, La formation des manteaux COPII est régulée par le Sar1p-GTPase. L'attachement de Sar1p avec le RE requiert la liaison de GTP, processus facilité par la protéine d'échange de GTP (GEF) Sec12. Sar1p-GTP recrute les sous-complexes Sec23-Sec24p (bleu clair) du manteau COPII, ce qui permet le recrutement des protéines de cargo (vert clair), vers les sites de sorties du RE (ERES), et des protéines Sec13-Sec31p (violet), qui induisent la courbure de membrane et la formation de vésicules. L'hydrolyse du GTP de Sar1p par Sec23p a pour conséquence de désassembler le manteau COPII. La vésicule s'arrime ensuite aux membranes du ERGIC (ou cis-Golgi) par l'attachement de ses protéines, via les vésicules recouvertes de COPII

, La formation des manteaux de COPI est régulée par l'Arf1GTPase. L'interaction d'Arf1 avec l'ERGIC requiert la liaison de GTP, facilitée par les protéines GEF GBF1 ou BIG1/2. Arf1-GTP recrute les complexes de manteau de COPI (bleu foncé) du cytosol, provoquant la courbure des membranes et la formation de vésicules adressée au RE. L'hydrolyse d'Arf1-GTP, par une protéine activatrice d'Arf1-GTP (Arf-GAP), Golgi) vers le RE pour rapporter les protéines du Golgi et du ERGIC au RE, via les vésicules recouvertes de COPI, 2007.

. Puis, µL de chloroforme : alcool Isoamylique (24 :1) est ajouté dans les tubes, vortexé 1 min et laissé à température ambiante 10 min. Les tubes sont centrifugés 15 min à 4°C 12000 g

, Les ARN sont dosés au Nanodrop et leur qualité est vérifiée sur un gel d'agarose. Les tubes d'ARN sont stockés à-80°C

, Quantification d'acides nucléiques

, Quantification rapide En routine, la quantification d'acides nucléiques est soit mesurée au nanodrop ND Spectrophotometer qui permet des mesures à 230, 260 et 280 nm

, De manière occasionnelle, nous avons employé la RT-qPCR

I. Les-arn-totaux-sont-d'abord-traités-par-la-dnase and . Biolabs, M0303S) : 500 ng d'ARN totaux sont traités, dans un volume total de 5 µl, pendant 30 min, à 37°C, par la DNase I. L'inactivation de l'enzyme est réalisée en ajoutant 0,5 µl d'EDTA (5 mM) et en portant les tubes 10 min à 65°C

, Fermentas) et de dNTP (5 mM). La RevertAid Premium Reverse Transcriptase (Thermo scientifique, #EP0733), son tampon (1X) ainsi que 10 unités de Ribolock RNase Inhibitor (Thermo scientifique, #E00382) sont ajoutés aux échantillons qui sont ensuite incubés 10 min à 25°C, Ces ARN sont placés 5 minutes à 65°C en présence d'amorces aléatoires, vol.100, p.30

, min à 50°C et enfin 5 min à 85°C. Les tubes contenant les cDNA sont stockés à-20°C

. Lilly, 2010)), les amorces spécifiques de l'ARN viral, ainsi que la solution EvaGreen® (5X HOT Pol EvaGreen qPCR® Mix Plus (ROX), Euromedex) dans un volume total de 10 µl. Le thermocycleur qPCR LC480 (Roche) permet la réalisation de la qPCR, Le mélange réactionnel de qPCR contient 1,33 ng des cDNA, les amorces PDF2-5 et SAND-2 (permettant la quantification de deux gènes de référence

. Par and . Gibson-(gibson, , 2009.

, 1 unité par réaction) avec le tampon GC (Thermo F519) et avec des amorces permettant le recouvrement entre les extrémités des fragments sur au moins 25 pb. La dénaturation initiale est à 98°C (30 sec, pour la dénaturation initiale, puis 10 sec pour la dénaturation de chaque cycle), l'hybridation est dépendante du Tm des amorces (30 sec), l'élongation est réalisée à 72°C (30 sec par kb par cycle, Les fragments d'ADN à assembler sont amplifiés par PCR haute-fidélité par la Polymerase Phusion (Thermo F530S

, Les produits PCR sont déposés sur gels d'agarose pour la vérification et le prélèvement de la bande d'intérêt. Les fragments sont ensuite purifiés par un kit d'extraction sur gel d'agarose

, Au préalable , sont préparés 300 µl de mix AMM, qui comprennent l'Isothermal Reaction Buffer (IRB, concentré 5 fois, contenant 0,5 mg/µl de PEG 8000, des dNTPs à 100 mM et du NAD à 50 mM), vol.530, p.10

, en présence de MgCl2 (50 mM) et de DTT (100 mM). Ce mix est ensuite aliquoté par 15 µl et stocké à-20°C, la Taq DNA-ligase (NEB, M0208S, 1600 unités)

, Un mélange équimolaire des fragments à assembler est ajouté à un aliquot de mix AMM et l'ensemble est placé pendant 1 h à 50°C. La 5'-exonucléase est inactivée à 50°C en quelques minutes et n'élimine ainsi que quelques nucléotides en 5' des fragments d'ADN. Les régions de recouvrement des extrémités des fragments s'hybrident

, Cette technique a été employée pour générer les plasmides E17-stop69K avec les différents mutants (Figure M. 3). La liste de l'ensemble des plasmides cités se trouve en annexes

, Le culot est repris dans 10 ml de tampon I, centrifugé de nouveau (5min, 1500 g, 4°C) puis repris dans 10 ml de tampon I. La suspension bactérienne est laissée 1h dans la glace suivie d'une dernière centrifugation (5 min, 1500 g, 4°C). Le culot est repris dans 10 ml de tampon II

, MnCl2 45 mM, CaCl2 10 mM, HACoCl3 3 mM, KMes 10 mM, pH 6,3 via KOH, stérilisé par filtration sur 0, Tampon I KCl, vol.100

, RbCl 10 mM, CaCl2 75 mM, glycérol 15 % (v/v), pH 6,8 via NaOH, stérilisé par filtration sur 0, Tampon II MOPS 10 mM, vol.2

, Vérification des séquences d'ADN

, Les chromatogrammes des séquences sont vérifiés grâce au logiciel 4 peaks

, Les séquences nucléotidiques sont analysées à l'aide de Serial Cloner (version 2-6-1) Annexes

-. Clonage-dans-le-p?-ct,

, Plasmide donneur mutant (dérivé p?-EGFP-140K)

, Plasmide receveur p?-CtYFP-98K

, La séquence mutée est encadrée par les sites de restriction : BamHI (site unique) et BstEII (site unique)

, Afin d'éliminer les fragments qui ne nous intéressent pas, les plasmides seront en plus digérés :-pour les plasmides donneurs : par BglI qui clive 2 fois en 864 et 7786.-pour les plasmides receveurs : par BsiWI qui clive une fois, Le plasmide receveur p?-CtYFP-98K possède ces mêmes sites

L. Abas and C. Luschnig, Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation, Anal. Biochem, vol.401, pp.217-227, 2010.

