T. Minamino and K. Namba, Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export, Nature, vol.451, pp.485-488, 2008.

T. Morita-ishihara, M. Ogawa, H. Sagara, M. Yoshida, E. Katayama et al., Shigella Spa33 is an essential C-ring component of type III secretion machinery, J Biol Chem, vol.281, pp.599-607, 2005.

A. L. Page, M. Fromont-racine, P. Sansonetti, P. Legrain, and C. Parsot, Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri, Mol Microbiol, vol.42, pp.1133-1145, 2001.

C. Parsot, Shigella type III secretion effectors: how, where, when, for what purposes?, Curr Opin Microbiol, vol.12, pp.110-116, 2009.

C. Penno, A. Hachani, L. Biskri, P. Sansonetti, A. Allaoui et al., Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri, Mol Microbiol, vol.62, pp.1460-1468, 2006.

A. Phalipon, J. Arondel, F. Nato, S. Rouyre, and J. C. Mazie,

P. J. Sansonetti, Identification and characterization of B-cell epitopes of IpaC, an invasion-associated protein of Shigella flexneri, Infect Immun, vol.60, pp.1919-1926, 1992.

G. S. Pilgram, A. M. Engelsma-van-pelt, G. T. Oostergetel, H. K. Koerten, and J. A. Bouwstra, Study on the lipid organization of stratum corneum lipid models by (cryo-) electron diffraction, J Lipid Res, vol.39, pp.1669-1676, 1998.

K. E. Riordan and O. Schneewind, YscU cleavage and the assembly of Yersinia type III secretion machine complexes, Mol Microbiol, vol.68, pp.1485-1501, 2008.

M. Sani, A. Allaoui, F. Fusetti, G. T. Oostergetel, and W. Keegstra,

E. J. Boekema, Structural organization of the needle complex of the type III secretion apparatus of Shigella flexneri, Micron, vol.38, pp.291-301, 2007.

P. J. Sansonetti, H. Hauteville, S. B. Formal, and M. Toucas, , 1982.

A. Allaoui, J. Mounier, M. C. Prevost, P. J. Sansonetti, P. et al., icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread, Plasmid-mediated invasiveness of ''Shigella-like'' Escherichia coli, vol.133, pp.1605-1616, 1992.

A. Allaoui, P. J. Sansonetti, P. , and C. , MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri lpa invasins, 1993.

, Mol Microbiol, vol.7, pp.59-68

A. Allaoui, S. Woestyn, C. Sluiters, C. , G. R. Bahrani et al., Structure and composition of the Shigella flexneri "needle complex", a part of its type III secreton, Mol Microbiol, vol.176, issue.15, pp.760-71, 1994.

F. S. Cordes, K. Komoriya, E. Larquet, S. Yang, E. H. Egelman et al.,

G. R. Cornelis and F. Van-gijsegem, Assembly and function of type III secretory systems, 2000.

, Annu Rev Microbiol, vol.54, p.11018143

P. Cossart and P. J. Sansonetti, Bacterial invasion: the paradigms of enteroinvasive pathogens, Science, vol.9, issue.5668, pp.242-250, 2004.

M. Espina, A. J. Olive, R. Kenjale, D. S. Moore, S. F. Ausar et al., IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri, Infect Immun, vol.74, issue.8, pp.4391-4400, 2006.

F. Fan, K. Ohnishi, N. R. Francis, and R. M. Macnab, The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body, Mol Microbiol, vol.26, issue.5, pp.1035-1081, 1997.

J. E. Galán, A. Collmer, J. E. Galán, E. A. Groisman, H. Ochman et al., Molecular characterization, nucleotide sequence, and expression of fliO, fliP, fliQ, and fliR genes of Escherichia coli, MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, vol.284, pp.189-197, 1993.

, Lupas A. Coiled coils: new structures and new functions, vol.49, pp.755-67, 1996.

K. L. Kotloff, J. P. Winickoff, B. Ivanoff, J. D. Clemens, D. L. Swerdlow et al., Global burden of Shigella infections: implications for vaccine development and implementation of control strategies, Bull World Health Organ, vol.21, issue.10, pp.651-66, 1999.

T. Kubori, Y. Matsushima, D. Nakamura, and J. ,

M. Uralil, A. Lara-tejero, J. E. Sukhan, S. I. Galan, . Aizawa et al., Interactions among components of the Salmonella flagellar export apparatus and its substrates, Macnab RM. How bacteria assemble flagella, vol.280, pp.77-100, 1998.

D. J. Klionsky and S. D. Emr, Autophagy as a regulated pathway of cellular degradation, Science, vol.290, pp.1717-1721, 2000.

M. Ogawa, T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima et al., Escape of intracellular Shigella from autophagy, vol.307, pp.727-731, 2005.

S. B. Singh, A. S. Davis, G. A. Taylor, and V. Deretic, Human IRGM induces autophagy to eliminate intracellular mycobacteria, Science, vol.313, pp.1438-1441, 2006.

B. Levine and V. Deretic, Unveiling the roles of autophagy in innate and adaptive immunity, Nat. Rev. Immunol, vol.7, pp.767-777, 2007.

R. M. Andrade, M. Wessendarp, M. J. Gubbels, B. Striepen, and C. S. , Subauste, CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes, J. Clin. Invest, vol.116, pp.2366-2377, 2006.

V. Deretic and B. Levine, Autophagy, immunity, and microbial adaptations, Cell Host Microbe, vol.5, pp.527-549, 2009.

Y. M. Ling, M. H. Shaw, C. Ayala, I. Coppens, G. A. Taylor et al., Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages, J. Exp. Med, vol.203, pp.2063-2071, 2006.

M. L. Bernardini, J. Mounier, H. .-d'hauteville, M. Coquis-rondon, and P. J. Sansonetti, Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin, Proc. Natl. Acad. Sci. U.S.A, vol.86, pp.3867-3871, 1989.

S. Kamoun, M. Young, H. Forster, M. D. Coffey, and B. M. Tyler, Potential role of elicitins in the interaction between Phytophthora species and tobacco, Appl. Environ. Microbiol, vol.60, pp.1593-1598, 1994.

H. Keller, J. P. Blein, P. Bonnet, and P. Ricci, Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco, Plant Physiol, vol.110, pp.365-376, 1996.

V. Mikes, M. L. Milat, M. Ponchet, F. Panabieres, P. Ricci et al., Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins, Biochem. Biophys. Res. Commun, vol.245, pp.133-139, 1998.

S. Vauthrin, V. Mikes, M. L. Milat, M. Ponchet, B. Maume et al., Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes, Biochim. Biophys. Acta, vol.1419, pp.335-342, 1999.

P. J. Sansonetti, D. J. Kopecko, and S. B. , Involvement of a plasmid in the invasive ability of Shigella flexneri, Infect. Immun, vol.35, pp.852-860, 1982.

A. Allaoui, P. J. Sansonetti, and C. Parsot, MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins, J. Bacteriol, vol.174, pp.7661-7669, 1992.

M. Rathman, N. Jouirhi, A. Allaoui, P. Sansonetti, C. Parsot et al., The development of a FACS-based strategy for the isolation of Shigella flexneri mutants that are deficient in intercellular spread, Mol. Microbiol, vol.35, pp.974-990, 2000.

A. Allaoui, J. Mounier, M. C. Prevost, P. J. Sansonetti, and C. Parsot, icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread, Mol. Microbiol, vol.6, pp.1605-1616, 1992.

A. L. Page, M. Fromont-racine, P. Sansonetti, P. Legrain, and C. Parsot, Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri, Mol. Microbiol, vol.42, pp.1133-1145, 2001.

P. Wattiau and G. R. Cornelis, SycE, a chaperone-like protein of Yersinia enterocolitica involved in Ohe secretion of YopE, Mol. Microbiol, vol.8, pp.123-131, 1993.

P. Wattiau, S. Woestyn, and G. R. Cornelis, Customized secretion chaperones in pathogenic bacteria, Mol. Microbiol, vol.20, pp.255-262, 1996.

Y. Fu and J. E. Galan, Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium, J. Bacteriol, vol.180, pp.3393-3399, 1998.

A. Abe, M. De-grado, R. A. Pfuetzner, C. Sanchez-sanmartin, R. Devinney et al., Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion, Mol. Microbiol, vol.33, pp.1162-1175, 1999.

A. L. Page and C. Parsot, Chaperones of the type III secretion pathway: jacks of all trades, Mol. Microbiol, vol.46, pp.1-11, 2002.

R. D. Hayward, R. J. Cain, E. J. Mcghie, N. Phillips, M. J. Garner et al., Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells, Mol. Microbiol, vol.56, pp.590-603, 2005.

G. Boissy, E. De-la-fortelle, R. Kahn, J. C. Huet, G. Bricogne et al., Crystal structure of a fungal elicitor secreted by Phytophthora cryptogea, a member of a novel class of plant necrotic proteins, Structure, vol.4, pp.1429-1439, 1996.

M. Cullinane, L. Gong, X. Li, N. Lazar-adler, T. Tra et al., Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines, Autophagy, vol.4, pp.744-753, 2008.

H. Osman, S. Vauthrin, V. Mikes, M. L. Milat, F. Panabieres et al., Mediation of elicitin activity on tobacco is assumed by elicitinesterol complexes, Mol. Biol. Cell, vol.12, pp.2825-2834, 2001.

H. Osman, V. Mikes, M. L. Milat, M. Ponchet, D. Marion et al., Fatty acids bind to the fungal elicitor cryptogein and compete with sterols, FEBS Lett, vol.489, pp.55-58, 2001.

M. Ogawa, T. Suzuki, I. Tatsuno, H. Abe, and C. Sasakawa, IcsB, secreted via the type III secretion system, is chaperoned by IpgA and required at the post-invasion stage of Shigella pathogenicity, Mol. Microbiol, vol.48, pp.913-931, 2003.

R. A. Moore, S. Reckseidler-zenteno, H. Kim, W. Nierman, Y. Yu et al., Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei, Infect. Immun, vol.72, pp.4172-4187, 2004.

S. E. Schutzer, L. R. Schlater, C. M. Ronning, D. Deshazer, B. J. Luft et al., Characterization of clinically-attenuated Burkholderia mallei by whole genome sequencing: candidate strain for exclusion from Select Agent lists, PLoS One, vol.3, p.2058, 2008.

