M. I. Jackson, Kinetic feasibility of nitroxyl reduction by physiological reductants and biological implications. Free Radic, Biol. Med, vol.47, pp.1130-1139, 2009.

D. D. Thomas, X. Liu, S. P. Kantrow, and J. R. Lancaster, The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.355-360, 2001.

J. R. Lancaster, A Tutorial on the Diffusibility and Reactivity of Free Nitric Oxide, Nitric Oxide, vol.1, pp.18-30, 1997.

D. M. Porterfield, Proteins and lipids define the diffusional field of nitric oxide, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.281, pp.904-912, 2001.

P. Pacher, J. S. Beckman, and L. Liaudet, Nitric oxide and peroxynitrite in health and disease, Physiol. Rev, vol.87, pp.315-424, 2007.

J. R. Lancaster, Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications, Future Sci. OA, vol.1, p.59, 2015.

D. D. Thomas, X. Liu, S. P. Kantrow, and J. R. Lancaster, The biological lifetime of nitric oxide: Implications for the perivascular dynamics of NO and O2, Proc. Natl. Acad. Sci, vol.98, pp.355-360, 2001.

D. D. Thomas, Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide, Redox Biol, vol.5, pp.225-233, 2015.

J. S. Beckman and W. H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly, Am. J. Physiol, vol.271, pp.1424-1437, 1996.

T. A. Heinrich, Biological nitric oxide signalling: chemistry and terminology, Br. J. Pharmacol, vol.169, pp.1417-1429, 2013.

D. Jourd'heuil, The oxidative and nitrosative chemistry of the nitric oxide/superoxide reaction in the presence of bicarbonate, Arch. Biochem. Biophys, vol.365, pp.92-100, 1999.

E. R. Derbyshire and M. A. Marletta, Structure and regulation of soluble guanylate cyclase, Annu. Rev. Biochem, vol.81, pp.533-559, 2012.

J. C. Drapier and C. Bouton, Modulation by nitric oxide of metalloprotein regulatory activities, BioEssays News Rev. Mol. Cell. Dev. Biol, vol.18, pp.549-556, 1996.

J. Goretski and T. C. Hollocher, Trapping of nitric oxide produced during denitrification by extracellular hemoglobin, J. Biol. Chem, vol.263, pp.2316-2323, 1988.

C. E. Castro and E. W. Bartnicki, The Interconversion of Nucleic Acid Bases by Iron(III) Porphyrins and Nitric Oxide, J. Org. Chem, vol.59, pp.4051-4052, 1994.

M. A. Marletta, Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents, Chem. Res. Toxicol, vol.1, pp.249-257, 1988.

O. Guittet, Peroxynitrite-mediated nitration of the stable free radical tyrosine residue of the ribonucleotide reductase small subunit, Biochemistry (Mosc.), vol.39, pp.4640-4648, 2000.

O. Guittet, B. Roy, and M. Lepoivre, Nitric oxide: a radical molecule in quest of free radicals in proteins, Cell. Mol. Life Sci. CMLS, vol.55, pp.1054-1067, 1999.

M. Murata, R. Thanan, N. Ma, and S. Kawanishi, Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis, J. Biomed. Biotechnol, vol.2012, p.623019, 2012.

A. Martínez-ruiz and S. Lamas, S-nitrosylation: a potential new paradigm in signal transduction, Cardiovasc. Res, vol.62, pp.43-52, 2004.

, Physiology or Medicine for 1998Press Release, p.8, 2017.

R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, vol.288, pp.373-376, 1980.

W. P. Arnold, C. K. Mittal, S. Katsuki, and F. Murad, Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations, Proc. Natl. Acad. Sci. U. S. A, vol.74, pp.3203-3207, 1977.

R. M. Palmer, A. G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, vol.327, pp.524-526, 1987.

L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, and G. Chaudhuri, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. U. S. A, vol.84, pp.9265-9269, 1987.

W. K. Alderton, C. E. Cooper, and R. G. Knowles, Nitric oxide synthases: structure, function and inhibition, Biochem. J, vol.357, pp.593-615, 2001.

K. L. Chambliss and P. W. Shaul, Estrogen modulation of endothelial nitric oxide synthase, Endocr. Rev, vol.23, pp.665-686, 2002.

M. B. Harris, M. A. Blackstone, H. Ju, V. J. Venema, and R. C. Venema, Heat-induced increases in endothelial NO synthase expression and activity and endothelial NO release, Am. J. Physiol. Heart Circ. Physiol, vol.285, pp.333-340, 2003.

M. H. Laughlin, Training induces nonuniform increases in eNOS content along the coronary arterial tree, J. Appl. Physiol. Bethesda Md, vol.90, pp.501-510, 1985.

C. Lam, Increased blood flow causes coordinated upregulation of arterial eNOS and biosynthesis of tetrahydrobiopterin, Am. J. Physiol. Heart Circ. Physiol, vol.290, pp.786-793, 2006.

P. J. Roberts, The physiological expression of inducible nitric oxide synthase (iNOS) in the human colon, J. Clin. Pathol, vol.54, pp.293-297, 2001.

K. Asano, Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.10089-10093, 1994.

L. Mcnaughton, Distribution of nitric oxide synthase in normal and cirrhotic human liver, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.17161-17166, 2002.

C. Villanueva and C. Giulivi, Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic, Biol. Med, vol.49, pp.307-316, 2010.

L. A. Barouch, Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms, Nature, vol.416, pp.337-339, 2002.

P. A. Loughran, Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.13837-13842, 2005.

P. A. Glynne, K. E. Darling, J. Picot, and T. J. Evans, Epithelial inducible nitric-oxide synthase is an apical EBP50-binding protein that directs vectorial nitric oxide output, J. Biol. Chem, vol.277, pp.33132-33138, 2002.

S. Oess, A. Icking, D. Fulton, R. Govers, and W. Müller-esterl, Subcellular targeting and trafficking of nitric oxide synthases, Biochem. J, vol.396, pp.401-409, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01478372

M. Hecker, A. Mülsch, and R. Busse, Subcellular localization and characterization of neuronal nitric oxide synthase, J. Neurochem, vol.62, pp.1524-1529, 1994.

D. E. Spratt, V. Taiakina, M. Palmer, and J. G. Guillemette, Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes, Biochemistry (Mosc.), vol.46, pp.8288-8300, 2007.

D. Fulton, Regulation of endothelium-derived nitric oxide production by the protein kinase Akt, Nature, vol.399, pp.597-601, 1999.

P. Chen and K. K. Wu, Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase, J. Biol. Chem, vol.278, pp.52392-52400, 2003.

L. J. Roman, The C termini of constitutive nitric-oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin, J. Biol. Chem, vol.275, pp.29225-29232, 2000.

B. R. Crane, Structure of Nitric Oxide Synthase Oxygenase Dimer with Pterin and Substrate, Science, vol.279, p.2121, 1998.

T. O. Fischmann, Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation, Nat. Struct. Biol, vol.6, pp.233-242, 1999.

P. Klatt, Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer, EMBO J, vol.14, pp.3687-3695, 1995.

C. S. Raman, Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center, Cell, vol.95, pp.939-950, 1998.

B. Hemmens, W. Goessler, K. Schmidt, and B. Mayer, Role of bound zinc in dimer stabilization but not enzyme activity of neuronal nitric-oxide synthase, J. Biol. Chem, vol.275, pp.35786-35791, 2000.

D. J. Stuehr, Mammalian nitric oxide synthases, Biochim. Biophys. Acta, vol.1411, pp.217-230, 1999.

U. Siddhanta, Domain swapping in inducible nitric-oxide synthase. Electron transfer occurs between flavin and heme groups located on adjacent subunits in the dimer, J. Biol. Chem, vol.273, pp.18950-18958, 1998.

K. Panda, S. Ghosh, and D. J. Stuehr, Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer, J. Biol. Chem, vol.276, pp.23349-23356, 2001.

J. Tejero and D. Stuehr, Tetrahydrobiopterin in nitric oxide synthase, IUBMB Life, vol.65, pp.358-365, 2013.

S. M. Morris, Recent advances in arginine metabolism, Curr. Opin. Clin. Nutr. Metab. Care, vol.7, pp.45-51, 2004.

C. T. Tran, J. M. Leiper, and P. Vallance, The DDAH/ADMA/NOS pathway, Atheroscler, vol.4, pp.33-40, 2003.

S. Pou, L. Keaton, W. Surichamorn, and G. M. Rosen, Mechanism of superoxide generation by neuronal nitric-oxide synthase, J. Biol. Chem, vol.274, pp.9573-9580, 1999.

M. G. Mason, P. Nicholls, M. T. Wilson, and C. E. Cooper, Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.708-713, 2006.

D. Fulton, J. P. Gratton, and W. C. Sessa, Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough?, J. Pharmacol. Exp. Ther, vol.299, pp.818-824, 2001.

D. D. Thomas, The chemical biology of nitric oxide: implications in cellular signaling. Free Radic, Biol. Med, vol.45, pp.18-31, 2008.

D. D. Thomas, Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.8894-8899, 2004.

D. R. Arnelle, J. S. Stamler, and . No+, NO, and NO-donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation, Arch. Biochem. Biophys, vol.318, pp.279-285, 1995.

J. Dunn, S-nitrosation of arginase 1 requires direct interaction with inducible nitric oxide synthase, Mol. Cell. Biochem, vol.355, pp.83-89, 2011.

L. Xu, C. Han, K. Lim, and T. Wu, Activation of cytosolic phospholipase A2alpha through nitric oxide-induced S-nitrosylation. Involvement of inducible nitric-oxide synthase and cyclooxygenase-2, J. Biol. Chem, vol.283, pp.3077-3087, 2008.

Y. Iwakiri, S-nitrosylation of proteins: a new insight into endothelial cell function regulated by eNOS-derived NO, Nitric Oxide Biol. Chem, vol.25, pp.95-101, 2011.

D. A. Mitchell, T. Michel, and M. A. Marletta, Effects of S-nitrosation of nitric oxide synthase, Advances in Experimental Biology, vol.1, pp.151-456, 2007.

M. D. Kornberg, GAPDH mediates nitrosylation of nuclear proteins, Nat. Cell Biol, vol.12, pp.1094-1100, 2010.

J. Jia, Target-selective protein S-nitrosylation by sequence motif recognition, Cell, vol.159, pp.623-634, 2014.

B. C. Smith and M. A. Marletta, Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling, Curr. Opin. Chem. Biol, vol.16, pp.498-506, 2012.

D. A. Stoyanovsky, Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols, J. Am. Chem. Soc, vol.127, pp.15815-15823, 2005.

M. Benhar, Nitric oxide and the thioredoxin system: a complex interplay in redox regulation, Biochim. Biophys. Acta, vol.1850, pp.2476-2484, 2015.

S. Ben-lulu, T. Ziv, A. Admon, P. Weisman-shomer, and M. Benhar, A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation, Mol. Cell. Proteomics MCP, vol.13, pp.2573-2583, 2014.

S. Ben-lulu, T. Ziv, P. Weisman-shomer, and M. Benhar, Nitrosothiol-Trapping-Based Proteomic Analysis of S-Nitrosylation in Human Lung Carcinoma Cells, PloS One, vol.12, p.169862, 2017.

M. T. Forrester, M. W. Foster, M. Benhar, and J. S. Stamler, Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic, Biol. Med, vol.46, pp.119-126, 2009.

D. Seth and J. S. Stamler, The SNO-proteome: causation and classifications, Curr. Opin. Chem. Biol, vol.15, pp.129-136, 2011.

J. R. Matthews, C. H. Botting, M. Panico, H. R. Morris, and R. T. Hay, Inhibition of NF-kappaB DNA binding by nitric oxide, Nucleic Acids Res, vol.24, pp.2236-2242, 1996.

E. Metzen, J. Zhou, W. Jelkmann, J. Fandrey, and B. Brüne, Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases, Mol. Biol. Cell, vol.14, pp.3470-3481, 2003.

I. M. Yasinska and V. V. Sumbayev, S-nitrosation of Cys-800 of HIF-1alpha protein activates its interaction with p300 and stimulates its transcriptional activity, FEBS Lett, vol.549, pp.105-109, 2003.

K. D. Kröncke, Zinc finger proteins as molecular targets for nitric oxide-mediated gene regulation, Antioxid. Redox Signal, vol.3, pp.565-575, 2001.

Z. Gu, S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death, Science, vol.297, pp.1186-1190, 2002.

J. D. Hart and A. F. Dulhunty, Nitric oxide activates or inhibits skeletal muscle ryanodine receptors depending on its concentration, membrane potential and ligand binding, J. Membr. Biol, vol.173, pp.227-236, 2000.

D. T. Hess and J. S. Stamler, Regulation by S-nitrosylation of protein post-translational modification, J. Biol. Chem, vol.287, pp.4411-4418, 2012.

