C. , Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci, vol.102, pp.29-45, 1962.

P. B. Daniels, Surface plasmon resonance applied to immunosensing, Sensors and Actuators, vol.15, pp.11-18, 1988.

Y. Zhang and S. Tadigadapa, Calorimetric biosensors with integrated microfluidic channels

, Biosens. Bioelectron, vol.19, pp.1733-1743, 2004.

G. G. Guilbault, A piezoelectric immunobiosensor for atrazine in drinking water, Biosens. Bioelectron, vol.7, pp.411-419, 1992.

A. Heller, Amperometric biosensors, Current Opinion in Biotechnology, vol.7, pp.50-54, 1996.

G. S. and S. , Biosensors: A Modern Day Achievement, J. Instrum. Technol, vol.2, pp.26-39, 2014.

E. Palecek and M. Fojta, Electrochemical DNA Sensors. Bioelectron. From Theory to Appl, vol.21, pp.127-192, 2005.

A. Chaubey and B. D. Malhotra, Mediated biosensors, Biosens. Bioelectron, vol.17, pp.441-456, 2002.

K. M. Millan and S. R. Mikkelsen, Sequence-selective biosensor for DNA based on electroactive hybridization indicators, Anal. Chem, vol.65, pp.2317-2323, 1993.

J. J. Gooding, Self-assembled monolayers into the 21st century: Recent advances and applications, Electroanalysis, vol.15, pp.81-96, 2003.

Y. Shao, Graphene based electrochemical sensors and biosensors: A review, Electroanalysis, vol.22, pp.1027-1036, 2010.

J. J. Gooding, Protein electrochemistry using aligned carbon nanotube arrays, J. Am. Chem. Soc, vol.125, pp.9006-9007, 2003.

A. Heller, Electrical wiring of redox enzymes, Acc. Chem. Res, vol.23, pp.128-134, 1990.

P. V. Bernhardt, Enzyme electrochemistry-Biocatalysis on an electrode, Aust. J. Chem, vol.59, pp.233-256, 2006.

J. Wang, Nanoparticle-based electrochemical bioassays of proteins, Electroanalysis, vol.19, pp.769-776, 2007.

F. Patolsky, Nanowire-based biosensors, Analytical Chemistry, vol.78, pp.4260-4269, 2006.

F. Patolsky, Detection, Stimulation, and Inhibitionof Neuronal Signals with HighDensityNanowire Transistor Arrays, Science, vol.313, pp.1-5, 2006.

F. Patolsky, Nanowire-Based Nanoelectronic Devices in the Life Sciences, MRS Bull, vol.32, pp.142-149, 2007.

J. Wang, Electrochemical glucose biosensors in Electrochemical Sensors, Biosensors and their Biomedical Applications, pp.57-69, 2008.

J. J. Gooding, Electrochemical DNA Hybridization Biosensors, Electroanalysis, vol.14, pp.1149-1156, 2002.

J. Wang, Electrochemical nucleic acid biosensors, Anal. Chim. Acta, vol.469, pp.63-71, 2002.

Y. Wan, Ligase-based multiple DNA analysis by using an electrochemical sensor array

, Biosens. Bioelectron, vol.24, pp.1209-1212, 2009.

G. Zeng, Gold nanoparticles/water-soluble carbon nanotubes/aromatic diamine polymer composite films for highly sensitive detection of cellobiose dehydrogenase gene, Electrochim. Acta, vol.56, pp.4775-4782, 2011.

. Alloy, , vol.21, pp.81-88, 1983.

S. Shanmugathasan, Advances in Modern Synthetic Porphyrin Chemistry, vol.56, pp.1025-1046, 2000.

A. D. Adler, On the preparation of metalloporphyrins, J. Inorg. Nucl. Chem, vol.32, pp.2443-2445, 1970.

P. D. Rao, Rational Syntheses of Porphyrins Bearing up to Four Different Meso Substituents, pp.7323-7344, 2000.

M. O. Senge, Nucleophilic Substitution as a Tool for the Synthesis of Unsymmetrical Porphyrins, vol.38, pp.733-743, 2005.