M. B. Lascombe, M. Ponchet, P. Venard, M. L. Milat, J. P. Blein et al., The 1.45 A ? resolution structure of the cryptogeinecholesterol complex: a close-up view of a sterol carrier protein (SCP) active site, Acta Crystallogr. D. Biol. Crystallogr, vol.58, pp.1442-1447, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01439207

G. Boissy, M. O'donohue, O. Gaudemer, V. Perez, J. C. Pernollet et al., The 2.1 A ? structure of an elicitineergosterol complex: a recent addition to the Sterol Carrier Protein family, Protein Sci, vol.8, pp.1191-1199, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01000903

S. Fefeu, S. Bouaziz, J. C. Huet, J. C. Pernollet, and E. Guittet, Threedimensional solution structure of beta cryptogein, a beta elicitin secreted by a phytopathogenic fungus Phytophthora cryptogea, Protein Sci, vol.6, pp.2279-2284, 1997.

P. R. Gooley, M. A. Keniry, R. A. Dimitrov, D. E. Marsh, D. W. Keizer et al., The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein, J. Biomol. NMR, vol.12, pp.523-534, 1998.

M. P. Stevens, J. M. Stevens, R. L. Jeng, L. A. Taylor, M. W. Wood et al., Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei, Mol. Microbiol, vol.56, pp.40-53, 2005.

J. Pei and N. V. Grishin, The Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold, Proteins, vol.77, pp.413-419, 2009.

C. E. Stebbins and J. E. Galan, Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion, Nature, vol.414, pp.77-81, 2001.

M. Edidin, The state of lipid rafts: from model membranes to cells, Annu. Rev. Biophys. Biomol. Struct, vol.32, pp.257-283, 2003.

N. S. Lossi, N. Rolhion, A. I. Magee, C. Boyle, and D. W. Holden, The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid:cholesterol acyltransferase activity, Microbiology, vol.154, pp.2680-2688, 2008.

M. B. Ohlson, Z. Huang, N. M. Alto, M. P. Blanc, J. E. Dixon et al., Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation, Cell Host Microbe, vol.4, pp.434-446, 2008.

C. De-chastellier and L. Thilo, Cholesterol depletion in Mycobacterium avium-infected macrophages overcomes the block in phagosome maturation and leads to the reversible sequestration of viable mycobacteria in phagolysosome-derived autophagic vacuoles, Cell Microbiol, vol.8, pp.242-256, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080750

B. Arellano-reynoso, N. Lapaque, S. Salcedo, G. Briones, A. E. Ciocchini et al., Cyclic beta-1,2glucan is a Brucella virulence factor required for intracellular survival, Nat. Immunol, vol.6, pp.618-625, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00165692

R. A. Carabeo, D. J. Mead, and T. Hackstadt, Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.6771-6776, 2003.

K. K. Huynh, E. Gershenzon, and S. Grinstein, Cholesterol accumulation by macrophages impairs phagosome maturation, J. Biol. Chem, vol.283, pp.35745-35755, 2008.

D. Deng, N. Jiang, S. J. Hao, H. Sun, and G. J. Zhang, Loss of membrane cholesterol influences lysosomal permeability to potassium ions and protons, Biochim. Biophys. Acta, vol.1788, pp.470-476, 2009.

S. Ishibashi, T. Yamazaki, and K. Okamoto, Association of autophagy with cholesterol-accumulated compartments in Niemann-Pick disease type C cells, J. Clin. Neurosci, vol.16, pp.954-959, 2009.

N. Dupont, S. Lacas-gervais, J. Bertout, I. Paz, B. Freche et al., Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy, Cell Host Microbe, vol.6, pp.137-149, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02109149

N. Dupont and F. Lafont, How autophagy regulates the host cell signaling associated with the postpartum bacteria cocoon experienced as a danger signal, Autophagy, vol.5, pp.1222-1223, 2009.

A. Allaoui, / Microbes and Infection xx, pp.1-11, 2010.

. Bibliographie,

K. L. Kotloff, J. P. Winickoff, B. Ivanoff, J. D. Clemens, D. L. Swerdlow et al.,

M. M. Adak and . Levine, Global burden of Shigella infections: implications for vaccine development and implementation of control strategies, Bull World Health Organ, vol.77, pp.651-666, 1999.

R. Lan and P. R. Reeves, Escherichia coli in disguise: molecular origins of Shigella, Microbes Infect, vol.4, pp.1125-1132, 2002.

P. E. Orndorff and S. Falkow, Organization and expression of genes responsible for type 1 piliation in Escherichia coli, J Bacteriol, vol.159, pp.736-744, 1984.

S. Al-nimri, W. A. Miller, B. A. Byrne, G. Guibert, and L. Chen, A unified approach to molecular epidemiology investigations: tools and patterns in California as a case study for endemic shigellosis, BMC Infect Dis, vol.9, p.184, 2009.

H. Srinivasa, M. Baijayanti, and Y. Raksha, Magnitude of drug resistant Shigellosis: a report from Bangalore, Indian J Med Microbiol, vol.27, pp.358-360, 2009.

A. Naheed, P. Kalluri, K. A. Talukder, A. S. Faruque, F. Khatun et al.,

. Breiman, Fluoroquinolone-resistant Shigella dysenteriae type 1 in northeastern Bangladesh, Lancet Infect Dis, vol.4, pp.607-608, 2004.

M. M. Levine, K. L. Kotloff, E. M. Barry, M. F. Pasetti, and M. B. Sztein, Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road, Nat Rev Microbiol, vol.5, pp.540-553, 2007.

A. Phalipon, L. A. Mulard, and P. J. Sansonetti, Vaccination against shigellosis: is it the path that is difficult or is it the difficult that is the path?, Microbes Infect, vol.10, pp.1057-1062, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00335872

D. Cohen, S. Ashkenazi, M. Green, Y. Lerman, R. Slepon et al.,

C. Sadoff, J. Chu, R. Shiloach, J. B. Schneerson, and . Robbins, Safety and immunogenicity of investigational Shigella conjugate vaccines in Israeli volunteers, Infect Immun, vol.64, pp.4074-4077, 1996.

D. Cohen, S. Ashkenazi, M. S. Green, M. Gdalevich, G. Robin et al., Double-blind vaccine-controlled randomised efficacy trial of an investigational Shigella sonnei conjugate vaccine in young adults, Lancet, vol.349, pp.155-159, 1997.

G. Robin, Y. Keisari, R. Slepon, S. Ashkenazi, and D. Cohen, Quantitative analysis of IgG class and subclass and IgA serum response to Shigella sonnei and Shigella flexneri 2a polysaccharides following vaccination with Shigella conjugate vaccines, Vaccine, vol.17, pp.3109-3115, 1999.

D. Pavliakova, C. Chu, S. Bystricky, N. W. Tolson, J. Shiloach et al., Treatment with succinic anhydride improves the immunogenicity of Shigella flexneri type 2a O-specific polysaccharide-protein conjugates in mice, Infect Immun, vol.67, pp.5526-5529, 1999.

J. H. Passwell, S. Ashkenazi, E. Harlev, D. Miron, R. Ramon et al.,

C. Levi, J. Chu, J. B. Shiloach, R. Robbins, and . Schneerson, Safety and immunogenicity of Shigella sonnei-CRM9 and Shigella flexneri type 2a-rEPAsucc conjugate vaccines in one-to four-year-old children, Pediatr Infect Dis J, vol.22, pp.701-706, 2003.

P. J. Sansonetti, Genetic and molecular basis of epithelial cell invasion by Shigella species, Rev Infect Dis, vol.13, pp.285-292, 1991.

S. T. Shipley, A. Panda, A. Q. Khan, E. H. Kriel, M. Maciel et al.,

M. B. Levine, L. J. Sztein, and . Detolla, A challenge model for Shigella dysenteriae 1 in cynomolgus monkeys (Macaca fascicularis), Comp Med, vol.60, pp.54-61

K. I. Jeong, S. Tzipori, and A. S. Sheoran, Shiga toxin 2-specific but not shiga toxin 1-specific human monoclonal antibody protects piglets challenged with enterohemorrhagic Escherichia coli producing shiga toxin 1 and shiga toxin 2, J Infect Dis, vol.201, pp.1081-1083

B. Sereny, C. Tenner, and P. Racz, Immunogenicity of living attenuated shigellae, Acta Microbiol.Acad.Sci.Hung, vol.18, pp.239-245, 1971.

G. H. Rabbani, M. J. Albert, H. Rahman, M. Islam, D. Mahalanabis et al.,

. Ansaruzzaman, Development of an improved animal model of shigellosis in the adult rabbit by colonic infection with Shigella flexneri 2a, Infect Immun, vol.63, pp.4350-4357, 1995.

D. J. Philpott, S. Yamaoka, A. Israel, and P. J. Sansonetti, Invasive Shigella flexneri activates NFkappa B through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells, J.Immunol, vol.165, pp.903-914, 2000.

A. Cersini, M. C. Martino, I. Martini, G. Rossi, and M. L. Bernardini, Analysis of virulence and inflammatory potential of Shigella flexneri purine biosynthesis mutants, Infect.Immun, vol.71, pp.7002-7013, 2003.

M. I. Fernandez, A. Thuizat, T. Pedron, M. Neutra, A. Phalipon et al., A newborn mouse model for the study of intestinal pathogenesis of shigellosis, Cell Microbiol, vol.5, pp.481-491, 2003.

D. H. Shim, T. Suzuki, S. Y. Chang, S. M. Park, P. J. Sansonetti et al., New animal model of shigellosis in the Guinea pig: its usefulness for protective efficacy studies, J Immunol, vol.178, pp.2476-2482, 2007.

H. L. Dupont, M. M. Levine, R. B. Hornick, and S. B. , Inoculum size in shigellosis and implications for expected mode of transmission, J Infect Dis, vol.159, pp.1126-1128, 1989.