M. J. Juedes and G. N. Wogan, Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells, Mutat. Res, vol.349, pp.51-61, 1996.

G. C. Brown and C. E. Cooper, Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase, FEBS Lett, vol.356, pp.295-298, 1994.

E. Clementi, G. C. Brown, M. Feelisch, and S. Moncada, Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.7631-7636, 1998.

C. Li and G. N. Wogan, Nitric oxide as a modulator of apoptosis, Cancer Lett, vol.226, pp.1-15, 2005.

B. Brüne, A. Von-knethen, and K. B. Sandau, Nitric oxide (NO): an effector of apoptosis, Cell Death Differ, vol.6, pp.969-975, 1999.

R. Moriya, T. Uehara, and Y. Nomura, Mechanism of nitric oxide-induced apoptosis in human neuroblastoma SH-SY5Y cells, FEBS Lett, vol.484, pp.253-260, 2000.

M. Yabuki, K. Tsutsui, A. A. Horton, T. Yoshioka, and K. Utsumi, Caspase activation and cytochrome c release during HL-60 cell apoptosis induced by a nitric oxide donor, Free Radic. Res, vol.32, pp.507-514, 2000.

C. Li, Apoptotic signaling pathways induced by nitric oxide in human lymphoblastoid cells expressing wild-type or mutant p53, Cancer Res, vol.64, pp.3022-3029, 2004.

Y. Wang, Y. Vodovotz, P. K. Kim, R. Zamora, and T. R. Billiar, Mechanisms of hepatoprotection by nitric oxide, Ann. N. Y. Acad. Sci, vol.962, pp.415-422, 2002.

C. Sciorati, Autocrine nitric oxide modulates CD95-induced apoptosis in gammadelta T lymphocytes, J. Biol. Chem, vol.272, pp.23211-23215, 1997.

S. L. Demeester, Nitric oxide inhibits stress-induced endothelial cell apoptosis, Crit. Care Med, vol.26, pp.1500-1509, 1998.

Y. M. Kim, Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling, J. Neurosci. Off. J. Soc. Neurosci, vol.19, pp.6740-6747, 1999.

B. Brüne, Superoxide formation and macrophage resistance to nitric oxide-mediated apoptosis, J. Biol. Chem, vol.272, pp.7253-7258, 1997.

A. K. Jaiswal, Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic, Biol. Med, vol.36, pp.1199-1207, 2004.

A. Uruno and H. Motohashi, The Keap1-Nrf2 system as an in vivo sensor for electrophiles, Nitric Oxide Biol. Chem, vol.25, pp.153-160, 2011.

M. Kang, A. Kobayashi, N. Wakabayashi, S. Kim, and M. Yamamoto, Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.2046-2051, 2004.

H. Motohashi and M. Yamamoto, Nrf2-Keap1 defines a physiologically important stress response mechanism, Trends Mol. Med, vol.10, pp.549-557, 2004.

W. Lin, Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway, Biochem. Pharmacol, vol.76, pp.967-973, 2008.

S. J. Mcnally, E. M. Harrison, J. A. Ross, O. J. Garden, and S. J. Wigmore, Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition, Int. J. Mol. Med, vol.19, pp.165-172, 2007.

C. K. Andreadi, L. M. Howells, P. A. Atherfold, and M. M. Manson, Involvement of Nrf2, p38, B-Raf, and nuclear factor-kappaB, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols, Mol. Pharmacol, vol.69, pp.1033-1040, 2006.

D. A. Bloom and A. K. Jaiswal, Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression, J. Biol. Chem, vol.278, pp.44675-44682, 2003.

N. Wakabayashi, Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.2040-2045, 2004.

A. Kobayashi, Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1, Mol. Cell. Biol, vol.26, pp.221-229, 2006.

D. Pei, Y. Sun, and Y. Song, S-nitrosylation of PTEN Invovled in ischemic brain injury in rat hippocampal CA1 region, Neurochem. Res, vol.34, pp.1507-1512, 2009.

S. Fujii, The critical role of nitric oxide signaling, via protein S-guanylation and nitrated cyclic GMP, in the antioxidant adaptive response, J. Biol. Chem, vol.285, pp.23970-23984, 2010.

H. Um, J. Jang, D. Kim, C. Lee, and Y. Surh, Nitric oxide activates Nrf2 through Snitrosylation of Keap1 in PC12 cells, Nitric Oxide Biol. Chem, vol.25, pp.161-168, 2011.

H. Motohashi, F. Katsuoka, J. A. Shavit, J. D. Engel, and M. Yamamoto, Positive or negative MAREdependent transcriptional regulation is determined by the abundance of small Maf proteins, Cell, vol.103, pp.865-875, 2000.

U. Förstermann and W. C. Sessa, Nitric oxide synthases: regulation and function, Eur. Heart J, vol.33, pp.829-837, 2012.

P. L. Huang, Hypertension in mice lacking the gene for endothelial nitric oxide synthase, Nature, vol.377, pp.239-242, 1995.

Y. Zhao, P. M. Vanhoutte, and S. W. Leung, Vascular nitric oxide: Beyond eNOS, J. Pharmacol. Sci, vol.129, pp.83-94, 2015.

T. M. Griffith, D. H. Edwards, R. L. Davies, T. J. Harrison, and K. T. Evans, EDRF coordinates the behaviour of vascular resistance vessels, Nature, vol.329, pp.442-445, 1987.

A. Graham, Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor, FEBS Lett, vol.330, pp.181-185, 1993.

J. S. Beckmann, Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry, Biol. Chem. Hoppe. Seyler, vol.375, pp.81-88, 1994.

A. M. Zeiher, B. Fisslthaler, B. Schray-utz, and R. Busse, Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells, Circ. Res, vol.76, pp.980-986, 1995.

P. Kubes, M. Suzuki, and D. N. Granger, Nitric oxide: an endogenous modulator of leukocyte adhesion, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.4651-4655, 1991.

U. Alheid, J. C. Frölich, and U. Förstermann, Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets, Thromb. Res, vol.47, pp.561-571, 1987.

R. D. Rudic, Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling, J. Clin. Invest, vol.101, pp.731-736, 1998.

A. Aicher, Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells, Nat. Med, vol.9, pp.1370-1376, 2003.

M. Tsutsui, Significance of nitric oxide synthases: Lessons from triple nitric oxide synthases null mice, J. Pharmacol. Sci, vol.127, pp.42-52, 2015.

U. Landmesser, Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension, J. Clin. Invest, vol.111, pp.1201-1209, 2003.

M. Zou, C. Shi, and R. A. Cohen, Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite, J. Clin. Invest, vol.109, pp.817-826, 2002.

A. Simon, Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells, Circ. Res, vol.93, pp.813-820, 2003.

W. Xu, Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.18, pp.1746-1748, 2004.

C. Antoniades, Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis, Eur. Heart J, vol.30, pp.1142-1150, 2009.

C. Chen, S-glutathionylation uncouples eNOS and regulates its cellular and vascular function, Nature, vol.468, pp.1115-1118, 2010.

M. Lange, P. Enkhbaatar, Y. Nakano, and D. L. Traber, Role of nitric oxide in shock: the large animal perspective, Front. Biosci. Landmark Ed, vol.14, 1979.

J. Wood and J. Garthwaite, Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties, Neuropharmacology, vol.33, pp.1235-1244, 1994.

, Nitric Oxide Contribution in the CNS | Cayman Chemical, p.15, 2017.

S. R. Vincent, Nitric oxide neurons and neurotransmission, Prog. Neurobiol, vol.90, pp.246-255, 2010.

E. D?olji?, I. Grbatini?, and V. Kosti?, Why is nitric oxide important for our brain?, Funct. Neurol, vol.30, pp.159-163, 2015.

T. J. O'dell, R. D. Hawkins, E. R. Kandel, and O. Arancio, Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.11285-11289, 1991.

Y. Izumi and C. F. Zorumski, Nitric oxide and long-term synaptic depression in the rat hippocampus, Neuroreport, vol.4, pp.1131-1134, 1993.

G. A. Böhme, Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.9191-9194, 1993.

C. Hölscher and S. P. Rose, An inhibitor of nitric oxide synthesis prevents memory formation in the chick, Neurosci. Lett, vol.145, pp.165-167, 1992.

E. D. Costa, B. A. Rezende, S. F. Cortes, and V. S. Lemos, Neuronal Nitric Oxide Synthase in Vascular Physiology and Diseases, Front. Physiol, vol.7, p.206, 2016.

J. Rajfer, W. J. Aronson, P. A. Bush, F. J. Dorey, and L. J. Ignarro, Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission, N. Engl. J. Med, vol.326, pp.90-94, 1992.

J. R. Steinert, T. Chernova, and I. D. Forsythe, Nitric oxide signaling in brain function, dysfunction, and dementia, Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry, vol.16, pp.435-452, 2010.

G. C. Brown and J. J. Neher, Inflammatory neurodegeneration and mechanisms of microglial killing of neurons, Mol. Neurobiol, vol.41, pp.242-247, 2010.

R. A. Lefebvre, Pharmacological characterization of the nitrergic innervation of the stomach, vol.64, pp.151-166, 2002.

J. B. Hibbs, Z. Vavrin, and R. R. Taintor, L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells, J. Immunol. Baltim. Md, vol.138, pp.550-565, 1950.

J. B. Hibbs, R. R. Taintor, and Z. Vavrin, Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite, Science, vol.235, pp.473-476, 1987.

C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill, M-1/M-2 macrophages and the Th1/Th2 paradigm, J. Immunol. Baltim. Md, vol.164, pp.6166-6173, 1950.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest, vol.122, pp.787-795, 2012.

S. Gordon and F. O. Martinez, Alternative activation of macrophages: mechanism and functions, Immunity, vol.32, pp.593-604, 2010.

S. K. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nat. Immunol, vol.11, pp.889-896, 2010.

P. J. Murray, Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, pp.14-20, 2014.

C. Bogdan, Nitric oxide synthase in innate and adaptive immunity: an update, Trends Immunol, vol.36, pp.161-178, 2015.

A. R. Richardson, Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar typhimurium, Cell Host Microbe, vol.10, pp.33-43, 2011.

T. C. Savidge, Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins, Nat. Med, vol.17, pp.1136-1141, 2011.

R. Olekhnovitch, B. Ryffel, A. J. Müller, and P. Bousso, Collective nitric oxide production provides tissue-wide immunity during Leishmania infection, J. Clin. Invest, vol.124, pp.1711-1722, 2014.

A. J. Müller, Photoconvertible pathogen labeling reveals nitric oxide control of Leishmania major infection in vivo via dampening of parasite metabolism, Cell Host Microbe, vol.14, pp.460-467, 2013.

H. Zwaferink, S. Stockinger, S. Reipert, and T. Decker, Stimulation of inducible nitric oxide synthase expression by beta interferon increases necrotic death of macrophages upon Listeria monocytogenes infection, Infect. Immun, vol.76, pp.1649-1656, 2008.

S. Herbst, U. E. Schaible, and B. E. Schneider, Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis, PloS One, vol.6, p.19105, 2011.

M. Nairz, Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection, J. Exp. Med, vol.210, pp.855-873, 2013.

U. N. Ramphul, L. S. Garver, A. Molina-cruz, G. E. Canepa, and C. Barillas-mury, Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.1273-1280, 2015.

C. Bogdan, Regulation of lymphocytes by nitric oxide, Methods Mol. Biol. Clifton NJ, vol.677, pp.375-393, 2011.

V. Bronte and P. Zanovello, Regulation of immune responses by L-arginine metabolism, Nat. Rev. Immunol, vol.5, pp.641-654, 2005.

W. Niedbala, Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor beta 2 expression via cGMP, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.16186-16191, 2002.

W. Niedbala, Nitric oxide enhances Th9 cell differentiation and airway inflammation, Nat. Commun, vol.5, p.4575, 2014.

J. Yang, T cell-derived inducible nitric oxide synthase switches off Th17 cell differentiation, J. Exp. Med, vol.210, pp.1447-1462, 2013.

N. Obermajer, Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling, J. Exp. Med, vol.210, pp.1433-1445, 2013.

P. Jayaraman, iNOS expression in CD4+ T cells limits Treg induction by repressing TGF?1: combined iNOS inhibition and Treg depletion unmask endogenous antitumor immunity, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.20, pp.6439-6451, 2014.

A. Predonzani, B. Calì, A. H. Agnellini, and B. Molon, Spotlights on immunological effects of reactive nitrogen species: When inflammation says nitric oxide, World J. Exp. Med, vol.5, pp.64-76, 2015.

D. Giordano, K. E. Draves, C. Li, T. M. Hohl, and E. A. Clark, Nitric oxide regulates BAFF expression and T cell-independent antibody responses, J. Immunol. Baltim. Md, pp.1110-1120, 2014.

