. Conversely, if Bo, ,Bo, > 1, the surface velocity profile is no longer coupled
to the sub-phase flow, and it obeys to its own dynamics, governed by surface viscous
shear and/or surface viscous dilatation.

Finally, the tangential stress BC (11.B.6) provides two differential equations along
the directions tangential to the interface, and close the mathematical formulation of
the overall coupling between MHD and surface rheology. The approximations ex-
posed above have led us to bring only two rheological parameters into play, z.e. the
two surface viscosities. Let us now introduce the dimensionless formulation of surface
dynamics. This overall coupling process is summed up in the following chapter.
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II.C Strong coupling

In this chapter, the overall coupling between subphase and surface flows is made
evident in Fig. 11.C.1. The coupling between electromagnetism and hydrodynamics
is achieved by means of the electromotive current and the Lorentz force, with the
Hartmann and Reynolds numbers as scaling parameters. Surface rheology provides
the velocity boundary condition for solving bulk flow equations, through the surface
velocity as a BC, while the MHD model for the bulk flow provides in turn the shear
stress at the interface.

Hydrodynamics

Variables | Parameters | Number

~ Bulk stress tangential jump
v, p n,p Re |[:> ]‘ =

- ; T -7n|el
Governing equations

Navier-Stokes, Continuity

A

Surface rheology (BC)

Electromotive Variable | Parameters | Numbers
Lorentz force —

current ]-> N éo Surface U Ngs X Bons , BOXS

ov X By velocity 7 Governing equations

Jump Momentum Balance
Y
Electromagnetism
Variables Parameters | Number
A,B,j and/or ¢ Y0 Ha
Governing equations
Induction, Potential, Continuity, Ohm’s law

Figure I1.C.1 - Overall mathematical coupling.

It can be noticed from Fig. 11.C.1 that the coupling is set up between electromag-
netism and fluid mechanics, or between surface rheology and hydrodynamics. How-
ever, no direct coupling between electromagnetism and surface rheology is introduced
here. For future prospects, it could be worthwhile to investigate the possible arising
of hypothetical quantities "surface-excess electromagnetic quantities" (e.g. surface elec-
trical conductivity o), and their respective contribution to a (weak/strong) coupling
between surface rheology and electromagnetism (bottom right corner of Fig. I1.C.1).



CHAPTER I1.C | Strong coupling | 54

This chapter ends the fundamentals of MHD and surface rheology. We shall now
apply these principles to a particular layout involving the coupling between surface
rheology and a supporting stratified MHD flow: the annular MHD viscometer.



PART I | Surface rheology and stratified MHD flow: the annular MHD viscometer | 55

Part Il

Surface rheology and stratified MHD
flow: the annular MHD viscometer
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N this part, which concludes the main matter of this thesis work, we put the focus on

the following issues. First, our aim is to design and implement an experimental test-

bench, in order to estimate the values of surface shear and dilatational viscosities, n¢
and x g, respectively. Moreover, the selected experimental design must allow for enbancing
some original MHD flow patterns, in view of taking the first step towards the description
of MHD stratified flows.

For this purpose, we investigate the promising features of the annular channel viscome-
ter. First, the physical outlines of this particular layout are detailed: a state-of-the-art of
the purely hydrodynamic annular viscometer is thus given, followed by the expected phys-
ical insight when an outer magnetic field is added. Afterwards, an analytical study of the
annular MHD wviscometer is performed, within the limit of ignoring inertial effects. The
electrical activity of the Hartmann layers relative to surface viscous shearing is particu-
larly highlighted. Then, inertial effects are brought into play, involving both surface vis-
cous shear and surface viscous dilatation. The interaction between inertia, Lorentz force
and surface dynamics is numerically investigated, leading to a variety of atypical MHD
flow patterns. Analytical and numerical calculations allow us to propose scaling laws
for implementing the experimental test-bench, called the Madip experiment. The latter is
carried out in the final chapter: after introducing the experimental requirements, some
technical developments are exposed, and first experimental observations are unveiled.
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lll.LA Physical outlines of the annular MHD viscometer

In this chapter, the physical outlines of the annular MHD viscometer are discussed. First,
a review about the hydrodynamic design is given. The motivations at the root of its historical
development are exposed. Then, the typical experimental layout is introduced, and a distinction is
made between the classical "deep-channel" design, and the more recent "shallow-channel" design.
The typical flow patterns and the different achievements of the annular viscometer available in the
literature are finally highlighted. Afterwards, an external DC magnetic field is added, and Galinstan
is used as working fluid. The original layout of the annular MHD viscometer is thus obtained: its
general description, expected physical insight and the underlying objectives are detailed.

lllLA.1 The hydrodynamic annular viscometer: state-of-the-art

lllLA.1.a Historical development and motivation

As mentioned in Sec. |.B.1.b about the historical development of surface rheology,
in the early twentieth century, the rising concern about the influence of surface rhe-
ology in a variety of industrial applications (food and feed industry, for instance) led
to the implementation of numerous experimental test-benches, in order to identify
the different rheological parameters and their effects. The classical canal surface vis-
cometer was first proposed in 1937 [67], and used surface pressure-driven interfacial
flows. This early technique suffered from an inherent limitation, i.e. the difficulty
of distinguishing between Marangoni and interfacial viscous effects. Other methods
were proposed, all of them facing more or less the same issue. The first canal surface-
viscometer that addressed this sensitivity issue is the annular deep-channel viscometer,
developed by Mannheimer and Schechter in 1970 [31]. Later on, this reference solu-
tion has been derived by many authors for determining the rheological properties of
a given fluid, covered by a monolayer of surfactants; see e.g. [68, 69, 70,71, 72, 73].

The motivation at the root of this particular technique is to magnify interfacial vis-
cous effects, and particularly those linked to surface viscous shear. Indeed, as further
explained, the design of the annular channel viscometer is thought so that, typically,
for surfactant-laden interfaces, the surface viscous stress due to in-plane shear domi-
nates bulk viscous forces due to the jump of bulk stresses [20]. But surface viscous
shear is not the only surface rheological parameter that may be identified by means
of this technique. Quite recently, some authors have also discussed the feasibility of
determining the surface dilatational viscosity by adapting the original layout [32]. Let
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us now describe the two main designs of the annular viscometer: the classical "deep-
channel" layout and the more recent "shallow-channel" configuration.

lllLA.1.b Different experimental layouts and associated physical features

The deep-channel annular viscometer

GAP MICROMETER
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Figure ll.LA.1 - Schematic cross-section of the classical deep-channel surface viscometer [31].

A schematic view of the deep-channel surface viscometer is given in Fig. II.A.1. Its
design consists of two concentric cylinders, lowered into a pool of liquid contained
within a dish, to a depth at which the two cylinders nearly touch the bottom of the
dish (8 is the gap between the rotating dish and the bottom of the channel walls).
The inner and outer radii are 7; and 7, respectively, and the height of the liquid
cross-section of interest is . The coordinate system used is the cylindrical system
{O,¢,,¢p,¢,}. The annular floor of the open channel rotates around the €, axis with
a varying angular speed £2, while the two side walls are maintained fixed. The "deep-
channel" denomination is linked to the fact that r, — r; < 4.

Compared to the best-known Taylor-Couette layout, the vertical shear is particu-
larly emphasized in the annular viscometer configuration. This means that strong ve-
locity gradients are generated along the €,-axis, whereas these gradients preferentially
develop along the €, -axis in the Taylor-Couette case. Anticipating what follows, it is
shown later in Egs. (I11.C.14) and (11I.C.15) that the coupling term between surface and
subphase flows involves dv, /Jdz and dvy/Jz terms, where v, and vy are the radial
component and the azimuthal component of velocity, respectively. Consequently, the
resulting shearing is expected to be emphasised, and the impact of varying boundary
conditions at the liquid surface on the overall flow may be more easily highlighted.

The shallow-channel annular viscometer

The shallow-channel layout is quite similar to the previous deep-channel config-
uration. The main difference lies in the fact that the height 5 is now reduced rela-
tive to the radial extent of the channel: » < r, — 7;, the depth-to-width ratio is lower
than unity. This derived version of the annular channel, proposed in [71, 72], has
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a significant advantage over the classical layout. As mentioned earlier, the stronger
the velocity gradients along €, are, the easier it is to magnify the coupling terms be-
tween surface and subphase flows. When the value of 5 decreases, the liquid surface is
brought down, closer to the rotating floor. In doing so, the jump momentum balance
(JMB) written at the interface involves significant vertical bulk shear. The latter is ex-
pected to magnify particularly the interactions between bulk and surface dynamics,
in the case of an interface gradually covered with surfactants.

Common bulk and surface effects

Both designs allow for a wide variety of hydrodynamic and rheological effects
to be tested, beginning with bulk effects. The Reynolds number Re (introduced in
Sec. Il.A.2.c), based on the typical velocity V = r, 2, can be defined as such:

N 2
Re="""To. (IL.A1)
7

Re governs the balance between inertial and viscous effects. Consequently, either in-
ertial or viscous effects can be highlighted by simply changing the angular velocity
12 (see, e.g., [69]). When the Reynolds number is small enough, the Stokes approx-
imation can be made. Consequently, the only component of velocity is in the &,
direction, and is a function of r and z only [31]. On the contrary, for higher Re
values (but not too high, so that the axisymmetric approximation remains true), due
to centrifugal effects, a swirling flow is generated. A distinction is made between the
(main) azimuthal flow vy, and the (secondary) meridian flow (v,,v,) (also referred to
as overturning flow). Note that even if the velocity has three non-zero components,
the physical problem cannot be (strictly speaking) qualified as three-dimensional in
this case, since the independent variables in the entire description of the problem re-
main only two, r and z. The higher Re flow regime is thus qualified to be 2-D 1/2.
Therefore, depending on the Re value, the purely hydrodynamic bulk flow shows
promising features, switching from 2-D to 2-D 1/2 topology.

Obviously, the different hydrodynamic flow topologies play a significant role, as
far as surface effects now are concerned. If the meridian flow vanishes, it can be shown
that only the azimuthal component of JMB is involved. Consequently, the only rele-
vant rheological parameter is surface shear viscosity 7, the value of which may dra-
matically affect the main bulk flow [68]. On the contrary, if the inertial effects are
significant, the radial component of JMB is brought into play. This means that the
interface tends to stretch and that the surface dilatational viscosity x can also affect
the surface dynamics [69].

The surface viscosities greatly affect surface dynamics through the surface velocity
profile 7. The latter is a key physical quantity, which corresponds to another deci-
sive advantage of the annular surface viscometer: the single variable s potentially
contains all the information about both the values of surface viscosities and the bulk
dynamics. Provided that a relevant modelling of the flow is implemented, this con-
siderably simplifies measurement issues, and reveals to be a distinct advantage when
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working with such opaque fluid as liquid metals. We just need to characterise sur-
face dynamics, which is facilitated by the easy access to the interface allowed by the
experimental design. The latter point reveals also extremely interesting in view of
controlling surface ageing (oxidation for liquid metals). Indeed, merely by control-
ling the O,-rate of the surrounding atmosphere, it may be possible to "functionalise”
the interface at will, monitoring its state of oxidation, leading to a variation in its rhe-
ological parameters, such as surface viscosities. This would result in a major change
in the boundary condition at the liquid/gas interface.

Finally, depending on the value of the Re number, the bulk flow topologies may
strongly impact surface dynamics, by bringing different rheological phenomena into
play. Surface rheology may then modify in turn both the main and the secondary
flows. Some typical flow patterns resulting from this interplay are introduced in the
following section, in link with some significant achievements in the literature about
the annular surface viscometer.

lll.A.1.c Significant achievements and typical flow patterns highlighted in the liter-
ature

Stokes flow and surface viscous shearing

A reference study is carried out by Mannheimer and Schechter [31], and provides
strong theoretical foundations about the coupling between bulk and surface hydro-
dynamics, for the deep-channel layout. In addition to the classical hydrodynamic as-
sumptions exposed in Sec. |.C.2, the Stokes approximation is made. The angular speed
12 is indeed considered to be low enough so that the inertial effects can be neglected
in the Navier-Stokes equations, and that only the main axisymmetric azimuthal flow
U remains. As emphasised in Sec. IIl.A.1.b, only the surface shear viscosity is thus
brought into play. The analytical study of the resulting boundary value problem leads
to a solution based on hyperbolic series, referred to as:

Vpms =/ (7, z, B%MS) 5 (I.A.2)
where Bo, s is the surface shear Boussinesq number (see Eq. (I.5.10)) defined as such:

_ s
n(r,—7:)
The explicit expression and some hints at the analytical calculation are given in App. A.
Surprisingly enough, Mannheimer and Schlechter do not use their solution to inves-
tigate the influence of surface viscous shear on bulk flow patterns. Rather, they ex-
pand their solution to liquid/liquid interfaces, and carry out experiments about sur-
face flow characteristics of liquids with negligible surface viscosity (see Fig. 1Il.A.2(a)),
which is far from the scope of the present study. In this work, Eq. (IIl.A.2) will serve
as an analytical benchmark of the modelling of the annular MHD viscometer, in the
asymptotic case of a vanishing outer magnetic field, at low Reynolds number (see
Sec. l11.B.1.1).

BOT]SMS = (I”.A.3)
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Figure lILA.2 - Stokes flow and surface viscous shearing in the literature.

Concerning the shallow-channel layout, Davoust ez al. have proposed an insight-
tul discussion about the shearing of a stratified layer of amphiphilic molecules [72].
The (Stokes) shear flow within the annular channel is calculated by means of an asymp-
totic expansion, based on the small depth-to-width ratio 5/r, < 1. The calculation
leads to an integral solution based on Bessel functions, referred to as:

h
Vopa =/ <V,Z, T’BonsDa>’ (I.A.4)

[

where Bo, p, is the surface shear Boussinesq number, defined this time by:

Bo, 1, = . (II.A.5)

The explicit expression and some hints at the analytical calculation are given in App. B.
Similarly to Mannheimer’s solution, Eq. (lll.A.4) will serve as an asymptotic bench-
mark in Sec. 11l.B.1.f. In [72], the authors use the composite solution to investigate
both the impact of surface viscous shear and of the depth-to-width ratio on the sur-
face flow. As shown in Fig. IIl.A.2(b), for a given ratio »/r,, when surface viscosity
decreases significantly (small Bo, p, numbers), surface velocity increases accordingly.
This is to correlate with the growing impact of subphase viscous shearing at the liquid
surface, which becomes preponderant over surface viscous shear, and tends to align
the surface with the rotating floor. Conversely, for large Bo, p,, numbers, the surface
velocity decreases towards a Poiseuille-like parabolic profile, the surface viscous shear
imposing here its own dynamics to interfacial motion. Finally, concerning the influ-
ence of the depth-to-width ratio at a given surface viscosity, the smaller this ratio is,
the better the velocity profile approaches the classical Couette-like profile. Indeed, a
smaller 5 /7, value tends to reduce the impact of surface shear on surface dynamics,
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for a given chemical state of the interface. The latter observation gives us a dimen-
sioning criterion for the design of the experimental test-bench (see Sec. 111.D.1). The
depth-to-width ratio should be designed such as /7, €[1/15,1/5], in order to en-
hance the coupling between bulk and surface dynamics. If this ratio is lower, surface
viscous effects would be irremediably damped relative to bulk viscous effects, if it
is higher, surface velocity would be too small to detect any measurable phenomena
anyway (even with preponderant surface viscous effects).

Inertial effects and surface viscosities

As emphasised in Sec. 1ll.A.1.b, when the Reynolds number is sufficiently high, a
meridian flow due to centrifugal effects is enhanced, and the bulk flow switches from
2-D to 2-D 1/2 topology. In addition to surface viscous shearing, the liquid surface
may experience surface dilatation, through the radial component of JMB. In the ded-
icated literature, the reference studies dealing with the interactions between inertia
and surface rheology have been carried out by Hirsa and Lopez [32, 68, 74].

The first decisive result made evident by these authors deals with the feasibility of
measuring the surface viscous dilatation x¢, by means of the annular viscometer [32].
By loosening the constraint of Stokes flow, they take advantage of the (axisymmetric)
swirling flow for the determination of two ordinary differential equations in directly
measurable quantities, i.e. surface velocity and its gradients. They also determine
a scaling law on the value of the Reynolds number, so that the radial velocity v,
along the surface becomes large enough compared with the azimuthal velocity vjg.
By means of a direct numerical simulation (DNS), they show that for Re < 200, the
Stokes assumption remains true, whereas for Re > 200, the dynamical interactions be-
tween the primary and secondary flows become significant, as shown in Fig. lll.A.3(a).
Consequently, the authors recommend to test values of the Reynolds number up to
200 in order to isolate ¢ within the Stokes flow approximation (see also Davoust et
al. [73]), and then to increase Re up to 10, in order to magnify the coupling between
inertial effects and surface rheology. This would allow access to the values of x, rel-
ative to the quantity of surfactants adsorbed at the interface. This scaling law based
on Re shall be used in Sec. 111.D.1.

Let us momently consider the issue linked to the maximum Re = 10* value se-
lected for the range of tested Re numbers. This relatively high value for the Reynolds
number might question the assumption of an axisymmetric laminar flow, and more
globally, the general approximation of neglecting turbulence, assumed in Sec. I.C.2.
However, the Reynolds number defined in the present study by Eq. (1ll.A.1) (follow-
ing e.g.[68, 69, 73]) is not really physically consistent, as its definition, only based on
the outer radius of the annular channel, does not involve the aspect ratio 4 /7,. Our
definition clearly overestimates the local Reynolds number which remains to be es-
timated a posteriori. Therefore, even a value as large as Re = 10* remains consistent
here with the assumption of a laminar flow (see e.g. [ 75, 76] for considerations on the
onset of non-axisymmetric instabilities and turbulence in similar layouts).

Another significant result about surface dynamics obtained by Hirsa ez al. is de-
tailed in [74]. They first show through DNS calculations and experimental measure-
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Figure I.A.3 - Inertial effects and surface viscosities in the literature.

ments that a uniform coverage of surfactants can occur for a suitable surfactant con-
centration, allowing to disregard the gradients in surface viscosities. Note that this
point gives support to our own approximation made in Sec. |.C.2 about uniform oxi-
dation of liquid metal surfaces. Moreover, they prove that when the surface exhibits
an adequate amount of surfactants, the radial component of surface velocity is zero.
Consequently, the JMB reduces to no-slip along the radial direction, regardless of the
physicochemical state of the interface. The latter condition is equivalent to the fol-
lowing condition for the surface dilatational Boussinesq number (see Eq. (11.B.10)):

BO){SHL — 00, (In.A.8)

with Xg
BOXSHL - —. (I”.A.7)

nr,

It shows that the respective evolutions of 7 and x ¢ with respect to a chemical state of
the interface are not necessarily quantitatively identical. Indeed, in this case, Bo, yy;
is very large, while the surface shear Boussinesq number:

Ns

£ (IIl.A.8)
nr,

BOT]SHL =
may range from very small to very large values. The latter point is crucial consid-
ering the extreme values for the two Boussinesq numbers that we shall test in this
study. It is actually physmally consistent to cons.,lder asymptotically small Bo, and
Bo,, numbers, because it corresponds to the classical case of a free surface, totally free
of surfactants. However, it is a priori not as obvious as far as asymptotically large val-
ues are concerned. The previous observation gives us a scaling law that allows us to
test such large values. As a consequence, in Secs. I11.B and 111.C, we select the following

. . . . 4 4
(arbitrarily set) asymptotic values: Bo, ,Bo, € [107%,10%].
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Finally, in the previous studies, Hirsa and co-workers mainly focus on surface flow
patterns. Concerning bulk flow patterns, these authors investigate the interactions be-
tween surface viscous shear only (using condition (Ill.A.6)) and a supporting annular
swirling flow in [68]. These interactions are highlighted in Fig. Il.A.3(b), by display-
ing the contours of the azimuthal vorticity w = dv, /dz — dv,/Ir, which governs
the meridian flow, and the contours of the axial angular momentum a = r vy, which
governs the main flow. The calculation predicts a secondary overturning flow due to
inertial effects, intensifying with Re. As for the surface viscous shearing, the inter-
face consistently evolves from free-surface when Bo, is small (Fig. 111.A.3(b), top) to
no-slip boundary conditions when Bo, _reaches large values (Fig. Ill.A.3(b), bottom).
Note that this study will serve as an asymptotic benchmark in Sec. lll.C.2.a.

This state-of-the-art about the purely hydrodynamic annular channel flow pat-
terns is now ended. Let us now add some electromagnetism in it, and put the focus
on the original layout of the annular MHD viscometer.

lll.LA.2 The annular MHD viscometer: an original layout

lll.LA.2.a Description of the experimental layout

The annular MHD viscometer under consideration in this study is very similar to
the shallow-channel surface viscometer described above. Indeed, the depth-to-width
ratio b /7, is low (typically between 1/15 and 1/5, see Sec. Ill.A.1.c), and the general
layout is otherwise similar to Fig. |Il.A.1, with two main differences, though: now, an
outer vertical DC magnetic field By = Bye, is imposed, and the channel is filled with
an electroconductive fluid, z.e. Galinstan, as shown in Fig. IIl.A 4.

Annular channel Liquid surface §

Rotating floor at angular speed 2

Figure lIl.A.4 - The annular MHD viscometer.

lllLA.2.b Expected physical insight

The electroconductive rotating fluid subjected to the outer magnetic field Eo is
crossed by motion-induced electric currents j, and thus constitutes an annular open
channel MHD flow. In addition to the numerous hydrodynamic advantages of the
shallow-channel annular viscometer exposed in Sec. Ill.A.1.c, there are a couple of
salient features that we can expect from the annular MHD viscometer layout, the
first of which dealing with the relevance of promoting the velocity gradients along
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the ¢, direction. It has been shown that these gradients magnify the hydrodynamic
coupling between bulk and surface dynamics: they also play a significant role con-
sidering the MHD coupling between the velocity field 7 and the magnetic induction
b. Anticipating what follows, it is indeed shown in Eq. (111.B.3) that the generating
term for the azimuthal induction byé is dvy/ Iz as well. Favouring gradients along
¢, thus magnifies the bulk MHD coupling, which in turn affects the coupling with
surface dynamics.

The second expected salient feature is linked to the flow topology. It has been
seen that the hydrodynamic flow may switch from 2-D to 2-D 1/2 topology, depend-
ing on the value of the Reynolds number. Let us imagine that the Reynolds number is
high enough so that inertial effects lead to swirling flow patterns (it is mainly the case
in practise, the low Re values being difficult to attain). When the electroconductive
liquid is subjected to an outer magnetic field, electric current densities are induced.
Once again, the (main) components (J,, 7,) (due to the main azimuthal flow) are dis-
tinguished from the (secondary) component j, (due to the secondary meridian flow).
The MHD bulk flow results from the competition between electromagnetic and iner-
tial effects. Let us now mentally increase the value of By, in order to reach a "strong"
outer magnetic field. By doing so, the experimental layout becomes comparable to
Lehnert’s experiment [3], mentioned in the general introduction of this work (see
Fig. 1.A.2(a)). As previously shown, this experiment was the first to point out the elec-
tromagnetic blocking of a supporting MHD flow. This blocking can be linked to the
following outstanding MHD phenomenon: the outer magnetic field tends to align
flow vorticity along its axis, when a high Hartmann number Ha (see Eq. (I1.A.30))
is reached. This original effect, called the rwo-dimensionality tendency of magnetic
induction, is now accurately described (see [4] for an extensive introduction to this
phenomenon). Now, back to our MHD viscometer, we expect that this MHD 2-D
tendency would tend to "freeze" the flow above the rotating floor, similar to what is
observed by Lehnert. The secondary flow patterns would then be damped, in favour
of the main MHD flow. Consequently, a strong outer magnetic field could bring the
MHD flow back to a purely 2-D topology. This would result in a major impact on the
coupling with surface dynamics, because only surface viscous shear would be brought
into play. Apart from the original flow patterns expected, such a phenomenon would
facilitate the selective measurement of 7 and/or x, by tuning the value of the outer
magnetic field.

Actually, with respect to surface rheology, the final salient feature involves the in-
teractions between the MHD bulk flow and the dynamics of the gradually oxidising
interface. As highlighted in the general introduction, the unique properties of the
Hartmann layers result in a major impact on the topology of the MHD core-flow
(see Sec. I.B.1.a). By altering the interfacial BC, these Hartmann layers could be made
electrically active or inactive, which would totally modify the electric circuit inside
the fluid. Maybe, it would then be possible to determine atypical flow patterns, that
we could link to identified values of surface viscosities, easing their experimental mea-
surement. Finally, the use of a magnetic field could prove beneficial by allowing for
greater control of the flow, thus introducing an updated method for measurement of
the rheological properties of electroconductive fluids.
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In the light of all the previous considerations, the physical insight provided by the
annular MHD viscometer is expected to be significant. Let us conclude this chapter
by exposing the main objectives and our overall approach to the physical problem.

lllLA.2.c Objectives and overall approach

The annular MHD viscometer constitutes a liquid/gas stratified MHD flow. This
is a basic study case in view of the description of different MHD two-phase flow
regimes. Our first objective is thus to investigate the different flow patterns relative
to determined values of the scaling parameters, z.e. the Reynolds, the Hartmann and
the two Boussinesq numbers.

The second objective is a measurement one. First, thanks to an appropriate mod-
elling, in combination with the development of an experimental set-up, measurement
of the surface velocity would then give access to the bulk MHD. Second, we would be
able to obtain information about the oxidised surface rheology, because it would be
possible to determine the physical properties of liquid metal surfaces, for which only
scarce information is available.

The overall physical approach that we shall adopt all along this study about the
coupling between subphase and surface dynamics has been made evident in Sec. I1.C.
In order to address the resulting physical issues previously highlighted, we choose to
implement the analytical/numerical/ experimental triptych. First, a 2-D analytical
investigation of the annular MHD viscometer is proposed in Sec. I11.B.1, based on a
(0, B) formulation, within the approximations Ha>> 1 and Ha>> Re. Th1s analytical
study shall be used as a benchmarking case for two numerical studies, the first of which
being based on the same (7, B) formulation, but with the Ha>> 1 constraint being
loosened (see Sec. 111.B.2). The scope of this study is then significantly extended in a
2-D 1/2 numerical calculation based on a potential formulation (7,4, ¢), by loosening
the constraint Ha>> Re, hence taking account of the overturning MHD flow due
to centrifugal effects (see Sec. I11.C). The analytical and numerical results allow us to
determine MHD scaling laws, used in the final chapter to design the experimental test-
bench: the Madip experiment. The experimental results obtained so far, in link with
the first experiments that we carried out, are finally unveiled in Sec. I11.D.
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lIl.B 2-D annular MHD flow and surface viscous shearing

In this chapter, the two-way coupling between the surface viscous shearing of the liquid sur-
face (induced by a gradually oxidising interface) and the supporting 2-D annular MHD subphase
flow is set, in the general layout of the annular MHD viscometer. First, using a matched asymp-
totic expansion based on the small parameter 1 / Ha, we can express the surface velocity as a
coupling variable in the jump momentum balance (JMB) at the liquid surface. By solving the latter
through the determination of the Green’s function, the whole flow is analytically calculated. Some
salient flow patterns are then highlighted, with special emphasis on the Hartmann layers, along
with scaling laws for dimensioning the experimental test-bench. Finally, these analytical results
are compared to a 2-D numerical study based on the same (‘z_},B) formulation, but without the
approximation Ha >> 1. To a certain extent, the following content has been published in [77].

lll.B.1 2-D analytical study of the annular MHD viscometer

lil.B.1.a Assumptions, notations, equations, boundary conditions and two-way cou-
pling

Notations and assumptions

The system under consideration is the annular open-channel viscometer with a
rectangular cross-section, subjected to a strong outer vertical magnetic field Bye,, as
depicted in Fig. ll.A.4. The inner and outer radius are respectively 7; and r,, and
the height is b, with b < r;, r, (indicative values: ; =3cm, r, =7cm and b = 1cm).
First, some general approximations (justified in Secs. 1.C.2 and I1.A) are made in order
to simplify the physical approach. The annular flow considered is supposed to be a
permanent, axisymmetric (d/d8 = 0), incompressible viscous Newtonian flow, with
no temperature dependence, so that the bulk physical properties of the liquid metal
considered (Galinstan) are considered to be constant (see Tab. 1.B.1 for typical values).
The interface is considered to be flat, with a capillary length /. = /v /pg < (7, — 7;),
where g is the gravity and y is the surface tension of Galinstan (indicative value:
y =0.534N-m™, see [29] and Sec. I.B.2.b). Concerning purely electromagnetic as-
sumptions, the quasi-static and the low-Rm approximations are made (see Sec. II.A.1).

Further assumptions are made, concerning the parameters governing the bulk
flow dynamics, z.e. the Reynolds and the Hartmann numbers, defined as such:

n 2
Re="""T0 (.B.1)
7
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for the Reynolds number, where {2 is the angular speed of the rotating floor (see

Eq. (II.A.1)), and
Ha:Boh\lE (In..2)
7

for the Hartmann number. In this chapter, we suppose that 2 is small enough so that
the inertial terms and the secondary flows in the Navier-Stokes equations are negli-
gible, which proves to be true as long as the centrifugal force remains much smaller
than the Lorentz force. If Ha>> Re, then the inertial terms can be neglected. This is
all the more justified within the following approximation, which consists in assuming
that Ha>> 1. The Hartmann number is indeed considered to be large enough for a
matched asymptotic expansion to be performed for the bulk flow, which is divided
into 13 subdomains; all of these domains are displayed in Fig. I11.B.1:

- C denotes the core flow;

+ HT and HB are the Hartmann layers located along the rotating floor and the
top of the bulk flow, respectively (the liquid surface being excluded), with a
typical non-dimensional O(Ha™!) thickness when activated;

- SL and SR are the side layers or Shercliff layers located on the left and right
walls of the channel, respectively, with typical O(Ha~'/?) thicknesses;

- ATL,ATR, ABL and ABR are the Hartmann layers adjacent to the side layers, at
the top left, top right, bottom left and bottom right of the channel, respectively,
with typical cross-sections of O(Ha™!) x O(Ha~1/?);

» IC,, IC,, I1Cy and IC, are the corner regions with O(Ha™') x O(Ha™') cross-

sections.
) Free surface S
- - T T T T T
I1C,  ATL! HT | lATRIC,
L -t - = - - = - = = = — : ______ 1_ - — — -L — — =
Wall 5 (T1a) | TR | Wall
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Y ! [ -
O(Ha™:), | | B,
R R e T = m e - t= = -
¢, IC,! ABL| HB | ABR|IC,
E@ > L | 1 | L
€ Rotating floor !
7 7y

Figure II.B.1 - Subregions of the flow. (4) and (B) are cutting lines used for interpretation of the results.

As a consequence, the velocity @ is considered to be only azimuthal, because
of the negligible contributions of the secondary flows. Even when the magnetic
Reynolds number is small, the outer magnetic field can be convected along the é4 di-
rection inside the fluid. The quantities of interest for MHD can therefore be given as
U = vy(r, z)ep for the velocity field, B = by(r, z)ey + Bye, for the magnetic induction
and j =, (r,z)e, + j,(r,z)e, for the electric current density inside the fluid.
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Finally, the flow of the liquid surface S, with the bulk flow being excluded, is
modelled using the tangential component of the JMB (see Sec. I1.B.2.c), in which use is
made of the surface shear viscosity, 7. The latter is considered to depend only on the
"rate of contamination" of the atmosphere, z.e. an O,-rate, which implicitly requires
thermodynamic equilibrium (see Sec. 1.C.2). In particular, with the secondary flows
being negligibly small, no radial dependence of 7 is taken into account.

Bulk flow

Using Egs. (11.A.12) and (11.A.32), we can derive the following set of equations along
the azimuthal component, based on a (77 ,B ) formulation, that govern the MHD prob-
lem (see [34, 35] for further details about a similar physical layout):

Ph; 10k by by 3w

0

- - +Ha—= =0, 1.B.3

37*2 r* 37’* 7*2 82*2 gzx ( )
Aror 1 vt ot PPl b
9 0 0 0 0

— - + +Ha——=0. .B.4

37’*2 r* dr* 1,*2 82*2 Idz* ( )

The superscript * refers to the next dimensionless quantities: r*=7r/h, z* =z/b,
v, =vy/V, by = by/b, where V= hf2and b= uV /7. Note that V and b are no the
"true" typical orders of magnitude of velocity and magnetic induction, which are V
and b, but they are used in the first place for facilitating the analytical calculation (see
Sec. 1I1.B.1.1).

The boundary conditions with respect to 7* are deduced from Eq. (I1.A.33) for the
no-slip BC at the motionless side-walls, Eq. (I1.A.34) for the moving wall BC at the
rotating floor, and Eq. (I1.A.41) for the interfacial BC. Concerning b*, it can be shown
using (MA) that:

Bbsly) . _ 130 (by/w)

T dz Iz 7 dr

Thus, bg/u is actually a stream function for ; The environment surrounding the
fluid, z.e. the atmosphere above the free surface and the walls, is all considered to
be insulating. Hence, the boundary conditions at the fluid boundaries are given by
Eq. (11.A.36) (see the associated discussion of Sec. II.A.3.c for the interface). Finally, the
whole set of BCs allowing to close the mathematical modelling of bulk dynamics is:

‘vg(V*—ZZ,Z*)I 0, 55(7*2%,2*) =0, (I11.B.5)
v;(f‘:%,z*): 0, bg(r*: %,Z*):O, (I11.B.6)
vy (r',2"=0) = r*, by(r*,z*=0) =0, (1.B.7)
bg (r,z"=1) = 0, (I.B.8)
vy (rz"=1) = vgs(r*). (In.B.9)
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Surface flow

The boundary condition (Il1.B.9) brings a new unknown into play, which is the
surface velocity v;,. Within the Gibbs approximation (see Sec. I1.B), and according to
Egs. (11.B.5) and (II.B.6), the dimensionless JMB can be written:

dor. 1 do. o dv}
Bo AR Ry i (1.B.10)
s\ dp*? r* dr* 72 dz* S
where the surface shear Boussinesq number, defined as such:
_7ls
Bo%_n—h, (.B.11)

describes the balance between bulk and surface viscous shearing. The following two
Dirichlet end-point boundary conditions for surface velocity are deduced from the
no-slip BCs at the side-walls:

v;S<r*:%>:o, v;S<r*:%>:o. (.B.12)

li.LB.1.b Two-way coupling

The overall coupling process between the sub-phase flow v and the surface flow
Vpg is summarized in Fig. 11.B.2. The roles of the surface velocity, v}, s and the bulk
shear stress estimated at the liquid surface, dvj/dz*|,-_;, as coupling variables be-
tween the bulk MHD and the surface rheology are particularly enhanced.

