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Merci Mamie pour ton rire et ton affection, mais aussi pour les nombreuses boîtes remplies



de kugelhopfs, pretla et chocolats au schnaps! Je remercie ma mère et mes cousins pour leur
soutien et leur compréhension de mon faible taux de présence ces derniers temps, et mon
cousin Vincent pour m’avoir présenté très tôt le monde de la recherche.

Bien sûr, tout cela n’aurait jamais été possible sans l’aide et le soutien de mes nombreux
colocataires (plus de 20 durant la thèse), particulièrement Laura, Noémie, Zazoo et Isa. Les
éléments constants tout au long de ces années de thèse ont été Seb et Leana, qui sont devenus
une sorte de nouvelle famille; sans oublier Jad, qui a malheureusement du quitter la France
quelques mois avant la soutenance.

Merci à Alex et Pauline pour votre soutien, votre amitié, et tout ce que vous m’avez appris.
Et maintenant, j’attends de vous voir défendre à votre tour! (Ça vaut pour toi aussi, Leana!)



Abstract

Keywords: active learning – self-organization – language emergence – language evolution

Social conventions are learned mostly at a young age, but are quite different from other
domains, like for example sensorimotor skills. The first people to define conventions just
picked an arbitrary alternative between several options: a side of the road to drive on, the
design of an electric plug, or inventing a new word. Because of this, while setting a new
convention in a population of interacting individuals, many competing options can arise, and
lead to a situation of growing complexity if many parallel inventions happen. How do we deal
with this issue?

Humans often exhert an active control on their learning situation, by for example selecting
activities that are neither too complex nor too simple. This behavior, in cases like sensorimotor
learning, has been shown to help learn faster, better, and with fewer examples. Could such
mechanisms also have an impact on the negotiation of social conventions?

A particular example of social convention is the lexicon: which words we associated with
given meanings. Computational models of language emergence, called the Language Games,
showed that it is possible for a population of agents to build a common language through only
pairwise interactions. In particular, the Naming Game model focuses on the formation of the
lexicon mapping words and meanings, and shows a typical burst of complexity before starting
to discard options and find a final consensus.

In this thesis, we introduce the idea of active learning and active control of complexity
growth in the Naming Game, in the form of a topic choice policy: agents can choose the
meaning they want to talk about in each interaction. Several strategies were introduced, and
have a different impact on both the time needed to converge to a consensus and the amount
of memory needed by individual agents.

Firstly, we artificially constrain the memory of agents to avoid the local complexity burst.
A few strategies are presented, some of which can have similar convergence speed as in the
standard case. Secondly, we formalize what agents need to optimize, based on a representation
of the average state of the population. A couple of strategies inspired by this notion help keep
the memory usage low without having constraints, but also result in a faster convergence
process.

We then show that the obtained dynamics are close to an optimal behavior, expressed ana-
lytically as a lower bound to convergence time.

Eventually, we designed an online user experiment to collect data on how humans would
behave in the same model, which shows that they do have an active topic choice policy, and
do not choose randomly.

Contributions from this thesis also include a classification of the existing Naming Game
models and an open-source framework to simulate them.



Abstract

Mots-Clés: apprentissage actif – auto-organisation – émergence du langage – évolution du
langage

Nous apprenons très jeunes une quantité de règles nous permettant d’interagir avec d’autres
personnes: des conventions sociales. Elles diffèrent des autres types d’apprentissage dans le
sens où les premières personnes à les avoir utilisées n’ont fait qu’un choix arbitraire parmi
plusieurs alternatives possibles: le côté de la route où conduire, la forme d’une prise élec-
trique, ou inventer de nouveaux mots. À cause de celà, lorsqu’une nouvelle convention se crée
au sein d’une population d’individus interagissant entre eux, de nombreuses alternatives peu-
vent apparaître et conduire à une situation complexe où plusieurs conventions équivalentes
coexistent en compétition. Il peut devenir difficile de les retenir toutes, comment faisons-nous
pour trouver un accord efficacement?

Nous exerçons communément un contrôle actif sur nos situations d’apprentissage, en par
exemple sélectionnant des activités qui ne soient ni trop simples ni trop complexes. Il a été
montré que ce type de comportement, dans des cas comme l’apprentissage sensori-moteur,
aide à apprendre mieux, plus vite, et avec moins d’exemples. Est-ce que de tels mécanismes
pourraient aussi influencer la négociation de conventions sociales?

Le lexique est un exemple particulier de convention sociale: quels mots associer avec tel
objet ou tel sens? Une classe de modèles computationels, les Language Games, montrent qu’il
est possible pour une population d’individus de construire un langage commun via une série
d’interactions par paires. En particulier, le modèle appelé Naming Game met l’accent sur la
formation du lexique reliant mots et sens, et montre une typique explosion de la complexité
avant de commencer à écarter les conventions synonymes ou homonymes et arriver à un
consensus.

Dans cette thèse, nous introduisons l’idée de l’apprentissage actif et du contrôle actif de la
croissance de la complexité dans le Naming Game, sous la forme d’une politique de choix du
sujet de conversation, applicable à chaque interaction. Différentes stratégies sont introduites,
et ont des impacts différents sur à la fois le temps nécessaire pour converger vers un consensus
et la quantité de mémoire nécessaire à chaque individu.

Premièrement, nous limitons artificiellement la mémoire des agents pour éviter l’explosion
de complexité locale. Quelques stratégies sont présentées, certaines ayant des propriétés sim-
ilaires au cas standard en termes de temps de convergence. Dans un deuxième temps, nous
formalisons ce que les agents doivent optimiser, en se basant sur une représentation de l’état
moyen de la population. Deux stratégies inspirées de cette notion permettent de limiter les
besoins en mémoire sans avoir à contraindre le système, et en prime permettent de converger
plus rapidement.

Nous montrons ensuite que la dynamique obtenue est proche d’un comportement théorique
optimal, exprimé comme une borne inférieure au temps de convergence.

Finalement, nous avons mis en place une expérience utilisateur en ligne sous forme de jeu
pour collecter des données sur le comportement d’utilisateurs réels placés dans le cadre du



modèle. Les résultats suggèrent qu’ils ont effectivement une politique active de choix de sujet
de conversation, en comparaison avec un choix aléatoire.

Les contributions de ce travail de thèse incluent aussi une classification des modèles de
Naming Games existants, et un cadriciel open-source pour les simuler.
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Résumé en Français

L’enfance est remplie de nombreux défis, l’un des plus importants
étant d’apprendre et acquérir une énorme quantité de compétences
et de connaissances; tout cela en un temps limité et à un rythme
impressionnant. Les enfants en bas âge apprennent rapidement à
maîtriser leurs mouvements et leur corps, à prononcer des mots,
et à interagir avec différents objets et avec d’autres personnes; plus
généralement avec le monde qui les entoure.

Ils passent d’une activité à l’autre et sont soumis à un flux constant
de nouvelles informations. Ils s’intéressent rapidement à quelque
chose, mais s’ennuient aussi facilement et passent à autre chose.

Mais comment décident-ils des nouvelles activités à choisir ? Leur
motivation dans ces exemples n’est pas externe, mais intrinsèque
(Berlyne, 1960; Ryan and Deci, 2000).

Les théories développées pour définir les activités intrinsèque-
ment motivantes incluent le concept de Flow (Csikszentmihalyi, 1991)
: les activités trop difficiles peuvent être source d’anxiété, et celles
trop simples source d’ennui. Dans un contexte d’apprentissage, les
nouvelles compétences qui sont acquises deviennent progressive-
ment plus faciles. D’autres tâches, au contraire, étaient peut-être
trop complexes au début de l’apprentissage, mais sont maintenant
accessibles, grâce aux compétences nouvellement acquises. Ce pro-
cessus fait que la zone de Flow optimale se déplace progressivement
dans le temps (voir figure ).

Boredom

Anxiety

Skills

Challenge Flow

Figure 1: Illustration simplifiée du flow
(Csikszentmihalyi, 1991) : avec un cer-
tain niveau de compétences, les défis
peuvent être trop complexes et causer
de l’anxiété, trop simples et de l’ennui.
Le flow est une zone intermédiaire, où
l’apprentissage peut être plus efficace.

Cette idée d’état intermédiaire se retrouve dans d’autres théories.
Dans Berlyne, 1965, il a été avancé que beaucoup de termes asso-
ciés à la motivation intrinsèque (incongruité, complexité, nouveauté, ....)
pourraient être décrits comme des variables inspirées de la théorie de
l’information. Différentes fonctions peuvent être considérées comme
une récompense intrinsèque et ont été examinées dans Oudeyer and
Kaplan, 2009.

Une alternative à une potentielle mesure des récompenses in-
trinsèques dans le cerveau, qui peut être complexe et invasive,
est d’envisager les robots, et plus généralement les algorithmes
d’apprentissage. Comme les bébés, les robots interagissent avec leur
environnement par l’intermédiaire d’un corps dont les nombreux ac-
tionneurs (moteurs ou muscles) sont complexes à maîtriser.

Même des tâches que nous considérons naturellement très sim-
ples, parce que nous les exécutons dans notre vie quotidienne sans
même y penser, sont en réalité très difficiles. Par exemple, la marche



est plus difficile qu’on ne l’imagine et implique un équilibre sub-
til et une coordination entre les muscles. Les corps des robots sont
généralement conçus pour permettre aux ingénieurs de calculer des
modèles et des paramètres efficaces pour la marche (moteurs plus
puissants, centre de gravité plus bas, forme des jambes, etc. – voir
figure pour une illustration). Au contraire, un enfant apprend en
un an à se lever et à marcher, à découvrir son corps et s’y adapter,
car il change et grandit rapidement en même temps. L’enfant exerce
un contrôle actif sur la croissance de la complexité de ses interac-
tions avec son environnement, ce qui lui permet d’apprendre plus
efficacement. Figure 2: Le robot Nao (SoftBanks

Robotics) est un robot commercial, dont
les jambes et les pieds ont été conçus
pour lui permettre de marcher facile-
ment. Gauche : Le robot humanoïde
Poppy a été conçu pour étudier la
marche humaine, et a des proportions
corporelles et des forces motrices sem-
blables à celles d’un enfant, mais ne
peut pas encore marcher sans assistance
(Lapeyre et al., 2014).

Les comportements inspirés des théories sur la motivation intrin-
sèque peuvent être implémentés comme algorithmes et utilisés en
particulier dans les robots : par exemple dans l’expérience Play-
ground. (Oudeyer and Kaplan, 2006), un robot est placé dans une aire
de jeux pour bébé et apprend activement à interagir avec son envi-
ronnement, en décidant quelles activités sont plus intéressantes que
d’autres, suivant une mesure de progrès d’apprentissage. Il y a deux
facettes complémentaires à ce type d’approche, appelée developpe-
mentale : les expériences robotiques qui permettent de mieux com-
prendre le comportement de l’enfant en reproduisant les modèles
associés (activités de commutation, voies de développement, etc.),
et l’adaptation des connaissances en psychologie pour concevoir des
algorithmes plus efficaces d’apprentissage machine et d’intelligence
artificielle en général, les tester sur robots ou modèles computation-
nels.

Figure 3: L’expérience du terrain de
jeux ou Playground (Oudeyer and Ka-
plan, 2006) : un robot choisit ses ac-
tivités au cours du temps, en fonc-
tion de ses progrès d’apprentissage.
L’activité comprend la saisie et le
toucher d’objets, ainsi que la commu-
nication avec un pair.

Les humains ne font pas qu’apprendre individuellement, mais peu-
vent aussi apprendre à se coordonner collectivement; par exemple
lors de mouvements de groupe, d’exploration commune, ou de con-
sensus sur des conventions sociales, comme par exemple le langage.

La langue est généralement enseignée à l’école sous la forme d’un
ensemble statique de règles et de définitions, comprenant souvent
de longues listes d’exceptions et d’irrégularités. Ces règles peuvent
cependant faire l’objet de variations et de suppression/création de
règles, non pas parce qu’une autorité comme l’Académie française le
décide, mais parce que les usagers de la langue changent spontané-
ment et inconsciemment leurs habitudes. De nouveaux mots et de
nouvelles règles peuvent être transmis à d’autres orateurs qui, à leur
tour, les propageront et les modifieront davantage, ou refuseront de
les adopter et de s’en tenir à leurs propres règles. Les règles peuvent
se reproduire et se propager, mais elles sont aussi en concurrence les
unes avec les autres pour au moins une ressource limitée : les util-
isateurs de ces langues. En d’autres termes, la langue est soumise à
un processus évolutif.

Si l’évolution biologique peut être liée à certains aspects du lan-
gage (par exemple la forme du larynx ou des parties spécifiques
du cerveau), elle ne peut expliquer l’évolution rapide du langage
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: l’usage d’un nouveau mot peut facilement se propager dans le
monde en quelques heures. Cela révèle également un autre aspect
de l’évolution du langage qui contredit l’héritage génétique classique
de l’information : le langage peut être transmis directement d’une
personne à l’autre, ou horizontalement, par opposition à la transmis-
sion verticale d’une génération à l’autre. Le langage peut être décrit
comme sujet à l’évolution culturelle, et résulte des interactions entre
les individus.

Le terme de language games a été introduit par Wittgenstein,
1953 pour décrire bon nombre de nos interactions quotidiennes qui
peuvent soit utiliser le langage, soit constituer un substrat communi-
catif pour l’émergence du langage. Dans les modèles informatiques
de l’évolution du langage, il fait référence à une classe de mod-
èles multi-agents (Steels, 1995) dans laquelle le langage est considéré
comme un système complexe adaptatif (Steels, 2000). Ils se concen-
trent sur les propriétés d’auto-organisation résultant de la transmis-
sion horizontale du langage, et montrent de façon intéressante que
certaines caractéristiques du langage peuvent émerger spontanément
dans une population d’agents, sans un contrôle centralisé ou un lan-
gage partiellement inné.

L’une des versions les plus simples s’appelle le Naming Game :
les agents s’accordent progressivement sur un lexique, faisant corre-
spondre des objets ou concepts à des mots (Loreto, Baronchelli, et
al., 2011; Steels, 1995; Wellens, 2012). Les agents interagissent par
paires choisies au hasard, de manière décentralisée; mais parvien-
nent à converger vers un lexique commun à tous après un certain
nombre d’interactions. Ce modèle étant au cœur de cette thèse, le
chapitre 2 est consacré à sa description détaillée.

Une approche au contrôle actif de la croissance de la complexité a
été introduite par Oudeyer and Delaunay, 2008, reposant sur le fait
que moins de connaissances sont pré-partagées par les agents : un
choix actif du sujet de chaque communication (parmi les différents
objets ou concepts possibles). Lorsqu’il s’agit de nommer plusieurs
objets, l’accord peut être obtenu plus rapidement si les agents se
contentent d’abord des étiquettes de certains objets, puis passent à
en nommer d’autres. Cette approche sera l’élément central de cette
thèse.