J. Gorden and P. L. Small, Acid resistance in enteric bacteria, Infect Immun, vol.61, pp.364-367, 1993.

Y. E. Wu, W. Hong, C. Liu, L. Zhang, and Z. Chang, Conserved amphiphilic feature is essential for periplasmic chaperone HdeA to support acid resistance in enteric bacteria, Biochem J, vol.412, pp.389-397, 2008.
DOI : 10.1042/bj20071682

D. Islam, L. Bandholtz, J. Nilsson, H. Wigzell, B. Christensson et al.,

. Gudmundsson, Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator, Nat Med, vol.7, pp.180-185, 2001.

P. J. Sansonetti, J. Arondel, J. R. Cantey, M. C. Prevost, and M. Huerre, Infection of rabbit Peyer's patches by Shigella flexneri: effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium, Infect Immun, vol.64, pp.2752-2764, 1996.

J. S. Wassef, D. F. Keren, and J. L. Mailloux, Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis, Infect Immun, vol.57, pp.858-863, 1989.

A. Haas, The phagosome: compartment with a license to kill, Traffic, vol.8, pp.311-330, 2007.
DOI : 10.1111/j.1600-0854.2006.00531.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0854.2006.00531.x

K. Ray, B. Marteyn, P. J. Sansonetti, and C. M. Tang, Life on the inside: the intracellular lifestyle of cytosolic bacteria, Nat Rev Microbiol, vol.7, pp.333-340, 2009.

A. Zychlinsky, M. C. Prevost, and P. J. Sansonetti, Shigella flexneri induces apoptosis in infected macrophages, Nature, vol.358, pp.167-169, 1992.
DOI : 10.1038/358167a0

A. Zychlinsky, K. Thirumalai, J. Arondel, J. R. Cantey, A. O. Aliprantis et al., In vivo apoptosis in Shigella flexneri infections, Infect Immun, vol.64, pp.5357-5365, 1996.

M. Miura, H. Zhu, R. Rotello, E. A. Hartwieg, and J. Yuan, Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3, Cell, vol.75, pp.653-660, 1993.

C. A. Dinarello, Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting enzyme, Ann N Y Acad Sci, vol.856, pp.1-11, 1998.

P. J. Sansonetti, J. Arondel, J. M. Cavaillon, and M. Huerre, Role of interleukin-1 in the pathogenesis of experimental shigellosis, J Clin Invest, vol.96, pp.884-892, 1995.

K. Le-barillec, J. G. Magalhaes, E. Corcuff, A. Thuizat, P. J. Sansonetti et al., Roles for T and NK cells in the innate immune response to Shigella flexneri, J Immunol, vol.175, pp.1735-1740, 2005.

T. Suzuki, K. Nakanishi, H. Tsutsui, H. Iwai, S. Akira et al., A novel caspase-1/toll-like receptor 4-independent pathway of cell death induced by cytosolic Shigella in infected macrophages, J Biol Chem, vol.280, pp.14042-14050, 2005.

G. T. Van-nhieu, E. Caron, A. Hall, and P. J. Sansonetti, IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells, Embo J, vol.18, pp.3249-3262, 1999.

R. Menard, P. J. Sansonetti, and C. Parsot, Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells, J Bacteriol, vol.175, pp.5899-5906, 1993.

A. Zychlinsky, B. Kenny, R. Menard, M. C. Prevost, I. B. Holland et al., IpaB mediates macrophage apoptosis induced by Shigella flexneri, Mol.Microbiol, vol.11, pp.619-627, 1994.

S. Barzu, Z. Benjelloun-touimi, A. Phalipon, P. Sansonetti, and C. Parsot, Functional analysis of the Shigella flexneri IpaC invasin by insertional mutagenesis, Infect Immun, vol.65, pp.1599-1605, 1997.

N. High, J. Mounier, M. C. Prevost, and P. J. Sansonetti, IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole, Embo J, vol.11, pp.1991-1999, 1992.

P. J. Sansonetti, A. Ryter, P. Clerc, A. T. Maurelli, and J. Mounier, Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis, Infect Immun, vol.51, pp.461-469, 1986.

G. N. Schroeder and H. Hilbi, Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion, Clin Microbiol Rev, vol.21, pp.134-156, 2008.

A. Fasano, F. R. Noriega, F. M. Liao, W. Wang, and M. M. Levine, Effect of shigella enterotoxin 1 (ShET1) on rabbit intestine in vitro and in vivo, Gut, vol.40, pp.505-511, 1997.

J. P. Nataro, J. Seriwatana, A. Fasano, D. R. Maneval, L. D. Guers et al., Identification and cloning of a novel plasmid-encoded enterotoxin of enteroinvasive Escherichia coli and Shigella strains, Infect Immun, vol.63, pp.4721-4728, 1995.

R. P. Cherla, S. Y. Lee, and V. L. Tesh, Shiga toxins and apoptosis, vol.228, pp.159-166, 2003.

B. Ramegowda, J. E. Samuel, and V. L. Tesh, Interaction of Shiga toxins with human brain microvascular endothelial cells: cytokines as sensitizing agents, J Infect Dis, vol.180, pp.1205-1213, 1999.

K. Sandvig and B. Van-deurs, Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin, Physiol Rev, vol.76, pp.949-966, 1996.

V. L. Tesh, Induction of apoptosis by Shiga toxins, Future Microbiol, vol.5, pp.431-453

Q. Jin, Z. Yuan, J. Xu, Y. Wang, Y. Shen et al.,

J. Zhang, G. Zhang, H. Yang, D. Wu, J. Qu et al., Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157, Nucleic Acids Res, vol.30, pp.4432-4441, 2002.

C. Buchrieser, P. Glaser, C. Rusniok, H. Nedjari, H. D'hauteville et al.,

. Parsot, The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri, Mol Microbiol, vol.38, pp.760-771, 2000.

P. J. Sansonetti, T. L. Hale, G. J. Dammin, C. Kapfer, H. H. Collins et al., Alterations in the pathogenicity of Escherichia coli K-12 after transfer of plasmid and chromosomal genes from Shigella flexneri, Infect.Immun, vol.39, pp.1392-1402, 1983.

H. Schmidt and M. Hensel, Pathogenicity islands in bacterial pathogenesis, vol.17, pp.14-56, 2004.

A. T. Maurelli, B. Baudry, H. .-d'hauteville, T. L. Hale, and P. J. Sansonetti, Cloning of plasmid DNA sequences involved in invasion of HeLa cells by Shigella flexneri, Infect Immun, vol.49, pp.164-171, 1985.

C. Sasakawa, K. Kamata, T. Sakai, S. Makino, M. Yamada et al., Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri 2a, J Bacteriol, vol.170, pp.2480-2484, 1988.

C. Sasakawa, K. Komatsu, T. Tobe, T. Suzuki, and M. Yoshikawa, Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri 2a, J Bacteriol, vol.175, pp.2334-2346, 1993.

C. Sasakawa, K. Kamata, T. Sakai, S. Y. Murayama, S. Makino et al., Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri, Infect Immun, vol.51, pp.470-475, 1986.

A. Allaoui, J. Mounier, M. C. Prevost, P. J. Sansonetti, and C. Parsot, icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread, Mol Microbiol, vol.6, pp.1605-1616, 1992.

M. Ogawa, T. Suzuki, I. Tatsuno, H. Abe, and C. Sasakawa, IcsB, secreted via the type III secretion system, is chaperoned by IpgA and required at the post-invasion stage of Shigella pathogenicity, Mol Microbiol, vol.48, pp.913-931, 2003.

M. Mavris, A. L. Page, R. Tournebize, B. Demers, P. Sansonetti et al., Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus, Mol Microbiol, vol.43, pp.1543-1553, 2002.

A. L. Page, H. Ohayon, P. J. Sansonetti, and C. Parsot, The secreted IpaB and IpaC invasins and their cytoplasmic chaperone IpgC are required for intercellular dissemination of Shigella flexneri, Cell Microbiol, vol.1, pp.183-193, 1999.

A. L. Page, P. Sansonetti, and C. Parsot, Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway, Mol.Microbiol, vol.43, pp.1533-1542, 2002.

B. Adler, C. Sasakawa, T. Tobe, S. Makino, K. Komatsu et al., A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri, Mol Microbiol, vol.3, pp.627-635, 1989.

C. Parsot, Shigella type III secretion effectors: how, where, when, for what purposes?, Curr Opin Microbiol, vol.12, pp.110-116, 2009.

S. Nakayama and H. Watanabe, Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene, J Bacteriol, vol.177, pp.5062-5069, 1995.

S. M. Payne, E. E. Wyckoff, E. R. Murphy, A. G. Oglesby, M. L. Boulette et al., Iron and pathogenesis of Shigella: iron acquisition in the intracellular environment, Biometals, vol.19, pp.173-180, 2006.

M. E. Porter and C. J. Dorman, A role for H-NS in the thermo-osmotic regulation of virulence gene expression in Shigella flexneri, J Bacteriol, vol.176, pp.4187-4191, 1994.

C. Parsot, E. Ageron, C. Penno, M. Mavris, K. Jamoussi et al.,

. Demers, A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri, Mol Microbiol, vol.56, pp.1627-1635, 2005.

M. J. Pallen, S. A. Beatson, and C. M. Bailey, Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion, BMC Microbiol, vol.5, p.9, 2005.

A. Botteaux, M. Sani, C. A. Kayath, E. J. Boekema, and A. Allaoui, Spa32 interaction with the inner-membrane Spa40 component of the type III secretion system of Shigella flexneri is required for the control of the needle length by a molecular tape measure mechanism, Mol Microbiol, vol.70, pp.1515-1528, 2008.

M. Sani, A. Botteaux, C. Parsot, P. Sansonetti, E. J. Boekema et al., IpaD is localized at the tip of the Shigella flexneri type III secretion apparatus, Biochim Biophys Acta, vol.1770, pp.307-311, 2007.

A. Botteaux, M. P. Sory, L. Biskri, C. Parsot, and A. Allaoui, MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus, Mol Microbiol, 2008.

E. Cascales, The type VI secretion toolkit, EMBO Rep, vol.9, pp.735-741, 2008.

S. Pukatzki, S. B. Mcauley, and S. T. Miyata, The type VI secretion system: translocation of effectors and effector-domains, Curr Opin Microbiol, vol.12, pp.11-17, 2009.

