. .. Généralités, 2. L'explosion des nanoparticules d'aluminium (MDM)

. , Ratio massique d'équivalence ()

S. ). ,

B. Risse, Continuous crystallization of ultra-fine energetic particles by the FlashEvaporation Process, 2012.
URL : https://hal.archives-ouvertes.fr/tel-01749359

D. Spitzer, V. Pichot, F. Pessina, F. Schnell, M. Klaumünzer et al., Continuous and reactive nanocrystallization: New concepts and processes for dual-use advances, Comptes Rendus Chim, vol.20, issue.4, pp.339-345, 2017.

D. Spitzer, B. Risse, F. Schnell, V. Pichot, M. Klaumünzer et al., Continuous engineering of nano-cocrystals for medical and energetic applications, Sci. Rep, vol.4, 2014.

B. Risse, Continuous formation of submicron energetic particles by the flashevaporation technique, Chem. Eng. J, vol.203, issue.0, pp.158-165, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778462

F. Pessina, F. Schnell, and D. Spitzer, Tunable continuous production of RDX from microns to nanoscale using polymeric additives, Chem. Eng. J, vol.291, pp.12-19, 2016.

S. Singh, A note on the Fragmentation of Conical 'Liners' and its Relation to the Theory of 'Shaped-Charge'-II, Indian Natl. Sci. Acad. J, vol.2, issue.2, 1955.

F. Volk and F. Schedlbauer, Analysis of Post Detonation Products of Different Explosive Charges, Propellants Explos. Pyrotech, issue.24, pp.182-188, 1999.

S. Bastea, K. R. Glaesemann, and L. E. Fried, Equation of state for high explosives detonation products with explicit polar and ionic species, 2006.

B. Khasainov, M. Comet, B. Veyssiere, and D. Spitzer, On the Mechanism of Efficiency of Lead Azide, Propellants Explos. Pyrotech, 2016.

R. Weinheimer, Properties of selected high explosives, pp.13-17, 1992.

R. Meyer, J. Köhler, and A. Homburg, , 2008.

G. Steinhauser, J. Evers, S. Jakob, T. M. Klapötke, and G. Oehlinger, A review on fulminating gold, Gold Bull, vol.41, issue.4, pp.305-317, 2008.

H. W. Mielke and S. Zahran, The urban rise and fall of air lead (Pb) and the latent surge and retreat of societal violence, Environ. Int, vol.43, pp.48-55, 2012.

A. Va, Engineering Design Handbookexplosives Series Properties Of Explosives Of Military Interest, 1971.

R. Matyá? and J. Pachman, Primary Explosives, 2013.

J. Akhavan, The chemistry of explosives, 2011.

J. P. Agrawal, High Energy Materials, 2010.

S. A. Oehrle and T. Massis, Analysis of cobalt based explosives by capillary electrophoresis, J. Energ. Mater, vol.15, pp.125-137, 1997.

R. Meyer, J. Köhler, and A. Homburg, Explosives, 2012.

M. B. Talawar, A. P. Agrawal, and S. N. Asthana, Energetic co-ordination compounds: synthesis, characterization and thermolysis studies on bis-(5-nitro-2H-tetrazolatoN2)tetraammine cobalt(III) perchlorate (BNCP) and its new transition metal (Ni/Cu/Zn) perchlorate analogues, J. Hazard. Mater, vol.120, issue.1-3, pp.25-35, 2005.

F. Basil, T. , S. Oliver, and E. , Encyclopedia of explosives and related items volume, vol.6, 1974.

R. Ahmad and M. Cartwright, Laser ignition of energetic materials, 2015.

, Engineering Design Handbook Explosive Trains. United States Army Materiel Command, 1974.

B. Khasainov, M. Comet, B. Veyssiere, and D. Spitzer, Comparison of Performance of Fast-reacting Nanothermites and Primary Explosives, Propellants Explos. Pyrotech, 2017.

P. C. Jung, Initiation and detonation in lead azide and silver azide at sub-millimeter geometries, 2006.

P. Cooper, Explosives Engineering, 1996.

G. F. Henning, Verfahre zur Darstellung eines Nitrokörpers aus Hexamethylentetramin, 104280.

R. J. Karpowicz, S. T. Sergio, and T. B. Brill, Polymorph of hexahydro-1, 3, 5trinitro-s-triazine. A Fourier transform infrared spectroscopy study of an energetic material, Ind. Eng. Chem. Prod. Res. Dev, vol.22, issue.2, pp.363-365, 1983.

, norme française NF T70-500

, norme française NF T70-503

, Deutsches Reichspatent, vol.81, p.1894

, NEW DRUGS, Can. Med. Assoc. J, vol.80, issue.12, p.997, 1959.

W. E. Bachmann and J. C. Sheehan, A New Method of Preparing the High Explosive RDX, J. Am. Chem. Soc, vol.5, issue.71, pp.1842-1845, 1949.

N. Arnold and T. ,

P. , Dosage du polymorphisme: spectrométrie IRTF et chimiométrie Application aux formes polymorphes du CL20 (Hexaazahexanitroisowurtzitane/HNIW), 2003.

, Energetic materials: particle processing and characterization, 2005.

J. Wilbrand, Notiz uber Triiiitrotoluol, Ann. Chem. Pharm, issue.128, pp.178-179, 1863.

A. Ulas, G. A. Risha, and K. K. Kuo, Ballistic properties and burning behaviour of an ammonium perchlorate/guanidine nitrate/sodium nitrate airbag solid propellant, Fuel, vol.85, pp.1979-1986, 2006.

U. R. Nair, S. N. Asthana, A. S. Rao, and B. R. Gandhe, Advances in high energy materials, vol.60, p.137, 2010.

S. W. Dean, F. C. De-lucia, and J. L. Gottfried, Indirect ignition of energetic materials with laser-driven flyer plates, Appl. Opt, vol.56, issue.3, p.134, 2017.