S. Eriksson, B. J. Chambers, and M. Rhen, Nitric oxide produced by murine dendritic cells is cytotoxic for intracellular Salmonella enterica sv, Typhimurium. Scand. J. Immunol, vol.58, pp.493-502, 2003.

J. R. Aldridge, TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.5306-5311, 2009.

C. De-trez, iNOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/6 resistant mice, PLoS Pathog, vol.5, p.1000494, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00591434

B. J. Ryan, A. Nissim, and P. G. Winyard, Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases, Redox Biol, vol.2, pp.715-724, 2014.

H. C. Birnboim, A. Lemay, D. K. Lam, R. Goldstein, and J. R. Webb, Cutting edge: MHC class II-restricted peptides containing the inflammation-associated marker 3-nitrotyrosine evade central tolerance and elicit a robust cell-mediated immune response, J. Immunol. Baltim. Md, vol.171, pp.528-532, 1950.

H. Ohmori, Immunogenicity of autologous IgG bearing the inflammation-associated marker 3-nitrotyrosine, Immunol. Lett, vol.96, pp.47-54, 2005.

R. Kalluri, L. G. Cantley, D. Kerjaschki, and E. G. Neilson, Reactive oxygen species expose cryptic epitopes associated with autoimmune goodpasture syndrome, J. Biol. Chem, vol.275, 2000.

C. J. Binder, Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL, Nat. Med, vol.9, pp.736-743, 2003.

F. Khan and A. A. Siddiqui, Prevalence of anti-3-nitrotyrosine antibodies in the joint synovial fluid of patients with rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus, Clin. Chim. Acta Int. J. Clin. Chem, vol.370, pp.100-107, 2006.

H. Ahsan, 3-Nitrotyrosine: A biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions, Hum. Immunol, vol.74, pp.1392-1399, 2013.

K. A. Ribbons, Potential role of nitric oxide in a model of chronic colitis in rhesus macaques, Gastroenterology, vol.108, pp.705-711, 1995.

F. Balkwill and A. Mantovani, Inflammation and cancer: back to Virchow?, Lancet Lond. Engl, vol.357, pp.539-545, 2001.

C. Porta, E. Riboldi, and A. Sica, Mechanisms linking pathogens-associated inflammation and cancer, Cancer Lett, vol.305, pp.250-262, 2011.

D. Hanahan and L. M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell, vol.21, pp.309-322, 2012.

G. Solinas, G. Germano, A. Mantovani, and P. Allavena, Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation, J. Leukoc. Biol, vol.86, pp.1065-1073, 2009.

B. Molon, Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells, J. Exp. Med, vol.208, pp.1949-1962, 2011.

R. M. Bingisser, P. A. Tilbrook, P. G. Holt, and U. R. Kees, Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway, J. Immunol. Baltim. Md, vol.160, pp.5729-5734, 1950.

A. J. Burke, F. J. Sullivan, F. J. Giles, and S. A. Glynn, The yin and yang of nitric oxide in cancer progression, Carcinogenesis, vol.34, pp.503-512, 2013.

S. K. Choudhari, M. Chaudhary, S. Bagde, A. R. Gadbail, and V. Joshi, Nitric oxide and cancer: a review, World J. Surg. Oncol, vol.11, p.118, 2013.

J. Kim, Regulation of STAT3 and NF-?B activations by S-nitrosylation in multiple myeloma. Free Radic, Biol. Med, vol.106, pp.245-253, 2017.

Y. Yang, Nitric oxide synthase inhibitors: a review of patents from 2011 to the present, Expert Opin. Ther. Pat, vol.25, pp.49-68, 2015.

M. Ganzarolli-de-oliveira, S-Nitrosothiols as Platforms for Topical Nitric Oxide Delivery, Basic Clin. Pharmacol. Toxicol, vol.119, pp.49-56, 2016.

J. R. Hickok and D. D. Thomas, Nitric oxide and cancer therapy: the emperor has NO clothes, Curr. Pharm. Des, vol.16, pp.381-391, 2010.

A. Bettaieb, S-Nitrosylation in Cancer Cells: To Prevent or to Cause? in Nitric Oxide and Cancer: Pathogenesis and Therapy, pp.97-109, 2015.

A. Pautz, Regulation of the expression of inducible nitric oxide synthase, Nitric Oxide Biol. Chem, vol.23, pp.75-93, 2010.

X. Zhang, Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-gamma, J. Leukoc. Biol, vol.59, pp.575-585, 1996.

T. J. Gross, Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses, J. Immunol. Baltim. Md, pp.2326-2338, 2014.

G. C. Chan, Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells, J. Immunol. Baltim. Md, vol.175, pp.3846-3861, 1950.

M. E. De-vera, Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.1054-1059, 1996.

S. C. Chu, J. Marks-konczalik, H. P. Wu, T. C. Banks, and J. Moss, Analysis of the cytokinestimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters, Biochem. Biophys. Res. Commun, vol.248, pp.871-878, 1998.

Q. W. Xie, R. Whisnant, and C. Nathan, Promoter of the mouse gene encoding calciumindependent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide, J. Exp. Med, vol.177, pp.1779-1784, 1993.

K. Fukuda, S. Akao, Y. Ohno, K. Yamashita, and H. Fujiwara, Inhibition by costunolide of phorbol ester-induced transcriptional activation of inducible nitric oxide synthase gene in a human monocyte cell line THP-1, Cancer Lett, vol.164, pp.7-13, 2001.

A. Y. Kolyada, N. Savikovsky, and N. E. Madias, Transcriptional regulation of the human iNOS gene in vascular-smooth-muscle cells and macrophages: evidence for tissue specificity, Biochem. Biophys. Res. Commun, vol.220, pp.600-605, 1996.

D. Rico, J. M. Vaquerizas, H. Dopazo, and L. Boscá, Identification of conserved domains in the promoter regions of nitric oxide synthase 2: implications for the species-specific transcription and evolutionary differences, BMC Genomics, vol.8, p.271, 2007.

B. S. Taylor and D. A. Geller, Molecular regulation of the human inducible nitric oxide synthase (iNOS) gene, Shock Augusta Ga, vol.13, pp.413-424, 2000.

X. Lü, A short tandem repeat polymorphism in the inducible nitric oxide synthase gene in Chinese population

, Yi Chuan Xue Bao, vol.29, pp.290-293, 2002.

W. Xu, Survey of the allelic frequency of a NOS2A promoter microsatellite in human populations: assessment of the NOS2A gene and predisposition to infectious disease, Nitric Oxide Biol. Chem, vol.4, pp.379-383, 2000.

C. E. Goldring, S. Reveneau, M. Algarté, and J. F. Jeannin, In vivo footprinting of the mouse inducible nitric oxide synthase gene: inducible protein occupation of numerous sites including Oct and NF-IL6, Nucleic Acids Res, vol.24, pp.1682-1687, 1996.

Q. W. Xie, Y. Kashiwabara, and C. Nathan, Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase, J. Biol. Chem, vol.269, pp.4705-4708, 1994.

B. S. Taylor, Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene, J. Biol. Chem, vol.273, pp.15148-15156, 1998.

M. Farlik, Nonconventional initiation complex assembly by STAT and NF-kappaB transcription factors regulates nitric oxide synthase expression, Immunity, vol.33, pp.25-34, 2010.

H. Kleinert, Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAKSTAT, AP-1 and NF-kappaB-signaling pathways, Br. J. Pharmacol, vol.125, pp.193-201, 1998.

Z. Guo, L. Shao, Q. Du, K. S. Park, and D. A. Geller, Identification of a classic cytokine-induced enhancer upstream in the human iNOS promoter, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.21, pp.535-542, 2007.

J. Jantsch, Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1? (HIF1A) and result in differential HIF1A-dependent gene expression, J. Leukoc. Biol, vol.90, pp.551-562, 2011.

H. Kleinert and C. Euchenhofer, Ihrig-Biedert, I. & Förstermann, U. Glucocorticoids inhibit the induction of nitric oxide synthase II by down-regulating cytokine-induced activity of transcription factor nuclear factor-kappa B, Mol. Pharmacol, vol.49, pp.15-21, 1996.

A. Pance, A. Chantome, S. Reveneau, F. Bentrari, and J. Jeannin, A repressor in the proximal human inducible nitric oxide synthase promoter modulates transcriptional activation, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.16, pp.631-633, 2002.

K. Linker, Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR, Nucleic Acids Res, vol.33, pp.4813-4827, 2005.

A. Pautz, Similar regulation of human inducible nitric-oxide synthase expression by different isoforms of the RNA-binding protein AUF1, J. Biol. Chem, vol.284, pp.2755-2766, 2009.

Z. Guo, miRNA-939 regulates human inducible nitric oxide synthase posttranscriptional gene expression in human hepatocytes, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.5826-5831, 2012.

H. Zhu, NPM-ALK up-regulates iNOS expression through a STAT3/microRNA-26a-dependent mechanism, J. Pathol, vol.230, pp.82-94, 2013.

E. Felley-bosco, F. C. Bender, F. Courjault-gautier, C. Bron, and A. F. Quest, Caveolin-1 downregulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.14334-14339, 2000.

E. Felley-bosco, F. Bender, and A. F. Quest, Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells, Biol. Res, vol.35, pp.169-176, 2002.

P. Hausel, H. Latado, F. Courjault-gautier, and E. Felley-bosco, Src-mediated phosphorylation regulates subcellular distribution and activity of human inducible nitric oxide synthase, Oncogene, vol.25, pp.198-206, 2006.

A. Musial and N. T. Eissa, Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway, J. Biol. Chem, vol.276, pp.24268-24273, 2001.

P. J. Kolodziejski, A. Musial, J. Koo, and N. T. Eissa, Ubiquitination of inducible nitric oxide synthase is required for its degradation, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.12315-12320, 2002.

K. Matsumoto, The ECS(SPSB) E3 ubiquitin ligase is the master regulator of the lifetime of inducible nitric-oxide synthase, Biochem. Biophys. Res. Commun, vol.409, pp.46-51, 2011.

Z. Kuang, The SPRY domain-containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation, J. Cell Biol, vol.190, pp.129-141, 2010.

T. Nishiya, Regulation of inducible nitric-oxide synthase by the SPRY domain-and SOCS boxcontaining proteins, J. Biol. Chem, vol.286, pp.9009-9019, 2011.

R. S. Lewis, TLR regulation of SPSB1 controls inducible nitric oxide synthase induction, J. Immunol. Baltim. Md, vol.187, pp.3798-3805, 1950.

R. J. Jones, D. Jourd'heuil, J. C. Salerno, S. M. Smith, and H. Singer, A. iNOS regulation by calcium/calmodulin-dependent protein kinase II in vascular smooth muscle, Am. J. Physiol. Heart Circ. Physiol, vol.292, pp.2634-2642, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01520705

M. Yoshida and Y. Xia, Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase, J. Biol. Chem, vol.278, pp.36953-36958, 2003.

E. A. Ratovitski, An inducible nitric-oxide synthase (NOS)-associated protein inhibits NOS dimerization and activity, J. Biol. Chem, vol.274, pp.30250-30257, 1999.

E. A. Ratovitski, Kalirin inhibition of inducible nitric-oxide synthase, J. Biol. Chem, vol.274, pp.993-999, 1999.

Y. Zhang, P. B. Alexander, and X. Wang, TGF-? Family Signaling in the Control of Cell Proliferation and Survival, Cold Spring Harb. Perspect. Biol, vol.9, 2017.

X. Meng, D. J. Nikolic-paterson, and H. Y. Lan, TGF-?: the master regulator of fibrosis, Nat. Rev. Nephrol, vol.12, pp.325-338, 2016.

M. A. Travis and D. Sheppard, TGF-? activation and function in immunity, Annu. Rev. Immunol, vol.32, pp.51-82, 2014.

A. Vaidya and V. P. Kale, TGF-? signaling and its role in the regulation of hematopoietic stem cells, Syst. Synth. Biol, vol.9, pp.1-10, 2015.

S. Sanjabi, S. A. Oh, and M. O. Li, Regulation of the Immune Response by TGF-?: From Conception to Autoimmunity and Infection, Cold Spring Harb. Perspect. Biol, vol.9, 2017.

Y. Vodovotz, Control of Nitric Oxide Production by Transforming Growth Factor-?1: Mechanistic Insights and Potential Relevance to Human Disease, Nitric Oxide, vol.1, pp.3-17, 1997.

J. Massagué, TGF? signalling in context, Nat. Rev. Mol. Cell Biol, vol.13, pp.616-630, 2012.

A. Hata and Y. Chen, TGF-? Signaling from Receptors to Smads, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

C. Heldin and A. Moustakas, Signaling Receptors for TGF-? Family Members, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

, Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta, J. Cell Biol, vol.109, pp.3137-3145, 1989.