P. G. Leiman, M. Basler, U. A. Ramagopal, J. B. Bonanno, J. M. Sauder et al.,

S. C. Burley, J. J. Almo, and . Mekalanos, Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin, Proc Natl Acad Sci U S A, vol.106, pp.4154-4159, 2009.

A. Economou, P. J. Christie, R. C. Fernandez, T. Palmer, G. V. Plano et al., Secretion by numbers : protein traffic in prokaryotes, Mol.Microbiol, 2006.

V. Koronakis, C. Hughes, and E. Koronakis, Energetically distinct early and late stages of

, HlyB/HlyD-dependent secretion across both Escherichia coli membranes, EMBO J, vol.10, pp.3263-3272, 1991.

R. Fronzes, P. J. Christie, and G. Waksman, The structural biology of type IV secretion systems, Nat Rev Microbiol, vol.7, pp.703-714, 2009.

C. K. Yip and N. C. Strynadka, New structural insights into the bacterial type III secretion system, Trends Biochem Sci, vol.31, pp.223-230, 2006.

P. Troisfontaines and G. R. Cornelis, Type III secretion: more systems than you think, Physiology (Bethesda), vol.20, pp.326-339, 2005.

K. Yonekura, S. Maki-yonekura, and K. Namba, Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy, Nature, vol.424, pp.643-650, 2003.

S. I. Aizawa, Bacterial flagella and type III secretion systems, FEMS Microbiol Lett, vol.202, pp.157-164, 2001.

T. Michiels, P. Wattiau, R. Brasseur, J. M. Ruysschaert, and G. Cornelis, Secretion of Yop proteins by Yersiniae, Infect Immun, vol.58, pp.2840-2849, 1990.

C. J. Hueck, Type III protein secretion systems in bacterial pathogens of animals and plants, Microbiol, Mol.Biol.Rev, vol.62, pp.379-433, 1998.

G. R. Cornelis and F. Van-gijsegem, Assembly and function of type III secretory systems, Annu Rev Microbiol, vol.54, pp.735-774, 2000.

T. Kubori, Y. Matsushima, D. Nakamura, J. Uralil, M. Lara-tejero et al., Supramolecular structure of the Salmonella typhimurium type III protein secretion system, Science, vol.280, pp.602-605, 1998.

A. Blocker, N. Jouihri, E. Larquet, P. Gounon, F. Ebel et al., Structure and composition of the Shigella flexneri "needle complex", a part of its type III secreton, Mol Microbiol, vol.39, pp.652-663, 2001.

E. Hoiczyk and G. Blobel, Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells, Proc.Natl.Acad.Sci.U.S.A, vol.98, pp.4669-4674, 2001.

A. Diepold, M. Amstutz, S. Abel, I. Sorg, U. Jenal et al., Deciphering the assembly of the Yersinia type III secretion injectisome, EMBO J

A. Allaoui, P. J. Sansonetti, R. Menard, S. Barzu, J. Mounier et al., MxiG, a membrane protein required for secretion of Shigella spp. Ipa invasins: involvement in entry into epithelial cells and in intercellular dissemination, Mol Microbiol, vol.17, pp.461-470, 1995.

A. Allaoui, P. J. Sansonetti, and C. Parsot, MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins, J Bacteriol, vol.174, pp.7661-7669, 1992.

M. Sani, A. Allaoui, F. Fusetti, G. T. Oostergetel, W. Keegstra et al., Structural organization of the needle complex of the type III secretion apparatus of Shigella flexneri, Micron, vol.38, pp.291-301, 2007.

R. Schuch and A. T. Maurelli, MxiM and MxiJ, base elements of the Mxi-Spa type III secretion system of Shigella, interact with and stabilize the MxiD secretin in the cell envelope, J.Bacteriol, vol.183, pp.6991-6998, 2001.

G. V. Plano and S. C. Straley, Mutations in yscC, yscD, and yscG prevent high-level expression and secretion of V antigen and Yops in Yersinia pestis, J Bacteriol, vol.177, pp.3843-3854, 1995.

T. Michiels, J. C. Vanooteghem, C. Lambert-de-rouvroit, B. China, A. Gustin et al.,

. Cornelis, Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica, J Bacteriol, vol.173, pp.4994-5009, 1991.

J. L. Hodgkinson, A. Horsley, D. Stabat, M. Simon, S. Johnson et al., Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout, Nat Struct Mol Biol, vol.16, pp.477-485, 2009.

T. C. Marlovits and C. E. Stebbins, Type III secretion systems shape up as they ship out, Curr Opin Microbiol, vol.13, pp.47-52

A. Allaoui, P. J. Sansonetti, and C. Parsot, MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri lpa invasins, Mol Microbiol, vol.7, pp.59-68, 1993.

K. Tamano, S. Aizawa, E. Katayama, T. Nonaka, S. Imajoh-ohmi et al., Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors, EMBO J, vol.19, pp.3876-3887, 2000.

N. Nouwen, H. Stahlberg, A. P. Pugsley, and A. Engel, Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy, Embo J, vol.19, pp.2229-2236, 2000.

M. Koster, W. Bitter, H. De-cock, A. Allaoui, G. R. Cornelis et al., The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ringshaped multimeric complex, Mol.Microbiol, vol.26, pp.789-797, 1997.

K. Kaniga, J. C. Bossio, and J. E. Galan, The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins, Mol Microbiol, vol.13, pp.555-568, 1994.

N. Nouwen, N. Ranson, H. Saibil, B. Wolpensinger, A. Engel et al., Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation, Proc Natl Acad Sci U S A, vol.96, pp.8173-8177, 1999.

R. Schuch and A. T. Maurelli, The mxi-Spa type III secretory pathway of Shigella flexneri requires an outer membrane lipoprotein, MxiM, for invasin translocation, Infect.Immun, vol.67, pp.1982-1991, 1999.

M. Okon, T. F. Moraes, P. I. Lario, A. L. Creagh, C. A. Haynes et al., Structural Characterization of the Type-III Pilot-Secretin Complex from Shigella flexneri, Structure, vol.16, pp.1544-1554, 2008.

G. P. Andrews and A. T. Maurelli, mxiA of Shigella flexneri 2a, which facilitates export of invasion plasmid antigens, encodes a homolog of the low-calcium-response protein, LcrD, of Yersinia pestis, Infect Immun, vol.60, pp.3287-3295, 1992.

L. J. Worrall, M. Vuckovic, and N. C. Strynadka, Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA, Protein Sci

A. Allaoui, S. Woestyn, C. Sluiters, and G. R. Cornelis, YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion, J.Bacteriol, vol.176, pp.4534-4542, 1994.

N. Jouihri, M. P. Sory, A. L. Page, P. Gounon, C. Parsot et al., MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, but not of Ipa proteins, through the type III secretion apparatus of Shigella flexneri, Mol.Microbiol, vol.49, pp.755-767, 2003.

S. Johnson and A. Blocker, Characterization of soluble complexes of the Shigella flexneri type III secretion system ATPase, FEMS Microbiol Lett, 2008.

R. M. Macnab, How bacteria assemble flagella, Annu Rev Microbiol, vol.57, pp.77-100, 2003.

L. Journet, C. Agrain, P. Broz, and G. R. Cornelis, The needle length of bacterial injectisomes is determined by a molecular ruler, Science, vol.302, pp.1757-1760, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00177660

T. G. Kimbrough and S. I. Miller, Contribution of Salmonella typhimurium type III secretion components to needle complex formation, Proc Natl Acad Sci U S A, vol.97, pp.11008-11013, 2000.

J. Magdalena, A. Hachani, M. Chamekh, N. Jouihri, P. Gounon et al., Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins, J.Bacteriol, vol.184, pp.3433-3441, 2002.

F. S. Cordes, K. Komoriya, E. Larquet, S. Yang, E. H. Egelman et al., Helical structure of the needle of the type III secretion system of Shigella flexneri, J Biol Chem, vol.278, pp.17103-17107, 2003.

G. Wilharm, V. Lehmann, W. Neumayer, J. Trcek, and J. Heesemann, Yersinia enterocolitica type III secretion: evidence for the ability to transport proteins that are folded prior to secretion, BMC Microbiol, vol.4, p.27, 2004.

J. E. Deane, F. S. Cordes, P. Roversi, S. Johnson, R. Kenjale et al., Expression, purification, crystallization and preliminary crystallographic analysis of MxiH, a subunit of the Shigella flexneri type III secretion system needle, Acta Crystallogr Sect F Struct Biol Cryst Commun, vol.62, pp.302-305, 2006.

J. E. Deane, P. Roversi, F. S. Cordes, S. Johnson, R. Kenjale et al., Molecular model of a type III secretion system needle: Implications for host-cell sensing, Proc Natl Acad Sci U S A, vol.103, pp.12529-12533, 2006.

S. E. Wood, J. Jin, and S. A. Lloyd, YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI, J Bacteriol, vol.190, pp.4252-4262, 2008.

F. S. Sutterwala, L. A. Mijares, L. Li, Y. Ogura, B. I. Kazmierczak et al., Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome, J Exp Med, vol.204, pp.3235-3245, 2007.

K. Tamano, E. Katayama, T. Toyotome, and C. Sasakawa, Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length, J.Bacteriol, vol.184, pp.1244-1252, 2002.

H. Russmann, T. Kubori, J. Sauer, and J. E. Galan, Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein, Mol Microbiol, vol.46, pp.769-779, 2002.

K. Muramoto, S. Makishima, S. I. Aizawa, and R. M. Macnab, Effect of cellular level of FliK on flagellar hook and filament assembly in Salmonella typhimurium, J.Mol.Biol, vol.277, pp.871-882, 1998.

C. Agrain, I. Callebaut, L. Journet, I. Sorg, C. Paroz et al., Characterization of a Type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica, Mol.Microbiol, vol.56, pp.54-67, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021605

T. Hirano, S. Shibata, K. Ohnishi, T. Tani, and S. Aizawa, N-terminal signal region of FliK is dispensable for length control of the flagellar hook, Mol.Microbiol, vol.56, pp.346-360, 2005.