T. Ahola and D. G. Karlin, Sequence analysis reveals a conserved extension in the capping enzyme of the alphavirus supergroup, and a homologous domain in nodaviruses, Biol. Direct, vol.10, p.16, 2015.

T. Ahola, A. Lampio, P. Auvinen, and L. Kääriäinen, Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity, EMBO J, vol.18, pp.3164-3172, 1999.

T. Ahola, P. Kujala, M. Tuittila, T. Blom, P. Laakkonen et al., Effects of Palmitoylation of Replicase Protein nsP1 on Alphavirus Infection, J. Virol, vol.74, pp.6725-6733, 2000.

B. Alberts, A. Johnson, and L. J. , Molecular Biology of the Cell, 2002.

C. Aldridge, P. Cain, R. , and C. , Protein transport in organelles: Protein transport into and across the thylakoid membrane, FEBS J, vol.276, pp.1177-1186, 2009.

K. Amari, M. Di-donato, V. V. Dolja, and M. Heinlein, Myosins VIII and XI Play Distinct Roles in Reproduction and Transport of Tobacco Mosaic Virus, PLoS Pathog, vol.10, 2014.

S. Astier, J. Albouy, H. Lecoq, M. , and Y. , Principes de virologie végétale: génome, pouvoir pathogène, 2001.

D. Bamunusinghe, C. L. Hemenway, R. S. Nelson, A. A. Sanderfoot, C. M. Ye et al., Analysis of potato virus X replicase and TGBp3 subcellular locations, Virology, vol.393, pp.272-285, 2009.

D. Barajas, Y. Jiang, and P. D. Nagy, A Unique Role for the Host ESCRT Proteins in Replication of Tomato bushy stunt virus, PLoS Pathog, vol.5, 2009.

S. Barends, H. H. Bink, S. H. Van-den-worm, C. W. Pleij, and B. Kraal, Entrapping Ribosomes for Viral Translation: tRNA Mimicry as a Molecular Trojan Horse, Cell, vol.112, pp.123-129, 2003.

G. A. Belov and F. J. Van-kuppeveld, (+)RNA viruses rewire cellular pathways to build replication organelles, Curr. Opin. Virol, vol.2, pp.740-747, 2012.

G. A. Belov, N. Altan-bonnet, G. Kovtunovych, C. L. Jackson, J. Lippincott-schwartz et al., Hijacking Components of the Cellular Secretory Pathway for Replication of Poliovirus RNA, J. Virol, vol.81, pp.558-567, 2007.

P. Boevink, K. Oparka, S. S. Cruz, B. Martin, A. Betteridge et al., Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network ?, Plant J, vol.15, pp.441-447, 1998.

G. Bibliographie-bologna, C. Yvon, S. Duvaud, and A. Veuthey, N-Terminal myristoylation predictions by ensembles of neural networks, PROTEOMICS, vol.4, pp.1626-1632, 2004.

J. A. Den-boon, A. Diaz, A. , and P. , Cytoplasmic Viral Replication Complexes, Cell Host Microbe, vol.8, pp.77-85, 2010.

J. Boyer, G. Drugeon, K. Séron, M. Morch-devignes, F. Agnès et al., In vitro transcripts of turnip yellow mosaic virus encompassing a long 3? extension or produced from a full-length cDNA clone harbouring a 2 kb-long PCR-amplified segment are infectious, Res. Virol, vol.144, pp.339-348, 1993.

C. S. Bozarth, J. J. Weiland, and T. W. Dreher, Expression of ORF-69 of turnip yellow mosaic virus is necessary for viral spread in plants, Virology, vol.187, pp.124-130, 1992.

K. L. Bransom and T. W. Dreher, Identification of the Essential Cysteine and Histidine Residues of the Turnip Yellow Mosaic Virus Protease, Virology, vol.198, pp.148-154, 1994.

K. L. Bransom, J. J. Weiland, and T. W. Dreher, Proteolytic maturation of the 206-kDa nonstructural protein encoded by turnip yellow mosaic virus RNA, Virology, vol.184, pp.351-358, 1991.

K. L. Bransom, J. J. Weiland, C. Tsai, and T. W. Dreher, Coding density of the turnip yellow mosaic virus genome: Roles of the overlapping coat protein and p206-readthrough coding regions, Virology, vol.206, pp.403-412, 1995.

K. L. Bransom, S. E. Wallace, and T. W. Dreher, Identification of the Cleavage Site Recognized by the Turnip Yellow Mosaic Virus Protease, Virology, vol.217, pp.404-406, 1996.

V. Brass, E. Bieck, R. Montserret, B. Wölk, J. A. Hellings et al., An Amino-terminal Amphipathic ?-Helix Mediates Membrane Association of the Hepatitis C Virus Nonstructural Protein 5A, J. Biol. Chem, vol.277, pp.8130-8139, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00313705

J. Burgyan, L. Rubino, and M. Russo, The 5'-terminal region of a tombusvirus genome determines the origin of multivesicular bodies, J. Gen. Virol, vol.77, pp.1967-1974, 1996.

L. Camborde, V. Tournier, M. Noizet, J. , and I. , A Turnip yellow mosaic virus infection system in Arabidopsis suspension cell culture, FEBS Lett, vol.581, pp.337-341, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00125400

L. Camborde, S. Planchais, V. Tournier, A. Jakubiec, G. Drugeon et al., The Ubiquitin-Proteasome System Regulates the Accumulation of Turnip yellow mosaic virus RNA-Dependent RNA Polymerase during Viral Infection, Plant Cell, vol.22, pp.3142-3152, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00518076

M. A. Canady, S. B. Larson, J. Day, and A. Mcpherson, Crystal structure of turnip yellow mosaic virus, Nat. Struct. Mol. Biol, vol.3, pp.771-781, 1996.

. Bibliographie,

J. E. Carette, M. Stuiver, J. Van-lent, J. Wellink, and A. Van-kammen, Cowpea Mosaic Virus Infection Induces a Massive Proliferation of Endoplasmic Reticulum but Not Golgi Membranes and Is Dependent on De Novo Membrane Synthesis, J. Virol, vol.74, pp.6556-6563, 2000.

J. Chen, A. , and P. , Brome Mosaic Virus Polymerase-Like Protein 2a Is Directed to the Endoplasmic Reticulum by Helicase-Like Viral Protein 1a, J. Virol, vol.74, pp.4310-4318, 2000.

M. Chenon, L. Camborde, S. Cheminant, J. , and I. , A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity, EMBO J, vol.31, pp.741-753, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00658377

F. Chigri, F. Hörmann, A. Stamp, D. K. Stammers, B. Bölter et al., Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.16051-16056, 2006.

T. Cho and T. W. Dreher, Encapsidation of genomic but not subgenomic Turnip yellow mosaic virus RNA by coat protein provided in trans, Virology, vol.356, pp.126-135, 2006.

