. .. Animals,

. Surgery and .. .. Virus-injection,

. .. Behavior, 63 6.4 2-photon laser-scanning microscope (2PLSM)-based calcium imaging

. .. In-vivo-optogenetics,

. , Chronic imaging of FrA pyramidal neurons during auditory cue discrimination

. , 76 7.2.2 Decorrelation of cue-specific activity patterns predicts cue discrimination, FrA computes both fear and safety sensory cues during learning

. , FrA is required during learning for safety detection

. .. , 80 7.3.1 Subthreshold activation of FrA pyramidal neurons, Auditory stimulation generates frequency-specific plateau potentials

. .. , 88 7.4.3 Activation of BLA inputs during auditory stimulation potentiate FrA neurons, Co-activation of convergent inputs reinforces FrA L2/3 pyramidal neurons, p.88

. , 90 7.5.2 Photo-inhibition of BLA-to-FrA neurons decreases cue discrimination, BLA-to_PFC long-range axons are required for discriminative learning

.. .. ,

. .. Conclusions,

C. B. Alme, R. A. Buzzetti, D. F. Marrone, J. K. Leutgeb, M. K. Chawla et al., Hippocampal granule cells opt for early retirement, Hippocampus, vol.20, issue.10, pp.1109-1123, 2010.
DOI : 10.1002/hipo.20810

S. G. Anagnostaras, S. C. Wood, T. Shuman, D. J. Cai, A. D. Leduc et al., Automated assessment of Pavlovian conditioned freezing and shock reactivity in mice using the VideoFreeze system, Frontiers in Behavioral Neuroscience, vol.4, p.158, 2010.

J. I. Arellano, A. Espinosa, A. Fairén, R. Yuste, and J. Defelipe, Non-synaptic dendritic spines in the neocortex, Neuroscience, vol.145, pp.464-469, 2007.

A. C. Arevian, V. Kapoor, and N. N. Urban, Activity-dependent gating of lateral inhibition in the mouse olfactory bulb, Nat Neurosci, vol.11, issue.1, pp.80-87, 2008.

D. Arruda, R. Publio, and A. C. Roque, The Periglomerular Cell of the Olfactory Bulb and its Role in Controlling Mitral Cell Spiking: A Computational Model, PLoS ONE, vol.8, issue.2, 2013.

D. C. Barnes, R. D. Hofacer, A. R. Zaman, R. L. Rennaker, and D. A. Wilson, Olfactory perceptual stability and discrimination, Nature Neuroscience, vol.11, pp.1378-1380, 2008.
DOI : 10.1038/nn.2217

URL : http://europepmc.org/articles/pmc2682180?pdf=render

D. Barrett, J. Shumake, D. Jones, and F. Gonzalez-lima, Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response, The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol.23, issue.13, pp.5740-5749, 2003.

A. L. Barth and J. F. Poulet, Experimental evidence for sparse firing in the neocortex, Trends in Neurosciences, vol.35, pp.345-355, 2012.

J. Basu, J. D. Zaremba, S. K. Cheung, F. L. Hitti, B. V. Zemelman et al., Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition, Science, issue.6269, pp.5694-5694, 2016.

E. P. Bauer, G. E. Schafe, J. E. Ledoux, and W. M. Keck, NMDA Receptors and LType Voltage-Gated Calcium Channels Contribute to Long-Term Potentiation and Different Components of Fear Memory Formation in the Lateral Amygdala

A. Bechara, D. Tranel, H. Damasio, R. Adolphs, C. Rockland et al., Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans, J. Wildl. Manage. Can. J. Zool. J. Anim. Ecol. Oecologia Ecology, issue.0, pp.1115-395, 1995.

K. Becker, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal et al., , 2012.

, Three-dimensional imaging of solvent-cleared organs using 3DISCO, Nature Protocols, vol.7, issue.11

M. M. Behbehani, Functional characteristics of the midbrain periacqueductal grey, Progress in Neurobiology, vol.46, pp.575-605, 1995.

J. A. Boatman and J. J. Kim, A thalamo-cortico-amygdala pathway mediates auditory fear conditioning in the intact brain

R. C. Bolles and M. S. Fanselow, A perceptual-defensive-recuperative model of fear and pain, The Behavioral and Brain Sciences, vol.3, pp.291-323, 1980.

F. Bordi and J. E. Ledoux, Response properties of single units in areas of rat auditory thalamus that project to the amygdala I1. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation, Exp Brain Res, vol.98, pp.275-286, 1994.

G. S. Borszcz, Contribution of the Ventromedial Hypothalamus to Generation of the Affective Dimension of Pain

M. E. Bouton, Context and Behavioral Processes in Extinction, Learning & Memory, vol.11, issue.5, pp.485-494, 2004.
DOI : 10.1101/lm.78804

URL : http://learnmem.cshlp.org/content/11/5/485.full.pdf

F. Brandalise, S. Carta, F. Helmchen, J. Lisman, and U. Gerber, Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells, Nature Communications, vol.7, p.13480, 2016.
DOI : 10.1038/ncomms13480

URL : https://www.nature.com/articles/ncomms13480.pdf

M. Brecht, A. Roth, and B. Sakmann, Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex, The Journal of Physiology, vol.553, issue.1, pp.243-265, 2003.

K. L. Briggman and W. B. Kristan, Multifunctional pattern-generating circuits, Annual Review of Neuroscience, vol.31, pp.271-94, 2008.
DOI : 10.1146/annurev.neuro.31.060407.125552

D. Bruce, Fifty Years Since Lashley's In Search of the Engram: Refutations and Conjectures, Journal of the History of the Neurosciences, vol.10, issue.3, pp.308-318, 2001.

A. Burgos-robles, I. Vidal-gonzalez, E. Santini, and G. J. Quirk, Consolidation of Fear Extinction Requires NMDA Receptor-Dependent Bursting in the Ventromedial Prefrontal Cortex, 2007.

G. Buzsaki and A. Draguhn, Neuronal Oscillations in Cortical Networks, Science, vol.304, issue.5679, pp.1926-1929, 2004.
DOI : 10.1126/science.1099745

S. Cheng and L. M. Frank, New experiences enhance coordinated neural activity in the hippocampus, Neuron, vol.57, issue.2, pp.303-316, 2008.
DOI : 10.1016/j.neuron.2007.11.035

URL : https://doi.org/10.1016/j.neuron.2007.11.035

B. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong et al., , 2010.

, High-performance genetically targetable optical neural silencing by light-driven proton pumps, Nature, vol.463, issue.7277, pp.98-102

J. P. Christianson, A. B. Fernando, A. M. Kazama, T. Jovanovic, L. E. Ostroff et al., Inhibition of Fear by Learned Safety Signals, Journal of Neuroscience, vol.32, issue.41, pp.14118-14124, 2012.

J. Cichon and W. Gan, Branch-specific dendritic Ca 21 spikes cause persistent synaptic plasticity, Nature, vol.520, pp.180-185, 2015.

K. A. Corcoran and G. J. Quirk, Activity in Prelimbic Cortex Is Necessary for the Expression of Learned, Fears. Journal of Neuroscience, 2007.

C. Courtin, . Rozeske, . Karalis, . Gonzalez-campo, . Wurtz et al., Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression, Nature, vol.505, pp.92-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01155132

C. David, A. Schleicher, W. Zuschratter, and J. F. Staiger, The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary somatosensory cortex of the adult rat, European Journal of Neuroscience, vol.25, issue.8, pp.2329-2340, 2007.

M. Davis, D. Rainnie, and M. Cassell, Neurotransmission in the rat amygdala related to fear and anxiety, Trends in Neurosciences, vol.17, issue.5, pp.208-214, 1994.

V. De-paola, A. Holtmaat, G. Knott, S. Song, L. Wilbrecht et al., Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex, Neuron, vol.49, pp.861-875, 2006.

T. Deacon, H. Eichenbaum, and P. Rosenberg, Afferent Connections of the Perirhinal Cortex in the Rat, Journal of Comparative Neurology, vol.220, pp.168-190, 1983.