Cette thèse utilise donc un modèle computationnel multi-agent
mettant en jeu une dynamique collective, le Naming Game, et une
approche spécifique à l’introduction d’ un contrôle actif de la crois-
sance de la complexité: le choix actif du sujet de la communication
(Oudeyer and Delaunay, 2008). Nous nous concentrons sur deux pro-
priétés des stratégies qui en découlent : un accord global peut être
construit plus rapidement, et moins de mémoire est nécessaire pour
y arriver.

Le chapitre 2 présente le modèle et les nombreuses variantes qui
ont été étudiées, ainsi que les mesures et propriétés pertinentes du



modèle. Pour rester plausible sur le plan cognitif, la mémoire néces-
saire doit rester faible et ne pas croître en fonction de la taille de
la population; ce qui n’est pas le cas dans la version standard du
Naming Game.
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Figure 4: Évolution typique du nom-
bre de mots (mémoire) par agent. Le
système passe par un maximum, et
c’est sur cette croissance de la complex-
ité que les algorithmes introduits dans
cette thèse tenteront d’exercer un con-
trôle.

Le chapitre 3 introduit la notion de choix de sujet actif, et présente
quelques stratégies sous contrainte de mémoire: les homonymes et
synonymes sont interdits. Les stratégies Information Gain Maxi-
mization et Chunks reposent uniquement sur la taille actuelle du
lexique de l’agent. Les stratégies Minimal Counts et Success Thresh-
old reposent sur un comptage des succès et des échecs parmi les
tentatives de communication, respectivement d’une manière absolue
ou relative. Nous montrons que les deux dernières stratégies perme-
ttent de converger beaucoup plus rapidement qu’une politique de
choix aléatoire des sujets de communication.

Le chapitre 4 reconsidère l’homonymie et la synonymie : l’objectif
est de concevoir de nouvelles stratégies qui contrôleront elles-mêmes
l’utilisation de la mémoire. Une nouvelle mesure est introduite,
la mesure LAPS, ou Probabilité Locale Approximative de Succès.
Il s’agit d’une estimation à l’échelle de l’agent du niveau d’accord
avec l’ensemble de la population. Une stratégie maximisant cette
mesure est présentée, et montre des propriétés remarquables en
termes de temps de convergence et d’utilisation de mémoire. La
stratégie LAPSmax n’utilise cependant pas la maximisation directe
de la mesure LAPS, mais une heuristique : il serait trop difficile de
calculer autrement. Une mesure plus simple, proche de LAPS et
appelée cohérence, conduit à une autre stratégie avec maximisation
directe. Cette stratégie converge encore plus vite que LAPSmax, mais
utilise un peu plus de mémoire. Ces deux stratégies sont robustes à
des contraintes même fortes sur le nombre de mots possibles.

Le chapitre 5 présente des estimations statistiques de certaines des
mesures. En particulier, nous calculons une borne inférieure statis-
tique au temps de convergence. Nous utilisons ces expressions pour
définir six mesures de performance, caractérisant le temps de conver-
gence et l’utilisation de la mémoire. Nous comparons les stratégies
des chapitres précédents et montrons que la stratégie de cohérence
est presque optimale.

Le chapitre 6 présente une expérience utilisateur qui a été menée
pour observer le comportement de participants réels dans le contexte
d’un Naming Game, en tant qu’application web en ligne. Comme
nous ne nous intéressons qu’aux décisions des agents, nous pouvons
simuler le reste de la population et mener facilement l’expérience
avec des participants individuels. Les comportements observés mon-
trent moins d’exploration qu’une politique de choix aléatoire du su-
jet, et suggèrent donc que les humains exercent un contrôle actif dans
ce cadre.
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En conclusion, nous montrons donc qu’un contrôle actif de la
croissance de la complexité peut se montrer très efficace dans le
cadre d’une dynamique collective, à travers l’exemple particulier de
l’émergence du lexique. Nous exhibons une variété de stratégies
possibles, certaines d’entre elles étant quasi-optimales. L’expérience
utilisateur suggère que les humains utilisent naturellement ce type
de comportement.
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1.1 Social conventions

Throughout our life, we never stop learning. At an early age, we
learn to grab objects, to walk, or to produce sounds. We later learn
to write, speak, play games, and more generally interact with others.
There is however an important distinction between those two lists:
The elements of the first are universals, while elements of the other
are not. If a child learns to walk in a given country, they will still
be able to use this knowledge at the other side of the planet. On
the contrary, the local language would probably be different, people
may write in the opposite direction, or drive on the other side of the
road. This is because they are social conventions: there is a need to
agree on how we interact with each other, to follow common rules,
but those rules themselves are arbitrary and did not exist before our
societies.



Nevertheless, we perceive both types of learning in the same way,
as we learn social conventions from our parents, teachers, or supervi-
sors. They seem to be determined before we learn them, to pre-exist
ourselves. But generation after generation, we keep on modifying
them and creating new ones: we would surely not be able to un-
derstand the inhabitants of our own city from a few centuries ago,
and our own parents probably do not understand some parts of our
behaviors. Because of their arbitrary nature, the collective consensus
on those conventions is a constant negotiation.

Along with a pressure to keep previously agreed conventions,
there remains an exploration of other options by new generations
or individuals joining the group. There might be conventions that
are more efficient than others, which would naturally be selected
and preferred over time. We just described the process of cultural
evolution, underlying the dynamics of social conventions. Cultural
evolution derives from the repeated interactions between individu-
als of the population, everyone learning from and adapting to their
interlocutor. These interactions can be between people of the same
generation, designated as horizontal transmission, or different gen-
erations, what is called vertical transmission.

The concept of learning itself, from both a psychology or computer
science point of view, has recently been studied as associated with
intrinsic motivation, in the form of curiosity or novelty-seeking. Such
intrinsically motivated behavior can allow learners to avoid learning
situations that are too complex or too simple, and acquire skills and
knowledge faster. In other words, learners can exhert a direct control
on what and how they learn: we talk about active learning.

Do such mechanisms exist as well in the negotiation of social con-
ventions, which are perceived as a form of learning? And do they
have a significant impact on the associated dynamics? In this thesis,
we will focus on a particular example of fast-changing social con-
vention: the lexicon. We will insert active learning mechanisms in
existing computational models of language emergence and lexicon
negotiation, and show that they improve the global dynamics, in
terms of both speed to reach an agreement and memory needed in
the process.

1.2 Curiosity and intrinsic motivation

1.2.1 Intrinsic motivation

Childhood is filled with many challenges, one of the biggest being
to learn an enormous quantity of skills, knowledge, and ways to
interact with the world; all of that in a limited time and at an im-
pressive pace. As an example, children typically learn an average
of 8 new words a day before they turn 18, to reach the impressive
total of roughly 60.000 (Bloom, 2002). Before that, they had to learn
pronounciation and master their vocal tracts and all the muscular
machinery needed to produce speech; as well as develop their audi-
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tory system and attention to perceive and select the words uttered by
their peers. All these tasks are highly complex, and acquiring suffi-
cient information in the world to efficiently learn how to solve them
is not a trivial problem.

Young children naturally spend a lot of time playing and explor-
ing their surroundings. They are switching from one activity to the
other, and are subject to a constant stream of new information. They
quickly become interested in something, but also get easily bored
and switch to something else.

But how do children decide what new activities to pick? Their
motivation in these examples is not external, but intrinsic (Berlyne,
1960; Ryan and Deci, 2000):

Intrinsic motivation is defined as the doing of an activity for its in-
herent satisfaction rather than for some separable consequence. When
intrinsically motivated, a person is moved to act for the fun or chal-
lenge entailed rather than because of external products, pressures or
rewards. (Ryan and Deci, 2000)

Spontaneously touching, grasping or throwing objects, babbling
sounds, or later running around fall into the category of intrinsic
motivation. Adults also can have intrinsically motivated behaviors:
read a book, go for a hike, or play on their smartphone. Extrinsic
motivation on the contrary would be linked to external pressures or
rewards, as hunger, fear, or sleep.

Theories developped to define intrinsically motivating activities
include the concept of Flow (Csikszentmihalyi, 1991): activities that
are too difficult may trigger anxiety, and too simple ones boredom.
In a learning context, new skills get acquired and gradually become
easier. Other tasks on the contrary may have been too complex but
are now within reach, thanks to the newly acquired skills. This pro-
cess makes the optimal Flow zone gradually shift over time (see fig-
ure 1.2.1).

Boredom

Anxiety

Skills

Challenge Flow

Figure 1.1: Simplified illustration of the
flow (Csikszentmihalyi, 1991): given a
certain level of skills, challenges can be
too complex and cause anxiety, too sim-
ple and cause boredom. The flow is an
intermediate zone, where learning can
be more efficient.

This idea of an intermediate state is shared by other theories,
based for example on optimal incongruity, where prefered situations
are neither too certain nor too uncertain (Hunt, 1965). In Berlyne,
1965, it has been argued that many of the terms associated with
intrinsic motivation (incongruity, complexity, novelty, ...) could be
described as information theoretic variables. In practice, statistical
properties of the stream of incoming information to the brain could
be the source of an intrinsic reward system, based on the information
carried by this input. It has also been argued to be an evolutionary
advantage (Oudeyer and L. B. Smith, 2016): Among the many skills
that can be learned by mere curiosity or play, some of them might be
useful later, and will be readily available when needed. For example,
lion cubs playfully fighting each other would reuse the same skills
to either defend their territory or catch preys; human children try
to imitate the sounds that they hear, which helps to later be able to
pronounce the language of their parents.

Different functionals can be considered as intrinsic reward, and
have been reviewed in Oudeyer and Kaplan, 2009. They include



for example novelty predictivity (Barto, Singh, and Chentanez, 2004;
Thrun, 1995), competence maximization (Oudeyer, Kaplan, and
Hafner, 2007), or learning progress (Oudeyer, Kaplan, and Hafner,
2007; Schmidhuber, 1991).

1.2.2 Robots, algorithms and models

An alternative to measuring intrinsic rewards in the brain, which
can be complex and invasive, is to consider robots, and more gener-
ally learning algorithms. Like babies, robots interact with their en-
vironment through a body whose actions through numerous actua-
tors (motors or muscles) are sampled from a high-dimensional motor
space. Typically, engineers program robots so that they can directly
perform basic tasks 1 taking into account the mechanical properties 1 e.g. walking, grasping objects, or re-

sponding in a certain way to some com-
mands

of the body. Without those algorithms and parameters, the robot also
has to learn how to interact with its environment. Luckily, in this sit-
uation, all internal states, functions, and rewards can be monitored,
and the performance of different intrinsically motivated behaviors
can be tested.

Classic approaches to Machine Learning and Artificial Intelligence
often include batch-processing enormous amounts of data, and with
the development of computer superclusters neither memory usage
nor computing time are even remotely comparable to the resources
available to a child or a robot interacting with the real world2.

2 As an example, the AI algorithm Al-
phago who beat Go world champions
(Silver et al., 2016), used the data of
160.000 recorded games, but only as a
starting point: it simulated much more
games, playing against itself or other
AIs. It is impossible for a human brain
to gather data from such a number of
games, even in a lifetime. Despite this,
world champions can still compete with
AlphaGo and sometimes win.

Figure 1.2: Right: The Nao robot (Soft-
Banks Robotics) is a commercial robot,
whose legs and feet were designed to
let it walk easily. Left: The Poppy hu-
manoid robot was on the other hand
designed to study human walk, and has
body proportions and motor strengths
resembling those of a child, but cannot
walk yet without assistance (Lapeyre et
al., 2014).

How do humans solve this problem? Even tasks that we naturally
consider really simple, because we execute them in our daily life
without even thinking, are in reality very difficult. As an example,
walking is harder than we imagine, and involves subtle balance and
coordination between muscles. Robotic bodies are usually designed
to make it possible for engineers to calculate efficient models and pa-
rameters for walking (stronger motors, lower center of gravity, shape
of the legs, etc. – see figure 1.2 for an illustration). A child on the
contrary learns in about a year how to stand up and walk, let alone
discover its body and adapt to it, as it is at the same time quickly
changing and growing.

Behaviors inspired from the theories on intrinsic motivation can
be implemented as algorithms and used in particular in robots: for
example in the Playground experiment (Oudeyer and Kaplan, 2006),
a robot is placed in a baby’s playground and learns actively how
to interact with its environment, by deciding which activities are
more interesting than others, following a learning progress measure.
There are two complementary sides to this kind of approach, called
developmental: robotic experiments that let us better understand in-
fant behavior by reproducing associated patterns (switching activi-
ties, developmental pathways, etc.), and adapting what is known in
psychology to design more efficient algorithms for machine learning
and AI in general, testing them on either robots or computational
models.
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Language acquisition has been one of the subject of such devel-
opmental experiments and models. For example in the Playground
experiment (Oudeyer and Kaplan, 2006), introduced in the previous
paragraph, the learning robot not only learns how to touch or grasp
objects but also to vocalize to a peer, while not knowing at the be-
ginning which of the available motor commands (muscle activations
for humans) are associated to sound production. The experiment
shows that active learning and intrinsic motivation can help make
this distinction faster, along with a first refinement of vocal learning
by imitation. Further studies showed that infant vocal development
phases (Kuhl, 2004; Oller, 2000) can be observed in computational
models of vocal learning in using intrinsic motivation (Howard and
Messum, 2011; Moulin-Frier, Nguyen, and Oudeyer, 2014).

Figure 1.3: The Playground experiment
(Oudeyer and Kaplan, 2006): a robot
chooses its activities over time, accord-
ing to its learning progress. Activity in-
clude grasping and touching objects, as
well as communicating with a peer.

Lexicon learning as well can be impacted by active learning. As
mentioned earlier, children build a lexicon of 60.000 words by the
time they reach 18 (Bloom, 2002). It has been shown that they in fact
can accumulate enough linguistic experience to do this: they hear
enough occurences of words to have heard all distinct words at least
once, if they all have the same probability of appearing in speech
(Richard A. Blythe, A. D. M. Smith, and K. Smith, 2016; Richard
A. Blythe, K. Smith, and A. D. M. Smith, 2010). However, if we
consider the observed statistical distribution of words in speech, a
powerlaw (Zipf, 1949), this result does not stand anymore. An alter-
native model shows that it is still possible to reach the final lexicon
size when choosing actively between different learning situations,
each associated to a different distribution of words (Hidaka, Torii,
and Kachergis, 2017). This type of active behavior has been observed
experimentally in adults (Kachergis, Yu, and Shiffrin, 2013).

1.3 Computational models of language evolution

Language is generally taught at school as a static set of rules and
definitions, often including long lists of exceptions and irregulari-
ties. Those rules may however be subject to variations and dele-
tion/creation of rules, and not because an authority like the Académie
française decides it, but because language users spontaneously and
unconsciously change their habits. New words and rules can be
passed on to other fellow speakers who would on their turn prop-
agate them and may change them further; or refuse to adopt them
and stick to their own rules. Rules can replicate and propagate, but
are also in competition against each other for at least one limited
resource: language users. In other words, language is subject to an
evolutionary process.

If biological evolution can be related to certain aspects of language
(e.g. the shape of the larynx, or specific parts of the brain), it cannot
account for the fast evolution of language: the usage of a new word
can easily propagate across the globe in the matter of hours. This
also reveals another aspect of language evolution that contradicts
classic genetic inheritance of information: language can be transmit-



ted directly from one person to the other, or horizontally, as opposed
to vertical transmission from one generation to the other. Language
can be described as subject to cultural evolution, and results from the
interactions between individuals.