Y. G. Choi and A. L. Rao, Molecular Studies on Bromovirus Capsid Protein: VII. Selective Packaging of BMV RNA4 by Specific N-Terminal Arginine Residues, Virology, vol.275, pp.207-217, 2000.

E. M. Cottam, H. J. Maier, M. Manifava, L. C. Vaux, P. Chandra-schoenfelder et al., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate, Autophagy, vol.7, pp.1335-1347, 2011.

S. Cotton, R. Grangeon, K. Thivierge, I. Mathieu, C. Ide et al., Turnip Mosaic Virus RNA Replication Complex Vesicles Are Mobile, Align with Microfilaments, and Are Each Derived from a Single Viral Genome, J. Virol, vol.83, pp.10460-10471, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00819950

X. Cui, T. Wei, R. V. Chowda-reddy, G. Sun, W. et al., The Tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments, Virology, vol.397, pp.56-63, 2010.

D. Baltimore, Expression of animal virus genomes, Bacteriol. Rev, vol.35, pp.235-241, 1971.

B. A. Deiman, K. Séron, E. M. Jaspars, and C. W. Pleij, Efficient transcription obtained by a new procedure of the tRNA-like structure of turnip yellow mosaic virus by a template-dependent and specific viral RNA polymerase, J. Virol. Methods, vol.64, pp.181-195, 1997.

B. A. Deiman, A. K. Koenen, P. W. Verlaan, and C. W. Pleij, Minimal Template Requirements for Initiation of Minus-Strand Synthesis In Vitro by the RNA-Dependent RNA Polymerase of Turnip Yellow Mosaic Virus, J. Virol, vol.72, pp.3965-3972, 1998.

. Bibliographie,

G. Deléage, R. , and B. , An algorithm for protein secondary structure prediction based on class prediction, Protein Eng, vol.1, pp.289-294, 1987.

A. Diaz, A. , and P. , Role of host reticulon proteins in rearranging membranes for positive-strand RNA virus replication, Curr. Opin. Microbiol, vol.15, pp.519-524, 2012.

A. Diaz, X. Wang, A. , and P. , Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function, Proc. Natl. Acad. Sci, vol.107, pp.16291-16296, 2010.

T. W. Dreher, Turnip yellow mosaic virus: transfer RNA mimicry, chloroplasts and a Crich genome, Mol. Plant Pathol, vol.5, pp.367-375, 2004.

T. W. Dreher, Role of tRNA-like structures in controlling plant virus replication, Virus Res, vol.139, pp.217-229, 2009.

G. Drin, J. Casella, R. Gautier, T. Boehmer, T. U. Schwartz et al., A general amphipathic ?-helical motif for sensing membrane curvature, Nat. Struct. Mol. Biol, vol.14, pp.138-146, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00171994

G. Drugeon, J. , and I. , Stability in vitro of the 69K movement protein of Turnip yellow mosaic virus is regulated by the ubiquitin-mediated proteasome pathway, J. Gen. Virol, vol.83, pp.3187-3197, 2002.

J. Dubuisson, F. Penin, and D. Moradpour, Interaction of hepatitis C virus proteins with host cell membranes and lipids, Trends Cell Biol, vol.12, pp.517-523, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00313700

P. J. Dufresne, K. Thivierge, S. Cotton, C. Beauchemin, C. Ide et al., Heat shock 70 protein interaction with Turnip mosaic virus RNAdependent RNA polymerase within virus-induced membrane vesicles, Virology, vol.374, pp.217-227, 2008.

M. Dujardin, V. Madan, R. Montserret, P. Ahuja, I. Huvent et al., A Proline-Tryptophan Turn in the Intrinsically Disordered Domain 2 of NS5A Protein Is Essential for Hepatitis C Virus RNA Replication, J. Biol. Chem, vol.290, pp.19104-19120, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221930

D. Egger, B. Wölk, R. Gosert, L. Bianchi, H. E. Blum et al., Expression of Hepatitis C Virus Proteins Induces Distinct Membrane Alterations Including a Candidate Viral Replication Complex, J. Virol, vol.76, pp.5974-5984, 2002.

F. Eisenhaber, B. Eisenhaber, W. Kubina, S. Maurer-stroh, G. Neuberger et al., Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-?, NMT and PTS1, Nucleic Acids Res, vol.31, pp.3631-3634, 2003.

M. Bibliographie-elazar, K. H. Cheong, P. Liu, H. B. Greenberg, C. M. Rice et al., Amphipathic Helix-Dependent Localization of NS5A Mediates Hepatitis C Virus RNA Replication, 2003.

, J. Virol, vol.77, pp.6055-6061

M. Elazar, P. Liu, C. M. Rice, G. , and J. S. , An N-Terminal Amphipathic Helix in Hepatitis C Virus (HCV) NS4B Mediates Membrane Association, Correct Localization of Replication Complex Proteins, and HCV RNA Replication, J. Virol, vol.78, pp.11393-11400, 2004.

D. Frishman, A. , and P. , Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence, Protein Eng, vol.9, pp.133-142, 1996.

R. Gargouri, R. L. Joshi, J. F. Bol, S. Astier-manifacier, and A. Haenni, Mechanism of synthesis of turnip yellow mosaic virus coat protein subgenomic RNA in vivo, Virology, vol.171, pp.386-393, 1989.
URL : https://hal.archives-ouvertes.fr/hal-02160173

J. Garnier, J. Gibrat, and B. Robson, GOR method for predicting protein secondary structure from amino acid sequence, vol.32, pp.540-553, 1996.

M. Garnier, R. Mamoun, and J. M. Bove, TYMV RNA replication in Vivo: Replicative intermediate is mainly single stranded, Virology, vol.104, pp.357-374, 1980.

M. Garnier, T. Candresse, and J. M. Bove, Immunocytochemical localization of TYMVcoded structural and nonstructural proteins by the protein A-gold technique, Virology, vol.151, pp.100-109, 1986.

R. Gautier, D. Douguet, B. Antonny, and G. Drin, HELIQUEST: a web server to screen sequences with specific ?-helical properties, Bioinformatics, vol.24, pp.2101-2102, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311956

C. Geourjon, D. , and G. , SOPM: a self-optimized method for protein secondary structure prediction, Protein Eng, vol.7, pp.157-164, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00313804

D. G. Gibson, L. Young, R. Chuang, J. C. Venter, C. A. Hutchison et al., Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, vol.6, pp.343-345, 2009.

R. Giegé, C. Florentz, and T. Dreher, The TYMV tRNA-like structure, Biochimie, vol.75, pp.569-582, 1993.

A. E. Gorbalenya, E. V. Koonin, A. P. Donchenko, and V. M. Blinov, Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes, Nucleic Acids Res, vol.17, pp.4713-4730, 1989.

J. Gouttenoire, V. Castet, R. Montserret, N. Arora, V. Raussens et al., Identification of a Novel Determinant for Bibliographie Membrane Association in Hepatitis C Virus Nonstructural Protein 4B, J. Virol, vol.83, pp.6257-6268, 2009.