T. M. Klapötke, W. De-gruyter, &. Co, and . Kg, Energetic Materials Encyclopedia, 2018.

, Cover Picture: (Prop, vol.42, pp.457-571, 2017.

J. R. Stroud, A new kind of detonator-the slapper, 1976.

A. J. Borman, C. F. Dowding, J. D. Griffiths, and D. Seddon, Exploding Foil Initiator (EFI) Modes of Operation Determined Using Down-Barrel Flyer Layer Velocity Measurement, Propellants Explos. Pyrotech, vol.42, issue.3, pp.318-328, 2017.

H. Moulard, Two-stage optical detonator with shock-detonation transition, vol.6, 2002.

M. H. Fousson, E. Ritter-a, and J. Mory, Control of the Functioning Time of an all Secondary Laser Ignited Detonator, 2011.

J. Nicoloso, Combustion confinée d'explosif condensé pour l'accélaration de projectile, 2014.

E. Fousson, A. Ritter, and T. Arnold, High Safety and Reliability Electric Detonator, Propellants Explos. Pyrotech, vol.41, issue.5, pp.870-874, 2016.

M. Held, Flying plate detonator, Propellants Explos. Pyrotech, vol.21, issue.3, pp.134-138, 1996.

R. H. Dinegar, All-Secondary Explosive Flying-Plate Detonators, 1982.

L. Glavier, Nanothermite/RDX-Based Miniature Device for Impact Ignition of High Explosives, Propellants Explos. Pyrotech, vol.42, issue.3, pp.308-317, 2017.

M. H. Fousson, E. Ritter-a, and M. J. , Control of the Functioning Time of an all Secondary Laser, 2011.

R. Varesh, Electric detonators: EBW and EFI, Propellants Explos. Pyrotech, vol.21, issue.3, pp.150-154, 1996.

L. Glavier, Conception et développement d'un micro détonateur électrique intégrant des nanothermites pour l'amorçage par impact d'explosifs secondaires, 2017.

J. H. Scholtes, W. C. Prinse, R. H. Bouma, and B. Meuken, Development of exploding foil initiators for future IM, 2007 Insensitive Munitions & Energetic Materials Technology Symposium (IMEMTS):" New Programs, New Policies, New Strategies leading to New Joint Solutions, vol.9, pp.15-18, 2007.

D. Price, Critical parameters for detonation propagation and initiation of solid explosives, DTIC Document, 1981.

M. W. Beckstead, N. L. Peterson, D. T. Pilcher, B. D. Hopkins, and H. Krier, Convective combustion modeling applied to deflagration-to-detonation transition of HMX, Combust. Flame, vol.30, pp.231-241, 1977.

N. Griffiths and J. M. Groocock, 814. The burning to detonation of solid explosives, J. Chem. Soc. Resumed, pp.4154-4162, 1960.

A. W. Campbell, Deflagration-to-detonation transition in granular HMX, Proc. 1980 JANNAF Propulsion System Hazards Meeting, vol.105, 1980.

P. E. Luebcke, P. M. Dickson, and J. E. Field, An Experimental Study of the DeflagrationTo-Detonation Transition in Granular Secondary Explosives, Proc. R. Soc. Math. Phys. Eng. Sci, vol.448, pp.439-448, 1934.

A. Maek, Transition from Deflagration to Detonation in Cast Explosives, J. Chem. Phys, vol.31, issue.1, pp.162-167, 1959.

K. K. Andreev, On the transition to explosion of the burning of explosives, Combust. Flame, vol.7, pp.175-183, 1963.

A. I. Korotkov, A. A. Sulimov, A. V. Obmenin, V. F. Dubovitskii, and A. I. Kurkin, Transition from combustion to detonation in porous explosives, Combust. Explos. Shock Waves, vol.5, issue.3, pp.216-222, 1969.

O. E. Petel, D. Mack, A. J. Higgins, R. Turcotte, and S. K. Chan, Minimum propagation diameter and thickness of high explosives, J. Loss Prev. Process Ind, vol.20, issue.4-6, pp.578-583, 2007.

H. Badners and C. Leiber, Method for the Determination of the Critical Diameter of High Velocity Detonation by conical geometry, Propellants Explos. Pyrotech, vol.17, issue.2, pp.77-81, 1992.

I. Jaffe, Determination of the Critical Diameter of Explosive Materials, ARS J, vol.32, issue.7, pp.1060-1065, 1962.

C. H. Johansson, N. Lundborg, and T. Sjölin, The initiation of solid explosives by shock waves, Symposium (International) on Combustion, vol.8, pp.842-847, 1961.

R. R. Bernecker and D. Price, Studies in the transition from deflagration to detonation in granular explosives-III. Proposed mechanisms for transition and comparison with other proposals in the literature, Combust. Flame, vol.22, issue.2, pp.161-170, 1974.

J. B. Ramsay, High-Temperature Shock Initiation of Explosives, 1978.

K. Hollenberg, The Influence of Temperature in the Range from 77 k to 338 k on the Detonation Velocity of RDX/TNT 60/40, Propellants Explos. Pyrotech, vol.5, issue.4, pp.117-118, 1980.

Z. Pi, L. Chen, and J. Wu, Temperature-dependent Shock Initiation of CL-20-based High Explosives, 2017.

J. W. Forbes, C. M. Tarver, and G. Urtiew, The effects of confinement and temperature on the shock sensitivity of solid explosives, 1998.