N. P. West, P. Sansonetti, J. Mounier, R. M. Exley, C. Parsot et al., Optimization of virulence functions through glucosylation of Shigella LPS, Science, vol.307, pp.1313-1317, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00368071

R. Medzhitov and C. Janeway, Innate immune recognition: mechanisms and pathways, Immunol Rev, vol.173, pp.89-97, 2000.

R. Medzhitov, Toll-like receptors and innate immunity, Nat Rev Immunol, vol.1, pp.135-145, 2001.

C. Sasakawa, A new paradigm of bacteria-gut interplay brought through the study of Shigella, Proc Jpn Acad Ser B Phys Biol Sci, vol.86, pp.229-243

M. Ogawa and C. Sasakawa, Intracellular survival of Shigella, Cell Microbiol, vol.8, pp.177-184, 2006.

P. Cossart and P. J. Sansonetti, Bacterial invasion: the paradigms of enteroinvasive pathogens, Science, vol.304, pp.242-248, 2004.

P. J. Sansonetti, J. P. Di, and . Santo, Debugging how bacteria manipulate the immune response, Immunity, vol.26, pp.149-161, 2007.

S. Mattoo, Y. M. Lee, and J. E. Dixon, Interactions of bacterial effector proteins with host proteins, Curr Opin Immunol, vol.19, pp.392-401, 2007.

T. Izard, G. T. Van-nhieu, and P. R. Bois, Shigella applies molecular mimicry to subvert vinculin and invade host cells, J Cell Biol, vol.175, pp.465-475, 2006.

A. Skoudy, J. Mounier, A. Aruffo, H. Ohayon, P. Gounon et al., CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells, Cell Microbiol, vol.2, pp.19-33, 2000.

K. A. Demali, A. L. Jue, and K. Burridge, IpaA targets beta1 integrins and rho to promote actin cytoskeleton rearrangements necessary for Shigella entry, J Biol Chem, vol.281, pp.39534-39541, 2006.

C. Hamiaux, A. Van-eerde, C. Parsot, J. Broos, and B. W. Dijkstra, Structural mimicry for vinculin activation by IpaA, a virulence factor of Shigella flexneri, EMBO Rep, vol.7, pp.794-799, 2006.

Y. Chen, M. R. Smith, K. Thirumalai, and A. Zychlinsky, A bacterial invasin induces macrophage apoptosis by binding directly to ICE, EMBO J, vol.15, pp.3853-3860, 1996.

A. B. Hartman, M. Venkatesan, E. V. Oaks, and J. M. Buysse, Sequence and molecular characterization of a multicopy invasion plasmid antigen gene, ipaH, of Shigella flexneri, J Bacteriol, vol.172, pp.1905-1915, 1990.

H. Hilbi, J. E. Moss, D. Hersh, Y. Chen, J. Arondel et al., Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB, J Biol Chem, vol.273, pp.32895-32900, 1998.

P. J. Hume, E. J. Mcghie, R. D. Hayward, and V. Koronakis, The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology, Mol Microbiol, vol.49, pp.425-439, 2003.

H. Iwai, M. Kim, Y. Yoshikawa, H. Ashida, M. Ogawa et al.,

S. Jackson, C. Kotani, and . Sasakawa, A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling, Cell, vol.130, pp.611-623, 2007.

A. T. Harrington, P. D. Hearn, W. L. Picking, J. R. Barker, A. Wessel et al., Structural characterization of the N terminus of IpaC from Shigella flexneri, Infect Immun, vol.71, pp.1255-1264, 2003.

A. K. Veenendaal, J. L. Hodgkinson, L. Schwarzer, D. Stabat, S. F. Zenk et al., The type III secretion system needle tip complex mediates host cell sensing and translocon insertion, Mol Microbiol, vol.63, pp.1719-1730, 2007.

N. M. Alto, F. Shao, C. S. Lazar, R. L. Brost, G. Chua et al., Identification of a bacterial type III effector family with G protein mimicry functions, Cell, vol.124, pp.133-145, 2006.

K. Niebuhr, S. Giuriato, T. Pedron, D. J. Philpott, F. Gaits et al., Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology, EMBO J, vol.21, pp.5069-5078, 2002.

K. Niebuhr, N. Jouihri, A. Allaoui, P. Gounon, P. J. Sansonetti et al., IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation, Mol Microbiol, vol.38, pp.8-19, 2000.

N. L. Slagowski, R. W. Kramer, M. F. Morrison, J. Labaer, and C. F. Lesser, A functional genomic yeast screen to identify pathogenic bacterial proteins, PLoS Pathog, vol.4, p.9, 2008.

D. V. Zurawski, C. Mitsuhata, K. L. Mumy, B. A. Mccormick, and A. T. Maurelli, OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence, Infect Immun, vol.74, pp.5964-5976, 2006.

L. Arbibe, D. W. Kim, E. Batsche, T. Pedron, B. Mateescu et al., An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses, Nat Immunol, vol.8, pp.47-56, 2007.

R. W. Kramer, N. L. Slagowski, N. A. Eze, K. S. Giddings, M. F. Morrison et al., Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation, PLoS Pathog, vol.3, p.21, 2007.

H. Li, H. Xu, Y. Zhou, J. Zhang, C. Long et al., The phosphothreonine lyase activity of a bacterial type III effector family, Science, vol.315, pp.1000-1003, 2007.

S. Yoshida, Y. Handa, T. Suzuki, M. Ogawa, M. Suzuki et al., Microtubule-severing activity of Shigella is pivotal for intercellular spreading, Science, vol.314, pp.985-989, 2006.

S. Yoshida, E. Katayama, A. Kuwae, H. Mimuro, T. Suzuki et al., Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization, EMBO J, vol.21, pp.2923-2935, 2002.

D. W. Kim, G. Lenzen, A. L. Page, P. Legrain, P. J. Sansonetti et al., The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes, Proc Natl Acad Sci U S A, vol.102, pp.14046-14051, 2005.

J. R. Rohde, A. Breitkreutz, A. Chenal, P. J. Sansonetti, and C. Parsot, Type III secretion effectors of the IpaH family are E3 ubiquitin ligases, Cell Host Microbe, vol.1, pp.77-83, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-01540876

J. Okuda, T. Toyotome, N. Kataoka, M. Ohno, H. Abe et al., Shigella effector IpaH9.8 binds to a splicing factor U2AF(35) to modulate host immune responses, Biochem Biophys Res Commun, vol.333, pp.531-539, 2005.

T. Toyotome, T. Suzuki, A. Kuwae, T. Nonaka, H. Fukuda et al., Shigella protein IpaH(9.8) is secreted from bacteria within mammalian cells and transported to the nucleus, J Biol Chem, vol.276, pp.32071-32079, 2001.

H. Ashida, T. Toyotome, T. Nagai, and C. Sasakawa, Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors, Mol Microbiol, vol.63, pp.680-693, 2007.

M. Edidin, The state of lipid rafts: from model membranes to cells, Annu Rev Biophys Biomol Struct, vol.32, pp.257-283, 2003.

F. Lafont and F. G. Van-der-goot, Bacterial invasion via lipid rafts, Cell Microbiol, vol.7, pp.613-620, 2005.

F. G. Van-der-goot, G. Tran-van-nhieu, A. Allaoui, P. Sansonetti, and F. Lafont, Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism, J Biol Chem, vol.279, pp.47792-47798, 2004.

R. D. Hayward, R. J. Cain, E. J. Mcghie, N. Phillips, M. J. Garner et al., Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells, Mol Microbiol, vol.56, pp.590-603, 2005.

K. S. Giddings, A. E. Johnson, and R. K. Tweten, Redefining cholesterol's role in the mechanism of the cholesterol-dependent cytolysins, Proc Natl Acad Sci U S A, vol.100, pp.11315-11320, 2003.

G. N. Schroeder and H. Hilbi, Cholesterol is required to trigger caspase-1 activation and macrophage apoptosis after phagosomal escape of Shigella, Cell Microbiol, vol.9, pp.265-278, 2007.

M. L. Bernardini, J. Mounier, H. .-d'hauteville, M. Coquis-rondon, and P. J. Sansonetti, Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin, Proc Natl Acad Sci U S A, vol.86, pp.3867-3871, 1989.

M. B. Goldberg and J. A. Theriot, Shigella flexneri surface protein IcsA is sufficient to direct actinbased motility, Proc Natl Acad Sci U S A, vol.92, pp.6572-6576, 1995.

M. B. Goldberg, O. Barzu, C. Parsot, and P. J. Sansonetti, Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement, Infect Agents Dis, vol.2, pp.210-211, 1993.

J. R. Robbins, D. Monack, S. J. Mccallum, A. Vegas, E. Pham et al., The making of a gradient: IcsA (VirG) polarity in Shigella flexneri, Mol Microbiol, vol.41, pp.861-872, 2001.

T. Suzuki, H. Mimuro, S. Suetsugu, H. Miki, T. Takenawa et al., Neural WiskottAldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading, Cell Microbiol, vol.4, pp.223-233, 2002.

J. Steinhauer, R. Agha, T. Pham, A. W. Varga, and M. B. Goldberg, The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface, Mol Microbiol, vol.32, pp.367-377, 1999.

C. Egile, H. .-d'hauteville, C. Parsot, and P. J. Sansonetti, SopA, the outer membrane protease responsible for polar localization of IcsA in Shigella flexneri, Mol Microbiol, vol.23, pp.1063-1073, 1997.

D. Santapaola, F. Del-chierico, A. Petrucca, S. Uzzau, M. Casalino et al., Apyrase, the product of the virulence plasmid-encoded phoN2 (apy) gene of Shigella flexneri, is necessary for proper unipolar IcsA localization and for efficient intercellular spread, J Bacteriol, vol.188, pp.1620-1627, 2006.

R. C. Sandlin, M. B. Goldberg, and A. T. Maurelli, Effect of O side-chain length and composition on the virulence of Shigella flexneri 2a, Mol Microbiol, vol.22, pp.63-73, 1996.

K. D. Shere, S. Sallustio, A. Manessis, T. G. Aversa, and M. B. Goldberg, Disruption of IcsP, the major Shigella protease that cleaves IcsA, accelerates actin-based motility, Mol Microbiol, vol.25, pp.451-462, 1997.

I. Fukuda, T. Suzuki, H. Munakata, N. Hayashi, E. Katayama et al., Cleavage of Shigella surface protein VirG occurs at a specific site, but the secretion is not essential for intracellular spreading, J Bacteriol, vol.177, pp.1719-1726, 1995.