This conception of language has given birth to a variety of theoret-
ical models, among which we distinguish Iterated Learning – focused
on vertical transmission of language – , and Language Games – fo-
cused on the self-organization properties linked to horizontal trans-
mission.

1.3.1 Existing models

Iterated Learning (Kirby, 2001; Kirby, Griffiths, and K. Smith,
2014; Kirby and Hurford, 2002) focuses on the evolution of language
through vertical transmission, from generation to generation. Its ex-
act definition is the following:

Iterated learning: the process by which a behaviour arises in one in-
dividual through induction on the basis of observations of behaviour
in another individual who acquired that behaviour in the same way.

(Kirby, Griffiths, and K. Smith, 2014)

In other words, after learning a language through some example,
a learner becomes a teacher by producing a few examples of their
own interpretation of the language that will be presented to a new
individual. The language samples presented to the first learner are
usually random in the space of possible signals. Depending on the
number of samples that are presented to each learner, also called
bottleneck, there is a pressure on the language for compressibility.
Computer simulations of the models show that this pressure can
account for the emergence of compositionality in language (Kirby,
2001; Kirby and Hurford, 2002).

The term of language games was introduced by Wittgenstein,
1953 as a description for many of our daily interactions that may
either use language or constitute a communicative substrate for the
emergence of language. Within computational models of language
evolution, it refers to a class of multi-agent models (Steels, 1995)
in which language is seen as a complex adaptive system (Steels,
2000). They focus on the self-organizational properties resulting from
the horizontal transmission of language, and interestingly show that
some features of language can emerge spontaneously within a pop-
ulation of agents, without a centralized control or a partially innate
language.

One of the simplest version is called the Naming Game: agents
gradually agree on a lexicon, a mapping between a set of signals
and meanings (Loreto, Baronchelli, et al., 2011; Steels, 1995; Wellens,
2012). This model being at the core of this thesis, chapter 2 will be
dedicated to its detailed description.



Introduction 15

A great taxonomyy of variants of the Language Games exist,
showing that a linguistic system can arise for colors (Bleys et al.,
2009; Puglisi, Baronchelli, and Loreto, 2008; Steels, Belpaeme, et al.,
2005), for spatial representations (Spranger, 2012) or for grammatical
features (Beuls and Steels, 2013; Cuskley et al., 2017; Van Trijp, 2012).

1.3.2 Comparisons to real data and behavior

Those models were built to try to describe human behavior, but can
we compare them to real data? There are two possible ways: either
compare results of the models to existing databases about natural
languages, or conduct user experiments to directly monitor the be-
havior of participants placed in the context of one of the models.

To compare the models to existing databases, we can reproduce
similar data through many simulations of the models – usually Lan-
guage Games – and compare their statistical properties. This has
been done for example for vowel systems (De Boer, 2001; Oudeyer,
2006) using their number and distribution in vowel space in natu-
ral languages, color naming systems (Baronchelli, Gong, et al., 2010;
Puglisi, Baronchelli, and Loreto, 2008) using a large scale survey of
statistical properties of unwritten languages (Kay et al., 2009), or the
emergence of creole languages (Tria, V. D. P. Servedio, et al., 2015)
using census data from the United States.

Experimental semiotics (Galantucci and Garrod, 2012) refers to
user experiments where participants develop a new artificial com-
munication system. Such experiments can be either conducted by
inviting participants to the lab, or online as a web application, po-
tentially submitted to a crowdsourcing platform massively recruiting
participants.

The Iterated Learning paradigm gave birth to many user exper-
iments, showing that while passing through chains of participants
languages do evolve to be more easily learnable, through the emer-
gence of compositionality. The first experiment involved artificial
languages about colored shapes moving along certain trajectories
(Kirby, Cornish, and K. Smith, 2008), compositionality could arise
to refer to those three features (shape, color, motion). In other ex-
periments, different types of signals3 were used, for example sounds 3 compared to typed text for the original

experimentmade with a slide whistle (Verhoef, Kirby, and De Boer, 2014) or
graphical shapes with an inner structure (Cuskley, 2018).

Language Games and similar communication tasks using horizon-
tal transmission were also adapted to user experiments. For exam-
ple the structure of the social network regulating interactions be-
tween the participants can influence spreading dynamics (Centola
and Baronchelli, 2015), pictionary-like experiments result in simpler
and more abstract drawings (Garrod et al., 2007), or the emergence
of compositionality with only horizontal transmission (Raviv, Meyer,
and Lev-Ari, 2019). Some experiments have also been conducted on-
line, presented as actual games (Cuskley, 2018; Morin, Winters, T.



Müller, et al., 2018).

1.3.3 Active learning in Language Games

A first approach to the introduction of active learning in Language
Games can be found in Steels, 2004 as the autotelic principle. In the
task they have to accomplish, agents can distinguish different chal-
lenges. For example when naming objects that have a shape and a
color, refering only to the object class (e.g. a table) is easier than refer-
ing to both the class and the color. This idea was implemented and
showed that agents can reach an agreement faster, if they structure
their interactions by selecting the challenges according to a policy
making them stay in the flow zone (Cornudella and Poibeau, 2015;
Steels and Wellens, 2007). This also works in another setting: la-
belling the space of colors. In practice, colors can be referred to
either in an holistic way, by adding modifiers to known color terms,
or mixing several known colors; those levels being the considered
set of challenges (Cornudella Gaya, 2017). This approach considers
that challenges and their difficulty levels are known beforehand by
all agents.

Another approach was introduced by Oudeyer and Delaunay,
2008, which relies on less knowledge being pre-shared by agents: ac-
tive topic choice. When having to name several objects, agreement
can be reached faster if agents first settle for the labels of some ob-
jects, and then move to naming other ones. This approach will be the
core element of this thesis.

1.4 This thesis

1.4.1 Overview and structure

This thesis uses a computational model, the Naming Game, and a
specific approach to the introduction of active learning behavior: ac-
tive topic choice (Oudeyer and Delaunay, 2008). We focus on two
properties of these policies: agreement can be reached faster, and
less memory is needed.

Chapter 2 presents the model, and the many variants that have
been studied, along with relevant measures and properties of the
model. In particular, the time to reach a global agreement and the
maximum memory needed by agents evolve as powerlaws of the size
of the population. To stay cognitively plausible, memory should stay
low, and not grow as a power of the population size.

Chapter 3 introduces the notion of active topic choice, and exhibits
a few policies under hard memory constraints: homonyms and syn-
onyms are forbidden. Information Gain maximization and Chunks
strategies only rely on the current size of the lexicon of the agent.
Success Threshold and Minimal Counts rely on a count of the past
successes and failures of communication, respectively in a relative
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way or an absolute way. We show that the last two can converge
significantly faster than a random topic choice policy.

Chapter 4 reconsiders homonymy and synonymy: the aim is to
design new strategies that will themselves control memory usage. A
new measure is introduced, the LAPS measure, or Local Approxi-
mated Probability of Success. It represents an agent-level estimation
of the level of agreement with the whole population. A strategy max-
imizing this measure is presented, and shows remarquable proper-
ties in terms of convergence time and memory usage. The LAPSmax
strategy however does not use direct maximization of the LAPS mea-
sure, but a heuristic: it would be too difficult to compute otherwise.
A simpler measure, close to LAPS and called coherence, leads to an-
other strategy with direct maximization. This policy converges even
faster than LAPSmax, but uses a bit more memory.

Chapter 5 introduces statistical estimations of some of the mea-
sures. In particular, we calculate a statistical lower bound to the con-
vergence time. We use these expressions to define six performance
measures, characterizing convergence time and memory usage. We
compare the strategies of previous chapters, and show that the Co-
herence strategy is near optimal.

Chapter 6 introduces a user experiment that was conducted to
monitor the behavior of real participants in the context of a Nam-
ing Game, as an online web application. Because we are only inter-
ested in the decisions of the agents, we can simulate the rest of the
population and easily conduct the experiment with individual par-
ticipants. Observed behaviors show less exploration than a random
topic choice policy.

1.4.2 Contributions

Naming Game classification: We introduced a new classification of
existing Naming Games, explicitly isolating the agent side from
the population.

Implementation of the classification: The classification was imple-
mented in the form of a modular open-source Python library, al-
lowing to easily extend the work presented in this thesis to other
parameters or hypothesis, or study the Naming Game under other
aspects. Results from earlier work (mainly Baronchelli, 2006) were
reproduced using this library. Databases of most of the experi-
ments used in this thesis will be provided online4 to allow curi- 4 Github: wschuell/notebooks_thesis

ous readers to further analyze them. It represents the equivalent
of several years of CPU time.

Designing efficient strategies: Several classes of strategies were in-
troduced, each of them having advantages and drawbacks in
terms of memory usage and convergence speed. Within correct
parameter ranges, they have better properties than a random topic
choice policy.

Relevant measure: We defined a relevant local measure as a func-
tional to optimize for agents, the LAPS measure (Local Approxi-

http://github.com/wschuell/notebooks_thesis


mated Probability of Success).

Theoretical analysis: Statistical lower bounds were exhibited, asso-
ciated to performance measures to classify the different strategies.

Design of user experiment: To our knowledge, this is the first time
that a Language Game user experiment has been conducted with
simulated agents, to study not the global properties of the lan-
guage or the agreement process but only the local behavior.

User experiment results: We have shown that participants were re-
fraining from exploring new meanings, as compared to a random
topic choice behavior.

User experiment framework: The user experiment was imple-
mented as a web application. It is dockerized5, and deployable 5 Docker containers are a way to pack-

age software to ensure that it will run in
the same way on many different com-
puter systems.

on a new server in a few minutes. It can be modified and reused
for other configurations of the Naming Game, relying directly on
our modular Naming Game library.

Simulation management framework: We have implemented an
open-source Python framework for efficiently managing experi-
mental campaigns based on computational models: management
of parameters, scalable on a computing cluster, storage of results,
etc.

1.4.3 Publications

• William Schueller and Pierre-Yves Oudeyer (2015). “Active learn-
ing strategies and active control of complexity growth in naming
games”. In: 2015 Joint IEEE International Conference on Develop-
ment and Learning and Epigenetic Robotics (ICDL-EpiRob). IEEE. doi:
10.1109/devlrn.2015.7346144

• William Schueller and Pierre-Yves Oudeyer (2016). “Active Con-
trol of Complexity Growth in Naming Games: Hearer’s Choice”.
In: EVOLANG 2016. Proceedings for the 11th International Con-
ference on the Evolution of Language (EvoLang XI). New Orleans,
United States

• William Schueller, Vittorio Loreto, and Pierre-Yves Oudeyer
(2018). “Complexity Reduction in the Negotiation of New Lexical
Conventions”. In: 40th Annual Conference of the Cognitive Science
Society (CogSci 2018). Madison, WI, United States

1.5 Short summary

Due to the interdisciplinary nature of this thesis, the reader may
be interested in some parts more than others, depending on their
background. Here are a few indications of how to interpret this work,
in the form of a short summary for several disciplines.

https://doi.org/10.1109/devlrn.2015.7346144
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1.5.1 For computer scientists

This thesis revolves around a computational problem: decrease
memory usage and computation steps of a distributed algorithm.
The associated multi-agent model and the problem itself are detailed
in chapter 2. A first approach with imposed hard memory con-
straints is proposed, with a few algorithms, in chapter 3. Two other
strategies are presented in chapter 4, based on a local6 measure of 6 at the agent level

estimated success of communication. Both of those strategies per-
form well in terms of memory and computation time, compared to a
theoretical optimal strategy, which is developped in chapter 5. One
strategy requires a bit more memory, while the other requires a bit
more computation: depending on one’s needs, one or the other could
be used. Eventually, chapter 6 presents a user experiment gathering
data on the spontaneous behavior of human participants faced with
the same problem.

An important remark is that compared to other AI models of
learning agents, a lot of agents have to be simulated at the same time
to potentially optimize policies or other parameters. Scaling mem-
ory and computation time to large populations quickly becomes an
issue.

1.5.2 For physicists and complexity scientists

This thesis studies modifications to an existing multi-agent model.
This model was previously studied and described with a statistical
mechanics approach (Baronchelli, 2006), leading to a characteriza-
tion of its asymptotical behavior with increasing population size.
The variant of the model leaves room for optimization in terms of
memory usage (by the agents) and number of interactions neces-
sary to reach the stable state, depending on agent behavior. After
a description and taxonomy of the model in chapter 2, a first set
of strategies under memory constraints are presented in chapter 3.
A second series of strategies are introduced in chapter 4, based on
the local estimation of a global functional (i.e. population level) us-
ing information sampling. The latter show near-optimal dynamics,
by comparison with a statistical lower bound to the time needed to
reach the final stable state, calculated in chapter 5. Eventually, in
chapter 6, an online user experiment allowed us to collect data on
human behavior when interacting as in the model. Participants were
playing with simulated agents, as we were interested only in the mi-
croscopic behavioral patterns of agents; to be able to compare them
to the strategies of the previous chapters.

Open-source code (see last paragraph of this section) includes a
framework to manage experimental campaigns of simulations of the
model, that can be adapted to other models written in Python. This
allows the user to for example run their code transparently on a
computing cluster, without the hassle of debugging the experiment
management part or confusing it for errors in the main code, updat-
ing the code on the cluster, or collecting data and keeping track of



parameters and configurations.
An important remark is that the local models of the agents are a

bit complex, as they use a local memory and heuristics that can be a
bit elaborate: it is less easily scalable in terms of computation time
than usual complex systems and physics models.

1.5.3 For cognitive scientists

This thesis introduces active learning mechanisms, inspired the field
of developmental psychology, in a multi-agent model describing the
collective construction of a language. The model is described in
chapter 2, and several strategies are introduced, either under mem-
ory constraints (chapter 3) or maximizing an estimated probability
of having a successful communication (chapter 4). Limiting mem-
ory usage is necessary for the algorithms to be cognitively plausible.
Using a theoretical statistical lower bound (chapter 5), we show that
strategies of chapter 4 are comparable to optimal. Eventually, those
strategies are compared to human behavior through an online user
experiment (chapter 6), showing that humans indeed exhert an ac-
tive control on their learning situation when incarnating an agent in
the model.

The user experiment is available as open-source code (see last
paragraph of this section), and can be deployed easily in only a
fews minutes on a new server. Modifications to study variants of
the model or the experimental setup can be integrated easily.

1.5.4 Complement for everyone

This thesis gave birth to open-source code, written mainly in Python:

NamingGamesAL library: Modular library for simulation of the
model (Naming Games with Active Learning). Modularity gives
the possibility to quickly develop a variant of the model, by mak-
ing easy to isolate and modify small parts of it in the code.

Experiment manager library: Making easier experimental cam-
paigns, through optional submission to computing clusters in
an adaptive way, storing results, and managing parameters effi-
ciently.

User experiment : Dockerized and easily deployable/stress-
testable/readily analysable version of the experiment. It relies on
the NamingGamesAL library, and can be directly used to modify
the characteristics of the experiment.