C. Dejean, J. Courtin, N. Karalis, F. Chaudun, H. Wurtz et al., Prefrontal neuronal assemblies temporally control fear behaviour, Nature, vol.535, issue.7612, pp.420-424, 2016.
DOI : 10.1038/nature18630

A. R. Delamater, On the nature of CS and US representations in Pavlovian learning, Learning & Behavior, vol.40, issue.1, pp.1-23, 2012.

W. Deng, J. B. Aimone, and F. H. Gage, New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?, Nature Reviews. Neuroscience, vol.11, issue.5, pp.339-50, 2010.
DOI : 10.1038/nrn2822

URL : http://europepmc.org/articles/pmc2886712?pdf=render

E. L. Foltz and E. W. , Pain "relief" by frontal cingulumotomy, Journal of Neurosurgery, vol.251, pp.1355-1358, 1962.
DOI : 10.3171/jns.1962.19.2.0089

D. R. Euston, A. J. Gruber, and B. L. Mcnaughton, The Role of Medial Prefrontal Cortex in Memory and Decision Making, Neuron, vol.76, issue.6, pp.1057-1070, 2012.

M. S. Fanselow and R. C. Bolles, Naloxone and Shock-Elicited Freezing in the Rat, Journal of Comparative and Physiological Psychology, vol.93, issue.4, pp.736-744, 1979.
DOI : 10.1016/0304-3959(80)90065-2

M. S. Fanselow and R. C. Bolles, Triggering of the endorphin analgesic reaction by a cue previously associated with shock: Reversal by naloxone, Bulletin of the Psychonomic Society, vol.14, issue.2, pp.88-90, 1979.

M. S. Fanselow and K. M. Wassum, The Origins and Organization of Vertebrate Pavlovian Conditioning, Cold Spring Harbor Perspectives in Biology, vol.8, issue.1, p.21717, 2015.
DOI : 10.1101/cshperspect.a021717

URL : http://cshperspectives.cshlp.org/content/8/1/a021717.full.pdf

A. C. Felix-ortiz, A. Beyeler, C. Seo, C. A. Leppla, C. P. Wildes et al., BLA to vHPC Inputs Modulate Anxiety-Related Behaviors, Neuron, vol.79, pp.658-664, 2013.
DOI : 10.1016/j.neuron.2013.06.016

URL : https://doi.org/10.1016/j.neuron.2013.06.016

R. W. Friedrich, Neuronal Computations in the Olfactory System of Zebrafish, Annu. Rev. Neurosci, vol.36, pp.383-402, 2013.

F. Gambino and A. Holtmaat, Spike-Timing-Dependent Potentiation of Sensory Surround in the Somatosensory Cortex Is Facilitated by Deprivation-Mediated Disinhibition, Neuron, vol.75, pp.490-502, 2012.

F. Gambino, S. Pagès, V. Kehayas, D. Baptista, R. Tatti et al., Sensory-evoked LTP driven by dendritic plateau potentials in vivo, 2014.
DOI : 10.1038/nature13664

A. R. Garner, D. C. Rowland, S. Y. Hwang, K. Baumgaertel, B. L. Roth et al., Generation of a Synthetic Memory Trace, Science, vol.335, pp.1513-1516, 2012.
DOI : 10.1126/science.1214985

URL : http://europepmc.org/articles/pmc3956300?pdf=render

P. Gavan, J. P. Mcnally, and H. T. Johansen, Placing prediction into the fear circuit, Cell Review, vol.34, pp.283-292, 2011.

A. Gdalyahu, E. Tring, P. Polack, R. Gruver, P. Golshani et al., Associative Fear Learning Enhances Sparse Network Coding in Primary Sensory Cortex, Neuron, vol.75, pp.121-132, 2012.
DOI : 10.1016/j.neuron.2012.04.035

URL : https://doi.org/10.1016/j.neuron.2012.04.035

R. Genud-gabai, O. Klavir, and R. Paz, Safety Signals in the Primate Amygdala, Journal of Neuroscience, vol.33, issue.46, pp.17986-17994, 2013.
DOI : 10.1523/jneurosci.1539-13.2013

URL : http://www.jneurosci.org/content/33/46/17986.full.pdf

P. E. Gilbert, R. P. Kesner, and I. Lee, Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1, Hippocampus, vol.11, issue.6, pp.626-636, 2001.
DOI : 10.1002/hipo.1077

S. Giridhar, B. Doiron, and N. N. Urban, Timescale-dependent shaping of correlation by olfactory bulb lateral inhibition, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.5843-5848, 2011.
DOI : 10.1073/pnas.1015165108

URL : https://www.pnas.org/content/pnas/108/14/5843.full.pdf

S. Goswami, O. Rodríguez-sierra, M. Cascardi, D. Paré, C. Sandi et al., Animal models of post-traumatic stress disorder: face validity, Frontiers in Neuroscience, vol.7, 2013.
DOI : 10.3389/fnins.2013.00089

URL : https://www.frontiersin.org/articles/10.3389/fnins.2013.00089/pdf

C. Grillon, Startle Reactivity and Anxiety Disorders: Aversive Conditioning, Context, and Neurobiology, Biological Psychiatry, vol.52, pp.958-975, 2002.
DOI : 10.1016/s0006-3223(02)01665-7

C. Grillon, C. A. Morgan, M. Davis, and S. M. Southwick, Effects of Experimental Context and Explicit Threat Cues on Acoustic Startle in Vietnam Veterans with Posttraumatic Stress Disorder, Biol Psychiatry, vol.44, pp.1027-1036, 1998.

O. Gschwend, N. M. Abraham, S. Lagier, F. Begnaud, I. Rodriguez et al., Neuronal pattern separation in the olfactory bulb improves odor discrimination learning, Nature Neuroscience, vol.18, pp.1474-1482, 2015.

G. Hall, Associative Structures in Pavlovian and Instrumental Conditioning, Stevens' Handbook of Experimental Psychology, 2002.
DOI : 10.1002/0471214426.pas0301

J. Han, S. Kushner, A. P. Yiu, C. J. Cole, A. Matynia et al., Neuronal Competition and Selection During Memory Formation, Science, pp.457-460, 2007.
DOI : 10.1126/science.1139438

C. D. Harvey, P. Coen, and D. W. Tank, Choice-specific sequences in parietal cortex during a virtual-navigation decision task, Nature, vol.484, issue.7392, pp.62-68, 2012.
DOI : 10.1038/nature10918

URL : http://europepmc.org/articles/pmc3321074?pdf=render

C. Herry and J. P. Johansen, Encoding of fear learning and memory in distributed neuronal circuits, Nat Neurosci, vol.17, pp.1644-1654, 2014.

T. S. Hnasko, F. A. Perez, A. D. Scouras, E. A. Stoll, S. D. Gale et al., Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia, vol.103, pp.8858-63, 2006.

S. B. Hofer, T. D. Mrsic-flogel, T. Bonhoeffer, and M. Hubener, Experience leaves a lasting structural trace in cortical circuits, Nature, vol.457, pp.313-317, 2009.
DOI : 10.1038/nature07487

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485433

A. Holtmaat and P. Caroni, Functional and structural underpinnings of neuronal assembly formation in learning, Nature Neuroscience, vol.19, issue.12, pp.1553-1562, 2016.

A. J. Holtmaat, J. T. Trachtenberg, L. Wilbrecht, G. M. Shepherd, X. Zhang et al., Transient and persistent dendritic spines in the neocortex in vivo, Neuron, vol.45, issue.2, pp.279-291, 2005.

A. Holtmaat and K. Svoboda, Experience-dependent structural synaptic plasticity in the mammalian brain, Nature Reviews. Neuroscience, vol.10, issue.9, pp.647-658, 2009.

A. Holtmaat, L. Wilbrecht, G. W. Knott, E. Welker, and K. Svoboda, Experiencedependent and cell-type-specific spine growth in the neocortex, Nature, vol.441, pp.979-983, 2006.
DOI : 10.1038/nature04783

A. Holtmaat and P. Caroni, Functional and structural underpinnings of neuronal assembly formation in learning, Nature Neuroscience, issue.12, p.19, 2016.