M. Ogawa, T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima et al., Escape of intracellular Shigella from autophagy, Science, vol.307, pp.727-731, 2005.

T. Sakaguchi, H. Kohler, X. Gu, B. A. Mccormick, and H. C. Reinecker, Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells, Cell Microbiol, vol.4, pp.367-381, 2002.

T. Michiels and G. R. Cornelis, Secretion of hybrid proteins by the Yersinia Yop export system, J Bacteriol, vol.173, pp.1677-1685, 1991.

I. Bolin and H. Wolf-watz, The plasmid-encoded Yop2b protein of Yersinia pseudotuberculosis is a virulence determinant regulated by calcium and temperature at the level of transcription, Mol Microbiol, vol.2, pp.237-245, 1988.

R. Rosqvist, S. Hakansson, A. Forsberg, and H. Wolf-watz, Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae, Embo J, vol.14, pp.4187-4195, 1995.

K. Schesser, E. Frithz-lindsten, and H. Wolf-watz, Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes, J Bacteriol, vol.178, pp.7227-7233, 1996.

D. M. Anderson and O. Schneewind, A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica, Science, vol.278, pp.1140-1143, 1997.

L. W. Cheng, D. M. Anderson, and O. Schneewind, Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica, Mol Microbiol, vol.24, pp.757-765, 1997.

S. A. Lloyd, M. Sjostrom, S. Andersson, and H. Wolf-watz, Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences, Mol Microbiol, vol.43, pp.51-59, 2002.

M. P. Sory, A. Boland, I. Lambermont, and G. R. Cornelis, Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach, Proc.Natl.Acad.Sci.U.S.A, vol.19, pp.11998-12002, 1995.

C. E. Stebbins and J. E. Galan, Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion, Nature, vol.414, pp.77-81, 2001.

C. Parsot, C. Hamiaux, and A. L. Page, The various and varying roles of specific chaperones in type III secretion systems, Curr Opin Microbiol, vol.6, pp.7-14, 2003.

P. Wattiau, B. Bernier, P. Deslee, T. Michiels, and G. R. Cornelis, Individual chaperones required for Yop secretion by Yersinia, Proc Natl Acad Sci U S A, vol.91, pp.10493-10497, 1994.

K. Ehrbar, A. Friebel, S. I. Miller, and W. D. Hardt, Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1, J Bacteriol, vol.185, pp.6950-6967, 2003.

S. H. Lee and J. E. Galan, Salmonella type III secretion-associated chaperones confer secretionpathway specificity, Mol Microbiol, vol.51, pp.483-495, 2004.

M. Locher, B. Lehnert, K. Krauss, J. Heesemann, M. Groll et al., Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycT, J Biol Chem, vol.280, pp.31149-31155, 2005.

C. E. Stebbins, Structural microbiology at the pathogen-host interface, Cell Microbiol, vol.7, pp.1227-1236, 2005.

C. E. Stebbins and J. E. Galan, Priming virulence factors for delivery into the host, Nat Rev Mol Cell Biol, vol.4, pp.738-743, 2003.

S. C. Birtalan, R. M. Phillips, and P. Ghosh, Three-dimensional secretion signals in chaperoneeffector complexes of bacterial pathogens, Mol Cell, vol.9, pp.971-980, 2002.

R. Menard, P. Sansonetti, C. Parsot, and T. Vasselon, Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri, Cell, vol.79, pp.515-525, 1994.

Y. Luo, M. G. Bertero, E. A. Frey, R. A. Pfuetzner, M. R. Wenk et al., Structural and biochemical characterization of the type III secretion chaperones CesT and SigE, Nat Struct Biol, vol.8, pp.1031-1036, 2001.

A. Van-eerde, C. Hamiaux, J. Perez, C. Parsot, and B. W. Dijkstra, Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity, EMBO Rep, vol.5, pp.477-483, 2004.

A. L. Page and C. Parsot, Chaperones of the type III secretion pathway: jacks of all trades, Mol Microbiol, vol.46, pp.1-11, 2002.

R. Menard, P. Sansonetti, and C. Parsot, The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD, EMBO J, vol.13, pp.5293-5302, 1994.

S. E. Birket, A. T. Harrington, M. Espina, N. D. Smith, C. M. Terry et al., Preparation and characterization of translocator/chaperone complexes and their component proteins from Shigella flexneri, Biochemistry, vol.46, pp.8128-8137, 2007.

T. Rathinavelan, L. Zhang, W. L. Picking, D. D. Weis, R. N. De-guzman et al., A repulsive electrostatic mechanism for protein export through the type III secretion apparatus, Biophys J, vol.98, pp.452-461

A. Abe, M. De-grado, R. A. Pfuetzner, C. Sanchez-sanmartin, R. Devinney et al.,

B. B. Strynadka and . Finlay, Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion, Mol Microbiol, vol.33, pp.1162-1175, 1999.

A. P. Boyd, I. Lambermont, and G. R. Cornelis, Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE, J Bacteriol, vol.182, pp.4811-4821, 2000.

C. R. Wulff-strobel, A. W. Williams, and S. C. Straley, LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion, Mol Microbiol, vol.43, pp.411-423, 2002.

H. Matsumoto and G. M. Young, Essential role of the SycP chaperone in type III secretion of the YspP effector, J Bacteriol, vol.191, pp.1703-1715, 2009.

C. S. Faherty and A. T. Maurelli, Spa15 of Shigella flexneri is Secreted Through the Type-III Secretion System and Prevents Staurosporine-Induced Apoptosis, 2009.

V. Deretic and B. Levine, Autophagy, immunity, and microbial adaptations, Cell Host Microbe, vol.5, pp.527-549, 2009.

N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, Autophagy fights disease through cellular self-digestion, Nature, vol.451, pp.1069-1075, 2008.

J. F. Dice, Chaperone-mediated autophagy, Autophagy, vol.3, pp.295-299, 2007.

A. E. Majeski and J. F. Dice, Mechanisms of chaperone-mediated autophagy, Int J Biochem Cell Biol, vol.36, pp.2435-2444, 2004.

J. F. Dice, Peptide sequences that target cytosolic proteins for lysosomal proteolysis, Trends Biochem Sci, vol.15, pp.305-309, 1990.

S. A. Hayes and J. F. Dice, Roles of molecular chaperones in protein degradation, J Cell Biol, vol.132, pp.255-258, 1996.

A. M. Cuervo and J. F. Dice, A receptor for the selective uptake and degradation of proteins by lysosomes, Science, vol.273, pp.501-503, 1996.

S. R. Terlecky, H. L. Chiang, T. S. Olson, and J. F. Dice, Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by the 73-kDa heat shock cognate protein, J Biol Chem, vol.267, pp.9202-9209, 1992.

U. Bandyopadhyay, S. Kaushik, L. Varticovski, and A. M. Cuervo, The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane, Mol Cell Biol, vol.28, pp.5747-5763, 2008.

M. Kon and A. M. Cuervo, Chaperone-mediated autophagy in health and disease, FEBS Lett, 2009.

J. Ahlberg, L. Marzella, and H. Glaumann, Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis, Lab Invest, vol.47, pp.523-532, 1982.

T. Yorimitsu and D. J. Klionsky, Autophagy: molecular machinery for self-eating, Cell Death Differ, vol.12, issue.2, pp.1542-1552, 2005.

P. Roberts, S. Moshitch-moshkovitz, E. Kvam, E. O'toole, M. Winey et al., Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae, Mol Biol Cell, vol.14, pp.129-141, 2003.

D. L. Tuttle and W. A. Dunn, Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris, J Cell Sci, vol.108, pp.25-35, 1995.

D. J. Klionsky, J. M. Cregg, W. A. Dunn, S. D. Emr, Y. Sakai et al., A unified nomenclature for yeast autophagy-related genes, Dev Cell, vol.5, pp.539-545, 2003.

C. Checroun, T. D. Wehrly, E. R. Fischer, S. F. Hayes, and J. Celli, Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication, Proc Natl Acad Sci U S A, vol.103, pp.14578-14583, 2006.

A. O. Amer and M. S. Swanson, Autophagy is an immediate macrophage response to Legionella pneumophila, Cell Microbiol, vol.7, pp.765-778, 2005.

M. S. Swanson, Autophagy: eating for good health, J Immunol, vol.177, pp.4945-4951, 2006.

I. Vergne, S. Singh, E. Roberts, G. Kyei, S. Master et al., Autophagy in immune defense against Mycobacterium tuberculosis, vol.2, pp.175-178, 2006.

T. Yano, S. Mita, H. Ohmori, Y. Oshima, Y. Fujimoto et al., Autophagic control of listeria through intracellular innate immune recognition in drosophila, Nat Immunol, vol.9, pp.908-916, 2008.

C. L. Birmingham, V. Canadien, E. Gouin, E. B. Troy, T. Yoshimori et al., Listeria monocytogenes evades killing by autophagy during colonization of host cells, Autophagy, vol.3, pp.442-451, 2007.

B. F. Py, M. M. Lipinski, and J. Yuan, Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection, Autophagy, vol.3, pp.117-125, 2007.

N. Meyer-morse, J. R. Robbins, C. S. Rae, S. N. Mochegova, M. S. Swanson et al., Listeriolysin O is necessary and sufficient to induce autophagy during Listeria monocytogenes infection, PLoS One, vol.5, p.8610

, Bibliographie Page, vol.85

M. Delgado, S. Singh, S. D. Haro, S. Master, M. Ponpuak et al., Autophagy and pattern recognition receptors in innate immunity, Immunol Rev, vol.227, pp.189-202, 2009.

N. Dupont, S. Lacas-gervais, J. Bertout, I. Paz, B. Freche et al., Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy, Cell Host Microbe, vol.6, pp.137-149, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02109149

L. Yu, L. Strandberg, and M. J. Lenardo, The selectivity of autophagy and its role in cell death and survival, Autophagy, vol.4, pp.567-573, 2008.

Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J, vol.19, pp.5720-5728, 2000.

D. Mijaljica, M. Prescott, and R. J. Devenish, Endoplasmic reticulum and Golgi complex: Contributions to, and turnover by, autophagy, Traffic, vol.7, pp.1590-1595, 2006.