First, the two-way coupling between the surface and sub-phase flows is set. The
bulk velocity v} and the magnetic induction b are expressed with respect to the
surface velocity v, through a boundary condition involving the liquid surface, and
thanks to a matched asymptotic method based on the Ha number. Then, the determi-
nation of the coupling term between the surface and bulk flows is implemented, lead-
ing to the solution of the JMB at the interface thanks to the calculation of a Green’s
function. The modelling of the gradually oxidised liquid surface is achieved by intro-
ducing the Bo, number. Finally, the solution for the surface velocity is re-injected
as a boundary condition of the MHD bulk flow for determination of the whole flow
velocity and induction. The software selected to perform the calculation is the formal
calculation software Maple 16" .

lll.B.1.c An asymptotic solution: the classical MHD Couette flow

This section briefly gives the basic solution method, in the case where the side
walls are considered to be infinitely far from each other, and the imposed velocity at
the bottom of the flow is constant. In addition, the interface dynamics is reduced to
the case where Bo, — oo, and as such, induces a no-slip condition at the top of the
flow, which corresponds to a classical Couette flow.

The problem is now independent from r*, and Eqs (111.B.3) and (II1.B.4) degenerate
into &%bj;/3z** +Hadv};/dz* =0 and Jv;/Iz** + Hadb}/dz* =0. Now, using
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Figure ll.B.2 - Two-way coupling between the bulk and surface flows.

the Elsasser variables as suggested in [4], % =v;+ b, , the previous equations re-
duce to d2¢7 /Jz*? £ Had(? /dz* = 0 and are easily integrated. Taking the bound-
ary conditions into account fives the following explicit solutions, by applying the

; g1+ ¢ )and by =1/2(¢ —4* )

reciprocal relations v, = 1/2

1 1 1
* *Y —Ha __ —Haz* Ha _ Haz*
Vyeo (2 )_2<—e_Ha—1<e e >+—eHa—1<e e >>, (.B.13)
1 1 . 1 .
* Y\ —Ha __ —Haz*\ Ha_ _Haz*
reo (2 )_2<—e—Ha—1(e e ) —eHa—1<e e >> (.B.14)
Egs. (111.B.13) and (I11.B.14) shall benchmark the analytic calculation in Sec. 111.B.1.f.
Note that, for comparison purposes, the typical velocity order of magnitude used for
classical Couette MHD quantities when compared with the general case solved in this
chapter (with radial dependence and an ageing interface) is the rotating floor velocity
at the radial coordinates considered, i.e. 7.2.

lll.B.1.d Bulk flow at the leading order

As mentioned earlier, the strategy here consists of expressing the bulk quanti-
ties with respect to the surface velocity, using a matched asymptotic expansion based
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on the small parameter 1/Ha (see e.g. [78, 79] for an extensive introduction to the
matched asymptotic expansion method). This strategy, as adopted by numerous au-
thors when tackling MHD problems, is particularly convenient here for two reasons:
first, it allows for an accurate analysis of the interplay between the core flow and the
Hartmann or Shercliff layers, as presented in Fig. 111.B.1, and second, it allows for the

introduction of the simplest possible dependence with respect to v;.

The core C and the Hartmann layers HB and HT

Following a classical approach in MHD [34], expansion of Egs. (I1I.B.3) and (111.B.4)
at leading order in Ha leads to:

v o b .

dz* © 97" ’
for which the solutions are b, = C(r*) and vy = C,(r*). C; and C, are two func-
tions to be determined, thanks to the condition of matching to the boundary layer
solutions. For this purpose, two new stretched variables are introduced for HB and
HT,whichare z;,, = Haz" and z},,. = Ha(1— z*), respectively, to describe more sig-
nificant physical scales inside these boundary layers. Substituting these new variables
into Egs. (I11.B.3) and (II1.B.4) produces the following set of equations:

2 _ % %
dv UoHBHT) ab&HB (HT)
+ =0,
el }fB dz*
(HT) ZHB(HT)
2 1 %
J bé’HB (7). J VOHBHT) .
%2 '
9z HB(HT) Izy HB(HT)

The boundary conditions (111.B.7), (I1I.B.8) and (/11.B.9) reduce to:

véHB(HT)( r,z; HB(HT) =0)=r"(or vy (r") for (HT)),
b;HBHT)( ' HB(HT) O):O>

and the matching condition to the core flow is written as:

: sk
" llm_)oov@HB(HT) *hr& )'er
HB(HT)

lim &} lim b

OHB(HT) — .
ZHB(HT) P ) —0(1)
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This leads to the following solutions:

bgHT_§<7};5(7 )—r +(r" —‘ves(r e~ ZZ{T)_

Finally, a composite solution at the leading order, which is valid for the sub-domains
C, HB and HT is given by:

% % " s«
YocH = Yors T YT — Yoco (I11.B.15)
* * *
bocr = bous + borr — byc- (In.B.16)

The sub-domains ABL, ABR, AT L, and AT R, and the side layers SL and SR

Two new stretched coordinates are introduced: 7, = VHa(r*—r,;/b), which is
common to the ABL, AT L and SL sub-domains, and rg, = \/ﬁat(ro /h—1r*), which
is common to the ABR, AT R and SR sub-domains.

Let us first focus on the AB and AT sub-domains for which the relevant axial
coordinates are denoted by zj,, and z3,, respectively. Introducing these variables,
along with 7, or r{y, into Egs. (111.B.3) and (I11.B.4), yields similar expressions to those
obtained for the Hartmann layers HB and HT. The boundary conditions (/I1.B.7),
(111.B.8) and (111.B.9) are written at the leading order as:

r r.or
* * _ SL z 1
Vgapr (7512 =0) = ; ~ o
*
V) (Ters 2 0)=ov,.(r")=v; S —l ~oi (L) =0
oari(Tsp> 2 =0) = vpg(7 s b os\7,) =
eABL( SL’ =0
%
bpur(rsp> HT_O)_O'

We now consider only the left part of the channel (with the reasoning being sym-
metrical). The solution can be expressed in the following form:

* 7;
Voapr (751> Zrp) = Cs(”g*L)(e_ZHB — 1) + 5 (I.B.17)
boapi (7515 21p) = C3(7§L)(€_ HE — 1) , (I11.B.18)
Vour1 (51> Zpr) = C4(VS*L)(€_Z;’T — 1) s (.B.19)
byyri(rips i) = C4(V§L)<1 — eﬂ?ﬁ) . (I11.B.20)
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with C; and C, being determined by matching to the solution for the SL region.

Now, let us focus on the SL sub-domain, for which the relevant axial coordinate is
z*. Expansion of Egs. (I11.B.3) and (111.B.4) leads to the following set of typical diffusion
equations:

2 _ % *

8 95L + ab@SL -0
5’7*2 dz* ’
2 1%

an a"’eSL

x2 * 4
argr dz

which are completed by the boundary conditions (Ill.B.5):
Vo (15, =0,27)=0, by, (rs; =0,27)=0,

with the additional condition of matching to the core solution:

lim v)., = lim v} —12
rgL_N)o QSL r>—>% 6C 2 b bl
17
lim b = hm bgc_———l.
74, —00 r* 2 h

From Egs. (111.B.17), (11.B.18), (I11.B.19) and (Ill.B.20), it is possible to build additional
boundary conditions that allow us to close the system [34]. These equations lead to
the following extra-BCs: vy ,,, —bp,p, =7, /b and v ... +bj .., =0. Now, using

6ABL ™ Y0ABL i
the matching conditions between the regions ABL (or ATL) and SL, we obtain:

lim (v, — bgapr) = lim (vpe — by ),

Z;IB—mo z*—0
" I;m (Vpars + boarr) = hm <'”<95L +bpgr),
H

We also find the following extra conditions on v}, and b

7
(V51— bos1 N(rgpn 2" =0)= -, (I1.B.21)
[V + b, 175,27 =1)=0. (Ill.B.22)

With the MHD system in the SL region being closed, the solution is as follows:

17, re
vy, (7¢ ,z*):——lerf< SL >,
GSL\"SL 2} 2‘/?
17, re
by (re ,Z*):———lerf< SL >
6sL SL 2} 2 /Z*
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Now, coming back to the ABL and AT L sub-domains, the expressions for the func-
tions C; and C, in Egs. (111.B.17), (111.B.18), (II1.B.19) and (III.B.20) are found by invoking
matching conditions (I11.B.21) and (111.B.22). Thus, we obtain:

, . 1 .
Vounr ("1 Zp) = 2;1<1+ e ZHB), (Il.B.23)
bpapi(rsr>2p) = ;%(e—z;;g — 1) , (I1.B.24)
Vourr(Tops Zp) = ;%erf<%i><l—e_z;ﬂ>, (In.B.25)
by (T Zhy) = ;%erf<%*[‘> <e_ i — 1). (Ill.B.26)

These solutions satisfy the matching conditions between the sub-domains ABL (or
ATL)and HL (or HT), which shows the consistency of the asymptotic expansion so
far. Finally, the composite solution that is valid in the sub-domains S, ABL and AT L
is given by:

Vosar = Yost T Yoanr T Voarr — Z*hm YoABL — Z*hm Vgurrs  (1:B.27)
HB HT
* _Lx *
bosar = bosr + bonpr + bours — - [lim b@ABL Z»hm boar,- (1:8.28)
HB HT

Symmetrical reasoning for the right part would lead us to identical expressions for
Vs AR a‘nd b, g by substituting for either ¢, by r{p or 7, /b by 7, /b in the earlier
expressions (I1.B.23), (1Il.B.24), (11.B.25) and (III.B.26).

The corner regions /C,, /C,, IC; and I C,

and b}, that are given by Egs. (I1.B.27)

Using the explicit expressions for v saL .

and (l11.B.28), we find that the condition v, ,, = b, ,, =0in r{; =0isnot respected.
This is because of a singularity in the velocity boundary conditions, as emphasized
by Egs. (111.8.5) and (11.B.7).

The corner regions IC; and /C, need no further analysis for determination of
the leading terms in each of the asymptotic expansions with regard to other subre-
gions [80]. There are indeed no discontinuity boundary data near the interface (see
the boundary conditions (I1.B.5), (1ll.B.6) and (1ll.B.12)). However, regions /C; and
IC, cannot be precisely described without further investigation, because a moving
wall meets a stationary wall in these sub-regions.

Nevertheless, we have left these corner regions out of the reasoning, like many

authors before us have done, e.g. [81], for several reasons:

QSAL

- as previously stated, the typical cross-section of one of these regions is of the
order O(Ha™!) xO(Ha™!), which becomes very restricted if Ha>> 1. They
can thus be neglected as specific side-effects.

« this issue has been addressed in the literature, for a similar bottom corner sub-
region called /C, [34]. One of the major differences between the latter work
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and the present work is that the moving wall is fixed at a given radial position
with a typical Taylor-Couette layout in the other study, which gives the bound-
ary condition v; = Cst on this wall. In our case, the boundary condition for
the velocity exhibits a radial dependence, v, = r*, along a rotating floor. This
may explain why the method used in [34] seems much more complex to use
for the corresponding corners in this work. Our efforts to simply match the
solution for the outer regions with this method have not been successful.

- finally, by anticipating what follows, the solution for the sub-phase flow is cal-
culated to deliver the JMB source term at the upper liquid surface; the ultimate
aim of this is to find the surface velocity, vj(7*). This means that an analytical
closed-form solution for v}, with respect to v}, must be maintained; this condi-
tion is impossible to fulfill considering the complicated forms we might expect
to find when taking account of corner singularities for the velocity along the
rotating floor.

Overall composite solution at leading order

The global solution for the bulk variables v and b; with respect to 7*, z* and the
surface velocity vy is finally derived using Egs. (111.B.15), (Ill.B.16), (1Il.B.27), (1.B.28)
and the non-written equivalent of the latter for the right part, z.e. SAR. The matched

expansion produces:

k* * *k * b *
Y9 = Yoc t Ygsar T Vosar — rllmrl. YocH Vllm Vgch (1.B.29)
% ~%
0 = oyt bgoar + bogar— im by — *hm bycpr- (11.B.30)

*
’19

Now that the expression of the bulk quantities are determined with respect to the
surface velocity, let us turn to the second step of the two-way coupling, i.e. the deter-
mination of the surface flow at leading order.

ll.LB.1.e Surface flow at the leading order

Explicit form of the JMB

First, by substituting Eq. (111.B.29) into (Il.B.10), we can determine the second term
of the two-way coupling, dv;/ 82*| p in the JMB at the liquid surface:

2_ % * * *
. d vy 1 dfves 7}55(7 )

Bons e +Fdr* i — v (r)=f(r"), (11.B.31)

with Bo, , the modified surface shear Boussinesq number, defined as:

. ZBOW
Bo =——5% | (1.B.32)
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and which covers the competitive influences exerted by either the Hartmann number
(and therefore the electromagnetic part) or by the surface shear Boussinesq number
(and therefore the shear stress ratio) at the interface. The so-called forcing term, £, is
defined as follows:

(I11.B.33)

Calculation of the Green function

The adjoint operator

As suggested by authors tackling a similar boundary value problem [72], it is
worthwhile to introduce the Green’s function G(r|&), with & as the influence vari-
able, associated with the differential operator 3:

N, ¢ 1d 1 .
=kt rE R

Eq. (111.B.31) can be intrinsically noted as:

S:vp(E)=f(&). (111.B.34)

The Green function must be determined in order to solve for the surface flow. Let
us start the calculation process by invoking the adjoint operator §, [82]. First, both
sides of Eq. (111.B.34) are multiplied by G(7*|£), and integrated between % and %:

To

fb G(r*|E) : 0(€)dE = f}] G(r|E)F(E)dE. (11.8.35)

l

h
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Let us expand the right-hand side of Eq. (111.B.35):

| cotem:wierae 1.8.38

h

Y ¥ « dz”és 1 dog 1 vy .
_JRMSJ? G(rlé)[< d§2-+z-d§ —-Eb -57 —v; (&) | d&
e (7 dop 7 V5 (€)
_BO%UE G(r*|&)—2 7 d¢’+f G(r |§)[£ i 52 }dé’

1 (7
o f Gr |5>ves<5>d5>

~ 1
=Bo L+L———6L ). (I1.B.37)
ng < 1 2 BO}?S 3>

I, and I, are determined separately, using integration by parts. Let us calculate /;:

ng dgis *

) : 3G(r*|€) dujg
_[G ]‘f BEE

dv 368 N P Tel £ .
[G F ”65(5)]Q+J;§ o¢?

h

5s(&)dE. (n.B.38)

Then I,:

[
‘ﬁ
< @\:
D
=
_*
o
Q.
m| e
/N
LAY IS
[
~— —
(oI
Ny

v, (5)}h—fh (—|£) vpe(&)dE. (I1.B.39)
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Substituting Egs. 111.B.38 and 111.B.39 into 111.B.37 yields:

* . 1
f' G(r*|§)‘3:v§5(f)df:Bo,]S <11+12— _ ]3>
i Bo,)s

h

Ko [Gmmd%s o)
s

G(r* 7
o5 (E)+ (—'5)%5@}

I T : ;
T, . [PPG(r¥E)  1IG(r¥|&) i
i f v%(f)[Bo%( g >—G(r |5>} dE
. Lodue 260 L Gere) L E
:B0775|:G(7 [3) d?— oF Vgs(E) + 3 'Uas(g)L
+Jh ps(€)3, : G(r*I€)dE, (I1.B.40)
where the adjoint operator §* is defined by:
. 7 14
S*EBOOS<8—£2—E£>—1. (1.B.41)

Further definitions and conditions

Now the adjoint operator is known, the distribution theory allows us to link this
operator to the Green function G [82], through the relation:

3,:G(r&)=8(&—7r"), (I11.B.42)

where 8 (& — r*) is the Dirac delta function. Let us then impose G to be 6! piecewise,
and in addition to that, to be subjected to the following boundary conditions:

G<r*|%>:0 and G<r*|%>:0. (11.B.43)

Using the surface velocity BCs of Eq. (11I.B.12), and the BCs for G described just above,
the term of Eq. (I11.B.40) between the square brackets vanishes. Besides, the remaining
integral can be expressed as such:

7o

Jy_h 055(5)3* L G(r*|E)dE = Jr,h 7);3(5)3(5 —r")dE = v5o(r"),

h

by using the Dirac distribution properties. Consequently, Eq. (11I.B.40) reduce to:

To

fyib G(}"*|£)‘3 : v;s(f)df = v;g(r*)’
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and coming back to Eq. (II1.B.35):

To

Vps(77) = Jb G(ri|€)f (€)dE. (111.B.44)

The Green function equation

The Ordinary Differential Equation - ODE - of G is given by Eq. (1l.B.42):

PG(r1&)  13G(r*|€) 1 e 1 .
% _E 5 _B~o G(r |.§)_B~0 S(E—1%). (11.B.45)

s s

Note that this equation is not directly solvable because of a non-homogeneous term
caused by the Dirac distribution, which is the reason for the introduction of two sub-
intervals, [7;/h,r*[ and ]r*,r,/h]. The equation to solve become homogeneous on
these two intervals:
2 * *
7Gx |§)—lgG(7 |E)_ ~1 G(r*|&)=0. (I1.B.46)
38§ & B,

The two first BCs for G are given in Eq. (I11.B.43):

G<r*|%>:o and G<r*|%>:0. (IN.B.47)

As the interval is divided into two parts, two additional BCs must be found. The
first one is given by the continuity of G in r*:

lim G(r*|)= lim G(r*|&). 111.B.48)
Jim GlE)= Jim GOe) (

The second one is deduced by multiplying Eq. (111.B.45) by & and integrating it between

*

r*  and r*T:

r*t 2 r* r* ret
[ {ga GUrle)_26(1E)_ € G(M)] o

2
& & Bo, Oy,
(1.B.49)
Let us expand the left-hand side of this equation:
O G(rE) AG(rIE) € "t _G(r€)
_ — — G(r* d¢& = ————2d
J,- {5 2 # B, U J, e

" aGHHE) (T E
_J JF dg_ﬁ*— B, U )%
L N LT D L
‘[551*_2£ e e

BO’?s
G
:[5 %‘ZG}

ret

T é’
— r*|€)dE.

r
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The last remaining integral vanishes, by continuity of the bounded function £ G in 7*.
By continuity of G, [—2G ]:i =0. Consequently, the left-hand side of Eq. (11I.B.49)
is written:

f [592G<r*|5>_3G<r*|5>_ £

ot

8 r
ng)} dE:[é’—G] . B0

a&? & Bo dé |-

Concerning the right-hand side of Eq. (I11.B.49), it is simply expressed:

s

f £ s rydE= T

= Bo Bo
s s
Therefore, the final BC for G is written:
Elealal r*
5_] = —. (.B.51)
[ 23 P Bo,]S

General form of the solution

Introducing the change of variables G(r*|&) = € y(r*, &) into the homogeneous
Eq. (111.B.46) leads to:

o? d 2
523—;+(25—1)53—2+<5(5—2)—B~i >y(r*,5)—0-

s

Taking { = 1, this equation transforms into a modified Bessel equation:

2
? J
22 g2 1+< 3 > y(r*,E)=0,

FIZRCT

of which solutions are known:

y(r*,5)=ﬂ(r*)ﬂ1<L~>+b(f)%’1< g >
Bo,]S Bo,]s

where ¢, and #] are the modified Bessel functions of the first and second kinds,
respectively. A piecewise solution is given by:

aren( =) s ) weelsol
G(r*|&)= 75 "
C(’*)5f1< = >+D(r*)§%1< - > el

Ong Ons

=

(I11.B.52)
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Determination of the coefficients

The coefficients A(r*), B(r*), C(r*) and D(r*) remain to be found. First, the
BCs defined in Eq. (I11.B.47) lead to:

B(r* yl(h ; >
(r ):_ LR (111.B.53)
A(r7) ( ’, >
A
h Bo,is
D(r* jl(h ;?” >
) _ & (Ill.B.54)
C(r") < . >
Hy | —=
h BOWS
Now, Eq. (I11.B.48) provides the additional relation:
(A(r")—=C(r") A r—N =(D(r*)—B(r*)) A, r~ . (I11.B.55)
BO’?S BO’]S

Finally, using Eq. (I1.B.52), it can be proved that:

G A(r*) r* B(r*) r*
% = - re ’]0 - — — s % - ,
r BO’]S \/Bor]S \/BOVJS BO’]S

G C(r*) r* D(r*) | r*
7| =—F—=—="% = — 7" A = .
23 Pt Bo,7 Bo Bo Bo

s ns

s

As a consequence, the last condition (I11.B.51) writes:

(C(T*)—A(T*))J’o< YN >—(D(T*)—B(7*))%< rN >_ 1~
Bo Bo% r*4+/Bo

s
(III.B.56)
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After further simplifications, bearing mainly on the properties of the Bessel functions,
Egs. (111.B.53), (11.B.54), (111.B.55) and (II1.B.56) provides the following expression for the
Green’s function coefficients A(r*), B(r*), C(r*) and D(r*):

i) * %)%(h : )— <h Bo> <

A(r) =

(1.B.57)

Solution for the surface velocity at the leading order

Finally, integrating Eq. (/1l.B.34) between 7;/h and r,/h and using the Dirac dis-
tribution properties leads to:

To

o= | GrlE @+ [ T GrlarEde (1859

T
)

where G(7*|&) is given by Eq. (111.B.52) (with the coefficients defined in Eq. (11.B.57)),
and f(& ) is provided by Eq. (I11.8.33). The two integrals are numerically evaluated
at each radial location, and deliver a curve fitting that comes from a set of discrete
values obtained from Gauss integrations. Because numerical calculations arise at the
very end of this analytical process, no loss of generality can be suspected. Then,
Eq. (11.B.58) is injected in Egs. (I11.B.29) and (II1.B.30), and the problem is mathemat-
ically solved.
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lll.B.1.f Results and interpretation
Relevant scaling

The choice of the height 4 as a scale-length allows for the determination of the
corresponding MHD Egs. (111.B.3) and (I11.B.4), by avoiding the aspect ratios. However,
the relevant typical length for the 7 variable is not 4, but is in fact the outer radius 7,.
For post-processing, a scaling analysis is thus needed to take the role of these aspect
ratios into account, so that the magnitudes of the dimensionless quantities belong to
[0,1]. All the new quantities that are drawn in the figures of Sec. I1.B.1.1, as a result of
this new scaling process, are superscripted *.

The definitions of these new non-dimensional quantities are as follows:

- the radial coordinate r* = (hr*—7r,)/(r,—7;) =(r—71,)/(r, —7,);

- the axial coordinate z* = z* = z /b;

+ the velocity vy = vg/V = (h/7,)vy = (h/r,)ve/V, with V = 1,02 =(r,/h)V;

+ the magnetic induction by = by/b = (h/r,)B; = (h/7,)By/b, where we define
b=uV jon=(r,/b)b; R R

- the electric current density: j* = /] =(h/r,Ha);* =(h/r,Ha)j/J, where we
define ] = 0B,V = (r,Ha/h)B/uh = (r,Ha/h)J;

+ and eventually the Lorentz force density /" = j* x €, = f',€g = —] "¢y

The surface velocity

Fig. 111.B.3 shows the dependence of v, with respect to 7*, and to the Hartmann

and Boussinesq numbers, Ha and Bo, , respectively. For a given Ha number, a small

0.2 2

*-"Ha =10 ="—Ha =30 —— Ha = 100 — Ha = 1000

Figure lIl.B.3 - v} (r*) at various values of Ha and Bo, .
: ns
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value of the Bo, number consistently involves a higher surface velocity with a pro-
file along the annular gap that tends towards a Couette-like linear profile, apart from
near the side walls, where matching to the Dirichlet conditions is fulfilled. This is es-
sentially because in-plane viscous dissipation in the interface is reduced; meanwhile,
the surface flow is entirely controlled by the sub-phase shear, which acts as an exter-
nal body force for the liquid surface. One final consequence is that the linear mo-
mentum injected from the rotating floor is free to diffuse vertically up to the sliding
interface. Conversely, when Bo, is large, the surface velocity profile tends toward
a Poiseuille-like parabolic profile with decreasing surface velocity. Then, the surface
flow is no longer coupled to the sub-phase flow, and it obeys its own dynamics. Equa-
tion (I1.B.10) reduces to a Laplace equation, and the two end-point Dirichlet boundary
conditions impose a vanishing velocity all along the rigidified surface.

For a given Bo, - number, Fig. I11.B.3 shows the higher Ha is, the higher surface ve-
locity will be. Depending on the value used for Ha, either the linear or the parabolic
velocity profile is recovered. This illustrates another mechanism: high magnetic in-
duction tends to "freeze" the liquid metal similar to a rigid body motion (similarly to
what is observed in the previously introduced Lehnert’s experiment [3]). It favours
the z component of the vorticity, w, = (1/7)d(rvy)/Ir, so that vy depends only
on 7, and the same also applies for vg;. This phenomenon can be mathematically
illustrated as follows: Eq. (11I.B.33) requires limyy, . /(7*) =—7*, which yields (us-
ing Eq. (111.B.31)) that limyy, ., v5.(7*) = r*. Also, it can be shown using Eq. (1Il.B.29)
that limpy, o, v5(r*) = 1/2limy, ,  (v;(r*) + ), leading to limyy, |, vy (r*) = 7.
Therefore, when Ha — oo, v(7*) = v,(7*) = r*, the whole fluid may be indeed con-
sidered as a rotating rigid body.

In conclusion, on the surface velocity properties, it may be said that the well-
known two-dimensionality tendency of the magnetic induction acts here in competi-
tion with the aforementioned damping due to strong surface viscous dissipation. With
avery high Ha relative to Bo, , the interface is almost perfectly aligned with the rotat-
ing floor because of the electromagnetic blocking, whereas a very high Bo, prevents
the momentum from diffusing throughout the bulk, which highlights the crucial role
that the surface rheology may play in the MHD problem. These competitive effects
are expected to be magnified in the analysis of the bulk quantities.

The bulk quantities

2-D Graphs for asymptotic cases

In this section, the 2-D graphs for both the velocities and the electromagnetic
quantities are shown in two extreme cases, z.e., in the case Ha =30 < Bo, = 1000 and
in the case Ha =50 > Bo, = 0.01. These values correspond to the asymptotic values
of the modified Boussinesq number that was defined in equation (IIl.B.32), z.e. BNOWS >1
and Bo, < 1. The first aim is to indicate two radically different MHD regimes, and
then to verify how the overall flow topology can evolve. First, the results for the orig-
inal variables v} and b are summarized in Fig. I1l.B.4. The left-hand side corresponds
to the Bo,]S < 1 case, while the right-hand side corresponds to the Boqs > 1 case.
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Vg %

1 m 1 1 m 1
0.8 0.8 0.8 0.8
0.6 — 0.6 0.6 — 0.6

z* B z* B
0.4 — 0.4 0.4— 0.4
0.2 0.2 0.2 0.2
0 — T T 1 T 1 T T =0 0 L B R S B B B =0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
r* r*
(a) - Velocity field, :BNO?']g < 1. (b) - Velocity field, 13~on > 1.
b; b;

1 m 0 1 m 0
0.8 -0.05 0.8 -0.09
0.6 — 0.11 0.6 0.18

2 A [
0.4— -0.16 0.4 — -0.28
0.2 -0.22 0.2 -0.37
O T ‘ T ‘ T ‘ T ‘ T _ '0.27 O T | T | T | T | T _ '0.47
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
r* r*
(c) - Magnetic induction, BNO,ZS <L 1. (d) - Magnetic induction, B~0773 > 1.

Figure lIL.B.4 - Velocity (top) and magnetic induction (bottom) for the two extreme cases Bo o K1 (left-
hand column) and Bo >1 (right-hand column).

When considering the velocity, the topology evolves from an exclusively radial de-
pendence with velocity gradients that are perfectly aligned with €, (apart from those
near the side-walls) for Ha>Bo, in Fig. Il.5.4(a), to a motionless configuration for
Ha< Bo, in Fig. lB.4(b where the velocity is mainly concentrated near the bot-
tom right corner. This behav1our is linked to significant physical phenomena. For
Fig. Il.B.4(a), the previously mentioned electromagnetic blocking is responsible for
the d1551pat10n of the secondary vortices, and for the fluid alignment with the rotat-
ing floor, as observed by Lehnert [3]. For Fig. Il.B.4(a), the motionless topology is
partly because of an inert interface for Bo, > Ha, Wh1ch imposes matching with a
vanishing velocity at the interface, but other mechanisms are also brought into play,
and are highlighted through analysis of the electromagnetic quantities. For this pur-
pose, the results concerning the derived electromagnetic quantities, z.e. the electric
current density and the Lorentz force density, are also displayed in Fig. 111.B.5.

The magnetic induction and electric currents are obviously confined in the Sher-

cliff layers when Bo, <1, with two electrical loops near the side-walls, as shown in
S . . ..

Figs. 111.B.4(c) and 111.B.5(a), with the core and the Hartmann layers making a negligible

contr1but1on. The topology is dramatically different for Bo, > 1, where the core
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Figure I11.B.5 - Electric current density (top, contours: b; streamlines) and Lorentz force density (bot-
tom) for the two extreme cases Bo <<1 and Bo, > 1. For a given low veloc1ty
2=025rpm, ] =4.1 x 10? A-m—2 for Ha=30and 6.8 x 10*A-m™? for Ha=50. ;" is
log-scaled by the magnitude exp(ln(”] /||] o)/ (L4 ), p =3 fora)and p = 1 forb).

seems to be more involved, but the Hartmann layers in particular are now electrically
active, with the setting of an "electric bridge" between the two side layers that is estab-
lished through the Hartmann layers, as shown in Figs. 111.B.4(d) and 111.B.5(b). This is
linked to the velocity topology mentioned earlier, with no particular gradients of v}
along the ¢, axis in the case where Ha > BO’]S’ other than near the side walls, whereas
these gradients arise elsewhere and especially arise near the interface in the case where
Hak BO?) . Depending on the prevailing regime, this means that the source term
of by in Eq. (111.B.3) either exists or does not, which could explain the activation or
non- actwatlon behaviour of the Hartmann layers.

This is confirmed when analysing the graphs of the Lorentz force density. The
presence of a strong radial component of the electric current density, in the Bo, >>1
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case, in combination with the imposed magnetic field Bye,, leads to the emergence of
a Lorentz force density in the Hartmann layers, along the azimuthal direction (other-
wise extremely confined, see Fig. 111.B.5(c)). Asdeduced from Fig. I11.B.5(d), this Lorentz
force is negative at the bottom, and positive at the top of the channel cross-section.
Consequently, this leads to an electromagnetic damping of the momentum injected
from the rotating floor at the bottom, while it enhances momentum in the upper
part of the channel. Both contributions lead to an homogenisation of the flow, which
explains the overall flow patterns.

It is important to point out that the bottom Hartmann layer is only activated
when the top layer is activated, whereas the "dynamic" configuration remains the
same near the rotating floor. This is because of the current continuity equation, which
yields div(;*) =0 and causes the electric current to close up inside the fluid. When
the Hartmann layer at the top is activated, the current then flows across the boundary
layers, with the core contribution remaining quite small, and therefore closes up inside
these layers.

Beyond this asymptotic analysis, which does not allow us to determine the flow
topology quantitatively in conjunction with the values of Ha and Bo, , a more re-
fined analysis is now proposed, in order to draw some scaling laws with respect to the
control parameters.

1-D Graphs for general analysis

The MHD quantities are plotted along the cutting lines (A) and (B) drawn in
Fig. 111.B.1, for numerous combinations of the Ha and Bo, values. Line (A) is de-
signed such that it allows the analysis of the Shercliff layers, and (B) allows the same
for the Hartmann layers. The magnetic induction is not plotted here because the rel-
evant information about the electromagnetic quantities is contained in the electric
current density. The velocity v} is plotted along the two cutting lines. With respect
to the electric current, it depends on the layer being considered. Using div(;*) =0,
we can prove that with the stretched coordinate 7¢, or 7{y inside the Shercliff layers
(or alternatively zj,, or z;,.. inside the Hartmann layers), the €, component is several
orders of magnitude lower than the €, component inside the Shercliff layers; the op-
posite situation holds inside the Hartmann layers. Consequently, the choice is made
to plot only ;* along (A), and to plot only ;* along (B).

The results are summarised in Fig. II.B.6. The left-hand side corresponds to the
cutting line (A), while the right-hand side corresponds to the cutting line (B). Unlike
the previous section where only the asymptotic cases were addressed, the analysis of
the intermediate regimes allows us to depict the significant tendencies inside the core
and the boundary layers, depending on two general cases: the evolution with respect
to Ha for a given value of Bo, , and the evolution with respect to Bo, for a given
value of Ha.

Let us begin with the first case, the Ha-dependence, for a given Bo, , which corre-
sponds to the curves (—), (---) and (— —). As shown in Fig. 111.B.6(a), tile velocity pro-
files are stretched along the €, axis with increasing Ha, echoing the electromagnetic
blocking phenomenon described earlier, which enhances the diffusion of the rotat-
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Figure IIl.B.6 - Velocity and electric current with respect to various (Ha,Bo, ) values, along cutting
lines (A) (left-hand column) or (B) (right-hand column). MS, Da and Co refer to
Mannheimer and Schechter (Eq. (I1.A.2)), Davoust (Eq. (Ill.A.4)) or Couette asymptotic
solutions (Eq. (I11.B.13)), respectively. The electric current densities are normalised with
respect to the maximum electric current /= 1.36 x 10* A-m™ (reached for Ha = 10%).

ing floor-induced momentum. Therefore, this leads to extension of the radial depen-
dence, v = 7, in the core (curve (—)). The strong gradients are located in the Sher-
cliff layers, for which the typical thickness is closely linked to the Hartmann number
through the order of magnitude O(Ha~!/?), and they match the no-slip conditions at
the side walls. The velocities vp, ¢ and v (curve (#)), derived by Mannheimer and
Schechter [31] (see Eq. (I1.A.2)) and Davoust et.al. [72] (see Eq. (IIl.A.4)), respectively,
allow for benchmarking of the present results by giving an asymptotic reference (cor-
responding to Ha = 0), which was not accessible when using our matched asymptotic
expansion based on a large Hartmann number.

The first question arising from the observation of curves (— —) and (@), as shown
in Fig. 111.B.6(a), considers the fact that the velocity tends towards a damped although
still linear relation between v} and r* with vanishing Ha, for the case Bo, = 100.

The same curves in Fig. 111.B.6(b) illustrate even more conclusively the "freezing"
of the liquid bulk due to the electromagnetic field; the topology along (B) evolves
from independence with respect to z* in curve (—), to strong gradients located within
the Hartmann layers when Ha is weak in curve (— —). These layers become thicker
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and thicker with decreasing Ha, with their typical thickness being O(Ha™'). The
ideal case of a hydrodynamic vertical Couette flow with a fully linear dependence is
recovered when Ha =0 and BO,]S > 1 (curve (@), MS or Da soiution). In any case,
the value reached in z* = 11is v, which depends on the value of Bo, (see Sec. ll.B.1.1).

The main question arising from Fig. 11.B.6(b) is the following: why does the ve-
locity seem to decrease with increasing Ha in the bottom part of the flow, while the
opposite tendency prevails at the top? This phenomenon can be seen when compar-
ing curves (——) and (- --), and is shown even more dramatically when considering
curves (©) and ().