J. Gouttenoire, R. Montserret, A. Kennel, F. Penin, and D. Moradpour, An Amphipathic ?-Helix at the C Terminus of Hepatitis C Virus Nonstructural Protein 4B Mediates Membrane Association, J. Virol, vol.83, pp.11378-11384, 2009.

J. Gouttenoire, P. Roingeard, F. Penin, and D. Moradpour, Amphipathic ?-Helix AH2 Is a Major Determinant for the Oligomerization of Hepatitis C Virus Nonstructural Protein 4B, J. Virol, vol.84, pp.12529-12537, 2010.

J. Gouttenoire, R. Montserret, D. Paul, R. Castillo, S. Meister et al., Aminoterminal amphipathic ?-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production, PLoS Pathog, vol.10, p.1004501, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01140482

R. Grangeon, M. Agbeci, J. Chen, G. Grondin, H. Zheng et al., Impact on the Endoplasmic Reticulum and Golgi Apparatus of Turnip Mosaic Virus Infection, J. Virol, vol.86, pp.9255-9265, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01007576

N. J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nat. Protoc, vol.1, pp.2876-2890, 2006.

Y. Guermeur and P. Gallinari, Combinaison de Classifieurs Statistiques, Application à la Prédiction de la Structure Secondaire des Protéines = Statistical Classifier Combination, Application to Protein Secondary Structure Prediction, 1997.

Y. Hagiwara, K. Komoda, T. Yamanaka, A. Tamai, T. Meshi et al., Subcellular localization of host and viral proteins associated with tobamovirus RNA replication, EMBO J, vol.22, pp.344-353, 2003.

S. Han and H. Sanfaçon, Tomato Ringspot Virus Proteins Containing the Nucleoside Triphosphate Binding Domain Are Transmembrane Proteins That Associate with the Endoplasmic Reticulum and Cofractionate with Replication Complexes, J. Virol, vol.77, pp.523-534, 2003.

R. J. Hayes and K. W. Buck, Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase, Cell, vol.63, pp.363-368, 1990.

N. S. Heaton, R. , and G. , Multifaceted roles for lipids in viral infection, Trends Microbiol, vol.19, pp.368-375, 2011.

M. W. Heijden, J. E. Carette, P. J. Reinhoud, A. Haegi, and J. F. Bol, Alfalfa Mosaic Virus Replicase Proteins P1 and P2 Interact and Colocalize at the Vacuolar Membrane, J. Virol, vol.75, pp.1879-1887, 2001.

M. W. Bibliographie-van-der-heijden and J. F. Bol, Composition of alphavirus-like replication complexes: involvement of virus and host encoded proteins, Arch. Virol, vol.147, pp.875-898, 2002.

M. Heinlein, H. S. Padgett, J. S. Gens, B. G. Pickard, S. J. Casper et al., Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection, Plant Cell, vol.10, pp.1107-1120, 1998.

A. Henn and E. Sadot, The unique enzymatic and mechanistic properties of plant myosins, Curr. Opin. Plant Biol, vol.22, pp.65-70, 2014.

F. Héricourt, S. Blanc, V. Redeker, J. , and I. , Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system, 2000.

N. Hsu, O. Ilnytska, G. Belov, M. Santiana, Y. Chen et al., Viral Reorganization of the Secretory Pathway Generates Distinct Organelles for RNA Replication, Cell, vol.141, pp.799-811, 2010.

J. Hu, Plant Peroxisome Multiplication: Highly Regulated and Still Enigmatic, J. Integr. Plant Biol, vol.49, pp.1112-1118, 2007.

C. Hu, Y. Chinenov, and T. K. Kerppola, Visualization of Interactions among bZIP and Rel Family Proteins in Living Cells Using Bimolecular Fluorescence Complementation, 2002.

, Mol. Cell, vol.9, pp.789-798

J. Hu, A. Baker, B. Bartel, N. Linka, R. T. Mullen et al., , 2012.

, Plant Peroxisomes: Biogenesis and Function, Plant Cell Online, vol.24, pp.2279-2303

R. Hu, M. Lin, Y. Hsu, and M. Meng, Mutational effects of the consensus aromatic residues in the mRNA capping domain of Bamboo mosaic virus on GTP methylation and virus accumulation, Virology, vol.411, pp.15-24, 2011.

Y. Huang, Y. Han, Y. Chang, Y. Hsu, and M. Meng, Critical Residues for GTP Methylation and Formation of the Covalent m7GMP-Enzyme Intermediate in the Capping Enzyme Domain of Bamboo Mosaic Virus, J. Virol, vol.78, pp.1271-1280, 2004.

T. Hügle, F. Fehrmann, E. Bieck, M. Kohara, H. Kräusslich et al., The Hepatitis C Virus Nonstructural Protein 4B Is an Integral Endoplasmic Reticulum Membrane Protein, Virology, vol.284, pp.70-81, 2001.

I. Hwang, R. , and D. G. , Transport vesicle formation in plant cells, Curr. Opin. Plant Biol, vol.12, pp.660-669, 2009.

K. Bibliographie-hyodo, A. Mine, T. Taniguchi, M. Kaido, K. Mise et al., , 2013.

, ADP Ribosylation Factor 1 Plays an Essential Role in the Replication of a Plant RNA Virus, J. Virol, vol.87, pp.163-176

K. Hyodo, M. Kaido, and T. Okuno, Host and viral RNA-binding proteins involved in membrane targeting, replication and intercellular movement of plant RNA virus genomes, Front. Plant Sci, vol.5, 2014.

A. Ibrahim, H. M. Hutchens, H. Berg, R. , S. Loesch-fries et al., Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA, Virology, vol.433, pp.449-461, 2012.

M. Ishikawa, S. Naito, and T. Ohno, Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts, J. Virol, vol.67, pp.5328-5338, 1993.

A. Jakubiec, J. Notaise, V. Tournier, F. Héricourt, M. A. Block et al., Assembly of Turnip Yellow Mosaic Virus Replication Complexes: Interaction between the Proteinase and Polymerase Domains of the Replication Proteins, J. Virol, vol.78, pp.7945-7957, 2004.

A. Jakubiec, J. Notaise, V. Tournier, F. Héricourt, M. A. Block et al., Assembly of Turnip Yellow Mosaic Virus Replication Complexes: Interaction between the Proteinase and Polymerase Domains of the Replication Proteins, J. Virol, vol.78, pp.7945-7957, 2004.

A. Jakubiec, V. Tournier, G. Drugeon, S. Pflieger, L. Camborde et al., Phosphorylation of Viral RNA-dependent RNA Polymerase and Its Role in Replication of a Plus-strand RNA Virus, J. Biol. Chem, vol.281, pp.21236-21249, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00095936

A. Jakubiec, G. Drugeon, L. Camborde, J. , and I. , Proteolytic Processing of Turnip Yellow Mosaic Virus Replication Proteins and Functional Impact on Infectivity, J. Virol, vol.81, pp.11402-11412, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00180856

J. Jiang, C. Patarroyo, D. G. Cabanillas, H. Zheng, and J. Laliberté, The VesicleForming 6K2 Protein of Turnip Mosaic Virus Interacts with the COPII Coatomer Sec24a for Viral Systemic Infection, J. Virol, vol.89, pp.6695-6710, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01352169

M. Jonczyk, K. B. Pathak, M. Sharma, and P. D. Nagy, Exploiting alternative subcellular location for replication: Tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes, Virology, vol.362, pp.320-330, 2007.