K. Matsunaga, T. Saitoh, K. Tabata, H. Omori, T. Satoh et al., Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages, Nat Cell Biol, vol.11, pp.385-396, 2009.

B. Levine and D. J. Klionsky, Development by self-digestion: molecular mechanisms and biological functions of autophagy, Dev Cell, vol.6, pp.463-477, 2004.

K. Kirkegaard, M. P. Taylor, and W. T. Jackson, Cellular autophagy: surrender, avoidance and subversion by microorganisms, Nat Rev Microbiol, vol.2, pp.301-314, 2004.

T. Hanada, N. N. Noda, Y. Satomi, Y. Ichimura, Y. Fujioka et al., The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy, J Biol Chem, vol.282, pp.37298-37302, 2007.

N. Fujita, T. Itoh, H. Omori, M. Fukuda, T. Noda et al., The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy, Mol Biol Cell, vol.19, pp.2092-2100, 2008.

S. Pankiv, T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun et al., p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy, J Biol Chem, vol.282, pp.24131-24145, 2007.

V. Kirkin, T. Lamark, T. Johansen, and I. Dikic, NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets, Autophagy, vol.5, pp.732-733, 2009.

Y. S. Rajawat, Z. Hilioti, and I. Bossis, Aging: central role for autophagy and the lysosomal degradative system, Ageing Res Rev, vol.8, pp.199-213, 2009.

E. L. Eskelinen, Maturation of autophagic vacuoles in Mammalian cells, Autophagy, vol.1, pp.1-10, 2005.

L. English, M. Chemali, J. Duron, C. Rondeau, A. Laplante et al., Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection, Nat Immunol, vol.10, pp.480-487, 2009.

D. Biswas, O. S. Qureshi, W. Y. Lee, J. E. Croudace, M. Mura et al., ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages, BMC Immunol, vol.9, p.35, 2008.

T. Beck and M. N. Hall, The TOR signalling pathway controls nuclear localization of nutrientregulated transcription factors, Nature, vol.402, pp.689-692, 1999.

I. Holen, P. B. Gordon, and P. O. Seglen, Protein kinase-dependent effects of okadaic acid on hepatocytic autophagy and cytoskeletal integrity, Biochem J, vol.284, pp.633-636, 1992.

T. Kawamata, Y. Kamada, Y. Kabeya, T. Sekito, and Y. Ohsumi, Organization of the preautophagosomal structure responsible for autophagosome formation, Mol Biol Cell, vol.19, pp.2039-2050, 2008.

C. Liang, J. S. Lee, K. S. Inn, M. U. Gack, Q. Li et al., Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking, Nat Cell Biol, vol.10, pp.776-787, 2008.

G. M. Fimia, A. Stoykova, A. Romagnoli, L. Giunta, S. D. Bartolomeo et al., Ambra1 regulates autophagy and development of the nervous system, Nature, vol.447, pp.1121-1125, 2007.

Y. Takahashi, D. Coppola, N. Matsushita, H. D. Cualing, M. Sun et al., Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis, Nat Cell Biol, vol.9, pp.1142-1151, 2007.

E. L. Axe, S. A. Walker, M. Manifava, P. Chandra, H. L. Roderick et al., Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum, J Cell Biol, vol.182, pp.685-701, 2008.

K. Obara, T. Sekito, K. Niimi, and Y. Ohsumi, The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function, J Biol Chem, vol.283, pp.23972-23980, 2008.

A. Petiot, E. Ogier-denis, E. F. Blommaart, A. J. Meijer, and P. Codogno, Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells, J Biol Chem, vol.275, pp.992-998, 2000.

B. Levine, Eating oneself and uninvited guests: autophagy-related pathways in cellular defense, Cell, vol.120, pp.159-162, 2005.

I. Nakagawa, A. Amano, N. Mizushima, A. Yamamoto, H. Yamaguchi et al., Autophagy defends cells against invading group A Streptococcus, vol.306, pp.1037-1040, 2004.

S. Alonso, K. Pethe, D. G. Russell, and G. E. Purdy, Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy, Proc Natl Acad Sci U S A, vol.104, pp.6031-6036, 2007.

M. G. Gutierrez, S. S. Master, S. B. Singh, G. A. Taylor, M. I. Colombo et al., Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages, Cell, vol.119, pp.753-766, 2004.

S. B. Singh, A. S. Davis, G. A. Taylor, and V. Deretic, Human IRGM induces autophagy to eliminate intracellular mycobacteria, Science, vol.313, pp.1438-1441, 2006.

C. L. Birmingham and J. H. Brumell, Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles, Autophagy, vol.2, pp.156-158, 2006.

Z. Zhao, B. Fux, M. Goodwin, I. R. Dunay, D. Strong et al., Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens, Cell Host Microbe, vol.4, pp.458-469, 2008.

N. Jounai, F. Takeshita, K. Kobiyama, A. Sawano, A. Miyawaki et al., The Atg5 Atg12 conjugate associates with innate antiviral immune responses, Proc Natl Acad Sci U S A, vol.104, pp.14050-14055, 2007.
DOI : 10.1073/pnas.0704014104

URL : http://www.pnas.org/content/104/35/14050.full.pdf

M. A. Delgado, R. A. Elmaoued, A. S. Davis, G. Kyei, and V. Deretic, Toll-like receptors control autophagy, EMBO J, vol.27, pp.1110-1121, 2008.

M. A. Sanjuan, C. P. Dillon, S. W. Tait, S. Moshiach, F. Dorsey et al.,

J. L. Tanaka, S. Cleveland, D. R. Withoff, and . Green, Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis, Nature, vol.450, pp.1253-1257, 2007.

Y. Xu, C. Jagannath, X. D. Liu, A. Sharafkhaneh, K. E. Kolodziejska et al., Toll-like receptor 4 is a sensor for autophagy associated with innate immunity, Immunity, vol.27, pp.135-144, 2007.

T. Saitoh, N. Fujita, M. H. Jang, S. Uematsu, B. G. Yang et al., Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production, Nature, vol.456, pp.264-268, 2008.

J. Nedjic, M. Aichinger, J. Emmerich, N. Mizushima, and L. Klein, Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance, Nature, vol.455, pp.396-400, 2008.

C. Li, E. Capan, Y. Zhao, J. Zhao, D. Stolz et al., Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death, J Immunol, vol.177, pp.5163-5168, 2006.

B. C. Miller, Z. Zhao, L. M. Stephenson, K. Cadwell, H. H. Pua et al., The autophagy gene ATG5 plays an essential role in B lymphocyte development, Autophagy, vol.4, pp.309-314, 2008.

H. H. Pua and Y. W. He, Maintaining T lymphocyte homeostasis: another duty of autophagy, Autophagy, vol.3, pp.266-267, 2007.

H. H. Pua, I. Dzhagalov, M. Chuck, N. Mizushima, and Y. W. He, A critical role for the autophagy gene Atg5 in T cell survival and proliferation, J Exp Med, vol.204, pp.25-31, 2007.

D. Schmid and C. Munz, Innate and adaptive immunity through autophagy, vol.27, pp.11-21, 2007.

D. Schmid, M. Pypaert, and C. Munz, Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes, Immunity, vol.26, pp.79-92, 2007.

H. H. Pua, J. Guo, M. Komatsu, and Y. W. He, Autophagy is essential for mitochondrial clearance in mature T lymphocytes, J Immunol, vol.182, pp.4046-4055, 2009.

K. Cadwell, J. Y. Liu, S. L. Brown, H. Miyoshi, J. Loh et al., Virgin, A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells, Nature, vol.456, pp.259-263, 2008.

R. M. Andrade, M. Wessendarp, M. J. Gubbels, B. Striepen, and C. S. Subauste, CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogencontaining vacuoles and lysosomes, J Clin Invest, vol.116, pp.2366-2377, 2006.

Y. M. Ling, M. H. Shaw, C. Ayala, I. Coppens, G. A. Taylor et al., Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages, J Exp Med, vol.203, pp.2063-2071, 2006.

J. Harris, S. A. De-haro, S. S. Master, J. Keane, E. A. Roberts et al., T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis, Immunity, vol.27, pp.505-517, 2007.

J. P. Butchar, T. J. Cremer, C. D. Clay, M. A. Gavrilin, M. D. Wewers et al.,

S. Schlesinger and . Tridandapani, Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion, PLoS One, vol.3, p.2924, 2008.

M. Cullinane, L. Gong, X. Li, N. Lazar-adler, T. Tra et al., Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines, Autophagy, vol.4, pp.744-753, 2008.

C. L. Birmingham, V. Canadien, N. A. Kaniuk, B. E. Steinberg, D. E. Higgins et al., Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles, Nature, vol.451, pp.350-354, 2008.

T. Minamino, H. U. Ferris, N. Moriya, M. Kihara, and K. Namba, Two parts of the T3S4 domain of the hook-length control protein FliK are essential for the substrate specificity switching of the flagellar type III export apparatus, J.Mol.Biol, vol.362, pp.1148-1158, 2006.

A. Botteaux, M. Sani, C. A. Kayath, E. J. Boekema, and A. Allaoui, Spa32 interaction with the inner-membrane Spa40 component of the type III secretion system of Shigella flexneri is required for the control of the needle length by a molecular tape measure mechanism, Mol Microbiol, 2008.

S. F. Zenk, D. Stabat, J. L. Hodgkinson, A. K. Veenendaal, S. Johnson et al., Identification of minor inner-membrane components of the Shigella type III secretion system 'needle complex, Microbiology, vol.153, pp.2405-2415, 2007.

J. E. Deane, S. C. Graham, E. P. Mitchell, D. Flot, S. Johnson et al., Crystal structure of Spa40, the specificity switch for the Shigella flexneri type III secretion system, Mol Microbiol, vol.69, pp.267-276, 2008.

G. M. Fraser, T. Hirano, H. U. Ferris, L. L. Devgan, M. Kihara et al., Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB, Mol.Microbiol, vol.48, pp.1043-1057, 2003.

K. E. Riordan and O. Schneewind, YscU cleavage and the assembly of Yersinia type III secretion machine complexes, Mol Microbiol, vol.68, pp.1485-1501, 2008.