Similar questions arise for Fig. II1.B.6(d), representing the radial component of the
electric current j* inside the core and the Hartmann layers. The reason why the
electric current seems to be increasingly intense in curves (— —) or (- - -) with increas-
ing Ha, until it reaches a certain onset value, from which it decreases to zero while
Ha becomes very large (curve (—)), is not straightforward. Classically, increasing the
Hartmann numbers should only increase the magnitudes of the electric currents in-
side the boundary layers. This is typically the case in the parallel layers with j* shown
in Fig. 111.B.6(c). To answer all these questions, we must now address the second issue,
which deals with the evolution of the topology with respect to Bo

It is obvious in Fig. I11.B.6(a) that for a given Ha = 30, corresponding to the three
curves (+), (¢) and (O), the velocity along (A) evolves from the previously mentioned
linear relation v = r* in the core when Bo, ~is low because of the electromagnetic
blocking, towards the motionless liquid bulk that is characterised by another linear
profile, with the vertical Couette flow imposing a no-slip condition at the interface for
large values of Bo, . The first question is thus partly solved by the fact that high Bo,
values results into an inert interface, preventing the linear momentum from diffusing
well vertically across the bulk.

Along line (B), in Fig. I1.B.6(b), the same three curves show that when no surface
shearing is present, the bulk velocity is totally independent of the axial coordinates,
with the gradients being completely aligned with the €, axis (see curve (++)). This grad-
ually evolves into a configuration where the gradients are localized in the Hartmann
layers, with the surface velocity vanishing, as shown in curves (<) and (©). This re-
veals a significant phenomenon, which answers all of our questions as a whole: the
value of the Boussinesq number drives the activation of the Hartmann layers.

To validate this statement, let us now focus on the electric current circuit by con-
sidering Fig. I11.B.6(c) and I1.B.6(d), and scrutinizing the same three curves (+), (<) and
(O). First, when shearing acts in the interface as shown in curve (O), a radial com-
ponent of the electric current density ;* arises within the top and bottom Hartmann
layers, because of velocity gradients that are induced in the vicinity of the interface,
whereas it progressively vanishes with decreasing Bo, , asshown in Fig. 111.8.6(d). This
is not as obvious as far as the Shercliff layers are concerned, as shown in Fig. 11.B.6(c).
The Boussinesq number indeed seems to control the magnitude of ;*, which increases
a little with Bo, , but the gain is not as dramatic. The reason for this is that, indepen-
dently from the activation of the Hartmann layers, the velocity gradients always exist
in the Shercliff layers, because of the inert side walls. This results in an electric current
], even when Bo, is very low (see curve (-+)).
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Nevertheless, this activation is responsible for all the phenomena evoked above,
because it is the source of a é5-component of the Lorentz force acting in the Hart-
mann layers, —j*é. This means that when j, is positive, it acts as a braking force,
whereas when j, is negative, it acts as a driving force for the flow. Consequently,
as we can deduce from Fig. I11.B.6(d), the Lorentz force, which become more intense
with increasing Ha, prevents the diffusion of the momentum from the rotating floor
inside the bulk, damping the flow in the bottom part of the channel, whereas it en-
hances the momentum diffusion in the top part. This tendency to make the velocity
profile uniform can be observed in Fig. 111.B.6(b) with curves (©) and (7). The onset
point at which the electric current starts to vanish with increasing Ha corresponds
to a sufficiently low Bo_number, that suppresses the shearing and aligns the surface
motion with the bulk dynamics, thus deactivating the Hartmann layers, and therefore
switching off the electric currents within them. Otherwise, the classical increase of
the electric current order of magnitude with Ha is permitted.

One final remark about this evolution with respect to Bo, is that the latter does
not control the thicknesses of the boundary layers for a given Hartmann number,
which remains consistent with the definition of these boundary layers, for which the
typical length is only linked to Ha. In addition, the relevance of these results is tested
by comparing the case where the Boussinesq number is very high, i.e. curve (O), to
that of the classical MHD Couette flow defined in Egs. (111.B.13) and (11I.B.14), where the
interface is considered to be a rigid wall, i.e. Bo, — oo (curve (—- —)). The agreement
between these two curves for either the velocity in Fig. 111.B.6(b) or the electric current
density in Fig. II.B.6(d) is quite satisfying. Finally, for a given Ha number, one can
notice that the calculation is directly at an end in Eq. (111.B.31), and the surface velocity
is explicitly given by Eq. (I11.B.33), if the asymptotic inviscid interface limit Bo, =0
is taken, before the additional difficulty of assuming a viscous interface. The results
thus obtained are compared to those calculated when the viscous interface is indeed
assumed, in the limit Bo, — 0. The reason why these results are not displayed in
Fig. I1.B.5 is that the two curves would be perfectly superimposed for low enough
Bo, (typically Bo, =0.01).

Consequently, we are reasonably confident about the diagnosis that the Boussi-
nesq number indeed drives the activation of the Hartmann layers, and consequently
drives the magnitude of both velocity and electric currents in both the core and bound-
ary layers, although to a lesser extent in the Shercliff layers. As for the Hartmann
number, it controls the typical thicknesses of these boundary layers, along with the
magnitudes of both the dynamic and electrical quantities, but the evolutions of these
quantities are not classical. This is due to the balance between these two numbers,
which illustrates two competitive phenomena: on the one hand, the MHD tendency
towards two-dimensionality, on the other hand, the interface shearing. Their com-
petitive effects are determined by the new dimensionless number introduced in this
work, z.e. the modified Boussinesq number BNO,]S. In order to confirm these funda-
mental conclusions, let us implement now a 2-D numerical study focusing also on
the coupling between surface viscous shear and bulk MHD, that we shall benchmark
with the previous analytical results.
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lll.B.2 2-D numerical study of the annular MHD viscometer

lll.B.2.a Motivation for a numerical approach

The previous analytical results derive from a matched asymptotic expansion ba-
sed on the vanishing parameter 1/Ha. Strictly speaking, these results are mathemati-
cally true when Ha — co. However, in order to keep some significant physical insight,
a large range of values for Ha has been tested and interpreted, resulting in different
MHD topologies. The interpretations stemming from this analysis must therefore
be benchmarked to check how far they are relevant when Ha is only considered high
enough (and not infinite). Consequently, there is a need for a method that circumvents
the infinite Ha issue, even if the model must still conform to the assumption that the
inertial terms are neglected. This benchmark must also take the corner regions into
account, that were ignored in the analytical reasoning. In the light of all these issues,
the choice of 2 2-D numerical model proves relevant. The software selected to perform
the calculation is the finite-element method (FEM) Comsol” software.

ll.LB.2.b The choice of a FEM software: why Comsol?

The present work is essentially multiphysics, involving such different fields as fluid
mechanics, electromagnetism and surface rheology. As far as a numerical study is re-
quired, the software used has to address the issue of multi-modelling. Comsol Multi-
physics is one among the worldwide references in multiphysics simulations, propos-
ing various physical modules: AC/DC for electromagnetic and/or electric problems,
CFD for computational fluid dynamics (including chemical species transport, fluid
flow: single-phase or two-phase...), plasma, electro-chemistry, etc. It also includes a
lot of mathematical models, allowing for the development of customised weak forms
of a given physical problem, in the case it is not satisfyingly addressed in one of the
aforementioned modules.

As said before, Comsol is a FEM software. The finite-element method consists in
transferring a physical problem into its variational or "weak" form in the considered
domain. This weak form is generally equivalent to the minimisation of energy prin-
ciple. The spatial domain is divided into a mesh, consisting of different points (the
nodes). The approximate problem is then written in a mathematical sub-space with
finite dimension 7, and the sub-domain corresponding to each mesh element is de-
scribed by so-called "test" functions w, with order 7, constituting a basis for the space
coordinates. The approximate solution is thus a function determined by its values at
the mesh nodes (linked themselves to the expression of the test functions w at these
points).

This method is widely used to discretise the Maxwell equations in electromag-
netism. However, the discrete approximation is not a priori conservative, because
contrary to the finite-volume method (FVM), the governing equations are not inte-
grated in the form of conservative laws. Therefore, particular care is required to ensure
a conservative solution, as well as strong asymptotic cases to validate the numerical
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results. Nonetheless, such attention is not needed in the present case, the continuity
equations div(7) = div(; ) = 0 being always fulfilled in the 2-D axisymmetric case.

lll.B.2.c Problem formulation and implementation in Comsol
Physical layout and approximations

The physical layout is completely identical to the system described in the ana-
lytical part, based on the rectangular cross-section of the annular MHD viscometer.
This layout is reminded in Fig. I11.B.7, along with the boundary conditions. We make
exactly the same approximations as in the previous section, with the following no-
table exception: it is only assumed in this section that Ha > Re, and not that Ha > 1,
which was required in the previous analytical section for implementing the matched
asymptotic expansion.

|Interface: V= vygey, by = O‘

Inner wall b ; = Outer wall
- - \(B) ‘Z—; =0 - -
v =1vp(2)ép ~—— Moying U =1vp(2)éy
by =0 (A) Galinstan by =0
- |
ezé_» 8 ! S
é €

a7 IRotating floor: ¥ =rf2¢y, by = O‘ 7,

vg(z)=7r;2(1—2/8) vg(z)=7,2(1—2/8)

Figure ll.B.7 - Geometry and boundary conditions of the channel crossed-section used for 2-D numer-
ical computation.

Governing equations and boundary conditions

From strong to weak forms

Like in the analytical study, the two unknowns are the dimensionless azimuthal
magnetic induction by and velocity vj. As previously explained, they are governed by
the azimuthal projection of induction equation and of Navier-Stokes equation, given
in their dimensionless strong forms by Eqs. (111.B.3) and (I1.B.4). These equations are
completed with the BCs (111.B.5), (11I.B.6), (1ll.B.7) and (1I.B.8), (I1.B.9). The latter BC
involves the coupling variable v7 ., which links the bulk dynamics with surface rhe-
ology. This variable is ruled by the Boussinesg-Scriven ordinary differential equation
(ODE) (Il.2.10).

Egs. (11.B.3) and (II.B.4) are Poisson’s partial differential equations, whose weak
form determination is a classical mathematical problem. By the way, it is directly im-
plemented in adequate mathematical modules called "coefficient form PDE" in Com-
sol; hence, these weak forms are not detailed here (see. [59] for further details). The
(motionless and rotating) wall boundary conditions are defined in subsequent nodes.
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The treatment of the JMB at the interface, though, is worth further investigation,
because it is not directly available in Comsol. Indeed, the BC (II1.B.10) is taken into
account through the module "weak form boundary", which requires the weak form
calculation. Let us first remind the strong form of the JMB:

d /1 d dv}
*_ % 9 _
BO’?SF(FF(’ ”es>>— £l i

z'=1

This strong form is then multiplied by the test functions w and integrated along the
interface:

To.
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Now, let us focus on the weak contribution due to the left-hand term of the integrand,
i.e. the one linked to the surface viscous shearing. This term is integrated by parts, in

order to lower the order of derivatives. This yields, assuming w(7; /h) = w(r,/h)=0:
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The right-hand term of Eq. (11l.B.59) does not require further simplification, since
it is the (bulk) source term, that we can directly use without further investigation.
Eq. (111.B.59) must remain true whatever the considered test function w. As a conse-
quence, the weak formulation of the azimuthal component of the JMB at the liquid
surface, that we shall implement in the weak form boundary module, is written:

dw (dovgs vy 97
s 4y < dr* +7>+w(7 ) dz*

=0. (1.B.60)

z¥=1

Numerical treatment of boundary data discontinuity at the bottom corners

At the inner and outer side-walls, a no-slip boundary condition is normally im-
posed for velocity. However, there is a boundary discontinuity between the inner or
outer (motionless) side-walls and the rotating floor. This discontinuity may lead to
non-physical numerical artefacts, which could propagate from the corner and thus
alter the core-flow patterns. In order to circumvent these difficulties, two match-
ing functions are introduced for the azimuthal component of velocity, as shown in
Fig. 1I.B.7. These functions apply along segments of typical length & < 7;,7, (in-
dicative value: 8 =2.5 x 107*m) at the inner and outer walls of the annular channel
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cross-section. With these matching functions, a Couette-like profile for velocity is
classically assumed at the matching segments [83], which leads to:

vglr = 7.,2) = giﬂ<1_§) iZ i 5;‘5;9]] (I11.B.61)

\— {709(1—@ if z€[0,8], -

0 ifze]d8,h],

for the outer wall. Thus, velocity is imposed such that lubrication conditions in the
gaps are taken into account, the continuity of vy being warranted at the matching
points z = & at both walls. These lubrication conditions are not simply a numerical
technique. They stem from the true experimental layout, where this gap concretely
exists between a rotating dish (rotating floor) and an inert cover (side walls), as de-
scribed in Fig. I1.B.8.

b / Free surface %
Inert 4
_)é_g(_)yf_:r_ ! Galinstan
€Z(££/ /Gap Gap\ =
ol P S T nE 7
€9 & :Rotating dish o
1 rl‘ G 7'0
T
12

Figure 11.B.8 - Lubrication gaps between the rotating floor and the motionless side-walls, with respect
to the experimental layout (see e.g. Mannheimer et al. [31]).

Numerical implementation

The discretisation of the physical problem is performed on the basis of quadratic
Lagrange elements. With respect to numerical methods, due to the basic layout of
the computational domain, a fully-coupled approach is implemented, based on the
full Jacobian matrix as one entity. This approach is based on the Newton-Raphson
method, which linearises the problem based on the current solution, at each iteration.
A linear stationary direct solver is implemented to solve the linearised problem, z.e. the
multifrontal massively parallel sparse direct solver (MUMPS), based on lower-upper
(LU) factorization (see [84] for further details).

Finally, the implemented mesh is displayed in Fig. 111.B.9. It consists of 18 036 ele-
ments, mainly triangular, with mesh refinement on the Galinstan domain. A specific
rectangular boundary layer mesh is set up at the boundaries of the fluid domain. Typ-
ically, the relative thickness of the first layer is set so as to be much lower than the
reciprocal of the Hartmann number, which monitors the thickness of the physical
boundary layers.
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Figure 1l.B.9 - Mesh used for the 2-D numerical computation (18 036 elements). Inset: zoom on the
boundary layer mesh.

lll.B.2.d Numerical results

Agreement with the matched asymptotic expansion
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(@) - Azimuthal velocity contours, Ha=50, (b)- Azimuthal velocity contours, Ha=230,
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(c) - Vertical electric current along cutting line (4) (d) — Radial electric current along cutting line (B)
(Core and Shercliff layers). (Core and Hartmann layers).

Figure 1I1.B.10 - Comparison between 2-D analytical and numerical results for velocity (top) and electric
currents (bottom), with respect to various (Ha, Bo, ) values. The electric current densi-
ties are normalised with respect to the maximum electric currentJ_, = 6.8 x 10> A-m—2
reached in all cases, i.e. for Ha = 50.
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In this section, the 2-D numerical results are benchmarked with the analytical re-
sults described in Sec. 11.B.1. Some results about the velocity field and electric currents
are shown in Fig. 11.B.10. The general agreement between analytical and numerical
results is satisfying, particularly for velocity, where the contours resulting from the
two different approaches are superimposed, either for Ha>>Bo, ~ (Fig. I11.B.10(a)) or
Hak BO’)S (Fig. 111.B.10(b)). Now, concerning the electric current densities, a little
discrepancy can be noted for the axial electric current flowing in the Shercliff lay-
ers (Fig. 111.B.10(c)), for the curves corresponding to the case Ha>> Bons (for instance,
curves (1) and (---)). However, the general agreement is quite satisfying for various
(Ha,Bo, ) values, especially for the radial electric current flowing in the Hartmann
layers (see Fig. 11.B.10(d)), where the different curves are qualitatively and quantita-
tively the same.

The boudary data discontinuity

—— Analytical solution
—— Numerical solution, without corrections
Numerical solution, with corrections

Figure lIl.B.11 - Comparison of the analytical and numerical results about right-wall velocity for
(Ha,Bo, ) = (30, 10).

The consequences of the numerical treatment of the boundary data discontinuity
at the bottom corners are analysed in this section. The velocity profile at the right
wall is shown in Fig. 111.B.11, for the cases corresponding to the analytical calculation,
the numerical simulation without the "matching lines" (see above) and the numerical
simulation with the matching lines. The analytical results predict an exponential de-
cay of the velocity v; over a wide range of r* values. The numerical result without
corrections shows a non-physical negative peak value near the wall, and then rapidly
matches the zero-value. With respect to the corrected numerical results, a linear decay
is observed from the true v} = 1 value in z* = 0 (corresponding to the maximum ve-
locity at the end of the rotating floor) to a vanishing velocity in z* = §* = § /b (in link
with a true experimental layout, see Fig. 111.8.8). The velocity is in this case confined
to the lubrication gap area, which shows the relevance of our numerical treatment.
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Lower Ha limit of the agreement between matched asymptotic expansion and numerical
simulation

As previously said, the analytical calculation is based on the assumption Ha>> 1,
allowing for the matched asymptotic expansion to be performed. This stringent con-
dition does not apply to the numerical simulation, as long as the inertial effects can be
neglected. This is therefore interesting to determine the critical Ha value at the onset
of which the two methods show a significant discrepancy. For this purpose, v; and
j; profiles along the cutting line (A) are displayed in Fig. 111.8.12 for several small Ha
numbers, at a fixed BO'IS =1 value.

0.8 —

0.7 —

0.6 —

An.:  Num.2-D:

: Num.2-D:

a

02 [ ‘ °

(a) - Azimuthal velocity along (A) for various Ha (b) - Vertical electric current along (A) for various
values (Bo,is =1). Ha values (Bo%_ =1).

Figure 1l.B.12 - Comparison between 2-D analytical and numerical results for velocity and axial electric
current density, along the cutting line (A), with respect to various Ha values (Bo, =1).

Concerning velocity, the discrepancy is hardly noticeable (Fig. I1.B.12(a)). A major
difference consists of a non-vanishing velocity at the side walls for a very low Ha =2
value (curves (- --) and (©)). This non-physical result (the side-walls being motionless
in this area) is explained by the fact that in the analytical study, the so-called inner
corner regions have been left out of the reasoning. The typical cross-section of such
regions is O(Ha™1) x O(Ha™!), which means that their influence on the flow is all
the stronger with lower Ha values (Ha = 2 here).

The discrepancy is more obviously observed in Fig. I11.B.12(b), concerning the elec-
tric current density j*. For Ha =2 (curves (---) and (©)) or Ha =5 (curves (—- —) and
(1)), the results significantly differ from each other, whereas for Ha = 10 (curves (——)
and (0)) or Ha =15 (curves (—) and (4)), the agreement is quite satistying. As a con-
sequence, the value Ha = 10 can be proposed as a threshold value above which the
matched asymptotic expansion proves relevant.

11.B.3 Conclusion: what about inertia?

Based on both an original analytical investigation and a numerical simulation,
the coupling mechanisms between the rheology of a liquid surface and a supporting
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MHD bulk flow have been successfully investigated in this chapter. The competi-
tive effects of surface viscous shearing and electromagnetism have been highlighted:
surface rheology is indeed found to monitor the generation of the Hartmann layers,
leading therefore to a major change in the topology of the electrical circuit, which dra-
matically affects the overall MHD core flow. The comparison between the analytical
and numerical results show a good agreement, and allows for the value Ha = 10 to be
selected as the threshold value for the relevance of the matched asymptotic expansion.
This first part has also pointed out the need for the Hartmann number to reach values
as high as Ha = 100, in order to magnify the coupling effects. This scaling law is used
as a dimensioning criterion for the experimental test-bench in Sec. I1.D.1.

So far, the inertial effects have been disregarded, through the following assump-
tion: Ha > Re. In the following chapter, this constraint is loosened, not only to bring
viscous dilatation into play, but also to establish scaling laws about the angular veloc-
ity of the rotating floor, with the aim of achieving the design of Madip.
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lll.C 2-D 1/2 topology of the MHD viscometer: inertia and
surface dilatation

In this chapter, the general coupling between both surface viscous shear and dilatation of the
liquid surface and the supporting 2-D 1/2 annular MHD subphase flow is set, by taking the iner-
tial effects into account. First, we focus on the purely hydrodynamic interplay between the main
azimuthal flow (induced by a rotating floor) and the secondary overturning flow (generated by cen-
trifugation), coupled with the surface rheology of the gradually oxidising interface. Afterwards, the
flow is subjected to an outer vertical magnetic field, and the focus is put on the competition be-
tween centrifugation and electromagnetic effects. This competition, in link with surface dynamics,
leads to a variety of atypical MHD flow patterns, allowing us to determine distinct experimental
working conditions for the Madip experiment. To a certain extent, the following content has been
published in [85].

lll.C.1 Physical modelling and numerical implementation

lll.C.1.a Outlines
Significant physical issues in link with the 2-D 1/2 topology

The previous chapter focused on the analytical and numerical investigations of
the 2-D flow topology of the annular MHD viscometer. These benchmarking studies
are based on the assumption Ha > Re. This allowed us to ignore the inertial effects,
and to highlight the competitive effects between surface viscous shearing and a strong
transverse uniform magnetic field. Typically, it has been shown that surface rheology
actually monitors the electrical activation of Hartmann layers.

For the present chapter, no particular assumptions have been made concerning
the values of Re and Ha (except that Re < 10* in order to avoid turbulence issues, see
Sec. lll.A.1.c). Consequently, a swirling flow occurs when Ha < Re, leading to inertial
centrifugal effects (see Sec. IIl.A.1.b). As highlighted in Sec. I1.A.2.b, depending on the
relative values of Ha and Re, the flow switches from 2-D to 2-D 1/2 topology, which
significantly affects surface rheology. As a consequence, a new rheological parame-
ter is brought into play at the interface, linked to surface viscous dilatation, which
might affect core flow. Furthermore, interacting with the outer magnetic field, the
centrifugal effects generate an original MHD flow, which in turn competes with sur-
face rheology. Their coupling is now investigated.
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Depending on the externally applied magnetic field and on the imposed angular
speed, the model could be used to determine distinct experimental working condi-
tions by establishing scaling laws on the values of the Reynolds and the Hartmann
numbers, beyond the goal of highlighting the physical mechanisms of this coupling.

Numerical approach

In this chapter, we need to show how the addition of inertial effects may impact
the annular MHD flow patterns. The resulting overturning flow is generated by the
non-linear terms in the Navier-Stokes equations, in which viscous and electromagnetic
terms must be kept as well, in order to investigate the switch from 2-D to 2-D 1/2 flow
topology. The difficulty to solve analytically for the full set of Navier-Stokes equations
leads us to choose a discretised formulation, z.e. a numerical approach. For the same
reasons as those exposed in Sec. I11.B.2.b, we decide to implement the modelling in the
Comsol multiphysics FEM software. Unlike the previous modellings, we choose to
adopt a potential formulation in this chapter, which reveals more convenient to handle
the different physical quantities. Besides, it is interesting to compare the results given
by two different approaches on the same physical problem, for the sake of multiple
benchmarking.

As it happens, this numerical simulation is systematically benchmarked with var-
ious asymptotic cases. For the classical annular viscometer layout (with no applied
magnetic field), the first benchmark takes inertia and surface viscous shearing into ac-
count [68]. The purely hydrodynamic results are then extrapolated to the case where
surface viscous dilatation significantly affects the bulk flow. Then, the outer mag-
netic field is added, and the numerical results are benchmarked with the supporting
2-D analytical study [77], which highlights the interactions between surface viscous
shearing, electromagnetism, and creeping flow. Once this benchmarking case has been
secured, a scaling law is defined to emphasize the interactions between the MHD bulk
flow (with inertial effects) and surface rheology (including both surface shearing and
dilatation). Their most salient features are then displayed and discussed.

lll.C.1.b Notations and assumptions

The hydrodynamic, electromagnetic and rheological assumptions are essentially
the same as those exposed in Sec. Ill.B.1.a for the purely 2-D case. The only (but im-
portant) difference is that in this chapter, Re is increased up to the value Re < 10* in
order to study inertial effects, so that the criterion Ha>> Re is invalidated. Further-
more, the flow of the liquid surface is still modelled through the JMB, but the latter
now involves two rheological parameters: not only surface shear viscosity, 7, but
also surface dilatational viscosity, x.

A distinction is made between the (main) azimuthal flow vy, and the (secondary)
meridian flow (v,, v, ) (also referred to as overturning flow). When the electroconduc-
tive liquid is subjected to an outer magnetic field, electric current densities are induced.
Once again, the (main) components (7., 7,) (due to the main azimuthal flow) are dis-
tinguished from the (secondary) component jj (due to the secondary meridian flow)
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leading to a so-called 2-D 1/2 flow topology. Note that despite the generation of the
overturning flow, the axisymmetric assumption still holds.

ll.C.1.c Geometry, governing equations, boundary conditions

Geometry

For symmetry reasons, we can only focus on a cross-section of the annular chan-
nel. Note that the out-of plane components of MHD quantities must be solved, due to
the swirling flow. The geometry of the numerical problem, along with the conditions
implemented at the boundaries of the calculation domains, are given in Fig. IIl.C.1.

B = B,e r Infinite box: gas at rest

Inner wall (B) — Outer wall
T=vp(2)eg) 0= ppving v=001 1T=0(2)é
j n=0 (A)  Galinstan j n=0

- |

2l 8 | > &

% ¢ Rotating floor: o = r£2¢, ; n= O‘ T
vg(z2)=7r,2(1—2/8) vg(z)=7r,2(1—2/8)

Figure lll.C.1 - Geometry and boundary conditions of the channel crossed-section used for 2-D % nume-
rical computation.

Bulk flow
Electromagnetism
As previously said, a potential formulation is used to describe the electromagnetic

part of the problem. The basic equations are derived in Sec. 1l.A.1.d (see Egs. (II.A.17)
and (I1.A.18)), and are recalled here; the Maxwell-Ampére equation writes

w_ri<cu_ri(ﬁ>>—,um7xcu_ri(ﬁ)-huo@(qs):a, (1.C.1)
and the continuity equation
div<y077 x @(ﬁ) — yoér_ﬁ(gé)) =0, (I1.C.2)

where A is the magnetic vector potential, and ¢ is the electric potential. These two
equations are completed by generalised Ohm’s law:

j=—0 <@(¢)+6x§o>, (.c.3)
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and the Coulomb gauge, to define uniquely A, ie div SIZD =0.

As shown in Fig. I11.C.1, the electromagnetic boundary conditions first consist of
an externally applied constant axial magnetic field, imposed through an “infinite” box
surrounding the fluid area: B, = Bye,. As unveiled in Sec. I1.A.3.a, the assumption
Rm< 1 yields: B,e, ~ Bye,, throughout the entire computational domain. The re-
sult is, in terms of the magnetic vector potential:

1 QTAQ
= B,. (I.c.4)

r Jr

The second electromagnetic boundary condition is the electrical insulation at the fluid
boundaries (side-walls, rotating floor, and liquid/gas interface), detailed in Sec. I1.A.3.a:
K =0. Using Eq. (I11.C.3), it writes with respect to electric potential:

-

n
fluid walls

-n=0, (n.c.s)

—_— L o
o <—grad(gb) +7 % Bo>
fluid walls

where 7 is the unit normal vector at the considered boundary - see Fig. 111.C.1.
Fluid mechanics
A primitive pressure-velocity formulation is used, based on the complete set of

Navier-Stokes equations, previously given in Eq. (11.A.26) (see Sec. Il.A.2.b for further
details) and reminded here. The governing equations are

div(z?) =0, (I11.C.6)
for the continuity equation and
e AN — -, =
J <7} . grad> v =—gradp + nAT+ £, (n.c.7)

for the Navier-Stokes equations. The coupling term ]FL is the Lorentz force, defined
as fi = J X B, within the low-Rm approximation, which can be explicitly written as
follows, using Eq. (11I.C.3):

a
_g_(f + vyb,
- —_— . -
j=0 <—grad(¢) + 0 % BO> =0 —v, B, , (In.c.s)
¢
T 0z
—v,Bg
fi=jixB,=0 Bo<g—9f—v930> : (I1.C.9)
0

Let us now examine the hydrodynamic boundary conditions shown in Fig. Il.C.1,
starting with the no-slip boundary condition at the motionless side-walls:

—

f()(r:ri,z):f(—f(rzro,z):a (|||.C.10)
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At the inner and outer side-walls, in order to circumvent the boundary data disconti-
nuity issue, we adopt the same approach based on lubrication gaps as in Sec. I1.B.2.c,
resulting in the following BCs along the provided matching segments:

o _ _ L |nr(1-%)é ifze[0,8],

‘U(V_Vi,Z)—’U&(V_ri,Z)eg—{6 1fz€:|8’b], (|||C11)
for the inner wall and

. . (1 if z€[0,8],

o(r=r,2z)=v4(r =7,2)e5g= {g < >69 ;fjegé\ h]] (n.c.12)

for the outer wall. The last remaining velocity boundary conditions at the liquid
gas/interface are given by the surface rheology equations, governing surface velocity
¥ dynamics - see Eq. (II1.C.14) and (1II.C.15):

U(r,z=h)=04(r)=v,4(r)e, + vys(r)ép. (1.C.13)

Dimensionless quantities

As mentioned above, when normalising MHD equations, two scaling parameters
emerge, i.e. Ha=Byh/0/n and Re = pf2r2 /5. A third one can be used instead of
Re, i.e. the Stuart Number or interaction parameter: N = Ha?/Re (see Eq. (II.A.31)).
Classically in MHD, a (Ha,N) formulation is favoured, where N governs the actual
competition between inertial and electromagnetic effects. However, in this work,
Ha and Re are preferred for the following reasons. First, some results are displayed
for a purely hydrodynamic flow, meaning that N =0, regardless of the value of the
Reynolds number. Moreover, the Couette-like layout of the problem, with an im-
posed velocity at the rotating floor, makes us tend towards the (Ha, Re) description,
since the boundary condition at the bottom of the channel is directly linked to Re
through the angular speed 2. Consequently, by monitoring the Reynolds number,
different dynamic configurations are described.

Echoing Sec. 111.B.1.1, the bulk dimensionless quantities of interest, superscripted
*, are then defined as follows:

+ the radial coordinate r* = (r —r;)/(r, — 1;);

- the axial coordinate z* =z /b;

* the velocity 9* =9/V, where V =7,02. The azimuthal component v}, and
the meridian components (v, v?) allow for analysis of the main and secondary
MHD bulk flows, respectlvely,

- the electric current densities: j* = / ], where ] = 0B, V. The meridian com-
ponents (;, j ), and the azimuthal component j; allow for analysis of the main
and secondary MHD bulk flows, respectively;

- and the Lorentz force: fL fL /f1» where fi =0 B3V The radial component
FY, and the azimuthal component F; allow for analy51s of the main and sec-
ondary MHD bulk flows, respectively.
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Surface flow

Surface rheology

The boundary condition (11.C.13) brings a new unknown into play, namely in-
plane surface velocity Us. Contrary to the previous chapter, where only the azimuthal
component of the JMB was brought into play, the surface dynamics are now governed
by the two following components of the JMB (see Eq. (I1.B.6)), in link with the swirling
flow generated by inertial effects:

(7 +0) dzvrs_i_ldfurs v,5\_ 99, (1.C.14

NgTXg 1,2 - dr 2 )77, z:b, .C.14)
dz’IJ@S 1 d’()@s ’U@S 9’09

- —— | =n —— I11.C.15

V}S< dr? + r dr r? 7 Jz b ( )

We remind that the left-hand term of Eq. (11I.C.14) represents a combination of surface
viscous shear and surface viscous dilatation along the liquid surface, while only the
surface viscous shear is present in Eq. (11I.C.15), where n¢ and x are the surface shear
and dilatation viscosities, respectively. The right-hand terms of both equations are the
liquid shears vertically imposed from the supporting subphase flow.

Finally, to solve for the JMB, the following Dirichlet end-point boundary condi-
tions for surface flow are required:

v.s(r=r)=v.5(r=r,)=v45(r =7;)=vgs(r =7,)=0. (In.c.1e)

Dimensionless quantities

As detailed in Sec. 11.B.2.d, normalising Eqs. (11.C.14) and (|11.C.15) leads to the def-
inition of two rheological scaling parameters:

_7s
’75_,]]9’

_%s
5_,7/)’

where Bo, and Bo,,_ are the surface shear and surface dilatational Boussinesq num-
bers, respectively. It should be noted that, compared to the previous chapter, Bo, is
a new feature emerging due to the inertial effects.

Finally, the dimensionless quantities of interest for surface dynamics consist only
of surface velocity: o5 =75/V; v and v} allow for analysis of the main and sec-
ondary surface flows, respectively.

Bo Bo, (11.C.17)

Numerical implementation

Similarly to the 2-D numerical simulation introduced in Sec. I11.B.2, the governing
equations are discretised in Comsol. Concerning classical electromagnetic and hydro-
dynamic equations, this discretisation is performed through the so-called "magnetic
and electric fields" and "laminar flow" Comsol modules. With respect to surface dy-
namics, Egs. (11l.C.14) and (I1.C.15) are discretised along the interface by calculating
their respective weak forms, following the aforementioned method in Sec.lll.B.2.c.
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With respect to numerical methods, the non-linear physical problem is linearised
by using once again the Newton-Raphson method, in combination with the linear sta-
tionary direct solver MUMPS, based on LU factorisation. Finally, the implemented
mesh is displayed in Fig. 11.C.2(a). It consists of 27 524 elements, mainly triangular,
with mesh refinement on the Galinstan domain. As shown in Fig. I1.C.2(b), a specific
rectangular boundary layer mesh is set up at the boundaries of the fluid domain, and
a large-extent box is defined in order to take BC (1I1.C.4) into account. Typically, the
relative thickness of the first layer is set so as to be much lower than the reciprocal
of the Hartmann and Reynolds numbers, which both monitor the thickness of the
physical boundary layers.

10h
Large-extent box Large-extent box
7h
Boundary layer
mesh
Galinstan
(a) - Global view. (b) - Zoom on the boundary layer mesh.

Figure lI.C.2 - Mesh used for the 2-D 1/2 numerical computation (27 524 elements).

lll.C.2 Results and interpretations

l.C.2.a The annular hydrodynamic viscometer (Ha = 0)

In this section, the interaction between the purely hydrodynamic subphase flow
and the surface rheology is analysed. Let us first validate the 2-D 1/2 numerical mod-
elling with a benchmarking asymptotic study.

The deep-channel viscometer benchmark: inertia and surface viscous shearing

The first selected benchmark is the DNS of the classical deep-channel annular
viscometer (with no outer magnetic field, z.e. Ha = 0), performed by Hirsa et al. [68],
previously introduced in Sec. lll.A.1.c. In this case, only the hydrodynamic issue is
brought into focus, taking inertia into account, but considering that the interfacial
condition along the radial direction (Eq. (11.C.14) of the present study) reduces to no-
slip, which is similar to the condition Bo x; — 00 (see Eq. (I.A.6)). Asa result, the role
of surface viscous shearing alone is enhanced, through the parameter Bo

In this part, relevant quantities must be temporarily redefined to fit with Hirsa
et al. notations and typical values, and are subscripted y; (corresponding to Hirsa
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layout). Thus, the height and the inner and outer radii of the channel are noted by,
7,4y and 7,5y, respectively. The surface shear Boussinesq number used in this part
is Bo, 111, =75/n7,p1, defined in Eq. (II1.A.7). The definitions of the other relevant
physical quantities are unchanged (particularly the Reynolds number Re).