C. H. Heldin, K. Miyazono, and P. Ten-dijke, TGF-beta signalling from cell membrane to nucleus through SMAD proteins, Nature, vol.390, pp.465-471, 1997.

M. J. Macias, P. Martin-malpartida, and J. Massagué, Structural determinants of Smad function in TGF-? signaling, Trends Biochem. Sci, vol.40, pp.296-308, 2015.

A. Chaikuad and A. N. Bullock, Structural Basis of Intracellular TGF-? Signaling: Receptors and Smads, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

A. Nakao, Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling, Nature, vol.389, pp.631-635, 1997.

K. Miyazawa and K. Miyazono, Regulation of TGF-? Family Signaling by Inhibitory Smads, Cold Spring Harb. Perspect. Biol, vol.9, 2017.

J. C. Zwaagstra, C. Collins, M. Langlois, and M. D. Connor-mccourt, Analysis of the contribution of receptor subdomains to the cooperative binding and internalization of transforming growth factor-beta (TGF-beta) type I and type II receptors, Exp. Cell Res, vol.314, pp.2553-2568, 2008.

T. Huang, TGF-? signalling is mediated by two autonomously functioning T?RI:T?RII pairs, EMBO J, vol.30, pp.1263-1276, 2011.

X. Feng and R. Derynck, Specificity and versatility in tgf-beta signaling through Smads, Annu. Rev. Cell Dev. Biol, vol.21, pp.659-693, 2005.

R. S. Lo, Y. G. Chen, Y. Shi, N. P. Pavletich, and J. Massagué, The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-beta receptors, EMBO J, vol.17, pp.996-1005, 1998.

Z. Xiao, R. Latek, and H. F. Lodish, An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity, Oncogene, vol.22, pp.1057-1069, 2003.

Z. Xiao, X. Liu, and H. F. Lodish, Importin beta mediates nuclear translocation of Smad 3, J. Biol. Chem, vol.275, pp.23425-23428, 2000.

L. Xu, Y. Kang, S. Cöl, and J. Massagué, Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus, Mol. Cell, vol.10, pp.271-282, 2002.

A. Kurisaki, S. Kose, Y. Yoneda, C. H. Heldin, and A. Moustakas, Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner, Mol. Biol. Cell, vol.12, pp.1079-1091, 2001.

A. Weiss and L. Attisano, The TGFbeta superfamily signaling pathway, Wiley Interdiscip. Rev. Dev. Biol, vol.2, pp.47-63, 2013.

M. T. Blahna and A. Hata, Smad-mediated regulation of microRNA biosynthesis, FEBS Lett, vol.586, pp.1906-1912, 2012.

Y. E. Zhang, Non-Smad Signaling Pathways of the TGF-? Family, Cold Spring Harb. Perspect. Biol, vol.9, 2017.

C. Lai and S. Cheng, Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells, J. Biol. Chem, vol.277, pp.15514-15522, 2002.

X. Chen, Transforming growth factor-?1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways, Mol. Biol. Rep, vol.39, pp.3549-3556, 2012.

A. J. Galliher and W. P. Schiemann, Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion, Cancer Res, vol.67, pp.3752-3758, 2007.

A. Sorrentino, The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner, Nat. Cell Biol, vol.10, pp.1199-1207, 2008.

M. Yamashita, TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta, Mol. Cell, vol.31, pp.918-924, 2008.

J. P. Thiery, H. Acloque, R. Y. Huang, and M. A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell, vol.139, pp.871-890, 2009.

C. Yan, Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2, Am. J. Pathol, vol.176, pp.2247-2258, 2010.

J. Zhang, X. Tian, and J. Xing, Signal Transduction Pathways of EMT Induced by TGF-?, SHH, and WNT and Their Crosstalks, J. Clin. Med, vol.5, 2016.

M. Schäfer and S. Werner, Cancer as an overhealing wound: an old hypothesis revisited, Nat. Rev. Mol. Cell Biol, vol.9, pp.628-638, 2008.

D. S. Micalizzi, S. M. Farabaugh, and H. L. Ford, Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression, J. Mammary Gland Biol. Neoplasia, vol.15, pp.117-134, 2010.

S. Lamouille and R. Derynck, Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway, J. Cell Biol, vol.178, pp.437-451, 2007.

A. Masszi, Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition, Am. J. Physiol. Renal Physiol, vol.284, pp.911-924, 2003.

A. V. Bakin, A. K. Tomlinson, N. A. Bhowmick, H. L. Moses, and C. L. Arteaga, Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration, J. Biol. Chem, vol.275, pp.36803-36810, 2000.

H. Ungefroren, D. Witte, and H. Lehnert, The role of small GTPases of the Rho/Rac family in TGF?-induced EMT and cell motility in cancer, Dev. Dyn. Off. Publ. Am. Assoc. Anat, 2017.

I. B. Robertson and D. B. Rifkin, Regulation of the Bioavailability of TGF-? and TGF-?-Related Proteins, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

J. Saharinen, J. Taipale, and J. Keski-oja, Association of the small latent transforming growth factorbeta with an eight cysteine repeat of its binding protein LTBP-1, EMBO J, vol.15, pp.245-253, 1996.

P. E. Gleizes, R. C. Beavis, R. Mazzieri, B. Shen, and D. B. Rifkin, Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta1, J. Biol. Chem, vol.271, pp.29891-29896, 1996.

C. M. Dubois, M. H. Laprise, F. Blanchette, L. E. Gentry, and R. Leduc, Processing of transforming growth factor beta 1 precursor by human furin convertase, J. Biol. Chem, vol.270, pp.10618-10624, 1995.

L. Fontana, Fibronectin is required for integrin alphavbeta6-mediated activation of latent TGF-beta complexes containing LTBP-1, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.19, pp.1798-1808, 2005.

S. L. Dallas, Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1, J. Biol. Chem, vol.280, pp.18871-18880, 2005.

Z. Isogai, Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein, J. Biol. Chem, vol.278, pp.2750-2757, 2003.

E. R. Neptune, Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome, Nat. Genet, vol.33, pp.407-411, 2003.

J. S. Munger, The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis, Cell, vol.96, pp.319-328, 1999.

D. Mu, The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMPdependent activation of TGF-beta1, J. Cell Biol, vol.157, pp.493-507, 2002.

Z. Yang, Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice, J. Cell Biol, vol.176, pp.787-793, 2007.

N. C. Henderson, Targeting of ?v integrin identifies a core molecular pathway that regulates fibrosis in several organs, Nat. Med, vol.19, pp.1617-1624, 2013.

M. A. Travis, Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice, Nature, vol.449, pp.361-365, 2007.

J. J. Worthington, Integrin ?v?8-Mediated TGF-? Activation by Effector Regulatory T Cells Is Essential for Suppression of T-Cell-Mediated Inflammation, Immunity, vol.42, pp.903-915, 2015.

M. Abe, N. Oda, and Y. Sato, Cell-associated activation of latent transforming growth factor-beta by calpain, J. Cell. Physiol, vol.174, pp.186-193, 1998.

G. Jenkins, The role of proteases in transforming growth factor-beta activation, Int. J. Biochem. Cell Biol, vol.40, pp.1068-1078, 2008.

P. D. Brown, L. M. Wakefield, A. D. Levinson, and M. B. Sporn, Physicochemical activation of recombinant latent transforming growth factor-beta's 1, 2, and 3. Growth Factors Chur Switz, vol.3, pp.35-43, 1990.

E. J. Ehrhart, P. Segarini, M. L. Tsang, A. G. Carroll, and M. H. Barcellos-hoff, Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.11, pp.991-1002, 1997.

M. H. Barcellos-hoff, R. Derynck, M. L. Tsang, and J. A. Weatherbee, Transforming growth factorbeta activation in irradiated murine mammary gland, J. Clin. Invest, vol.93, pp.892-899, 1994.

M. H. Barcellos-hoff and T. A. Dix, Redox-mediated activation of latent transforming growth factorbeta 1, Mol. Endocrinol. Baltim. Md, vol.10, pp.1077-1083, 1996.

J. Ahamed, In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-beta1, Blood, vol.112, pp.3650-3660, 2008.

S. Amarnath, L. Dong, J. Li, Y. Wu, and W. Chen, Endogenous TGF-beta activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4+CD25-T cells, Retrovirology, vol.4, p.57, 2007.

H. Wang and I. E. Kochevar, Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes. Free Radic, Biol. Med, vol.38, pp.890-897, 2005.

R. O. Oreffo, G. R. Mundy, S. M. Seyedin, and L. F. Bonewald, Activation of the bone-derived latent TGF beta complex by isolated osteoclasts, Biochem. Biophys. Res. Commun, vol.158, pp.817-823, 1989.

P. Jullien, T. M. Berg, and D. A. Lawrence, Acidic cellular environments: activation of latent TGFbeta and sensitization of cellular responses to TGF-beta and EGF, Int. J. Cancer, vol.43, pp.886-891, 1989.

A. Ding, Macrophage deactivating factor and transforming growth factors-beta 1-beta 2 and-beta 3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-gamma, J. Immunol. Baltim. Md, vol.145, pp.940-944, 1950.

A. Haregewoin, E. Alexander, P. M. Black, and J. S. Loeffler, Autocrine regulation of the production of the gaseous messenger nitric oxide in a glioblastoma cell line, Exp. Cell Res, vol.210, pp.137-139, 1994.

C. R. Roland, J. A. Goss, M. J. Mangino, D. Hafenrichter, and M. W. Flye, Autoregulation by eicosanoids of human Kupffer cell secretory products. A study of interleukin-1, interleukin-6, tumor necrosis factor-alpha, transforming growth factor-beta, and nitric oxide, Ann. Surg, vol.219, pp.389-399, 1994.

Y. Vodovotz, Control of nitric oxide production by endogenous TGF-beta1 and systemic nitric oxide in retinal pigment epithelial cells and peritoneal macrophages, J. Leukoc. Biol, vol.60, pp.261-270, 1996.

F. J. Blanco, Y. Geng, and M. Lotz, Differentiation-dependent effects of IL-1 and TGF-beta on human articular chondrocyte proliferation are related to inducible nitric oxide synthase expression, J. Immunol. Baltim. Md, vol.154, pp.4018-4026, 1950.

A. K. Nussler, Further characterization and comparison of inducible nitric oxide synthase in mouse, rat, and human hepatocytes, Hepatol. Baltim. Md, vol.21, pp.1552-1560, 1995.

I. P. Oswald, R. T. Gazzinelli, A. Sher, and S. L. James, IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity, J. Immunol. Baltim. Md, vol.148, pp.3578-3582, 1950.

D. C. Junquero, T. Scott-burden, V. B. Schini, and P. M. Vanhoutte, Inhibition of cytokine-induced nitric oxide production by transforming growth factor-beta 1 in human smooth muscle cells, J. Physiol, vol.454, pp.451-465, 1992.

Y. Vodovotz, C. Bogdan, J. Paik, Q. W. Xie, and C. Nathan, Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta, J. Exp. Med, vol.178, pp.605-613, 1993.

G. Schoedon, M. Schneemann, N. Blau, C. J. Edgell, and A. Schaffner, Modulation of human endothelial cell tetrahydrobiopterin synthesis by activating and deactivating cytokines: new perspectives on endothelium-derived relaxing factor, Biochem. Biophys. Res. Commun, vol.196, pp.1343-1348, 1993.

I. Arany, M. M. Brysk, H. Brysk, and S. K. Tyring, Regulation of inducible nitric oxide synthase mRNA levels by differentiation and cytokines in human keratinocytes, Biochem. Biophys. Res. Commun, vol.220, pp.618-622, 1996.

S. E. Chesrown, J. Monnier, G. Visner, and H. S. Nick, Regulation of inducible nitric oxide synthase mRNA levels by LPS, INF-gamma, TGF-beta, and IL-10 in murine macrophage cell lines and rat peritoneal macrophages, Biochem. Biophys. Res. Commun, vol.200, pp.126-134, 1994.

M. A. Perrella, Suppression of Interleukin-1?-induced Nitric-oxide Synthase Promoter/Enhancer Activity by Transforming Growth Factor-?1 in Vascular Smooth Muscle Cells EVIDENCE FOR MECHANISMS OTHER THAN NF-?B, J. Biol. Chem, vol.271, pp.13776-13780, 1996.

D. J. Pinsky, The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta, J. Clin. Invest, vol.95, pp.677-685, 1995.

E. H. Hausmann, S. Y. Hao, J. L. Pace, and M. J. Parmely, Transforming growth factor beta 1 and gamma interferon provide opposing signals to lipopolysaccharide-activated mouse macrophages, Infect. Immun, vol.62, pp.3625-3632, 1994.

S. Stenger, H. Thüring, M. Röllinghoff, and C. Bogdan, Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major, J. Exp. Med, vol.180, pp.783-793, 1994.