D. J. Howse, A. S. Squires, G. M. Martin, and D. M. Skinner, Perirhinal Cortex Lesions Impair Context Aversion Learning, Learning & Memory, vol.10, pp.161-167, 2003.
DOI : 10.1101/lm.57803

URL : http://learnmem.cshlp.org/content/10/3/161.full.pdf

Y. Huang and E. R. Kandel, Postsynaptic Induction and PKA-Dependent Expression of LTP in the Lateral Amygdala, Neuron, vol.21, pp.169-178, 1998.

D. Huber, D. A. Gutnisky, S. Peron, D. H. O-'connor, J. S. Wiegert et al., Multiple dynamic representations in the motor cortex during sensorimotor learning, Nature, vol.484, pp.473-478, 2012.

J. S. Isaacson and M. Scanziani, How Inhibition Shapes Cortical Activity, Neuron, vol.72, pp.231-243, 2011.
DOI : 10.1016/j.neuron.2011.09.027

URL : https://doi.org/10.1016/j.neuron.2011.09.027

H. Jin-hee, S. A. Kushner, P. Yiu, A. Hsiang, H. Liz et al., Selective Erasure of a Fear Memory, Science, vol.323, pp.1492-1496, 2009.

J. P. Johansen, L. Diaz-mataix, H. Hamanaka, T. Ozawa, E. Ycu et al., Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation, Proceedings of the National Academy of Sciences, vol.111, issue.51, pp.5584-5592, 2014.
DOI : 10.1073/pnas.1421304111

URL : http://www.pnas.org/content/111/51/E5584.full.pdf

J. P. Johansen, H. Hamanaka, M. H. Monfils, R. Behnia, K. Deisseroth et al., Optical activation of lateral amygdala pyramidal cells instructs associative fear learning, vol.107, pp.12692-12697, 2010.

J. P. Johansen, J. W. Tarpley, J. E. Ledoux, and H. T. Blair, Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray, Nature Neuroscience, vol.13, issue.8, pp.979-986, 2011.

E. R. Kandel, Y. Dudai, and M. R. Mayford, The Molecular and Systems Biology of Memory, Cell, vol.157, pp.163-186, 2014.

N. Karalis, C. Dejean, F. Chaudun, S. Khoder, R. R. Rozeske et al., 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior, Nature Neuroscience, 2016.
DOI : 10.1038/nn.4251

URL : http://europepmc.org/articles/pmc4843971?pdf=render

T. Keck, T. D. Mrsic-flogel, M. V. Afonso, U. T. Eysel, T. Bonhoeffer et al., Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex, Nature Neuroscience, vol.11, pp.1162-1167, 2008.

E. J. Kim, O. Horovitz, B. A. Pellman, L. M. Tan, Q. Li et al., Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats
DOI : 10.1073/pnas.1310845110

URL : http://www.pnas.org/content/110/36/14795.full.pdf

T. Kitamura, S. K. Ogawa, D. S. Roy, T. Okuyama, M. D. Morrissey et al., Engrams and circuits crucial for systems consolidation of a memory, Science, issue.6333, pp.73-78, 2017.

O. Klavir, M. Prigge, A. Sarel, R. Paz, and O. Yizhar, Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex, Nature Neuroscience, vol.20, issue.6, pp.836-844, 2017.

G. W. Knott, A. Holtmaat, L. Wilbrecht, E. Welker, and K. Svoboda, Spine growth precedes synapse formation in the adult neocortex in vivo, Nature Neuroscience, vol.9, pp.1117-1124, 2006.

T. Komiyama, T. R. Sato, D. H. O'connor, Y. Zhang, D. Huber et al., Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice, Nature, vol.464, issue.7292, pp.1182-1188, 2010.

C. D. Kopec, B. Li, W. Wei, J. Boehm, and R. Malinow, Glutamate Receptor Exocytosis and Spine Enlargement during Chemically Induced Long-Term Potentiation, Journal of Neuroscience, vol.26, issue.7, pp.2000-2009, 2009.
DOI : 10.1523/jneurosci.3918-05.2006

URL : http://www.jneurosci.org/content/26/7/2000.full.pdf

K. S. Labar, J. E. Ledoux, D. D. Spencer, and E. A. Phelps, Impaired Fear Conditioning Following Unilateral Temporal Lobectomy in Humans, The Journal of Neuroscience, issue.10, p.15, 1995.

C. S. Lai, T. F. Franke, and W. Gan, Opposite effects of fear conditioning and extinction on dendritic spine remodelling, Nature, vol.483, issue.7387, pp.87-91, 2012.
DOI : 10.1038/nature10792

M. Larkum, A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex, Trends in Neurosciences, vol.36, pp.141-151, 2013.

M. E. Larkum, M. Sandler, A. Polsky, and J. Schiller, Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle, Science, vol.663, pp.756-760, 2009.

M. E. Larkum, J. J. Zhu, and B. Sakmann, A new cellular mechanism for coupling inputs arriving at different cortical layers, Nature, vol.398, pp.2-5, 1999.
DOI : 10.1038/18686

M. Lavzin, S. Rapoport, A. Polsky, L. Garion, and J. Schiller, Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo, Nature, vol.490, issue.7420, pp.397-401, 2012.

J. Ledoux, Perspective Rethinking the Emotional Brain, Neuron, vol.73, pp.653-676, 2012.

J. E. Ledoux, Coming to terms with fear, vol.111, pp.2871-2878, 2014.

J. E. Ledoux, Emotion Circuits in the Brain, Annual Review of Neuroscience, vol.23, issue.1, pp.155-184, 2000.

C. Ledoux, X. , and R. *. , The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning, The Journal of Neuroscience, vol.10, issue.4, pp.1062-1069, 1990.

J. E. Ledoux, C. Farb, and D. A. Ruggiero, Topographic Organization of Neurons in the Acoustic Thalamus That Project to the Amygdala, The Journal of Neuroscience, issue.4, pp.1043-54, 1990.

J. E. Ledoux, J. Iwata, P. Cicchetti, and D. J. Reis, Different Projections of the Central Amygdaloid Nucleus Mediate Autonomic and Behavioral Correlates of Conditioned Fear, The Journal of Neuroscience, vol.8, issue.7, pp.2517-2529, 1988.

J. E. Ledoux, D. A. Ruggiero, and A. J. Donald-reis, Projections to the Subcortical Forebrain From Anatomically Defined Regions of the Medial Geniculate Body in the Rat, THE JOURNAL OF COMPARATIVE NEUROLOGY, pp.242-182, 1985.

B. Lendvai, E. A. Stern, B. Chen, and K. Svoboda, Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo, Nature, vol.404, pp.876-880, 2000.

J. Letzkus, S. B. Wolff, E. M. Meyer, P. Tovote, J. Courtin et al., A disinhibitory microcircuit for associative fear learning in the auditory cortex, Nature, vol.480, pp.331-335, 2011.

J. K. Leutgeb, S. Leutgeb, M. Moser, and E. I. Moser, Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus, Science, issue.5814, pp.961-966, 2007.

W. Li, J. D. Howard, T. B. Parrish, and J. A. Gottfried, Aversive Learning Enhances Perceptual and Cortical Discrimination of Indiscriminable Odor Cues, Science, issue.5871, pp.1842-1845, 2008.

E. Likhtik and R. Paz, Amygdala-prefrontal interactions in (mal)adaptive learning, Trends in Neurosciences, 2015.

E. Likhtik, J. G. Pelletier, R. Paz, and D. Paré, Prefrontal Control of the Amygdala, 2005.

E. Likhtik, J. M. Stujenske, M. A. Topiwala, A. Z. Harris, and J. A. Gordon, Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety, p.17, 2013.

R. Linke and G. H. Braune, Differential projection of the posterior paralaminar thalamic nuclei to the amygdaloid complex in the rat, Exp Brain Res, vol.134, pp.520-532, 2000.