Unless precised explicitly, the data of all curves and quantitative
figures presented in this thesis have been produced using those li-
braries.

http://github.com/flowersteam/naminggamesal
http://github.com/wschuell/experiment_manager
http://github.com/wschuell/ng_userxp
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2.1 General description of the model

The Naming Game (Baronchelli, Felici, et al., 2006; Steels, 1995) is a
computational framework aiming at describing dynamics of lexicon
self-organization in a population of interacting agents. At each in-
teraction, two agents are randomly selected from the population and
designated as speaker and hearer. They try to communicate about a
predefined and finite set of meanings, using words from a predefined
and finite set. Only one meaning is selected for the interaction, and



is called the topic. According to the outcome — success or failure of
the communication — they align/update their own lexicon. For an
overview, see figure 2.1. A more concrete and minimalist definition,
taken from (Wellens, 2012), is the following:

1. Each interaction happens between only two participants (speaker
and hearer)

2. In each interaction, a single word is used to refer to a single mean-
ing (the topic)

3. Meanings (and words) do not have internal complexity or features

4. At the end of the interaction, both participants know the intended
topic

5. In each agent’s vocabulary, several competing word-meaning as-
sociations can coexist (synonymy and homonymy)

 

N agents

 

 

World:

M meanings
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Start Again

Success or Failure

of Communication

Figure 2.1: Overview of a NG model:
Convergence towards a global pattern
(shared lexicon) through repeated local
interactions. For a more detailed de-
scriptions of the different parts and al-
ternatives, see figure 2.14.

This definition still lets room for a lot of possible interpre-
tations and implementations, and in fact many of them have
been studied: different types of vocabulary update policies (Wellens,
2012), picking interacting agents in a non-uniform way (Dall’Asta et
al., 2006), having non-uniform word selection policies (Baronchelli,
Dall’Asta, et al., 2005), or having agents replaced/introduced in
the course of the simulation (Steels and Kaplan, 1998; Vogt and
Coumans, 2003). We will in the following sections describe in more
details those aspects, and explain what we will consider as the stan-
dard implementation, or minimal NG. An overview of the classi-
fication that we used can be seen in the last section of this chap-
ter, figure 2.14. In case of doubt, the code used to run all simula-
tions presented in this thesis is available as open-source software at
github.com/flowersteam/naminggamesal.

Agents in general will be noted A, or S and H when they will be
identified as respectively speaker or hearer. We will identify an agent

http://github.com/flowersteam/naminggamesal
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by its lexicon, hence both will share the same notation. We will note
the population P composed of N agents:

P = (Ai)1≤i≤N (2.1)

N will generally be equal to 100 throughout this thesis, or span
from 10 to 1000 when studying the influence of population size. This
choice will be explained in section 2.1.2.

2.1.1 Meaning and word spaces

Meanings and words are typically discrete elements from a finite set.
As mentioned in the definition above, they do not have internal com-
plexity, they cannot be referred to as a group sharing a specific fea-
ture. As a consequence, lexicons used in the simulations are holistic,
as combinatorial languages would have by definition internal com-
plexity in the space of words.

Words will be noted wi or w. In most cases (and in what we consider
the standard Naming Game), the word space W is a finite set of size
W, without any structure:

W ≡ (wi)1≤i≤W (2.2)

We distinguish two cases: W = M and W � N ·M where M is the
number of meanings, and N the number of agents in the population.
The latter can be considered as a pseudo-infinite set of words. In this
case, two independent inventions of a word (picking one that is not
used yet) cannot result in picking the same word. In other words,
there is no possible homonymy. The choice of values for W will be
discussed in section 2.1.2.

Meanings will be noted mi or m. In most cases (and in what we
consider the standard Naming Game), the meaning space M is a
finite set of size M, without any structure1: 1 In some cases, the meaning space M

can be given a structure. Individual
meanings are nodes in a graph, or they
can show a different relative utility:
agents are biased when picking one of
them as a topic.

M ≡ (mi)1≤i≤M (2.3)

M will generally be equal to 100 throughout this thesis. This
choice will be explained in section 2.1.2.

2.1.2 Values for N, M and W

The behavior of the system depends on the three variables N (pop-
ulation size), M (number of meanings) and W (number of words).
The nature of the problem can differ if the relation between those
three variables differ. For example, if N � M, few agents are faced
with the problem of exploring a huge space of meanings, and could
divide efficiently the task of labelling all of them; whereas if N � M,
many conflicting conventions can be invented at the same time and
the main issue shifts to resolving those conflicts. In practice, we will



set M = 100, and use values of N ranging from 10 to 1000 in order
to cover both cases, while including the intermediary case N = M.

In previous analytical work (Baronchelli, 2006), M = 1. They
justify this choice by saying that if the word space is pseudo-infinite,
the same word cannot be invented twice for two distinct meanings.
Without homonymy, the dynamics of the Naming Game for M > 1
meanings is the same as for 1 meaning, it is only slower by a factor M.
This relies on another strong assumption: topics are always picked
uniformly from the meaning space M. When using an active topic
choice policy (see paragraph 2.3.3 and chapter 3), that is not true. As
one of the main contribution of this thesis, it even relies on M > 1.

To allow convergence towards a complete lexicon without conflict-
ing synonyms or homonyms, there should be at least as many words
as meanings, i.e. W ≥ M2. We will in this thesis mostly consider the 2 See next paragraph for a detailed def-

inition of lexicons.case W = ∞. In practice, that means W ∝ M · N, i.e. the maximum
number of words that can be invented in a simulation.

One could argue that we can have W ≈ M when considering lan-
guage emergence, or the bootstrapping of a first lexicon: the set of
available signals may be restrained (a few vocalizations for exam-
ple). It would be only afterwards, driven by a need of more signals
to describe an expanding space of meanings, that W would expand
as well. In natural languages, the space of words or signals is combi-
natorial, and so is unbounded. However, we tend to choose/invent
words in a subset of possible words: for every language, there is
a heavy bias towards certain letter combinations over others. Also,
there is a natural drive towards selecting short words, as longer ones
would be more difficult to remember and would need more time to
pronounce. The restrained space of eligible new words may however
still be greater than the potential set of new meanings considered,
but we nevertheless observe homonymy in natural languages.

In the Naming Game, the possibility to restrain the set of words
could help: there is a possibility that two independent inventions
would use the same word. But on the other hand, this also increases
consequently the probability of having conflictual conventions. We
will study the impact of restraining the size W of the set of words
through the settings M = W and M = 2W.

2.1.3 Vocabulary representation

Vocabularies, or lexicons, are in the model a set of associations
between meanings and words. In the context of finite sets of words
W and meanings M, vocabularies can be represented as associations
matrices, where each row corresponds to a meaning, and each col-
umn to a word. This representation has been extensively used in
related work (Ke et al., 2002; Oliphant and Batali, 1997; Steels and
Kaplan, 1998). Two parts of the lexicon are distinguished: the cod-
ing or production part, which maps a meaning to a set of words
weighted by probabilities of usage, and a decoding or interpretation
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part, mapping a word to a set of meanings that can be interpretated
from this word, also weighted by probabilities. In practice, the real
values — also called scores — present in the matrices are not directly
the values of the probability weights: Either they are normalized
(by row for coding and by column for decoding), or the probabil-
ity weights are distributed uniformly among the coordinates having
the maximum score (again, per row for coding and per column for
decoding). In practice, the latter is used.

kasof  rimi  karak  potaf

0     1     0     1

0     1     0     0

Figure 2.2: Illustration of a lexicon rep-
resented as an association matrix be-
tween the meanings mi and the words
wj. There are two conflicts: rimi/potaf
are synonyms, they both refer to the ap-
ple; and rimi is subject to homonymy, as
it refers to both the apple and the coin.
In practice, two matrices are used: one
for coding meanings into words, and
one for decoding words as meanings.
They can be deduced from the pre-
sented matrix by normalizing respec-
tively over rows and columns. In some
versions of the model, values can be
real values between 0 and 1. In this
work we will mainly consider binary
values, this matter being discussed in
paragraph 2.3.1.

We represent the vocabulary of an agent A as a matrix of size
M×W, with values in [0; 1] for each word-meaning association used
by the agent. We will here identify the agent to its matrix, and call it
A. Each agent starts with an empty vocabulary, a matrix filled with
zeros. The coding matrix Ac and decoding matrix Ad are derived
from A by normalizing respectively over rows and columns:

Ac
mw =

Amw

∑
w′
Amw′

Ad
mw =

Amw

∑
m′
Am′w

(2.4)

Normalization factors are used only if Amw 6= 0. In practice, when
coding a meaning m, a word wi is sampled using the distribution
(Ac

mw)w∈W . When decoding a word w, a meaning mj is interpreted,

sampled from the distribution
(
Ad

mw

)
m∈M

. In our case, these dis-

tributions are uniform either on the set of words associated to m
for coding, or on the set of meanings associated to w for decoding.
Those two sets change over time, during the vocabulary update.

2.1.4 Scenario

Each interaction involves two agents: Speaker (S) and Hearer
(H). They are beforehand picked from the population, usually ran-
domly3. S and H follow a given scenario in five steps: 3 The alternative is to define an under-

lying social network, and pick them so
that one can only interact with its di-
rect neighbors in the network. See para-
graph 2.4.1
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Figure 2.3: Interaction scenario of the
standard NG. Beforehand, two indi-
viduals have been randomly selected
among a population, and designated as
speaker (S) and hearer (H). See main
text for the detailed description of the
five steps.

1. S chooses a topic mS

2. S checks its vocabulary to find or invent a word w associated to
mS

3. S utters the word w

4. H guesses a meaning mH from w using its vocabulary.

5. S indicates the intended meaning mS (by pointing at it for exam-
ple)

After these steps, agents can have feedback whether the commu-
nication was successful or not. A realistic analogy could be that both
can see if mS and mH match if H is startled or not, or if H indicates
back mH .

The main contributions of this thesis are made by intervening
on the first step, and letting S choose actively the topic instead of
randomly. This will be explained in greater details in paragraph
2.3.3 and then in chapter 3.



An alternative scenario exists, called Hearer’s choice where H is
picking the topic and indicating it to S . The rest of the interaction
is pretty much the same4 By contrast, the standard scenario is also 4 Precision: H still guesses a meaning

mH from w, and can directly compare it
with mS.

referred to as Speaker’s choice. They are both compared in paragraph
3.4.3.

2.2 Measures and general dynamics

2.2.1 Notion of convergence

The self-organization process happening while simulating the Nam-
ing Game has complex dynamics, and goes through various states
before reaching global consensus. We talk about those dynamics as
a convergence process, towards a state where all agents share the
exact same lexicon, with exactly one word for each meaning with-
out synonymy and homonymy. Such a state is stable5, lexicons will 5 provided there is no introduction of

new agentsnot change anymore whatever are the modalities of the interaction –
which agent is the speaker, which is the hearer, and which meanings
and words are used. Convergence and stability of the Naming Game
has been proved analytically (Vylder and Tuyls, 2006).

An important remark at this point is that there exists a lot of

possible fully-converged state
6, and it is precisely this that 6 Exactly M!·W!

(W−M)! , see section 3.2.3 for
more details.makes it hard for agents to solve the Naming Game and reach one

same converged state.
In some variations of the NG, full convergence cannot be reached

at reasonable time scales 7, or even not at all. However, a stable or 7 Comparable to other dynamics of the
system, mainly of spreading most of the
competing conventions, before starting
to discard some of them

pseudo-stable8 state can still be reached and characterized9, we then

8 Compared to the said time scales
9 Using mainly the TCS measure intro-
duced in the next paragraph

talk about partial convergence.
In this thesis, we do not focus on whether the model converges

or not, but on the speed and complexity properties of the dynam-
ics before convergence. Measures for each of those aspects, used to
describe the system while in this intermediate state, can be found
in previous work (Loreto, Baronchelli, et al., 2011). We distinguish
local measures – accessible to each agent – from global measures,
computed on the whole population.

2.2.2 Theoretical communicative success

The Theoretical Communicative Success, or TCS10, is a mea- 10 A table of symbols, acronyms and
abbreviations can be found at the last
page of this manuscript.

sure of distance to a fully converged state. First, for each meaning,
we can consider the probability of having a successful communica-
tion when using this meaning as a topic, given a state of the pop-
ulation. The TCS is the average of those probabilities, over all pos-
sible meanings. In the case of Random Topic Choice, this measure
coincides with the general probability of having a successful interac-
tion. By definition, it is a global measure, not accessible to individual
agents. To retrieve its value, we can either estimate it using a snap-
shot of the population and a Monte Carlo method with random topic
choice, or compute it. To detail the exact computation formula, we
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need to first define the probability of success between two given vo-
cabularies of agents A and B. As detailed in the previous section, a
vocabulary has two components: a coding part, used to find words
associated to a meaning, and a decoding part, used to find meanings
associated to a word. For vocabulary A, we would then have the two
matrices Ac and Ad. If A is the speaker and B the hearer, A is coding
and B decoding, hence the formula of the probability of success in
this case, averaged over all possible meanings:

TCSS(A,B) = 1
M ∑

m
∑
w
Ac

m,w · Bd
m,w (2.5)

If A would be hearer, we have by symmetry:

TCSH(A,B) = TCSS(B,A) = 1
M ∑

m
∑
w
Bc

m,w · Ad
m,w (2.6)
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Figure 2.4: Typical evolution of the
probability of success. M=1, N = 1000,
W = ∞, averaged over 8 trials.

Because before an interaction we do not necessarily know which
agent will be the speaker and which will be the hearer, the two situ-
ations (A speaker and B hearer / B speaker and A hearer) are to be
considered as equiprobable. The final value TCS(A, B) is the mean
of those two values:

TCS(A,B) = TCSS(A,B) + TCSH(A,B)
2

(2.7)

To scale up to population level, one can compute an average vo-
cabulary for the whole population V(P), and then the probability of
success for an interaction between this lexicon and itself. For a large
enough population, this value is indeed a good approximation of the
probability of success. V(P) = 〈A〉A∈P is an element-wise average
of the lexicon matrices of all agents. This measure taken over time,
as in previous work, will be noted S(t).

S(t) = TCS(P) = TCS(V(P),V(P)) = TCS(A,B)A,B∈P (2.8)

In the standard Naming Game, this value stays close to 0 for a time
and then abruptly goes from 0 to 1 after a certain number of interac-
tions, as seen on figure 2.4 (Baronchelli, Felici, et al., 2006). This tran-
sition happens when agents shift between a first phase of inventing
conventions to a phase of discarding conflicting ones. These phases
can be retrieved in other models of convention propagation, and
were labelled in Fagyal et al., 2010: Innovation (inventing conven-
tions), Selection/Propagation (the abrupt shift), and Fixation (dis-
carding competing conventions). The typical evolution of the TCS
value can be seen on figure 2.4.