J. E. Field, N. K. Bourne, S. J. Palmer, S. M. Walley, J. Sharma et al., HotSpot Ignition Mechanisms for Explosives and Propellants, Philos. Trans. R. Soc. Math. Phys. Eng. Sci, vol.339, issue.1654, pp.269-283, 1992.
DOI : 10.1021/ar00023a002

J. E. Field, Hot spot ignition mechanisms for explosives, Acc. Chem. Res, vol.25, issue.11, pp.489-496, 1992.
DOI : 10.1021/ar00023a002

F. P. Bowden, M. F. Mulcahy, R. G. Vines, and A. Yoffe, The Period of Impact, the Time of Initiation and the Rate of Growth of the Explosion of Nitroglycerine, Proc. R. Soc. Math. Phys. Eng. Sci, vol.188, issue.1014, pp.311-329, 1947.

G. D. Coley and J. E. Field, The role of cavities in the initiation and growth of explosion in liquids, Proc. R. Soc. Lond. A, pp.67-86, 1973.

R. B. Frey, Cavity Collapse in Energetic Materials, DTIC Document, 1986.

N. K. Bourne and A. M. Milne, The temperature of a shock-collapsed cavity, Proc. R. Soc. Math. Phys. Eng. Sci, vol.459, pp.1851-1861, 2003.

F. P. Bowden, M. A. Stone, and G. K. Tudor, Hot Spots on Rubbing Surfaces and the Detonation of Explosives by Friction, Proc. R. Soc. Math. Phys. Eng. Sci, vol.188, issue.1014, pp.329-349, 1947.

R. M. Wyatt, P. W. Moore, G. K. Adams, and J. F. Sumner, The Ignition of Primary Explosives by Electric Discharges, Proc. R. Soc. Math. Phys. Eng. Sci, vol.246, issue.1245, pp.189-196, 1958.

J. E. Balzer, J. E. Field, M. J. Gifford, W. G. Proud, and S. M. Walley, High-speed photographic study of the drop-weight impact response of ultrafine and conventional PETN and RDX, Combust. Flame, vol.130, issue.4, pp.298-306, 2002.

F. P. Bowden and A. D. Yoffe, Initiation And Growth Of Explosion In Liquids And Solids, 1953.

H. S. Yadav, S. N. Asthana, and S. Rao, Critical shock energy and shock and detonation parameters of an explosive, Def. Sci. J, vol.59, issue.4, p.436, 2009.
DOI : 10.14429/dsj.59.1543

E. Lafontaine, Nano-thermites, 2016.

S. Fischer and M. Grubelich, A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications, p.3018, 1996.

H. Goldschmidt, Method Of Producing Metals And Alloys, vol.578, p.1897

L. Wang, Z. A. Munir, and Y. M. Maximov, Thermite reactions: their utilization in the synthesis and processing of materials, J. Mater. Sci, vol.28, issue.14, pp.3693-3708, 1993.

C. K. Gupta, Chemical metallurgy: principles and practice, 2003.

M. Comet and D. Spitzer, Des thermites classiques aux composites interstitiels métastables, pp.20-25, 2006.

B. Siegert, M. Comet, and D. Spitzer, Safer energetic materials by a nanotechnological approach, Nanoscale, vol.3, issue.9, p.3534, 2011.
DOI : 10.1039/c1nr10292c

V. I. Levitas, M. L. Pantoya, and B. Dikici, Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters, Appl. Phys. Lett, vol.92, issue.1, p.11921, 2008.

P. Gibot, Synthesis of WO3 nanoparticles for superthermites by the template method from silica spheres, Solid State Sci, vol.13, issue.5, pp.908-914, 2011.

B. S. Bockmon, M. L. Pantoya, S. F. Son, B. W. Asay, and J. T. Mang, Combustion velocities and propagation mechanisms of metastable interstitial composites, J. Appl. Phys, vol.98, issue.6, p.64903, 2005.
DOI : 10.1063/1.2058175

D. Prentice, M. L. Pantoya, and A. E. Gash, Combustion Wave Speeds of SolGelSynthesized Tungsten Trioxide and Nano-Aluminum: The Effect of Impurities on Flame Propagation, Energy Fuels, vol.20, issue.6, pp.2370-2376, 2006.

Z. Dong, J. F. Al-sharab, B. H. Kear, and S. D. Tse, Combined Flame and Electrodeposition Synthesis of Energetic Coaxial Tungsten-Oxide/Aluminum Nanowire Arrays, Nano Lett, vol.13, issue.9, pp.4346-4350, 2013.

S. Apperson, Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites, Appl. Phys. Lett, vol.91, issue.24, p.243109, 2007.

K. S. Martirosyan, L. Wang, A. Vicent, and D. Luss, Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use, Nanotechnology, vol.20, issue.40, p.405609, 2009.

A. Prakash, A. V. Mccormick, and M. R. Zachariah, Synthesis and Reactivity of a SuperReactive Metastable Intermolecular Composite Formulation of Al/KMnO4, Adv. Mater, vol.17, issue.7, pp.900-903, 2005.

C. Wu, K. Sullivan, S. Chowdhury, G. Jian, L. Zhou et al., Encapsulation of Perchlorate Salts within Metal Oxides for Application as Nanoenergetic Oxidizers, Adv. Funct. Mater, vol.22, issue.1, pp.78-85, 2012.

R. W. Armstrong, B. Baschung, D. W. Booth, and M. Samirant, Enhanced Propellant Combustion with Nanoparticles, Nano Lett, vol.3, issue.2, pp.253-255, 2003.
DOI : 10.1021/nl025905k

G. Jian, J. Feng, R. J. Jacob, G. C. Egan, and M. R. Zachariah, Super-reactive Nanoenergetic Gas Generators Based on Periodate Salts, Angew. Chem. Int. Ed, vol.52, issue.37, pp.9743-9746, 2013.
DOI : 10.1002/ange.201303545

M. Comet, G. Vidick, F. Schnell, Y. Suma, B. Baps et al., Sulfates-Based Nanothermites: An Expanding Horizon for Metastable Interstitial Composites, Angew. Chem. Int. Ed, vol.54, issue.15, pp.4458-4462, 2015.
DOI : 10.1002/anie.201410634

W. Zhou, J. B. Delisio, X. Li, L. Liu, and M. R. Zachariah, Persulfate salt as an oxidizer for biocidal energetic nano-thermites, J Mater Chem A, vol.3, issue.22, pp.11838-11846, 2015.
DOI : 10.1039/c5ta00756a

, Shimizu-1986-11IPS_A CONCEPT AND THE USE OF NEGATIVE EXPLOSIVES.pdf

M. Comet, C. Martin, F. Schnell, and D. Spitzer, Nanothermite foams: From nanopowder to object, Chem. Eng. J, vol.316, pp.807-812, 2017.