K. Zhu, B. Gonzalez-pedrajo, and R. M. Macnab, Interactions among membrane and soluble components of the flagellar export apparatus of Salmonella, Biochemistry, vol.41, pp.9516-9524, 2002.

T. Minamino and K. Namba, Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export, Nature, vol.451, pp.485-488, 2008.

R. Zarivach, W. Deng, M. Vuckovic, H. B. Felise, H. V. Nguyen et al.,

. Strynadka, Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS, Nature, vol.453, pp.124-127, 2008.

P. J. Edqvist, J. Olsson, M. Lavander, L. Sundberg, A. Forsberg et al., YscP and YscU regulate substrate specificity of the Yersinia type III secretion system, J.Bacteriol, vol.185, pp.2259-2266, 2003.

N. Moriya, T. Minamino, K. T. Hughes, R. M. Macnab, and K. Namba, The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock, J Mol Biol, vol.359, pp.466-477, 2006.

T. Minamino, K. Imada, A. Tahara, M. Kihara, R. M. Macnab et al., Crystallization and preliminary X-ray analysis of Salmonella FliI, the ATPase component of the type III flagellar proteinexport apparatus, Acta Crystallogr Sect F Struct Biol Cryst Commun, vol.62, pp.973-975, 2006.

C. J. Hueck, Type III protein secretion systems in bacterial pathogens of animals and plants, Microbiol Mol Biol Rev, vol.62, pp.379-433, 1998.

P. B. Carpenter, A. R. Zuberi, and G. W. Ordal, Bacillus subtilis flagellar proteins FliP, FliQ, FliR and FlhB are related to Shigella flexneri virulence factors, Gene, vol.137, pp.243-245, 1993.

H. C. Huang, R. H. Lin, C. J. Chang, A. Collmer, and W. L. Deng, The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpinPss secretion that are arranged colinearly with Yersinia ysc homologs, Mol Plant Microbe Interact, vol.8, pp.733-746, 1995.

J. Malakooti, B. Ely, and P. Matsumura, Molecular characterization, nucleotide sequence, and expression of the fliO, fliP, fliQ, and fliR genes of Escherichia coli, J Bacteriol, vol.176, pp.189-197, 1994.

E. A. Groisman and H. Ochman, Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri, EMBO J, vol.12, pp.3779-3787, 1993.

C. M. Collazo and J. E. Galan, Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium, Infect Immun, vol.64, pp.3524-3531, 1996.

A. Sukhan, T. Kubori, J. Wilson, and J. E. Galan, Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex, J Bacteriol, vol.183, pp.1159-1167, 2001.

F. Fan, K. Ohnishi, N. R. Francis, and R. M. Macnab, The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body, Mol Microbiol, vol.26, pp.1035-1046, 1997.

J. L. Mcmurry, J. S. Van-arnam, M. Kihara, and R. M. Macnab, Analysis of the cytoplasmic domains of Salmonella FlhA and interactions with components of the flagellar export machinery, J Bacteriol, vol.186, pp.7586-7592, 2004.

C. Penno, A. Hachani, L. Biskri, P. Sansonetti, A. Allaoui et al., Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri, Mol.Microbiol, vol.62, pp.1460-1468, 2006.

Y. Saijo-hamano, T. Minamino, R. M. Macnab, and K. Namba, Structural and functional analysis of the C-terminal cytoplasmic domain of FlhA, an integral membrane component of the type III flagellar protein export apparatus in Salmonella, J Mol Biol, vol.343, pp.457-466, 2004.

K. A. Fields, G. V. Plano, and S. C. Straley, A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis, J Bacteriol, vol.176, pp.569-579, 1994.

L. Purins, L. Van-den, V. Bosch, R. Richardson, and . Morona, Coiled-coil regions play a role in the function of the Shigella flexneri O-antigen chain length regulator WzzpHS2, Microbiology, vol.154, pp.1104-1116, 2008.

J. L. Mcmurry, J. W. Murphy, and B. Gonzalez-pedrajo, The FliN-FliH interaction mediates localization of flagellar export ATPase FliI to the C ring complex, Biochemistry, vol.45, pp.11790-11798, 2006.

T. Minamino and R. M. Macnab, Interactions among components of the Salmonella flagellar export apparatus and its substrates, Mol.Microbiol, vol.35, pp.1052-1064, 2000.

E. A. Creasey, R. M. Delahay, S. J. Daniell, and G. Frankel, Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli, Microbiology, vol.149, pp.2093-2106, 2003.

A. L. Page, M. Fromont-racine, P. Sansonetti, P. Legrain, and C. Parsot, Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri, Mol Microbiol, vol.42, pp.1133-1145, 2001.

C. S. Faherty and A. T. Maurelli, Spa15 of Shigella flexneri is secreted through the type III secretion system and prevents staurosporine-induced apoptosis, Infect Immun, vol.77, pp.5281-5290, 2009.

M. J. Garner, R. D. Hayward, and V. Koronakis, The Salmonella pathogenicity island 1 secretion system directs cellular cholesterol redistribution during mammalian cell entry and intracellular trafficking, Cell Microbiol, vol.4, pp.153-165, 2002.

F. Lafont, G. T. Van-nhieu, K. Hanada, P. Sansonetti, and F. G. Van-der-goot, Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction, EMBO J, vol.21, pp.4449-4457, 2002.

N. Zobiack, U. Rescher, S. Laarmann, S. Michgehl, M. A. Schmidt et al., Cell-surface attachment of pedestal-forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin 2, J Cell Sci, vol.115, pp.91-98, 2002.

N. S. Lossi, N. Rolhion, A. I. Magee, C. Boyle, and D. W. Holden, The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid : cholesterol acyltransferase activity, Microbiology, vol.154, pp.2680-2688, 2008.

M. B. Ohlson, Z. Huang, N. M. Alto, M. P. Blanc, J. E. Dixon et al., Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation, Cell Host Microbe, vol.4, pp.434-446, 2008.

C. De-chastellier and L. Thilo, Cholesterol depletion in Mycobacterium avium-infected macrophages overcomes the block in phagosome maturation and leads to the reversible sequestration of viable mycobacteria in phagolysosome-derived autophagic vacuoles, Cell Microbiol, vol.8, pp.242-256, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080750

B. Arellano-reynoso, N. Lapaque, S. Salcedo, G. Briones, A. E. Ciocchini et al.,

I. Moreno, J. P. Moriyon, and . Gorvel, Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival, Nat Immunol, vol.6, pp.618-625, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00165692

S. Ishibashi, T. Yamazaki, and K. Okamoto, Association of autophagy with cholesterolaccumulated compartments in Niemann-Pick disease type C cells, J Clin Neurosci, vol.16, pp.954-959, 2009.

Q. K. Yue, I. J. Kass, N. S. Sampson, and A. Vrielink, Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants, Biochemistry, vol.38, pp.4277-4286, 1999.

G. Boissy, E. De-la-fortelle, R. Kahn, J. C. Huet, G. Bricogne et al., Crystal structure of a fungal elicitor secreted by Phytophthora cryptogea, a member of a novel class of plant necrotic proteins, Structure, vol.4, pp.1429-1439, 1996.

S. Fefeu, S. Bouaziz, J. C. Huet, J. C. Pernollet, and E. Guittet, Three-dimensional solution structure of beta cryptogein, a beta elicitin secreted by a phytopathogenic fungus Phytophthora cryptogea, Protein Sci, vol.6, pp.2279-2284, 1997.

V. Mikes, M. L. Milat, M. Ponchet, F. Panabieres, P. Ricci et al., Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins, Biochem Biophys Res Commun, vol.245, pp.133-139, 1998.

H. Osman, S. Vauthrin, V. Mikes, M. L. Milat, F. Panabieres et al., Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes, Mol Biol Cell, vol.12, pp.2825-2834, 2001.

G. Boissy, M. O'donohue, O. Gaudemer, V. Perez, J. C. Pernollet et al., The 2.1 A structure of an elicitin-ergosterol complex: a recent addition to the Sterol Carrier Protein family, Protein Sci, vol.8, pp.1191-1199, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01000903

M. P. Stevens, J. M. Stevens, R. L. Jeng, L. A. Taylor, M. W. Wood et al., Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei, Mol Microbiol, vol.56, pp.40-53, 2005.

C. J. Czuprynski and R. A. Welch, Biological effects of RTX toxins: the possible role of lipopolysaccharide, Trends Microbiol, vol.3, pp.480-483, 1995.

K. J. Satchell, MARTX, multifunctional autoprocessing repeats-in-toxin toxins, Infect Immun, vol.75, pp.5079-5084, 2007.

P. J. Lupardus, A. Shen, M. Bogyo, and K. C. Garcia, Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain, Science, vol.322, pp.265-268, 2008.

K. L. Sheahan, C. L. Cordero, and K. J. Satchell, Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain, EMBO J, vol.26, pp.2552-2561, 2007.

C. L. Cordero, D. S. Kudryashov, E. Reisler, and K. J. Satchell, The Actin cross-linking domain of the Vibrio cholerae RTX toxin directly catalyzes the covalent cross-linking of actin, J Biol Chem, vol.281, pp.32366-32374, 2006.

K. J. Fullner and J. J. Mekalanos, In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin, EMBO J, vol.19, pp.5315-5323, 2000.

K. L. Sheahan and K. J. Satchell, Inactivation of small Rho GTPases by the multifunctional RTX toxin from Vibrio cholerae, Cell Microbiol, vol.9, pp.1324-1335, 2007.

J. Pei and N. V. Grishin, The Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold, Proteins, vol.77, pp.413-419, 2009.

M. B. Goldberg and P. J. Sansonetti, Shigella subversion of the cellular cytoskeleton: a strategy for epithelial colonization, Infect Immun, vol.61, pp.4941-4946, 1993.

K. Galmbacher, M. Heisig, C. Hotz, J. Wischhusen, A. Galmiche et al., Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression, PLoS One, vol.5, p.9572

M. Chamekh, A. Phalipon, R. Quertainmont, I. Salmon, P. Sansonetti et al., Delivery of biologically active anti-inflammatory cytokines IL-10 and IL-1ra in vivo by the Shigella type III secretion apparatus, J Immunol, vol.180, pp.4292-4298, 2008.