M. M. Shull, Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease, Nature, vol.359, pp.693-699, 1992.

A. B. Kulkarni, Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.770-774, 1993.

Y. Vodovotz, Spontaneously increased production of nitric oxide and aberrant expression of the inducible nitric oxide synthase in vivo in the transforming growth factor beta 1 null mouse, J. Exp. Med, vol.183, pp.2337-2342, 1996.

M. A. Perrella, Arrest of endotoxin-induced hypotension by transforming growth factor beta1, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.2054-2059, 1996.

A. Barral, Transforming growth factor-beta in human cutaneous leishmaniasis, Am. J. Pathol, vol.147, pp.947-954, 1995.

A. De-belder, Megakaryocytes from patients with coronary atherosclerosis express the inducible nitric oxide synthase, Arterioscler. Thromb. Vasc. Biol, vol.15, pp.637-641, 1995.

D. J. Grainger, The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis, Nat. Med, vol.1, pp.74-79, 1995.

D. Rachmilewitz, Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease, Gut, vol.36, pp.718-723, 1995.

M. W. Babyatsky, G. Rossiter, and D. K. Podolsky, Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease, Gastroenterology, vol.110, pp.975-984, 1996.

H. Ohtani, H. Kagaya, and H. Nagura, Immunohistochemical localization of transforming growth factor-beta receptors I and II in inflammatory bowel disease, J. Gastroenterol, vol.30, pp.76-77, 1995.

F. Mokhtarian, Defective production of anti-inflammatory cytokine, TGF-beta by T cell lines of patients with active multiple sclerosis, J. Immunol. Baltim. Md, vol.152, pp.6003-6010, 1950.

L. Bö, Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains, Ann. Neurol, vol.36, pp.778-786, 1994.

M. A. Dorheim, W. R. Tracey, J. S. Pollock, and P. Grammas, Nitric oxide synthase activity is elevated in brain microvessels in Alzheimer's disease, Biochem. Biophys. Res. Commun, vol.205, pp.659-665, 1994.

Y. Vodovotz, Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease, J. Exp. Med, vol.184, pp.1425-1433, 1996.

K. C. Flanders, C. F. Lippa, T. W. Smith, D. A. Pollen, and M. B. Sporn, Altered expression of transforming growth factor-beta in Alzheimer's disease, Neurology, vol.45, pp.1561-1569, 1995.

V. Boutard, Transforming growth factor-beta stimulates arginase activity in macrophages. Implications for the regulation of macrophage cytotoxicity, J. Immunol. Baltim. Md, vol.155, pp.2077-2084, 1950.

M. Arsura, M. Wu, and G. E. Sonenshein, TGF beta 1 inhibits NF-kappa B/Rel activity inducing apoptosis of B cells: transcriptional activation of I kappa B alpha, Immunity, vol.5, pp.31-40, 1996.

H. Takaki, TGF-beta1 suppresses IFN-gamma-induced NO production in macrophages by suppressing STAT1 activation and accelerating iNOS protein degradation, Genes Cells Devoted Mol. Cell. Mech, vol.11, pp.871-882, 2006.

T. Mitani, M. Terashima, H. Yoshimura, Y. Nariai, and Y. Tanigawa, TGF-beta1 enhances degradation of IFN-gamma-induced iNOS protein via proteasomes in RAW 264.7 cells, Nitric Oxide Biol. Chem, vol.13, pp.78-87, 2005.

Y. Sugiyama, Smad2 and Smad3 are redundantly essential for the suppression of iNOS synthesis in macrophages by regulating IRF3 and STAT1 pathways, Int. Immunol, vol.24, pp.253-265, 2012.

D. T. Berg, Negative regulation of inducible nitric-oxide synthase expression mediated through transforming growth factor-beta-dependent modulation of transcription factor TCF11, J. Biol. Chem, vol.282, pp.36837-36844, 2007.

D. P. Lane and L. V. Crawford, T antigen is bound to a host protein in SV40-transformed cells, Nature, vol.278, pp.261-263, 1979.

D. I. Linzer and A. J. Levine, Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells, Cell, vol.17, pp.43-52, 1979.

A. B. Deleo, Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse, Proc. Natl. Acad. Sci. U. S. A, vol.76, pp.2420-2424, 1979.

M. Scheffner, B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. Howley, The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell, vol.63, pp.1129-1136, 1990.

B. A. Werness, A. J. Levine, and P. M. Howley, Association of human papillomavirus types 16 and 18 E6 proteins with p53, Science, vol.248, pp.76-79, 1990.

D. Eliyahu, A. Raz, P. Gruss, D. Givol, and M. Oren, Participation of p53 cellular tumour antigen in transformation of normal embryonic cells, Nature, vol.312, pp.646-649, 1984.

L. F. Parada, H. Land, R. A. Weinberg, D. Wolf, and V. Rotter, Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation, Nature, vol.312, pp.649-651, 1984.

D. Malkin, Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms, Science, vol.250, pp.1233-1238, 1990.

L. A. Donehower, Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours, Nature, vol.356, pp.215-221, 1992.

M. Olivier, M. Hollstein, and P. Hainaut, TP53 mutations in human cancers: origins, consequences, and clinical use, Cold Spring Harb. Perspect. Biol, vol.2, p.1008, 2010.

J. Bártek, Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies, Oncogene, vol.6, pp.1699-1703, 1991.

J. Pflaum, S. Schlosser, and M. Müller, p53 Family and Cellular Stress Responses in Cancer, Front. Oncol, vol.4, p.285, 2014.

D. P. Lane, Cancer. p53, guardian of the genome, Nature, vol.358, pp.15-16, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00868358

D. Lane and A. Levine, p53 Research: the past thirty years and the next thirty years, Cold Spring Harb. Perspect. Biol, vol.2, p.893, 2010.

M. Hollstein, D. Sidransky, B. Vogelstein, and C. C. Harris, p53 mutations in human cancers, Science, vol.253, pp.49-53, 1991.

C. Kandoth, Mutational landscape and significance across 12 major cancer types, Nature, vol.502, pp.333-339, 2013.

M. Kaghad, Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers, Cell, vol.90, pp.809-819, 1997.

A. Yang, p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities, Mol. Cell, vol.2, pp.305-316, 1998.

A. M. Nedelcu and C. Tan, Early diversification and complex evolutionary history of the p53 tumor suppressor gene family, Dev. Genes Evol, vol.217, pp.801-806, 2007.

S. Pankow and C. Bamberger, The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis, PloS One, vol.2, p.782, 2007.

V. A. Belyi, The origins and evolution of the p53 family of genes, Cold Spring Harb. Perspect. Biol, vol.2, p.1198, 2010.

A. A. Mills, p63 is a p53 homologue required for limb and epidermal morphogenesis, Nature, vol.398, pp.708-713, 1999.

A. Yang, p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development, Nature, vol.398, pp.714-718, 1999.

A. Yang, p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours, Nature, vol.404, pp.99-103, 2000.

M. P. Khoury and J. Bourdon, p53 Isoforms: An Intracellular Microprocessor?, Genes Cancer, vol.2, pp.453-465, 2011.

A. E. Sayan, Generation of DeltaTAp73 proteins by translation from a putative internal ribosome entry site, Ann. N. Y. Acad. Sci, vol.1095, pp.315-324, 2007.

M. Müller, One, two, three-p53, p63, p73 and chemosensitivity, Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer Chemother, vol.9, pp.288-306, 2006.

F. Murray-zmijewski, D. P. Lane, and J. Bourdon, p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress, Cell Death Differ, vol.13, pp.962-972, 2006.

A. S. Ethayathulla, H. T. Nguyen, and H. Viadiu, Crystal structures of the DNA-binding domain tetramer of the p53 tumor suppressor family member p73 bound to different full-site response elements, J. Biol. Chem, vol.288, pp.4744-4754, 2013.

A. S. Ethayathulla, Structure of p73 DNA-binding domain tetramer modulates p73 transactivation, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.6066-6071, 2012.

D. Coutandin, Conformational stability and activity of p73 require a second helix in the tetramerization domain, Cell Death Differ, vol.16, pp.1582-1589, 2009.

D. Como, C. J. Gaiddon, C. Prives, and C. , p73 function is inhibited by tumor-derived p53 mutants in mammalian cells, Mol. Cell. Biol, vol.19, pp.1438-1449, 1999.

R. K. Brachmann, M. Vidal, and J. D. Boeke, Dominant-negative p53 mutations selected in yeast hit cancer hot spots, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.4091-4095, 1996.

A. Inga, Simple identification of dominant p53 mutants by a yeast functional assay, Carcinogenesis, vol.18, pp.2019-2021, 1997.

P. Monti, Tumour p53 mutations exhibit promoter selective dominance over wild type p53, Oncogene, vol.21, pp.1641-1648, 2002.

J. Xu, Gain of function of mutant p53 by coaggregation with multiple tumor suppressors, Nat. Chem. Biol, vol.7, pp.285-295, 2011.

W. M. Chan, W. Y. Siu, A. Lau, and R. Y. Poon, How many mutant p53 molecules are needed to inactivate a tetramer?, Mol. Cell. Biol, vol.24, pp.3536-3551, 2004.
DOI : 10.1128/mcb.24.8.3536-3551.2004

URL : https://mcb.asm.org/content/24/8/3536.full.pdf

J. L. Silva, . De-moura, C. V. Gallo, D. C. Costa, and L. P. Rangel, Prion-like aggregation of mutant p53 in cancer, Trends Biochem. Sci, vol.39, pp.260-267, 2014.
DOI : 10.1016/j.tibs.2014.04.001

T. J. Grob, Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53, Cell Death Differ, vol.8, pp.1213-1223, 2001.
DOI : 10.1038/sj.cdd.4400962

URL : https://hal.archives-ouvertes.fr/hal-01606919

T. Stiewe, C. C. Theseling, and B. M. Pützer, Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis, J. Biol. Chem, vol.277, pp.14177-14185, 2002.
DOI : 10.1074/jbc.m200480200

URL : http://www.jbc.org/content/277/16/14177.full.pdf

O. Billant, The dominant-negative interplay between p53, p63 and p73: A family affair, Oncotarget, vol.7, pp.69549-69564, 2016.
DOI : 10.18632/oncotarget.11774

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=11774&path%5B%5D=37238

P. Monti, ?N-P63? and TA-P63? exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites, Oncotarget, vol.5, pp.2116-2130, 2014.

G. Liu, S. Nozell, H. Xiao, and X. Chen, DeltaNp73beta is active in transactivation and growth suppression, Mol. Cell. Biol, vol.24, pp.487-501, 2004.
DOI : 10.1128/mcb.24.2.487-501.2004

URL : https://mcb.asm.org/content/mcb/24/2/487.full.pdf

M. Dohn, S. Zhang, and X. Chen, p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes, Oncogene, vol.20, pp.3193-3205, 2001.
DOI : 10.1038/sj.onc.1204427

URL : https://www.nature.com/articles/1204427.pdf

Y. Tanaka, M. Kameoka, A. Itaya, K. Ota, and K. Yoshihara, Regulation of HSF1-responsive gene expression by N-terminal truncated form of p73alpha, Biochem. Biophys. Res. Commun, vol.317, pp.865-872, 2004.

Y. Tanaka, K. Ota, M. Kameoka, A. Itaya, and K. Yoshihara, Up-regulation of NFkappaB-responsive gene expression by DeltaNp73alpha in p53 null cells, Exp. Cell Res, vol.312, pp.1254-1264, 2006.

F. Nikulenkov, Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis, Cell Death Differ, vol.19, 1992.
DOI : 10.1038/cdd.2012.89

URL : https://www.nature.com/articles/cdd201289.pdf

G. S. Chang, A comprehensive and high-resolution genome-wide response of p53 to stress, Cell Rep, vol.8, pp.514-527, 2014.

W. S. El-deiry, S. E. Kern, J. A. Pietenpol, K. W. Kinzler, and B. Vogelstein, Definition of a consensus binding site for p53, Nat. Genet, vol.1, pp.45-49, 1992.

W. D. Funk, D. T. Pak, R. H. Karas, W. E. Wright, and J. W. Shay, A transcriptionally active DNAbinding site for human p53 protein complexes, Mol. Cell. Biol, vol.12, pp.2866-2871, 1992.
DOI : 10.1128/mcb.12.6.2866

URL : https://mcb.asm.org/content/12/6/2866.full.pdf

J. M. Hearnes, Chromatin immunoprecipitation-based screen to identify functional genomic binding sites for sequence-specific transactivators, Mol. Cell. Biol, vol.25, pp.10148-10158, 2005.
DOI : 10.1128/mcb.25.22.10148-10158.2005

URL : https://mcb.asm.org/content/25/22/10148.full.pdf

C. Wei, A global map of p53 transcription-factor binding sites in the human genome, Cell, vol.124, pp.207-219, 2006.

K. Kaneshiro, S. Tsutsumi, S. Tsuji, K. Shirahige, and H. Aburatani, An integrated map of p53binding sites and histone modification in the human ENCODE regions, Genomics, vol.89, pp.178-188, 2007.