Some results obtained for the same geometrical layout as Hirsa et al. are then
shown in Fig. 11.C.3. The quantities displayed are:

+ the contours of azimuthal vorticity w* = Jdv’/dz* — v’ /Ir*, that governs
the meridian flow, in Fig. 111.C.3(a), for different BOUSHL and Re values;

- the contours of axial angular momentum o* = v, in Fig. 111.C.3(b), for differ-
ent Bo, 1y and Re values;

- surface azimuthal velocity v, in Fig. 11.C.3(c) and 111.C.3(d), for BonsHL =0.01
or 10, respectively, and various Re values.

Hirsa et al.

Present study. Color map:
blue (w* =-0.8) to red (w* = 1.9).

Present study. Color map:
blue (w* =-6) to red (c* = 30).

Hirsa et al.

Hirsa et al.

Present study. Color map:
purple (¢* =0.03) to red (@* =0.9).

Present study. Color map:
purple (@* =0.03) to red (¢* =0.9).

(@) - Azimuthal vorticity: Re=250, Bo, ;;; = (b)- Angular momentum: Re=250, Bo, ;y; =
0.01 (top), Re = 8000, Bo, ;5; =1 (bottom).

0.5

0.01 (top), Re = 8000, Bo, 45; =1 (bottom).

1.5
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0.2 Hirsa et al.
Re=62.5
_____ 250 Present study.
0.1 1000 Re=250
...... 4000 + Re=1000
—-—— 16000| | Re=4000
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0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

*

r

(c) - Surface azimuthal velocity: BonsHL =0.01, (d) - Surface azimuthal velocity: BonSHL =10, var-

various Re.

1ous Re.

Figure III.C.3 - Numerical benchmark for the purely hydrodynamic 2-D ¥ flow [68].

The agreement between both studies is quite satisfying. Both models predict a
secondary overturning flow due to inertial effects, intensifying with Re. At low
Reynolds numbers, the angular momentum diffuses from the rotating floor into the
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liquid metal (see Fig. I1.C.3(b), top). For higher Re, an Ekman layer appears near
the rotating floor, concentrating the vortex lines. Due to the outer wall, this layer
is turned vertically into a jet-like flow, and then turned inwards at the interface, ad-
vecting fluid with large angular momentum radially inwards. This results in a spin-up
of the fluid interface increasingly closer to the inner wall (see Fig. 111.C.3(b), bottom,
and Fig. 11.C.3(c)).

With respect to the impact of surface viscous shearing, it can be seen in Fig. 111.C.3(b)
thatif Bo, issmall (top), the vortex lines are normal to the liquid surface, and if it is
large (bottom), then the lines are tangential to the liquid/gas interface, evolving con-
sistently from a free surface (Neumann) to no-slip (Dirichlet) boundary conditions.
Consequently, the azimuthal velocity v decreases as Bo, increases, as seen when
comparing Figs. 11.C.3(c) and 11.C.3(d). In the case where Bo, islarge enough, the in-
terface is only governed by surface viscous shearing, and the vertical bulk shear taken
at the vicinity of the interface does not affect it. This leads to a vanishing Poiseuille-
like velocity profile along the interface, as shown in Fig. 111.C.3(d).

The shallow annular channel: inertia, surface viscous shearing and dilatation

Now that the relevance of hydrodynamic numerical simulation is proved, let us
return to the geometrical layout of the shallow annular channel. In this section, the
interaction between inertia and surface rheology is particularly emphasised for bulk
flow, while the previous benchmark mainly focused on surface phenomena. The re-
sults are displayed in Fig. I1.C.4.

Influence of Bo
ns

The way in which surface viscous shearing affects the purely hydrodynamic flow
through Bo, is investigated in this section, by comparing Fig. I1.C.4(a) and I.C.4(b)
(Bo, is set negligibly small: Bo, = 107*). For the azimuthal flow v}, velocity pro-
file evolution with respect to Bo, is similar to the previous benchmark, with slight
changes due to the difference in geometrical layouts between the deep and the shallow
channel viscometer.

With respect to the overturning flow (v},v)), an increase in Bo, leads to flow
homogenisation, as shown in Fig. 1Il.C.4(b). When BO’)S =10"*, i.e. in the case where
the liquid surface acts similarly to a free surface, the main vortex governing the over-
turning flow is mainly located in the outer part of the channel. WhenBo, = 10, this
vortex expands radially inwards throughout the whole cross-section of the channel.
This difference can be accounted for by the nature of the interface boundary condi-
tion. When the latter is similar to a free surface, the momentum injected from the
rotating floor is dissipated in the bulk and at the sliding interface, with a significant
surface radial velocity (see Fig. Il.C.4(a)). When the liquid surface is rigid (vanishing
surface velocity, see Fig. I1.C.4(b)), it no longer participates in viscous damping of the
injected momentum. Bulk viscous damping is therefore enhanced, leading to expan-
sion of the main vortex inside the subphase flow.
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Figure .C.4-Bo, and Bo, impact on the velocity field for the classical annular viscome-
ter layout (Ha=0).

The meridian flow (v7,v7) is log-scaled by the magnitude
exp ((In (27, 2)I/1(2}> 2 Mmas ) / (14 £))s p = 0.5 for 2), b), ©).

Note that when Re varies at fixed Bo

ns> overturning flow magnitude increases
with Re, and the main vortex governing the secondary flow is enlarged. Momentum

is then increasingly confined within the Ekman layers, similarly to what is observed

the previous benchmark for the main flow. However, the qualitative impact of Bo,
on the meridian flow remains identical irrespective of Re.

Influence of Bo %

The way in which surface viscous dilatation affects the purely hydrodynamic flow
through Bo,  is now investigated, by comparing Figs. Ill.C.4(a) and lIl.C.4(c) Bo, is set
negligibly small: Bo, = 10~%). Concerning the azimuthal flow, an increase in Bo,

does not lead to a significant change in the velocity profile v}. It seems only that the
main flow is less efficiently advected by the secondary flow.
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This observation is confirmed by turning to the analysis of the meridian flow
(v}, v}). Contrary to what is observed for Bo, , in this case the main vortex governing
the secondary flow decreases when Bo,,_increases in Fig. 11.C.4(c). This phenomenon
is quite unexpected, because for the secondary flow, the boundary condition at the lig-
uid surface along the radial direction is the same both in the case of an infinite value
for both Bo, - and Bo, , i.e. a vanishing v (where the interface is similar to a non-
sliding wall, see Eq. (II1.C.14)). However, as Bo, also governs the azimuthal boundary
condition for the main flow, when the surface viscous shear is very high, the main az-
imuthal flow must also match with a vanishing v}, (see Eq. (Ill.C.15)). Consequently,
there is a complete deflection of momentum at the interface, favoring expansion of
the main overturning vortex as mentioned above (Fig. 111.C.4(b)). For surface dilata-
tion, even when Bo,, greatly increases, it has no direct consequence on the boundary
condition vj¢ for the main flow. Therefore, forBo, = 10%, the overturning flow must
match with a vanishing value of v ¢, whereas the main flow remains unchanged at the
vicinity of the interface (with a fixed Bo, = 10~*). This favours damping of the main
vortex governing the secondary flow near the interface observed in Fig. I1.C.4(c). Note
that, as it is the case for Bo, , changing the value of Re does not affect the qualitative
impact of Bo,  on the (secondary) centrifugal flow.

lil.C.2.b The annular MHD viscometer (Ha # 0)

The purely hydrodynamic 2-D 1/2 flow has been fully investigated; let us now add
an outer magnetic field and turn to the annular MHD viscometer layout. For this
purpose, the electroconductive flow is now subjected to an outer magnetic field Byé, .
This time, the interaction between the MHD subphase flow and the surface rheology
is investigated. We shall begin with a benchmarking asymptotic study to validate 2-
D 1/2 MHD numerical calculations.

MHD, no inertia and surface viscous shearing

The second benchmark is constituted by the analytical and numerical study of the
2-D annular MHD flow, performed in Sec. I1.B, within the limit of ignoring inertial
effects when Ha > Re. Some results are shown in Fig. I11.C.5. Note that cutting lines
(A) and (B) are defined in Fig. 11.C.1, and allow for analysis of the MHD core flow and
the Shercliff or the Hartmann layers, respectively. In addition to this first benchmark,
the solutions derived by Mannheimer and Schechter [31] (see Eq. (11.A.2)) and Davoust
et.al. [72] (see Eq. (lll.A.4)) are displayed, to test the relevance of the 2-D 1/2 modelling
in the asymptotic limit Ha — 0 (see Fig. 111.C.5(c)).

The general agreement between all studies is once again quite satistying. They
predict radically different topologies for the MHD flows, depending on the relative
values of Ha and Bo, . When Ha>>Bo, , the 2-D tendency with exclusively radial
velocity gradients (except near the side-walls) is recovered, as seen in Fig. 11.C.5(a)
(see Sec. I1.B.1.f for further details). In this case, the electric current density is es-
sentially confined to the Shercliff layers, with two electric loops closing up near the
side-walls (see Figs. 111.C.5(d) and I1l.C.5(e), in the case (Ha,Bo,]S) =(50,0.01)). Now,
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Figure III.C.5 - Comparison between 2-D % modelling and 2-D analytical and numerical results for ve-
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(Ha=0: ¢), curves ---, x, ®), or for Ha > Re (no inertia: other curves), with respect to
various (Ha, Bo, ) values. The electric current densities are normalised with respect to

the maximum electric current ]

=6

max

.8 x 10 A-m~? reached in all cases, i.e. for Ha = 50.



PART Il | Surface rheology and stratified MHD flow: the annular MHD viscometer | 113

when Ha<Bo, , the three modellings consistently lead to the homogeneous “mo-
tionless” topology already investigated in Sec. IIl.B.1.f (Fig. II.C.5(b)). Due to strong
velocity gradients near the liquid/gas surface, and to current continuity, electric cur-
rent densities are now found to flow within the top and bottom Hartmann layers,
which are therefore electrically active, as seen in Fig. I1.C.5(e).

Scaling laws for inertial MHD and surface rheology interaction

2-D 1/2 numerical simulations, the reliability of which is demonstrated from the
previous asymptotic cases, can now be confidently extrapolated to conditions includ-
ing MHD of an annular swirling flow, coupled with surface rheology. For this pur-
pose, a scaling law is required to determine the relevant values of Ha and Re, for which
the interactions between the (main and secondary) subphase MHD and surface flows
are the most insightful. We choose the following criterion, based on the ratio of sur-
face velocities for each (Re, Ha) pair:

‘v*
rS
>0.01. (I11.C.18)
IU&S max
ves max
40 : —'5.08
1/12-D numerical study [ . x 107!
_ validity limie 775 =001 4.08
30— / / 7 max
/
Ha : /
Anal'yt.lcal 'stl%dy /™ Weakly 3.08
20 — validity limit /) swirling flow
/
- 2.09
10 No inertia
Bo, only Strong inertia 1.09
- Bo,, impact
5% 10' I 5% 10° 5% 10°
10! 2 : 0’} 10*
__ MS, Da studies : Re HL study
validity limit validity limit

Figure 1Il.C.6. Scaling law for determining the most insightful working conditions, in view of overall
coupling between MHD with inertia and surface rheology with both surface shear and dilatation. Here,
Bo, =Bo, = 107*. MS, Da and Co refer to Mannheimer and Schechter, Davoust, or Hirsa and Lopez
asymptotic solutions (see Sec. IIl.A.1.c), respectively.

The choice of this particular limit is explained in Fig. 111.C.6, which represents the
magnitude of this ratio compared with the values of (Re, Ha) pairs, for a classical free
surface BC (Bo, =Bo, = 10~*). In this figure, three main areas can be distinguished:
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first, the hatched one represents the area where inertia can be ignored. In this part,
which includes both 2-D analytical and numerical studies, the impact of surface vis-
cous shear only can be investigated. The validity limit of this area stems from the
criterion taken from [36] (about MHD secondary flows at high Ha numbers), stating
that inertial effects can be ignored as soon as:

h3Re? )
<1.
(r,—7;) eraz\/ Ha

(.C.19)

This criterion is indeed better adapted to the annular channel layout than the generic
criterion N = Ha? /Re > 1. As previously shown, the results of the matched asymp-
totic expansion and of the numerical simulations (within the limit of ignoring inertial
effects) are in fair agreement as soon as Ha > 10.

The second area is referred to as "weakly swirling flow". In this transitional zone,
inertia can no longer be ignored. However, the overturning flow is not strong enough
to stretch significantly the interface, and the magnitude of the ratio [0} ¢ /vj |y cOn-
tinues to be very small. Therefore, surface dilatation impact on bulk MHD is likely
to be negligible, and this "weakly swirling flow" area is left apart from the analysis.

The color-mapped area represents the working conditions for which the ratio
|07 ¢/ V) glmax = 0.01. Note that the purely hydrodynamic study by Mannheimer and
Schechter [31] or Davoust et al. [72] (for low Reynolds values), and Hirsa et al. [68]
(for higher Reynolds values) are also indicated as the abscissa axis Ha = 0. In this part,
surface radial velocity tends to become the same order of magnitude as the surface az-
imuthal velocity. As a result, surface viscous dilatation can become significant, and
may strongly interact with bulk flow through the Bo, number, in addition to surface
viscous shear.

The goal of this study is to highlight the secondary MHD flow due to inertia, and
emphasise the coupling between bulk MHD and surface viscous shear and dilatation.
To maximise the most salient interactions, we choose the working conditions match-
ing with the third area. Fig. I11.C.6 gives us the relevant scaling laws, i.e. for Re < 104, in
the following results, the value of the Hartmann number does not exceed the thresh-
old value Ha = 10.

MHD, inertia, and surface viscous shear

In this section, the influence of surface viscous shearing only (through Bo, ) on
main and secondary MHD bulk flows is investigated, in order to complete the analyt-
ical analysis [77]. For this purpose, the surface dilatation Boussinesq number is set to
be negligibly small: Bo, = 107+

Main MHD bulk flow
In this part, there is no need to produce any specific graph either for v} or for

(75577) (note that an overall view of MHD flow patterns is shown in Fig. 11l.C.8). De-
pending on the relative values of Ha and Re, the qualitative effects of surface viscous
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shearing on the velocity and electric current density profiles are essentially the same
as in the two previously detailed benchmarking asymptotic cases. For instance, when
Re=10° and Ha=5, if Bo, < Ha, then the fluid flow tends towards a rigid body
motion (though not really pronounced as Ha is not large enough) where the electric
current densities are confined within the (thick) Shercliff layers. If Bo, > Ha, an
electromagnetic damping of the flow is also observed (again not so marked), and the
Hartmann layers become electrically active, as described in Sec. I1.B.1.f. When the
Reynolds number is increased (for instance Re = 10*), the velocity profile evolution
with respect to Bo, is similar to Sec. I1.C.2.a. The influence of Ha is less significant,
as the flow is almost purely hydrodynamic.

Secondary MHD bulk flow

Let us now analyse the overturning MHD flow, beginning with the meridian ve-
locities (v, v), for which no specific figures are displayed (see Fig. 111.C.9 for an overall
view of MHD flow patterns). The outer magnetic field does not yield a significant
qualitative difference with respect to the purely hydrodynamic case (Sec. I11.C.2.2),
regarding the Bo, impact. Thus, for given (Re,Bo, ) values, an increase in Ha ac-
tually affects both the meridian velocities magnitude and topology. The main vortex
governing the meridian flow is increasingly diminished, due to MHD tendency to-
wards two-dimensionality. However, for given (Re,Ha) values, increasing Bo, still

. . . . S
leads to the stretching of the overturning flow, as observed previously in the case of
Figs. 1ll.C.4(a) and 111.C.4(b). Consequently, the most salient phenomena qualitatively
remain the same irrespective of the Re and Ha values.

—+ =
1 — (Re, Ha): Bope =10+ Bope =10t 6 —
3 s s
%1072 = (‘l‘x ‘: %) - g +O\+ x1072 - (Re, Ha: By =10~*  Bo,¢ =10%:
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(a) - Azimuthal electric current, Cutting line (A). (b) - Azimuthal electric current, Cutting line (B).

Figure lI.C.7 - Azimuthal electric current density Jos along cutting lines (A) for a) and B for b), for
various Re,Ha and Bo, values. j; is normalized by /., =3.96 x 10° A-m™, i.. the
maximum electric current reached in all cases, for the highest (Re, Ha) = (10%, 10) values.

However, this is very different when the azimuthal electric current ;7 is consid-
ered. The typical order of magnitude for electric current densities is in fact ] = 0 B,V
(we remind that V' is the order of magnitude of the main flow velocity v}, directly
imposed through the rotating floor). Consequently, an increase in Ha or Re leads to
higher orders of magnitude for the meridian electric current densities (5%, /) (linked
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to the main MHD flow). However, as j; =—0ov, B, (see Eq. (11.C.8)), there is com-
petition between the electromagnetic and inertial effects concerning the secondary
flow: when Ha (and therefore By) is increased, the radial velocity v, is damped due to
the MHD tendency towards two-dimensionality. Fig. I1l.C.7 shows the evolution of
with respect to different (Re, Ha, Bo, ) triplets, along cutting lines (4) and (B).

For given (Ha,Bo, ) values, an increase in Re causes a significant increase of j;
along (A) and (B), directly linked to the expansion and strengthening of the centrifugal
flow highlighted in Sec. 11I.C.2.a (see for instance curves (—) and (— - —), or (1) and (+)).

For given (Re,Bo, ) values, a variation of Ha results in many evolutions for 75,
from which no generaf principle can be deduced. It appears clear in Fig. 111.C.7(b) that
along (B), an increase in Ha leads to a drop of j; magnitude for low Bo, - values (see for
instance blue curves (—) and (——)), whereas for high Bo__values (green symbols, for
instance (©) and (1)), j; increases with Ha. This seems to be globally the contrary in
Fig. 111.C.7(b), along cutting line (A). This complex interaction expresses the aforemen-
tioned competition between electromagnetic and inertial effects, which have opposite
influence on the evolution of ;.

As already said, for given (Re,Ha) values, an increase in Bo, = helps to expand
the main vortex governing the secondary flow. Consequently, along (A), the curves
are flattened with high Bo, values, because j; is proportional to -v; (Fig. I11.C.7(0)).
Concerning (B), for Re =4 x 10°, Ha= 10 and Bo% =10~* (Fig. 11.C.7(b)), the main
vortex closes up without including the vertical cutting line, leading to a vanishing
J4 due to vanishing v (curve (——)). At higher Bo, = 10%, expansion of the main
vortex leads to the emergence of j; along (B) (curve (7). The overturning shape
of the centrifugal flow is consistently found, for the latter case as well as for other
(Re,Ha) values. This centrifugal profile is increasingly symmetric with respect to the
z* =0.5 axis with increasing Bo, , with the asymptotic value Bo, = 10* imposing a
vanishing 7 at the liquid surface (see for instance curves (—-—) and (+)).

We shall now make one final comment about this part, concerning the role played
by the Shercliff or Hartmann boundary layers. In the benchmarking case of Sec. 111.B
linked to the main MHD flow, the influence of these layers is significantly affected
by the surface viscous shear. In turn, they dramatically impact bulk MHD. For the
secondary MHD flow analyzed in this section, this crucial role of these layers has not
been found. This can be accounted for by the nature of the secondary MHD flow: ;;
is indeed purely electromotive, being only linked to radial velocity. Consequently, it
naturally closes within the MHD core all around the channel with no need for Hart-
mann or Shercliff boundary layers. The fact that there is no requirement for any
electric fields leads to a "passive" interplay between j; and the meridian flow (v7, v7).

Overall MHD flow patterns

To conclude this section about the impact of surface viscous shearing on bulk
MHD, let us display some figures allowing an overview of the overall MHD bulk flow.
Let us begin with the electric current densities j* in Fig. I1.C.8, for a given Ha=5.

Depending on the values of (Re,Bo, ), very interesting features appear. At low
Re, the main electric loops are located near the side walls in the Shercliff layers for



PART Il | Surface rheology and stratified MHD flow: the annular MHD viscometer | 117

-
/
—
- \ 1= J
0.8/,’ ‘/1/\ 0.8 P c\>
xz 1 06— — w2 | 0.6
z e’\ 0.4 — — T o2 “ 92\ 0.4 /,' 0\4 0.2
02— T ' o6 022 T " 05
ST s — ~ 2T o8 -
¢ 1 e, e 1 e,
(@-j",Ha=5, Re:103,Bons =10"* (b) - 7*,Re=10°, Ha=5, BonS = 10%. B
-
—
—
17 1=
08— /\/-K\ 08—~ J— —
=1 06— 1 06—
”“ 04 = — T 02 “Z\ 04— T 02
02 =4 — I 0.4 02 = i 0.4
o 0.6 4 0.6
2 0.8 — ~NOT 0 os —
€ 1 rre, ¢y 1 r'e,
(© - /" Re=10%,Ha=5,Bo, = 107" (d)-j*, Re=10%, Ha=5, Bo, = 10",

Figure l.C.8 - 7* for Ha=5. ;* is log-scaled by the magnitude exp((ln(||7*||/||f*||max))/(1 +p);p=15
for a), b), ¢), and 2 for d). Black (greyscale: darkest) arrows are essentially meridian,
while beige (greyscale: lightest) and blue (greyscale: intermediate) arrows correspond to
significantly (|771/[l7*[| > 0.01) positive and negative azimuthal components, respectively.

low Bo, values (see Fig. 11l.C.8(a)). An increase in Bo% magnifies the role of the Hart-
mann layers (see Fig. 11.C.8(b)). The impact of the overturning flow can be already seen,
with quite significant azimuthal perturbation throughout the cross-section (increas-
ing as Bo, increases). This effect is even more dramatic for very high Re numbers.
When Bo, = 107*, the azimuthal component j; is very strong, although the helical
pattern of current densities is not well-structured, because the main vortex governing
the secondary flow is still not expanded (Fig. 11.C.8(c)). For Bo, = 10%, this expan-
sion takes place throughout the entire cross-section, and the current density closes
up into a kind of well-developed helical pattern in the core flow (Fig. I1.C.8(d)). Since
the secondary flow is radially inwards along the surface, the electric current loops are
counter-clockwise when the channel is seen from above. Along the rotating floor, the
electric current loops are found to be clockwise. This is the reason why the electric
current is so twisted at the mid-height of the cavity.

In order to refine the analysis of the overall MHD flow patterns, Fig. 11.C.9 dis-
plays the velocity field 9*, along with the distribution of the Lorentz force density
Ji'» with respect to several (Re,Ha,Bo, ) values. At a given relatively low Re value,
if Bo, < Ha, the MHD tendency towards two-dimensioning is consistently high-
lighted by Figs. 11.C.9(a) and 11.C.9(b), the Lorentz force being essentially confined
within the Shercliff layers. If Bo, >>Ha (Figs. 11.C.9(c) and 111.C.9(d)) the previously

. LS . . .
observed electromagnetic damping of the flow is recovered (again not so marked), with
a (damping) negative Lorentz force at the bottom, and a (driving) positive Lorentz
force at the top, due to the electric current flowing in the active Hartmann layers. Fi-
nally, when the Reynolds number is increased (for instance Re = 10, in Figs. I11.C.9(e)
and 111.C.9()), the azimuthal velocity profile evolution with respect to Bo, - shows an
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Concerning f*, black (greyscale: darkest) arrows are essentially meridian, while beige

(greyscale: lightest) and blue (greyscale: intermediate) arrows correspond to significantly
(f51/1/71 > 0.01) positive and negative azimuthal components, respectively.

efficient advection of the main flow by the secondary flow. Momentum is then in-
creasingly confined within the Ekman layers, resulting into the well-developed helical
pattern in the core flow for the Lorentz force. This atypical flow pattern is due to a
significant Lorentz force radial component, in link with strong centrifugal effects. In-

creasing Ha does not provide any interesting new features, concerning the qualitative
impact of Bo, -on the MHD flow patterns.

MHD, inertia, and surface viscous dilatation

Following analysis of the impact of surface viscous shear on the overall MHD bulk
flow, we shall now investigate the interactions between surface viscous dilatation and
the subphase flow. As we focus only on the parameter Bo,, , the surface shear Boussi-
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nesq number is set to be negligibly small in this section: Bo, = 107,

Main MHD bulk flow

With respect to surface viscous dilatation effects, when an outer magnetic field
is applied, some interesting new features appear depending on the Ha value. Con-
cerning azimuthal velocity v, the results are shown in Fig. 111.C.10, for the particular
values Re = 10*, Ha = 10, Bo v = 10* (contours). These results can be compared to the
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rotating vortex. For b) 1 corresponds to the transitional radius between the two separate flow areas.

purely hydrodynamic case (Ha = 0) of Fig. Il.C.4(c). Contrary to the latter, the cross-
section can be divided into two sub areas in this case, as shown in Fig. 11.C.10(b). For
the inner part of the cross section, where the velocity magnitude is lower, the inertial
effects are weak compared to the electromagnetic effects. Consequently, the electro-
magnetic blocking previously observed predominates in this area. For the outer part,
inertia is preponderant, and the advection of v; by the overturning flow is strong,
as in Sec. lll.C.2.a. In between, a transitional area is found, governed by the balance
between inertial and electromagnetic effects.

With respect to meridian electric current densities, there is no need to display
some specific ﬁgures (an overall view for ;j* is shown in Fig. 11.C.13). For given (Re,
Ha) values, an increase in Bo,_does not affect the electric circuit: the current densi-
ties remain confined within the Shercliff layers. Contrary to Bo, , an increase in Bo
does not lead to the electrical activation of the Hartmann layers, which considerably
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restricts the impact on the main MHD flow.
Secondary MHD bulk flow

The interaction between surface dilatation and the meridian flow is now investi-
gated, by focusing on the quantities (v}, v}) and j;. We shall begin with the meridian
velocities, for Re = 10*, Ha = 1O’B0x5 = 10* (arrows), in Fig. 11.C.10. The first obvi-
ous impact of the outer magnetic field, when compared to the purely hydrodynamic
case of Fig. II.C.4(c), is the decay of the main vortex governing the secondary flow.
This vortex is increasingly confined to the outer part of the cross-section either with
increasing Ha, due to MHD tendency towards two-dimensionality, or with increasing
Bo, , as observed in Fig. I11.C.4(c) for the purely hydrodynamic case.

Moreover, depending on the (Re, Ha, Bo, ) values, the emergence of new flow pat-
terns is observed. In the transitional area mentioned above, a counter-rotating vortex
appears. Such a complex overturning flow pattern greatly depends on the values of
the three parameters (Re,Ha,Bo, ): it is not observed with Re = 10%, or Ha=35, or
Bo, =10"*. Thus, contrary to the BO’?s counterpart, the meridian velocities (v}, ")
may exhibit different flow patterns depending on the value of the Ha number.

The emergence of this new vortex seems to stem from a purely hydrodynamic
phenomenon. There are several hints endorsing this assumption. First, the radial
Lorentz force in this area is found to be always oriented in the opposite direction
to the velocity field, due to the Lenz principle. The purely electromotive azimuthal
component of the electric current density j; only results in electromagnetic braking
of this counter-rotating flow, and as such, cannot generate this new vortex.

Besides, the emergence of this new vortex seems to be directly related to the profile
of the curl of the centrifugal force, 5’7)52 /dz*, inareall, as shown in Fig. [1.C.11. When
Bo, =107*, this term is everywhere positive, giving rise to the single main vortex
ruling the swirling flow. When Bo, = 10%, this term is oscillating, and the changes
of sign are strongly linked to the emergence of counter-rotating vortices.

Finally, a purely hydrodynamic (Ha = 0) calculation has been performed, by keep-
ing only Area II for the calculation domain. The inner wall boundary condition is
modified as such: the velocity profile at r* = 7. resulting from previous MHD calcu-
lations is imposed at this fluid boundary. Despite some quantitative differences (due
to the lack of Lorentz force for instance), the qualitative aspect of the flow patterns
observed in Fig. 111.C.10(b) is consistently found in this hydrodynamic calculation. The
resulting flow topology could be phenomenologically related to the hydrodynamic in-
stabilities (due for instance to inflection points in the velocity profiles) appearing for
confined flows in rotor/stator configuration [76]. However, the study of the mecha-
nisms explaining the emergence of such instabilities is far from the scope of this work,
and the previous hypothesis is left for future prospects.

Whatever it be, it is assuredly the coincidence of the values of the three dimension-
less parameters (Re, Ha, Bo,, ) that leads to this original flow pattern: sufficiently high
Ha and Bo,,_values enhance electromagnetic blocking of the flow in the inner part
of the channel (by damping the main vortex governing the secondary flow, thus pro-
moting the rigid-body motion), whereas a high Re number allows inertial effects to



PART Il | Surface rheology and stratified MHD flow: the annular MHD viscometer | 121

1_1__ /ﬁ \
X 18 _| |Towards|__| Counter-rofatin: | .| Main vortex
7 | Areal vortex,area \ area
0.6 ] -~ 7 \
— ; 7 \
04— / \
Iv*? . \
26 / e
32 0.2 — Y y
_ / \ \/
L~ \ ;
0 — -~ 1
i N \ /
02— : o/
- Boyg =10 —  Boy, =10 __| .
-0.4 ] \\_ /
| | ! | ! ! |
1’.; 0.5 0.6 0.7 0.8
*
r

*

Figure I.C.11. The curl of the centrifugal force in Area II, along cutting line (A). 7. corresponds to the
transitional radial position of Fig. 11.C.10(b).

predominate in the outer part of the cross-section. The geometrical configuration of
the flow is therefore greatly modified, with the centrifugal flow concentrated against
the outer wall, leading to the hydrodynamic development of this new counter-rotating
vortex. Note that this new flow pattern is not found in the corresponding part con-
cerning the Bo, effect: for the same Re = 10*, Ha = 10 values, an increase in Bo,]S
leads to the damping of the main azimuthal flow, through the electrical activation of
the Hartmann layers, and to stretching of the secondary flow. Flow topology is sig-
nificantly different from that observed here for the Boxs effect, and as such, does not
lead to the emergence of the counter-rotating flow.
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(a) - Azimuthal electric current, Cutting line (A). (b) - Azimuthal electric current, Cutting line (B).

Figure Ill.C.12 - Azimuthal electric current density j7, along cutting lines (A) for a) and B for b), for
various Re,Ha and Bo,, values. j; is normalized by ], =3.96 x 10° A-m™?, 7.e. the
maximum electric current reached in all cases, for the highest (Re, Ha) = (10*, 10) values.

We shall now examine the evolution of j, along the cutting lines (4) and (B), in
Fig. 111.C.12. As explained in the part about Bo, -influence, it is worthwhile investigat-
ing the dependence of j; not only with respect to Bo, , but also to Re and Ha. For
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given (Ha,Bo, ), the impact of varying Re is the same as for Bo, , i.e. j; increases
with Re because of the expansion of the overturning flow (e.g. curves (——) and (-- ),
or () and (O)).

A change in the Ha value leads to complex evolutions along (A) and (B), similar
to the Bo, effect, related to the competition between inertial and electromagnetic
effects. However, there is a major difference between surface dilatation and shear. For
Bo, , along a given cutting line, the impact of increasing Ha remains qualitatively
the same at low or at high Bo,_values, whereas it depends on Bo, values for the
previous case. The effect is nonetheless the opposite between the two cutting lines.
For instance, along (A), the magnitude of j; globally increases with Ha both at low
(see curves (——) and (---)) and at high (see curves (+) and (O)) Bo,values. Along
(B), the magnitude of j; is lower when there is an increase in Ha, whatever the value
of Bo, (same curves).

Finally, for given (Re,Ha) values, along (A) (Fig. 11l.C.12(a)), an increase in the
value of Bo, - does not lead to flattening of the profiles prev10usly observed with Bo
(F1g IIl.C.7(a ) Rather, at high Bo, = values (green symbols), 7 oscillates around the
J5 =0 axis, where the amplitude and the number of peaks are maximum for the fol-
lowing particular values: (Re, Ha, Bo,, )= (10%,10,10%) (curve (+)). These oscillations
are linked to the emergence of the counter- -rotating vortex for high Bo,, values (j; is
proportional to -v7). Note that near the inner wall, the curves for low (blue lines)
and high (green symbols) Bo, values are superimposed. This is because an increase
in Bo, - does not lead to a 51gn1ﬁcant change for the overturning flow in this part of
the channel cross-section. Along (B), and contrary to what is noticed for the Bo,
effect (Fig. 11.C.7(b)), the overturning profile is not recovered with an increase in Bo
(Fig. 11.C.12(b)). Rather, the curves are increasingly flattened, due to the progresswe
damping of the main vortex governing the secondary flow. Consequently, the cutting
line (B) is no longer included in the area where v is still significant.

As for the Bo, counterpart, the interaction between the Shercliff or Hartmann
layers and surface dilatation (through Bo, ) does not provide any insights into the
swirling flow topology. }

Overall MHD flow patterns

To complete this section on the impact of surface viscous dilatation on bulk MHD,
we shall now display some results allowing an overview of the overall MHD bulk
flow, beginning with the electric current densities in Fig. 11.C.13. Contrary to the
Bo, impact, it has been previously shown that the flow pattern qualitatively depends
on the value of the Ha number as well as on Re and Bo,,  (with the emergence of the
counter-rotating vortex). Therefore, the Bo,, impact is analyzed for Ha =5 (left part)
and for Ha = 10 (right part).

Let us begin with the Bo,, influence over the electric current densities. For this
purpose, the left parts of Fig. i.c.8 (corresponding to the case Bo, = 10~ for given
(Re,Ha,Bo, ) values) and of Fig. 11.C.13 (Bo, = = 10* for the same (Re Ha,Bo, ) val-
ues) are compared As expected from the previous results, for a given Ha = 5 the

increase in Boxs does not result in an obvious impact (Figs. 11.C.8(a) and 111.C.13(a),
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Figs. 111.C.8(c) and 111.C.13(c)), irrespective of Re value (Re = 10° for a), Re = 10* for ¢)).
The main dlfference occurs at the liquid surface, where j becomes purely radial for
BO%S =10*.

To highlight some interesting new features linked to a high Bo, = value, the Ha
number is increased to 10 (Fig. III.C.13, right part). When Re = 10°, the electric current
densities are essentially confined inside the Shercliff layers (Fig. 111.C.13(b)), similarly
to what is observed in the benchmarking case of Sec. III.B for a low Bo, = 107*. For
a higher Re = 10%, the new patterns 4previously observed for the secondary flow are
recovered. The helical pattern for j*, previously observed in the core for the Bo,
effect (Fig. 11.C.8(d)), is recovered in Fig. 111.C.13(d). However, the electric current 1s
mostly located near the outer wall, with the inner half of the flow being current-free,
due to the confinement of the main vortex governing the secondary flow for a high
Bo, . Besides, ; is significantly perturbed by the emergence of the counter-rotating
vortex. This vortex induces radially outwards (at the top) and radially inwards (near
the bottom) flows, whereas along the rotating floor, the flow must remain radially
outwards (see inset in Fig. 1.C.10(a)). Consequently, the electric current densities are
twisted at two locations, essentially because their azimuthal orientation is governed
by the radial component of the meridian flow: a first twist is observed in the middle
of the secondary vortex, while a second twist is observed near the rotating floor. Such
an original pattern is a typical example of how surface dilatation may affect the MHD

bulk flow.