J. Jouhet, E. Maréchal, and M. A. Block, Glycerolipid transfer for the building of membranes in plant cells, Prog. Lipid Res, vol.46, pp.37-55, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00106326

G. Kadare, M. Rozanov, and A. Haenni, Expression of the turnip yellow mosaic virus proteinase in Escherichia coli and determination of the cleavage site within the 206 kDa protein, J. Gen. Virol, vol.76, pp.2853-2857, 1995.

G. Kadaré, C. David, and A. L. Haenni, ATPase, GTPase, and RNA binding activities associated with the 206-kilodalton protein of turnip yellow mosaic virus, J. Virol, vol.70, pp.8169-8174, 1996.

G. Kamer, A. , and P. , Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses, Nucleic Acids Res, vol.12, pp.7269-7282, 1984.

R. D. King and M. J. Sternberg, Identification and application of the concepts important for accurate and reliable protein secondary structure prediction, Protein Sci. Publ. Protein Soc, vol.5, pp.2298-2310, 1996.

T. Kirchhausen, Three ways to make a vesicle, Nat. Rev. Mol. Cell Biol, vol.1, pp.187-198, 2000.

K. Kirkegaard, M. P. Taylor, J. , and W. T. , Cellular autophagy: surrender, avoidance and subversion by microorganisms, Nat. Rev. Microbiol, vol.2, pp.301-314, 2004.

K. Knoops, M. Kikkert, S. H. Worm, J. C. Van-den,-zevenhoven-dobbe, Y. Van-der-meer et al., SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum, PLoS Biol, vol.6, p.226, 2008.

E. V. Koonin, V. V. Dolja, M. , and D. T. , Evolution and Taxonomy of PositiveStrand RNA Viruses: Implications of Comparative Analysis of Amino Acid Sequences, Crit. Rev. Biochem. Mol. Biol, vol.28, pp.375-430, 1993.

B. G. Kopek, G. Perkins, D. J. Miller, M. H. Ellisman, A. et al., Threedimensional analysis of a viral RNA replication complex reveals a virus-induced miniorganelle, PLoS Biol, vol.5, p.220, 2007.

B. G. Kopek, E. W. Settles, P. D. Friesen, A. , and P. , Nodavirus-Induced Membrane Rearrangement in Replication Complex Assembly Requires Replicase Protein A, RNA Templates, and Polymerase Activity, J. Virol, vol.84, pp.12492-12503, 2010.

P. Kujala, A. Ikäheimonen, N. Ehsani, H. Vihinen, P. Auvinen et al., Biogenesis of the Semliki Forest Virus RNA Replication Complex, J. Virol, vol.75, pp.3873-3884, 2001.

U. K. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

A. Lampio, I. Kilpeläinen, S. Pesonen, K. Karhi, P. Auvinen et al., Membrane Binding Mechanism of an RNA Virus-capping Enzyme, J. Biol. Chem, vol.275, pp.37853-37859, 2000.

W. Lee, M. Ishikawa, A. , and P. , Mutation of Host ?9 Fatty Acid Desaturase Inhibits Brome Mosaic Virus RNA Replication between Template Recognition and RNA Synthesis, J. Virol, vol.75, pp.2097-2106, 2001.

S. Léonard, C. Viel, C. Beauchemin, N. Daigneault, M. G. Fortin et al., Interaction of VPg-Pro of turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta, J. Gen. Virol, vol.85, pp.1055-1063, 2004.

J. M. Levin, B. Robson, and J. Garnier, An algorithm for secondary structure determination in proteins based on sequence similarity, FEBS Lett, vol.205, pp.303-308, 1986.

S. T. Lilly, R. S. Drummond, M. N. Pearson, and R. M. Macdiarmid, Identification and Validation of Reference Genes for Normalization of Transcripts from Virus-Infected Arabidopsis thaliana, Mol. Plant. Microbe Interact, vol.24, pp.294-304, 2010.

L. Lins and R. Brasseur, Tilted peptides: a structural motif involved in protein membrane insertion?, J. Pept. Sci, vol.14, pp.416-422, 2008.

L. Lins, M. Decaffmeyer, A. Thomas, and R. Brasseur, Relationships between the orientation and the structural properties of peptides and their membrane interactions, Biochim. Biophys. Acta BBA-Biomembr, vol.1778, pp.1537-1544, 2008.

L. Liu, W. M. Westler, J. A. Den-boon, X. Wang, A. Diaz et al., An Amphipathic ?-Helix Controls Multiple Roles of Brome Mosaic Virus Protein 1a in RNA Replication Complex Assembly and Function, PLoS Pathog, vol.5, p.1000351, 2009.

P. Luo and R. L. Baldwin, Mechanism of Helix Induction by Trifluoroethanol: A Framework for Extrapolating the Helix-Forming Properties of Peptides from Trifluoroethanol/Water Mixtures Back to Water, Biochemistry (Mosc.), vol.36, pp.8413-8421, 1997.

A. Lwoff, The Concept of Virus, J. Gen. Microbiol, vol.17, pp.239-253, 1957.

J. M. Mackenzie, A. A. Khromykh, M. K. Jones, and E. G. Westaway, Subcellular Localization and Some Biochemical Properties of the Flavivirus Kunjin Nonstructural Proteins NS2A and NS4A, Virology, vol.245, pp.203-215, 1998.

J. M. Mackenzie, M. K. Jones, and E. G. Westaway, Markers for trans-Golgi Membranes and the Intermediate Compartment Localize to Induced Membranes with Distinct Replication Functions in Flavivirus-Infected Cells, J. Virol, vol.73, pp.9555-9567, 1999.

S. Mano and M. Nishimura, Plant Peroxisomes, Vitamins & Hormones, Gerald Litwack, pp.111-154, 2005.

L. E. Marsh, C. C. Huntley, G. P. Pogue, J. P. Connell, and T. C. Hall, Regulation of (+):()-strand asymmetry in replication of brome mosaic virus RNA, Virology, vol.182, pp.76-83, 1991.

G. Martire, A. Viola, L. Iodice, L. V. Lotti, R. Gradini et al., Hepatitis C Virus Structural Proteins Reside in the Endoplasmic Reticulum as Well as in the Intermediate Compartment/cis-Golgi Complex Region of Stably Transfected Cells, Virology, vol.280, pp.176-182, 2001.

R. E. Matthews, Induction of Disease by Viruses, with Special Reference to Turnip Yellow Mosaic Virus, Annu. Rev. Phytopathol, vol.11, pp.147-168, 1973.