M. Comet, F. Schnell, V. Pichot, J. Mory, B. Risse et al., Boron as Fuel for Ceramic Thermites, Energy Fuels, vol.28, issue.6, pp.4139-4148, 2014.

S. Wang, M. Schoenitz, and E. L. Dreizin, Combustion of Boron and Boron-Containing Reactive Composites in Laminar and Turbulent Air Flows, Combust. Sci. Technol, vol.189, issue.4, pp.683-697, 2017.

T. Liu, X. Chen, H. Xu, A. Han, M. Ye et al., Preparation and Properties of BoronBased Nano-B/NiO Thermite, Propellants Explos. Pyrotech, vol.40, issue.6, pp.873-879, 2015.

M. Comet, V. Pichot, B. Siegert, F. Schnell, F. Ciszek et al., Phosphorus-based nanothermites: A new generation of energetic materials, J. Phys. Chem. Solids, vol.71, issue.2, pp.64-68, 2010.

M. Comet, B. Siegert, F. Schnell, V. Pichot, F. Ciszek et al., Phosphorus-Based Nanothermites: A New Generation of Pyrotechnics Illustrated by the Example of nCuO/Red P Mixtures, Propellants Explos. Pyrotech, vol.35, issue.3, pp.220-225, 2010.

R. T. Mousavian, N. Azizi, Z. Jiang, and A. F. Boostani, Effect of Fe2O3 as an accelerator on the reaction mechanism of Al-TiO2 nanothermite system, J. Therm. Anal. Calorim, vol.117, issue.2, pp.711-719, 2014.

M. Rafiei, M. H. Enayati, and F. Karimzadeh, Kinetic analysis of thermite reaction in Al-Ti-Fe2O3 system to produce (Fe,Ti)3Al-Al2O3 nanocomposite, Powder Technol, vol.253, pp.553-560, 2014.

T. Shimizu, An Example Of Negative Explosives Magnesium Sulfatemagnesium Mixture," presented at the 15th International Pyrotechnics Seminar, 1990.

A. Sheikhpour, S. G. Hosseini, S. Tavangar, and M. H. Keshavarz, The influence of magnesium powder on the thermal behavior of Al-CuO thermite mixture, J. Therm. Anal. Calorim, 2017.

V. G. Myagkov, Thermite synthesis and characterization of CoZrO2ferromagnetic nanocomposite thin films, J. Alloys Compd, vol.665, pp.197-203, 2016.

V. Pichot, M. Comet, J. Miesch, and D. Spitzer, Nanodiamond for tuning the properties of energetic composites, J. Hazard. Mater, vol.300, pp.194-201, 2015.

C. F. Petre, D. Chamberland, T. Ringuette, S. Ringuette, S. Paradis et al., Lowpower laser ignition of aluminum/metal oxide nanothermites, Int. J. Energ. Mater. Chem. Propuls, vol.13, issue.6, 2014.

M. Comet, C. Martin, M. Klaumünzer, F. Schnell, and D. Spitzer, Energetic nanocomposites for detonation initiation in high explosives without primary explosives, Appl. Phys. Lett, vol.107, issue.24, p.243108, 2015.

V. Levitas, Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism, Combust. Flame, vol.156, issue.2, pp.543-546, 2009.

V. I. Levitas, B. W. Asay, S. F. Son, and M. Pantoya, Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal, J. Appl. Phys, vol.101, issue.8, p.83524, 2007.

V. I. Levitas, M. L. Pantoya, and K. W. Watson, Melt-dispersion mechanism for fast reaction of aluminum particles: Extension for micron scale particles and fluorination, Appl. Phys. Lett, vol.92, issue.20, p.201917, 2008.

V. I. Levitas, B. Dikici, and M. L. Pantoya, Toward design of the pre-stressed nano-and microscale aluminum particles covered by oxide shell, Combust. Flame, vol.158, issue.7, pp.1413-1417, 2011.

M. Pantoya and J. Granier, Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites, Propellants Explos. Pyrotech, vol.30, issue.1, pp.53-62, 2005.

J. J. Granier and M. L. Pantoya, Laser ignition of nanocomposite thermites, Combust. Flame, vol.138, issue.4, pp.373-383, 2004.

K. B. Plantier, M. L. Pantoya, and A. E. Gash, Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique, Combust. Flame, vol.140, issue.4, pp.299-309, 2005.

M. R. Weismiller, J. Y. Malchi, J. G. Lee, R. A. Yetter, and T. J. Foley, Effects of fuel and oxidizer particle dimensions on the propagation of aluminum containing thermites, Proc. Combust. Inst, vol.33, issue.2, pp.1989-1996, 2011.

M. E. Sitzmann, S. Foti, and C. C. Misener, Solubilities of high explosives: removal of high explosive fillers from munitions by chemical dissolution, 1973.

M. Comet, B. Siegert, V. Pichot, P. Gibot, and D. Spitzer, Preparation of explosive nanoparticles in a porous chromium(III) oxide matrix: a first attempt to control the reactivity of explosives, Nanotechnology, vol.19, issue.28, p.285716, 2008.