J. Lippman and A. Dunaevsky, Dendritic spine morphogenesis and plasticity, Journal of Neurobiology, vol.64, issue.1, pp.47-57, 2005.

X. Liu, S. Ramirez, P. T. Pang, C. B. Puryear, A. Govindarajan et al., Optogenetic stimulation of a hippocampal engram activates fear memory recall, Nature, vol.484, pp.381-385, 2012.

U. Livneh and R. Paz, Amygdala-Prefrontal Synchronization Underlies Resistance to Extinction of Aversive Memories, 2012.

D. C. Llaneza and C. A. Frye, Progestogens and Estrogen Influence Impulsive Burying and Avoidant Freezing Behavior of Naturally Cycling and Ovariectomized Rats, Pharmacol Biochem Behav, vol.93, issue.3, pp.337-342, 2009.

H. Lütcke, D. J. Margolis, and F. Helmchen, Steady or changing? Long-term monitoring of neuronal population activity, Trends in Neurosciences, vol.36, issue.7, pp.375-384, 2013.

A. K. Majewska, J. R. Newton, and M. Sur, Remodeling of Synaptic Structure in Sensory Cortical Areas In Vivo, Journal of Neuroscience, vol.26, issue.11, pp.3021-3029, 2006.

A. Majewska and M. Sur, Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation, vol.100, pp.16024-16029, 2003.

G. Major, M. E. Larkum, and J. Schiller, Active properties of neocortical pyramidal neuron dendrites, Annual Review of Neuroscience, vol.36, pp.1-24, 2013.

G. Major, A. Polsky, W. Denk, J. Schiller, and D. W. Tank, Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons, Journal of Neurophysiology, vol.99, issue.5, pp.2584-2601, 2008.

S. Manita, T. Suzuki, C. Homma, T. Matsumoto, M. Odagawa et al., A Top-Down Cortical Circuit for Accurate Sensory Perception, Neuron, vol.86, issue.5, pp.1304-1316, 2015.

R. Marek, C. Strobel, T. W. Bredy, and P. Sah, The amygdala and medial prefrontal cortex: partners in the fear circuit, J Physiol, vol.59110, pp.2381-2391, 2013.

D. J. Margolis, H. Lütcke, K. Schulz, F. Haiss, B. Weber et al., Reorganization of cortical population activity imaged throughout long-term sensory deprivation, Nature Neuroscience, vol.15, issue.11, pp.1539-1546, 2012.

F. A. Masterson and M. Crawfor, The defense motivation system: A theory of avoidance behavior, The Behavioral and Brain Sciences, vol.5, pp.661-696, 1982.

F. Mátyás, J. Lee, H. S. Shin, and L. Acsády, The fear circuit of the mouse forebrain: Connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala, European Journal of Neuroscience, vol.39, issue.11, pp.1810-1823, 2014.

A. J. Mcdonald, Organization of amygdaloid projections to the mediodorsal thalamus and prefrontal cortex: a fluorescence retrograde transport study in the rat, The Journal of Comparative Neurology, vol.262, issue.1, pp.46-58, 1987.

J. L. Mcgaugh, Making lasting memories: remembering the significant, Proceedings of the National Academy of Sciences of the United States of America, p.110, 2013.

T. J. Mchugh, M. W. Jones, J. J. Quinn, N. Balthasar, R. Coppari et al., Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network, Science, vol.317, pp.94-99, 2007.

P. Miklavc, T. Valentin?i?, and T. Valentin?, Chemotopy of Amino Acids on the Olfactory Bulb Predicts Olfactory Discrimination Capabilities of Zebrafish Danio rerio, Chem. Senses, vol.37, pp.65-75, 2012.

M. Milad and G. J. Quirk, Neurons in medial prefrontal cortex signal memory for fear extinction, Nature, vol.420, pp.70-74, 2002.

N. E. Miller, Studies of Fear as an Acquirable Drive: I. Fear as Motivation and FearReduction as Reinforcement in the Learning of New Responses, Journal of Experimental Psychology, 1948.

A. Mizrahi, A. Shalev, and I. Nelken, Single neuron and population coding of natural sounds in auditory cortex, Current Opinion in Neurobiology, vol.24, issue.1, pp.103-110, 2014.

M. M. Moga, H. Herbert, K. M. Hurley, Y. Yasui, T. S. Gray et al., Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat, Journal of Comparative Neurology, vol.295, issue.4, pp.624-661, 1990.

R. Mostany, J. E. Anstey, K. L. Crump, B. Maco, G. Knott et al., , 2013.

, Altered Synaptic Dynamics during Normal Brain Aging, Journal of Neuroscience, vol.33, issue.9, pp.4094-4104

D. Nakayama, Z. Baraki, K. Onoue, Y. Ikegaya, N. Matsuki et al., Frontal association cortex is engaged in stimulus integration during associative learning, Current Biology : CB, vol.25, issue.1, pp.117-140, 2015.

A. Olsson and E. A. Phelps, Learned Fear of Unseen'' Faces After Pavlovian, Observational, and Instructed Fear, Psychological Science, vol.15, issue.12, pp.822-828, 2004.

J. M. Otis, V. M. Namboodiri, A. M. Matan, E. S. Voets, E. P. Mohorn et al., Prefrontal cortex output circuits guide reward seeking through divergent cue encoding, Nature, vol.543, issue.7643, pp.103-107, 2017.

S. Pai, J. C. Erlich, C. Kopec, and C. D. Brody, Minimal impairment in a rat model of duration discrimination following excitotoxic lesions of primary auditory and prefrontal cortices, Frontiers in Systems Neuroscience, vol.5, p.74, 2011.

L. M. Palmer, A. S. Shai, J. E. Reeve, H. L. Anderson, O. Paulsen et al., NMDA spikes enhance action potential generation during sensory input, Nature Neuroscience, vol.17, issue.3, pp.383-390, 2014.

E. Pastalkova, V. Itskov, A. Amarasingham, and G. Buzsáki, Internally generated cell assembly sequences in the rat hippocampus, Science, issue.5894, pp.1322-1329, 2008.

. Pavlov, Conditioned Reflexes, an investigation of the psychological activity of the cerebral cortex, 1927.

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, 2007.

T. Peri, G. Ben-shakhar, S. P. Orr, and A. Y. Shalev, Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder, Biological Psychiatry, vol.47, issue.6, pp.512-521, 2000.

C. Portera-cailliau, D. T. Pan, and R. Yuste, Activity-Regulated Dynamic Behavior of Early Dendritic Protrusions: Evidence for Different Types of Dendritic Filopodia, Journal of Neuroscience, vol.23, issue.18, pp.7129-7142, 2003.

G. Pouchelon, F. Gambino, C. Bellone, L. Telley, I. Vitali et al., Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons, Nature, vol.511, issue.7510, pp.471-474, 2014.

G. J. Quirk and J. L. Armony, Fear Conditioning Enhances Different Temporal Components of Tone-Evoked Spike Trains in Auditory Cortex and Lateral Amygdala, Neuron, vol.19, pp.613-624, 1997.

G. J. Quirk and D. Mueller, Neural Mechanisms of Extinction Learning and Retrieval, Neuropsychopharmacology Reviews, vol.33, pp.56-72, 2008.

G. J. Quirk, J. C. Repa, and J. E. Ledoux, Fear Conditioning Enhances Short-Latency Auditory Responses of Lateral Amygdala Neurons: Parallel Recordings in the Freely Behaving Rat, Neuron, vol.15, pp.1029-1039, 1995.

P. Rajasethupathy, S. Sankaran, J. H. Marshel, C. K. Kim, E. Ferenczi et al., Projections from neocortex mediate top-down control of memory retrieval, Nature, vol.526, issue.7575, pp.653-662, 2015.

L. G. Reijmers, B. L. Perkins, N. Matsuo, and M. Mayford, Localization of a Stable Neural Correlate of Associative Memory, Science, issue.5842, pp.1230-1233, 2007.

R. A. Rescorla and R. L. Solomon, Two-process learning theory: relationships between pavlovian conditioning and instrumental learning, Psychlogical Review, issue.3, p.74, 1967.

