D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-74, 2011.

N. Dejeans, S. Manie, C. Hetz, F. Bard, T. Hupp et al., Addicted to secrete-novel concepts and targets in cancer therapy, Trends Mol Med, vol.20, pp.242-50, 2014.

A. Garg, H. Maes, A. R. Van-vliet, and P. Agostinis, Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress, Mol Cell Oncol, 2015.

H. Yoshida, T. Matsui, A. Yamamoto, T. Okada, and K. Mori, XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor, Cell, vol.107, pp.881-91, 2001.

M. Maurel, E. Chevet, J. Tavernier, and S. Gerlo, Getting RIDD of RNA: IRE1 in cell fate regulation, Trends Biochem Sci, vol.39, pp.245-54, 2014.

A. H. Lee, N. N. Iwakoshi, and L. H. Glimcher, XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response, Mol Cell Biol, vol.23, pp.7448-59, 2003.

H. P. Harding, Y. Zhang, H. Zeng, I. Novoa, P. D. Lu et al., An integrated stress response regulates amino acid metabolism and resistance to oxidative stress National Institute of Environmental Health Sciences, Mol Cell, vol.11, pp.619-652, 2003.

J. Wu, D. T. Rutkowski, M. Dubois, J. Swathirajan, T. Saunders et al., ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress, Dev Cell, vol.13, pp.351-64, 2007.

P. Walter and D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation, Science, vol.334, pp.1081-1087, 2011.

C. Hetz, E. Chevet, and H. P. Harding, Targeting the unfolded protein response in disease, Nat Rev Drug Discov, vol.12, pp.703-722, 2013.

D. T. Rutkowski and R. S. Hegde, Regulation of basal cellular physiology by the homeostatic unfolded protein response, J Cell Biol, vol.189, pp.783-94, 2010.

A. M. Reimold, N. N. Iwakoshi, J. Manis, P. Vallabhajosyula, E. Szomolanyi-tsuda et al., Plasma cell differentiation requires the transcription factor XBP-1, Nature, vol.412, pp.300-307, 2001.

K. Zhang, H. N. Wong, B. Song, C. N. Miller, D. Scheuner et al., The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis, J Clin Invest, vol.115, pp.268-81, 2005.

K. Y. Tsang, D. Chan, J. F. Bateman, and K. S. Cheah, In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences, J Cell Sci, vol.123, pp.2145-54, 2010.

H. Sha, Y. He, H. Chen, C. Wang, A. Zenno et al., The IRE1alpha-XBP1 pathway of the unfolded protein response is required for adipogenesis, Cell Metab, vol.9, pp.556-64, 2009.

Y. Ma and L. M. Hendershot, The role of the unfolded protein response in tumour development: friend or foe?, Nat Rev Cancer, vol.4, pp.966-77, 2004.

M. Delepine, M. Nicolino, T. Barrett, M. Golamaully, G. M. Lathrop et al., EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome, Nat Genet, vol.25, pp.406-415, 2000.

H. P. Harding, H. Zeng, Y. Zhang, R. Jungries, P. Chung et al., Diabetes mellitus and exocrine pancreatic dysfunction in perk-/-mice reveals a role for translational control in secretory cell survival, Mol Cell, vol.7, pp.1153-63, 2001.

W. Lin, H. P. Harding, R. D. Popko, and B. , Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferongamma, J Cell Biol, vol.169, pp.603-615, 2005.

W. Wang, N. Lian, L. Li, H. E. Moss, W. Wang et al., Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription, Development, vol.136, pp.4143-53, 2009.

P. Zhang, B. Mcgrath, S. Li, A. Frank, F. Zambito et al., The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas, Mol Cell Biol, vol.22, pp.3864-74, 2002.

C. Y. Lin, J. Lovén, P. B. Rahl, R. M. Paranal, C. B. Burge et al., Transcriptional amplification in tumor cells with elevated c-Myc, Cell, vol.151, pp.56-67, 2012.

Z. Nie, G. Hu, G. Wei, K. Cui, A. Yamane et al., c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells, Cell, vol.151, pp.68-79, 2012.

E. M. Torres, T. Sokolsky, C. M. Tucker, L. Y. Chan, M. Boselli et al., Effects of aneuploidy on cellular physiology and cell division in haploid yeast, Science, vol.317, pp.916-940, 2007.

Y. C. Tang, B. R. Williams, J. J. Siegel, and A. Amon, Identification of aneuploidy-selective antiproliferation compounds, Cell, vol.144, pp.499-512, 2011.

M. Barna, A. Pusic, O. Zollo, M. Costa, N. Kondrashov et al., Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency, Nature, vol.456, pp.971-976, 2008.

A. L. Huber, J. Lebeau, P. Guillaumot, V. Petrilli, M. Malek et al., p58(IPK)-Mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose, Mol Cell, vol.49, pp.1049-59, 2013.

M. J. Bissell and W. C. Hines, Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression, Nat Med, vol.17, pp.320-329, 2011.

C. T. Leung and J. S. Brugge, Outgrowth of single oncogene-expressing cells from suppressive epithelial environments, Nature, vol.482, pp.410-413, 2012.

N. R. Mahadevan, J. Rodvold, H. Sepulveda, S. Rossi, A. F. Drew et al., Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells, Proc Natl Acad Sci U S A, vol.108, pp.6561-6567, 2011.