D. Menendez, Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells, Nucleic Acids Res, vol.41, pp.7286-7301, 2013.
DOI : 10.1093/nar/gkt504

URL : https://academic.oup.com/nar/article-pdf/41/15/7286/16948104/gkt504.pdf

A. Ramos, P. Tse, J. Wang, A. S. Ethayathulla, and H. Viadiu, Sequence Variation in the Response Element Determines Binding by the Transcription Factor p73, Biochemistry (Mosc.), vol.54, pp.6961-6972, 2015.

M. L. Avantaggiati, Recruitment of p300/CBP in p53-dependent signal pathways, Cell, vol.89, pp.1175-1184, 1997.

W. Gu and R. G. Roeder, Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain, Cell, vol.90, pp.595-606, 1997.

A. Inga, F. Storici, T. A. Darden, and M. A. Resnick, Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence, Mol. Cell. Biol, vol.22, pp.8612-8625, 2002.

R. L. Weinberg, D. B. Veprintsev, M. Bycroft, and A. R. Fersht, Comparative binding of p53 to its promoter and DNA recognition elements, J. Mol. Biol, vol.348, pp.589-596, 2005.

Y. Samuels-lev, ASPP proteins specifically stimulate the apoptotic function of p53, Mol. Cell, vol.8, pp.781-794, 2001.

K. Harms, S. Nozell, and X. Chen, The common and distinct target genes of the p53 family transcription factors, Cell. Mol. Life Sci. CMLS, vol.61, pp.822-842, 2004.

X. Guo, TAp63 induces senescence and suppresses tumorigenesis in vivo, Nat. Cell Biol, vol.11, pp.1451-1457, 2009.

R. Tomasini, TAp73 knockout shows genomic instability with infertility and tumor suppressor functions, Genes Dev, vol.22, pp.2677-2691, 2008.

A. Costanzo, TP63 and TP73 in cancer, an unresolved 'family' puzzle of complexity, redundancy and hierarchy, FEBS Lett, vol.588, pp.2590-2599, 2014.

G. Fontemaggi, Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses, J. Biol. Chem, vol.277, pp.43359-43368, 2002.

O. Petrenko, A. Zaika, and U. Moll, M. deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo, Mol. Cell. Biol, vol.23, pp.5540-5555, 2003.

E. R. Flores, Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family, Cancer Cell, vol.7, pp.363-373, 2005.

R. Tomasini, TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.797-802, 2009.

M. Fulco, p73 is regulated by phosphorylation at the G2/M transition, J. Biol. Chem, vol.278, pp.49196-49202, 2003.

F. Talos, A. Nemajerova, E. R. Flores, O. Petrenko, and U. Moll, M. p73 suppresses polyploidy and aneuploidy in the absence of functional p53, Mol. Cell, vol.27, pp.647-659, 2007.

S. Inoue, TAp73 is required for spermatogenesis and the maintenance of male fertility, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.1843-1848, 2014.

L. Holembowski, TAp73 is essential for germ cell adhesion and maturation in testis, J. Cell Biol, vol.204, pp.1173-1190, 2014.

G. Melino, p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation, J. Biol. Chem, vol.279, pp.8076-8083, 2004.

S. Buhlmann and B. M. Pützer, DNp73 a matter of cancer: mechanisms and clinical implications, Biochim. Biophys. Acta, vol.1785, pp.207-216, 2008.

O. Ishimoto, Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73, Cancer Res, vol.62, pp.636-641, 2002.

T. Stiewe, S. Zimmermann, A. Frilling, H. Esche, and B. M. Pützer, Transactivation-deficient DeltaTA-p73 acts as an oncogene, Cancer Res, vol.62, pp.3598-3602, 2002.

M. T. Wilhelm, Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway, Genes Dev, vol.24, pp.549-560, 2010.

A. Tannapfel, Autonomous growth and hepatocarcinogenesis in transgenic mice expressing the p53 family inhibitor DNp73, Carcinogenesis, vol.29, pp.211-218, 2008.

J. W. Rocco, C. Leong, N. Kuperwasser, M. P. Deyoung, and L. W. Ellisen, p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis, Cancer Cell, vol.9, pp.45-56, 2006.

A. I. Zaika, DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is upregulated in human tumors, J. Exp. Med, vol.196, pp.765-780, 2002.

T. Stiewe, Inactivation of retinoblastoma (RB) tumor suppressor by oncogenic isoforms of the p53 family member p73, J. Biol. Chem, vol.278, pp.14230-14236, 2003.

H. Yoshikawa, Mutational analysis of p73 and p53 in human cancer cell lines, Oncogene, vol.18, pp.3415-3421, 1999.

S. Nomoto, Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers, Cancer Res, vol.58, pp.1380-1383, 1998.

K. Becker, Patterns of p73 N-terminal isoform expression and p53 status have prognostic value in gynecological cancers, Int. J. Oncol, vol.29, pp.889-902, 2006.

N. Concin, Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo, Cancer Res, vol.64, pp.2449-2460, 2004.
DOI : 10.1158/0008-5472.can-03-1060

M. Guan and Y. Chen, Aberrant expression of DeltaNp73 in benign and malignant tumours of the prostate: correlation with Gleason score, J. Clin. Pathol, vol.58, pp.1175-1179, 2005.

S. Tuve, S. N. Wagner, B. Schittek, and B. M. Pützer, Alterations of DeltaTA-p 73 splice transcripts during melanoma development and progression, Int. J. Cancer, vol.108, pp.162-166, 2004.
DOI : 10.1002/ijc.11552

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/ijc.11552

I. Casciano, Expression of DeltaNp73 is a molecular marker for adverse outcome in neuroblastoma patients, Cell Death Differ, vol.9, pp.246-251, 2002.

M. Müller, TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma, Cell Death Differ, vol.12, pp.1564-1577, 2005.

P. Puig, p73 Expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.9, pp.5642-5651, 2003.

T. Crook, J. M. Nicholls, L. Brooks, J. O'nions, and M. J. Allday, High level expression of deltaNp63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)?, Oncogene, vol.19, pp.3439-3444, 2000.

C. R. Berkers, O. D. Maddocks, E. C. Cheung, I. Mor, and K. H. Vousden, Metabolic regulation by p53 family members, Cell Metab, vol.18, pp.617-633, 2013.
DOI : 10.1016/j.cmet.2013.06.019

URL : https://doi.org/10.1016/j.cmet.2013.06.019

J. R. Cantor and D. M. Sabatini, Cancer cell metabolism: one hallmark, many faces, Cancer Discov, vol.2, pp.881-898, 2012.
DOI : 10.1158/2159-8290.cd-12-0345

URL : http://cancerdiscovery.aacrjournals.org/content/2/10/881.full.pdf

W. Du, TAp73 enhances the pentose phosphate pathway and supports cell proliferation, Nat. Cell Biol, vol.15, pp.991-1000, 2013.
DOI : 10.1038/ncb2789

URL : http://europepmc.org/articles/pmc3733810?pdf=render

Y. Haupt, R. Maya, A. Kazaz, and M. Oren, Mdm2 promotes the rapid degradation of p53, Nature, vol.387, pp.296-299, 1997.

J. Momand, G. P. Zambetti, D. C. Olson, D. George, and A. J. Levine, The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation, Cell, vol.69, pp.1237-1245, 1992.

F. Conforti, A. E. Sayan, R. Sreekumar, and B. S. Sayan, Regulation of p73 activity by posttranslational modifications, Cell Death Dis, vol.3, p.285, 2012.

M. Urist, T. Tanaka, M. V. Poyurovsky, and C. Prives, p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2, Genes Dev, vol.18, pp.3041-3054, 2004.

N. Pediconi, Differential regulation of E2F1 apoptotic target genes in response to DNA damage, Nat. Cell Biol, vol.5, pp.552-558, 2003.

T. Ozaki, R. Okoshi, M. Sang, N. Kubo, and A. Nakagawara, Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73, Biochem. Biophys. Res. Commun, vol.386, pp.207-211, 2009.

E. V. Jones, M. J. Dickman, and A. J. Whitmarsh, Regulation of p73-mediated apoptosis by c-Jun Nterminal kinase, Biochem. J, vol.405, pp.617-623, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478707

J. G. Gong, The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatininduced DNA damage, Nature, vol.399, pp.806-809, 1999.

Z. M. Yuan, p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage, Nature, vol.399, pp.814-817, 1999.

R. Agami, G. Blandino, M. Oren, and Y. Shaul, Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis, Nature, vol.399, pp.809-813, 1999.

X. Wang, A positive role for c-Abl in Atm and Atr activation in DNA damage response, Cell Death Differ, vol.18, pp.5-15, 2011.

R. Sanchez-prieto, V. J. Sanchez-arevalo, J. Servitja, and J. S. Gutkind, Regulation of p73 by cAbl through the p38 MAP kinase pathway, Oncogene, vol.21, pp.974-979, 2002.

A. Costanzo, DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes, Mol. Cell, vol.9, pp.175-186, 2002.

C. Gaiddon, Cyclin-dependent kinases phosphorylate p73 at threonine 86 in a cell cycledependent manner and negatively regulate p73, J. Biol. Chem, vol.278, pp.27421-27431, 2003.

U. Nyman, Protein kinase C-dependent phosphorylation regulates the cell cycle-inhibitory function of the p73 carboxy terminus transactivation domain, Mol. Cell. Biol, vol.29, pp.1814-1825, 2009.

J. Ren, p73beta is regulated by protein kinase Cdelta catalytic fragment generated in the apoptotic response to DNA damage, J. Biol. Chem, vol.277, pp.33758-33765, 2002.

W. M. Ongkeko, MDM2 and MDMX bind and stabilize the p53-related protein p73, Curr. Biol. CB, vol.9, pp.829-832, 1999.

M. Dobbelstein, S. Wienzek, C. König, and J. Roth, Inactivation of the p53-homologue p73 by the mdm2-oncoprotein, Oncogene, vol.18, pp.2101-2106, 1999.

E. Bálint, S. Bates, and K. H. Vousden, Mdm2 binds p73 alpha without targeting degradation, Oncogene, vol.18, pp.3923-3929, 1999.

X. Zeng, MDM2 suppresses p73 function without promoting p73 degradation, Mol. Cell. Biol, vol.19, pp.3257-3266, 1999.

I. R. Watson, A. Blanch, D. C. Lin, M. Ohh, and M. S. Irwin, Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function, J. Biol. Chem, vol.281, pp.34096-34103, 2006.

M. Rossi, The ubiquitin-protein ligase Itch regulates p73 stability, EMBO J, vol.24, pp.836-848, 2005.

D. Levy, Y. Adamovich, N. Reuven, and Y. Shaul, The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73, Cell Death Differ, vol.14, pp.743-751, 2007.

H. Wu and R. P. Leng, MDM2 mediates p73 ubiquitination: a new molecular mechanism for suppression of p73 function, Oncotarget, vol.6, pp.21479-21492, 2015.

G. Asher, J. Lotem, L. Sachs, C. Kahana, and Y. Shaul, Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.13125-13130, 2002.

K. Watanabe, Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function, J. Biol. Chem, vol.277, pp.15113-15123, 2002.

S. Strano, Physical interaction with Yes-associated protein enhances p73 transcriptional activity, J. Biol. Chem, vol.276, pp.15164-15173, 2001.

S. Basu, N. F. Totty, M. S. Irwin, M. Sudol, and J. Downward, Akt phosphorylates the Yesassociated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis, Mol. Cell, vol.11, pp.11-23, 2003.

M. Irwin, Role for the p53 homologue p73 in E2F-1-induced apoptosis, Nature, vol.407, pp.645-648, 2000.

R. S. Seelan, The human p73 promoter: characterization and identification of functional E2F binding sites, vol.4, pp.195-203, 2002.

G. Fontemaggi, The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation, Mol. Cell. Biol, vol.21, pp.8461-8470, 2001.

S. Wu, S. Murai, K. Kataoka, and M. Miyagishi, Yin Yang 1 induces transcriptional activity of p73 through cooperation with E2F1, Biochem. Biophys. Res. Commun, vol.365, pp.75-81, 2008.

S. Vossio, DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest, Oncogene, vol.21, pp.3796-3803, 2002.

N. N. Kartasheva, A. Contente, C. Lenz-stöppler, J. Roth, and M. Dobbelstein, p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop, Oncogene, vol.21, pp.4715-4727, 2002.