J. Resnik, N. Sobel, and R. Paz, Auditory aversive learning increases discrimination thresholds, Nature Neuroscience, vol.14, issue.6, pp.791-796, 2011.

M. S. Rioult-pedotti, D. Friedman, and J. P. Donoghue, Learning-induced LTP in neocortex, Science, issue.5491, pp.533-539, 2000.

T. Rogerson, D. J. Cai, A. Frank, Y. Sano, J. Shobe et al., Synaptic tagging during memory allocation, Nature Reviews Neuroscience, vol.15, issue.3, pp.157-169, 2014.

L. M. Romanski, M. Clugnet, F. Bordi, and J. E. Ledoux, Somatosensory and Auditory Convergence in the Lateral Nucleus of the Amygdala, Behavioral Neuroscience, vol.107, issue.3, pp.444-450, 1993.

B. Rudy, G. Fishell, S. Lee, and J. Hjerling-leffler, Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons, Developmental Neurobiology, vol.71, issue.1, pp.45-61, 2011.

F. T. Russchen, D. G. Amaral, and J. L. Price, The Afferent Input to the Magnocellular Division of the Mediodorsal Thalamic Nucleus in the Monkey, Macaca fascicularis, The Journal of Comparative Neurology, vol.256, pp.175-210, 1987.

B. Sacchetti, E. Baldi, C. A. Lorenzini, and C. Bucherelli, Differential contribution of some cortical sites to the formation of memory traces supporting fear conditioning, Exp Brain Res, vol.146, pp.223-232, 2002.

B. Sacchetti, E. Baldi, C. A. Lorenzini, and C. Bucherelli, Role of the neocortex in consolidation of fear conditioning memories in rats, Exp Brain Res, vol.152, pp.323-328, 2003.

S. Sachidhanandam, V. Sreenivasan, A. Kyriakatos, Y. Kremer, and C. C. Petersen, Membrane potential correlates of sensory perception in mouse barrel cortex, Nature Neuroscience, vol.16, issue.11, pp.6-7, 2013.

A. Sahay, K. N. Scobie, A. S. Hill, C. M. O-'carroll, M. A. Kheirbek et al., Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation, Nature, p.472, 2011.
DOI : 10.1038/nature09817

URL : http://europepmc.org/articles/pmc3084370?pdf=render

A. Sahay, D. A. Wilson, and R. Hen, Pattern Separation: A Common Function for New Neurons in Hippocampus and Olfactory Bulb, vol.70, pp.582-588, 2011.
DOI : 10.1016/j.neuron.2011.05.012

URL : https://doi.org/10.1016/j.neuron.2011.05.012

C. D. Salzman and S. Fusi, Emotion, cognition, and mental state representation in amygdala and prefrontal cortex, Annual Review of Neuroscience, vol.33, pp.173-202, 2010.
DOI : 10.1146/annurev.neuro.051508.135256

URL : http://europepmc.org/articles/pmc3108339?pdf=render

S. Sangha, J. Z. Chadick, and P. H. Janak, Safety Encoding in the Basal Amygdala, Journal of Neuroscience, vol.33, issue.9, pp.3744-3751, 2013.
DOI : 10.1523/jneurosci.3302-12.2013

URL : http://www.jneurosci.org/content/33/9/3744.full.pdf

M. Sato, M. Ito, M. Nagase, Y. K. Sugimura, Y. Takahashi et al., The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice, Molecular Brain, vol.5, p.9, 2012.

C. Sau, W. Lai, T. F. Franke, and W. Gan, Opposite effects of fear conditioning and extinction on dendritic spine remodelling, Nature, p.482, 2012.

G. Scala, M. Di, M. J. Jacobs, A. G. Phillipst, D. Scala et al., Evidence of Pavlovian Conditioned Fear Following Electrical Stimulation of the Periaqueductal Grey in the Rat I, Physiology & Behavior, vol.40, pp.55-63

D. Schiller, C. K. Cain, N. G. Curley, J. S. Schwartz, S. A. Stern et al., Evidence for recovery of fear following immediate extinction in rats and humans, Learning & Memory, vol.15, pp.394-402, 2008.

J. Schiller, G. Major, H. J. Koester, and Y. Schiller, NMDA spikes in basal dendrites, pp.285-289, 1997.
DOI : 10.1038/35005094

J. Schiller, Y. Schiller, G. Stuart, and B. Sakmann, Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons, Journal of Physiology, vol.505, issue.3, pp.605-616, 1997.
DOI : 10.1111/j.1469-7793.1997.605ba.x

URL : https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-7793.1997.605ba.x

V. Senn, S. B. Wolff, C. Herry, F. O. Grenier, I. Ehrlich et al., Long-Range Connectivity Defines Behavioral Specificity of Amygdala Neurons, Neuron, vol.81, pp.428-437, 2014.
DOI : 10.1016/j.neuron.2013.11.006

URL : https://doi.org/10.1016/j.neuron.2013.11.006

S. Campeau and M. Davis, Involvement of the Central Nucleus and Basolateral Complex of the Amygdala in Fear Conditioning Measured with FearPotentiated Startle in Rats Trained Concurrently with Auditory and Visual Conditioned Stimuli, Journal of Neuroscience, vol.15, issue.3, pp.2301-2311, 1995.

C. Shi and M. Davis, Pain Pathways Involved in Fear Conditioning Measured with Fear-Potentiated Startle: Lesion Studies, Journal of Neuroscience, vol.19, issue.1, pp.420-430, 1999.
DOI : 10.1523/jneurosci.19-01-00420.1999

URL : http://www.jneurosci.org/content/19/1/420.full.pdf

S. Shi, Y. Li, and G. P. Mcnally, The conditions that promote fear learning: Prediction error and Pavlovian fear conditioning, Neurobiology of Learning and Memory, vol.108, pp.14-21, 2014.

D. Sierra-mercado, N. Padilla-coreano, and G. J. Quirk, Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear, Neuropsychopharmacology, vol.36, issue.2, pp.529-567, 2011.

K. E. Sorra and K. M. Harris, Overview on the Structure, Composition, Function, Development, and Plasticity of Hippocampal Dendritic Spines, Hippocampus, vol.10, pp.501-511, 2000.

J. M. Stujenske, E. Likhtik, M. A. Topiwala, and J. A. Gordon, Fear and Safety Engage Competing Patterns of Theta-Gamma Coupling in the Basolateral Amygdala, Neuron, vol.83, issue.4, pp.919-933, 2014.

J. H. Sul, S. Jo, D. Lee, and M. W. Jung, Role of rodent secondary motor cortex in value-based action selection, Nature Neuroscience, vol.14, issue.9, pp.1202-1208, 2011.
DOI : 10.1038/nn.2881

URL : http://europepmc.org/articles/pmc3164897?pdf=render

G. M. Sullivan, J. Apergis, D. E. Bush, L. R. Johnson, M. Hou et al., Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus, Neuroscience, vol.128, pp.7-14, 2004.

N. Sun and M. D. Cassell, Intrinsic GABAergic Neurons in the Rat Central Extended Amygdala, The journal comparative neurology, vol.0, pp.33-381, 1993.

K. Svoboda, J. Tang, S. Ko, H. Ding, C. Qiu et al., Do spines and dendrites distribute dye evenly? Trends Neuroscience, vol.27, pp.445-446, 2004.

P. Swanson, What is the amygdala? Trends Neuroscience, vol.21, pp.323-331, 1998.

E. L. Thorndike, Animal Intelligence: An Experimental Study of the Associative Processes in Animals, Psychological Review, vol.5, issue.5, pp.551-553, 1898.

L. Tian, S. A. Hires, and L. L. Looger, Imaging Neuronal Activity with Genetically Encoded Calcium Indicators, Cold Spring Harbor Protocols, vol.6, pp.647-656, 2012.

S. Tonegawa, X. Liu, S. Ramirez, and R. Redondo, Perspective Memory Engram Cells Have Come of Age, Neuron, vol.87, pp.918-931, 2015.