2.2.3 Agent-level local complexity

For each agent, we can define a local complexity measure, by
counting the number of distinct associations present in the vocab-
ulary. In our case, this is exactly the sum of all elements of the
matrix A. At the beginning of a simulation, while the vocabulary is



empty, this measure equals 0. At the end, its value is the number
of meanings M. When using random topic choice, there is a fast
growth to a maximum, before a slow decrease to the final value M
(can be seen in fig.2.4). This local complexity measure, when aver-
aged over the whole population, is proportional to the measure Nw

used in previous analytical work (e.g. Baronchelli, Felici, et al., 2006):
〈LC(A)〉A∈P = Nw

N .
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Figure 2.5: Typical evolution of the
number of words per agent, or local
complexity. M=1, N = 1000, W = ∞,
averaged over 8 trials.

This measure will be our measure of memory, as it it close to
a minimal memory representation of the lexicon (e.g. as a sparse
matrix or a list of word-meaning associations). Because if this, we
expect it to remain low in a cognitively plausible situation, which is
not the case in the standard dynamics. Throughout this thesis, we
will focus on this very issue.

2.2.4 Population-level global complexity

We can extend this notion of complexity to the whole population,
by counting conventions that are present at least once in one agent’s
vocabulary. Another way to see it is as the local complexity measure
of the average vocabulary of the whole population, V(P). This was
already introduced in previous work (e.g. Baronchelli, Felici, et al.,
2006) as the measure Nd. To sum up:

Nd = LC (V(P)) (2.9)

Typically, Nd grows extremely quickly to a maximum before
slowly decreasing to the stable value M. Its maximum is reached
when all agents have invented conventions for each meaning, and
is equal to N·M

2
11. For more theoretical considerations about this 11 This value is the count of the events

It is the first time the selected speaker talks
about this meaning. For a given agent,
the probability to first interact about a
meaning as speaker is 0.5, so if mean-
ings are chosen randomly, there are N

2
inventions per meaning.

measure, see chapter 5.
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Figure 2.6: Typical evolution of the
number of conventions present in the
population, or global complexity Nd.
M = 1, N = 1000, W = ∞, averaged
over 8 trials.

2.2.5 Other measures

A few of other measures can be derived from what we have seen so
far:

Convergence time tconv: Time, in number of interactions, to reach
TCS = 1.

Maximum global complexity time td: Time, in number of interac-
tions, to reach Nd = Nmax

d .

Maximum local complexity time tmax: Time, in number of interac-
tions, to reach Nl = Nmax

l .

Observed Communicative success SO(t): Not to be mistaken for
S(t), they differ in the case of a biased topic choice.

Other ones will be used later in this thesis, but we can nevertheless
mention a few of them here:

Number of inventions Ninv: Number of individual inventions. In
the standard NG, it is equal to Nmax

d .
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Missing information i(µ, M, W): Quantity of information needed
for an agent to complete a partially filled lexicon with µ associ-
ations, defined and used in chapter 3.

Entropy E(t): Extension of the precedent measure including
homonymy and synonymy, defined in chapter 4.

Success ratio SR(m, t): Local proportion of successes in the past in-
teractions with meaning m, defined and used in chapter 3.

Success count SC(m, t): Local number of successes in the past inter-
actions with meaning m, defined and used in chapter 3.

LAPS measure L(t): Local Approximated Probability of Success,
defined in chapter 4.

Coherence measure C(m, t): A local measure of coherence of per-
ceived word usage for meaning m in the last interactions, defined
in chapter 4.

2.2.6 Scaling

When comparing the dynamics of several variations of a system de-
pending on a set of parameters (here: N,M and W), it is important
not to draw direct conclusions from a single example, but to explore
different ranges of parameter values. Given a certain set of values
for each parameter, it is yet difficult to even represent the data, let
alone the combinatorial number of simulations that have to be run.
A solution to this problem is to search for laws describing the rela-
tionship between the evolution of the system and its parameters. In
many self-organizing systems, the dependence on each parameter is
separated from the other parameters, and can often be a powerlaw.
For example, many natural phenomenon either show power law pat-
terns: the population of cities, the distribution of words in speech,
earthquake events, or even many biological features can be described
by powerlaws (Newman, 2005; West, 1997; Zipf, 1949).

In the Naming Game in particular, it has been shown that some
measures do scale as powerlaws (Baronchelli, 2006). Values can be
observed empirically, or in some cases approximated analytically.
For the minimal Naming Game, we have the following scaling re-
lations, some of which can be observed on figure 2.7:

• tmax ∝ Nα with α ≈ 1.5

• Nmax
l ∝ Nβ with β ≈ 0.5

• tconv ∝ Nα with α ≈ 1.5. However, we can see empirically12 that 12 Data not shown, can be found in
Baronchelli, 2006. Further details can
be found in chapter 5.

this explonent is only well approached after N > 104, it is smaller
otherwise. It necessarily reaches this value, as tconv > tmax.

More detailed information and some analytical arguments can be
found in chapter 5.

These values reflect a computational cost of the Naming Game, in
terms of time of execution or memory needed. The main objective of
this thesis is to study how they can be reduced. In an ideal case, the



memory needed is of the order of magnitude of the final size of the
lexicon Nmax

l = O(M), i.e. β ≈ 0; and the time needed to converge
stays the same for each agent, i.e. α ≈ 1.
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Figure 2.7: Scaling relations in the
Naming Game, with respect to popu-
lation size N. Convergence time tconv
and maximum local complexity Nmax

l
are proportional to N1.5, and maximum
global complexity Nmax

d to N. With the
standard Naming Game, all are directly
proportional to M, which can be seen
on the figures: all 3 curves are paral-
lel and the shift between M = 1 and
M = 10 is the same as from M = 10 to
M = 100, and corresponds to a factor
10. It is this behavior that lead to study
M = 1 only in previous studies. Each
data point is an average over 8 simu-
lations, and W = ∞. For further an-
alytical details on the scaling laws, see
chapter 5.

2.3 Agent behavior

An important part of any multi-agent system is the individual, or
microscopic13 behavior of an agent. In the Naming Game, individual 13 By opposition to macroscopic, which

is at population scale.agents can intervene at different points:
Topic choice: How they pick the topic ms.
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Word choice: How they pick a word w for this topic ms using their
lexicon.

Meaning guessing: How they guess a meaning mh, provided a
word w, again using the lexicon.

Success evaluation: How they evaluate the success or failure of
the communication.

Vocabulary update: How they update their lexicons after the in-
teraction, and under which conditions.

In practice, various vocabulary update policies have been studied
and described (Wellens, 2012), while word choice and meaning guessing
policies are usually depending on having scores in the vocabulary
(i.e. values between 0 and 1, not necessarily binary.). A particular
case of word choice policies have however been studied alongside the
minimal NG (Baronchelli, 2006). Success evaluation is almost always
the same: if the guessed meaning and the topic match: mS = mH

and the topic was already present in the hearer’s lexicon. As for topic
choice policies, they were first introduced in Oudeyer and Delaunay,
2008, and are the core feature that will be studied in this thesis.

2.3.1 Vocabulary Update Policy

At the end of each interaction, each agent takes into account the
result of the interaction by modifying its lexicon. They do it on the
basis of three elements: the topic mS, the word w, and the failure
or success of communication, a boolean bsuccess. There exists various
policies that have been described and classified in Wellens, 2012. We
will here review three of them: imitation, minimal NG, and basic lateral
inhibition. In this thesis, only the first two will be used.

The update mechanisms are usually described for M = 1, and
only synonymy appears as a potential source of conflict in lexi-
cons. In our case, we will consider homonymy as well. Our choice
was to deal with homonyms in exactly the same way as with syn-
onyms. Computationally speaking, this can be considered an arbi-
trary choice, but experimental data suggests that human do regular-
ize homonyms and synonyms in a symmetrical manner (Ferdinand
and Spike, 2016).

Algorithm 1: Imitation vocabulary up-
date policy, agents adopt the used con-
ventions while removing potential syn-
onyms and homonyms.

Require: Lexicon A
1: procedure ImitationUpdate(mS, w, bsuccess)
2: AmS ,w ← 1 . Add used convention
3: Ai,w ← 0 ; ∀i 6= mS . Remove homonyms
4: AmS ,j ← 0 ; ∀j 6= w . Remove synonyms

Imitation vocabulary update policy is the simplest one:
Agents adopt the word-meaning association that was used dur-
ing the interaction; while removing any conflicting synonym or
homonym. The speaker will only modify its vocabulary if the con-
vention has just been invented. See algorithm 1. This strategy
limits efficiently the memory that is used by each agent, but as it



quickly erases information from past interactions (synonyms and
homonyms), it also slows down the convergence process, which is
the reason why it is usually not considered as a suitable update pol-
icy. See figure 2.9 for a comparison with other update policies.

Basic Lateral Inhibition strategy, or BLIS14, is a strategy that 14 A table of symbols, acronyms and
abbreviations can be found at the last
page of this manuscript.

is widely used, and relies on the lexicon using scores for each word-
meaning association (with values between 0 and 1), that are rein-
forced or inhibited, depending on the outcome of the interaction
(success or failure of communication). If the communication was
successful, the score of the used association (mS, w) is reinforced by
a value δinc and potential conflicting synonyms and homonyms are
inhibited by a value δinh. If the communication fails, the score of
(mS, w) is decreased by δdec. At creation of a convention, the score
is set to sinit. Values do not leave the interval [0; 1].See algorithm
2. This policy is widely used as it allows faster convergence and is
implicitly closer to what humans might be doing, as we do consider
homonyms and synonyms. However, its dependence on four new
parameters increases the complexity of studying the dynamics of the
NG under various modifications.

Algorithm 2: Basic lateral inhibition
vocabulary update, agents reinforce or
inhibit associations by small values. In
particular, when communication is suc-
cessful homonyms and synonyms are
inhibited, but not deleted.

Require: Lexicon A; parameters sinit, δinh, δdec and δinh

1: procedure BLIS(mS, w, bsuccess)
2: if AmS ,w = 0 then . Add a new convention
3: AmS ,w ← sinit

4: else
5: if bsuccess then . Successful communication
6: AmS ,w ← min(AmS ,w + δinc, 1)
7: Ai,w ← max(Ai,w − δinh, 0) ; ∀i 6= mS

8: AmS ,j ← max(AmS ,j − δinh, 0) ; ∀j 6= w
9: else . Failed communication

10: AmS ,w ← max(AmS ,j − δdec, 0)
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Figure 2.8: Illustration of the Min-
imal NG vocabulary update, in two
cases: one successful communication,
the other being a failure. In both cases,
the association used by the speaker is
added to the hearer’s vocabulary. In
addition to that, when the communica-
tion is successful, they both remove any
competing homonymy or synonymy.

The minimal Naming Game update policy was introduced in
Baronchelli, Felici, et al., 2006 as simpler than BLIS yet yielding sim-
ilar dynamics. It is in fact a variation of BLIS with all parameters
set to 1, i.e.: sinit = δinc = δinh = δdec = 1. Its simplicity allowed
an analytical approach to the Naming Game, which gave the scaling
relations we saw in the previous paragraph, among other results. We
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can see in figure 2.9 that minimal NG and BLIS have similar dynam-
ics. In the rest of this thesis, minimal NG will be used, unless in
chapter 3. Algorithm 3: Minimal Naming Game

update policy, agents always add new
conventions, but prune synonyms and
homonyms when the communication is
successful.

Require: Lexicon A; parameters sinit,δinh,δdec and δinh

1: procedure MinimalNG(mS, w, bsuccess)
2: AmS ,w ← 1 . Add convention
3: if bsuccess then . Successful communication
4: Ai,w ← 0 ; ∀i 6= mS

5: AmS ,j ← 0 ; ∀j 6= w
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Figure 2.9: Comparison of different
vocabulary update policies: imitation,
minimal NG and BLIS. They all follow
powerlaws, however BLIS and minimal
NG have similar dynamics and have an
exponent smaller than imitation. M =
1, W = ∞, averaged over 8 trials for
each data point.

2.3.2 Acceptance Policy

A possible modification to the update policies presented in the pre-
vious paragraph is whether to accept or not the changes. The hearer
might not trust the speaker, or the update would alter significantly
the integrity of its lexicon for example. This mechanism, that we will
call acceptance policy has been introduced in Baronchelli, 2006. So far,
only stochastic choice was considered (depending on a probability
βAP, hearer will accept or not to perform the lexicon update). Such a
mechanism slows down the convergence process, or even prevents it
if βAP is low enough. This two-fold behavior opens the path to mod-
eling situations where convergence could happen or not depending
on an external parameter15, and was in this sense used in other mod- 15 i.e. there will remain clusters of

agents sharing different conventions.els based on the Naming Game focusing on the emergence of contact
languages (Pucci, Gravino, and V. D. P. Servedio, 2014; Tria, V. D. P.
Servedio, et al., 2015).

2.3.3 Topic Choice

In the base model, the topic of each interaction is chosen randomly,
with a uniform probability over the meaning space. But it is possi-
ble to change this to a non-uniform choice, made by the interacting
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Figure 2.10: Typical dynamics when us-
ing probabilistic Acceptance Policy. The
convergence process is slowed down,
and the memory burst stays the same.
M = 1,N = 1000, W = ∞ and βAP =
0.4, averaged over 8 trials.

agents. Active topic choice has been introduced in Oudeyer and De-
launay, 2008, and similar mechanisms in another type of Language
Game can be found in Cornudella and Poibeau, 2015. This very part
of the Naming Game constitutes the core element that will be modi-
fied and studied along this thesis.

Usually the speaker mentally picks the topic, but there is an alter-
native possibility: the hearer can first choose the topic, and indicate
it to the speaker, who will then consult its lexicon to find a corre-
sponding word. This alternative scenario will be studied in chapter
3.

2.3.4 Word Choice

When the topic has been chosen (either randomly or via a certain pol-
icy), there can coexist several corresponding synonyms in the lexicon
of the speaker, i.e. several words associated with an equivalent score
to the meaning chosen as topic mS. Which one should they choose
as the word w that will be used in the conversation? In Baronchelli,
2006, three simple policies have been proposed:

Play last: Use the last word that was encountered as associated to
mS.

Play first: Use the oldest word still in the lexicon that was encoun-
tered as associated to mS.

Play smart: A combination of both: Play last until having a success-
ful interaction, than use the last word that triggered success16. 16 with a minimal NG update policy, it

is equivalent to switching to play first.

Play last uses significantly less memory (powerlaw Nmax
l ∝ Nα of

exponent α ≈ 0.3 instead of 0.5) but converges slower (to time scales
that are not comparable with the standard NG). Play first converges
faster (exponent ≈ 1.3 instead of 1.5 for tconv) but memory usage
stays high. Play smart combines advantages of both: less memory
and faster convergence. This is the type of behavior that we are aim-
ing at in this thesis; but we will see that this can be still ameliorated.
Also, this approach cannot prevent a minimum burst of memory us-
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age: a certain degree of synonymy is needed in the first place, to be
able to choose between different words.
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Figure 2.11: Comparison of two word
choice policies: random choice and play
smart. The latter has a lower memory
peak, and converges a little faster (this
behavior is amplified for N > 103, data
not shown). M = 1, W = ∞, averaged
over 8 trials for each data point.