Finally, Fig. 11.C.9 links the velocity field topology to the distribution of Lorentz
force density, with respect to several (Re, Ha, Bo%S) values. First of all, Figs. 11.C.9(a)
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and 111.C.14(a) for velocity (respectively 11.C.9(b) and 111.C.14(b) for Lorentz force) are
compared to analyse surface dilatation impact on the main MHD flow. An increase
in Bo, = does not seem to alter significantly the main MHD flow for these (Re, Ha)
values, the azimuthal components of both velocity and Lorentz force remaining quite
unchanged. As previously enhanced in Sec. 111.C.2.a, the main flow is less efficiently

advected by the secondary flow, the main vortex governing the secondary flow slightly
decreases when Bo,, increases.

Now, when the (Re, Ha) values are increased, we have shown that some interesting
new features appear. When Re increases at fixed (Ha,Bo, ), the magnitude of the
overturning flow increases with Re, and the main vortex governing the secondary
flow is enlarged (Fig. I1.C.14(c)), favouring main flow advection, as seen in Sec. Il.C.2.a.
The Hartmann layers remaining electrically inactive, the Lorentz force is essentially
electromotive, following the variations of v* (Fig. 11.C.14(d)). However, contrary to
the previous section about the impact of Bo, , an increase in Ha really modifies the
qualitative influence of Bo, - on the swirling flow. As previously shown in Fig. 11l.C.10,
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two distinct areas can be distinguished, with preponderant inertia in the outer part,
and preponderant electromagnetic blocking for the inner part (Fig. 11.C.14(e)). The
emergence of the counter-rotating vortex imposes a sudden change of sign along the
radial direction to the mainly electromotive Lorentz force density (Fig. 1.C.14(f)).

lll.C.3 Conclusion and final scaling laws towards the experimental
test-bench

In addition to the 2-D study performed in Sec. I1I.B, this 2-D % numerical mod-
elling shows how a change in the mechanical properties of a fluid interface can greatly
influence a MHD core flow. Moreover, it has been proved that shear and dilatational
viscosities of the surface do not generate the same changes. On the one hand, viscous
shearing of the interface actively modifies the main annular flow by means of the Hart-
mann layers, which become electrically active. A damping is clearly demonstrated, as
is also a 2-D MHD tendency. On the other hand, the dilatational viscosity of the in-
terface is only responsible for damping the meridian flow driven by centrifugation,
with a new pattern if inertia and electromagnetic blocking are both significant.

In parallel, the relevant working conditions highlighting the competitive effects
of inertia, electromagnetism and surface rheology have been identified, and particu-
larly the relative values of the Hartmann and Reynolds numbers allowing for either
magnifying or extinguishing inertial effects. These scaling laws are used in the next
chapter for the design of Madip.

One concluding remark relates to the activity of the electrical boundary layers.
Given the relatively low Ha values required for development of the swirling flow,
the influence of the Hartmann layers is in any case reduced. However, regarding the
possible influence of surface viscous dilatation on the main and secondary flows, the
Shercliff layers and, in particular, the Hartmann layers do not especially become elec-
trically active throughout the many configurations tested in this paper. Consequently,
their impact on the core flow is not as dramatic as when a strong surface viscous shear
is applied, the latter case promoting damping of the main azimuthal flow through
electrical activation of the Hartmann layers.
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lIl.D MHD and surface viscosities: Madip, first experimen-
tal investigations

In this chapter, the experimental developments for the characterisation of the interfacial prop-
erties of a gradually oxidising liquid metal MHD flow are introduced. The scaling laws stemming
from the previous analytical and numerical results are first reminded. Using these scaling laws as
dimensioning criteria, some significant instrumental and technical developments are derived, in link
with the design of the experimental test-bench: Madip (for Magnétohydrodynamique diphasique, in
French). Finally, the first experimental results are reported, unveiling significant physical features
along with some in situ observations of the surface rheological behaviour of Galinstan, from which
we can deduce some salient prospects for future tests.

lll.D.1 Scaling laws for dimensioning the experimental set-up

In order to design the experimental test-bench, distinct operating conditions have
been determined, through scaling laws. Some of the latter have been deduced from the
state-of-the-art of existing works, like in Sec. I.B.2.b about the necessity to monitor the
ambient atmosphere within one-ppm accuracy, and Sec. I1.A, about the geometrical
dimensioning of the "shallow channel" of the annular viscometer. In the latter, it has
also been shown that monitoring the surface velocity 7 alone would give access both
to bulk dynamics and surface viscosities. Other scaling laws have been determined
about the parameters governing bulk MHD, i.e. the Hartmann and the Reynolds
numbers, by carrying out analytical and numerical investigations in Secs. Ill.B and I1I.C.
From now on, we shall use these scaling laws as the main dimensioning criteria for the
experimental test-bench. These criteria are gathered in Tab. 111.D.1, along with the tech-
nical solutions proposed to address the related experimental requirements. Note that
other dimensioning issues, of secondary interest, are tackled in the following section,
about the instrumentation and technical developments involved in Madip.

lll.D.2 Instrumentation and technical developments

In this section, a general overview of the experimental test-bench is first given. The
different working areas and the corresponding experimental issues are then detailed.
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. o Experimental . .
Quantity | Criterion requirements Technical solution
. b b 1 Small, controlled | pm-accuracy manufacturing and
v §, ’ 3 aspect ratios and | implementation of the shallow
5 <1 vertical gaps annular channel
Monitor surface . .
dynamics, in Imaging surface dynamlcs of
Ug Measurable | order to access tracers, ﬂow'calculaU'C)n by
bulk dynamics/ particle tracking velocimetry
surface properties ®TV)
. Monitor the O Confinement of the viscometer
Bo Wide range 2
BOWS ’ of valuesg rate of ambient in a glass container filled with
xs atmosphere Ar/O, controlled mixtures
Accurate control
Ree of the angular .
Re [10,10*] speed 2 (esp. at Compact piezomotor
low velocities)
Supply/ monitor
a (strong) vertical
Ha Hae uniform (at flow DC Electromagnet,
[0, max| scale) DC field B,, By =0.45T
compatible with
confinement

lll.D.2.a Overview of the experimental set-up

Table 11.D.1 - Dimensioning criteria.

A general overview of the Madip experiment, drawn by using the computer-aided
design (CAD) Catia" software, is shown in Fig. 111.D.1. Five distinct working areas are
distinguished, i.e. the viscometer itself, the gas circuit, the electromagnet, the opti-
cal test-bench and the provided instrumentation. Note that a photograph of the real
experimental layout is given in Fig. 1Il.D.2. Let us now detail each working area, and
highlight some technical issues of interest.
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Figure 1I1.D.2 - Photograph of the real experimental test-bench, with the 5 distinct working areas. Note
that the electromagnet power supply and the computer workstation are not represented.

lll.D.2.b Area @: the annular viscometer

Swivelling mirror
Micrometer support

Motionless cover
Rotating dish
Magnets

Sliding washer

Global support

Vammm— Clamping mandrel
Adjusting columns

~

Magnets

Proximity Piezomotor

sensor  Smmmm—" o———— Moot housing

(a) - CAD view of the annular viscometer. (b) - Photograph of some elements of the annu-
lar viscometer. a): cover, b): piezomotor, c):

Global support, d): rotating assembly.

Figure 11.D.3 - Working area @: the annular channel viscometer.

The first working area consists of the annular viscometer assembly, as displayed
in the CAD views of Figs. 1.D.3(a) and II1.D.4. The main body is constituted by poly-
oxymethylene (POM) pieces, for the global support, the rotating dish (rotating floor)
and the motionless cover (inert side-walls), the latter two defining the annular channel,
of which radial dimensions 7;, 7, are equal to 2.5 cm and 6.5 cm, respectively. There
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are numerous advantages of using POM as a reference material: this material is a black
resin, preventing from any undesired reflection light. Besides, it is chemically neutral
and compatible with Galinstan, and can be machined with a pm accuracy, because of
its good mechanical properties.

Motionless cover

Channel
Rotating dish

. =N
Global Support Clan]plng Slldll’lg Washer
mandrel N
1.

O
Ot(

Figure 11.D.4 - Cross-sectional CAD view of the annular channel and the motor block.

A motor is required in order to rotate the dish which will contain Galinstan.
There are several requirements to achieve, the first of which being the compatibility
with the high electromagnetic field environment: the motor must not interfere with
or be damaged by the outer magnetic field delivered by the electromagnet. This motor
must also be vacuum-compatible, and accurate rather than fast, the range for the values
of the Reynolds number corresponding to an angular speed £2 € ~[10~1,10!] rpm.
Finally, because of the limited extent of the electromagnet gap, and because of the
confinement reactor (see hereafter), the motor must be extremely compact. All these
requirements have considerably restricted our choice, and led us to choose a piezomo-
tor designed by Faulhaber” . It is very accurate at low velocities (angular resolution of
0.2 prad), however its maximum angular speed allows us to reach only the maximum
value Re =5 x 10°. According to Fig. III.C 6, this value is still high enough to magnify
inertial effects, and potentially identify surface dilatation. The original flow patterns
highlighted in Sec. 111.C.2.b for Re = 10*, in link with the counter-rotating vortex, will
be more difficult to observe, though.

As shown in Figs. 111.D.3(a) and 111.D.3(b)d), little magnets are implanted all along
the circumference of the rotating dish, at regular intervals. These magnets are strong
enough to trigger the proximity sensor screwed into the support, and thus give access
to the angular speed of the rotating dish. Note that their short-range influence do not
interfere with the magnetic field imposed by the electromagnet in the annular channel
(negligible perturbation of £3 x 107* T, measured with a gaussmeter).

Finally, the motor is clamped to the rotating dish, and adjusted inside a provided
housing, screwed into the global support. A sliding washer is introduced between
the rotating dish and the support, to avoid friction. The condition of centring the
whole system is fulfilled by means of a pm accuracy machining, avoiding eccentricity
due to off-centring. Note that the horizontality of the rotating floor is controlled by
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means of a ultra-accurate spirit level: the level variation is thus restricted to 30 um at
dish scale. The cover is then pm-adjusted and screwed onto the support. During this
step, the lubrication gap & between the rotating floor and the vertical side-walls is
fixed at & ~ 5 x 10? um, by means of a depth micrometer adapted onto the cover (see
Sec. I11.D.3.e for another i7 situ application of this micrometer). A swivelling mirror
designed for surface flow imaging is eventually screwed onto the cover.

ll.D.2.c Area @: the gas circuit

Gasleircuit
instrurnentation

Gas panel

Reactor

Figure 11.D.5 - Working area @: CAD view of the gas circuit of Madip.

The second working area is the gas circuit of Madip, a general CAD view of which
is given in Fig. 11.D.5. It is made up of three distinct parts, that we shall separately
describe, z.e. the gas panel, the chemical reactor and the associated instrumentation.

Gas panel

A general view of the gas panel of Madip is given in Fig. 111.D.6. The aim of this
panel is to supply the working atmosphere to the chemical reactor, and to allow the
transfer of Galinstan in controlled conditions, i.e. at given flow rates and purity.

For this purpose, two gas lines are implemented. The first line at the bottom of the
panel is linked to an Ar bottle, and consists of a flowmeter and a tubular oven, inside
which an O, "scavenger" is placed. The latter consists of a partially reduced zirconia
pellet, stabilised with yttrium, and has a special atfinity with O,. Indeed, when heated
at 800 °C, this pellet traps almost every O, molecule present in the gas flowing across
the tubular oven. Note that we do not provide any reference here, because this remains
quite a confidential issue, developed in partnership with Dr. Jonathan Deseure from
the LEPMI laboratory in Grenoble. As a consequence, this first gas line provides a
very pure working argon gas (measurements have been performed with O, impurities
below 107¢ ppm, i.e. far below 1 ppm, the rate at which the oxidation of Galinstan
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(a) - CAD view of the gas panel. (b) - Photograph of the gas panel of Madip.

Figure 111.D.6 - The gas panel of Madip.

is expected to start). The second line at the top is connected to a bottle filled with
a mixture of argon and oxygen, and allows for a controlled pollution in O, of the
working atmosphere, leading to a controlled oxidation of the liquid metal sample.
These two lines then join, either to reach the bubbler area or to bypass it and
reach the oximeter. The reason of this bypass is to control the working gas prior to
use it inside the reactor or the bubbler. The latter may be described as a stainless steel
airproof can, which contains the alloy and allows for its transfer inside the chemical
reactor in very pure conditions (see Sec. 11.D.3.c for further details about its use).
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Figure 111.D.7 - The chemical reactor of Madip.
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A detailed view of the chemical reactor of Madip is displayed in Fig. I1.D.7. The
reactor design plays a significant role:

- it must ensure the perfect confinement of the annular viscometer, contain the
working gas coming from the gas panel, allow for the flowing of Galinstan in-
side the rotating dish under controlled pressure conditions;

- it must permit the air-proof implementation of what we call the "on-board"
electronics, consisting of a temperature gauge Pt 100, the motor power supply
and command cables, and the proximity sensor wires (see Fig. I1.D.7(b));

- finally, it must be compact enough to enter in the electromagnet gap. Obvi-
ously, it must not contain ferromagnetic materials.

The confinement issue is addressed by means of a glass tube clasped between two
stainless steel bridles, connected by stainless steel threaded rods, the airtightness be-
ing secured by two L-shaped fluoropolymer gaskets, as shown in Fig. 11.D.7(a). This
assembly is mechanically connected to the electromagnet pole by means of a pro-
vided polycarbonate piece. Gas feedthroughs are made across the top bridle. The
inlet feedthrough allows for the transfer of gas and Galinstan from the gas pannel.
The outlet feedthrough allows for the vacuum pumping and for the analysis of the
working atmosphere with the oximeter. The working pressure can be measured ei-
ther with a manometer, or, for vacuum pressure, with a vacuum pressure gauge. A
safety valve is set, in case of accidental overpressure.

Gas circuit instrumentation

The instrumentation devoted to the gas circuit is shown in Fig. 111.D.8, and it con-
sists of a rotary pump allowing to reach a primary vacuum, and of the oximeter system
for measuring the O, rate of the working atmosphere.

Let us briefly focus on the oximeter, which plays a role of prime interest. The
oximeter is basically an electrochemical gauge. It bears on the properties of a galvanic
cell {M,O,(p,.)} / solid oxide electrolyte / M, O,(p,,)}, where M is an electronic
conductor, the solid oxide electrolyte is an oxide ceramic, p, is a reference (known)
O, partial pressure, and p,, is the O, partial pressure to determine [86]. The voltage
at the terminals of the cell can be expressed by the Nernst’s law:

RT
e= —ln<‘b—m>, (In.D.1)
Pref

where e is the electromotive force of the cell, R is the gas constant, F is the Faraday
constant and 7" is the temperature of the cell. Thus, the knowledge of p,.and T, and
the measurement of e give access to the O,-rate of the working atmosphere, far below
1-ppm accuracy, z.e. far below the rate at which the oxidation of Galinstan begins[86].
The particular oximeter used in Madip is a prototype developed in Grenoble, and has
been kindly loaned by Dr. J. Deseure, from the LEPMI laboratory.
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Figure 11.D.8 - Instrumentation devoted to the gas circuit of Madip.

ll.D.2.d Area ®: the electromagnet

The third working area is the electromagnet system. As shown in Fig. 111.D.9(a), it
is composed of an electromagnet power supply, which delivers a high-intensity DC
electric current. This current is concentrated in the yoke, which constitutes the mag-
netic circuit with the poles of the electromagnet. The particular design of the assem-
bly allows for reaching a strong DC magnetic field in the air gap between the two
poles: By,,.x = 0.45T, at the location of the annular channel. The verticality and ho-
mogeneity of this field has been characterised with a gaussmeter, of which orientation
and position have been controlled with a spatial grid made of polystyrene. As seen in
Fig. 111.D.9(b), the verticality and homogeneity of the magnetic field in the area where
the annular channel is located is quite satisfying, both being achieved within one per-
cent accuracy. Finally, a dedicated measuring cell on the electrical cabinet is used in
coordination with the gaussmeter to link the control voltage with the value of the
imposed magnetic field between the poles.

ll.D.2.e Area @: the optical test bench

The fourth working area of Madip is the optical test-bench. A general view is
given in Fig. 11.0.10. It consists of a LaVision" high-resolution camera, coupled with
an Optem” magnifying lens. The lens is able to magnify as small areal elements as
1 mm?, which might reveal interesting for future prospects about monitoring oxida-
tion transients. In this work, we use a "normal" zoom, corresponding to the exten-
sion of the annular channel. The camera system is fixed to a 2-D translation table,
allowing for an accurate determination of the focal plane. A cover, adapted at the
end of the lens, prevents from any undesirable reflections. The assembly is screwed
onto an optical rail, attached to aluminium profiles, that are directly and only con-
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Figure I1.D.9 - Working area ®: the electromagnet of Madip.

nected with the DC electromagnet. As such, any small vibrations of the machine are
not likely to influence the imaging process (the camera following these vibrations).
A Hamamatsu'" light source, based on a mercury-xenon lamp, provides the necessary
illumination through an optical fibre cable. Two polarisers are used to set the suit-
able contrast, and emphasise the difference of polarisation between pure Galinstan
and oxide patches. Finally, it is important to point out another significant role played
by the aluminium profiles, in link with the mounting or dismantling of the reactor.
Indeed, it is physically impossible to work directly in the electromagnet gap, the avail-
able space being not sufficient enough to adapt the viscometer and then the reactor in
situ. As a consequence, the assembly or disassembly is shifted onto these profiles, and
then brought back between the electromagnet poles.

lll.D.2.f Area G): instrumentation

Finally, the instrumentation used in Madip constitutes the fifth working area. As
shown in Fig. 1I.D.11, it consists of a vacuum pressure gauge, a mVmeter for display-
ing the O, partial pressure from the oximeter, the Piezomotor control box and power
supply, the proximity sensor power supply, and a monitoring unit which collects all
relevant physical data, z.e. the values of the angular speed, the outer magnetic field and
the temperature inside the reactor. A camera control unit drives the camera frame-
grabber, and two computers are used for monitoring and imaging. Note that the in-
strumentation is only used for monitoring purpose, and not for automatic processing:
Madip is a "manual-control" experiment.

Now that the implementation of the Madip experiment has been described, let us
turn to the experimental protocol that we shall follow in order to carry out measure-
ment campaigns.
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Figure 11.D.10 - Working area @: the optical test-bench of Madip.

ll.D.3 Experimental protocol

lll.D.3.a Preparing the alloy

In this section, the instructions for the preparation of the eutectic alloy Galinstan
Gagyo, —Inyg 50, —Sny, 50, (Weight fractions) in controlled conditions are described.
First, the samples of gallium, indium and tin are mechanically abraded, and weighed
on a 1072 g precision balance. Then, each component is carefully cleaned by chemical
means in ultrasonic bath with ethanol and placed into sealed plastic bags.

Ideally, Galinstan should be melted in very pure conditions, so that no oxidation
process occurs. For this purpose, a glove-box filled with ultra-pure argon (O,-rate
< 0.5ppm) is used. The different metallic samples are transferred into this glove-box
(see Fig. 1I.D.12(a)). The working atmosphere is monitored with an oximeter similar



PART Il | Surface rheology and stratified MHD flow: the annular MHD viscometer | 137

Vacuum gauge = mVmeter
power supply —epmmm == Monitoring

. unit
Piezomotor

control box

Camera o

P1ezomot011 — control
power supply unit

;
Proximity sensof Confputers for imaging
power supply and monitoring

pressure
gauge

~_  Percolation
" tube

Ultra-fast
centrifuge

(a) - Glove-box used for preparing the alloy. (b) - Centrifuge used for preparing the tracers.

Figure 11.D.12 - Glove-box and ultra-fast centrifuge used for preparing the alloy and the tracers.

to the one used in Madip. Once the adequate conditions are fulfilled, the different
samples are melted on a hot-plate, the alloy being mechanically stirred with a glass
stirrer during the melting. Once at room temperature, a two-stage filtration process is
performed, across two stainless steel 50 pm and then 20 um filters. When all the slag is
removed, the free surface of Galinstan is mirror-like; the pure Galinstan is then poured
into the bubbler, which is hermetically sealed. The bubbler and polluted materials are
finally removed from the glove box, and transferred to the Madip experiment or to
waste treatment, respectively.

ll.D.3.b Preparing the tracers for PTV

As described above, we shall use tracers to get access to surface dynamics. Tracers
made of polyethylene are chosen, because of their chemical neutrality with a variety
of liquid metals, including Galinstan [49]. The average size of these spherical tracers
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is about 200 pm. The cleaning procedure of these tracers is as follows: they are im-
mersed into percolation tubes filled with ultra-pure ethanol solution, and placed into
an ultra-fast centrifuge (rotation speed; 1.5 x 10*tr-min~"!, see Fig. 111.D.12(b)). During
centrifugation, ethanol percolates across the polyethylene spheres. These spheres are
then introduced inside the viscometer, just before the chemical reactor is closed.

lll.D.3.c Flushing out the gas circuit

The purpose of this step is to prepare the gas circuit for the experimental cam-
paign. Our first objective is to work under very pure conditions inside the chemical
reactor. To this end, vacuum/argon sweeping cycles are repeated. Vacuum pumping is
first performed throughout the whole gas circuit, for O, desorption. When primary
vacuum is reached (p < 1072 mbar), the pump is isolated, and the gas bottom line is
open. Argon sweeping flushes the residual O, molecules out.

After several pumping/sweeping cycles, the O,-rate inside the reactor is moni-
tored by means of the oximeter. If the O,-rate of the gas is lower than 10 ppm, the gas
circuit is ready for the final purifying step. The reactor is isolated form the gas panel,
and the tubular oven containing the O, scavenger is switched on. Note that the scav-
enger is not used prior to these repeated cycles, because it would get instantly oxidised
(and so unusable) if the O,-rate is originally too high. The bypass circuit is used to
monitor the O,-rate. Meanwhile, the atmosphere inside the reactor is pumped once
again, until primary vacuum. Once the O,-rate of the gas flowing through the oven
is lower than 0.5 ppm, pumping is stopped, and the reactor is filled with ultra-pure
argon. When it is in slight overpressure, the reactor is isolated. The O,-rate of the gas
inside the reactor is controlled with the oximeter, and if it is lower than 0.5 ppm, the
reactor is ready for Galinstan introduction.

d

Open ; Closed

Gas flow l
From 1 ] From 1 ]
oven 4 oven

1
i
L Y A
Closed & Closed Open Open
H |

it s e -

e~ - =0

Gas p_:ushmg
Galinstan
Bubbler Towards Towards
reactor reactor
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flushing the gas circuit out. fer Galinstan inside the chemical reactor.

Figure 11.D.13 - Bubbler system configurations for argon sweeping and transferring Galinstan.
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During the previous step, the bubbler system is set as described in Fig. 11.D.13(a),
this configuration allowing for the repeated pumping/sweeping cycles. However, in
order to introduce Galinstan inside the rotating dish, the configuration of the gates is
changed as shown in Fig. 111.D.13(b), so that the pressure drop between the upstream
(coming from the oven) and the downstream (inside the reactor) ultra-pure argon is
enough to push Galinstan towards the reactor. A visual control of the level of Galin-
stan allows for pouring the adequate volume of liquid metal inside the dish. Madip is
now ready for the measurement campaigns.

ll.D.3.d The principles of "live" measurement campaigns: chemical steps, imaging,
and data acquisition

Each measurement campaign corresponds to a well-defined "chemical step”. In-
deed, the first measurement campaign is performed on the purest interface possible,
corresponding to the lowest O,-rate. Once the measurements performed for this
initial step, the liquid metal surface is gradually oxidised by means of the Ar+ O,
mixtures flowing in the top gas line. The O,-rate x of these mixtures is first con-
trolled with the oximeter, using the bubbler bypass. The reactor is then filled with
the Ar+ O, mixture, at a given constant flow rate Q (measured with the flowmeter),
during a known time interval At (measured with a chronometer). As such, we can
relate each chemical step to a given quantity of oxygen injected inside the reactor.
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Figure 111.D.14 - Operating annular MHD viscometer and PTV technique.

For each chemical step, the measurement campaign remains the same. The gov-
erning parameters are the Re (through the rotating floor) and the Ha (through the
electromagnet) numbers, as depicted in Fig. l1.D.14(a). We choose to test different
combinations in the following ranges for (Re, Ha) couples: Re €[250,5000], and
Ha €[0,180]. In link with the previous analytical and numerical investigations, these
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values are likely to emphasise a variety of original MHD flow patterns, and to give
access to the values of surface viscosities. For this purpose, for a given (Re, Ha) pair,
the surface dynamics is imaged by means of the optical test-bench connected with the
imaging computer. The resulting image sequence is post-treated by means of the Im-
age] software (open-source), and especially the plug-in entitled "particle detector and
tracker". As shown in Fig. I1.D.14(b), this extension allows for the determination of
tracers trajectories in Cartesian coordinates (for further details, the feature point de-
tection and tracking algorithm at the root of the PTV technique are described in [87]).
By means of a spatial calibration, these trajectories give access to the real velocities of
the tracers at the liquid surface, which are expressed in the cylindrical system of co-
ordinates. These Lagrangian profiles are then averaged and identified to the Eulerian
velocity profiles of the supporting fluid, which reveals quite straightforward with an
axisymmetric flow at steady state. The resulting radial and azimuthal surface velocity
profiles are finally compared to those obtained with the modellings. Note that the
large curvature radius of the glass containment allows us to neglect optical distortion
(the so-called "barrel effect" being negligible).

Apart from imaging, there is a certain quantity of data to collect in order to trace
back to the surface viscosities. Obviously, the angular speed of the rotating floor 2
and the outer magnetic field By must be stored. It is also interesting to know the
operating temperature 7. The control voltage corresponding to each £2,B,, T value
is monitored through a monitoring Fluke” unit, which collects the voltage measured
respectively by the proximity sensor, the measurement cell on the electrical cabinet
and the Pt 100 probe, and the data are exported to the monitoring PC. Finally, for
each chemical step, the quantities x,Q and Ar are carefully stored. Each data set is
then linked to the corresponding image sequence.

lll.D.3.e Subsequent measurement: the height of liquid metal

r ’ Precision
7 mi

micrometer

Micrometer
support

J

: A A 4 I
@Gahnstan Galinstan > Micrometer

surface terminal
___suriace .

Indicator
diode
Platinum wire |
terminal

Figure ll.D.15 - Measurement of the liquid metal height in the annular channel.
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When the liquid surface of Galistan is totally oxidised, the "live" measurement
campaigns are finished. However, one parameter remains to be determined in order to
establish a comparison with the benchmarking modellings, i.e. the height 5 of liquid
metal above the rotating dish.

Once the reactor is totally dismantled, a precision micrometer is adapted on the
cover of the annular viscometer. As shown in Fig. I1.D.15, this micrometer is con-
nected at one of the terminals of a battery, equipped with an indicator diode. The
other terminal is connected to a platinum wire, immersed into Galinstan. The mi-
crometer is gradually lowered, and when the tip touches the liquid metal surface, the
electric circuit is closed, and the diode lights on. The value indicated on the microme-
ter is then compared to a reference level (taken during the lubrication gaps adjustment,
see Sec. I1.D.2.b), which gives access to 4, and concludes the measurement campaigns.

ll.D.4 First experimental campaigns: qualitative/quantitative results

In the previous sections, the technical developments and the "ideal" protocol used
to carry out the Madip experiment have been introduced. However, the "real" pro-
tocol (corresponding to the results exposed in this section) differs slightly from the
original one. As the experimental test-bench has been designed and assembled from
scratch, a long time was required to implement the different working areas described
above, especially the different equipments constituting the gas circuit. Moreover, the
preparation of Galinstan in very pure conditions (see Sec. I11.D.3) also turned out to be
a long process, particularly because of the glove-box adaptation, so that it can fit with
our purity standards.

Along with classical experimental issues, these problems explain the fact that only
a couple of qualitative and quantitative results can be unveiled in this section. On the
one hand, we have performed a first campaign of measurements involving hydrochlo-
ric acid (HCI), in order to test a pure interface condition. On the other hand, once the
gas circuit finally implemented, an intermediate state of oxidation has been reached
inside the reactor. The first corresponding i7 situ measurements are investigated, with
promising results and observations. Note that all the following results are obtained at
room temperature 7' =25 =+ 1 °C (as measured with the Pt 100 probe).

ll.D.4.a HCI experiment: an attempt to reproduce a pure interface

As previously said, the gas circuit of Madip has been long to implement. Before
its full operability, we have carried out the following benchmarking experiment. As
described in Fig. 11.D.16, a thin layer of highly concentrated HCI is used to prevent
the liquid metal surface from any oxidation process (typical values for the different
heights: » =9.86 x 107> m, by = 2.64 x 107> m). Note that the Galinstan used for
the experiment is previously washed in a separate acid bath, which totally reduces the
oxide skin. The experimental protocol remains globally the same (except for the parts
concerning the gas circuit): the dish is rotated at different velocities, and the outer
magnetic field is varied. The density of the tracers used is set so that they deposit upon
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Figure 111.D.16 - Experimental layout with the HCI layer.

the liquid metal surface, enabling direct imaging of the liquid metal surface dynam-
ics. The radial and azimuthal surface velocity profiles, recovered after post-treatment
with the PTV module, are then compared to the modelling predictions. Finally, the
layer of acid is removed, and the liquid metal surface is totally oxidised. Some im-
portant qualitative remarks are then made with respect to the latter asymptotic case,
corresponding to an interface totally covered with oxides.

Experimental issues

It is first important to point out that, contrary to the case of a liquid metal/gas
interface, the frictions due to the acid layer cannot strictly be ignored. Indeed, the dy-
namic viscosity of the HCl solution used (c =2.33 mol-L™) is nyyqy = 1.147,,,, [88]-
However, in the asymptotic case of a very pure interface due to an in-excess HCI
layer, we make the assumption that these frictions do not impact the interface BC,
which reduces to dv, /dz =0 along €, and dvy/dz =0 along ¢, (see Egs. (IlI.C.14)
and (11.C.15)). As such, the shear stress in the HCI layer is assumed to be vanishingly
small, which requires that the HCl/gas interface is totally free from surfactants.

Another interesting point deals with the relevancy of using the HCI layer as a
mean of exploring various oxidation regimes of the interface. Indeed, by means of
different Red-Ox equilibria, it could be possible to describe different chemical steps,
rather than using the gas circuit. However, in this study, we did not favour this option.
In fact, we only use highly concentrated HCI to describe the asymptotic case of a pure
interface, for the following reasons:

- it would cause a considerable complication of the modelling (such as modelling
the mass transport in the acid layer, for instance, or managing the stoichiometric
equilibrium of the Red-ox reaction),

- HCl evaporation makes the determination of the stoichiometry difficult, and
raises some safety issues,

- the approach based on the use of a gas circuit is designed for a very accurate
control of the quantity of O2 injected, and should theoretically allow for a good
reproducibility,

- to fit with practical conditions met in the industry, where the acid layer is never
present at the interface between the liquid metal and the gaseous phase.
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Finally, before any comment about the experimental results, let us briefly discuss
about the sources of experimental errors. They principally concern the estimation
of the radial positions and of the surface velocities. Concerning the radial positions
(horizontal error bars), the initial calibration step is accurate to within 100 um. The
particle tracking algorithm is accurate to within 0.5 px [87]. With respect to surface
velocities (vertical error bars), given the focus and the time step of the camera, the
measurement of surface velocities are accurate to within 0.5 mm-s~!. Consequently,
the higher the Reynolds number is, the more the velocity measurements are accurate.
One solution to reduce the error bars is to increase the lens focus, in order to zoom on
an area of interest, so that very slow motion can be accurately measured. However,
this would considerably complicate the imaging process, because we would no longer
have access to the whole extent of the annular channel. Because the aim of the fol-
lowing campaign of measurements is to give a first glance at the technical feasibility
of Madip, we leave subsequent developments about the relevant optical settings for
future prospects. In this work, due to lack of time, the focus is then only set such as
the radial extent of the annular channel is captured.
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Figure l.D.17 - Experimental v* data points and associated errors, with respect to various (Re, Ha).
)

The analysis of radial velocity profiles illustrates this experimental limitation. As
previously explained, the piezomotor used to rotate the dish containing galinstan can-
not reach Re values much higher than Re =5000. As shown in Fig. 111.D.17, such a
limitation proves to be quite dramatic for radial velocity measurements, whatever the
(Re, Ha) values tested. The experimental error is indeed of the order of magnitude
of the measured velocities. Even in this case corresponding to a pure interface, for
which the surface velocities are expected to reach their maximum values, v cannot
be accurately measured. We can deduce from these graphs that the determination of
surface dilatational viscosity (brought into play by the radial component of the JMB)
requires a modification of the imaging process. In this work, we choose to keep on
with the same optical configuration, and to focus on the azimuthal velocity profiles.
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Azimuthal velocity profiles

As shown in Fig. 111.D.18, the order of magnitude of the surface azimuthal velocity
v, 1s sufficiently large to circumvent the previous accuracy issues. Except near the
inner wall, where a lack of tracers can be noticed, we are able to access the values
of v} all along the interface. The experimental data are compared with the 2-D 1/2
numerical predictions of Sec. IIl.C, in the case of a pure interface, i.e. for Bo, =0.
There is undoubtedly a noticeable discrepancy between the predicted and exper-
imental values. This difference could be accounted for by the dynamic interaction
between the HCl layer and galinstan, that we have assumed to be negligible. Another
possibility is that the tracers do not exactly follow the liquid metal/HCI dynamics.
However, despite these quantitative differences, let us focus on the qualitative aspects.
The selected (Re, Ha) pairs allow for investigating the cases N > 1 (negligible iner-
tial effects), N ~ 1 and N < 1 (negligible electromagnetic effects). For Re = 2159 and
Re =4109, both predictions and experimental measurements show that for Ha=20
(N =0: curves (1)), the decay of v}, is much faster than in the cases Ha=52.2 and
Ha=172.4 (curves (0): N ~ 1, and (©): N > 1), where almost linear profiles are ob-
served. These significant observations testify first from the electromagnetic blocking
of the flow when increasing Ha, while the advection of v}, is guessed for Ha = 0 (ob-
viously, the inflection points are quantitatively different). Furthermore, the block-
ing seems globally more efficient at higher Ha numbers, when comparing (©) and
(©) for both Re = 2159 and Re =4109. This interpretation is in agreement with one

significant physical feature emphasised in Sec. II1.B, z.e. the tendency towards two-
dimensionality with increasing Ha.
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Figure II.D.18 - v; profiles: experimental data and numerical predictions, for various (Re, Ha).

The case of a totally oxidised interface

In order to precise the qualitative observations given above, after the measure-
ments involving the HCI layer, the latter is removed, and the liquid metal surface is
exposed to ambient air. After a while, the metal surface appears totally oxidised. Then
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the angular speed and the outer magnetic field are varied. The reason why no graphs
are produced in this section is simple: whatever the (Re, Ha) values, the oxide skin
remains inert. The velocity of the tracers at the interface is indeed zero; but the dish
containing Galinstan is actually rotating, as indicated by the proximity sensor.