N. R. Mahadevan and M. Zanetti, Tumor stress inside out: cell-extrinsic effects of the unfolded protein response in tumor cells modulate the immunological landscape of the tumor microenvironment, J Immunol, vol.187, pp.4403-4412, 2011.

L. Senovilla, I. Vitale, I. Martins, M. Tailler, C. Pailleret et al., An immunosurveillance mechanism controls cancer cell ploidy, Science, vol.337, pp.1678-84, 2012.

B. Luo and A. S. Lee, The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies, Oncogene, vol.32, pp.805-823, 2013.

J. Heijmans, J. F. Van-lidth-de-jeude, B. K. Koo, S. L. Rosekrans, M. C. Wielenga et al., ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response, Cell Rep, vol.3, pp.1128-1167, 2013.

L. Vermeulen and H. J. Snippert, Stem cell dynamics in homeostasis and cancer of the intestine, Nat Rev Cancer, vol.14, pp.468-80, 2014.

A. Bertolotti, X. Wang, I. Novoa, R. Jungreis, K. Schlessinger et al., Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice, J Clin Invest, vol.107, pp.585-93, 2001.

A. Tsuru, N. Fujimoto, S. Takahashi, M. Saito, D. Nakamura et al., Negative feedback by IRE1beta optimizes mucin production in goblet cells, Proc Natl Acad Sci U S A, vol.110, pp.2864-2873, 2013.

A. Kaser, A. Lee, A. Franke, J. N. Glickman, S. Zeissig et al., XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease, Cell, vol.134, pp.743-56, 2008.

L. Niederreiter, T. M. Fritz, T. E. Adolph, A. M. Krismer, F. A. Offner et al., ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells, J Exp Med, vol.210, pp.2041-56, 2013.

T. E. Adolph, M. F. Tomczak, L. Niederreiter, H. J. Ko, J. Bock et al., Paneth cells as a site of origin for intestinal inflammation, Nature, vol.503, pp.272-278, 2014.

C. Wu, P. Kraft, K. Zhai, J. Chang, Z. Wang et al., Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions, Nat Genet, vol.44, pp.1090-1097, 2012.

S. L. Rosekrans, J. Heijmans, N. V. Buller, J. Westerlund, A. S. Lee et al., ER stress induces epithelial differentiation in the mouse oesophagus, Gut, 2014.

E. Pohler, A. L. Craig, J. Cotton, L. Lawrie, J. F. Dillon et al., The Barrett's antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage, Mol Cell Proteomics, vol.3, pp.534-581, 2004.

D. R. Carrasco, K. Sukhdeo, M. Protopopova, R. Sinha, M. Enos et al., The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis, Cancer Cell, vol.11, pp.349-60, 2007.

K. Masouleh, B. Geng, H. Hurtz, C. Chan, L. N. Logan et al., Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia, Proc Natl Acad Sci U S A, vol.111, pp.2219-2247, 2014.

K. Rouault-pierre, L. Lopez-onieva, K. Foster, F. Anjos-afonso, I. Lamrissi-garcia et al., HIF-2alpha protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress, Cell Stem Cell, vol.13, pp.549-63, 2013.

L. Pattacini, M. Mancini, L. Mazzacurati, G. Brusa, M. Benvenuti et al., Endoplasmic reticulum stress initiates apoptotic death induced by STI571 inhibition of p210 bcr-abl tyrosine kinase, Leuk Res, vol.28, pp.191-202, 2004.

A. Higa, S. Taouji, S. Lhomond, D. Jensen, M. E. Fernandez-zapico et al., Endoplasmic reticulum stress-activated transcription factor ATF6alpha requires the disulfide isomerase PDIA5 to modulate chemoresistance, Mol Cell Biol, vol.34, pp.1839-1888, 2014.

J. P. Thiery, H. Acloque, R. Y. Huang, and M. A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell, vol.139, pp.871-90, 2009.

M. A. Nieto and A. Cano, The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity, Semin Cancer Biol, vol.22, pp.361-369, 2012.

B. Baum, J. Settleman, and M. P. Quinlan, Transitions between epithelial and mesenchymal states in development and disease, Semin Cell Dev Biol, vol.19, pp.294-308, 2008.

O. Schmalhofer, S. Brabletz, and T. Brabletz, E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer, Cancer Metastasis Rev, vol.28, pp.151-66, 2009.

H. J. Clarke, J. E. Chambers, E. Liniker, and S. J. Marciniak, Endoplasmic reticulum stress in malignancy, Cancer Cell, vol.25, pp.563-73, 2014.

L. Ulianich, C. Garbi, A. S. Treglia, D. Punzi, C. Miele et al., ER stress is associated with dedifferentiation and an epithelial-to-mesenchymal transition-like phenotype in PC Cl3 thyroid cells, J Cell Sci, vol.121, pp.477-86, 2008.

Y. X. Feng, E. S. Sokol, D. Vecchio, C. A. Sanduja, S. Claessen et al., Epithelial-to-mesenchymal transition activates PERK-eIF2alpha and sensitizes cells to endoplasmic reticulum stress, Cancer Discov, vol.4, pp.702-717, 2014.

D. Vecchio, C. A. Feng, Y. Sokol, E. S. Tillman, E. J. Sanduja et al., De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling, PLOS Biol, vol.12, p.1001945, 2014.

H. Tanjore, D. S. Cheng, A. L. Degryse, D. F. Zoz, R. Abdolrasulnia et al., Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress, J Biol Chem, vol.286, pp.30972-80, 2011.