2.4 Population-level features

Other variations of the Naming Game involve modifications not at
the agent level, but in the structure of the population.

2.4.1 Social network

Standard Lattices (d ≤ 4) Networks

Max. memory Nmax
l N1.5 N N

Convergence time tconv N1.5 N1+ 2
d N1.4±0.1

Table 2.1: Scaling laws for population
structured in social networks, depend-
ing on the population size N. Taken
from Baronchelli, 2016.

Another feature that has been introduced in Baronchelli, 2006 is
the notion of social network. In the real world, we do not interact with
everybody else, but instead regularly interact with the same people,
who themselves interact with their own network. It is our connec-
tions through other people which help spread information and new
conventions. There are many possible structures for a social network:
agents are elements of a line, or a 2D-grid, or are part of other types
of networks with specific properties. The table below, adapted from
Baronchelli, 2016, summarizes the contributions of such structures.
Random networks17share the small-world property (each node is just 17 Different types of random graphs ex-

ist, having several properties. See
Barabási and Albert, 1999 and Erdos
and Rényi, 1960.

a few hops away from any other) with the fully connected graph, and
the low connectivity property (few neighbors per agent on average)
with the low dimensional lattices. This ensures a trade-off between
convergence time and memory.

2.4.2 Population turnover

Real populations of language speakers are not static: new individ-
uals are introduced regularly, either by birth or by simple arrival



in a new country. Symmetrically, some might disappear from the
community. The impact of adding and removing agents from the
population of agents in the Naming Game has been studied in Steels
and Kaplan, 1998 and Vogt and Coumans, 2003. Typically, every
Tr = tr · N interactions, one agent is removed, and a new one is in-
troduced, having a completely empty lexicon. The main result is that
over a certain speed of turnover (sr = 1

Tr
), the lexicon becomes un-

stable and the proportion of successful communications drops. See
figure 2.13.

... ...
Tr=N.tr interactions

 

N agents
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Figure 2.12: Illustration of the popula-
tion turnover mechanism
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Figure 2.13: Impact of population
turnover on global dynamics, depend-
ing on the replacement rate. The slower
the speed of turnover (higher values of
tr), the higher is the final stable agree-
ment level reached by the population.
M = N = 100, W = ∞, averaged over 8

trials.

2.5 Discussion

2.5.1 Classification and standard model definition

As a conclusion to this chapter, we propose a classification of the
Naming Game models, represented in figure 2.14. A slightly more
detailed version, used for the implementation of all simulations pre-
sented in this thesis, can be found in appendix A. The description of
the standard Naming Game in the classification is the following:

Agent picking/social network: Full-connected graph; speaker and
hearer are picked from the population, with a uniform probability
over all possible couples.
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Population evolution/agent replacement: Nothing happens be-
tween interactions.

Interaction scenario: The speaker refers to the topic using an associ-
ated word from its vocabulary or by inventing a new association,
the hearer interpretes the uttered word as a meaning using its own
vocabulary. See figure 2.3.

Topic choice strategy: Random topic choice (uniform probability
over the set of meanings).

Vocabulary update policy: Minimal NG.

Starting condition: Empty lexicon (all-zero matrices)

Population Interaction policy

 
- Speaker's choice
- Hearer's choice

Agent Agent

AgentAgent Agent

Agent  
- Random
- Social Network

Pick agents Scenario
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Vocabulary
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Strategy Voc update Topic choice 
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- Random
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Memory Other 
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- Counts of successful interactions
- List of n past interactions
- ...

Accept. Policy 
- Always accept

Figure 2.14: Modular representation of
the NG models used in this thesis, with
different possibilities for each module.
The first possibility for each module —
also in italic — is the one used in the
standard model.

2.5.2 Issues of the Naming Game

While going through this taxonomy of variants of the Naming Game,
we have identified a few key elements of the model that one can seek
to improve:

Memory peak: Individual agents need more memory than the fi-
nal lexicon, and it increases with population size. Memory usage
could be decreased.



Convergence: Value and dependence to N (powerlaw) of time to full
convergence could be decreased.

Unstability with replacement: Over a certain rate, population
turnover makes the system unstable. The critical rate rc at which
it starts to happen could be increased.

Diffusion on a graph: Certain topologies of social networks are as-
sociated with slow diffusion of conventions.

We have seen that the typical dynamics of the Naming Game in-
volve a transition from a first phase of rapid complexity growth, to a
slower second phase of pruning most of the conflicting conventions.
Some of the proposed variants of the Naming Game do reduce the
complexity peak, but still go through a phase of growth, which is
the main reason to the previously mentionned issues. Is it possible
to mix both phases to limit the complexity growth and/or converge
faster? We will see that active policies, especially topic choice, are an
adapted tool to address this problem.
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3.1 Introduction

In the standard Naming Game, the interaction scenario (see section
2.1.4) starts with the speaker picking one of the available meanings
as a topic for the conversation that is about to take place. However,
this was done so far using a uniform random pick over the set of
meanings M. This assumption was even the root justification for
dropping additional meanings and narrowing down M to a single-
ton in previous analytical work (Baronchelli, 2006). It is a strong
assumption, as humans typically do not choose their topic of conver-
sation or their words in this way, but show biased patterns in their
choices (Kachergis, Yu, and Shiffrin, 2013; Zipf, 1949).
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Figure 3.1: Reminder of the standard
interaction scenario: The first step is an
internal choice of a topic by the speaker.
For the detailed description see para-
graph 2.1.4.

By actively choosing the topic of their conversation, people can
select which conventions they want to disambiguate, spread among



their peers, or learn about. This behavior can be introduced in the
model with a simple change: during the first step of the interaction
scenario, the meaning chosen as topic is not picked randomly, but
according to a given policy. This policy can only rely on informa-
tion locally available to the agent making the choice, and not global
information at population level. To stay cognitively plausible, the
computational cost of policies should remain low.

In this chapter, we will study the effect of Active Topic Choice on
the dynamics of the Naming Game under memory constraints. In
such a scenario, we can artificially force the complexity burst not to
happen, but can we still get a fast convergence towards a stable lexi-
con? We will first focus on really strong constraints: only the current
state of the lexicon is known, and both homonymy and synonymy
are forbidden. Secondly, we will extend memory to a count of the
successes of past interactions. Various strategies will be presented
for each case. All rely on an exploration vs. exploitation paradigm.

3.1.1 Exploration vs. Exploitation

Figure 3.2: Illustration of a Multi-
Armed Bandit. Slot machines are also
called One Armed Bandit, what if you
can choose different arms which give
different rewards? You have to bal-
ance between using the best arm so far,
and exploring/trying new ones. Image
source: microsoft.research.com

Exploration vs. exploitation is a paradigm commonly used in
machine learning. When faced with a choice between different op-
tions (which restaurant should I pick tonight?), one can either choose
the best option so far (I always go to the italian place, their pizzas are
good!), or gather more information by trying a new option (Maybe I
could go to this new restaurant, or to that other one where I tasted
only one meal?). Gathering information is essential, as there may
be better options among the unexplored ones. Another common ex-
ample is a set of slot machines with different reward distributions,
unknown at the beginning: The more you try each of them, the
better you approximate those distributions and the better you can
choose between them to get the best reward over time. This analogy
has been formalized mathematically, and is called the Multi-Armed
Bandit problem. It has been studied extensively and many algo-
rithms have been designed to solve it (Bubeck, Cesa-Bianchi, et al.,
2012). For the moment we will focus on the description of our prob-
lem within the explore/exploit paradigm, but we will come back to
Multi-Armed Bandit algorithms (or MAB1) in chapter 4. 1 A table of symbols, acronyms and ab-

breviations can be found at the last
page of this manuscript.

Where in our problem do we find exploration? When an agent
decides to pick a new topic, a meaning that he never spoke or heard
of before. In other words, when an agent invents a new convention,
a new meaning-word association. This leads necessarily2 to a fail- 2 Excepted when the number of possible

words is finite and the same convention
has already been invented by another
agent and taught to the hearer, but this
event stays unlikely in most cases.

ure in communication, as the new convention is just being taught
to the hearer; but it is a step towards completion of the vocabu-
lary. The alternative, or exploitation, is to choose a known meaning:
one can expect to get successful communications because the chosen
convention is already present in the rest of the population, while at
the same time reinforcing the convention and spreading it further
into the population. Also, when several words are associated to the
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chosen meaning, exploitation is a way to settle on only one of the
synonyms and discard the others, depending on the outcome of the
interaction. Homonymy, when it exists, can also be disambiguated
in this manner.

The reward is in our case unclear3, but we can already assess the 3 We will propose a reward function in
chapter 4necessity of balancing the two behaviors: if the interacting agents

never explore, there will be no complexity bursts4, but if some of 4 There can be one if N � M, but it will
be anyway smaller than with random
topic choice. See chapter 5.

the meanings have not been used in an interaction, they will never
be. Exploiting too much therefore limits memory usage, but leads
to a dead-end where the lexicon is never built in its entirety. On the
other hand, only exploring introduces by definition numerous new
conventions, at least more than with random topic choice, hence a
higher complexity burst, and a slower convergence process as there
are many more conflictual conventions5. The main contributions in 5 i.e. a higher degree of homonymy and

synonymythis thesis deal with finding an adapted algorithm to effectively bal-
ance the two behaviors.

3.1.2 Memory constraints

The flow of information observed by an agent consists of the
topic of the interaction, the word used to refer to the topic, and
whether the communication was successful or not. Using this in-
formation, each agent shapes incrementally its own lexicon. But it is
also possible to store the information of the past interactions in an
another way, preferably not all the information but a small processed
representation of it6, and use it in for their topic choice policy. 6 Reminder: we are trying to decrease

memory usage, if we allow to store a
lot of information to keep the lexicon
small, that will still be memory usage.The minimum memory needed to build a stable lexicon, is obvi-

ously the size of a completed lexicon, M7. There is a way to con- 7 The memory measure that is used is
the number of associations of a lexicon,
also called local complexity, described
in section 2.2.3

strain the system not to go over this value: forbid synonymy and
homonymy. There would be at maximum one word per meaning,
which effectively constrains the local complexity LC(V) ≤ M.

The imitation vocabulary update, described in section 2.3.1, is
ensuring exactly what we are searching for: potential homonyms and
synonyms are immediately dropped at first exposition with conflict-
ual information. In all simulations presented in this chapter, we will
use this vocabulary update policy, apart from the necessary compar-
isons to the original model. There is still convergence with imitation
and random topic choice, but the dynamics are extremely slower,
which is the price paid by the limits imposed to memory. The first
class of policies that we will present in this chapter do not use any
more information than the lexicon itself. The memory usage is there-
fore always smaller than M.

Information gathered during interactions could however
be really useful for a topic choice policy. A natural and low-memory
information is the number of successful and failed interactions for



each meaning. It scales directly with M 8, and therefore with the 8 Maximum value: M (lexicon) +2M
(successes and failures)minimal memory M. We will use this information in the second part

of this chapter.

3.1.3 The two levels of an ATC policy

Choosing a topic is picking a meaning among the set of available
meanings M. However, This set can be divided into two subsets: The
set of known meanings Mk which have at least one word associated
to them in the lexicon, and the set of unknown meanings Mu which
have no words referring to them yet.

What object should
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choose random meaning

(among all known and unknown)

Explorationrandom 

new meaning

Exploitation

pick among

known meanings

with strategy 2a

Active Topic Choice Random Topic Choice

Level 1
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No

No

Level 2a
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Figure 3.3: Illustration of the two lev-
els of ATC policies. First level: Ex-
ploration vs. Exploitation. Second
level: Choosing among known mean-
ings, when there are still meanings left
to explore (2a) or when there aren’t
(2b).

As we have seen in paragraph 3.1.1, the first and main level of an
ATC policy lies in choosing whether to explore or exploit, i.e. pick-
ing a topic from respectively Mu or Mk. All unexplored meanings
are by definition equivalent, and when exploring, one cannot further
refine the decision and can only pick one randomly. However, when
exploiting, different meanings may have different histories: One can
be known for a long time and having yielded many successes in the
past, when others can be brand new and with little associated in-
formation. The second level of an ATC policy consists in choosing
which known meaning to pick when exploiting. In the first part of
this chapter however, because of the hard memory limitations one
cannot have any information differentiating the known meanings.
The second level will only be explicitely used in the second part of
the chapter. It can be noted that the second level can itself be split
into two parts: during the learning phase where there are meanings
left to explore, and during a pure negotiation phase where all mean-
ings have already been explored. When the strategy will be different
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in those two situations, they will denoted as respectively level 2a and
level 2b.

Both levels rely on a notion of confidence about known meanings:
did their associated conventions spread enough in the population, or
do I still need to reinforce them? Defining each policy will be equiva-
lent to defining the confidence measure that will be used, along with
a potential threshold of when to shift behavior.

3.2 Hard constraint on memory

The first class of policies uses only the lexicon itself as information.
Because we are using the imitation vocabulary update9, and because 9 See previous paragraphs for a justifi-

cation of this choice, and section 2.3.1
for details.

all meanings are supposed equivalent, we can only intervene on the
first level of the topic choice policy (exploration vs. exploitation).

3.2.1 Decision Vector policies Algorithm 4: Decision Vector Topic
Choice, function of the total mean-
ing space M and the subset of known
meanings Mk , given a vector of size
M + 1. Every strategy with this level
of memory constraints can be reduced
to such a vector.

Require: Vector (Di)i∈J0 ; MK Notation: µ = |Mk|
1: procedure DecisionVectorTC(M,Mk)
2: with probability Dµ:
3: m← sample uniformly from M \Mk . Explore
4: m is added to Mk

5: with probability 1− Dµ:
6: m← sample uniformly from Mk . Exploit
7: return m

The only useful information available is the size of the
lexicon, with values in J0 ; MK. As stated at the beginning of this
section, with this level of memory constraints the choice is reduced
to two options: exploring or exploiting. Because of this, in each
possible state the decision policy can be reduced to the probability
of exploring. In other words, the behavior can be represented by
a vector of dimension M + 1, where each coordinate (from 0 to M)
would be the probability to explore, if found as a speaker with the
corresponding number of known meanings. The first coordinate is
necessarily 1 and the last necessarily 0, because respectively exploita-
tion and exploration are not possible in these cases. See algorithm
4. All algorithms in this section will be given their representative
decision vector, as their signature.
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Figure 3.4: Illustration of a blocked
state. Agents do not reach full agree-
ment because they stopped exploring:
they only exploit. They reach an agree-
ment on the explored subset of mean-
ings, but will never even have a word
for the other ones. M = N = W =
100, averaged over 8 trials. Oscillations
come from the way of computing S(t):
via Monte Carlo sampling.

An important remark is that 0 as a value in the vector should be
avoided, because it could lead to blocked states. In fact, if all
agents have a stable and shared vocabulary of this size, they will
never explore, and their lexicon will never grow and get completed.
See figure 3.4 for an illustration.

3.2.2 Exploration bias

A first strategy is to consider exploration as an equivalent option
to any other known meaning, as an alternative meaning. The explo-



ration probability decreases over time, inversely proportional to the
size of the set of known meanings Mk. See algorithm 5. This process
can be related to another class of stochastic processes, explained in
the following paragraph.