P. Rothemund, A New Porphyrin Synthesis. The Synthesis of Porphin, J. Am. Chem. Soc, vol.58, pp.625-627, 1936.

A. D. Adler, A simplified synthesis for meso-tetraphenylporphine, J. Org. Chem, vol.32, pp.476-476, 1967.

J. S. Lindsey, Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions, J. Org. Chem, vol.52, pp.827-836, 1987.

G. P. Arsenault, Pyrromethanes and Porphyrins Therefrom, J. Am. Chem. Soc, vol.82, pp.4384-4389, 1960.

M. Lv, Selective and sensitive electrochemical detection of dopamine based on watersoluble porphyrin functionalized graphene nanocomposites, vol.4, pp.9261-9270, 2014.

V. Georgakilas, Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications, Chemical Reviews, vol.112, pp.6156-6214, 2012.

G. L. Paulus, Covalent electron transfer chemistry of graphene with diazonium salts, Acc. Chem. Res, vol.46, pp.160-170, 2013.

D. E. Jiang, How do aryl groups attach to a graphene sheet?, J. Phys. Chem. B, vol.110, pp.23628-23632, 2006.

Y. Hu, Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene, Biosens. Bioelectron, vol.47, pp.45-49, 2013.

F. Liu, A selective and sensitive sensor based on highly dispersed cobalt for the detection of methyl parathion, J Solid State Electrochem, vol.20, pp.599-607, 2015.

M. Jahan, Electrocatalytically Active Graphene?Porphyrin MOF Composite for Oxygen Reduction Reaction, J. Am. Chem. Soc, vol.134, pp.6707-6713, 2012.

Y. Yang, Porphyrin Functionalized Graphene for Sensitive Electrochemical Detection of Uric Acid, Int. J. Electrochem. Sci, vol.11, pp.7370-7379, 2016.

S. Shanmugathasan, C. Edwards, and R. W. Boyle, Advances in modern synthetic porphyrin chemistry, Tetrahedron, vol.56, pp.1025-1046, 2000.

M. Varamo, B. Loock, P. Maillard, and D. S. Grierson, Development of strategies for the regiocontrolled synthesis of meso-5,10,20-triaryl-2,3-chlorins, Org. Lett, vol.9, pp.4689-4692, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00186423

K. S. Rao, Role of Peroxide Ions in Formation of Graphene Nanosheets by

, Electrochemical Exfoliation of Graphite. Sci. Rep, vol.4, pp.1-6, 2014.

Z. Xiong, Electrochemical reduction of graphene oxide films : Preparation, characterization and their electrochemical properties, Chinese Science Bulletin, vol.57, pp.3045-3050, 2012.

K. Ai, A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent, J. Mater. Chem, vol.21, pp.3365-3370, 2011.

A. Shen, Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane, Angew. Chemie Int. Ed, vol.53, pp.10804-10808, 2014.

X. Li, Highly conducting graphene sheets and Langmuir-Blodgett films, Natue Nanotechnol, vol.3, pp.1-5, 2008.
DOI : 10.1038/nnano.2008.210

URL : http://arxiv.org/pdf/0808.0502

H. Guo, A Green Approach to the Synthesis of, ACS Nano, vol.3, pp.2653-2659, 2009.

Y. Shao, Graphene based electrochemical sensors and biosensors: A review, Electroanalysis, vol.22, pp.1027-1036, 2010.
DOI : 10.1002/elan.200900571

T. Sun, Rapid electron transfer by the carbon matrix in natural pyrogenic carbon, Nat. Commun, vol.8, p.14873, 2017.
DOI : 10.1038/ncomms14873

URL : https://www.nature.com/articles/ncomms14873.pdf

A. Wang, Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance, Sci. Rep, vol.6, p.23325, 2016.

S. Stankovich, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon N. Y, vol.45, pp.1558-1565, 2007.

M. J. Mcallister, Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Chem. Mater, vol.19, pp.4396-4404, 2007.

Y. He, Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling, Nat. Chem, vol.9, pp.1-6, 2016.
DOI : 10.1038/nchem.2600