P. Tovote, J. P. Fadok, and A. Lüthi, Neuronal circuits for fear and anxiety, Nature Reviews Neuroscience, vol.16, issue.6, pp.317-331, 2015.

D. Tropea, A. K. Majewska, R. Garcia, and M. Sur, Development/Plasticity/Repair Structural Dynamics of Synapses in Vivo Correlate with Functional Changes during Experience-Dependent Plasticity in Visual Cortex, Journal of Neuroscience, vol.30, issue.33, pp.11086-11095, 2010.

H. B. Uylings, H. J. Groenewegen, and B. Kolb, Do rats have a prefrontal cortex, Behavioural Brain Research, vol.146, pp.3-17, 2003.

G. R. Van-de-werd and H. B. Evers, Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse, Brain Struct Funct, vol.214, pp.339-353, 2010.

D. Van-der-kooy, L. Y. Koda, J. F. Mcginty, C. R. Gerfen, and F. E. Bloom, The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat, The Journal of Comparative Neurology, vol.224, issue.1, pp.1-24, 1984.

I. Vidal-gonzalez, B. Vidal-gonzalez, S. L. Rauch, and G. J. Quirk, Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear, Learning & Memory, issue.6, pp.728-761, 2006.

J. B. Watson and R. Rayner, Conditioned Emotional Reactions, American Journal of Psychology, vol.28, pp.163-174, 1917.

N. M. Weinberger, The medial geniculate, not the amygdala, as the root of auditory fear conditioning, Hearing Research, vol.274, pp.61-74, 2011.

M. T. Wiechert, B. Judkewitz, H. Riecke, and R. W. Friedrich, Mechanisms of pattern decorrelation by recurrent neuronal circuits, Nature Neuroscience, vol.13, issue.8, pp.1003-1010, 2010.

D. A. Wilson, Pattern Separation and Completion in Olfaction, Ann. N.Y. Acad. Sci, vol.1170, pp.306-312, 2009.

N. Xu, M. T. Harnett, S. R. Williams, D. Huber, D. H. O'connor et al., Nonlinear dendritic integration of sensory and motor input during an active sensing task, Nature, vol.492, issue.7428, pp.247-51, 2012.

T. Xu, X. Yu, A. J. Perlik, W. F. Tobin, J. A. Zweig et al., Rapid formation and selective stabilization of synapses for enduring motor memories, Nature, vol.462, pp.915-919, 2009.

G. Yang, F. Pan, and W. Gan, Stably maintained dendritic spines are associated with lifelong memories, Nature, vol.462, pp.920-924, 2009.

Q. Zhou, K. J. Homma, and M. Poo, Report Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses, Neuron, vol.44, pp.749-757, 2004.

Y. Zhou, J. Won, M. G. Karlsson, M. Zhou, T. Rogerson et al., CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala, Nature Neuroscience, vol.12, issue.11, pp.1438-1443, 2009.

J. E. Ledoux, Emotion Circuits in the Brain, Annu. Rev. Neurosci, vol.23, pp.155-184, 2000.

E. Likhtik and R. Paz, Amygdala-prefrontal interactions in (mal)adaptive learning, Trends in Neurosciences, vol.38, pp.158-166, 2015.
DOI : 10.1016/j.tins.2014.12.007

URL : http://europepmc.org/articles/pmc4352381?pdf=render

T. Peri, G. Ben-shakhar, S. P. Orr, and A. Y. Shalev, Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder, Biol. Psychiatry, vol.47, pp.512-521, 2000.
DOI : 10.1016/s0006-3223(99)00144-4

URL : http://homepage.psy.utexas.edu/homepage/faculty/Salinas/PTSD.BioPsychia/16PavlovCond.pdf

J. Courtin, Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression, Nature, vol.505, pp.92-98, 2014.
DOI : 10.1038/nature12755

URL : https://hal.archives-ouvertes.fr/hal-01155132

N. Karalis, 4-Hz oscillations synchronize prefrontal?amygdala circuits during fear behavior, Nat. Neurosci, vol.19, pp.605-612, 2016.
DOI : 10.1038/nn.4251

URL : http://europepmc.org/articles/pmc4843971?pdf=render

C. Dejean, Prefrontal neuronal assemblies temporally control fear behaviour, Nature, vol.535, pp.420-424, 2016.
DOI : 10.1038/nature18630

W. Li, J. D. Howard, T. B. Parrish, and J. A. Gottfried, Aversive Learning Enhances Perceptual and Cortical Discrimination of Indiscriminable Odor Cues, Science, vol.319, pp.1842-1845, 2008.
DOI : 10.1126/science.1152837

URL : http://europepmc.org/articles/pmc2756335?pdf=render

J. Resnik, N. Sobel, and R. Paz, Auditory aversive learning increases discrimination thresholds, Nat. Neurosci, vol.14, pp.791-796, 2011.
DOI : 10.1038/nn.2802

E. Likhtik, J. M. Stujenske, M. A. Topiwala, A. Z. Harris, and J. A. Gordon, Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety, Nat. Neurosci, vol.17, pp.106-119, 2014.
DOI : 10.1038/nn.3582

URL : http://europepmc.org/articles/pmc4035371?pdf=render

J. M. Stujenske, E. Likhtik, M. A. Topiwala, and J. A. Gordon, Fear and Safety Engage Competing Patterns of Theta-Gamma Coupling in the Basolateral Amygdala, Neuron, vol.83, pp.919-933, 2014.

V. Senn, Long-range connectivity defines behavioral specificity of amygdala neurons, Neuron, vol.81, pp.428-465, 2014.
DOI : 10.1016/j.neuron.2013.11.006

URL : https://doi.org/10.1016/j.neuron.2013.11.006

D. Sierra-mercado, N. Padilla-coreano, and G. J. Quirk, Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear, Neuropsychopharmacology, vol.36, pp.529-567, 2011.

J. Courtin, Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression, Nature, vol.505, pp.92-96, 2013.
DOI : 10.1038/nature12755

URL : https://hal.archives-ouvertes.fr/hal-01155132

I. Vidal-gonzalez, B. Vidal-gonzalez, S. L. Rauch, and G. J. Quirk, Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear, Learn. Mem, vol.13, pp.728-761, 2006.

L. G. Reijmers, B. L. Perkins, N. Matsuo, and M. Mayford, Localization of a Stable Neural Correlate of Associative Memory, Science, vol.317, pp.1230-1233, 2007.

S. Manita, A Top-Down Cortical Circuit for Accurate Sensory Perception, Neuron, vol.86, pp.1304-1316, 2015.
DOI : 10.1016/j.neuron.2015.05.006

URL : https://doi.org/10.1016/j.neuron.2015.05.006

P. Rajasethupathy, Projections from neocortex mediate top-down control of memory retrieval, Nature, vol.526, pp.653-662, 2015.
DOI : 10.1038/nature15389

URL : http://europepmc.org/articles/pmc4825678?pdf=render

T. Kitamura, Engrams and circuits crucial for systems consolidation of a memory, Science, vol.356, pp.73-78, 2017.
DOI : 10.1126/science.aam6808

URL : http://europepmc.org/articles/pmc5493329?pdf=render

J. M. Otis, Prefrontal cortex output circuits guide reward seeking through divergent cue encoding, Nature, vol.543, pp.103-107, 2017.
DOI : 10.1038/nature21376

URL : http://europepmc.org/articles/pmc5772935?pdf=render

A. Holtmaat and P. Caroni, Functional and structural underpinnings of neuronal assembly formation in learning, Nat. Neurosci, vol.19, pp.1553-1562, 2016.