R. E. Carlisle, A. Heffernan, E. Brimble, L. Liu, D. Jerome et al., TDAG51 mediates epithelial-to-mesenchymal transition in human proximal tubular epithelium, Am J Physiol Renal Physiol, vol.303, pp.467-81, 2012.

N. Sheshadri, J. M. Catanzaro, A. Bott, Y. Sun, E. Ullman et al., SCCA1/SerpinB3 promotes oncogenesis and epithelial-mesenchymal transition via the unfolded protein response and IL-6 signaling, Cancer Res, 2014.

S. P. Gao, K. G. Mark, K. Leslie, W. Pao, N. Motoi et al., Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas, J Clin Invest, vol.117, pp.3846-56, 2007.

P. Sansone, G. Storci, S. Tavolari, T. Guarnieri, C. Giovannini et al., IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland, J Clin Invest, vol.117, pp.3988-4002, 2007.

S. J. Kirk, J. M. Cliff, J. A. Thomas, and T. H. Ward, Biogenesis of secretory organelles during B cell differentiation, J Leukoc Biol, vol.87, pp.245-55, 2009.

R. M. Fox, C. D. Hanlon, and D. J. Andrew, The CrebA/Creb3-like transcription factors are major and direct regulators of secretory capacity, J Cell Biol, vol.191, pp.479-92, 2010.

E. Zeindl-eberhart, L. Brandl, S. Liebmann, S. Ormanns, S. K. Scheel et al., Epithelial-mesenchymal transition induces endoplasmic-reticulumstress response in human colorectal tumor cells, PLOS ONE, vol.9, p.87386, 2014.

S. Spaderna, O. Schmalhofer, M. Wahlbuhl, A. Dimmler, K. Bauer et al., The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer, Cancer Res, vol.68, pp.537-581, 2008.

C. Vandewalle, F. Van-roy, and G. Berx, The role of the ZEB family of transcription factors in development and disease, Cell Mol Life Sci, vol.66, pp.773-87, 2009.

J. Alam, D. Stewart, C. Touchard, S. Boinapally, A. M. Choi et al., Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene, J Biol Chem, vol.274, pp.26071-26079, 1999.

J. Alam, C. Wicks, D. Stewart, P. Gong, C. Touchard et al., Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells, role of p38 kinase and Nrf2 transcription factor, J Biol Chem, vol.275, pp.27694-702, 2000.

M. D. Maines, Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications, FASEB J, vol.2, pp.2557-68, 1988.

J. Y. Lee, J. W. Chang, W. S. Yang, S. B. Kim, S. K. Park et al., Albumin-induced epithelial-mesenchymal transition and ER stress are regulated through a common ROS-c-Src kinase-mTOR pathway: effect of imatinib mesylate, Am J Physiol Renal Physiol, vol.300, pp.467-81, 2011.

M. P. Curran and K. Mckeage, Bortezomib: a review of its use in patients with multiple myeloma, Drugs, vol.69, pp.859-88, 2009.

M. Hong, H. Kim, and I. Kim, Ribosomal protein L19 overexpression activates the unfolded protein response and sensitizes MCF7 breast cancer cells to endoplasmic reticulum stress-induced cell death, Biochem Biophys Res Commun, vol.450, pp.673-681, 2014.

C. Adamson, O. O. Kanu, A. I. Mehta, C. Di, N. Lin et al., Glioblastoma multiforme: a review of where we have been and where we are going, Expert Opin Investig Drugs, vol.18, pp.1061-83, 2009.

M. Westphal and K. Lamszus, The neurobiology of gliomas: from cell biology to the development of therapeutic approaches, Nat Rev Neurosci, vol.12, pp.495-508, 2011.

J. Zhong, A. Paul, S. J. Kellie, O. Neill, and G. M. , Mesenchymal migration as a therapeutic target in glioblastoma, J Oncol, p.430142, 2010.

H. S. Phillips, S. Kharbanda, R. Chen, W. F. Forrest, R. H. Soriano et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis, Cancer Cell, vol.9, pp.157-73, 2006.

M. S. Carro, W. K. Lim, M. J. Alvarez, R. J. Bollo, X. Zhao et al., The transcriptional network for mesenchymal transformation of brain tumours, Nature, vol.463, pp.318-343, 2010.

C. Greenman, P. Stephens, R. Smith, G. L. Dalgliesh, C. Hunter et al., Patterns of somatic mutation in human cancer genomes, Nature, vol.446, pp.153-161, 2007.

D. W. Parsons, S. Jones, X. Zhang, J. Lin, R. J. Leary et al., An integrated genomic analysis of human glioblastoma multiforme, Science, vol.321, pp.1807-1819, 2008.

G. Auf, A. Jabouille, S. Guerit, R. Pineau, M. Delugin et al., Inositolrequiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma, Proc Natl Acad Sci U S A, vol.107, pp.15553-15561, 2010.

B. Drogat, P. Auguste, D. T. Nguyen, M. Bouchecareilh, R. Pineau et al., IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo, Cancer Res, vol.67, pp.6700-6707, 2007.

O. Pluquet, N. Dejeans, M. Bouchecareilh, S. Lhomond, R. Pineau et al., Posttranscriptional regulation of PER1 underlies the oncogenic function of IREalpha, Cancer Res, vol.73, pp.4732-4775, 2013.

N. Dejeans, O. Pluquet, S. Lhomond, F. Grise, M. Bouchecareilh et al., Autocrine control of glioma cells adhesion and migration through IRE1alphamediated cleavage of SPARC mRNA, J Cell Sci, vol.125, pp.4278-87, 2012.