S. Maurer-stroh, B. Eisenhaber, and F. Eisenhaber, N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence1, J. Mol. Biol, vol.317, pp.541-557, 2002.

A. W. Mccartney, J. S. Greenwood, M. R. Fabian, K. A. White, and R. T. Mullen, Localization of the Tomato Bushy Stunt Virus Replication Protein p33 Reveals a Peroxisome-to, 2005.

, Endoplasmic Reticulum Sorting Pathway, Plant Cell Online, vol.17, pp.3513-3531

Y. Van-der-meer, H. Van-tol, J. Krijnse-locker, and E. J. Snijder, ORF1a-Encoded Replicase Subunits Are Involved in the Membrane Association of the Arterivirus Replication Complex, J. Virol, vol.72, pp.6689-6698, 1998.

D. J. Miller, A. , and P. , Flock House Virus RNA Polymerase Is a Transmembrane Protein with Amino-Terminal Sequences Sufficient for Mitochondrial Localization and Membrane Insertion, J. Virol, vol.76, pp.9856-9867, 2002.

D. J. Miller, M. D. Schwartz, A. , and P. , Flock House Virus RNA Replicates on Outer Mitochondrial Membranes in Drosophila Cells, J. Virol, vol.75, pp.11664-11676, 2001.

D. J. Miller, M. D. Schwartz, B. T. Dye, A. , and P. , Engineered Retargeting of Viral RNA Replication Complexes to an Alternative Intracellular Membrane, J. Virol, vol.77, pp.12193-12202, 2003.

S. Miller, S. Kastner, J. Krijnse-locker, S. Bühler, and R. Bartenschlager, The Nonstructural Protein 4A of Dengue Virus Is an Integral Membrane Protein Inducing Membrane Alterations in a 2K-regulated Manner, J. Biol. Chem, vol.282, pp.8873-8882, 2007.

M. D. Morch, J. C. Boyer, and A. L. Haenni, Overlapping open reading frames revealed by complete nucleotide sequencing of turnip yellow mosaic virus genomic RNA, Nucleic Acids Res, vol.16, pp.6157-6173, 1988.

M. D. Morch, G. Drugeon, P. Szafranski, and A. L. Haenni, Proteolytic origin of the 150kilodalton protein encoded by turnip yellow mosaic virus genomic RNA, J. Virol, vol.63, pp.5153-5158, 1989.

G. Mottola, G. Cardinali, A. Ceccacci, C. Trozzi, L. Bartholomew et al., Hepatitis C Virus Nonstructural Proteins Are Localized in a Modified Endoplasmic Reticulum of Cells Expressing Viral Subgenomic Replicons, Virology, vol.293, pp.31-43, 2002.

B. Nagy, P. D. Barajas, D. , P. , and J. , Host factors with regulatory roles in tombusvirus replication, Curr. Opin. Virol, vol.2, pp.691-698, 2012.

T. Nakagawa, T. Kurose, T. Hino, K. Tanaka, M. Kawamukai et al., Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, J. Biosci. Bioeng, vol.104, pp.34-41, 2007.

B. Navarro, M. Russo, V. Pantaleo, R. , and L. , Cytological analysis of Saccharomyces cerevisiae cells supporting cymbidium ringspot virus defective interfering RNA replication, 2006.

, J. Gen. Virol, vol.87, pp.705-714

A. Nebenführ, L. A. Gallagher, T. G. Dunahay, J. A. Frohlick, A. M. Mazurkiewicz et al., Stop-and-Go Movements of Plant Golgi Stacks Are Mediated by the Acto-Myosin System, Plant Physiol, vol.121, pp.1127-1141, 1999.

J. W. Nelson and N. R. Kallenbach, Stabilization of the ribonuclease S-peptide ?-helix by trifluoroethanol, Proteins Struct. Funct. Bioinforma, vol.1, pp.211-217, 1986.

B. K. Nelson, X. Cai, and A. Nebenführ, A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants, Plant J, vol.51, pp.1126-1136, 2007.

C. L. Netherton and T. Wileman, Virus factories, double membrane vesicles and viroplasm generated in animal cells, Curr. Opin. Virol, vol.1, pp.381-387, 2011.

C. Netherton, K. Moffat, E. Brooks, and T. Wileman, A Guide to Viral Inclusions, Membrane Rearrangements, Factories, and Viroplasm Produced During Virus Replication, Advances in Virus, pp.101-182, 2007.

U. Niesbach-klösgen, H. Guilley, G. Jonard, and K. Richards, Immunodetection in Vivo of beet necrotic yellow vein virus-encoded proteins, Virology, vol.178, pp.52-61, 1990.

I. Nilsson and G. Heijne, Breaking the camel's back: proline-induced turns in a model transmembrane helix, J. Mol. Biol, vol.284, pp.1185-1189, 1998.

M. Nishikiori, K. Dohi, M. Mori, T. Meshi, S. Naito et al., MembraneBound Tomato Mosaic Virus Replication Proteins Participate in RNA Synthesis and Are Associated with Host Proteins in a Pattern Distinct from Those That Are Not Membrane Bound, J. Virol, vol.80, pp.8459-8468, 2006.

K. Oikawa, M. Kasahara, T. Kiyosue, T. Kagawa, N. Suetsugu et al., CHLOROPLAST UNUSUAL, p.1, 2003.

, Is Essential for Proper Chloroplast Positioning, Plant Cell, vol.15, pp.2805-2815

K. Bibliographie-oikawa, A. Yamasato, S. Kong, M. Kasahara, M. Nakai et al., Chloroplast Outer Envelope Protein CHUP1 Is Essential for Chloroplast Anchorage to the Plasma Membrane and Chloroplast Movement, Plant Physiol, vol.148, pp.829-842, 2008.

H. S. Ooi, C. Y. Kwo, M. Wildpaner, F. L. Sirota, B. Eisenhaber et al., ANNIE: integrated de novo protein sequence annotation, Nucleic Acids Res, vol.37, pp.435-440, 2009.

T. Panavas, C. M. Hawkins, Z. Panaviene, and P. D. Nagy, The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus, Virology, vol.338, pp.81-95, 2005.

I. Parmryd, C. A. Shipton, E. Swiezewska, G. Dallner, A. et al., Chloroplastic prenylated proteins, FEBS Lett, vol.414, pp.527-531, 1997.

C. Patarroyo, J. Laliberté, and H. Zheng, Hijack it, change it: how do plant viruses utilize the host secretory pathway for efficient viral replication and spread? Plant-Microbe, 2013.

K. Pearson, I. On the X2 test of Goodness of Fit, Biometrika, vol.14, pp.186-191, 1922.
URL : https://hal.archives-ouvertes.fr/hal-00752461

L. Perez, R. Guinea, and L. Carrasco, Synthesis of Semliki Forest virus RNA requires continuous lipid synthesis, Virology, vol.183, pp.74-82, 1991.