R. Thiruvengadathan, Combustion characteristics of novel hybrid nanoenergetic formulations, Combust. Flame, vol.158, issue.5, pp.964-978, 2011.

Z. Qiao, Fast deflagration to detonation transition of energetic material based on a quasi-core/shell structured nanothermite composite, Compos. Sci. Technol, vol.107, pp.113-119, 2015.

C. Rossi, S. Orieux, B. Larangot, T. D. Conto, and D. Esteve, Design, fabrication and modeling of solid propellant microrocket-application to micropropulsion, Sens. Actuators Phys, vol.99, issue.1, pp.125-133, 2002.

C. Rossi, T. Do-conto, D. Esteve, and B. Larangot, Design, fabrication and modelling of MEMS-based microthrusters for space application, Smart Mater. Struct, vol.10, issue.6, p.1156, 2001.
DOI : 10.1088/0964-1726/10/6/304

, REACH: substances préoccupantes (SVHC)

S. Brunauer, Adsorption of gases in multimolecular layers, Citation Classics), 1977.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc, vol.60, issue.2, pp.309-319, 1938.

E. Lafontaine, Nano-thermites, 2016.

M. Comet, V. Pichot, F. Schnell, and D. Spitzer, Oxidation of detonation nanodiamonds in a reactive formulation, Diam. Relat. Mater, vol.47, pp.35-39, 2014.

M. Comet, B. Siegert, V. Pichot, and D. Spitzer, Reactive characterization of nanothermites: Correlation structure/reactivity, J. Therm. Anal. Calorim, vol.111, issue.1, pp.431-436, 2013.

M. Shin, J. Kim, J. Kim, C. A. Moraes, H. Kim et al., Reaction characteristics of Al/Fe2O3 nanocomposites, J. Ind. Eng. Chem, vol.18, issue.5, pp.1768-1773, 2012.

S. Fischer and M. Grubelich, A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications, 32nd Joint Propulsion Conference and Exhibit, p.3018, 1996.

, STANAG 4487 Explosive, Friction Sensitivity Tests, 2002.

, STANAG 4488 Explosives, Shock Sensitivity Tests, 2002.

, STANAG 4489 Explosives, Impact Sensitivity Tests, 1999.

, North Atlantic Treaty Organization, Electrostatic Discharge Sensitivity Test(S), 2001.

, Recommandations relatives au transport des marchandises dangereuses. Manuel d'épreuves et de critères, Nations Unies, Sixième édition révisée, 2015.

B. Siegert, M. Comet, and D. Spitzer, Safer energetic materials by a nanotechnological approach, Nanoscale, vol.3, issue.9, p.3534, 2011.

D. G. Piercey and T. M. Klapoetke, Nanoscale aluminum-metal oxide (thermite) reactions for application in energetic materials, Cent. Eur. J. Energ. Mater, vol.7, issue.2, pp.115-129, 2010.

J. Y. Malchi, T. J. Foley, and R. A. Yetter, Electrostatically Self-Assembled Nanocomposite Reactive Microspheres, ACS Appl. Mater. Interfaces, vol.1, issue.11, pp.2420-2423, 2009.

J. A. Puszynski, C. J. Bulian, and J. J. Swiatkiewicz, The effect of nanopowder attributes on reaction mechanism and ignition sensitivity of nanothermites, Materials Research Society Symposium Proceedings, vol.896, p.147, 2006.

S. F. Son, B. W. Asay, T. J. Foley, R. A. Yetter, M. H. Wu et al., Combustion of Nanoscale Al/MoO3 Thermite in Microchannels, J. Propuls. Power, vol.23, issue.4, pp.715-721, 2007.

M. Comet, F. Schnell, V. Pichot, J. Mory, B. Risse et al., Boron as Fuel for Ceramic Thermites, Energy Fuels, vol.28, issue.6, pp.4139-4148, 2014.

, explosifs moins sensibles que la pentrite. La principale piste d'étude est l'usage d'explosifs plus puissants, nanostructurés sous différentes formes

P. Jack and W. , Plunkett's Nanotechnology & Mems Industry Almanac, 2006.

W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook Of Chemistry and Physics, 2016.

N. and L. Houx, Synthèse d'oxyde de tungstène à tailles ultimes en vue de l'élaboration et l'étude de la réactivité de composés nanothermites, 2010.

M. Comet, G. Vidick, F. Schnell, Y. Suma, B. Baps et al., Sulfates-Based Nanothermites: An Expanding Horizon for Metastable Interstitial Composites, Angew. Chem. Int. Ed, vol.54, issue.15, pp.4458-4462, 2015.

B. Risse, Continuous formation of submicron energetic particles by the flashevaporation technique, Chem. Eng. J, vol.203, issue.0, pp.158-165, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778462

D. Spitzer, V. Pichot, F. Pessina, F. Schnell, M. Klaumünzer et al., Continuous and reactive nanocrystallization: New concepts and processes for dual-use advances, Comptes Rendus Chim, vol.20, issue.4, pp.339-345, 2017.

, Recommandations relatives au transport des marchandises dangereuses. Manuel d'épreuves et de critères, Nations Unies, Sixième édition révisée, 2015.

B. Siegert, M. Comet, and D. Spitzer, Safer energetic materials by a nanotechnological approach, Nanoscale, vol.3, issue.9, p.3534, 2011.

D. Spitzer, B. Risse, F. Schnell, V. Pichot, M. Klaumünzer et al., Continuous engineering of nano-cocrystals for medical and energetic applications, Sci. Rep, vol.4, 2014.

F. Pessina, F. Schnell, and D. Spitzer, Tunable continuous production of RDX from microns to nanoscale using polymeric additives, Chem. Eng. J, vol.291, pp.12-19, 2016.

A. Sève, V. Pichot, F. Schnell, and D. Spitzer, Trinitrotoluene Nanostructuring by Spray Flash Evaporation Process, Propellants Explos. Pyrotech, 2017.