W. D. Foulkes, I. E. Smith, and J. S. Reis-filho, Triple-negative breast cancer, N Engl J Med, vol.363, pp.1938-1986, 2010.

B. D. Lehmann, J. A. Bauer, X. Chen, M. E. Sanders, A. B. Chakravarthy et al., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies, J Clin Invest, vol.121, pp.2750-67, 2011.

X. Chen, D. Iliopoulos, Q. Zhang, Q. Tang, M. B. Greenblatt et al., XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway, Nature, vol.508, pp.103-110, 2014.

Y. Lu, F. X. Liang, and X. Wang, A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB, Mol Cell, vol.55, pp.758-70, 2014.

H. Li, X. Chen, Y. Gao, J. Wu, F. Zeng et al., XBP1 induces snail expression to promote epithelial-to-mesenchymal transition and invasion of breast cancer cells, Cell Signal, 2014.

S. Thomas, N. Sharma, E. B. Golden, H. Cho, P. Agarwal et al., Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors, Cancer Lett, vol.325, pp.63-71, 2012.

, Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER stress-induced gene transcription

U. Inserm, Team «Endoplasmic Reticulum stress and cancer » F-33076 Bordeaux, France. 2 Univ. Bordeaux, F-33000

F. Bordeaux, 4 INSERM U869, ARNA laboratory, F-33000

, Molecular and Cellular Biology, issue.6, p.69364

F. Rennes,

. Correspondance, Quality control in the endoplasmic reticulum, eric.chevet@inserm.fr References 1. Ellgaard L, Helenius A, vol.4, pp.181-191, 2003.

C. Hetz, E. Chevet, and H. P. Harding, Targeting the unfolded protein response in disease, Nat Rev Drug Discov, vol.12, pp.703-719, 2013.

J. Mouysset, C. K?-§hler, and T. Hoppe, A conserved role of Caenorhabditis elegans CDC-48 in ER-associated protein degradation, Journal of structural biology, vol.156, pp.41-49, 2006.

M. E. Caruso, S. Jenna, M. Bouchecareilh, D. L. Baillie, D. Boismenu et al., GTPase-mediated regulation of the unfolded protein response in Caenorhabditis elegans is dependent on the AAA+ ATPase CDC-48, Mol Cell Biol, vol.28, pp.4261-4274, 2008.

N. P. Dantuma and T. Hoppe, Growing sphere of influence: Cdc48/p97 orchestrates ubiquitindependent extraction from chromatin, Trends Cell Biol, vol.22, pp.483-491, 2012.

J. Reboul, C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression, Nat Genet, vol.34, pp.35-41, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01599842

B. Squiban, J. Belougne, J. Ewbank, and O. Zugasti, Quantitative and automated high-throughput genome-wide RNAi screens in C. elegans, J Vis Exp, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685587

X. Shen, R. E. Ellis, K. Sakaki, and R. J. Kaufman, Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans, PLoS Genet, vol.1, p.37, 2005.

P. Lajoie and E. L. Snapp, Changes in BiP availability reveal hypersensitivity to acute endoplasmic reticulum stress in cells expressing mutant huntingtin, J Cell Sci, vol.124, pp.3332-3343, 2011.

V. Haurie, Adenosine triphosphatase pontin is overexpressed in hepatocellular carcinoma and coregulated with reptin through a new posttranslational mechanism, Hepatology, vol.50, pp.1871-1883, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00408518

R. Christiano, N. Nagaraj, F. Fröhlich, and T. C. Walther, Global Proteome Turnover Analyses of the Yeasts S. cerevisiae and S. pombe, Cell Rep, vol.9, pp.1-7, 2014.

S. G. Kosmaczewski, T. J. Edwards, S. M. Han, M. J. Eckwahl, B. I. Meyer et al., The RtcB RNA ligase is an essential component of the metazoan unfolded protein response, Proteostasis control in tumor cell biology. Cancer Lett, vol.13, pp.26-34, 2013.

D. Dupuy, Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans, Nat Biotechnol, vol.25, pp.663-668, 2007.

C. Hetz, E. Chevet, and S. A. Oakes, Proteostasis control by the unfolded protein response, Nat Cell Biol, vol.17, issue.7, pp.829-867, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01175531

P. Walter and D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation, Science, vol.334, issue.6059, pp.1081-1087, 2011.

E. Marza, S. Taouji, K. Barroso, A. A. Raymond, L. Guignard et al., Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress-induced gene transcription, EMBO Rep, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01163728

D. Fessart, E. Marza, S. Taouji, F. Delom, and E. Chevet, P97/CDC-48: Proteostasis control in tumor cell biology, Cancer Lett, vol.337, issue.1, pp.26-34, 2013.

H. Meyer and C. C. Weihl, The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis, J Cell Sci, vol.127, pp.3877-83, 2014.

Y. Oka, R. A. Waterland, J. K. Killian, C. M. Nolan, H. S. Jang et al., M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan, Hepatology, vol.35, issue.5, pp.1153-63, 2002.

R. L. Carpenter and H. W. Lo, Hedgehog pathway and GLI1 isoforms in human cancer, Discov Med, vol.13, issue.69, pp.105-118, 2012.

C. Boyault, B. Gilquin, Y. Zhang, V. Rybin, E. Garman et al., HDAC6-p97/VCP controlled polyubiquitin chain turnover, EMBO J, vol.25, issue.14, pp.3357-66, 2006.