C. W. Pleij, A. Neeleman, L. Van-vloten-doting, and L. Bosch, Translation of turnip yellow mosaic virus RNA in vitro: a closed and an open coat protein cistron, Proc. Natl. Acad. Sci. U. S. A, vol.73, pp.4437-4441, 1976.

D. Prod'homme, S. Le-panse, G. Drugeon, J. , and I. , Detection and Subcellular Localization of the Turnip Yellow Mosaic Virus 66K Replication Protein in Infected Cells, Virology, vol.281, pp.88-101, 2001.

D. Prod'homme, A. Jakubiec, V. Tournier, G. Drugeon, J. et al., Targeting of the Turnip Yellow Mosaic Virus 66K Replication Protein to the Chloroplast Envelope Is Mediated by the 140K Protein, J. Virol, vol.77, pp.9124-9135, 2003.

S. Reiss, I. Rebhan, P. Backes, I. Romero-brey, H. Erfle et al., Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment, Cell Host Microbe, vol.9, pp.32-45, 2011.

J. Ren, L. Wen, X. Gao, C. Jin, Y. Xue et al., CSS-Palm 2.0: an updated software for palmitoylation sites prediction, Protein Eng. Des. Sel, vol.21, pp.639-644, 2008.

M. A. Restrepo-hartwig, A. , and P. , Brome mosaic virus helicase-and polymeraselike proteins colocalize on the endoplasmic reticulum at sites of viral RNA synthesis, J. Virol, vol.70, pp.8908-8916, 1996.

S. Reumann, L. Babujee, C. Ma, S. Wienkoop, T. Siemsen et al., Proteome Analysis of Arabidopsis Leaf Peroxisomes Reveals Novel Targeting Peptides, Metabolic Pathways, and Defense Mechanisms, Plant Cell, vol.19, pp.3170-3193, 2007.

S. Richter, N. Geldner, J. Schrader, H. Wolters, Y. Stierhof et al., Functional diversification of closely related ARF-GEFs in protein secretion and recycling, Nature, vol.448, pp.488-492, 2007.

C. Ritzenthaler, C. Laporte, F. Gaire, P. Dunoyer, C. Schmitt et al., Grapevine Fanleaf Virus Replication Occurs on Endoplasmic Reticulum-Derived Membranes, J. Virol, vol.76, pp.8808-8819, 2002.

D. G. Robinson, M. Langhans, C. Saint-jore-dupas, and C. Hawes, BFA effects are tissue and not just plant specific, Trends Plant Sci, vol.13, pp.405-408, 2008.

D. Rochon, B. Singh, R. Reade, J. Theilmann, K. Ghoshal et al., The p33 auxiliary replicase protein of Cucumber necrosis virus targets peroxisomes and infection induces de novo peroxisome formation from the endoplasmic reticulum, pp.133-142, 2014.

C. Rossig, C. Reinbothe, J. Gray, O. Valdes, D. Wettstein et al., Three proteins mediate import of transit sequence-less precursors into the inner envelope of chloroplasts in Arabidopsis thaliana, Proc. Natl. Acad. Sci, vol.110, pp.19962-19967, 2013.

M. N. Rozanov, E. V. Koonin, and A. E. Gorbalenya, Conservation of the putative methyltransferase domain: a hallmark of the "Sindbis-like" supergroup of positive-strand RNA viruses, J. Gen. Virol, vol.73, pp.2129-2134, 1992.

M. N. Rozanov, G. Drugeon, and A. Haenni, Papain-like proteinase of turnip yellow mosaic virus: a prototype of a new viral proteinase group, Arch. Virol, vol.140, pp.273-288, 1995.

M. P. Running, The role of lipid post-translational modification in plant developmental processes, Plant Cell Biol, vol.5, p.50, 2014.

H. Sanfacon, Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories, Front. Plant Sci, vol.3, 2013.

B. Satiat-jeunemaitre, C. Steele, and C. Hawes, Golgi-membrane dynamics are cytoskeleton dependent: A study on Golgi stack movement induced by brefeldin A, Protoplasma, vol.191, pp.21-33, 1996.

B. Satiat-jeunemaitre, B. Cole, L. Bourett, T. Howard, R. Hawes et al., Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking?, J. Microsc, vol.181, pp.162-177, 1996.

M. C. Schaad, P. E. Jensen, and J. C. Carrington, Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein, EMBO J, vol.16, pp.4049-4059, 1997.

A. Schlegel, T. H. Giddings, M. S. Ladinsky, K. , and K. , Cellular origin and ultrastructure of membranes induced during poliovirus infection, J. Virol, vol.70, pp.6576-6588, 1996.

E. Schleiff and R. B. Klösgen, Without a little help from "my" friends: direct insertion of proteins into chloroplast membranes?, Biochim. Biophys. Acta BBA-Mol. Cell Res, vol.1541, pp.22-33, 2001.

O. Schmidt and D. Teis, The ESCRT machinery, Curr. Biol, vol.22, pp.116-120, 2012.

M. Schwartz, J. Chen, M. Janda, M. Sullivan, J. Den-boon et al., A PositiveStrand RNA Virus Replication Complex Parallels Form and Function of Retrovirus Capsids, 2002.

, Mol. Cell, vol.9, pp.505-514

M. Schwartz, J. Chen, W. Lee, M. Janda, A. et al., Alternate, Virus-Induced Membrane Rearrangements Support Positive-Strand RNA Virus Genome Replication, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.11263-11268, 2004.

M. Sharma, Z. Sasvari, and P. D. Nagy, Inhibition of Sterol Biosynthesis Reduces Tombusvirus Replication in Yeast and Plants, J. Virol, vol.84, pp.2270-2281, 2010.

D. Shcherbo, I. I. Shemiakina, A. V. Ryabova, K. E. Luker, B. T. Schmidt et al., Near-infrared fluorescent proteins, Nat. Methods, vol.7, pp.827-829, 2010.

R. N. Singh and T. W. Dreher, Turnip Yellow Mosaic Virus RNA-Dependent RNA Polymerase: Initiation of Minus Strand Synthesisin Vitro, Virology, vol.233, pp.430-439, 1997.

J. M. Skuzeski, C. S. Bozarth, and T. W. Dreher, The turnip yellow mosaic virus tRNA-like structure cannot be replaced by generic tRNA-like elements or by heterologous 3' untranslated regions known to enhance mRNA expression and stability, J. Virol, vol.70, pp.2107-2115, 1996.

P. Spuul, A. Salonen, A. Merits, E. Jokitalo, L. Kääriäinen et al., Role of the Amphipathic Peptide of Semliki Forest Virus Replicase Protein nsP1 in Membrane Association and Virus Replication, J. Virol, vol.81, pp.872-883, 2007.

S. Stael, R. G. Bayer, N. Mehlmer, T. , and M. , Protein N-acylation overrides differing targeting signals, FEBS Lett, vol.585, pp.517-522, 2011.

A. Stengel, J. Soll, and B. Bölter, Protein import into chloroplasts: new aspects of a wellknown topic, Biol. Chem, vol.388, pp.765-772, 2007.