M. R. Weismiller, J. Y. Malchi, R. A. Yetter, and T. J. Foley, Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite, Proc. Combust. Inst, vol.32, issue.2, pp.1895-1903, 2009.

R. N. Roberts and R. H. Dinegar, Solubility of Pentaerythritol Tetranitrate, J. Phys. Chem, vol.62, issue.8, pp.1009-1011, 1958.

H. H. Cady and L. C. Smith, Studies on the Polymorphs of HMX, vol.2652, 1962.

M. E. Sitzmann, S. Foti, and C. C. Misener, Solubilities of high explosives: removal of high explosive fillers from munitions by chemical dissolution, 1973.

J. P. Agrawal, High Energy Materials, 2010.

V. Pichot, M. Comet, J. Miesch, and D. Spitzer, Nanodiamond for tuning the properties of energetic composites, J. Hazard. Mater, vol.300, pp.194-201, 2015.

S. Apperson, Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites, Appl. Phys. Lett, vol.91, issue.24, p.243109, 2007.

J. J. Granier and M. L. Pantoya, Laser ignition of nanocomposite thermites, Combust. Flame, vol.138, issue.4, pp.373-383, 2004.

A. W. Campbell, Deflagration-to-detonation transition in granular HMX, Proc. 1980 JANNAF Propulsion System Hazards Meeting, vol.105, 1980.

M. A. Nettleton, Gaseous Detonations, 1987.

M. P. Moyle, R. B. Morrison, and S. W. Churchill, Detonation characteristics of hydrogen-Oxygen mixtures, A.1.Ch.E. Journal, pp.92-96, 1960.

V. Pichot, An efficient purification method for detonation nanodiamonds, Diam. Relat. Mater, vol.17, issue.1, pp.13-22, 2008.

M. Comet, V. Pichot, F. Schnell, and D. Spitzer, Oxidation of detonation nanodiamonds in a reactive formulation, Diam. Relat. Mater, vol.47, pp.35-39, 2014.

P. C. Jung, Initiation and detonation in lead azide and silver azide at sub-millimeter geometries, 2006.

M. Comet, C. Martin, M. Klaumünzer, F. Schnell, and D. Spitzer, Energetic nanocomposites for detonation initiation in high explosives without primary explosives, Appl. Phys. Lett, vol.107, issue.24, p.243108, 2015.

R. J. Bauer and ;. Spring-md, An Analysis of Small Scale Gap Test Sensitivity Data Using Porosity Theory and Nonreactive Shock Hugoniots, 1975.

M. H. Keshavarz, H. Motamedoshariati, H. R. Pouretedal, M. K. Tehrani, and A. Semnani, Prediction of shock sensitivity of explosives based on small-scale gap test, J. Hazard. Mater, vol.145, issue.1-2, pp.109-112, 2007.

B. Khasainov, M. Comet, B. Veyssiere, and D. Spitzer, On the Mechanism of Efficiency of Lead Azide, Propellants Explos. Pyrotech, 2016.

J. L. Murray, The Bi-Ti (Bismuth-Titanium) System, Bull. Alloy Phase Diagr, vol.5, issue.6, pp.610-613, 1984.

C. Guo, Microstructure and tribological properties of TiAg intermetallic compound coating, Appl. Surf. Sci, vol.257, issue.24, pp.10692-10698, 2011.

A. H. Rahman and M. N. Cavalli, Strength and microstructure of diffusion bonded titanium using silver and copper interlayers, Mater. Sci. Eng. A, vol.527, issue.20, pp.5189-5193, 2010.

D. G. Piercey and T. M. Klapoetke, Nanoscale aluminum-metal oxide (thermite) reactions for application in energetic materials, Cent. Eur. J. Energ. Mater, vol.7, issue.2, pp.115-129, 2010.

W. Zhou, J. B. Delisio, X. Li, L. Liu, and M. R. Zachariah, Persulfate salt as an oxidizer for biocidal energetic nano-thermites, J Mater Chem A, vol.3, issue.22, pp.11838-11846, 2015.

K. T. Sullivan, C. Wu, N. W. Piekiel, K. Gaskell, and M. R. Zachariah, Synthesis and reactivity of nano-Ag2O as an oxidizer for energetic systems yielding antimicrobial products, Combust. Flame, vol.160, issue.2, pp.438-446, 2013.

. .. Glossaire,

. .. Objectifs,

.. .. Partie-expérimentale,

. .. Origine-du-concept,

. , Procédés de préparation des mousses de nanothermite

.. .. Mousse,

. .. Mousse-de-nanothermite,

.. .. Mécanismes-de-formation-de-la-mousse,

. .. Microscopie-Électronique-À-balayage-(meb),

A. ). , Analyses thermiques

.. .. Bombe-calorimétrique,

. , Etude des mélanges métastables d'aluminium nanométrique avec les acides minéraux

. , Réaction de la poudre d'aluminium avec les acides minéraux communs

/. H. Al,

/. H. Al,

. , Préparation et allumage des pâtes nano-Al/H2SO4

. Observations and . .. Interprétations,

. .. Conclusion,

. .. Perspectives,

.. .. Références-bibliographiques-du-chapitre,

, aluminium et le phosphate d'aluminium. Echantillon Chaleur de réaction, p.2635

, Tableau 2 : Chaleur de réaction (J/g) de la mousse de thermite (F-NT), d'une nanothermite (n-Al/n-WO3) et d'un mélange 50

, Illustration schématique du mécanisme de réaction de l'aluminium nanométrique avec de l'acide sulfurique, Figure, vol.12

D. Prentice, M. L. Pantoya, and A. E. Gash, Combustion Wave Speeds of SolGelSynthesized Tungsten Trioxide and Nano-Aluminum: The Effect of Impurities on Flame Propagation, Energy Fuels, vol.20, issue.6, pp.2370-2376, 2006.