Although the latter observation does not provide any quantitative information,
it is qualitatively extremely important. If both radial and azimuthal surface velocities
are vanishingly small, irrespective of the (Re, Ha) values, we can reasonably suppose
(thanks to the analytical and numerical calculations) that at least the surface viscous
shear is high enough to damp any surface flow. Moreover, even if the surface remains
motionless, some salient features can be deduced when increasing Ha. Indeed, for a
given Re, a sub-surface flow motion can be guessed from small "ripples" deflection oc-
curring beneath the oxide membrane. This deflection are phenomenologically com-
parable with the observations of Zhang et al., previously highlighted in Fig. 1.B.6. In
their study, these authors have observed an intense swirling motion of Galinstan be-
neath the closed oxide layer at rest [ 5] (for a completely different experimental layout,
though). Consequently, it really seems like the outer magnetic field tends to align
the sub-phase dynamics on the rotating floor, which confirms the occurrence of the
electromagnetic blocking.

We can be even more precise: if the surface remains motionless despite the elec-
tromagnetic blocking of the sub-phase, this means that the surface shear Boussinesq
number of a totally oxidised Galinstan surface is at least equal to the maximum Ha
value, according to Eq. (lI.B.32):

o’)S,fulliox > Hamax =172.4,

so that

[ns,full_ox >3.6x 107 kg-s™. J (I.D.2)

To our knowledge, this is the first time that such an estimation of the surface viscous
shear of an oxidised liquid metal/gas interface is given. It also confirms our initial
assumption about the ability of liquid metal surfaces to have a wide range of possible
values for Bo, .

To conclude with the HCl experiment, let us remind that a qualitative agreement
between the predictions and the experimental measurements has been found, though
only for the azimuthal velocity. Some significant physical phenomena like the elec-
tromagnetic blocking or the capacity of the interface to evolve from a slip to a no-slip
boundary condition. However, only asymptotic cases have been investigated so far,
with a significant quantitative discrepancy between the model and the experiment. In
order to describe intermediate oxidation states, and ultimately get access to the values
of Bo, (and potentially Bo,, ) for a gradually oxidising interface, let us turn to the
next measurement campaign, involving the whole experimental set-up.
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ll.D.4.b Reactor experiment: partial oxidation
Experimental issues

As previously enhanced, the implementation of the gas circuit aims at purifying
and monitoring the working atmosphere, and at introducing Galinstan in ultra-pure
conditions. The ultimate objective is to perform different chemical steps, so that the
gradual oxidation of the liquid metal surface can be related to a quantity of O, injected
inside the reactor.

For various reasons, only partial results can be presented here. First, the imple-
mentation of the gas circuit has been achieved with a significant delay. In addition to
the long process of alloy preparation, due to lack of time, we had only the opportunity
to carry out two experimental campaigns. This restriction is linked to the reduced
bubbler capacity (roughly 150 mL of Galinstan). Unfortunately, the first experimen-
tal campaign came to a sudden end. The purification process perfectly worked, as
well as the introduction of Galinstan in controlled conditions: the liquid surface was
mirror-like; but at the very beginning of measurements, the clamping mandrel came
loose, and the rotating dish decoupled from the motor shaft.

The second experimental campaign revealed more fruitful, and the corresponding
results are presented hereafter (height of liquid metal: » = 6.5 x 107> m). However,
during this campaign, we faced an unexpected issue: the Galinstan surface was this
time already partially oxidised, despite all the precautions taken during the transfer.
We suspect a long-term sealing problem with the bubbler: the first campaign previ-
ously mentioned, where the purification step was successful, was actually carried out
just after the alloy preparation. The second campaign occurred one month later, leav-
ing perhaps enough time for Galinstan oxidation inside the bubbler. As it is shown in
Fig. 11.D.19, all the inner part of the liquid metal surface exhibit oxide patches, which
saturates the camera sensor. Such a radially inwards packing along the liquid surface
could originate from centrifugation, which would lead to the emergence of a circular
Reynolds ridge, similarly to [71]. Anyway, this unexpected oxidation has two main
consequences:

- as the surface is already oxidised, it is not worthwhile to monitor the O,-rate
inside the reactor. It is actually impossible to relate the initial oxidation state
of the interface to a well-defined O, flux. Consequently, we shall only work in
ultra-pure gas conditions inside the reactor, to prevent from further oxidation
of the Galinstan surface;

- this surface oxidation corresponds to an intermediate oxidation state, because
when the dish is rotated, a surface motion can be observed. If the oxidation
was total, as highlighted in the previous section, the velocity at the oxidised
surface would be vanishingly small. As it is not the case here, we are able to
measure surface velocity profiles all along the interface. We can use the oxide
patches as tracers for the outer half, the saturation of the CCD sensor being
limited in this area. However, the saturation occurring in the inner half of the
channel prevents us from imaging correctly the tracers dynamics, and thus from
drawing the velocity profiles in this inner area.
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Saturated
inner half

o A

Figure I1.D.19 - Picture of the partially oxidised liquid metal surface.

Nevertheless, despite these two limitations, some salient features can still be deduced
from these partial measurements. We shall prove that it is possible to give an estima-
tion of the surface viscous shear corresponding to this intermediate state of oxidation,
by focusing on the v} profiles (the radial velocity profiles being left aside from the
analysis, for the same reasons as those exposed in Sec. I11.D.4.a).

Azimuthal velocity profiles: the first estimation of Bons

In this section, we aim at giving a first order of magnitude of the surface viscous
shear through Bo, .. Consequently, we choose to focus on the working conditions
favouring the identification of the surface viscous shear, z.e. when Ha? > Re, corre-
sponding to the theoretical approach of Sec. I1.B.1. Despite these precautions, at small
Re values, for instance Re = 245, the azimuthal velocity profiles suffer from the same
lack of accuracy as the radial profiles.

Let us make now an assessment on the basis of our initial objectives. We remind
that the ultimate aim of the Madip experiment is to determine the surface shear and
dilatational viscosities, with respect to a given oxidation rate of the liquid metal /gas
interface. In the light of the aforementioned restrictions, we will not be able to address
neither the surface dilatation nor the O,-rate dependence issues. The first results in
view of accessing the surface viscous shear are not exploitable at low Re. However,
for higher Re values, for instance Re = 1351 and Re = 4494, the order of magnitude
of the surface azimuthal velocity seems sufficiently large to avoid this accuracy issue.
Let us see now if we can deduce at least some hints at the values of the surface viscous
shear, corresponding to this particular (though unknown) oxidation state.

Our approach consists in focusing on the following (Re, Ha) pairs: Re = 1351
and Ha = {52.2,104.4,172.4}; or Re = 4494 and Ha = {104.4,172.4}. We fit the N



CHAPTER 111.D | MHD and surface viscosities: Madip, first experimental investigations | 148

experimental data points with the predicted profiles (for the same (Re, Ha) values),
obtained from the analytical modelling exposed in Sec. 11I.B. By means of the last mean
square method, we are then able to trace back to the (fitting) value of Bo, . The
different values obtained with respect to the corresponding (Re, Ha) pairs, along with
the mean absolute error €:

*

* * * _ * *
N v@S,model (7’ =T Boﬁs,ﬁt> ‘Z}@S,exp <7‘ - rn)
e=2 ~

b
n=1

and the corresponding 7 values are displayed in Tab. 111.D.2. The resulting graphs for
Re = 1351 and Re = 4494 are displayed in Figs. 11.D.20 and 11.D.21, respectively.

(Re, Ha) Bo, ns [kgs™] € [%]
(1351, 52.2) 0.2 2.8x107° 1.7
(1351, 104.4) 1.0 1.4x107° 1.5
(1351, 172.4) 1.8 25%x107° 1.4
(4494, 104.4) 1.4 1.9x 107 1.5
(4494, 172.4) 0.7 9.7 x 107° 3.6

Average values

1.0 1.4x 107 1.9

Table 11.D.2 - Fitting values of Bo, - with respect to different (Re, Ha) pairs, in the case of a partially
oxidised liquid metal surface.

Obviously, the lack of experimental data in the inner part is detrimental to our
analysis. Nevertheless, the agreement between the theoretical predictions and exper-
imental measurements seems both qualitatively and quantitatively satistying. First,
for Re = 1351, the values predicted for Bo, vary between 0.2 and 1.8. Ideally, the
predicted value should remain the same, whatever the Ha value. However, given the
wide range of possible values for Bo, = previously highlighted (virtually from 0 to at
least 200), and given the accuracy of the velocity measurements, these variations re-
main quite satisfyingly restricted. Besides, in Fig. 11.D.21(c), the experimental measure-
ments confirm the modelling predictions, in the fact that the v profiles are almost
the same, irrespective of the Ha value. This clearly shows that for the selected (Re, Ha)
pairs, the surface flow is already perfectly aligned with the sub-phase flow, explaining
the identical linear profiles.

For higher Reynolds, for instance Re = 4494, the latter point differs somewhat.
Indeed, in Fig. 111.D.21(c), both experimental data and associated analytical fittings show
a slight difference between v profiles for Ha = 104.4 and Ha = 172.4. Contrary to
the case where Re = 1351, here the alignment of the interface dynamics with respect
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Figure 11.D.20 - Experimental v} profiles and associated curve fittings, for Re = 1351 and various Ha.

to the bulk dynamics improves with increasing Ha. The reason is certainly that, even
if we select (Re, Ha) pairs such as the criterion given in Eq. (111.C.19) is fulfilled, the
higher the ratio Ha?/Re is, the more the diffusion of momentum from the rotating
floor is eased. Consequently, for the same Ha value, the interface is more rapidly
blocked when Re =1351. Now, concerning the Bo, = values, they vary between 0.7
and 1.4. These values are comparable with those found for Re = 1351. These rela-
tive independence with respect to Re and Ha makes us confident about the following

statement; the surface viscous shear of the oxidised Galinstan/gas interface can be
estimated as:

[nS,Partial_ox ~1.4x 10_5 kg's_l'] (|||.D.3)

To our knowledge, this is the first time that such a value of the surface shear viscosity
of a partially oxidised liquid metal/gas interface is given.

As a conclusion of this experimental part, we remind that the first measurement
campaigns have shown very promising features. The HCl experiment, corresponding
to the asymptotic case of a very pure interface, and the reactor campaign, correspond-
ing to a partially oxidised interface, have highlighted some salient phenomena, both
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Figure lI.D.21 - Experimental v} profiles and associated curve fittings, for Re = 4494 and various Ha.

from qualitative and quantitative point of views. Of course, the measurements for
Bo, must be completed, the optical bench must be modified to estimate Bo,, , and
diffesrent chemical steps must be performed. But at least, despite these limitastions,
the experimental feasibility and relevancy of the annular MHD viscometer has been

demonstrated, allowing us for giving first estimations of the surface viscous shear of
a liquid metal surface, which constitutes totally original data.



Conclusion | 151

Conclusion






Conclusion | 153

Summary and outlook

The main concern of this thesis work has been to determine whether the alteration
of a liquid metal/gas interface, due to oxidation processes, may significantly affect a
supporting permanent MHD flow, or not. In the light of the major achievements pre-
viously highlighted, a positive answer can be given to this fundamental question. The
original coupling between MHD and the surface rheology of a liquid metal /gas inter-
face has been investigated through a variety of theoretical, numerical and experimental
developments, particularly within the framework of the annular MHD viscometer.
The most salient features of this threefold approach are now summarised.

In the general introduction of this thesis work (see Part I), the fundamental and
industrial concerns about the modelling of MHD multiphase flows have been high-
lighted. Particularly, the need for an accurate description of the influence of interfa-
cial properties on bulk MHD has allowed us to draw a common thread, valid for both
stratified and dispersed topologies. It has been shown that the progressive contamina-
tion of the liquid/gas interface results in a varying mechanical interfacial behaviour.
Besides, it has been highlighted that the coupling between this mechanically changing
surface condition and a supporting MHD core-flow constitutes an original boundary-
value problem, the fundamental MHD issue of varying boundary conditions being
classically only considered from an electrical point of view. In order to magnify this
atypical coupling, it has been suggested to investigate the surface rheology of such
electroconductive fluids as liquid metals, undergoing gradual oxidation processes, and
flowing under the influence of an outer magnetic field. By the way, Galinstan has
been selected as the model system in order to magnify this coupling, because of its
promising MHD, physicochemical and surface properties.

As such, this thesis work aims at bridging the gap between MHD and surface
rheology, two physical fields usually distinct. This is the reason why the theoretical
foundations pertaining to each field have been first separately introduced in Part II.
Concerning single-phase MHD, the focus has been put on the different formulations
of the coupling between electromagnetism and fluid mechanics, and a distinction has
been made between the (7, b) approach based on the magnetic induction equation,
and the (7,4, ¢) potential formulation. With respect to surface rheology, the con-
cept of in-excess surface quantities has been particularly emphasised, leading to the
introduction of surface shear and surface dilatational viscosities. The overall coupling
between bulk MHD and surface dynamics has then been set up, by considering the
latter as a particular boundary condition for the supporting MHD flow.

In Part III, which constitutes the main part of this thesis work, the choice has
been made to focus on a particular physical layout: the annular MHD viscometer.
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The associated physical features have been first introduced in Chap. I1.A. It has been
shown that depending on the Reynolds number value, the purely hydrodynamic bulk
flow already exhibited promising features, switching from 2-D to 2-D 1/2 topology by
simply tuning on the value of the angular velocity, changing thus the rotating floor
condition. A brief state-of-the-art of existing achievements, involving the coupling
between the hydrodynamic annular flow and the surface rheology of fluid/fluid in-
terfaces gradually covered by surfactants, has been drawn. It has highlighted the feasi-
bility of characterising experimentally the surface viscosities by means of the annular
viscometer. Eventually, it has been shown how the addition of the outer magnetic field
could arouse original stratiied MHD flow patterns, particularly through the electrical
(in)activation of the Hartmann layers, depending on the interfacial oxidation rate.

In Chap. Ill.B.1.a, the coupling mechanism between surface rheology and the sup-
porting annular MHD bulk flow has been investigated, within the approximation of a
strong outer DC magnetic field. Using a matched asymptotic expansion based on the
small parameter 1/Ha, the surface velocity has been expressed as a coupling variable
between the 2-D MHD flow, described by a (7, ) formulation, and the jump mo-
mentum balance, which only brings surface shear into play. The competitive effects
of these phenomena have been highlighted through a new modified Boussinesq num-
ber Bo_, representing the balance between surface viscous shearing and the Lorentz
force. It has been shown that surface rheology monitored the generation of the Hart-
mann layers, and therefore the activation of the electric circuit, dramatically affecting
the velocity field in the MHD core. These original MHD flow patterns have been
consistently found in a supporting 2-D numerical study. The MHD tendency to-
wards two-dimensionality has also been emphasised, enabling selective measurements
of surface viscous shear by extinguishing recirculating flow patterns due to centrifu-
gation.

The latter inertial effects have been investigated in Chap. IIl.C. Magnifying cen-
trifugal effects by increasing the angular velocity of the rotating floor generates an
overturning flow, which has been proved to generate surface shear as well as surface
dilatation. Depending on the relative values of the Reynolds, Hartmann and Boussi-
nesq numbers, atypical MHD flow patterns arise. In particular, it has been stressed
that surface dilatational viscosity does not generate the same changes as its shearing
counterpart. Dilatational viscosity is indeed only responsible for damping the merid-
ian flow driven by centrifugation, with the emergence of an original counter-rotating
pattern if inertia and electromagnetic blocking are both significant. Unlike surface
shear, surface dilatation is not found to play a significant role concerning the electri-
cal activation of the Hartmann layers, whose impact on the core flow is consequently
less dramatic. This 2-D 1/2 numerical investigation has also allowed us to complete
the determination of distinct experimental conditions, for characterising the surface
rheology of a gradually oxidising liquid metal surface.

These scaling laws have been used in the final chapter 111.D, to design the Madip
experiment. The different working areas of Madip have been detailed. The focus has
particularly been put on the design of the gas circuit, in order to transfer Galinstan
in the annular channel and monitor its oxidation in controlled conditions. Prelimi-
nary experimental campaigns have been performed, involving the use of a HCl layer
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to mimic the behaviour of a clean interface. Despite quantitative discrepancies with
the theoretical and numerical predictions, a qualitative agreement has been found for
azimuthal surface velocity profiles, highlighting such fundamental phenomena as the
electromagnetic blocking occurring at high Ha, or a significant advection at high Re.
When removing the HCI layer, a motionless surface has been observed, with sub-
surface flow motion, endorsing our initial guess about the possibility of an oxidised
surface to reach high surface shear values. Finally, an experimental campaign using
the full gas circuit, including the chemical reactor and the ultra-pure gas circuit, has
been carried out. Unfortunately, the Galinstan sample was partially oxidised from
the beginning. Nevertheless, the opportunity was given to characterise this interme-
diate state of oxidation. Due to experimental limitations, the radial velocity profiles
have not been investigated. However, concerning the exploitable azimuthal velocity
profiles, a qualitative and quantitative agreement has been found with respect to the
theoretical predictions, when considering the higher Ha cases. These partial results
have allowed us to give (for the first time) an estimation of the surface shear viscosity
of a partially oxidised liquid metal/gas interface.

As far as future prospects are concerned, several areas of improvement can be
proposed. In the short-term, the Madip experiment should be slightly adapted to
carry out new experimental campaigns. First, concerning oxidation issues, the bub-
bler should be tested, and replaced if a sealing problem is detected. An additional
purification stage, involving a "buffer" HCI solution, could be included in series at
the bubbler outlet, so that Galinstan is initially cleaned from any oxide patches at its
surface. Then, the different "chemical steps" could be performed, and the selective
measurement of surface shear at high Ha could be related to a given O2-rate of the
surrounding atmosphere. Furthermore, if the optical resolution issue is addressed, so
that the radial velocity profiles become measurable, it could be possible to trace back
to the value of surface dilatation. Thus, the focus should be first put on experimental
issues, so that Madip can supply reliable and reproducible experimental data about
the surface viscosities of Galinstan.

In the mid-term, it could be possible to improve the modelling of surface dynam-
ics at a gradually oxidising interface, by questioning some of the initial assumptions
made in this thesis work. Particularly, still considering an interface whose shape is
known, gradients of surface properties could be taken into account in the descrip-
tion of the tangential jump momentum balance, including surface tension gradients
(Marangoni effect) and gradients of surface viscosities. These surface gradients could
be added in the modelling of the annular MHD viscometer, to go beyond the "leading-
order" analysis, and get more accurate measurements of surface viscosities. The rel-
evance of the Newtonian approach for describing the surface dynamics of Galinstan
could also be questioned. If the oxide skin behaviour tends to impart the metal with
non-Newtonian rheological properties, another approach based on nonlinear viscous
models or Bingham plastic models described in [20] could be investigated.

The experimental data could be then used to feed other MHD problems involving
liquid metal/gas interface. The annular channel viscometer is indeed a typical MHD
stratified flow. In order to address the issues linked to MHD multiphase flows from
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Figure Concl. 1 - Future prospects.

both ends, a typical MHD dispersed flow could be investigated. A background step
towards the description of MHD bubbly flows could be the asymptotic study case
of a single spherical gas bubble immersed in Galinstan with a gradually oxidising lig-
uid/gas interface. To this end, a substantial preparatory work is introduced in App. D,
unveiling some physical features of the "bubble MHD problem" (Fig. Concl. 1(a)).

One long-term outlook concerns the modelling of "surface electromagnetism".
There is a priori no reason that the strong gradients of electromagnetic quantities
near the oxide layer could not lead to the definition of surface-excess electromagnetic
quantities (such as surface conductivity). New theoretical foundations should be in-
troduced, possibly deriving from those proposed by Albano and Bedeaux [61]. At
least, the effect of oxidation on the apparent bulk electrical conductivity of a liquid
metal sample could be characterised. A possible starting point is given in App. E.

Another long-term modelling issue involves the shape of the liquid/gas interface.
The interface shape, up to now a priori given, could be indeed released from this con-
straint. Thus, the normal stress boundary condition of the jump momentum balance
should be imposed, in order to define the geometrical configuration of the fluid inter-
face. By the way, a numerical approach should be certainly systematically favoured,
and classical numerical methods of detection (VOF, level-set...) could be used. In
the case of FEM simulations concerning the "deforming bubble MHD problem", the
mathematical developments of App. D.4.b could be reused to implement the weak
form of the overall jump momentum balance at the bubble surface.

Finally, the annular channel viscometer could be adapted to operate not only with
liquid metals, but also with far less conducting fluids such as strong electrolytes, with
typical electrical conductivity o ~ 102S-m~!. In similitude with Madip, this means
that the imposed outer magnetic field should be roughly one hundred times as strong
as it is in the case of liquid metals, requiring the generation of a few dozen Tesla DC
fields. A cooperation with the laboratoire national des champs magnétiques intenses
(LnCMI) in Grenoble could reveal fruitful (Fig. Concl. 1(b)), in order to broaden the
research spectrum about the coupling between surface rheology and bulk MHD.
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Appendix A. Mannheimer and Schechter’s modelling of
the annular channel viscometer

In this appendix, the theoretical analysis of the annular channel viscometer per-
formed by Mannheimer and Schechter is introduced [31], in link with the typical lay-
out shown in Fig. lIl.A.1. Within the approximation Re < 1, the governing equations
are the axisymmetric Stokes equations for the azimuthal velocity vj:

327)9 i 1 8‘09 ‘U@ n 327}9 _
art v dr 2 377

completed with the following no-slip boundary conditions at the inner wall (r;) and
outer wall (r):

0y(rp2) = 0y(112) =0,
along with the rotating floor BC in z = 0:
vg(7,0)=rf2.
The last BC is the azimuthal component of the JMB:
oy 1dogg vy dvg(r,2)
BBy T

drz r d?’ 1'2 32

z=h

An analysis of this boundary value problem results in the following series solutions for
the surface velocity vy along the interface and the bulk velocity field vy (V =7, £2):
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forr €[r;,r,]and z €[0, h], where
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Di(=8:) =2 (28:) 2 (28:) -2 (28:) % (2 8:),
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The quantities ¢ and % are Bessel functions of the first and second kind, the sub-
scripts denoting their orders. Here [3; is the ith root of the relation:

A(28) @ (28) - (L8, o (25,).
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Appendix B. Davoust and Huang’s modelling of the annu-
lar channel viscometer

In this appendix, the theoretical analysis of the deep-channel annular channel vis-
cometer performed by Davoust and Huang is detailed [72], in link with the typical
layout shown in Fig. II.A.1, but for a shallow-channel configuration (z.e. h < r,—7;).
Assuming Re < 1, the governing equations are the axisymmetric Stokes equations for
the azimuthal component of velocity vj:

327}(9 1 87}9 ‘Ug 327}9 _
ar? r dr 2 377 ’

completed with the following no-slip boundary conditions at the inner wall (r;) and
outer wall (r):

V(795 2) = vg(7;,2) =0,
along with the rotating floor BC in z =0:
vg(7,0) =112,
The last BC is the azimuthal component of the JMB:

Pogg 1dugs vps\  Fvg(r,2)
7s drz +7’ dr B 72 B dz

z=h

A scaling analysis leads to the definition of the following dimensionless quantities:
r=r/r,, 2" =r/h, vy =7y /7,42, and the (surface shear) Boussinesq number, de-
fined as Bo = ngh/nr2. Now, within the lubrication approximation 5 /(r, — r;) < 1,
a matched asymptotic expansion is performed, based on the small value of the aspect
ratio y = h/r,. This leads to the following solution at leading order for the dimen-
sionless bulk azimuthal velocity:

> sin(nmz* T -
w32 = (w5l =) 23 ) )<e i T >

—1 niT

where the surface velocity writes

r* 1
Uh(r) = j GrIEf(E)dE + j G |E)f (€)dE,

z r*

To
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where the forcing function f is defined as:

et _n
e 7 r, e x
1—r* +2_ «_ 1

w— 7 Ty

14+e 7 0 —7

f(ry==1"+2

and where G is the following piecewise Green function:
G(r*[€) A(r*)§j1<‘%o>+3(r*)5%<\%o> ifge[:_i,r*[’
r =
C(r*)¢ .2, <%> +D(r*)E A, <%> i€ e,
(

The coefficients A(r*), B(r*), C(r*

o 1 - -
A(r*) Boo () () —a(e) ()
Bw):_fl(rja) 7 ()6 () () ()
Bo %(%B—)%l(ﬁ)_jl(ﬁ)%(ﬁ)
o ) Al ()~ ) 4 ()
Bo ﬂ1<¢%>%<ﬁ>_jl<ﬁ>%<¢%>
oy 1) A (m) - () ()
)4 () - () 4 ()

#, and A being the modified Bessel functions of first and second kinds, respectively.
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Appendix C. Shercliff’s modelling of the MHD flow in a
square duct

In this appendix, the theoretical analysis of an electroconductive square-duct flow
with all insulating walls, subjected to an outer DC field Bo B,é,, originally per-
formed by Shercliff [33] for a rectangular duct. A typical geometrical layout is given
in Fig. D.16 (if we preclude the gaseous inclusion and the boundary conditions pre-
sented in this figure). The typical length, pressure, velocity, and induced magnetic
field are L, P, V =PL/n, and uV /o7, respectively. The governing equations for
the velocity field 7* = v7(y*,2*)é, and the induced magnetic field b* = b*(y*, z*)é,

are dimensionless induction equation and momentum equation:

* *

= =0, *fv*—l—Ha
dz* dz*

where Ha= LBy4/ 0 /n. The dynamic boundary conditions consists of no-slip bound-
ary conditions at the duct walls. With respect to the electromagnetic BCs, let us first
remark that Eq. (MA) yields:

- 1_i<Z*>— 1 [db:, b o
] —ECUF —E ﬁey_a_y*ez s ()

meaning that the induced magnetic field can be considered as a current stream func-
tion. As shown in Eq. (I1.A.36), this leads to a vanishing induced magnetic field at the
walls. Finally, the development in Fourier series leads to the following solution:

N

X — 1,

o

0L, 27) =D f(2")cos(a,y”),

n=0

Z g,(z%)cos(a,y"),

where

<1 sinh(y,,)cosh(8,,2*)— sinh(3n)cosh(}/n2*)>
B sinh(y, —a,,) ’
, sinh(y,,)sinh(8,z*) —sinh(8,) sinh(y,, z*)

sinh(y, —a,,)

b
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with

2n+ 1) 2sin(a,,)
B=g o F=
n

1 1
Yy = 5<Ha—i—\/Haz+40(}21>, 3, :§<Ha—‘/Ha2+4afl>.

The electric current density is deduced from Eq. (C.1).
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Appendix D. A first approach to bubble MHD

In this appendix, our purpose is to complete the investigation of the coupling between surface
rheology and MHD, highlighted in the main matter of this thesis work for a stratified MHD flow, by
focusing this time on a dispersed topology. The physical outlines related to the MHD flow past
a gas bubble, referred to as the "bubble MHD" problem, are discussed. The MHD flow past a
gaseous inclusion constitutes actually an insightful topic, in many respects. As explained in the
introduction, this substantial work has been placed in the appendices, the lack of time preventing
us from investigating the coupling between full interfacial dynamics and bulk MHD.

It is first shown that the bubble MHD problem represents the natural complement to the work
performed on the MHD viscometer. Then, we detail the typical bubble MHD flow configuration on
which we shall focus in this work. The main notations and assumptions are outlined, along with
our approach to the problem. It is particularly shown how the most insightful features are strongly
related to the respective orientations of the velocity field and the outer magnetic field. Afterwards,
a state-of-the-art of the dynamics of particulate media is drawn, first for simple hydrodynamics
(with a special emphasis on varying interfacial BC), then for MHD, in order to constitute a basis of
reference benchmarks for subsequent numerical studies. Some hints at the numerical implemen-
tation of the bubble MHD problem, and particularly the full interfacial dynamics (driven by surface
rheology), are finally discussed, as the first step towards the description of dispersed MHD flows.

D.1. Motivation, physical issues and assumptions for the bubble MHD
problem

D.1.a. A key topic with promising features for future R&D prospects, in link with the
annular MHD viscometer

As emphasised in the global introduction (see Sec. I.A.1.b), dispersed MHD flows
are likely to become one of the cornerstones of MHD in a close future, given the
numerous fundamental and industrial applications potentially involved. The capacity
of heterogeneous media to transfer mass, momentum and heat is well-known. The
addition of an outer magnetic field, in order to drive the multiphase flow by making
the most of the outstanding properties of MHD boundary layers, aims at improving
these remarkable properties. However, it is necessary to describe properly the varying
liquid/gas interface dynamics, governed by surface rheology (e.g. in the case of liquid
metals, subjected to oxidation), if we want to capture the physical behaviour of these
atypical layers. By the way, the guiding principle of this thesis results from the lack of
available information to tackle the physical issues raised partly by the bubble MHD
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problem: how does the surface rheology of a gradually oxidising liquid metal impact a
supporting MHD flow? All along this work, our ambition is to propose an approach
allowing for the description of the two asymptotic topologies of multiphase flows,
i.e. the dispersed and stratified flows. A first part of answer has been given for stratified
flows, with the main matter of this thesis work about the annular MHD viscometer.
The bubble MHD problem is the natural complement for proposing an exhaustive
first approach towards the description of multiphase MHD flows.

Apart from this common thread, the two study cases are strongly connected to
each other. Indeed, the results obtained with the annular viscometer are intended to
feed the bubble MHD problem. Madip has clearly demonstrated the wide range of
possible values for the surface viscous shear of a gradually oxidising interface. This
makes credible our approach to the varying BC at the bubble surface, where we con-
sider a liquid metal/gas interface evolving from a slip (pure) to a no-slip (oxidised)
condition. Besides, the accurate description of the bubble interfacial dynamics def-
nitely depends on the ability of 1dent1fy1ng Bo, and Bo,_with respect to the oxida-
tion state of the interface, which is the primary goal of Madlp Thus, the consistency
of our twofold strategy appears more obvious.

D.1.b. Typical flow configuration and main approximations
Geometry

In this part, we shall investigate the coupling between a gaseous inclusion (made of
e.g. Ar/O, mixtures) and the suspending MHD (square) duct flow of an electrocon-
ductive fluid (e.g. Galinstan), with varying mechanical boundary conditions at the
liquid/gas interface. A very general layout is given in Fig. D.1.

Gaseous
A inclusion

—. ||[=E=

\Walls/. Outlet
«

l

EO Fluid
flow

o

-

€x

Figure D.1 - Overall layout of the bubble MHD problem. go and d are the outer DC magnetic field and
the bubble apparent diameter, respectively.

In order to describe the MHD flow past the gas bubble, several hypotheses are
admitted. In addition to the overall assumptions exposed in the general introduction
(see Sec. 1.C.2) and in the fundamental part (Part II) about classical MHD and the
modelling of the interfacial behaviour, there are several approximations specific to
the bubble MHD problem, that we must now clarify.
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Internal motion, terminal velocity, rectilinear path and fluid flow past a stationary uncon-
fined sphere

First of all, the internal bubble motion is of no interest to us. We are primarily
interested in the surrounding fluid dynamics, and the viscosity of the gas is several
order of magnitudes lower than that of the surrounding fluid, so that the contribution
of the gas dynamics to the jump momentum balance (JMB) is indeed totally negligible,
and can be left aside. Now, let us consider the case of a gas inclusion rising freely under
the influence of buoyancy in a viscous fluid. This bubble ultimately attains a terminal
settling velocity, when all the forces exerted on the bubble counterbalance each other.
In this study, we suppose that the bubble under investigation has reached its terminal
velocity —Vé_; from now on, V shall be used as the typical flow velocity. The order of
magnitude of this terminal velocity is discussed in the following section, in link with
the bubble shape. Moreover, we suppose that this bubble always follows a rectilinear
path along the €, axis. These strong approximations allow us to considerably simplify
the problem, by regarding the bubble as being at rest with fluid streaming past to it.
The latter attains a typical core-flow velocity V far from the obstacle, in the (positive)
¢, direction, which actually represents the relative velocity between the bubble and
the flow motion, as described in Fig. D.2. The reasoning will not suffer from any loss
of generality, for the absolute motions of either the liquid metal or the bubble can be
deduced from this configuration using arguments explained e.g. in [91]. Note that the
influence of confinement due to the duct walls shall be discussed in Sec. D.2.c.

Moving
gas bubble

Motionless

gas bubble

Fluid at rest

Figure D.2 - Equivalence between a bubble rising in a fluid at rest at its terminal velocity, and the flow
past a stationary bubble.

Bubble shape and particulate Reynolds number

As explained in Sec. I.C.2, all along the present work, we assume that the shape of
the liquid/gas interface is a priori given. In the particular case of the bubble MHD
problem, this allows us to circumvent the modelling issue of deforming bubbles. For
the sake of consistency, we must check whether this strong assumption proves relevant
or not, and, if so, we must determine an appropriate shape for the gaseous inclusion.
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Let us momently go back to the case of a bubble rising freely under the influence
of buoyancy, in an infinite medium. The shape of this bubble is governed by 6 pa-
rameters (we omit the gas bubble density, because it is much lower than Galinstan
density). Three parameters are physical properties of the surrounding fluid: 7, p,y;
the last three are d, g and V (g =9.81m-s~2 being the local acceleration of gravity).
A first basic calculation based on the capillary length [, = 1/y /g gives a first hint at
the size of bubbles that can be obtained inside Galinstan, whose physical properties
(except ¥ = 0.535N-m~! [29]) have been previously gathered in Tab. I.B.1. The nu-
merical application gives a relatively high value (due to surface tension) /. = 2.9 mm,
which makes us expect bubbles with typical equivalent diameter d ~ 1cm.

In parallel, three dimensionless parameters can be defined, that govern the shape
of the bubble. These three parameters are:

_de

Rep " MO =

4 2
il _pgd
5 3 Eo= 5 (D1)

7 PY Y

where Re,,, Mo and Eo are the particulate Reynolds number, the Morton number and
the E6tvos number, respectively. The numerical application gives Mo = 2.1 x 1073
and Eo =11.7. The extrapolation of the flow regime map [25] (see Fig. D.3) gives
access to a first estimation of the particulate Reynolds number Re,, | ~ 10%, leading
to a terminal velocity V ~ afew 10>mm-s~!, corresponding to a wobbling shape.
This order of magnitude is consistent with experimental observations (see e.g. [46]).

In this study, however, we shall restrict our attention to much lower particu-
late Reynolds number, Re,, ., = 1.3 x 10%, corresponding to V ~ Imm-s~!. There
are many reasons justifying such a strong approximation, all of them being clarified
in the subsequent section concerning the state-of-the-art of bubble (magneto)hydro-
dynamics in link with surface rheology:

- this work is a first approach to the bubble MHD problem. As such, we want
to focus only on steady flow regimes, for a non-deforming gaseous inclusion,
so that neither instabilities nor turbulence must be taken into account. As
pointed out hereafter, such flow regimes past a sphere are valid up to the value
Re, o = 1.3 X 10%

- for such low Re  values, the bubble is not wobbling, but tends towards a spher-
ical shape, for which a consequent amount of theoretical, numerical and exper-
imental benchmarks exists;

- one aim of this study is to consider the influence of a transverse magnetic field
on the bubble dynamics. Asshown in Sec. D.3.b, a transverse magnetic field acts
to make a bubble more spherical;

- another long-term goal is to investigate the influence of surface rheology on
the bubble dynamics. It is now well-known that a bubble subjected to surface
contamination may reach a (sometimes considerably) lower terminal velocity
than a bubble with a pure interface.