T. C. Fleischer, U. J. Yun, and D. E. Ayer, Identification and characterization of three new components of the mSin3A corepressor complex, Mol Cell Biol, vol.23, issue.10, pp.3456-67, 2003.

X. Shi, T. Hong, K. L. Walter, M. Ewalt, E. Michishita et al., ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression, Nature, vol.442, issue.7098, pp.96-105, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02154247

S. Rashid, I. Pilecka, A. Torun, M. Olchowik, B. Bielinska et al., Endosomal adaptor proteins APPL1 and APPL2 are novel activators of beta-catenin/TCF-mediated transcription, J Biol Chem, vol.284, issue.27, pp.18115-18143, 2009.

J. H. Kim, H. J. Choi, B. Kim, M. H. Kim, J. M. Lee et al., Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis, Nat Cell Biol, vol.8, issue.6, pp.631-640, 2006.

D. J. Anderson, L. Moigne, R. Djakovic, S. Kumar, B. Rice et al., Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis, Cancer Cell, vol.28, issue.5, pp.653-65, 2015.

A. Nalbandian, S. Ghimbovschi, S. Radom-aizik, E. Dec, J. Vesa et al., Global gene profiling of VCP-associated inclusion body myopathy, Clin Transl Sci, vol.5, issue.3, pp.226-260, 2012.

E. H. Villavicencio, J. W. Yoon, D. J. Frank, E. M. Fuchtbauer, D. O. Walterhouse et al.,

, Cooperative E-box regulation of human GLI1 by TWIST and USF, Genesis, vol.32, issue.4, pp.247-58, 2002.

C. M. Koch, R. M. Andrews, P. Flicek, S. C. Dillon, U. Karaoz et al., The landscape of histone modifications across 1% of the human genome in five human cell lines, Genome Res, vol.17, issue.6, pp.691-707, 2007.

J. H. Dannenberg, G. David, S. Zhong, J. Van-der-torre, W. H. Wong et al., mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival, Genes Dev, vol.19, issue.13, pp.1581-95, 2005.

T. Wang, W. Xu, M. Qin, Y. Yang, P. Bao et al., Pathogenic Mutations in the Valosincontaining Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response, J Biol Chem, vol.291, issue.27, pp.14373-84, 2016.

T. F. Chou, S. J. Brown, D. Minond, B. E. Nordin, K. Li et al., Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways, Proc Natl Acad Sci, vol.108, issue.12, pp.4834-4843, 2011.

A. Ndoja, R. E. Cohen, and T. Yao, Ubiquitin signals proteolysis-independent stripping of transcription factors, Mol Cell, vol.53, issue.6, pp.893-903, 2014.

P. P. Shah and L. J. Beverly, Regulation of VCP/p97 demonstrates the critical balance between cell death and epithelial-mesenchymal transition (EMT) downstream of ER stress, Oncotarget, vol.6, pp.17725-17762, 2015.

A. E. Lo-re, M. G. Fernandez-barrena, L. L. Almada, L. Mills, S. F. Elsawa et al., A novel AKT1-GLI3VMP1 pathway mediates Krasinduced autophagy in cancer cells, J. Biol. Chem, vol.287, pp.25325-25334, 2012.

G. Palade, Intracellular aspects of the process of protein synthesis, Science, vol.189, issue.4206, p.867, 1975.

C. Lavoie and J. Paiement, Topology of molecular machines of the endoplasmic reticulum: a compilation of proteomics and cytological data, Histochem Cell Biol, vol.129, issue.2, pp.117-145, 2008.

M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling, Nat Rev Mol Cell Biol, vol.4, issue.7, pp.517-546, 2003.

M. J. Berridge, The endoplasmic reticulum: a multifunctional signaling organelle, Cell Calcium, vol.32, pp.235-284, 2002.

P. S. Mcpherson and K. P. Campbell, The ryanodine receptor/Ca2+ release channel, J Biol Chem, vol.268, pp.13765-13773, 1993.

J. Lytton, Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps, J Biol Chem, vol.267, pp.14483-14492, 1920.

H. Coe and M. Michalak, Calcium binding chaperones of the endoplasmic reticulum, Gen Physiol Biophys, vol.28, pp.96-103, 2009.

P. Fagone and S. Jackowski, Membrane phospholipid synthesis and endoplasmic reticulum function, J Lipid Res, pp.311-317, 2009.

J. Helenius, Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein, Nature, vol.415, pp.447-50, 2002.

K. W. Underwood, Evidence for a cholesterol transport pathway from lysosomes to endoplasmic reticulum that is independent of the plasma membrane, J Biol Chem, vol.273, issue.7, pp.4266-74, 1998.

K. W. Wirtz, Phospholipid transfer proteins: from lipid monolayers to cells, Klin Wochenschr, vol.69, issue.3, pp.105-116, 1991.

A. Radhakrishnan, Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance, Cell Metab, vol.8, issue.6, pp.512-533, 2008.

X. Wang, Binding of signal recognition particle gives ribosome/nascent chain complexes a competitive advantage in endoplasmic reticulum membrane interaction, Mol Biol Cell, vol.77, issue.1, pp.103-118, 1994.

K. U. Kalies, D. Gorlich, and T. A. Rapoport, Binding of ribosomes to the rough endoplasmic reticulum mediated by the Sec61p-complex, J Cell Biol, vol.126, issue.4, pp.925-959, 1994.