T. Nakagawa, Autoinhibitory Regulation of p73 by ?Np73 To Modulate Cell Survival and Death through a p73-Specific Target Element within the ?Np73 Promoter, Mol. Cell. Biol, vol.22, pp.2575-2585, 2002.

T. Nakagawa, Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter, Mol. Cell. Biol, vol.22, pp.2575-2585, 2002.

N. N. Kartasheva, A. Contente, C. Lenz-stöppler, J. Roth, and M. Dobbelstein, p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop, Oncogene, vol.21, pp.4715-4727, 2002.

B. S. Sayan, Differential control of TAp73 and DeltaNp73 protein stability by the ring finger ubiquitin ligase PIR2, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.12877-12882, 2010.

W. H. Toh, M. M. Siddique, L. Boominathan, K. W. Lin, and K. Sabapathy, Jun regulates the stability and activity of the p53 homologue, p73, vol.279, pp.44713-44722, 2004.

S. A. Danovi, Yes-associated protein (YAP) is a critical mediator of c-Jun-dependent apoptosis, Cell Death Differ, vol.15, pp.217-219, 2008.

M. Stantic, TAp73 suppresses tumor angiogenesis through repression of proangiogenic cytokines and HIF-1? activity, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.220-225, 2015.

R. Fernandez-alonso, p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGF? signaling, Cell Death Differ, vol.22, pp.1287-1299, 2015.

K. Sabapathy, p73: a Positive or Negative Regulator of Angiogenesis, or Both?, Mol. Cell. Biol, vol.36, pp.848-854, 2015.

M. C. Marin and M. M. Marques, Novel role of p73 as a regulator of developmental angiogenesis: Implication for cancer therapy, Mol. Cell. Oncol, vol.3, p.1019973, 2016.

M. Senoo, F. Pinto, C. P. Crum, and F. Mckeon, p63 Is essential for the proliferative potential of stem cells in stratified epithelia, Cell, vol.129, pp.523-536, 2007.

W. M. Keyes, p63 deficiency activates a program of cellular senescence and leads to accelerated aging, Genes Dev, vol.19, 1986.

X. Su, TAp63 prevents premature aging by promoting adult stem cell maintenance, Cell Stem Cell, vol.5, pp.64-75, 2009.

M. I. Koster, S. Kim, A. A. Mills, F. J. Demayo, and D. R. Roop, p63 is the molecular switch for initiation of an epithelial stratification program, Genes Dev, vol.18, pp.126-131, 2004.

A. Medawar, DeltaNp63 is essential for epidermal commitment of embryonic stem cells, PloS One, vol.3, p.3441, 2008.

H. Lee and D. Kimelman, A dominant-negative form of p63 is required for epidermal proliferation in zebrafish, Dev. Cell, vol.2, pp.607-616, 2002.

A. B. Truong, M. Kretz, T. W. Ridky, R. Kimmel, and P. Khavari, A. p63 regulates proliferation and differentiation of developmentally mature keratinocytes, Genes Dev, vol.20, pp.3185-3197, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01450377

L. Guerrini, A. Costanzo, and G. R. Merlo, A symphony of regulations centered on p63 to control development of ectoderm-derived structures, J. Biomed. Biotechnol, p.864904, 2011.

J. Celli, Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome, Cell, vol.99, pp.143-153, 1999.

C. D. Pozniak, An anti-apoptotic role for the p53 family member, p73, during developmental neuron death, Science, vol.289, pp.304-306, 2000.

A. F. Lee, Evidence that DeltaNp73 promotes neuronal survival by p53-dependent and p53independent mechanisms, J. Neurosci. Off. J. Soc. Neurosci, vol.24, pp.9174-9184, 2004.

G. S. Walsh, N. Orike, D. R. Kaplan, and F. D. Miller, The invulnerability of adult neurons: a critical role for p73, J. Neurosci. Off. J. Soc. Neurosci, vol.24, pp.9638-9647, 2004.

C. D. Pozniak, p73 is required for survival and maintenance of CNS neurons, J. Neurosci. Off. J. Soc. Neurosci, vol.22, pp.9800-9809, 2002.

B. A. Yankner, T. Lu, and P. Loerch, The aging brain, Annu. Rev. Pathol, vol.3, pp.41-66, 2008.

E. R. Flores, p73 is critical for the persistence of memory, Cell Death Differ, vol.18, pp.381-382, 2011.

M. Fujitani, TAp73 acts via the bHLH Hey2 to promote long-term maintenance of neural precursors, Curr. Biol. CB, vol.20, pp.2058-2065, 2010.

V. De-laurenzi, Induction of neuronal differentiation by p73 in a neuroblastoma cell line, J. Biol. Chem, vol.275, pp.15226-15231, 2000.

C. Hooper, TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones, J. Neurochem, vol.99, pp.989-999, 2006.

M. Napoli and E. R. Flores, Unifying the p73 knockout phenotypes: TAp73 orchestrates multiciliogenesis, Genes Dev, vol.30, pp.1253-1254, 2016.

M. Fliegauf, T. Benzing, and H. Omran, When cilia go bad: cilia defects and ciliopathies, Nat. Rev. Mol. Cell Biol, vol.8, pp.880-893, 2007.

C. B. Marshall, p73 Is Required for Multiciliogenesis and Regulates the Foxj1-Associated Gene Network, Cell Rep, vol.14, pp.2289-2300, 2016.

A. Nemajerova, TAp73 is a central transcriptional regulator of airway multiciliogenesis, Genes Dev, vol.30, pp.1300-1312, 2016.

C. Muñoz-fontela, A. Mandinova, S. A. Aaronson, and S. W. Lee, Emerging roles of p53 and other tumour-suppressor genes in immune regulation, Nat. Rev. Immunol, vol.16, pp.741-750, 2016.

A. Takaoka, Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence, Nature, vol.424, pp.516-523, 2003.

C. Muñoz-fontela, Transcriptional role of p53 in interferon-mediated antiviral immunity, J. Exp. Med, vol.205, pp.1929-1938, 2008.

C. Rivas, S. A. Aaronson, and C. Munoz-fontela, Dual Role of p53 in Innate Antiviral Immunity, vol.2, pp.298-313, 2010.

M. Taura, p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines, Mol. Cell. Biol, vol.28, pp.6557-6567, 2008.

T. Mori, Identification of the interferon regulatory factor 5 gene (IRF-5) as a direct target for p53, Oncogene, vol.21, pp.2914-2918, 2002.

W. Yan, Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection, BMC Med. Genomics, vol.8, p.52, 2015.

O. Shea, C. C. Fried, and M. , Modulation of the ARF-p53 pathway by the small DNA tumor viruses, Cell Cycle Georget. Tex, vol.4, pp.449-452, 2005.

M. Pampin, Y. Simonin, B. Blondel, Y. Percherancier, and M. K. Chelbi-alix, Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense, J. Virol, vol.80, pp.8582-8592, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00091615

D. Menendez, M. Shatz, and M. A. Resnick, Interactions between the tumor suppressor p53 and immune responses, Curr. Opin. Oncol, vol.25, pp.85-92, 2013.

A. V. Gudkov, K. V. Gurova, and E. A. Komarova, Inflammation and p53, Genes Cancer, vol.2, pp.503-516, 2011.

E. A. Komarova, p53 is a suppressor of inflammatory response in mice, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.19, pp.1030-1032, 2005.

D. Menendez, The Toll-like receptor gene family is integrated into human DNA damage and p53 networks, PLoS Genet, vol.7, p.1001360, 2011.

M. Shatz, D. Menendez, and M. A. Resnick, The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells, Cancer Res, vol.72, pp.3948-3957, 2012.

M. Shatz, I. Shats, D. Menendez, and M. A. Resnick, p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways, Oncotarget, vol.6, pp.16963-16980, 2015.

K. H. Mills, TLR-dependent T cell activation in autoimmunity, Nat. Rev. Immunol, vol.11, pp.807-822, 2011.

H. Takatori, H. Kawashima, K. Suzuki, and H. Nakajima, Role of p53 in systemic autoimmune diseases, Crit. Rev. Immunol, vol.34, pp.509-516, 2014.

J. Herkel, Autoimmunity to the p53 protein is a feature of systemic lupus erythematosus (SLE) related to anti-DNA antibodies, J. Autoimmun, vol.17, pp.63-69, 2001.

Y. Yamanishi, Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis, Am. J. Pathol, vol.160, pp.123-130, 2002.

B. Kovacs, Antibodies against p53 in sera from patients with systemic lupus erythematosus and other rheumatic diseases, Arthritis Rheum, vol.40, pp.980-982, 1997.

H. M. Kuhn, p53 autoantibodies in patients with autoimmune diseases: a quantitative approach, Autoimmunity, vol.31, pp.229-235, 1999.

J. M. Lowe, p53 and NF-?B coregulate proinflammatory gene responses in human macrophages, Cancer Res, vol.74, pp.2182-2192, 2014.

S. Zheng, S. Lamhamedi-cherradi, P. Wang, L. Xu, and Y. H. Chen, Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function, Diabetes, vol.54, pp.1423-1428, 2005.

S. Arandjelovic and K. S. Ravichandran, Phagocytosis of apoptotic cells in homeostasis, Nat. Immunol, vol.16, pp.907-917, 2015.

M. R. Elliott and K. S. Ravichandran, Clearance of apoptotic cells: implications in health and disease, J. Cell Biol, vol.189, pp.1059-1070, 2010.

C. B. Medina and K. S. Ravichandran, Do not let death do us part: 'find-me' signals in communication between dying cells and the phagocytes, Cell Death Differ, vol.23, pp.979-989, 2016.

K. W. Yoon, Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53, Science, vol.349, p.1261669, 2015.

D. Jung, Foxp3 expression in p53-dependent DNA damage responses, J. Biol. Chem, vol.285, pp.7995-8002, 2010.

L. Mercier, I. Lines, J. L. Noelle, and R. J. , Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators, Front. Immunol, vol.6, p.418, 2015.

L. Deng, Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice, J. Clin. Invest, vol.124, pp.687-695, 2014.

D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, vol.12, pp.252-264, 2012.

P. Sharma and J. P. Allison, Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential, Cell, vol.161, pp.205-214, 2015.

L. Wang, VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses, J. Exp. Med, vol.208, pp.577-592, 2011.

Y. Cui and G. Guo, Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment, Int. J. Mol. Sci, vol.17, 2016.

F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization, Front. Biosci. J. Virtual Libr, vol.13, pp.453-461, 2008.

R. Tomasini, TAp73 is required for macrophage-mediated innate immunity and the resolution of inflammatory responses, Cell Death Differ, vol.20, pp.293-301, 2013.

D. W. Davis, D. A. Weidner, A. Holian, and D. J. Mcconkey, Nitric oxide-dependent activation of p53 suppresses bleomycin-induced apoptosis in the lung, J. Exp. Med, vol.192, pp.857-869, 2000.

H. Okada and T. W. Mak, Pathways of apoptotic and non-apoptotic death in tumour cells, Nat. Rev. Cancer, vol.4, pp.592-603, 2004.

C. Li, L. J. Trudel, and G. N. Wogan, Nitric oxide-induced genotoxicity, mitochondrial damage, and apoptosis in human lymphoblastoid cells expressing wild-type and mutant p53, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.10364-10369, 2002.

B. Brüne, Nitric oxide: NO apoptosis or turning it ON?, Cell Death Differ, vol.10, pp.864-869, 2003.

X. Wang, D. Michael, G. De-murcia, and M. Oren, p53 Activation by nitric oxide involves downregulation of Mdm2, J. Biol. Chem, vol.277, pp.15697-15702, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02371516

L. J. Hofseth, Nitric oxide-induced cellular stress and p53 activation in chronic inflammation, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.143-148, 2003.

N. Schneiderhan, A. Budde, Y. Zhang, and B. Brüne, Nitric oxide induces phosphorylation of p53 and impairs nuclear export, Oncogene, vol.22, pp.2857-2868, 2003.

X. Wang, A. Zalcenstein, and M. Oren, Nitric oxide promotes p53 nuclear retention and sensitizes neuroblastoma cells to apoptosis by ionizing radiation, Cell Death Differ, vol.10, pp.468-476, 2003.

V. A. Yakovlev, A. S. Bayden, P. R. Graves, G. E. Kellogg, and R. B. Mikkelsen, Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation, Biochemistry (Mosc.), vol.49, pp.5331-5339, 2010.

A. Tebbi, O. Guittet, M. Cottet, M. Vesin, and M. Lepoivre, TAp73 induction by nitric oxide: regulation by checkpoint kinase 1 (CHK1) and protection against apoptosis, J. Biol. Chem, vol.286, pp.7873-7884, 2011.