Consequently, in addition to the approximations made for the sake of simplicity,
there are several physical phenomena involved in the coupling between MHD and
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Figure D.3 - Shape regimes for bubbles and drops in unhindered gravitational motion through lig-
uids [25]. The real working conditions Re,, ., for the motion of a gas bubble in Galinstan
are pointed out, along with the maximum value Re . investigated in this study.

p,max

surface rheology which tend to correct the shape of the bubble into a spherical shape.

Henceforth, we shall only consider a non-deforming spherical inclusion with radius
R=d)2.

Definition of flow coefficients

In this section, we introduce different flow coefficients, whose evolution with
respect to Re and Ha reflects typical aspects of the flow dynamics, and allows for the
comparison with benchmarking studies.

The first parameter is defined for those cases where Re has a moderate value,
typically 20 <Re, < 130. These values correspond the flow regime of the steady re-
circulation regions, which develop in the sphere wake (see hereafter). This parameter
is the length of the steady recirculation area, denoted L, measured between the rear
point of the sphere and the tail of the recirculation region.

The sphere is subjected to a force F, exerted by the surrounding flow, due to both
pressure and viscous forces. The streamwise projection of this hydrodynamic force
is called the drag force, while the transverse projection is called the lift force. In this
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Gas bubble

Figure D.4 - Projection of the mechanical stress tensor leading to the definition of the drag force.

preliminary work, the lift force is neglected, for symmetry reasons. If the fluid far
from the obstacle flows along the €, direction, the drag force is generally defined as:

5 r.2 5 — :>._) ._) >
Fd_<F-ex)ex_<fJS<T e,> ex>ex,

where T is the bulk mechanical stress tensor defined in Eq. (I1.A.25), S is the surface
of the sphere and €, the outer normal to this surface. For instance, in the case of an
axisymmetric flow past the inclusion, Eq. (D.2) writes:

(D.2)

}:_:d = ngx :J 27'CR2 sin(@)Tm(R, 6) d(9 gx’ (D3)
0

where r and 6 are the spherical coordinates attached to the sphere, and 7, is the
projection of the bulk mechanical stress tensor defined as (see Fig. D.4):

T,.=T,ycos(0)+T,,sin(0), (D.4)

T - 5 dv, . I(E) 17w,
=T o=\ T Ty )

(D.5)

In practise, the dimensionless group related to the drag force is preferentially used.
This dimensionless coefficient is called the drag coefficient, and is defined as follows:

c = Ml ‘ (0.6)
k”’ 10V2nR

D.1.c. Respective orientation of the velocity field and of the outer magnetic field

To conclude this section, let us highlight an issue of particular interest in view of
magnifying the coupling between MHD and surface rheology, related to the respective
orientation of the velocity field ad infinitum and of the outer DC field. We must
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determine whether a streamwise or a transverse configuration seems more insightful.
Let us momently consider the case of a bubble rising freely in an unbounded medium,
and let us investigate the streamwise configuration, where the velocity and the outer
magnetic field are aligned (along the ¢, direction) far from the inclusion.

The spherical system of coordinates attached to the bubble, defined in Fig. D 4, is
used, and a potential formulation of the MHD problem is selected. After an appro-
priate scaling, the potential formulation leads to the equation for the electric potential
(see Eq. (I1.A.20)):

A*¢* =div' (% x é,).
Let us develop further this equation, by projecting ¢, on the spherical basis: classi-
cally, e, =sin(0)e, 4 cos(0)ey, and here o* = v*(r*,0)e, + vy(r*,0)eéy for symmetry
reasons. Consequently, the vector 5* x €, is oriented along the single ¢, component,
but depends on 7 and @ alone. Its divergence is consequently zero, resulting in:

A*¢p*=0. (D.7)
The electric current density writes (see Eq. (Il.A.21)):
Loy, 1ag
P T T e
Finally, the electromagnetic boundary condition at the surface of the insulating bub-
ble is written j - €, = 0, which yields using Eq. (D.8):
do*
ar*

+ (v} sin(0) — v cos(0)) € (D.8)

o

=0. (D.9)
r*=1
As aresult, Eq. (D.7) does not bring any source term due to velocity into play. More-
over, the BC (D.9) at the surface of the bubble is independent of velocity as well, which
leads us to the conclusion that the form of the electric potential is not conditioned by
velocity, neither in the ruling equation nor in the boundary conditions. Finally, the
electric current densities, given in Eq. (D.8), do not depend on velocity as far as the
in-plane components are concerned. As such, implementing the JMB at the gas/liquid
interface is not worthwhile considering the expected effects on the electric current, be-
cause only the out-of-plane component would be affected by this change. This would
result in a passive matching between the boundary layer surrounding the sphere and
the outer MHD flow, and would not deeply alter the core-flow topology.

Finally, in the light of these remarks, the streamwise configuration is not expected
to be the most insightful layout. This is the reason why we shall focus on the trans-
verse configuration, where By = B,¢,. However, this choice has a major drawback:
the axisymmetry of the problem is broken, which considerably compromises an ana-
lytical approach to the problem. Anyway, the addition of the duct walls would have
broken this symmetry, and implementing the surface rheology equations would cer-
tainly lead to a tedious (if even possible) analytical reasoning. This is the reason why
a numerical approach should be favoured in future prospects.

Now that the reference layout is definitely settled on, let us draw a state-of-the-art
of the most significant existing achievements about bubble dynamics.
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D.2. Hydrodynamic flow past a sphere: state-of-the-art

In this section, the focus is set upon the typical patterns linked to the hydrody-
namic flow past a gaseous sphere, in the case where no outer magnetic field is present
(B, =0). A distinction is made between two flow regimes, based on the values of the
particulate Reynolds number. On the one hand, when Re,, is low (typically Re, < 1),
the classical creeping flow regime is introduced. On the other hand, for intermediate
values (1 < Re,, < 130), the so-called steady wake regime gradually intensifies. Finally,
the most salient features concerning the coupling between surface rheology and bub-
ble hydrodynamics are highlighted.

D.2.a. The creeping flow regime: Rep <1

The problem of the streaming flow past a stationary sphere is a classical problem
in fluid mechanics, first solved by Stokes [24], and discussed later on in such reference
textbooks as [91, 25, 19]. Because Re, < 1, the inertial terms are neglected, allowing
for the analytical investigation of the flow patterns.

Rigid sphere and no-slip BC at the gas/liquid BC

This case corresponds to the historical layout solved by Stokes, who introduced
the Stokes stream function ¢(r,8) such as:

19 _ 1 dYg (0.10
o= rzsin(@)%’ °6= rsin(6) Ir’ 10

to solve for the resulting mathematical problem. The solution in terms of the dimen-
sionless stream function with respect to (r* = r /R, ) writes:

1 3 1
sbgt:ESin2(§)<r*2_§r*+2r*>_ (D11)

An overview of the flow streamlines (solid lines) is given in Fig. D.5. Concerning the
drag force now, its expression can be found by using Egs. (D.2), (D.4), (D.5), and (D.11),
which leads to the well-known Stokes’ law of resistance:

|Fasel = 677 RV,

and to the following value of the drag coefficients:

24
Cyse=—forRe, < 1. (D.12)
| Re, P
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Figure D.5 - Flow streamlines in the case of a no-slip (solid lines: Stokes) or a perfect slip (dotted lines:
Basset) BC at the bubble surface.

Gaseous sphere and perfect slip at the gas liquid interface

This case, solved by Basset by introducing the sliding friction coefficient 3 [92],
and which can be derived from the Hadamard-Rybczynski theory [22, 23], differs
from the Stokes solution in that a slip condition is implemented at the surface of
the sphere, whose gaseous nature is thus more accurately described. When 3 — oo,
corresponding to a no-slip BC at the surface, the previous Stokes solution is recovered.
When 3 — 0, corresponding to a perfect slip at the bubble surface, the solution for
the dimensionless stream function is:

1
Vh = Esin2(9)<r*2 — r*>. (D.13)

An overview of the flow streamlines (dotted lines) is given in Fig. D.5. It can be noticed
that for a given value ¢* = Cst, the streamlines are closer to the bubble than they are
in the Stokes solution. Empirically, a perfectly sliding interface is actually expected to
exert less influence on the flow in its vicinity than when a strong friction occurs at the
surface. More formally, this difference is explained by the conservation of momentum
written on an elementary surface surrounding the bubble. In the case of a perfect slip,
the expression of the drag coefficient is:

16
C,p,=— forRe < 1. (D.14)
’ Re, P
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D.2.b. The steady wake regime: 1 < RelD < 130

The previous analytical solutions for flow around gaseous spheres are limited to
Re,, < 1. For higher Re,, values, the inertial effects must be taken into account, leading
to the flow separation and to the apparition of two steady recirculation regions, valid
up to Re,, ., = 130 [25]. Because of the inertial effects, the main sources of informa-
tion include experimental observations and numerical solutions. The flow patterns
are investigated through the flow coefficients previously introduced.

Rigid sphere

In the case of rigid spheres, the development of flow field with Re can be divided
into two steps. The first interval 1 < Re_ < 20 corresponds to an unseparated flow
regime. The flow still sticks to the whole sphere surface, and no separation is visible.
Asymmetry becomes more marked. At the onset value Re, = 20[25], flow separation
occurs at the rear stagnation point, and recirculation begins. Finally, as Re,, increases
beyond 20, the recirculation regions appear. These regions are symmetric with respect
to the wake centreline, and develop at the rear of the sphere and lengthen downstream,
as shown in Fig. D 6.

(a) - Computed axisymmetric streamlines past a (b) - Photographs showing the development of the
solid sphere [93]. attached wake behind rigid spheres [94].

Figure D.6 - Numerical and experimental evidence of the steady recirculation regions at differente in-
termediate Re, values.

Let us quantify the development of the steady recirculation area by means of the
parameter L. The evolution of L, with respect to Re,, is shown in Fig. D.7(a). Let
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us focus on the data for which Re, < 130. The following correlation can be derived
from this experimental data:

(—L"”’;Ph”" =, <Rep> —0.5494In <Rep> —1.6694 Y Re,, (D.15)

With respect to the drag coefficient, the following piecewise correlation is pro-
posed by Clift et al. in [25], which encompasses a large set of experimental data:

2 <1 +0.1315 Repo'82_0'051°g1o(Rep)> if Re, < 20,

Cyclifts =€ <Re > = >
G, p 24 0.6305 :
R (1+0.1935 Re 265 if Re, € 120,130].

(D.16)

The resulting drag coefficient curve is shown in Fig. D.7(b).
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Figure D.7 - Flow coefficients of a sphere at intermediate Re,, values.

Gaseous sphere

Contrary to the creeping flow regime, where the rigid or fluid nature of the sphere
does not radically alter the flow topology, both qualitative and quantitative aspects of
the flow patterns past a gaseous sphere noticeably differ from the case of a rigid sphere.
As previously said, the internal circulation of the gas bubble is not of primary interest
to us, because it does not directly impact the JMB. Nonetheless, the slip BC detailed
in Sec. D.2.a stems from this internal circulation, which in turn causes a delay of flow
separation and wake formation in the external fluid. In the case of a bubble with a
very pure surface, the separation of flow seems even absent [25], as shown in Fig. D 8.
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With respect to the drag coefficient, a good fit to numerical predictions on spherical
gas bubbles is provided by the following correlation:

[Cd,cmt,g =c;(Re,) =149 Re, 7%, Re, > 1.} (0.17)

The resulting drag coefficient curve is shown in Fig. D.7(b).
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Figure D.8 - Vorticity w distribution at the surface of different spheres for Re, = 100 [25]. The absence
of separation for the bubble is indicated by the fact that the sign of w remains unchanged.

D.2.c. Impact of flow confinement
Influence on overall flow patterns

Up to now, the flow domain has been considered unbounded, so that the typical
velocity of the flow far from the inclusion has been considered uniform. In practise,
the flow domain is bounded by ducts, whose typical transverse extent is 2L, as shown
in Fig. D.9. Depending on the value of the so-called blockage ratio:

d

A=2,
2L

(D.18)

the confinement may deeply alter the flow patterns past the spherical inclusion. It is
thus important to assess this influence.

Let us consider the typical layout described in Fig. D.9. At the inlet, the hydrody-
namic velocity profile vary now in accordance with the parabolic Poiseuille velocity
profile. The typical velocity V' corresponds now to the maximum velocity reached
at the inlet, i.e. at the duct centreline. Moreover, the core-flow between the sphere
and the duct walls is locally accelerated, in link with the momentum balance. Finally,
the boundary layers at the walls can also interfere in the overall flow patterns. Given
the relatively low value of A that shall be adopted in this work, we do not expect the
impact of the confinement on the flow dynamics to be significant, from a qualitative
point of view.
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Figure D.9 - Cross-section of the duct flow past a sphere: confinement effects.
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Figure D.10 - Drag correction for a falling sphere at small Re, numbers for several blockage ratios [95].

From a quantitative point of view however, the non-uniform inlet velocity profile
generates an additional pressure gradient along the transverse direction, and viscous
effects at the duct walls. These two combined effect impact the values of the flow
coefficients, beginning with the length of the recirculation area L, for the steady
wake regime. An increase of A causes a shortening of the steady recirculation region,
and thus adecrease of L, at a given Re . For instance, for A =0.125, L, differs within
5—10% from its value in the A =0 (unbounded) case [96].

Now, with respect to the drag coefficient, the difference with the unbounded con-
figuration can be significant. Indeed, for A =0.125, C; can reach up to 35 % higher val-
ues than in the unbounded case, as shown as shown by Wham ez al. [95] (see Fig. D.10).
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These authors propose to apply the following correction factor K to the unbounded
solution, in order to take the blockage ratio into account:

. 1—0.75857 1>
1— <O.6628 +1.458 e—o-osz%) A+ 2.086513 — 1.70861% 4+ 0.726031°

which leads to the following correlation:

{Cd,Wham =CyoK (Re,) VRep.} (D.19)

Eq. (D.19) has been validated in the case of rigid spheres. In the absence of similar
information in the case of gaseous (slipping) bubbles, C; ; may represent Eq. (D.16)
for rigid spheres, Eq. (D.14) in the case of gaseous spheres for Re, < 1 and (D.17) in the
case of gaseous spheres for Re, > 1.

D.2.d. Impact of surface contamination: the coupling with surface rheology

Up to now, the liquid/gas interface has been considered either totally rigid, leading
to the flow patterns observed past a rigid sphere, or totally sliding, corresponding
to the case of a gaseous sphere. In practise, the interface BC is profoundly affected
by the presence of surface contaminants, or surfactants. The fluids exhibiting high
surface tension, e.g. liquid metals, are particularly concerned. When these surfactants
are absent, the liquid/gas interface is pure, but when they are present even in small
proportions, they may adsorb at the interface, conferring it a rigid behaviour. As
it has been previously highlighted, this change in the interfacial behaviour leads to
significant changes in the hydrodynamic flow patterns, especially at intermediate Re
values. This is the reason why we focus now on the most salient features implied by the
coupling between the surface rheology of the liquid/gas interface and the suspending
flow hydrodynamics.

Neglecting the Marangoni effect

We remind here that we are not interested in surface properties gradients, and
that the surface tension y is not brought into play, because the spherical shape of the
interface is a priori assumed. Thisisa very strong approximation: as emphasised in the
overall introduction in Fig. 1.B.3, surface tension gradients do exist in practise at the
surface of the sphere. These gradients are generated by the convective sweeping of the
surfactants at the rear of the sphere, because of the bubble motion. These gradients
would normally interfere with surface dynamics, inducing a tangential stress due to
Marangoni effect. The latter would thus retard surface, increase the drag coefficient,
and the terminal velocity of the bubble would be lowered (which is quite positive,
for it brings back the real gas bubble to lower Re, values on the map of flow regimes
presented in Fig. D.3). Nevertheless, because the primary objective of this thesis is to
give a first glance at the coupling between MHD and surface rheology, we leave such
gradients apart from the following analysis, allowing us to ignore chemical transport
issues. The modelling of the interfacial transport of species is left for future prospects.
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Surface rheology and gaseous spheres in the creeping flow regime

Let us place in the case of a gas bubble whose surface exhibits Newtonian rhe-
ological behaviour, rising at a terminal velocity V, such as Re, < 1. Let us use the
spherical system of coordinates, typically described in Fig. D.4. The bulk equations
are the classical Stokes equations, while the jump momentum balance written at the
interface can be deduced from Eq. (I.B.6) written in spherical coordinates, after an
appropriate scaling [20]:

) 1 d(sin(0)v} 3<:}_§>
(Bo"s—i_Bo’?s)ﬁ sin(d) < a0 9) ~ o (0-20)

where:

x
Bo. =25 Bo s

, = D.21
xs 77R s ’7R ( )

are the surface dilatational and shear numbers, respectively. Owing to the axisymmet-
ric nature of the fluid motion, the mathematical problem can be solved using a Stokes
stream function formulation, which leads to [20]:

1 3(14+Bo Bo 1
Jrg==sin’(0)( 72— < XS)T*—F 5 ). (D.22)
2 3+2B0XS 3+2B0x5 r*

The first remark that can be drawn is that interfacial shear viscosity is absent from
Eq. (D.22). This result has been confirmed in more recent studies [97]. This reveals
that the interfacial motion is in this case purely dilatational. The lack of any 7¢ term
may be related to the fact that the azimuthal surface velocity v} does not depend on
. In practise, when the axisymmetric asumption is broken, e.g. when the spherical
bubble experiences an external shear field, the surface viscous shear is solicited. Be-
sides, the variations of Bo,, - covers the entire spectrum of interfacial behaviour: when
Bo, — 0, the interface BC is equivalent to a pure slip, and Eq. (D.22) becomes equiva-
lent to Eq. (D.13). Conversely, when Bo,, — oo, the bubble surface is so contaminated
that it behaves like a rigid sphere, and Eq. (D.11) is recovered. The same assessment
can be made with the drag coefficient:

24 2+B0x§
Cipd= Re 37 Bo " (D.23)
p xs

Surface rheology and gaseous spheres in the steady wake regime

When Re,, > 1, the difference between the drag coefficients for rigid and gaseous
spheres becomes nearly 50 % wider as Re  increases, as shown in Fig. D.7(b). The influ-
ence of surfactants can be then even more marked than at low Re . However, it is very
difficult to have an accurate control over the exact quantity of surfactants introduced
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in the system, so that the different flow patterns observed in various experimental
investigations cannot be related to a well-known concentration of surfactants [25].
Nonetheless, all the available data confirm that the presence of surfactants causes a
strong drop of the terminal velocity value, up to 50% lower than in the case of a pure
interface [98].

In conclusion, we have seen how surface rheology may drive the interfacial dy-
namics. The boundary condition at the surface of the sphere may evolve from pure
slip to no-slip, depending on its rate of contamination, which strongly affects the hy-
drodynamic flow in the vicinity of the interface. Let us now see what happens when
an outer magnetic field is added.

D.3. MHD flow around an obstacle in the presence of a transverse
magnetic field

The addition of an external DC magnetic field significantly changes the core flow
topology, regardless of the presence of the bubble. As emphasised in the overall intro-
duction (see Sec. I.B.1.a), in the case of a duct flow with insulating walls, the Hartmann
layers exert an active control over the core-flow, leading to a typical order of magni-
tude V£ ~ O(1/Ha) (see App. C). The presence of the gaseous bubble (assimilated
with an obstacle) is expected to alter deeply the topology of the MHD core-flow. In-
deed, Hartmann layers may develop at the surface of the spherical inclusion, (most
likely) depending on the liquid/gas interface BC, i.e. in strong interaction with surface
rheology. These Hartmann layers may modify the core-flow. Conversely, because the
surrounding electroconductive liquid is affected by Lorentz forces, immersed insulat-
ing objects can experience noticeable MHD effects in an indirect way. Thus, the inter-
play between bubble and bulk dynamics (and ultimately surface rheology) is expected
to magnify particularly original flow patterns.

In the literature, there are few existing theoretical works describing the MHD
of an electroconductive flow past a rigid sphere subjected to an outer transverse DC
field, and virtually none past a gaseous sphere (not to mention surface rheology), be-
cause of the complexity of the mathematical system of equations. Nonetheless, there
is a certain amount of numerical and experimental data, for both aligned and trans-
verse configurations. As previously enhanced, the streamwise (aligned) orientation of
the outer field is left aside from the analysis (see [7, 46, 99, 100] for a non-exhaustive
list of references). Eventually, all the results presented in this section consider a no-
slip BC at the surface of the obstacle; to our knowledge, there are no existing study
on the MHD flow past obstacles, which consider a mechanically varying BC at the
interface between the immersed body and the surrounding fluid. The most signifi-
cant achievements concerning the transverse layout are now highlighted, beginning
with an insightful analytical approach to the 3-D flow around an obstacle in the case
Ha > Re and Ha>> 1, for which the most salient features appear.
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D.3.a. Analytical approach to the 3-D MHD flow past an obstacle when Ha >> Re
and Ha>1

The following analysis mainly bears on the reference article written by Hunt and
Ludford [55], and clarified later in such classical MHD textbooks as [4]. The main
steps of the calculation are included, in as much they unveil significant properties of
the original MHD flow patterns emerging past a 3-D obstacle.

Flow structure

In the original article, an obstacle of arbitrary shape is considered. In the follow-
ing section, though, we shall only consider a motionless rigid spherical obstacle with
diameter d, so that a no-slip BC is implemented at the surface. This obstacle is placed
in a square duct electro-conductive flow, with typical extent L along ¢, (corresponding
to half the width of the duct), and unbounded in the €, and in the ¢ e , with a typical
(maximum) velocity V' far from the obstacle, and sub]ected to an external DC mag-
netic field Bo A sketch of the geometrical layout is displayed in Fig. D.11. The usual
dimensionless numbers describing the MHD flows are:

o pVL Ha? aBgL
Ha:BoL—, Re:_,N:—: s
7 7 Re  pV

(D.24)

where Ha, Re and N are the Hartmann, Reynolds and Stuart numbers, respectively.
Within the assumption N, Ha>> 1 (which only implies Ha? > Re, Re being poten-
tially large), some original features appear. The flow is indeed structured into two
main regions, where the Velocity v gradients and current density ; gradients are weak:
a column C, whose axis is aligned with B, mrcumscrlblng the sphere, and the re-
gion E external to this column. The gradients of ¥ and ; are actually located in thin
layers: the Hartmann layer between the obstacle and the column C, denoted HS,
the (classical) Hartmann layers located near the duct walls, called H W, and an inter-
mediate region SL constituting a parallel (or Shercliff) layer between C and E. The
Hartmann layers exhibit a typical thickness 87, = 1/Ha, while the Shercliff layer is

= 1/v/Ha-thick. The different flow areas are highlighted in Fig. D.11. The most
1ns1ghtfu1 properties pertammg to each region are now detailed. Note that here B,
is ahgned with the e, axis, meaning that we shall take y — z, z — —y for the sake of

y
comparisons with our own approach where Bo shall be aligned with ¢,

Regions C and E

These regions constitute the core-flow areas, E and C being the internal and exter-
nal core-flow regions, respectively. They are deeply impacted by the different bound-
ary layers, and are of primary interest in view of analysing the impact of the spherical
obstacle on the bulk MHD flow. We shall then introduce the most significant physi-
cal features common to the two regions, then we shall detail the properties pertaining
to each separate area.
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Figure D.11 - Different regions of the MHD flow (not to scale) around a sphere when Ha,N > 1 [55].

On the general solution for flow between two non-conductive surfaces

In these areas, viscosity effects are negligible, and after an appropriate scaling, the
dimensionless Navier-Stokes equation can be written within the assumption N > 1:

— [ p” 2 o
0=—grad N +7"%xe,. (D.25)

It immediately follows that J(p*/N)/Jy* =0, and by taking the curl of Eq. (D.25),
dj*/dy* =0. The j-formulation of the induction equation writes (see Eq. (II.A.14)):

— 2 . 96*
Curl (] ) = a_y*’ (D26)
which leads to:
i =0 (D.27)
&’y*z . .
We can now deduce the general form of the core solution:
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where ¢, ¢, g and b are unknown functions of x* and z* only. Ohm’s law leads to:

W 9P _ w__ 99

k=g hET8 L=

(D.29)

Let us consider the general solution for the flow between two non-conductive
surfaces of arbitrary shape, described by y* = y,(x*,z*) and y* = y,(x*, z*) (or equiv-
alently f;(x*,y*,z*)=y"—y,(x*,2*)=0,2 =1,2). At leading order, the Hartmann
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layer HS imposes that * -7 and j* -7 go to zero when y* — y, (7 being the outer
normal to the surface circumscribing a given area). In the vicinity of the surfaces,
these conditions are written [4]:

o L — L, — > .
fv*-n:<‘v*~grad*>fi=—<‘U*'grad*>yi+'vy*zo’ _<]*.grad*>yi+]y*:o,

so that four equations can be deduced from Egs. (D.28) and (D.29) ( = 1,2):

3%< dg 99 3¢> 9%( dg 99 3¢>
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Subtracting the two equations (D.31) leads to grad(y1 Y,) X ér_a:i)(gzﬁ) =0, meaning
that z,ﬁ x*,y*) does only depend on the local thickness e = y, —y,. We can thus denote
d(x*,y*) = P(e). The two relations (D.31) are then reduced to:

. d¢<9y1 v, Iy 33’2)

8—5 > A« g% Jox

Ix* 9z  I9z* Ix* (-3

Eventually, when &(e) is known, the three equations Egs. (D.30) and (D.32) lead to the
solution for ¢, g, and A.

The external region E

In the region far from the obstacle, and comprised between the walls y; =1 and
y, =—1, Egs. (D.28), (D.29) and (D.32) give:

37); v’
g_]j/ - ay* - ay* -

The sum of the two equations (D.30) reduces to » = 0, and the BCs for v* at the walls
require A¢p = 0. The flow in E is thus planar (v = 0), and is derived from a stream
function¥ = ¢ + gb where ng is the harmonic conjugate of ¢, such as:

AV =0, v = o *_gq/ (D.33
=0, v} = 32*’v2_ax*. .33)

The Hartmann layers at the walls impose also that the flow is a curl-free. Finally, to
solve for Eq. (D.33), the conditions on the contour of the column C must be known,
which leads us to the analysis of C and of the parallel layer.
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The internal region C

For the sake of simplicity, we shall only focus on the y* > 0 part (the reasoning
being symmetric for y* < 0). In this area, y; =1, but this time y* =y, (x*, z*) at the
surface of the obstacle, so that Egs. (D.30) and (D.32) do not degenerate. They imply:

g=0, ¢=08(1—y,)=%(1),

so that

& dy, 3 . oy 94

dy, dx*  3z*’ %= dy, dz* * Ix*’
The constraint imposed by the Hartmann layers allow to close the problem in the C
region. Indeed, only @ = Cst is acceptable. Any other choice gives circulating cur-
rents in C, closing themselves on cylinders with ¢, -axis, accompanied by non-zero
total mass flux across them, according to Eq. (D.34). This is incompatible with the
condition ¥* - 7 = 0 at the boundary of both HS and HW layers, which cannot feed
the flow rate from the ends of the cylinder section. The only possibility is:

(D.34)

v=v,=v,=],=],=j,=0 (D.35)

The column C is at rest, and no electric current can flow through it. We refer to
this area as Hunt’s wake, using thereby the terminology adopted by Dousset and co-
workers [58].

The parallel layer S

A planar curl-free flow in the external core region E, a motionless column in the
internal core region C': the existence of the parallel layer § stems from the observation
of the velocity discontinuity between these two regions. Provided that the electric
current in the core j*£) = O(1/Ha) (which is the case for duct flows with insulating
walls, as shown in Sec. 1.B.1.a or in App. C), the balance between electromagnetic and
viscous forces in this layer can be written [55]:

4 _ * 2 _
é”ug 23’0(

P a_*z
aE* Jy

=0, (D.36)

where £ = x*8¢,,7" and {* represent the (curvilinear) coordinates respectively nor-
mal to the boundary of C, parallel to the generatrices of C, and tangent to C in the
(é,,¢,) plane, and where V5, vy and v} are the velocity components along these curvi-
linear directions.

The boundary conditions impose the asymptotic matching with the values in the

core regions:

. lim o =0, (D.37)
*—+00

. * *(E . * . * *(E

lim vp = fvé,( ), lim vy = 0, lim vy = 'vg( )= O(1). (D.38)

Er——c0 Er——c0 Er——c0
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The last BC limg. v;=0(1)is particularly significant, for it ensures that no ve-
locity component can be O(87, ) in the core-flow (where 7* = O(1) by hypothesis).
Finally, the HW layers require that:

v;(y* =+1)=0. (D.39)

The mathematical problem is thus definitely closed, and the asymptotic matched ex-
pansion based on 1/N < 1 provides the following solution [55]:

*(E)

v * Ha W * Ha 7{*2Ha
fv:( —_< 1—erf 5— , v=0, fvg = (€7 e %, (D.40)
2 2\ y* Y *

2 Ty
where dW /d&* = 'vg(E). The electric current component follow by invoking the in-
duction and the continuity equations. From Eq. (D.40), we can deduce that the re-
quirement that no velocity component can be O(J; ) in the core-flow leads to:
=0. (D.41)
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Figure D.12 - Typical flow patterns past a spherical obstacle when Ha, N > 1[55].

Completion of the solution and insightful results

Eq. (D.41) reads:
v

an*

=0, (D.42)
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where 7 is the normal to the cylinder circumscribing the SL region, pointing from E
towards SL (see Fig. D.11). The surface of this cylinder is thus an equipotential surface
of the curl-free plane flow. The last condition is

W =V z* at large distances, (D.43)

The flow is then entirely determined. An overview of the most significant results
is proposed in Fig. D.12. As shown in Fig. D.12(a), the velocity field in the external
core region is analogous to the electric field in vacuum around a perfectly conducting
cylinder. The streamlines penetrate into the column perpendicularly to its boundary,
but circles round the internal core to concentrate in the shear layer, where a large com-
ponent ‘UE =0(8 §1) appears, as confirmed by Fig. D.12(b). In this layer, the electric
current streamlines close themselves up; these O(1) currents cannot be extracted nei-
ther by the inner (%) = O(1/Ha)) or outer (j*(¢) = 0) core regions, nor by the HW
layers, which carry an electric current in coherence with the flow ad infinitum [4].
Such original flow patterns are really specific to MHD phenomena, and illustrate once
again the promising features of two-phase MHD flows, in link with the outstanding
properties of the Hartmann layers. In the case of a (rigid) bubble rising in a quiescent
flow subjected to a strong outer magnetic field, Hunt’s wake should follow the bubble
trajectory along its ascent in the duct. The addition of surface rheology at the bubble
surface is expected to add even more salient features.

Drag coefficient and other flow regimes

The emergence of Hunt’s wake leads to a considerable increase of the drag coef-
ficient. The progressive formation of a ghost [58] cylinder at rest encapsulating the
bubble leads to very strong velocity gradients with the outer core region. These gra-
dients are smoothed over the O(1/+/Ha)-thin shear layer, leading to a an intensifying
tangential stress with increasing Ha. For the sake of consistency with the pure hy-
drodynamic case, where the drag coefficients are given with respect to a particulate
Reynolds number, based on the bubble diameter, let us define:

o Hap2
Ha, =Byd\| —, N, = : (D.44)
p n p Rep

Ha, and N, are the particulate Hartmann and Stuart numbers, respectively. The drag
coefficient due to the electromagnetic contribution that derives from this asymptotic
theory is [101]:

Hap N
Cy tune = 8—— for Ha,>>Re , Ha, > 1. (D.45)
Rep

Note that this "electromagnetic drag coetficient” must be added to the corresponding
hydrodynamic drag coefficient for the same Re_, in order to obtain the global drag
coefficient. Now, regarding the electromagnetic drag coefficient, we can cite other



Appendices | 187

analytical works, allowing us to complete the asymptotic approach of Hunt and Lud-
ford. Thus, the case Re ,Ha < 1, corresponding to the electromagnetic Stokes flow,
has been analytically solved, and leads to the electromagnetic drag coefficient [ 102]:

/C —27Hapf Re ,H 1 D.46
Ld,Gotoh_?g or Re,,, Ha, < 1. (D.46)
p

Finally, the case N, <1,Re, > 1 is investigated in [ 103], leading to:

3
[Cd,Reitz = 1o Np for N, < 1,Re; > 1. | (D.47)

Let us now describe the numerical and experimental results allowing for exploring
other combinations of (Re, Ha, N) values.

D.3.b. Numerical and experimental results of MHD flows past an obstacle
Numerical investigations

In every numerical simulation dealing with MHD flows, the most challenging
issue is always connected to the modelling of the Hartmann layers. The typical thick-
ness of these layers is indeed O(1/Ha), which means that they can become very thin
relative to the typical size of the numerical layout, even for relatively small Ha. How-
ever, as it has been enhanced throughout this entire work, Hartmann layers exert an
active control over the bulk flow. Despite their thinness, it is most important to mesh
properly these regions (or implement equivalent wall-functions, such as [ 104]), so that
the essential physics is captured.

Provided this issue is correctly addressed, the numerical simulations allow to ex-
trapolate the results obtained in the asymptotic theory for different N values. In a
rather different context, Dousset and co-workers [58] have numerically confirmed
the progressive emergence of Hunt’s wake. In this case, the obstacle consists of a
truncated cylinder. Depending on the Re value, the blocked column appears above
the cylinder upper face, up to the top Hartmann walls (see Fig. D.13(a)). Outside this
region, the flow is quasi 2-D. When Re is increased at a given Ha, so that N decreases,
Hunt’s wake is gradually pushed downstream by the free stream (see Fig. D.13(b)).
The flow may thus switch from a vertical (electromagnetic) to a horizontal (hydrody-
namic) steady wake. To our knowledge, this is the only numerical evidence of Hunt’s
wake available in the literature.

In addition to the velocity profiles, the typical distribution of electric current den-
sities and Lorentz force past an obstacle can be determined, as shown in Fig. D.14.
It may be first noted that the results of Dousset et al. [58] are also added, despite
the quite different flow configurations (duct flow past an insulating truncated square-
cylinder of typical width w). The interest of the latter simulations is that they allow
to show the electric current streamlines in different cross-sections of the duct, located
upstream, across and downstream (not shown) the obstacle, for Ha values correspond-
ing to the maximum values used in our upcoming numerical approach to the bubble
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Figure D.13 - Hunt’s wake past a truncated cylinder, at Ha =200, for different Re, = pVw /7y (flow
from left to right, color-scale: higher magnitude from blue to red) [58].

MHD problem. Upstream the cylinder (Fig. D.14(c)a)), the characteristic flow patterns
of the Shercliff flow are observed. Similarly, downstream of the cylinder, the pertur-
bations induced by the obstacle gradually dissipates, and the Shercliff flow patterns
are gradually recovered (not shown). With respect to the section across the cylinder
(Fig. D.14(c)b)), and keeping in mind the comparison with the spherical obstacle case,
let us only focus on the upper half of the duct. The electric current streamlines accu-
mulates in the region above the cylinder tip, which explains the flow braking observed
with the emergence of Hunt’s wake. Finally, at the trailing edge of the cylinder upper
face, the flow "washes down" into the rear of the cylinder. Similar flow patterns are
expected in the case of a spherical obstacle.