Algorithm 5: Exploration-biased Topic
Choice, function of the total mean-
ing space M and the subset of known
meanings Mk . When possible, ex-
ploring is inversely proportional to the
number of known meanings |Mk |. This
is similar to the Chinese restaurant pro-
cess, with a modification on the weights.
See main text for a more detailed expla-
nation.

1: procedure ExploBiasedTC(M,Mk)
2: if |Mk| < |M| then . Are there unexplored meanings?
3: with probability 1

|Mk |+1 :
4: m← sample uniformly from M \Mk . Explore
5: m is added to Mk

6: with probability |Mk |
|Mk |+1 :

7: m← sample uniformly from Mk . Exploit
8: else
9: m← sample uniformly from M

10: return m

Corresponding Decision Vector:
Di =

1
i+1 ; i ∈ J1 ; M− 1K.
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Figure 3.5: Decision Vector for the
Exploration-biased strategy, M = 100.

The Chinese restaurant process (Aldous, 1985), is a metaphor
for a decision process between a growing number of options. Cus-
tomers are coming one by one to a restaurant having an infinite num-
ber of round tables. Each one of them has the choice to sit at one of
the already occupied table, or at an empty table. Probabilities of
these choices are weighted with the number of occupants at the ta-
ble, or with a parameter α for the choice of an empty table. After
n customers entered the restaurant, the probability of choosing an
empty table is therefore α

α+n .
We can see the Exploration Biased strategy as a Chinese restau-

rant process. In our case, meanings M are tables, and occupied ta-
bles would be known meanings Mk. As we cannot count the sitted
customers for each meaning, we keep it equal to 1 for each table. We
also consider α = 1.

3.2.3 Information Gain maximization

The process of convergence is towards one of the many possible com-
pleted lexicons. At the beginning, all M! · (W − M)!10 completed 10 If W is pseudo-infinite, one can con-

sider W = M · N, which is an upper
bound to the maximum number of in-
ventions.

lexicons are equiprobable as outcome of the negotiation process. But
in intermediary states, particularly close to convergence, many of the
possible lexicons become improbable or even can be discarded. From
one state to the other, because the probability distribution over the
possible outcomes changes, there is a gain of information.

At an individual level, not being in a locally converged state
(i.e. a completed vocabulary), means that the agent doesn’t know yet
what the conventions would be in the completed state, among all the
remaining possibilities. In other words, it lacks a certain quantity
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of information to build a complete vocabulary. What is this missing
information, in bits, needed by an agent to fill its association matrix?
If we have M available meanings and W available words (W ≥ M),
the number of possible configurations for a completed vocabulary is:

Ω =
W!

(W −M)!
(3.1)

Therefore, the information needed, in bits, to define such a vocab-
ulary among all possible ones is:

I(M, W) = log2 Ω =
M−1

∑
k=0

log2(W − k) (3.2)

Now, if we consider an intermediate state, in which an agent al-
ready has a vocabulary of µ associations11, without synonyms or 11 i.e. µ = |Mk |, this notation will be

used often in the rest of this chapter,
also extending it to hearer’s lexicon size
µH and speaker’s µS

homonyms, we can also calculate the information missing in this
case. It is quite simple, as the already known meanings and words
do not matter anymore in the calculation: By removing them, we get
back to the initial problem, i.e. evaluating the missing information
of an empty vocabulary, now with M − µ available meanings and
W − µ available words:

i(µ, M, W) = I(M− µ, W − µ) =
M−1

∑
k=µ

log2(W − k) (3.3)
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Figure 3.6: Comparison of TCS mea-
sure S(t) and normalized shared infor-
mation < i2(t) >. N = 10, M = 100,
W = 200, averaged over 8 trials.
Interesting remark: we can consider
the information of the shared vocab-
ulary between a couple of interacting
agents, constituted of only the word-
meaning association present in both
lexicons. Averaging this value over
all possible couples of agents can be a
good approximation of the TCS, see fig-
ure above for empirical results.

However, maximizing this information on the individual vocab-
ulary of the speaker is straight-forward: by always exploring, one
can quickly reach a completed lexicon. But this does not guaran-
tee that this lexicon is shared by the others or compatible with their
lexicons. The hearer’s lexicon evolution on the contrary is less well-
known: whatever the state of the speaker’s lexicon and the topic that
was chosen, µH

12 can still increase, decrease or remain the same; the

12 Size of Hearer’s lexicon

possible situations and associated outcomes are:

• µH ← µH + 1 : The used convention was not present in the lexi-
con, and is not in conflict with any other convention in Hearer’s
vocabulary.

• µH ← µH : Hearer already had the convention, or while adding
the convention another one was removed, synonym or homonym.

• µH ← µH − 1 : While adding this convention to the lexicon, both
a synonym and an homonym had to be removed.

It makes sense to try to influence this evolution by the choice of
the topic: given a certain probability distribution over the possible
lexicons of Hearer, the speaker can compute the probabilities of each
outcome, and an expected lexicon change ∆µH and associated infor-
mation gain Gµ for the hearer. But what can be its guesses about the
state of the lexicon of the hearer? What distribution can be consid-
ered over the space of possible lexicons? The most probable value
for µH is µS, because both agents are supposed to have had the same



number of past interactions. As for its composition, the safest as-
sumption (i.e. a subestimation of the information) is to consider that
both lexicons have been built independantly so far, and any shared
association would be so by chance13. 13 This is particularly true if N � M.

With the two hypothesis µH = µS and independance of lexicons,
we can derive the probabilities of the different outcomes for the

other agent (in terms of change of lexicon size) depending on
the size of the lexicon µ and the two possible choices, exploring or
exploiting. This can be done from the perspective of both agents,
speaker and hearer. The probabilities are summed up in table 3.1.
For the moment, only values for Speaker are relevant, but the values
for Hearer will be used in paragraph 3.4.3, in an alternative scenario
where Hearer can pick the topic.

Speaker’s perspective

∆µ Info. Gain Gµ (bits) Probability pµ

+1 log2(W − µ) (M−µ)(W−µ)
MW

0 0 µ(1+M+W−2µ)
MW

−1 − log2(W − µ + 1) µ2−µ
MW

Hearer’s perspective

∆µ Info. Gain Gµ (bits) Probability pµ

+1 (explore) log2(W − µ) W−µ
W

0 (explore) 0 µ
W

0 (exploit) 0 W−µ+1
W

−1 (exploit) − log2(W − µ + 1) µ−1
W

Table 3.1: Information outcomes with
associated probabilities from both
Speaker and Hearer’s point of view,
when having µ associations in their vo-
cabulary. There are M meanings and W
words. To determine the probabilities,
each agent assumes the other agent’s
vocabulary to be a permutation of its
own or in other words, that they share
the same µ value. Information measure
(defining the gain) is introduced in the
main text.

The associated greedy strategy is to choose the option (explore
or exploit) associated with the highest expected outcome. This would
however lead to a decision vector comporting several times 0. As
discussed earlier, this can lead to blocked states, as depicted in figure
3.4. An alternative is to use a softmax function14: see equation 3.4.

14 Softmax functions are used to smooth
decision processes by not selecting the
highest rewarding option, but sampling
from the different options using a prob-
ability distribution depending on the
expected rewards. They usually rely on
a parameter, here noted β, called tem-
perature parameter, which comes from
an analogy with physics.

For the hearer however, the decision would be heavily biased to-
wards exploration at the beginning, hence the chosen function does
not reflect a maximization of the information gain, but a minimiza-
tion of information loss and an avoidance of early exploration (see
equation 3.5).

Speaker:

Pexp(µ, β) =
e

G(+1)·p(+1)
β

e
G(+1)·p(+1)

β + e
G(−1)·p(−1)

β

(3.4)

Hearer:

Pexp(µ, β) =
e−

G(−1)·p(−1)
β

e
G(+1)·p(+1)

β + e−
G(−1)·p(−1)

β

(3.5)

If we look at the shape of the vector (see figure 3.7), it corre-
sponds to exploring until a certain lexicon size. In other words, ex-
ploring enough per agent so that everybody would end up with
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a full lexicon, but not too much to introduce as few conflicts as
possible. The optimal size for switching is the value of µ for
which G(+1) · p(+1) = G(−1) · p(−1). Solving the equation gives
µ ≈ MW

M+W−1 .

Algorithm 6: Information Gain max-
imization Topic Choice: Representa-
tion of the strategy as a decision vector.
Probabilities of exploring or exploiting
are derived from an information mea-
sure and its expected gain, depending
on the decision. See main text for a
more detailed explanation. See equa-
tions 3.4 & 3.5 for the expression of the
probability functions.

Information Gain maximization Decision Vector:
Di = Pexp(i, β) ; i ∈ J1 ; M− 1K.
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Figure 3.7: Decision Vector for the In-
formation Gain maximization strategy,
for several values of parameter β. M =
100, W = 200.

3.2.4 Chunks Decision Vector strategy

Another strategy is to explore by chunks instead of considering the
whole set of meanings. Everybody explores only once, and when the
expected size of lexicon resulting of the spreading of these inventions
is reached, explore again, until reaching the next threshold. The
expected number of chunks nch(M, N) and the respective remaining
lexicon sizes Mi are studied in section 5.2.4.

Because there is a small probability that the system does not reach
nch, but only nch − 1 for example, it is necessary to allow exploration
at every step with a residual probability γch. We will typically use
γch = 0.001, or γch = 0.01for low values of N. Algorithm 7: Chunks Topic Choice:

Representation of the strategy as a de-
cision vector. This strategy explores
by chunks of meanings, whose size is
guessed from N, M and W.

Chunks Decision Vector:
Require:

(
Mj
)

0≤j≤nch

Di = 1 where M− i ∈
(

Mj
)

0≤j≤nch
; γch elsewhere ;

i ∈ J1 ; M− 1K.
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Figure 3.8: Decision Vector for the
Chunks strategy, N = 50, M = 100,
W = 200.

3.2.5 Comparison to optimal vector

For low values of M, we can use classic optimization algorithms to
try to find an optimal shape of the decision vector, minimizing the
convergence time. On figure 3.9, we can see the resulting shape
compared to the Chunks decision vector. Further optimizations and
fine-tuning with different algorithms may be necessary to ensure that
this vector is indeed optimal, but at least we can see that this vector
is closer to the Chunks strategy than to the Information Gain max-
imization strategy: it favors multiple waves of exploration instead



of a single wave stopping at a certain lexicon size. An illustration
of the better convergence properties of Chunks (compared to Info.
Gain maximization and Exploration Biased) can be seen on figure
3.10. For later comparisons with other strategies, we will only keep
the Chunks strategy, having the best performance so far.
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Chunks decision vector Figure 3.9: Optimized decision vector
compared to chunks decision vector:
N = 10, M = 12, W = 24. Optimiza-
tion algorithm: CMA-ES, initialization
parameters: vector: 0.5 everywhere; σ :
0.5.
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Figure 3.10: Comparison of the dynam-
ics of Info. Gain, Explo. Biased and
Chunks strategies. Info. Gain has simi-
lar dynamics has RTC. Chunks and Ex-
plo. Biased starts faster, but the agree-
ment on the last meanings is slower
and the final convergence time is just
slightly smaller. M = 100, W = ∞, av-
eraged over 8 trials.

3.3 Counting successful interactions

Considering past interactions, and in particular successes, one
could probably build a more efficient strategy. This idea has been in-
troduced in Oudeyer and Delaunay, 2008, where the measure of con-
fidence triggering exploration is the ratio of successful events among
past interactions. We will redefine a strategy based on this measure,
called Success Threshold, and another one based on the absolute count
of successes, Minimal Counts. Because each individual known mean-
ing m carries a different past, it is possible to distinguish them, and
therefore add a second level to the strategy, as defined in paragraph
3.1.3.
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3.3.1 Success Threshold

The Success Threshold strategy (see algorithm 8) uses the ratio of
past successful interactions: an agent should explore when its value
gets over a threshold parameter αST ∈ [0 ; 1]. The success ratio SR is
defined as the mean of the success ratio over known meanings:

SR(t) = 〈SR(m, t)〉m∈Mk
(3.6)

If SR(t) ≤ αST (level 2.a in the description found in paragraph
3.1.3), we will choose the meaning having the smallest success ratio,
hence presenting the most room for improvement.

If all meanings have been explored (level 2.b in the description
found in paragraph 3.1.3), i.e. Mk = M, we will fall back on a
random topic choice, this will be discussed at the end of the chapter. Algorithm 8: Success Threshold strat-

egy, exploring when the ratio of past
successes per meaning goes over a
value αST .

Require: Success ratios SR(t) and SR(m, t); parameter αST

1: procedure SuccessThresholdTopicChoice(SR(m, t); m ∈
Mk)

2: if SR(t) ≤ αST then . Level 1

3: if |Mu| > 0 then
4: Pick random m from Mu . Explore
5: else
6: Pick random m from M . Level 2.b
7: else
8: Pick m = arg minm∈Mk

(SR(m, t)) . Level 2.a

To set the parameter αST , we can optimize the convergence time
with fixed values of N and M. A minimum is found around αST =

0.8, as can be seen on figure 3.11. On the same figure, we can see
that both levels are needed to achieve significantly faster convergence
than with Random Topic Choice, by comparing with convergence
times associated with a modified strategy with only level 1. For
further uses of this strategy, αST will be set to 0.8, which appears
to be stable for different values of N (N ∈ [10, 100, 1000], data not
shown.).

3.3.2 Minimal Counts

The Minimal Counts strategy (see algorithm 9) is similar to Suc-
cess Threshold, but uses an absolute count of successful interactions
instead of relative. We will change another detail: we do not con-
sider the mean value of success counts per meaning < SC(m, t) >

but the minimum min (SC(m, t)). The threshold parameter will be
noted nMC. This allows to keep an important weight for new mean-
ings with very few interactions, which was anyway the case with
Success Threshold.

Again, to set the parameter nMC, we can optimize the convergence
time with fixed values of N and M. We will consider a normalized
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Figure 3.11: Convergence time depen-
dence on parameter αST : a minimum
is found around αST = 0.8. The per-
formance of Random Topic Choice is
shown as reference. Restriction of the
strategy to only first and second level
are shown. M = N = 100, W = ∞,
average over 8 trials.

Algorithm 9: Minimal Counts strategy,
exploring when the minimum number
of successes per meaning goes over a
value nMC .

Require: Success counts SC(m, t); parameter nMC

1: procedure MinimalCountsTopicChoice(SC(m, t); m ∈Mk)
2: if min (SC(m, t))m∈Mk

≤ nMC then . Level 1

3: if |Mu| > 0 then
4: Pick random m from Mu . Explore
5: else
6: Pick random m from M . Level 2.b
7: else
8: Pick m = arg minm∈Mk

(SC(m, t)) . Level 2.a

parameter ñMC = nMC
N to be able to use the same value across dif-

ferent configurations with different values for N. A minimum can
be found for 0.2 ≤ ñMC ≤ 0.7, as can be seen on figure 3.12. On
the same figure, we can see that both levels are needed to achieve
significantly faster convergence than with Random Topic Choice, by
comparing with convergence times associated with a modified strat-
egy with only level 1. For further uses of this strategy, ñMC will be
set to 0.6, which ensures to stay close to minimum convergence time
for different values of N (N ∈ [10, 100, 1000], data not shown).
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Figure 3.12: Convergence time depen-
dence on parameter nMC : a minimum
can be found for 0.2N ≤ nMC ≤ 0.7N.
The performance of the Random Topic
Choice is shown as reference. M = N =
100, W = ∞, average over 8 trials.
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3.4 Global comparison

In this section, we will compare three of the strategies to Random
Topic Choice: Chunks, Success Threshold and Minimal Counts.
Firstly in the normal setting, and then with homonymy and with
a modified scenario.