T. M. Tillotson, A. E. Gash, R. L. Simpson, L. W. Hrubesh, J. H. Satcher et al., Nanostructured energetic materials using sol-gel methodologies, J. Non-Cryst. Solids, vol.285, issue.1, pp.338-345, 2001.
DOI : 10.1016/s0022-3093(01)00477-x

URL : https://digital.library.unt.edu/ark:/67531/metadc1413483/m2/1/high_res_d/15004111.pdf

A. E. Gash, R. L. Simpson, and J. H. Satcher, Aerogels and Sol-Gel Composites as Nanostructured Energetic Materials, pp.585-606, 2011.
DOI : 10.1007/978-1-4419-7589-8_25

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh et al., Use of Epoxides in the SolGel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts, Chem. Mater, vol.13, issue.3, pp.999-1007, 2001.

S. Yan, G. Jian, and M. R. Zachariah, Electrospun Nanofiber-Based Thermite Textiles and their Reactive Properties, ACS Appl. Mater. Interfaces, vol.4, issue.12, pp.6432-6435, 2012.
DOI : 10.1021/am3021125

C. Altavilla and E. Ciliberto, Inorganic nanoparticles: synthesis, applications, and perspectives, 2010.

M. R. Sovizi, S. S. Hajimirsadeghi, and B. Naderizadeh, Effect of particle size on thermal decomposition of nitrocellulose, J. Hazard. Mater, vol.168, issue.2-3, pp.1134-1139, 2009.

S. M. Pourmortazavi, S. G. Hosseini, M. Rahimi-nasrabadi, S. S. Hajimirsadeghi, and H. Momenian, Effect of nitrate content on thermal decomposition of nitrocellulose, J. Hazard. Mater, vol.162, issue.2-3, pp.1141-1144, 2009.

J. A. Puszynski, Processing and characterization of aluminum-based nanothermites, J. Therm. Anal. Calorim, vol.96, issue.3, pp.677-685, 2009.

S. Fischer and M. Grubelich, A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications, p.3018, 1996.

Y. Kwon, A. A. Gromov, and J. I. Strokova, Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin, Appl. Surf. Sci, vol.253, issue.12, pp.5558-5564, 2007.

J. Wang, A. Hu, J. Persic, J. Z. Wen, and Y. N. Zhou, Thermal stability and reaction properties of passivated Al/CuO nano-thermite, J. Phys. Chem. Solids, vol.72, issue.6, pp.620-625, 2011.

W. P. De-klerk, Assessment of Stability of Propellants and Safe Lifetimes, Propellants Explos. Pyrotech, vol.40, issue.3, pp.388-393, 2015.

R. Meyer, J. Köhler, and A. Homburg, , 2008.

Y. Yang, Hierarchical MnO 2 /SnO 2 Heterostructures for a Novel Free-Standing Ternary Thermite Membrane, Inorg. Chem, vol.52, issue.16, pp.9449-9455, 2013.

Y. Yang, Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions, Sci. Rep, vol.3, issue.1, 2013.

A. Prakash, A. V. Mccormick, and M. R. Zachariah, Synthesis and Reactivity of a Super-Reactive Metastable Intermolecular Composite Formulation of Al/KMnO4, Adv. Mater, vol.17, issue.7, pp.900-903, 2005.

C. Wu, K. Sullivan, S. Chowdhury, G. Jian, L. Zhou et al., Encapsulation of Perchlorate Salts within Metal Oxides for Application as Nanoenergetic Oxidizers, Adv. Funct. Mater, vol.22, issue.1, pp.78-85, 2012.

R. W. Armstrong, B. Baschung, D. W. Booth, and M. Samirant, Enhanced Propellant Combustion with Nanoparticles, Nano Lett, vol.3, issue.2, pp.253-255, 2003.

G. Jian, J. Feng, R. J. Jacob, G. C. Egan, and M. R. Zachariah, Super-reactive Nanoenergetic Gas Generators Based on Periodate Salts, Angew. Chem. Int. Ed, vol.52, issue.37, pp.9743-9746, 2013.

M. Comet, G. Vidick, F. Schnell, Y. Suma, B. Baps et al., Sulfates-Based Nanothermites: An Expanding Horizon for Metastable Interstitial Composites, Angew. Chem. Int. Ed, vol.54, issue.15, pp.4458-4462, 2015.

W. Zhou, J. B. Delisio, X. Li, L. Liu, and M. R. Zachariah, Persulfate salt as an oxidizer for biocidal energetic nano-thermites, J Mater Chem A, vol.3, issue.22, pp.11838-11846, 2015.

T. Shimizu, A Concept And The Use Of Negative Explosives," presented at the 11th International Pyrotechnics Seminar, 1986.

R. Kniep, Orthophosphates in the Ternary System AI2O3-P2O5-H20, Angew. Chem. Int. Ed. Engl, vol.25, issue.6, pp.525-534, 1986.

L. L. Shreir, G. T. Burstein, and R. A. Jarman, Corrosion. Oxford, 1994.

P. Deepa and R. Padmalatha, Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media, Arab. J. Chem, 2013.

A. S. Fouda, M. Abdallah, and M. Eissa, Corrosion inhibition of Aluminum in 1 M phosphoric acid solutions using some Chalcones derivatives and synergistic action with halide ions, Afr. J. Pure Appl. Chem, vol.7, issue.12, pp.394-404, 2013.

M. S. Uwineza, M. Essahli, and A. Lamiri, Corrosion Inhibition of Aluminium in 2 M Phosphoric Acid Using the Essential Oil of Mentha Pulegium Leaves:," Port, Electrochimica Acta, vol.34, issue.1, pp.53-62, 2016.