I. Braakman and D. N. Hebert, Protein folding in the endoplasmic reticulum, Cold Spring Harb Perspect Biol, vol.5, issue.5, p.13201, 2013.

K. Araki and K. Nagata, Protein folding and quality control in the ER, Cold Spring Harb Perspect Biol, vol.3, issue.11, 2011.

S. Ghaemmaghami, W. K. Huh, K. Bower, R. W. Howson, A. Belle et al., Global analysis of protein expression in yeast, Nature, vol.425, pp.737-741, 2003.

D. J. Stephens, De novo formation, fusion and fission of mammalian COPII-coated endoplasmic reticulum exit sites, EMBO Rep, vol.4, issue.2, pp.210-217, 2003.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., Molecular biology of the cell, 2002.

A. A. Mccracken and J. L. Brodsky, Recognition and delivery of ERAD substrates to the proteasome and alternative paths for cell survival, Curr Top Microbiol Immunol, vol.300, pp.17-40, 2005.

Y. Okuda-shimizu and L. M. Hendershot, Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp, Mol Cell, vol.28, issue.4, pp.544-54, 2007.
DOI : 10.1016/j.molcel.2007.09.012

URL : https://doi.org/10.1016/j.molcel.2007.09.012

P. A. Hargrave, Rhodopsin structure, function, and topography-the Friedenwald lecture, Invest Ophthalmol Vis Sci, vol.42, pp.3-9, 2001.
DOI : 10.1016/0278-4327(82)90003-7

S. S. Vembar and J. L. Brodsky, One step at a time: endoplasmic reticulum-associated degradation, Nat Rev Mol Cell Biol, vol.9, issue.12, pp.944-57, 2008.
DOI : 10.1038/nrm2546

URL : http://europepmc.org/articles/pmc2654601?pdf=render

P. Walter and D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation, Science, vol.334, issue.6059, pp.1081-1087, 2011.
DOI : 10.1126/science.1209038

C. Hetz, E. Chevet, and S. A. Oakes, Proteostasis control by the unfolded protein response, Nat Cell Biol, vol.17, issue.7, pp.829-867, 2015.
DOI : 10.1038/ncb3184

URL : https://hal.archives-ouvertes.fr/hal-01175531

E. Chevet, C. Hetz, and A. Samali, Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis, Methods Enzymol, vol.5, issue.6, pp.37-56, 2011.
DOI : 10.1158/2159-8290.cd-14-1490

URL : https://hal.archives-ouvertes.fr/hal-01152845

D. Moir, S. E. Stewart, B. C. Osmond, and D. Botstein, Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies, Genetics, vol.100, pp.547-563, 1982.

X. Zhang, A. Shaw, P. A. Bates, R. H. Newman, B. Gowen et al., Structure of the AAA ATPase p97, Mol Cell, vol.6, issue.6, pp.1473-84, 2000.
DOI : 10.1016/s1097-2765(00)00143-x

URL : https://doi.org/10.1016/s1097-2765(00)00143-x

D. Xia, W. K. Tang, and Y. Ye, Structure and function of the AAA+ ATPase p97/Cdc48p, Gene, vol.583, issue.1, pp.64-77, 2016.
DOI : 10.1016/j.gene.2016.02.042

URL : http://europepmc.org/articles/pmc4821690?pdf=render

H. Meyer, M. Bug, and S. Bremer, Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system, Nat. Cell Biol, vol.14, pp.117-123, 2012.

H. Meyer and C. C. Weihl, The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis, J Cell Sci, vol.127, pp.3877-83, 2014.
DOI : 10.1242/jcs.093831

URL : http://jcs.biologists.org/content/joces/127/18/3877.full.pdf

I. Dreveny, V. E. Pye, F. Beuron, L. C. Briggs, R. L. Isaacson et al., Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies, Biochem Soc Trans, vol.32, pp.547-563, 1982.

S. Bohm, G. Lamberti, V. Fernandez-saiz, C. Stapf, and A. Buchberger, Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding, Mol Cell Biol, vol.31, issue.7, pp.1528-1567, 2011.

F. C. Nery, I. A. Armata, J. E. Farley, J. A. Cho, U. Yaqub et al., TorsinA participates in endoplasmic reticulum-associated degradation, Nat Commun, vol.2, p.393, 2011.
DOI : 10.1038/ncomms1383

URL : https://www.nature.com/articles/ncomms1383.pdf

S. K. Radhakrishnan, W. Den-besten, and R. J. Deshaies, p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition, Elife, vol.3, p.1856, 2014.
DOI : 10.1101/001602

URL : http://europepmc.org/articles/pmc3896944?pdf=render

E. V. Stewart, S. J. Lloyd, J. S. Burg, C. C. Nwosu, R. E. Lintner et al., Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase, J Biol Chem, vol.287, issue.1, pp.672-81, 2012.

S. Xu, G. Peng, Y. Wang, S. Fang, and M. , Karbowski The AAA-ATPase p97 is essential for outermitochondrial membrane protein turnover, Mol. Biol. Cell, vol.22, p.38, 2011.
DOI : 10.1091/mbc.e10-09-0748

URL : http://europepmc.org/articles/pmc3031461?pdf=render

J. S. Ju and C. C. Weihl, p97/VCP at the intersection of the autophagy and the ubiquitin proteasome system, Autophagy, vol.6, issue.2, pp.283-288, 2010.

J. S. Ju, R. A. Fuentealba, S. E. Miller, J. E. Piwnica-worms, D. Baloh et al., Valosincontaining protein (VCP) is required for autophagy and is disrupted in VCP disease, J Cell Biol, vol.187, issue.6, pp.875-88, 2009.