Now, back to the spherical obstacle, a numerical study at low-to-moderate par-
ticulate Hartmann numbers values (Ha < 20) about the magnetohydrodynamics of
insulating spheres is proposed in [89, 106]. The distribution of electric currents past
the sphere (Fig. D.14(b)) leads to an increase of the drag coefficient with increasing Ha,
due to velocity gradients along the azimuthal direction. The evolution of the drag co-
efficient with respect to N is shown in Fig. D.15(a). The drag coefficients calculated
from Egs. (D.45) and (D.47) are also indicated as asymptotic references, and the agree-
ment between the numerical modelling and the theoretical predictions seems quite
satisfying. As expected, for a given Re_, the electromagnetic drag coefficient increases
with N,,. This increase could be fitted with a power function of the parameter N ;:

Cd,ern = Cd - Cd,\Wham = f(Rep)an'

The last interesting feature of numerical studies concerns the shape of gas bub-
bles rising in a liquid metal subjected to an outer transverse DC field. Recent simula-
tions [105] (Fig. D.14(a)) based on the VOF method to track the interface show that
a transverse magnetic field acts to make a bubble more spherical. This observation
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(c) - Electric streamlines of the MHD flow past a truncated cylinder, Re,=pVw/n=100,
Ha =100 [58]. a): upstream the obstacle, b): across the obstacle. Flow from back to front.

Figure D.14 - Electric current streamlines for different MHD flows past obstacles.

actually endorses our assumption of a spherical bubble. Let us now end this review
of MHD flows past obstacles in a transverse magnetic field with some significant ex-
perimental results.
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(a) - Drag coefficient: numerical simulations [89]. (b) - Drag coefficient: experimental data [4, 107].

Figure D.15 - Drag coefficients of spheres placed in a MHD flow: numerical and experimental results.

Experimental investigations

Obviously, the most challenging issues faced by MHD experiments on liquid met-
als is the opaque nature of the fluid. The access to the velocity field is possible, but re-
quires more sophisticated methods, such as ultra-sound Doppler velocimetry (UDV)
(see, e.g. [46]) or X-ray radioscopy [108]. It thus reveals quite complicated to access
to detailed flow patterns. However, it is possible to determine some global properties
of the liquid metal flow. Thus, in the case of the drag on spheres immersed in a liquid
metal, in the presence of a strong transverse magnetic field, a reference study carried
out by Branover et al. [ 107] has given rise to the following empirical law for the global
drag coefficient, valid for a wide range of (Re,, Ha,, N,,) values in most practical cases:

{Cd)Br = ¢5(Repy N, ) = Cyiiam: (1407 /N, ), V (Re, Hap,Np),j (D.48)

where C yp,.m corresponds to the drag coefficient of Eq. (D.19), in the absence of the
magnetic field, at a given Re value. The experimental results found in [107], along
with the correlation (D.48), are displayed in Fig. D.15(b). For the sake of compari-
son, the two curves corresponding to the drag coefficient calculated from Eq. (D.45)
at Re, = 17.6 and Re_ = 23.3 are also shown. The agreement is excellent between ex-
perimental results and theoretical predictions.

In conclusion, the previous analytical, numerical and experimental results about
the bubble (magneto)hydrodynamics has allowed us to constitute a review of the most
salient physical features in link with the bubble MHD problem. All the previous qual-
itative and quantitative observations about the typical hydrodynamic or MHD flow
patterns past a spherical obstacle shall serve as multiple benchmarks for upcoming
numerical studies. Let us finally discuss about the typical physical modelling of the
bubble MHD problem, and point out some insightful numerical issues in link with
the implementation of surface dynamics.
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D.4. Some hints at the numerical implementation of the bubble MHD
problem

In this section, the typical bubble MHD layout is introduced, along with the gov-
erning equations and boundary conditions. A final comment is also added, about a
general weak formulation of the JMB. The following approach constitutes in fact the
preparatory work for future FEM simulations of the bubble MHD problem.

D.4.a. Geometry, notations, governing equations and boundary conditions

Geometry
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Figure D.16 - Geometry (not to scale), boundary conditions, and cutting planes for post-treatment.

The suspending fluid under consideration is Galinstan, whose physical properties
are collected in Tab. 1.B.1. A typical geometrical layout is given in Fig. D.16, along
with the electromagnetic and dynamic BCs. The bubble with diameter d (typically:
d =102 m) is placed in the duct, whose typical length L (e.g. : L €[4d,6d]) is the
half-height of the square cross-section. The blockage ratio is A=d /2L. Typically,
A €[0.08,0.125]: if it is larger, the confinement would greatly influence the hydrody-
namic flow, if it is smaller, mesh size could rapidly become prohibitive. The origin of
the Cartesian system of coordinates (O, €,,¢,,¢,) is located at the centre of the spheri-
cal inclusion. The bubble should be slightly shifted from the centre of the duct, whose
streamwise extension along the €, axis is Ly,,. The latter should be equal to a couple
of times the length L, so that the development of the wake at the rear of the sphere
is undisturbed by the outlet boundary condition. The flow far from the sphere flows
along the €, direction, while the outer magnetic field is oriented along the ¢, direction.
Finally, the following cutting planes could be defined for post treatment, as shown in
Fig. D.16: Py, P, and P; refer to the (xz), (xy) and (yz) planes passing through O.
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Notations, dimensionless parameters and flow regimes

The physical quantities of interest are expressed in the Cartesian system of coordi-
nates: first, the velocity field o = v, (x,y,2)e, + 'vy(x,y, Z)Ey +v,(x,7,2)é,, then, the
pressure p = p(x,y,z), and at length, using generalised Ohm’s law, the electric cur-
rent densities 7 = 7,(x,9,2)é, +J,(x,9,2)¢, +7,(x,y,2)é,, the latter being deduced
from the electric potential ¢ = p(x,y,z).

With respect to bulk dimensionless quantities, two typical lengths can be chosen
to scale the governing equations, i.e. the sphere diameter d or the typical duct length
L. This leads to two set of dimensionless parameters, z.e. the Reynolds, Hartmann and
Stuart numbers Re, Ha and N, based on L, or the particulate Reynolds, Hartmann
and Stuart numbers, i.e. Rep, Hap and N, based on the diameter d of the spherical
inclusion. Depending on their respective values, different flow regimes should be
distinguished. If Ha=N=Ha, =N, =0, two distinct hydrodynamic flow regimes
could be investigated, whatever the surface BC: the Stokes flow regime for Re, <1,
and the steady wake regime for 1 <Re, <Re,, ., = 130, the latter corresponding to
the onset of wake instability, which does no enter the scope of this thesis work. When
the outer magnetic field is added, in the limit N,N,,>> 1 and for a no-slip BC at the
surface of the sphere, Hunt’s wake flow regime should be gradually reached, with the
emergence of the blocked column on both sides of the sphere. Other combinations of
bulk dimensionless parameters correspond to intermediate flow regimes. Concerning
surface quantities, the Boussinesq numbers Bo, ,Bo, defined in Eq. 11.B.10 allow for
the accurate description of surface dynamics, from perfect slip to no-slip BC.

All the bulk physical quantities should seemingly be scaled with the length L
(along with ), which reveals more convenient to discuss the MHD flow patterns,
while d is more convenient for purely hydrodynamic patterns. The latter observa-
tion explains why a mixed terminology (Re,,, Ha) should be favoured to set the flow
regime, Re, characterising the hydrodynamic flow regimes, Ha determining the tran-
sition towards Hunt’s wake. However, as far as drag coefficients C; are concerned,
particulate dimensionless numbers should be preferred, based on the sphere diameter.
It seems indeed more consistent to express the drag coefficients evolution with respect
to d, a length characterising the body subjected to the drag force. By the way, bench-
marking studies always refer to a dependence on the particulate numbers. Similarly,
the Boussinesq numbers should be also based on the sphere diameter (or radius, see
Eq. (D.21)). The dimensionless quantities of interest could thus be defined as:

- the Cartesian coordinates: —Ly, /3L <x*=x/L <2Ly, /3L (for instance),
—1<y*=y/L<land—-1<z"=z/L<1;

- thevelocity v* = 9/ V, where V corresponds to the maximum value of the inlet
velocity;

- the pressure p* = p/pV?;

- the electric potential ¢* = ¢ /LB, V

- and finally, the electric current densities: j* = j /o V By;
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MHD equations

A potential formulation based on the electric potential ¢ should be favoured. The
basic MHD equations are derived in Sec. I1.A.1.d (see Egs. (1.A.20) for the induction
equation and (I1.A.28) for Navier-Stokes equations):

A% =div* (6 X Ez), (D.49)
U T Gt — 1., Ha-
<v* . grad*> v =—grad*p* + R—A*v* + T]* X €e,. (D.50)
e e

These equations are completed the continuity equation for the velocity field:
diV(fz_f*) =0, (D.51)

and by generalised Ohm’s law for the electric current densities:
2 — ay
j*=—grad(¢*)+ 7" xé,. (D.52)

Boundary conditions

The electromagnetic boundary conditions are quite straightforward. The duct
walls and the bubble are actually all insulating so that the boundary condition:

f* -n1=0, (D.53)

is valid everywhere, even at the inlet and the outlet boundaries (see the discussion of
Sec. 11.A.3.b). In terms of the electric potential, Eq. (D.53) yields:

7 - grad(¢*) =0, (D.54)

where 7 is the unit normal outer to the considered surface. Eq. (D.54) is true every-
where, except at the outlet, where:

9P _ .

B = ‘Uy > (D.55)
and at the surface of the sphere, where (with 7 =¢,):
—
—¢, -grad(¢")=—v] (8,-¢,) + (£, ). (D.56)

Now, as far as dynamic conditions are concerned, a no-slip BC is applied at the
duct walls: .
" =0. (D.57)

The inlet and boundary conditions for velocity are (see the discussion pertaining to
the inlet/outlet dynamic BCs in Sec. 1.A.3.b):

=0, (D.58)
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corresponding to the Shercliff velocity profile at the inlet (see App. C) and to a zero-
pressure, no viscous stress outlet. Finally, the dynamic BC a the surface of the sphere
is generally written:

7| = 5. (D.59)

The surface velocity field 7§ is governed by the JMB, whose possible numerical im-
plementation is finally discussed.

D.4.b. 3-D Interfacial dynamics in FEM simulations
Numerical issues

The ultimate aim of numerical investigations about the bubble MHD problem is
to highlight the different flow patterns which may result from the original coupling
between bubble interfacial dynamics (driven by Bo, and Bo,, ), and the MHD core-
flow. For this purpose, and for the same reasons as those exposed in the previous
numerical work about the annular MHD viscometer, we have decided to implement
the weak form of Eq. (11.B.6) in the selected FEM software, z.e. Comsol. However, in
this 3-D case, such an implementation has revealed a much more tedious process.

In the numerical investigations of Secs. I11.B.2 and I11.C, the (natural) system of co-
ordinates is cylindrical for both the bulk flow and the surface dynamics equations.
In the present case, the Cartesian coordinates constitute the natural system of coor-
dinates for describing the square-duct flow, while the spherical coordinates are more
natural to describe the spherical bubble interfacial dynamics. This conflict between
the two system of coordinates has led us to choose the Cartesian system, more conve-
nient for post-treatment, which implies the projection of Eq. (I1.B.6) in the (¢,,€,,€,)
basis. This time-consuming process has not allowed us to implement the full surface
rheology formulation.

As it happens, in recent works, the improvement of calculation capacities has
leaded to the modelling of deforming bubble dynamics occurring at large Re,,, even
for turbulent configurations, through such numerical methods as the volume of fluid
(VOF) or level-set methods to capture the interface dynamics. Surface rheology is
often taken into account only through surface tension, e.g. through a surface tension
force term integrated in the bulk equations (see for instance [ 105]). The deformation
of gas bubble is far from the scope of this study, nevertheless one work has retained
our attention: in [ 109], Reusken and Zhang investigate different bubbly flows config-
uration, by taking into account a Boussinesq-Scriven interface tensor, including both
surface and dilatational viscosities. As they perform FEM-based simulations, they ex-
plicitly derive the surface stress tensor functional, corresponding to the weak form of
the left-hand term of the JMB (see Eq. (I1.B.3)). Note that these authors do not focus
on the right-hand jump term, because they adopt a level-set method allowing them to
circumvent this issue. In the following, we complete their results by adding this jump
term to the overall weak form. The resulting expression is valid whatever the con-
sidered 3-D geometry, which reveals most valuable when considering the flow past
a sphere in a square duct, where two system of coordinates (Cartesian for the duct,
spherical for the gaseous inclusion) enter in competition. The only prerequisite is to
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be able to define properly the normal to a given surface, which reveals a challenging
issue for deforming interfaces, but which does not cause any particular difficulty in
the case of a non-deforming bubble. The corresponding mathematical foundations
are now briefly exposed, because they shall constitute the cornerstone of future FEM
simulations involving the coupling between MHD and surface rheology.

General weak form of the JMB

The R? basis is generally denoted (e;, ,, ;) |, with €; being the ith basis vector. §
indicates the liquid/gas interface. Let us project the right-hand term of the JMB (see
Eq. (11.B.3)) on the basis of test functions @ = (w,, w,,w;) ", from the finite element
velocity @ space. The surface stress tensor functional takes the form:

@)= Lfs(zz)ds - L divg ﬁ;) - @ds.

After integrating by parts, and making use of mathematical arguments, the previous
expressions can be written:

Fy(@) = — L tr (ﬁgﬁé(@)) ds,

where tr stands for the matrix trace. The previous equation can be developed by
using Eq. (11.B.1), which introduces surface tension y, and surface shear and dilatation
viscosities 7¢ and x:

Fy(@)=— L ytr<?§.$§(@)> ds— L (xs_ns)dws(a)tr(i%g?é(@)) ds
- L pgoe ([T (552 (3) + 300 (3)) T, Jograd(3)) ds =, + 1y
Let us first explicit the surface tension term by using the trace operator definition:
L Z y 15 . e grad(fwl-) ds.
1=1

The other terms follow, by using the following identities linked to I, the surface
projection tensor :

> = = = L [ = L
Ig egrad; = I egrad, and divg (v) :<[5 0grad>-v

This yields:
3

I :_JSZ("S_US)<<?S>°;§> : ’5) <7§>‘5i>T' grad(w,) dS,

1=1
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and

—_

JSZ’iS grad( )+;§T<5)> o??}.@if. orad (w;) dS.

=1

Finally, the weak form of the surface stress tensor contribution is written by adding
the three previous contributions, and the jump term weak contribution, denoted F;
The latter is quite straightforward, as it only involves first-order derivatives of t£
velocity components. Taking the integrand yields:

A== _23: {y <?S>. gi>T+ (x5 —ng) <<7S>' ;ﬁ) ' 77) <75>° Ei)T

i=1

. <[7S>. <g?a§(5)+g?ac>ﬂ(‘5)> .7;},31,>T } - grad (w;) — |[:T> : ﬁ]

g

(D.60)

Eq. (D.60) is the weak form that should be implemented, e.g., in Comsol, at the
interface between two media, to take the influence of a Newtonian interface into ac-
count. As previously said, it strongly relies on the possibility of defining the normal
7, which enters in the definition of the surface projection tensor. The main advan-
tage of Eq. (D.60) is that it enables to work in the usual Cartesian basis, without the
difficulty of a tedious projection of the surface rheology equations (written normally
in spherical coordinates) at the surface of the sphere.

In conclusion, it has been shown how the coupling between MHD and surface
rheology, within the framework of the bubble MHD problem, could reveal insight-
ful. When considering separately in the literature the outstanding properties of the
MHD flow past an obstacle, and the significant impact of surface rheology on bubble
dynamics, salient physical features would certainly arise if the two approaches were
merged. The present appendix is thought of as a background step, gathering theoreti-
cal, numerical and experimental benchmarks, and constituting guidelines in order to
tackle the bubble MHD problem, towards the description of MHD dispersed flows.
Because of a lack of time, this remains as an outlook of the present project.
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Appendix E. Electrical conductivity of liquid metals: the
Micmac experiment

In this appendix, an experimental set-up, called the Micmac (for Mesure inductive de la con-
ductivité des matériaux (électro)conducteurs in French) experiment, is proposed as an experimen-
tal test-bench for measuring the electrical conductivity of liquid metals. Micmac is based on the
eddy-current method, first introduced by Bean et al. [110]. After a brief review of the theoretical
foundations of this method, the technical developments of Micmac are introduced. The first results
obtained for different metallic samples, including the liquid metal Galinstan, are unveiled.

E.1. Motivation and state-of-the-art

E.1.a. Physical issues

In the literature, there are some discrepancies about the value of the electrical
conductivity o of Galinstan [28, 29, 43, 44, 49]. This may be explained by the fact
that this liquid metal is an eutectic alloy, and beyond the commercial denomination,
the name "Galinstan" has become generic to qualify the alloy based on Tin, Gallium
and Indium. The values of o may significantly vary with the alloy composition. The
most usual chemical composition in wt % is Gagye, I, 50,915 56, Which corresponds
to the particular alloy used in this thesis work. The corresponding usual value of o for
pure Galinstan is indicated in Tab. 1.B.1: 0 =3.29 x 10°S-m~!. It has been established
by means of a standard contact-method in accordance with the four-point scheme [ 28].

In the latter work, the authors particularly highlight that measurements of the
thermophysical properties of Galinstan greatly depend on the oxidation rate of the
interface, though they do not quantify such a dependence. As explained in Sec. 1.B.2.b,
surface oxidation deeply alters the wettability of Galinstan. For contact methods,
this wettability is expected to play a significant role in the determination of o, by
introducing an artificial contact resistance.

To the best of our knowledge, there seems to be no available data about the con-
ductivity of gradually oxidising liquid metals. The variation of o has been apparently
considered only from the thermal point of view. Therefore, there is a need to de-
termine the electrical conductivity of the alloy with respect to the purity of the sur-
rounding atmosphere. This is all the more justified when considering the coupling
between surface rheology and bulk MHD: the strong gradients of o near the inter-
face, left aside from the analysis in this thesis work, could actually impact the current
density patterns, thus modifying the electric circuit inside the liquid metal. Conse-
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quently, we need to set up a contactless, accurate, non-destructive (given the cost of
Galinstan samples) experimental method, in order to determine ¢ in various experi-
mental conditions (temperature, oxidation...). The selected method is based on the
eddy-current approach, which is now detailed.

E.1.b. Typical experimental layout and associated physical features
Geometry

The typical experimental set-up under consideration is displayed in Fig. E.1. It
derives from the original layout proposed by Bean et al. [110]. It essentially consists
of a primary circuit, including a DC voltage power supply denoted G, a resistor R,
a switch, and a primary coil with N, turns and inductance L,. This primary circuit
shall also be referred to as the "power circuit" hereafter. A secondary coil with N,
turns and inductance L, is placed into the primary one, and with the associated mon-
itoring and processing unit, they constitute the secondary circuit, or "measurement
circuit". Finally, the sample is placed into a chemically neutral and electrically insu-
lating crucible, which is in turn inserted inside the secondary coil.

Crucible Secondary @— Primary

R © coil, L, coil, L,
o) ° ° @ |Monitoring
Switch A Sample | &
O Ngo o O | processing
N,
(@) @)

Eo(t) T %_

t ©
Figure E.1 - Typical layout of eddy current method [110].

Principle

As its name suggests, the eddy-current method bears on the decay of induced elec-
tric current in a metallic sample, which is subjected to a sudden magnetic field step.
In the original layout, the sample is primarily exposed to a uniform outer DC mag-
netic field By, generated by the primary coil. This magnetic field is switched off very
rapidly, inducing eddy currents in the sample, according to generalised Ohm’s law for
time-dependent problems:

5 — . A
j:0<—grad(¢)+5xB—§>. (E.1)

In this case, the transient term dA/Jdr constitutes the most significant contribution.
The decay of these eddy currents generates a voltage through Faraday’s principle,
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which can be measured across the secondary coil. The electrical conductivity of the
metallic sample can be deduced from the signal, by means of the following theory.
In the literature, this method has been used for a collection of solid samples (see, e.g.,
[111, 112]). As suggested in [113], our aim here is to extend the original scope to
liquid samples.

E.1.c. Theory for solid samples

In this section, the original layout considered by Bean et al. [110] is analytically
investigated. The outer magnetic field B, is instantly switched off.

Governing equations

The magnetic induction equation I1.A.8 is used to determine the rate of change of
the magnetic flux inside a cylindrical sample with radius R. The rate of change of the
magnetic induction is governed by a diffusion-like equation, assuming an isotropic
resistivity and permeability and neglecting the displacement currents. It is further-
more assumed that the magnetic induction is only oriented along the ¢, axis, and that
the problem is axisymmetric relative to this axis. Thus: B =(b,(r,¢)+ By(t))e,. The
ruling equation for the magnetic induction is a diffusion-like equation:

ab, 1<32bz 18bz>

2t g\ 22 7o

(E.2)

Once Eq. (E.2) is solved, b,(7, ) is known. The voltage measured at the coil ter-
minals is then found through Maxwell-Faraday (MF) equation:

b

ul(E) =5,

which is integrated for the secondary solenoid with N, turns into:
do .
V=N,—, with &= B,dS. (E.3)
det S
for a circular cross-section of the sample with radius R.

Boundary conditions

The boundary conditions for b, are as follows:

b,(r,0)=B, for re[O;R[, (E.4)
b,(R,t)=0 for t>0. (E.5)
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Solution

The integration of equation (E.2) has been performed e.g. by Wwedensky [114],

and yields:
A __n
E WFola,r exp< yot>

where A, and «,, are constants, and ¢, is the zero-order Bessel function. Using the
theory of Bessel functions (see e.g. Gray ez al. [115]), BC (E.5) yields that o, R =4,
where A, are the successive roots of the zero-order Bessel function. Finally, the bound-
ary condition (E.4) provides:

An:%fw{,(%)m:%.

Consequently, the magnetic induction is written:

A,r Afl
(7,1) ;Anf1 < R >exp <—N0R2t>. (E.6)

Now the magnetic induction is known, Eq. (E.3) is used to determine the voltage.
The total magnetic flux across one elementary coil is:

JJ B,dS = 27‘CJ rB,(r,t)dr
i 2

_ 00 47TBO , M ox /{ >
_nzzjl AL )|:Jo fo< R >i| p< yaRZ
& 4nBy [RE4(4,) 2

~23 0, [ A, ]P< LR >
—47R*B i L ox A
B ° /12 P luoRz

The voltage at the terminals of the N, spires of the secondary coil is then found by
differentiation with respect to time of the previous expression, which leads to:

00 2
(1)= 47ByN, ZCXP< /1 >

MO n=1 IMO_‘R2

At long times, only the first term remains, and the voltage can be written:

V(t)= Vyexp <—£>, (E.7)

T

with V, = 47BN/ o and T = uoR?/ A2, where A; = 2.405 when approximated to
the third significant digit.
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E.1.d. Applicability to liquid metals

Eq. (E.7) is valid for solid materials. Is it still valid as far as liquid metals are con-
cerned? To address this critical issue, we must check whether the ma&netlc Reynolds
number remains negligibly small or not. The transient Lorentz force j x B due to the
magnetic field step could put the fluid into motion, so that the magnetic field could
be significantly convected.

Let us suppose a balance between viscous and electromagnetic effects in Navier-
Stokes equation. This assumption requires that Re < 1, where Re is the Reynolds
number based on the radius of the sample. Such an approximation gives 1m-s™!
for the typical velocity, leading to Re ~ 10°, which enters in contradiction with the
small Reynolds assumption. If now, we suppose an equilibrium between inertial and
electromagnetic effects, the new velocity order of magnitude is 1072 m-s~!, which
gives a consistent value Re ~ 10°. The corresponding magnetic Reynolds number is
Rm < 1072, Consequently, we consider that Eq. (E.7) still holds for liquid metals.

E.2. The Micmac experiment

E.2.a. Global electric circuit

The global electric circuit of Micmac is shown in Fig. E.2. Further details about
technical developments are given in [116].

Sample

O |—W® ol
o Secondary circuit

Primary circuit

Figure E.2 - Global electric circuit of Micmac [116].

E.2.b. Experimental requirements

Some experimental precautions must be taken, in order to measure the signal cor-
responding to the decay of eddy currents in the metallic sample. The most significant
are the following: first, the secondary coil must be designed with its inductance and
distributed capacity being low enough so that its resonant frequency is much higher
than 1/7. Besides, the resistance R; must be high enough to damp instantly the tran-
sient magnetic flux decay of the primary colil, seen by the secondary coil. The char-
acteristics of the primary circuit stem from these requirements:

N, =183,L, =938 uH, R, = 22.82Q, N, = 500, L, = 7.4mH.
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The radius of the different cylindrical metallic samples is R = 12.5mm.

E.2.c. First experimental results
Experimental protocol

Contrary to Bean et al., the outer magnetic field is instantly switched on in the
Micmac experiment. However, the form of the solution is identical to Eq. (E.7), ex-
cept for the sign. Signals are measured on an oscilloscope after low-pass filtering to
reduce experimental noise, and transferred to a processing computer. Then, the data
are fitted by means of a least-mean square method, which gives access to the electrical
conductivity of the sample.

First results

0.0002 0.0004 t 0.0006 0.0008 0.0010
-0.11
0.2
-0 i V(t) ]
V(t) — Fit: 0 =2.64 x 10’ S-\m™! | = Fit: ¢ =5%x 10°S-m™!
-0.06 o Aluminum sample: experimental data 03 o Galinstan sample: experimental data
-0.07
-041
—0.08
—0.09
(a) - Solid aluminium sample. (b) - (Liquid) Galinstan sample.

Figure E.3 - Some Micmac results: t is given in seconds, V in volts.

Some results obtained with Micmac are shown in Fig. E.3. As far as solid samples
with high conductivity are concerned, Micmac provides satistying results, for instance
with aluminium in Fig. E.3(a). The fitted curve gives o0 =2.64 x 10’ S-m~!, close to
the manufacturer data o =2.61 x 10’ S:-m~!. However, for solid samples with low
conductivity values, such as stainless steel, the agreement is far worse, with a measured
value twice as high as the expected value. This problem is also found with Galinstan
exposed to ambient air: as shown in Fig. E.3(b), the fitting gives ¢ =5 x 10°S:m—1, to
be compared with the usual value o = 3.29 x 10°S-m—1. This might be explained by
the fact that the lower conductivity is, the lower the time constant corresponding to
the decay of eddy currents in the sample. Consequently, it becomes difficult to make a
distinction between the signal characterising the decay and other fast transient signals,
such as the switch closing, or despite the experimental precautions taken, the primary
transient. For future prospects, it could be worthwhile to increase R,, and to change
for a faster switch, to recover an acceptable accuracy for low o values. The influence
of oxidation is also an outlook of the present thesis work.
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J. Delacroix and L. Davoust. Electrical conductivity of the Hartmann
layers relative to surface viscous shearing in an annular magnetohy-
drodynamic flow. Physics of Fluids, 26: 037102, 2014.

Abstract: As a first step towards two-phase magnetohydrodynamics (MHD), this pa-
per addresses an original analytical coupling between surface rheology, e.g. a gradually
oxidizing liquid metal surface, ruled by the Boussinesq number B,, and a supporting
annular MHD flow, ruled by the Hartmann number H, in the general layout of a clas-
sical annular deep-channel viscometer, as developed by Mannheimer et al., in J. Colloid
Interface Sci., 32:195-211, 1970. Using a matched asymptotic expansion based on the
small parameter 1/H,, we can express the surface velocity as a coupling variable in the
jump momentum balance (JMB) at the liquid surface. By solving the latter through
the determination of the Green’s function, the whole flow can be analytically cal-
culated. A modified Boussinesq number, éo, is produced as a new non-dimensional
parameter that provides the balance between surface viscous shearing and the Lorentz
force. It is shown that the B, number drives the electrical activation of the Hartmann
layers, heavily modifying the MHD flow topology and leading to the emergence of
the Lorentz force, for which interaction with the flow is not classical. Finally, the
evolution laws given in this study allow the determination of scaling laws for an origi-
nal experimental protocol, which would make it possible to accurately determine the
surface shear viscosity of a liquid metal with respect to the quality of the ambient at-
mosphere.

J. Delacroix and L. Davoust. Impact of surface viscosity upon an an-
nular magnetohydrodynamic flow. Magnetohydrodynamics, 51: 195-
202, 2015.

Abstract: Using a matched asymptotic expansion based on the small parameter
1/Ha, this paper addresses an original analytical coupling between surface rheology
of e.g. a gradually oxidizing liquid metal surface, and a supporting annular MHD flow.
It is shown that the level of surface viscosity drives the electrical activation of the Hart-
mann layers, heavily modifying MHD flow topology and leading to the emergence of
a Lorentz force, for which interaction with the flow is not classical. These analytical
results are compared to a 2-D numerical study, highlighting a fair agreement as soon
as Ha > 10.


http://dx.doi.org/10.1063/1.4869327
http://mhd.sal.lv/authors/Delacroix_J.html

References | 213

J. Delacroix and L. Davoust. On the role of surface viscosity in a
magnetohydrodynamic swirling flow. Phys. Fluids, 27: 062104, 2015.

Abstract: The original coupling between the surface rheology of a liquid metal sur-
face and a supporting annular Couette magnetohydrodynamic (MHD) flow is theo-
retically and numerically investigated in this paper, in the general layout of the clas-
sical annular viscometer, as developed by Mannheimer ez al. []. Colloid Interface Sci.,
32:195-211, 1970]. The purely hydrodynamic interplay between the main azimuthal
flow (induced by a rotating floor) and the secondary overturning flow (generated by
centrifugation) is found to be strongly affected by both surface viscous shear and sur-
face viscous dilatation. When the flow is subjected to an outer vertical magnetic field,
the impact of varying interface boundary conditions (through the surface shear and
dilatational viscosities) at the gas/liquid interface profoundly alters the MHD flow
topology. Particularly, when centrifugation competes with electromagnetic effects,
advection of the main flow by the secondary flow is proved to affect significantly the
core MHD flow, leading to a variety of atypical MHD flow patterns.

J. Delacroix and L. Davoust. Surface viscometry in a uniform mag-
netic field. Mechanics and Industry, submitted, 2nd review.

Abstract: This paper addresses an original numerical coupling between surface
mechanics of a gradually oxidizing liquid metal surface, and a supporting annular
MHD flow, in the general layout of the classical annular viscometer, originally de-
veloped by Mannheimer ez al. [J. Colloid Interface Sci., 32:195-211, 1970]. A purely
hydrodynamic interplay between a main azimuthal flow (induced by a rotating floor)
and a secondary overturning flow generated by centrifugation is found to be strongly
affected by both surface viscous shear and surface viscous dilatation. When centrifu-
gation competes with electromagnetic effects, advection of the main flow by the sec-
ondary flow is proved to affect significantly the core MHD flow, leading to original
MHD flow patterns. The latter phenomenology reveals to be relevant to characterise
the surface viscosities of a gradually oxidising liquid metal surface.

Peer-reviewed conferences

- 9th PAMIR International Conference on fundamental and applied MHD, Riga,
Latvia, June 16-20,2014. One oral presentation.

- 10th European Fluid Mechanics Conference, Copenhagen, Denmark, Septem-
ber 14-18, 2014. One oral presentation.

- Congres frangais de mécanique (CFM) 2015, Lyon, France, August 24-28,2015.
One oral presentation.
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On the role of surface rheology in a two-phase MHD flow.

Abstract: In this thesis work, a first approach towards the description of magnetohydrodynamic
(MHD) multiphase flows is proposed, based on the investigation of the role of surface rheology
in permanent regime. The study of the coupling between bulk MHD and surface rheology is par-
ticularly motivated by the development of an annular surface viscometer devoted to liquid metals
topped with an oxidation layer. First, theoretical foundations of MHD and of surface rheology
are separately introduced. The modelling brings out a strong coupling between bulk and surface
velocities, the latter being dependent on two interfacial parameters: the surface shear and dilata-
tional viscosities. Their respective influence is analytically and numerically investigated in the case
of a permanent annular (stratified) MHD end-driven flow. In the considered geometry, a vertical
(uniform) magnetic field is imposed, perpendicular to the gradually oxidising liquid surface. The
contribution of planar surface viscous stresses to the possible electrical activation of Hartmann
layers is demonstrated, leading to a variety of atypical MHD flow patterns. The annular MHD
viscometer is then developed as a first device able to perform selective measurement of the surface
viscosities of electroconductive fluids. First experiments lead to an estimated value of the surface
shear viscosity for a liquid alloy (GalnSn) at room temperature. Some hints are finally given to in-
vestigate the study case of a MHD flow past a rigid fluid sphere, with varying interfacial conditions
governed by surface rheology, as an additional work constituting a first step towards the description
of dispersed MHD flows.

Keywords: magnetohydrodynamics, surface rheology, multiphase flows, Hartmann layers, surface
viscosities, liquid metal.

Role de la rhéologie de surface dans un écoulement diphasique MHD.

Résumé: Dans les travaux de recherche développés durant cette thése, une premiere approche des
écoulements magnétohydrodynamiques (MHD) multiphasiques est proposée. Cette approche se
concentre sur les phénomenes liés a I'interaction entre une dynamique interfaciale et un écoule-
ment de caeur MHD. Le couplage induit entre rhéologie de surface et MHD de sous-phase est parti-
culierement illustré par le développement d’un viscosimétre annulaire surfacique, dédié aI’étude des
métaux liquides progressivement oxydés. En premier lieu sont introduits les éléments théoriques
propres ala MHD et a la rhéologie de surface. La modélisation de leur couplage fait intervenir deux
parametres interfaciaux : les viscosités surfaciques dilatationnelle et de cisaillement. Linfluence re-
spective de ces deux parametres sur ’écoulement MHD de sous-phase est étudiée analytiquement
et numériquement dans le cas d’un écoulement (stratifié) annulaire MHD permanent. Dans la con-
figuration retenue, un champ magnétique uniforme vertical est imposé, perpendiculairement a la
surface liquide graduellement oxydée. Le role décisif des contraintes visqueuses interfaciales concer-
nant |’(in)activation des couches de Hartmann est démontré, conduisant a des topologies atypiques
d’écoulement MHD. Le viscosimétre annulaire MHD est ensuite proposé en tant que méthode
expérimentale originale, permettant la mesure sélective des viscosités surfaciques de fluides électro-
conducteurs. Les premiéres campagnes expérimentales aboutissent  une estimation de la viscosité
de cisaillement interfacial d’un alliage métallique (GalnSn) liquide & température ambiante. Finale-
ment, une ouverture sur I’écoulement MHD a proximité d’une inclusion gazeuse sphérique rigide
est discutée en annexe de ce projet, en lien avec des conditions mécaniques variables a 'interface
liquide/gaz pilotées par la rhéologie de surface, constituant une premiere approche vers la descrip-
tion des écoulements MHD dispersés.

Mots-clés: magnétohydrodynamique, rhéologie de surface, écoulement multiphasique, couches de
Hartmann, viscosités de surface, métal liquide.
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