J. J. Granier and M. L. Pantoya, Laser ignition of nanocomposite thermites, Combust. Flame, vol.138, issue.4, pp.373-383, 2004.

J. H. Dodd, e-EROS Encyclopedia of Reagents for Organic Synthesis, 2001.

J. H. Dodd and ;. Encycl, Polyphosphoric acid, Reag. Org. Synth, 2001.

F. D. Popp and W. E. Mcewen, Polyphosphoric acids as a reagent in organic chemistry, Chem. Rev, vol.58, issue.2, pp.321-401, 1958.

D. E. Corbridge, Phosphorus: an outline of its chemistry, biochemistry, and uses, 1995.

M. B. Hocking, Modern Chemical Technology and Emission Control, 1985.

H. Poignant, L. L. Marechal, and Y. Toudic, Etude de la solubilite du phosphate d'aluminium (AlPO4) dans des solutions hydrothermales d'acide orthophosphorique H3PO4, Mater. Res. Bull, vol.14, issue.5, pp.603-612, 1979.

P. David, A. Christopher, E. Bilger, L. , and B. David, Industrial scale nano-aluminum powder manufacturing, J. Pyrotech, vol.19, pp.19-31, 2004.

B. Rufino, M. Coulet, R. Bouchet, O. Isnard, and R. Denoyel, Structural changes and thermal properties of aluminium micro-and nano-powders, Acta Mater, vol.58, issue.12, pp.4224-4232, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00989250

&. W. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics, 2016.

G. L. Allen, R. A. Bayles, W. W. Gile, and W. A. Jesser, Small particle melting of pure metals, Thin Solid Films, vol.144, issue.2, pp.297-308, 1986.

S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Allen, Size-dependent melting properties of small tin particles: nanocalorimetric measurements, Phys. Rev. Lett, vol.77, issue.1, p.99, 1996.

J. Sun and S. L. Simon, The melting behavior of aluminum nanoparticles, Thermochim. Acta, vol.463, issue.1-2, pp.32-40, 2007.

Q. S. Mei, S. C. Wang, H. T. Cong, Z. H. Jin, and K. Lu, Pressure-induced superheating of Al nanoparticles encapsulated in Al2O3 shells without epitaxial interface, Acta Mater, vol.53, issue.4, pp.1059-1066, 2005.

J. Y. Malchi, R. A. Yetter, T. J. Foley, and S. F. Son, The Effect of Added Al2O3 on the Propagation Behavior of an Al/CuO Nanoscale Thermite, Combust. Sci. Technol, vol.180, issue.7, pp.1278-1294, 2008.

W. R. Ellis and R. C. Murray, The thermal decomposition of anhydrous nitric acid vapour, J. Chem. Technol. Biotechnol, vol.3, issue.7, pp.318-322, 1953.

L. Bretherick, P. G. Urben, and M. J. Pitt, Bretherick's handbook of reactive chemical hazards: an indexed guide to published data, 1999.

J. Leleu, Réactions chimiques dangereuses, INRS, INRS, ED, vol.697, 2003.

C. Martin, M. Comet, F. Schnell, J. Berthe, and D. Spitzer, Aluminum nanopowder: A substance to be handled with care, J Hazard Mater, vol.342, pp.347-352, 2018.

S. Veil, Traité de chimie minérale "Aluminium, Masson et Cie, 1932.

C. M. Guirao, R. Knystautas, and J. H. Lee, A summary of hydrogen-air detonation experiments. Division of Systems Research, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission, 1989.

R. Ono, M. Nifuku, S. Fujiwara, S. Horiguchi, and T. Oda, Minimum ignition energy of hydrogen-air mixture: Effects of humidity and spark duration, J. Electrost, vol.65, issue.2, pp.87-93, 2007.

M. Comet, C. Martin, F. Schnell, and D. Spitzer, Nanothermite foams: From nanopowder to object, Chem. Eng. J, vol.316, pp.807-812, 2017.

, En résumé, ce travail de thèse co-financé par la DGA (Direction Générale de l'Armement) et

&. Isl,

. Liste-des-publications-m, C. Comet, M. Martin, F. Klaumünzer, D. Schnell et al., Energetic nanocomposites for detonation initiation in high explosives without primary explosives, Appl. Phys. Lett, vol.107, issue.24, p.243108, 2015.

M. Comet, C. Martin, F. Schnell, and D. Spitzer, Nanothermite foams: From nanopowder to object, Chem. Eng. J, vol.316, pp.807-812, 2017.

J. Hübner, M. Klaumünzer, M. Comet, C. Martin, L. Vidal et al., Insights into combustion mechanisms of variable aluminum-based iron oxide/-hydroxide nanothermites, J. Vis. Exp. (XX), vol.342, issue.184, pp.347-352, 2017.

». C. Martin, M. Comet, M. Klaumünzer, V. Pichot, F. Schnell et al., « Nanothermites: a toolbox for solving contemporary challenges in pyrotechnics » M. Comet, pp.4-7, 2015.

, Dans différentes présentations d'axes réalisées à l'ISL

M. Comet, C. Martin, and F. ,

D. Schnell and . Spitzer, Réunion d'axe le 11/03/2015: High-performance nanothermites: landscape of possibilities

M. Comet, C. Martin, F. Schnell, V. Pichot, M. Klaumünzer et al., Réunion d'axe le 09/03/2016: Energetic nanocomposites for detonation initiation in high explosives without primary explosives

M. Comet, C. Martin, M. Klaumünzer, F. Schnell, and D. Spitzer-réunion,

M. Comet, C. Martin, F. Schnell, and D. , Spitzer Figure 4 : Diffractogramme de rayons X de la mousse de thermite, préparée par mélange de 3,45 g de nano-WO3 avec 3,00 g de nano-Al et 4,00 g de H3PO4 (85%) dilué avec 2, p.1150