C. Boyault, B. Gilquin, Y. Zhang, V. Rybin, E. Garman et al., HDAC6p97/VCP controlled polyubiquitin chain turnover, EMBO J, vol.25, issue.14, pp.3357-66, 2006.

L. Pernet, V. Faure, B. Gilquin, S. Dufour-guerin, S. Khochbin et al., HDAC6-ubiquitin interaction controls the duration of HSF1 activation after heat shock, Mol Biol Cell, vol.25, issue.25, pp.4187-94, 2014.

K. Uchiyama, E. Jokitalo, F. Kano, M. Murata, X. Zhang et al., VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo, J Cell Biol, vol.159, issue.5, pp.855-66, 2002.

C. Lavoie, E. Chevet, L. Roy, N. K. Tonks, A. Fazel et al., Tyrosine phosphorylation of p97 regulates transitional endoplasmic reticulum assembly in vitro, Proc Natl Acad Sci, vol.97, issue.25, pp.13637-13679, 2000.

H. N. Ramanathan and Y. Ye, The p97 ATPase associates with EEA1 to regulate the size of early endosomes, Cell Res, vol.22, issue.2, pp.346-59, 2012.

F. Madeo, J. Schlauer, H. Zischka, D. Mecke, and K. U. Frohlich, Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p, Mol. Biol. Cell, vol.9, pp.131-141, 1998.

C. Song, Q. Wang, C. Song, S. J. Lockett, N. H. Colburn et al., Nucleocytoplasmic shuttling of valosin-containing protein (VCP/p97) regulated by its N domain and C-terminal region, Biochim Biophys Acta, vol.1853, issue.1, pp.222-254, 2015.

G. Dobrynin, O. Popp, T. Romer, S. Bremer, M. H. Schmitz et al., Cdc48/p97-Ufd1Npl4 antagonizes Aurora B during chromosome segregation in HeLa cells, J Cell Sci, vol.124, pp.1571-80, 2011.

M. Raman, C. G. Havens, J. C. Walter, and J. W. Harper, A genome-wide screen identifies p97 as an essential regulator of DNA damage-dependent CDT1 destruction, Mol Cell, vol.44, issue.1, pp.72-84, 2011.

H. Zhang, Q. Wang, K. Kajino, and M. I. Greene, VCP, a weak ATPase involved in multiple cellular events, interacts physically with BRCA1 in the nucleus of living cells, DNA Cell Biol, vol.19, issue.5, pp.253-63, 2000.

J. J. Mu, Y. Wang, H. Luo, M. Leng, J. Zhang et al., A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitinproteasome system as a regulator for DNA damage checkpoints, J Biol Chem, vol.282, issue.24, pp.17330-17334, 2007.

M. Livingstone, H. Ruan, J. Weiner, K. R. Clauser, P. Strack et al., Valosin-containing protein phosphorylation at Ser784 in response to DNA damage, Cancer Res, vol.65, issue.17, pp.7533-7573, 2005.

N. P. Dantuma, K. Acs, and M. S. Luijsterburg, Should I stay or should I go: VCP/p97-mediated chromatin extraction in the DNA damage response, Exp Cell Res, vol.329, issue.1, pp.9-17, 2014.

M. R. Puumalainen, D. Lessel, P. Ruthemann, N. Kaczmarek, K. Bachmann et al., Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity, Nat Commun, vol.5, p.3695, 2014.

K. Acs, M. S. Luijsterburg, L. Ackermann, F. A. Salomons, T. Hoppe et al., The AAAATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA doublestrand breaks, Nat Struct Mol Biol, vol.18, issue.12, pp.1345-50, 2011.

K. Ramadan, p97/VCP-and Lys48-linked polyubiquitination form a new signaling pathway in DNA damage response, Cell Cycle, vol.11, issue.6, pp.1062-1071, 2012.

A. Nalbandian, S. Ghimbovschi, S. Radom-aizik, E. Dec, J. Vesa et al., Global gene profiling of VCP-associated inclusion body myopathy, Clin Transl Sci, vol.5, issue.3, pp.226-260, 2012.

E. V. Stewart, S. J. Lloyd, J. S. Burg, C. C. Nwosu, R. E. Lintner et al., Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase, J Biol Chem, vol.287, issue.1, pp.672-81, 2012.

A. Ndoja, R. E. Cohen, and T. Yao, Ubiquitin signals proteolysis-independent stripping of transcription factors, Mol Cell, vol.53, issue.6, pp.893-903, 2014.

C. W. Valle, T. Min, M. Bodas, S. Mazur, S. Begum et al., Critical role of VCP/p97 in the pathogenesis and progression of non-small cell lung carcinoma, PLoS One, vol.6, issue.12, p.29073, 2011.

T. Asai, Y. Tomita, S. Nakatsuka, Y. Hoshida, A. Myoui et al., VCP (p97) regulates NFkappaB signaling pathway, which is important for metastasis of osteosarcoma cell line, Jpn J Cancer Res, vol.93, issue.3, pp.296-304, 2002.

G. Alexandru, J. Graumann, G. T. Smith, N. J. Kolawa, R. Fang et al., UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover, Cell, vol.134, issue.5, pp.804-820, 2008.