T. Komiyama, Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice, Nature, vol.464, pp.1182-1188, 2010.
DOI : 10.1038/nature08897

J. H. Sul, S. Jo, D. Lee, and M. W. Jung, Role of rodent secondary motor cortex in value-based action selection, Nat. Neurosci, vol.14, pp.1202-1210, 2011.
DOI : 10.1038/nn.2881

URL : http://europepmc.org/articles/pmc3164897?pdf=render

C. S. Lai, T. F. Franke, and W. Gan, Opposite effects of fear conditioning and extinction on dendritic spine remodelling, Nature, vol.483, pp.87-91, 2012.
DOI : 10.1038/nature10792

D. Nakayama, Frontal association cortex is engaged in stimulus integration during associative learning, Curr. Biol, 2015.
DOI : 10.1016/j.cub.2014.10.078

URL : https://doi.org/10.1016/j.cub.2014.10.078

B. Sacchetti, E. Baldi, C. A. Lorenzini, and C. Bucherelli, Differential contribution of some cortical sites to the formation of memory traces supporting fear conditioning, Exp. brain Res, vol.146, pp.223-255, 2002.

H. B. Uylings, H. J. Groenewegen, and B. Kolb, Do rats have a prefrontal cortex?, Behavioural Brain Research, 2003.
DOI : 10.1016/j.bbr.2003.09.028

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, 2007.

A. J. Mcdonald, Organization of amygdaloid projections to the mediodorsal thalamus and prefrontal cortex: a fluorescence retrograde transport study in the rat, J. Comp. Neurol, vol.262, pp.46-58, 1987.

F. Mátyás, J. Lee, H. Shin, and L. Acsády, The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala, Eur. J. Neurosci, vol.39, pp.1810-1833, 2014.

K. L. Briggman and W. B. Kristan, Multifunctional pattern-generating circuits, Annu. Rev. Neurosci, vol.31, pp.271-94, 2008.
DOI : 10.1146/annurev.neuro.31.060407.125552

C. D. Harvey, P. Coen, and D. W. Tank, Choice-specific sequences in parietal cortex during a virtual-navigation decision task, Nature, vol.484, pp.62-70, 2012.
DOI : 10.1038/nature10918

URL : http://europepmc.org/articles/pmc3321074?pdf=render

F. Gambino, Sensory-evoked LTP driven by dendritic plateau potentials in vivo, Nature, vol.515, 2014.
DOI : 10.1038/nature13664

C. D. Harvey, P. Coen, and D. W. Tank, Choice-specific sequences in parietal cortex during a virtual-navigation decision task, Nature, vol.484, pp.62-70, 2012.
DOI : 10.1038/nature10918

URL : http://europepmc.org/articles/pmc3321074?pdf=render

S. Cheng and L. Frank, New experiences enhance coordinated neural activity in the hippocampus, Neuron, vol.57, pp.303-316, 2008.
DOI : 10.1016/j.neuron.2007.11.035

URL : https://doi.org/10.1016/j.neuron.2007.11.035

M. T. Wiechert, B. Judkewitz, H. Riecke, and R. W. Friedrich, Mechanisms of pattern decorrelation by recurrent neuronal circuits, Nat. Neurosci, vol.13, pp.1003-1010, 2010.
DOI : 10.1038/nn.2591

J. K. Leutgeb, S. Leutgeb, M. Moser, and E. I. Moser, Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus. Science, vol.315, pp.961-966, 2007.

O. Gschwend, Neuronal pattern separation in the olfactory bulb improves odor discrimination learning, Nat. Neurosci, vol.18, pp.1474-1482, 2015.
DOI : 10.1038/nn.4089

URL : http://europepmc.org/articles/pmc4845880?pdf=render

B. Y. Chow, High-performance genetically targetable optical neural silencing by light-driven proton pumps, Nature, vol.463, pp.98-102, 2010.
DOI : 10.1038/nature08652

URL : http://europepmc.org/articles/pmc2939492?pdf=render

F. Gambino and A. Holtmaat, Spike-timing-dependent potentiation of sensory surround in the somatosensory cortex is facilitated by deprivation-mediated disinhibition, Neuron, vol.75, pp.490-502, 2012.

L. M. Palmer, NMDA spikes enhance action potential generation during sensory input, Nat. Neurosci, vol.17, pp.383-390, 2014.

M. S. Rioult-pedotti, D. Friedman, and J. P. Donoghue, Learning-induced LTP in neocortex, Science, vol.290, pp.533-539, 2000.

J. Basu, Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science (80-. ), vol.351, pp.5694-5694, 2016.

S. Sangha, J. Z. Chadick, and P. H. Janak, Safety Encoding in the Basal Amygdala, J. Neurosci, vol.33, pp.3744-3751, 2013.

M. Larkum, A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex, Trends Neurosci, vol.36, pp.141-51, 2013.

O. Klavir, M. Prigge, A. Sarel, R. Paz, and O. Yizhar, Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex, Nat. Neurosci, vol.20, pp.836-844, 2017.

M. Lavzin, S. Rapoport, A. Polsky, L. Garion, and J. Schiller, Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo, Nature, vol.490, pp.397-401, 2012.

N. Xu, Nonlinear dendritic integration of sensory and motor input during an active sensing task, Nature, vol.492, pp.247-51, 2012.

F. Brandalise, S. Carta, F. Helmchen, J. Lisman, and U. Gerber, Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells, Nat. Commun, vol.7, p.13480, 2016.

J. P. Johansen, Optical activation of lateral amygdala pyramidal cells instructs associative fear learning, Proc. Natl. Acad. Sci, vol.107, pp.12692-12697, 2010.

G. Buzsaki and A. Draguhn, Neuronal Oscillations in Cortical Networks. Science (80-. ), vol.304, pp.1926-1929, 2004.

J. P. Johansen, Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation, Proc. Natl. Acad. Sci, vol.111, pp.5584-5592, 2014.

T. S. Hnasko, Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.8858-63, 2006.

D. Barrett, J. Shumake, D. Jones, and F. Gonzalez-lima, Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response, J. Neurosci, vol.23, pp.5740-5749, 2003.

A. Gdalyahu, Associative fear learning enhances sparse network coding in primary sensory cortex, Neuron, vol.75, pp.121-153, 2012.

J. L. Mcgaugh, Making lasting memories: remembering the significant, Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.2, pp.10402-10409, 2013.

A. Mizrahi, A. Shalev, and I. Nelken, Single neuron and population coding of natural sounds in auditory cortex, Curr. Opin. Neurobiol, vol.24, pp.103-110, 2014.

, after (sessions 4-6, grey circles) fear conditioning. Each circle represents a mouse. Squares represent averages. Error bars, sd. noise pips, 50 ms, 0.9 Hz for 30 s) were positively (blue, CS+, 8 kHz) or negatively

, Spectral properties of auditory stimulation. b, Example raster plots (top) and peristimulus time histograms (bottom, bin size: 1 s) showing the heterogeneity of neuronal activity among successive auditory stimuli. Each square represents a detected calcium transient. Red and blue bars represent CS-and CS+ epochs

, CS-specific (red), and non-specific (grey, responding to both CS+ and CS-)Effect of fear conditioning (FC) on cumulative PSPs change. Same representation as in e (left) and f (right). (CS-naive, Neurons were categorized as non responding (black), CS+ specific (blue)

*. , post-hoc Holm-Sidak test). Left, error bars, sem. b, Effect of dAP5 and fear conditioning (FC) on cellular discrimination between CS-and CS+ (naive, p.10

*. , , pp.post-hoc

. Holm, Sidak test). c, Linear relationship between mean cellular discrimination and CS+ evoked freezing response following fear conditioning (n=5 mice

, Each circle represents a cell (n=8), each square represents a mouse (n=5). the Paxinos atlas. d, Left, example of a cortical slice with ChR2-GFP fluorescence in the FrA. PL, prelimbic cortex; IL

C. Zhang, M. Aime, E. Laheranne, X. Houbaert, H. E. Oussini et al., Pierre Billuart and Yann Humeau. errors" (VTE) behaviours, the occurrence of which strongly correlate with the success rate, 2008.

. Taylor, Meanwhile, some form of PKAdependent plasticity has been described at hippocampus-PFC projections, rodents, SWM performance is altered in excessive, but not in depressed PKA activity, 1999.