W. Zhou, Metallo-deuteroporphyrin complexes derived from heme: A homogeneous catalyst for cyclohexane oxidation, Appl. Catal. A Gen, vol.358, pp.136-140, 2009.
DOI : 10.1016/j.apcata.2009.02.003

A. Wojcik and K. P. , Reduced Graphene Oxide and Porphyrin.An Interactive Affair in 2-D\r

, ACS Nano, vol.4, pp.6697-6706, 2010.

B. Das, Changes in the electronic structure and properties of graphene induced by molecular charge-transfer, Chem. Commun, pp.5155-5157, 2008.

A. Das, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol, vol.3, pp.210-215, 2008.
DOI : 10.1038/nnano.2008.67

URL : http://arxiv.org/pdf/0709.1174

R. , A. J. , and L. , Electrochemical Methods: Fundamentals and Applications, vol.30, 2001.

J. F. Cabrita, Mixed self-assembled monolayers of Co-porphyrin and n-alkane phosphonates on gold, Surf. Sci, vol.605, pp.1409-1416, 2011.
DOI : 10.1016/j.susc.2011.05.003

D. T. Gryko and M. Tasior, Simple route to meso-substituted trans-A2B2-porphyrins bearing pyridyl units, Tetrahedron Lett, vol.44, pp.3317-3321, 2003.
DOI : 10.1016/s0040-4039(03)00620-8

A. Miodek, E-DNA Sensor of Mycobacterium tuberculosis Based on Electrochemical Assembly of Nanomaterials (MWCNTs/PPy/PAMAM), Anal. Chem, vol.87, pp.9257-9264, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201670

F. Lisdat and D. Schä-fer, The use of electrochemical impedance spectroscopy for biosensing, Anal. Bioanal. Chem, vol.391, pp.1555-1567, 2008.

Y. Hu, Decorated graphene sheets for label-free DNA impedance biosensing, Biomaterials, vol.33, pp.1097-1106, 2012.
DOI : 10.1016/j.biomaterials.2011.10.045

Q. J. Gong, A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on electrochemically reduced graphene oxide, Anal. Methods, vol.7, pp.2554-2562, 2015.

Y. Hu, Analytica Chimica Acta Simple and label-free electrochemical assay for signal-on DNA hybridization directly at undecorated graphene oxide, Anal. Chim. Acta, vol.753, pp.82-89, 2012.

S. He, Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection, Anal. Chem, vol.84, pp.4622-4627, 2012.

X. Xing, Ampli fi ed Fluorescent Sensing of DNA Using Graphene Oxide and a Conjugated Cationic Polymer, Biomacromolecules, vol.14, pp.117-123, 2013.

Y. Hu, Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets, Chem. Commun, vol.47, pp.1743-1745, 2011.

T. Yang, Synchronous electrosynthesis of poly(xanthurenic acid)-reduced graphene oxide nanocomposite for highly sensitive impedimetric detection of DNA, ACS Appl. Mater. Interfaces, vol.5, pp.3495-3499, 2013.

, DNA sensor based on H2TPP-nCP/CRGO, vol.174

Y. J. Park, A novel thermostable arylesterase from the archaeon Sulfolobus solfataricus P1: Purification, characterization, and expression, J. Bacteriol, vol.190, pp.8086-8095, 2008.

H. Q. Lê, Investigation of SPR and electrochemical detection of antigen with polypyrrole functionalized by biotinylated single-chain antibody : A review, Anal. Chim. Acta, vol.674, pp.1-8, 2010.

S. Chebil, Biosensors and Bioelectronics Electrochemical detection of d-dimer as deep vein thrombosis marker using single-chain d-dimer antibody immobilized on functionalized polypyrrole, Biosens. Bioelectron, vol.26, pp.736-742, 2010.