M. Bonizec, L. Herissant, W. Pokrzywa, F. Geng, S. Wenzel et al., The ubiquitinselective chaperone Cdc48/p97 associates with Ubx3 to modulate monoubiquitylation of histone H2B, Nucleic Acids Res, vol.42, issue.17, pp.10975-86, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01725189

M. Koike, J. Fukushi, Y. Ichinohe, N. Higashimae, M. Fujishiro et al., Valosincontaining protein (VCP) in novel feedback machinery between abnormal protein accumulation and transcriptional suppression, J Biol Chem, vol.285, issue.28, pp.21736-21785, 2010.

C. C. Weihl, S. Dalal, A. Pestronk, and P. I. Hanson, Inclusion body myopathyassociated mutations in p97/VCP impair endoplasmic reticulum-associated degradation, Hum. Mol. Genet, vol.15, pp.189-199, 2006.

N. C. Kim, E. Tresse, R. M. Kolaitis, A. Molliex, R. E. Thomas et al.,

H. Wang, B. Joshi, A. Smith, R. B. Ritson, and G. P. , VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations, Neuron, vol.78, pp.65-80, 2013.

G. P. Ritson, S. K. Custer, B. D. Freibaum, J. B. Guinto, D. Geffel et al., TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97, J Neurosci, vol.30, issue.22, pp.7729-7768, 2010.

D. Fessart, E. Marza, S. Taouji, F. Delom, and E. Chevet, P97/CDC-48: Proteostasis control in tumor cell biology, Cancer Lett, vol.337, issue.1, pp.26-34, 2013.

Y. Liu, Y. Hei, Q. Shu, J. Dong, Y. Gao et al., VCP/p97, down-regulated by microRNA129-5p, could regulate the progression of hepatocellular carcinoma, PLoS One, vol.7, issue.4, p.35800, 2012.

S. Yamamoto, Y. Tomita, T. Uruno, Y. Hoshida, Y. Qiu et al., Increased expression of valosin-containing protein (p97) is correlated with disease recurrence in follicular thyroid cancer, Ann.Surg. Oncol, vol.12, pp.925-934, 2005.

Y. Tsujimoto, Y. Tomita, Y. Hoshida, T. Kono, T. Oka et al., Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer, Clin. Cancer Res, vol.10, pp.3007-3012, 2004.

Y. B. Wang, B. Tan, R. Mu, Y. Chang, M. Wu et al., Ubiquitin-associated domaincontaining ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor kappaB (NF-kappaB) signaling, J Biol Chem, vol.290, issue.16, pp.10395-405, 2015.

P. Yi, A. Higa, S. Taouji, M. G. Bexiga, E. Marza et al., Sorafenib-mediated targeting of the AAA(+) ATPase p97/VCP leads to disruption of the secretory pathway, endoplasmic reticulum stress, and hepatocellular cancer cell death, Mol Cancer Ther, vol.11, issue.12, pp.2610-2630, 2012.

P. Magnaghi, D. 'alessio, R. Valsasina, B. Avanzi, N. Rizzi et al., Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death, Nat Chem Biol, vol.9, issue.9, pp.548-56, 2013.

D. J. Anderson, L. Moigne, R. Djakovic, S. Kumar, B. Rice et al., Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis, Cancer Cell, vol.28, issue.5, pp.653-65, 2015.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, issue.1, 2000.

H. Urra, E. Dufey, T. Avril, E. Chevet, and C. Hetz, ER stress and the hallmarks of cancer, Trends in Cancer, vol.5, pp.252-262, 2016.

M. E. Caruso, S. Jenna, M. Bouchecareilh, D. L. Baillie, D. Boismenu et al., GTPasemediated regulation of the unfolded protein response in Caenorhabditis elegans is dependent on the AAA+ ATPase CDC-48, Mol Cell Biol, vol.28, issue.13, pp.4261-74, 2008.

P. Baumeister, S. Luo, W. C. Skarnes, G. Sui, E. Seto et al., Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers, Mol Cell Biol, vol.25, issue.11, pp.4529-4569, 2005.

P. Baumeister, D. Dong, Y. Fu, and A. S. Lee, Transcriptional induction of GRP78/BiP by histone deacetylase inhibitors and resistance to histone deacetylase inhibitor-induced apoptosis, Mol Cancer Ther, vol.8, issue.5, pp.1086-94, 2009.

J. H. Kim, H. J. Choi, B. Kim, M. H. Kim, J. M. Lee et al., Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis, Nat Cell Biol, vol.8, issue.6, pp.631-640, 2006.

T. Wang, W. Xu, M. Qin, Y. Yang, P. Bao et al., Pathogenic Mutations in the Valosincontaining Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response, J Biol Chem, vol.291, issue.27, pp.14373-84, 2016.

R. L. Carpenter and H. W. Lo, Hedgehog pathway and GLI1 isoforms in human cancer, Discov Med, vol.13, issue.69, pp.105-118, 2012.

E. H. Villavicencio, J. W. Yoon, D. J. Frank, E. M. Fuchtbauer, D. O. Walterhouse et al.,

, Cooperative E-box regulation of human GLI1 by TWIST and USF, Genesis, vol.32, issue.4, pp.247-58, 2002.

P. P. Shah and L. J. Beverly, Regulation of VCP/p97 demonstrates the critical balance between cell death and epithelial-mesenchymal transition (EMT) downstream of ER stress, Oncotarget, vol.6, pp.17725-17762, 2015.

, Antagonistic IRE1 RNase functions dictate glioblastoma tumor development

, Néstor Pallares-Lupon, vol.7

, John B. Patterson, vol.9