. Rolls, mM: 140 K-gluconate, 5 QX314-Cl, 10 HEPES, 10 phosphocreatine, 4 Mg-ATP and 0.3 Na-GTP (pH adjusted to 7.25 with KOH, 295 mOsm) and Cs-methylsulfonate based, It was also suggested that PKA activity could influence the signal-to-noise ratio within PFC networks, physiologically relaying the dopaminergic activation, 2008.

, Adeno-associated viruses (AAV2/9.CAG.ChR2-Venus.W.SV40-p1468, ref Addgene

, CA) under continuous anaesthesia with isoflurane. During the surgery, the mice were warmed on a 33-35°C heating pad. The virus was bilaterally pressureinjected through glass pipettes (Hirschmann Laborgerate, ringcaps, tips pulled O.D hippocampal region (Humeau lab, data not shown). As for above-mentioned experiments, mg/kg, i.p), and positioned in a stereotaxic apparatus

A. Arnsten, B. P. Ramos, S. G. Birnbaum, and J. R. Taylor, Protein kinase A as a therapeutic target for memory disorders: rationale and challenges, Trends Mol Med, vol.11, pp.121-128, 2005.

K. Benchenane, A. Peyrache, M. Khamassi, P. L. Tierney, Y. Gioanni et al., Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning, Neuron, vol.66, pp.921-936, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00554482

P. Billuart, T. Bienvenu, N. Ronce, V. Portes-des, M. C. Vinet et al., Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation, Nature, vol.392, pp.923-926, 1998.

D. Prisco, G. V. Huang, W. Buffington, S. A. Hsu, C. Bonnen et al., Translational control of mGluR-dependent long-term depression and object-place learning by eIF2?, Nat Neurosci, vol.17, pp.1073-1082, 2014.

D. Diviani, L. Baisamy, and A. Appert-collin, AKAP-Lbc: a molecular scaffold for the integration of cyclic AMP and Rho transduction pathways, Eur J Cell Biol, vol.85, pp.603-610, 2006.

H. M. Geurts, H. M. Geurts, S. Verté, S. Verté, J. Oosterlaan et al., How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism?, J Child Psychol Psychiatry, vol.45, pp.836-854, 2004.

J. A. Gordon, Oscillations and hippocampal-prefrontal synchrony, Curr Opin Neurobiol, vol.21, pp.486-491, 2011.

X. Houbaert, C. L. Zhang, F. Gambino, M. Lepleux, M. Deshors et al., Target-Specific Vulnerability of Excitatory Synapses Leads to Deficits in Associative Memory in a Model of Intellectual Disorder, Journal of Neuroscience, vol.33, pp.13805-13819, 2013.

Y. Humeau, C. Herry, N. Kemp, H. Shaban, E. Fourcaudot et al., Dendritic Spine Heterogeneity Determines Afferent-Specific Hebbian Plasticity in the Amygdala, Neuron, vol.45, pp.119-131, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00094000

T. M. Jay, H. Gurden, and T. Yamaguchi, Rapid increase in PKA activity during longterm potentiation in the hippocampal afferent fibre system to the prefrontal cortex in vivo, Eur J Neurosci, vol.10, pp.3302-3306, 1998.

R. P. Kesner and J. C. Churchwell, An analysis of rat prefrontal cortex in mediating executive function, Neurobiol Learn Mem, vol.96, pp.417-431, 2011.

M. Khelfaoui, C. Denis, E. Van-galen, F. De-bock, A. Schmitt et al., Loss of X-linked mental retardation gene oligophrenin1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity, J Neurosci, vol.27, pp.9439-9450, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00165072

M. Khelfaoui, F. Gambino, X. Houbaert, B. Ragazzon, C. Müller et al., Lack of the presynaptic RhoGAP protein oligophrenin1 leads to cognitive disabilities through dysregulation of the cAMP/PKA signalling pathway, Philos Trans R Soc Lond, B, Biol Sci, vol.369, 2014.

S. Laroche, S. Davis, and T. M. Jay, Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation, Hippocampus, vol.10, pp.438-446, 2000.

H. Meziane, M. Khelfaoui, N. Morello, B. Hiba, E. Calcagno et al., Fasudil treatment in adult reverses behavioural changes and brain ventricular enlargement in Oligophrenin-1 mouse model of intellectual disability, Human Molecular Genetics, vol.25, pp.2314-2323, 2016.

N. Kasri, N. Nakano-kobayashi, A. Malinow, R. Li, B. Van-aelst et al., The Rholinked mental retardation protein oligophrenin-1 controls synapse maturation and plasticity by stabilizing AMPA receptors, Genes Dev, vol.23, pp.1289-1302, 2009.

N. Kasri, N. Nakano-kobayashi, A. Van-aelst, and L. , Rapid synthesis of the Xlinked mental retardation protein OPHN1 mediates mGluR-dependent LTD through interaction with the endocytic machinery, Neuron, vol.72, pp.300-315, 2011.

A. Nakano-kobayashi, N. N. Kasri, S. E. Newey, and L. Van-aelst, The Rho-linked mental retardation protein OPHN1 controls synaptic vesicle endocytosis via endophilin A1, Curr Biol, vol.19, pp.1133-1139, 2009.

A. Nakano-kobayashi, Y. Tai, N. N. Kasri, and L. Van-aelst, The X-linked mental retardation protein OPHN1 interacts with Homer1b/c to control spine endocytic zone positioning and expression of synaptic potentiation, Journal of Neuroscience, vol.34, pp.8665-8671, 2014.

K. A. Newell-litwa, K. A. Newell-litwa, A. R. Horwitz, and A. R. Horwitz, Cell migration: PKA and RhoA set the pace, Curr Biol, vol.21, pp.596-598, 2011.

N. Nusser, E. Gosmanova, N. Makarova, Y. Fujiwara, L. Yang et al., Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth, Cell Signal, vol.18, pp.704-714, 2006.

A. Piton, Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia, Mol Psychiatry, vol.16, pp.867-880, 2011.

A. D. Powell, K. K. Gill, P. Saintot, P. Jiruska, J. Chelly et al., Rapid reversal of impaired inhibitory and excitatory transmission but not spine dysgenesis in a mouse model of mental retardation, The Journal of Physiology, vol.590, pp.763-776, 2012.

A. D. Redish, Vicarious trial and error, Nat Rev Neurosci, vol.17, pp.147-159, 2016.

E. T. Rolls, E. T. Rolls, M. Loh, M. Loh, G. Deco et al., Computational models of schizophrenia and dopamine modulation in the prefrontal cortex, Nat Rev Neurosci, vol.9, pp.696-709, 2008.

C. Sumiyoshi, Y. Kawakubo, M. Suga, T. Sumiyoshi, and K. Kasai, Impaired ability to organize information in individuals with autism spectrum disorders and their siblings, Neurosci Res, vol.69, pp.252-257, 2011.

J. R. Taylor, S. Birnbaum, R. Ubriani, and A. F. Arnsten, Activation of cAMP-dependent protein kinase A in prefrontal cortex impairs working memory performance, Journal of Neuroscience, vol.19, p.23, 1999.

H. Van-bokhoven, Genetic and epigenetic networks in intellectual disabilities, Annu Rev Genet, vol.45, pp.81-104, 2011.

G. Wang and J. Cai, Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats, Behav Brain Res, vol.175, pp.329-336, 2006.

Y. Wang, Y. Chen, M. Chen, and W. Xu, AKAPs competing peptide HT31 disrupts the inhibitory effect of PKA on RhoA activity, Oncol Rep, vol.16, pp.755-761, 2006.

A. M. Wikenheiser and A. D. Redish, Hippocampal theta sequences reflect current goals, Nat Neurosci, vol.18, pp.289-294, 2015.

G. Winterer, M. Ziller, H. Dorn, K. Frick, C. Mulert et al., Schizophrenia: reduced signal-to-noise ratio and impaired phaselocking during information processing, Clin Neurophysiol, vol.111, pp.837-849, 2000.

C. Zhang, X. Houbaert, M. Lepleux, M. Deshors, N. E. Gambino et al., The hippocampo-amygdala control of contextual fear expression is affected in a model of intellectual disability, Brain Struct Funct, vol.220, pp.3673-3682, 2015.