K. Forrester, Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.2442-2447, 1996.

S. Ambs, Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.8823-8828, 1998.

M. Murphy, Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a, Genes Dev, vol.13, pp.2490-2501, 1999.

Y. Zhang, Repression of hsp90beta gene by p53 in UV irradiation-induced apoptosis of Jurkat cells, J. Biol. Chem, vol.279, pp.42545-42551, 2004.

T. Lin, p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression, Nat. Cell Biol, vol.7, pp.165-171, 2005.

J. S. Ho, W. Ma, D. Y. Mao, and S. Benchimol, p53-Dependent transcriptional repression of cmyc is required for G1 cell cycle arrest, Mol. Cell. Biol, vol.25, pp.7423-7431, 2005.

W. Wu, Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma, Cell, vol.123, pp.641-653, 2005.

K. C. Lee, A. J. Crowe, and M. Barton, p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding, Mol. Cell. Biol, vol.19, pp.1279-1288, 1999.

S. St-clair, DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter, Mol. Cell, vol.16, pp.725-736, 2004.

T. Oida and H. L. Weiner, Depletion of TGF-? from fetal bovine serum, J. Immunol. Methods, vol.362, pp.195-198, 2010.

E. T. Grygielko, Inhibition of gene markers of fibrosis with a novel inhibitor of transforming growth factor-beta type I receptor kinase in puromycin-induced nephritis, J. Pharmacol. Exp. Ther, vol.313, pp.943-951, 2005.

S. Abdollah, T?RI Phosphorylation of Smad2 on Ser465 and Ser467 Is Required for Smad2Smad4 Complex Formation and Signaling, J. Biol. Chem, vol.272, pp.27678-27685, 1997.

P. Vincendeau and S. Daulouède, Macrophage cytostatic effect on Trypanosoma musculi involves an L-arginine-dependent mechanism, J. Immunol. Baltim. Md, vol.146, pp.4338-4343, 1950.

A. Gugssa, S. Gebru, C. M. Lee, B. Baccetti, and W. Anderson, Apoptosis of Trypanosoma musculi co-cultured with LPS activated macrophages: enhanced expression of nitric oxide synthase INFgamma and caspase, J. Submicrosc. Cytol. Pathol, vol.37, pp.99-107, 2005.

M. Niemantsverdriet, ?Np73 Enhances Promoter Activity of TGF-? Induced Genes, PLoS ONE, vol.7, 2012.

R. Ravi, p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300, Cancer Res, vol.58, pp.4531-4536, 1998.

C. Reardon and D. M. Mckay, TGF-beta suppresses IFN-gamma-STAT1-dependent gene transcription by enhancing STAT1-PIAS1 interactions in epithelia but not monocytes/macrophages, J. Immunol. Baltim. Md, vol.178, pp.4284-4295, 1950.

Y. Ishida, T. Kondo, T. Takayasu, Y. Iwakura, and N. Mukaida, The essential involvement of crosstalk between IFN-gamma and TGF-beta in the skin wound-healing process, J. Immunol. Baltim. Md, vol.172, pp.1848-1855, 1950.

M. Bitzer, A mechanism of suppression of TGF-?/SMAD signaling by NF-?B/RelA, Genes Dev, vol.14, pp.187-197, 2000.

C. Freudlsperger, TGF-? and NF-?B signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers, Oncogene, vol.32, pp.1549-1559, 2013.

M. Brandl, IKK(?) controls canonical TGF(ß)-SMAD signaling to regulate genes expressing SNAIL and SLUG during EMT in panc1 cells, J. Cell Sci, vol.123, pp.4231-4239, 2010.

Y. He, LPS/TLR4 Signaling Enhances TGF-? Response Through Downregulating BAMBI During Prostatic Hyperplasia, Sci. Rep, vol.6, p.27051, 2016.

M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation, Nature, vol.391, pp.79-82, 1998.

M. Li, G. Pascual, and C. K. Glass, Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene, Mol. Cell. Biol, vol.20, pp.4699-4707, 2000.

R. Scirpo, Stimulation of nuclear receptor peroxisome proliferator-activated receptor-? limits NF-?B-dependent inflammation in mouse cystic fibrosis biliary epithelium, Hepatol. Baltim. Md, vol.62, pp.1551-1562, 2015.

K. Gong, Smad3-mSin3A-HDAC1 Complex is Required for TGF-?1-Induced Transcriptional Inhibition of PPAR? in Mouse Cardiac Fibroblasts, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol, vol.40, pp.908-920, 2016.

S. P. Lakshmi, A. T. Reddy, and R. C. Reddy, Transforming growth factor ? suppresses peroxisome proliferator-activated receptor ? expression via both SMAD binding and novel TGF-? inhibitory elements, Biochem. J, vol.474, pp.1531-1546, 2017.

J. P. Frederick, N. T. Liberati, D. S. Waddell, Y. Shi, and X. Wang, Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element, Mol. Cell. Biol, vol.24, pp.2546-2559, 2004.

L. D. Kerr, D. B. Miller, and L. M. Matrisian, TGF-beta 1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence, Cell, vol.61, pp.267-278, 1990.

R. Elston and G. J. Inman, Crosstalk between p53 and TGF-? Signalling, J. Signal Transduct, p.294097, 2012.

F. S. Wyllie, Correlated abnormalities of transforming growth factor-beta 1 response and p53 expression in thyroid epithelial cell transformation, Mol. Cell. Endocrinol, vol.76, pp.13-21, 1991.

M. Cordenonsi, Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads, Cell, vol.113, pp.301-314, 2003.

J. M. Overstreet, R. Samarakoon, K. K. Meldrum, and P. J. Higgins, Redox control of p53 in the transcriptional regulation of TGF-?1 target genes through SMAD cooperativity, Cell. Signal, vol.26, pp.1427-1436, 2014.

Y. Kawarada, TGF-? induces p53/Smads complex formation in the PAI-1 promoter to activate transcription, Sci. Rep, vol.6, p.35483, 2016.

K. Bedard and K. Krause, The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, Physiol. Rev, vol.87, pp.245-313, 2007.

H. E. Boudreau, B. W. Casterline, D. J. Burke, and T. L. Leto, Wild-type and mutant p53 differentially regulate NADPH oxidase 4 in TGF-?-mediated migration of human lung and breast epithelial cells, Br. J. Cancer, vol.110, pp.2569-2582, 2014.

H. E. Boudreau, Histone modifications affect differential regulation of TGF?-induced NADPH oxidase 4 (NOX4) by wild-type and mutant p53, Oncotarget, vol.8, pp.44379-44397, 2017.

D. S. Wilkinson, W. Tsai, M. A. Schumacher, and M. C. Barton, Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming-growth-factor-betamediated transcription repression, Mol. Cell. Biol, vol.28, 1988.

M. Adorno, A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis, Cell, vol.137, pp.87-98, 2009.

L. Ji, Mutant p53 promotes tumor cell malignancy by both positive and negative regulation of the transforming growth factor ? (TGF-?) pathway, J. Biol. Chem, vol.290, pp.11729-11740, 2015.

F. Werner, Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3, J. Biol. Chem, vol.275, pp.36653-36658, 2000.

A. K. Thakur, TAp73 loss favors Smad-independent TGF-? signaling that drives EMT in pancreatic ductal adenocarcinoma, Cell Death Differ, vol.23, pp.1358-1370, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01796189

Z. Zi, D. A. Chapnick, and X. Liu, Dynamics of TGF-?/Smad signaling, FEBS Lett, vol.586, pp.1921-1928, 2012.

T. You, Crystal structure of SPSB2 in complex with a rational designed RGD-containing cyclic peptide inhibitor of SPSB2-iNOS interaction, Biochem. Biophys. Res. Commun, vol.489, pp.346-352, 2017.

B. K. Yap, A potent cyclic peptide targeting SPSB2 protein as a potential anti-infective agent, J. Med. Chem, vol.57, pp.7006-7015, 2014.

J. R. Harjani, Design, Synthesis, and Characterization of Cyclic Peptidomimetics of the Inducible Nitric Oxide Synthase Binding Epitope That Disrupt the Protein-Protein Interaction Involving SPRY Domain-Containing Suppressor of Cytokine Signaling Box Protein (SPSB) 2 and Inducible Nitric Oxide Synthase, J. Med. Chem, vol.59, pp.5799-5809, 2016.

Y. Huang and E. A. Ratovitski, Phosphorylated TP63 induces transcription of RPN13, leading to NOS2 protein degradation, J. Biol. Chem, vol.285, pp.41422-41431, 2010.

R. S. Lewis, TLR regulation of SPSB1 controls inducible nitric oxide synthase induction, J. Immunol. Baltim. Md, vol.187, pp.3798-3805, 1950.

S. Liu, T. Nheu, R. Luwor, S. E. Nicholson, and H. Zhu, SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-? Signaling Pathway Targeting the Type II Receptor, J. Biol. Chem, vol.290, pp.17894-17908, 2015.

L. Fagerberg, Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics, Mol. Cell. Proteomics MCP, vol.13, pp.397-406, 2014.

E. M. Sikorski, T. Hock, N. Hill-kapturczak, and A. Agarwal, The story so far: Molecular regulation of the heme oxygenase-1 gene in renal injury, Am. J. Physiol. Renal Physiol, vol.286, pp.425-441, 2004.

F. X. Soriano, Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin, Mol. Cells, vol.27, pp.279-282, 2009.

H. M. Korashy and A. O. El-kadi, NF-kappaB and AP-1 are key signaling pathways in the modulation of NAD(P)H:quinone oxidoreductase 1 gene by mercury, lead, and copper, J. Biochem. Mol. Toxicol, vol.22, pp.274-283, 2008.

M. G. Kim, Regulation of Toll-like receptor-mediated Sestrin2 induction by AP-1, Nrf2, and the ubiquitin-proteasome system in macrophages, Toxicol. Sci. Off. J. Soc. Toxicol, vol.144, pp.425-435, 2015.

F. Vannini, K. Kashfi, and N. Nath, The dual role of iNOS in cancer, Redox Biol, vol.6, pp.334-343, 2015.

S. Wada, Loss of p53 in stromal fibroblasts enhances tumor cell proliferation through nitricoxide-mediated cyclooxygenase 2 activation, Free Radic. Res, vol.49, pp.269-278, 2015.

S. Menegon, A. Columbano, and S. Giordano, The Dual Roles of NRF2 in Cancer, Trends Mol. Med, vol.22, pp.578-593, 2016.

T. Lieke, C. Steeg, S. E. Graefe, B. Fleischer, and T. Jacobs, Interaction of natural killer cells with Trypanosoma cruzi-infected fibroblasts, Clin. Exp. Immunol, vol.145, pp.357-364, 2006.

M. R. Schäffer, Nitric oxide, an autocrine regulator of wound fibroblast synthetic function, J. Immunol. Baltim. Md, vol.158, pp.2375-2381, 1950.

H. P. Shi, The role of iNOS in wound healing, Surgery, vol.130, pp.225-229, 2001.

T. Kitano, Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide SynthaseKnockout Mouse, Dermatol. Res. Pract, vol.2017, p.2184040, 2017.

G. Han, Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition, Am. J. Pathol, vol.180, pp.1465-1473, 2012.

P. S. Grabowski, H. Macpherson, and S. H. Ralston, Nitric oxide production in cells derived from the human joint, Br. J. Rheumatol, vol.35, pp.207-212, 1996.

I. B. Mcinnes, Production of nitric oxide in the synovial membrane of rheumatoid and osteoarthritis patients, J. Exp. Med, vol.184, pp.1519-1524, 1996.

P. S. Grabowski, Immunolocalization of inducible nitric oxide synthase in synovium and cartilage in rheumatoid arthritis and osteoarthritis, Br. J. Rheumatol, vol.36, pp.651-655, 1997.

X. Cai, Adiponectin inhibits lipopolysaccharide-induced adventitial fibroblast migration and transition to myofibroblasts via AdipoR1-AMPK-iNOS pathway, Mol. Endocrinol. Baltim. Md, vol.24, pp.218-228, 2010.

G. Zhang, Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis, Nitric Oxide Biol. Chem, vol.61, pp.20-28, 2016.

T. Nakagawa, Autoinhibitory Regulation of p73 by ?Np73 To Modulate Cell Survival and Death through a p73-Specific Target Element within the ?Np73 Promoter, Mol. Cell. Biol, vol.22, pp.2575-2585, 2002.

K. Richter, A. Konzack, T. Pihlajaniemi, R. Heljasvaara, and T. Kietzmann, Redox-fibrosis: Impact of TGF?1 on ROS generators, mediators and functional consequences, Redox Biol, vol.6, pp.344-352, 2015.

H. E. Boudreau, B. W. Casterline, B. Rada, A. Korzeniowska, and T. L. Leto, Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic, Biol. Med, vol.53, pp.1489-1499, 2012.

J. Krstic and J. F. Santibanez, Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells, ScientificWorldJournal, p.521754, 2014.