O. Stern, Y. Hung, O. Valdau, Y. Yaffe, E. Harris et al., An N-Terminal Amphipathic Helix in Dengue Virus Nonstructural Protein, p.4, 2013.

, Mediates Oligomerization and Is Essential for Replication, J. Virol, vol.87, pp.4080-4085

S. Stertz, M. Reichelt, M. Spiegel, T. Kuri, L. Martínez-sobrido et al., The intracellular sites of early replication and budding of SARScoronavirus, Virology, vol.361, pp.304-315, 2007.

D. A. Suhy, T. H. Giddings, K. , and K. , Remodeling the Endoplasmic Reticulum by Poliovirus Infection and by Individual Viral Proteins: an Autophagy-Like Origin for VirusInduced Vesicles, J. Virol, vol.74, pp.8953-8965, 2000.

M. L. Sullivan, A. , and P. , A Brome Mosaic Virus Intergenic RNA3 Replication Signal Functions with Viral Replication Protein 1a To Dramatically Stabilize RNA In Vivo, J. Virol, vol.73, pp.2622-2632, 1999.

W. Tang, S. Yang, B. Wu, J. Jheng, Y. Chen et al., Reticulon 3 Binds the 2C Protein of Enterovirus 71 and Is Required for Viral Replication, J. Biol. Chem, vol.282, pp.5888-5898, 2007.

N. L. Teterina, A. E. Gorbalenya, D. Egger, K. Bienz, M. S. Rinaudo et al., Testing the modularity of the N-terminal amphipathic helix conserved in picornavirus 2C proteins and hepatitis C NS5A protein, Virology, vol.344, pp.453-467, 2006.

P. D. Thomas and K. A. Dill, Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation, Protein Sci, vol.2, pp.2050-2065, 1993.

J. S. Towner, T. V. Ho, and B. L. Semler, Determinants of Membrane Association for Poliovirus Protein 3AB, J. Biol. Chem, vol.271, pp.26810-26818, 1996.

J. Verchot, Wrapping membranes around plant virus infection, Curr. Opin. Virol, vol.1, pp.388-395, 2011.

O. Voinnet, Induction and suppression of RNA silencing: insights from viral infections, Nat. Rev. Genet, vol.6, pp.206-220, 2005.

M. Walter, C. Chaban, K. Schütze, O. Batistic, K. Weckermann et al., Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation, Plant J, vol.40, pp.428-438, 2004.

R. Y. Wang, J. Stork, and P. D. Nagy, A Key Role for Heat Shock Protein 70 in the Localization and Insertion of Tombusvirus Replication Proteins to Intracellular Membranes, J. Virol, vol.83, pp.3276-3287, 2009.

F. Weber-lotfi, A. Dietrich, M. Russo, R. , and L. , Mitochondrial Targeting and Membrane Anchoring of a Viral Replicase in Plant and Yeast Cells, J. Virol, vol.76, pp.10485-10496, 2002.

T. Wei, W. , and A. , Biogenesis of Cytoplasmic Membranous Vesicles for Plant Potyvirus Replication Occurs at Endoplasmic Reticulum Exit Sites in a COPI-and COPIIDependent Manner, J. Virol, vol.82, pp.12252-12264, 2008.

T. Wei, T. Huang, J. Mcneil, J. Laliberté, J. Hong et al., , 2010.

, Sequential Recruitment of the Endoplasmic Reticulum and Chloroplasts for Plant Potyvirus Replication, J. Virol, vol.84, pp.799-809

T. Wei, C. Zhang, X. Hou, H. Sanfaçon, W. et al., The SNARE Protein Syp71 Is Essential for Turnip Mosaic Virus Infection by Mediating Fusion of Virus-Induced Vesicles with Chloroplasts, PLoS Pathog, vol.9, 2013.

T. Wei, C. Zhang, X. Hou, H. Sanfaçon, W. et al., The SNARE Protein Syp71 Is Essential for Turnip Mosaic Virus Infection by Mediating Fusion of Virus-Induced Vesicles with Chloroplasts, PLoS Pathog, vol.9, 2013.

J. J. Weiland and T. W. Dreher, Infectious TYMV RNA from cloned cDNA: effects in vitro and in vivo of point substitutions in the initiation codons of two extensively overlapping ORFs, Nucleic Acids Res, vol.17, pp.4675-4687, 1989.

J. J. Weiland and T. W. Dreher, Cis-preferential replication of the turnip yellow mosaic virus RNA genome, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.6095-6099, 1993.

S. Welsch, S. Miller, I. Romero-brey, A. Merz, C. K. Bleck et al., Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites, Cell Host Microbe, vol.5, pp.365-375, 2009.

T. Wieprecht, O. Apostolov, M. Beyermann, and J. Seelig, Thermodynamics of the ?helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium1, J. Mol. Biol, vol.294, pp.785-794, 1999.

M. Wu, P. Ke, J. T. Hsu, C. Yeh, and J. Horng, Reticulon 3 interacts with NS4B of the hepatitis C virus and negatively regulates viral replication by disrupting NS4B self-interaction, Cell. Microbiol, vol.16, pp.1603-1618, 2014.

S. X. Wu, P. Ahlquist, and P. Kaesberg, Active complete in vitro replication of nodavirus RNA requires glycerophospholipid, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.11136-11140, 1992.

Y. Yamamura and H. B. Scholthof, Tomato bushy stunt virus: a resilient model system to study virus-plant interactions, Mol. Plant Pathol, vol.6, pp.491-502, 2005.

. Bibliographie,

W. Yau, W. C. Wimley, K. Gawrisch, and S. H. White, The Preference of Tryptophan for Membrane Interfaces, Biochemistry (Mosc.), vol.37, pp.14713-14718, 1998.

J. Ye, C. Wang, R. Sumpter, M. S. Brown, J. L. Goldstein et al., Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.15865-15870, 2003.

P. Yot, M. Pinck, A. Haenni, H. M. Duranton, C. et al., Valine-Specific tRNA-like Structure in Turnip Yellow Mosaic Virus RNA*, Proc. Natl. Acad. Sci. U. S. A, vol.67, pp.1345-1352, 1970.

G. Yu, K. Lee, L. Gao, L. , and M. M. , Palmitoylation and Polymerization of Hepatitis C Virus NS4B, Protein. J. Virol, vol.80, pp.6013-6023, 2006.

G. Zhang and H. Sanfaçon, Characterization of Membrane Association Domains within the Tomato Ringspot Nepovirus X2 Protein, an Endoplasmic Reticulum-Targeted Polytopic Membrane Protein, J. Virol, vol.80, pp.10847-10857, 2006.

S. C. Zhang, G. Zhang, L. Yang, J. Chisholm, and H. Sanfaçon, Evidence that Insertion of Tomato Ringspot Nepovirus NTB-VPg Protein in Endoplasmic Reticulum Membranes Is Directed by Two Domains: a C-Terminal Transmembrane Helix and an N-Terminal Amphipathic Helix, J. Virol, vol.79, pp.11752-11765, 2005.