3.4.1 Scaling
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Figure 3.13: Comparison of different
strategies under memory constraints.
Scaling of tconv with N. We can see that
Success Threshold and Minimal Counts
converge faster than the other strate-
gies, for N ≤ M. M = 100, averaged
over 8 trials.

On figure 3.13, we can see that the Chunks strategy does in fact
converge faster than Random Topic Choice, but not by much. Min-
imal Counts and Success Threshold do perform better, provided
N ≤ M. Over this value, the number of inventions is directly bigger
than M, and agents fall quickly in the level 2.b (see description para-
graph 3.1.3). Because the policy at this level is equivalent to random
choice for both strategies, this behavior was to be expected.

3.4.2 Homonymy

When W ≈ M, the same word can appear in several inventions,
possibly for different meanings, creating homonymy. If W = M,
the problem can become quite difficult, as there are less degrees of
freedom, and convergence dynamics become extremely slow. We
consider instead W = 2M, still low enough to quickly introduce
homonymy.

On figure 3.14, we can see that the dynamics of Random Topic
Choice become slower, and convergence time explodes when N ≥ 50
(Simulations were stopped at 107 interactions). All other strategies
keep their convergence properties.

3.4.3 Hearer’s Choice interaction scenario

Memorization skills of infants are improved through active query
of lexical knowledge Partridge et al., 2015, and experiments with
children learning tasks in a social context suggest that this active
behavior may also be part of the mechanisms used naturally in an
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Figure 3.14: Comparison of different
strategies under memory constraints,
with homonymy. Scaling of tconv with
N. We can see that Success Threshold
and Minimal Counts converge faster
than the other strategies, for N ≤
M. Chunks converges faster than RTC,
whose value of tconv exceeds 107 for
N ≥ 50 M = 100, averaged over 8 trials.

interacting population of human learners Vredenburgh and Kushnir,
2015. In our case, only the speaker has an active behavior, what if it
would be the hearer?
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Figure 3.15: In Hearer’s choice scenario,
the first step changes: Hearer is choos-
ing the topic instead of Speaker. See
main text for a detailed description of
the scenario.

Hearer’s Choice is a modification of the interaction scenario,
where the topic is chosen not by the speaker S but by the hearer
H. The exact scenario, illustrated in figure 3.15 and comparable to
the standard scenario presented in section 2.1.4, is the following:

1. H chooses a topic m

2. H indicates the intended meaning m (by pointing at it for exam-
ple)

3. S checks its vocabulary to find or invent a word w associated to m

4. S utters the word w

5. H guesses a meaning mH from w using its vocabulary, and com-
pares it to m.
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Figure 3.16: Comparison of different
strategies under memory constraints,
with the Hearer’s Choice scenario.
Scaling of tconv with N. We can see that
Success Threshold and Minimal Counts
converge faster than the other strate-
gies, even for N ≥ M. M = 100, av-
eraged over 8 trials.

On figure 3.16, we can see that it is possible with this modified
scenario to perform better than Random Topic Choice, which is by
definition the same as in the standard interaction scenario. Other
strategies keep their properties for low values of N, but scale better
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with increasing N, and interestingly keep this behavior above the
threshold N ≈ M. The dynamics of Success Threshold in this case
are similar to Random Topic Choice without memory constraints,
even slightly faster.

3.5 Discussion

We have described Active Topic Choice in 2 levels: exploration or
exploitation (level 1), and when exploiting, which meaning to choose
amon all known ones (level 2). Level 2 can, be split into two subcases:
there are still meanings to explore (level 2a), or there are no more
(level 2b).

We have introduced a few strategies for the Active Topic Choice,
under strong memory constraints. A first group of them (Informa-
tion Gain maximization, Chunks) only rely on the size of the lexicon,
which corresponds to the minimum memory usage M, for the lexi-
con itself. We have seen that those strategies can be described by a
single vector of values in [0; 1] and of dimension M + 1. For small
values of M, optimization algorithms converged to a vector close to
the Chunks strategy. This strategy converges a bit faster than Ran-
dom Topic Choice or Information Gain maximization, but scales the
same against N. The fact that Chunks is better than Information
Gain maximization can be interpreted by the fact that it results in
less inventions, and therefore less synonyms within the population.

A second class of algorithms (Success Threshold, Minimal Counts)
are using the count of past successes and failures per meaning. In
terms of memory, this has a cost of 2M (two values per meaning),
leading to a total of 3M if counting the lexicon. For a population size
lower than 2M, they converge faster, and scale better than Random
Topic Choice. The limit at N = 2M is related to a direct shift towards
level 2b of the strategy, because the number of inventions for the
first interactions of agents ( N

2 ) becomes greater than the number of
meanings M, and there immediately no more meanings to explore.

It can be noted that level 2a for both strategies uses an incompe-
tence max approach: choosing the option associated with the lowest
competence. See Oudeyer and Kaplan, 2009 for a review of possible
intrinsic rewards.

Level 2b is in this chapter defined as equivalent to random topic
choice, so when the limit N = 2M is reached, strategies tend to have
dynamics more similar to random topic choice. This choice was done
because an extrapolation of level 2a slows down the dynamics: this
is probably caused by waves of reinforcement for the conventions
that become less present in the population, until another convention
becomes rarer, and gets reinforced on their turn (data not shown).
The incomplete lexicon has more stability in this way, and getting
out of this pseudo-equilibrium takes a high number of interactions.

However, if the alternative scenario Hearer’s Choice is used, this
can be overcome, because inventions for a meaning m propagate only
if the hearer asked for this meaning. Agents can stay in level 2a (i.e.



still having meanings to explore) even if N ≥ 2M. Hearer’s Choice
is particularly efficient in this setting.

The strategies are robust to a bias towards the introduction of
homonymy by limiting W: their dynamics stay the same for N ≤ M.
Random Topic Choice on the contrary sees its convergence time burst
(data not even visible on figure 3.14 for N ≥ 50).

It seems that for most strategies, even if we restrain memory by
using the imitation vocabulary update, refraining from exploring is
a key mechanism in improving the global dynamics. For example
in 3.10, we can see the hierarchy Chunks > Explo. Biased > Info.
Gain. This correlates with the respective biases towards exploration
and the number of inventions being done.

Considering the strategies using more memory than the sole lexi-
con, Success Threshold and Min. Counts, they depend on a param-
eter, which we could optimize in our case, but this may be harder
for different contexts, as the parameters are continuous and abstract.
Searching for optimal values in the parameter space can be quite
costly computationally, and if it is possible that they might be found
through evolutionary processes (considering the actual behavior of
people), this seems unlikely, especially if it depends on the con-
text and population size for example. We will continue this part
of the discussion (about abstract parameters) in the following chap-
ter, which will start by reintroducing synonyms and homonyms in
the strategies of this chapter.

Last but not least, it can be noted by a quick comparison of figures
2.7 and 3.13 that Success Threshold converges more or less as fast as
Random Topic Choice without memory constraints. This means that
we already have a candidate for our optimization problem: really
low memory usage, but same convergence speed.
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What if we allow homonymy and synonymy? They both exist
in real languages, and it is not inconcievable that in processes like the
Naming Game with a drive towards one-to-one mappings, we main-
tain temporarily a few conflicting hypothesis before discarding some
of them, while keeping the average memory low. In this context,
can we still harness the complexity growth, while keeping similar
dynamics? Or is it possible to converge even faster?

In this chapter, we will clarify what we are trying to optimize
in the standard Naming Game (without forbidding homonymy and
synonymy), and translate it as a measure locally available to agents:
the Local Approximated Probablity of Success, or LAPS1. New Topic 1 A table of symbols, acronyms and ab-

breviations can be found at the last
page of this manuscript.

Choice strategies will be explicited, driven by a maximization of this
measure. These strategies allow to converge faster than with Ran-
dom Topic Choice, control efficiently local complexity growth, and
do not necessitate a lot of memory.



4.1 Some strategies from last chapter

Let us begin by directly reusing the strategies introduced at the last
chapter. Only Information Gain maximization cannot be reused di-
rectly: the measure of information first needs to be extrapolated to
the use of synonyms and homonyms (see next section).
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Figure 4.1: Allowing synonymy and
homonymy for a few strategies of last
chapter: Communicative success and
local complexity. Globally, a low mem-
ory is conserved, and convergence is for
some of them faster then Random Topic
Choice. N = 100, M = 100, W = ∞, av-
eraged over 8 trials.

We can see that the active mechanisms do help to naturally keep
a low memory, however the optimal parameters are not the same
anymore for Success Threshold and Minimal Counts, confidence is
clearly underestimated as a stop in exploration is observed (plateau
in local complexity). Chunks and ExploBiased are faster and do not
exhibit such a plateau in complexity, but it is probably possible to do
better since they do not use any information of past interactions. A
first possibility would be to – again – study convergence dependence
on the parameters used for Success Threshold and Minimal Counts.
These parameters are continuous (if we consider the optimal parame-
ter of MC as a ratio over M), and their optimal values seem arbitrary.
Finding them could result in a parameter optimization, which can be
quite fastidious2. Trying to determine them analytically seems even 2 N.B.: The authors spent a non-

neglectable amount of time trying this
approach.

more fastidious, as they are not related to other values. Would there
be other strategies with simpler parameters: possibly principled, and
maybe even not continuous but discrete?

4.2 What should an agent optimize?

4.2.1 Issue with entropy measures

From our omniscient point of view of simulator of the Nam-
ing Game, we can tell when the system has converged, or to which
extent it has converged. Our main measure for this purpose is the
TCS (Theoretical Communicative Success3) noted S(t), described in 3 A table of symbols, acronyms and ab-

breviations can be found at the last
page of this manuscript.

paragraph 2.2.2 and used extensively in the previous two chapters.
However, this measure is global, and not directly accessible to in-
dividual agents. They cannot know for sure when the system has
converged, let alone estimate an intermediate TCS value.
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In the previous chapter, we have introduced a measure of infor-
mation, and used it along a couple of assumptions about the state of
other agents to define the Information Gain maximization strategy.
Can we extend this value to the situation we are now studying, i.e.
with synonymy and homonymy? Information measures are more
complicated in this case, and would be expressed as a negative en-
tropy, or negentropy of the lexicon. Several measures of entropy can
be used:

Word entropy: The sum of the entropy of each vector corresponding
to a meaning m:

− ∑
m∈Mk

∑
w∈Wk(m)

V c
mw log2 (V

c
mw) = ∑

m∈Mk

log2 (|Wk(m)|) (4.1)

Meaning entropy: The sum of the entropy of each vector corre-
sponding to a word w:

− ∑
w∈Wk

∑
m∈Mk(w)

Vd
mw log2

(
Vd

mw

)
= ∑

w∈Wk

log2 (|Mk(w)|) (4.2)

Combination of the two: The sum of both.

Where Wk(m) is the set of known words for meaning m, and Mk(w)

is the set of known meanings for word w.
We will consider the combination of both. We can note that there

is a particularity with empty vectors (for either words or meanings):
should they count as maximal entropy (log2 (|M|) and log2 (|W|) ),
or minimal (0)? The formula as it is would be an empty sum, i.e.
they would count as 0, as the corresponding values in the matrix are
set to 0. But because no knowledge has been acquired yet for the
corresponding meaning or word, they still carry a high ambiguity.
Instead, we can re-use our previous measure of information on the
subset of vocabularies without synonymy and homonymy, and make
the negentropy measure its extrapolation to the set of all possible
lexicons. Considering this last option, the final entropy measure is:

E(t) = ∑
m∈Mk

log2 (|Wk(m)|)+ ∑
w∈Wk

log2 (|Mk(w)|)+
M−1

∑
j=|Mk |

log2(W− j)

(4.3)
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Figure 4.2: Typical evolution of the
entropy measure: it is not monotic,
but goes through a local minimum be-
fore reincreasing and finally reaching
0. Random Topic Choice, N = 1000,
M = 100, W = ∞, averaged over 8 tri-
als.

For our agents, we are seeking a functional to either maximize or
minimize, would entropy suit this role? Even if the global evolution
of the negentropy is globally decreasing to a minimum (see figure
4.2), we can spot two issues:

The number of possible states explodes: If we try to optimize the
measure of the other agent in a similar way as in for the Information
Gain maximization strategy, even determining the actual dimension
of the equivalent of the previous decision vector is hard, but a rough

lower bound would already be 2
M(M−1)

2 . The dimension is the number



of distinct states of the system. States are distinct if they cannot
be transformed into each other by any permutation of rows and/or
columns or the lexicon. Consider a lexicon that is a triangular matrix
– possibly after a permutation of rows and/or columns – with 1
everywhere on the diagonal. Each coordinate of the triangle can take
an arbitrary value, all corresponding states would be distinct. The
given lower bound is the count of these states; but of course there
are many more possible states. Eventually, the important message is:
this value is too high anyway.

Dynamics are locally non-monotonic: As an example, consider
a given meaning m: the first interaction with m will yield a great
decrease in entropy; as there will be only one word associated to it.
Afterwards, it can only increase, before reaching again the lowest
entropy state after a successful interaction. This particularity can be
observed as well on a global scale (see figure 4.2). A direct mini-
mization of the entropy would force the system too fast in this local
minimum, which corresponds to a behavior heavily biased in favor
of exploration at the beginning, creating many conflictual associa-
tions, which is what we would like to avoid (see chapter 5 for more
information about the importance of the number of inventions).

To sum up, if we do not constrain the system to avoid homonyms
and synonyms but at the same time do not allow usage of past inter-
actions information, the best strategy so far seems to be the Explo-
ration Biased topic choice (see algorithm 5). However, considering
the information carried by past interactions, could we redefine an-
other functional to optimize?

4.2.2 Interactions as an information sampling process

Let us recapitulate what is the information brought by a single inter-
action:

Success bsuccess: Boolean, success or failure of communication

Topic mS: Meaning chosen by the speaker

Word w: Used by the speaker to refer to mS

We can note that the identity of the other agent is absent: if the al-
gorithms could consider it, intermediary languages could potentially
emerge between pairs of individuals, instead of a shared lexicon at
population level. It is thus difficult to infer the state of the hearer,
because the speaker not only does not interact much with a given
individual, but also because it is not known when an interaction
happens with the same individual. In other words, beliefs can only
be built on the state of the population and not on individual states. In
fact, interactions can be seen as an information sampling process where
beliefs are built about an average state of the population.

We introduced in paragraph 2.2.2 the notion of an average vocab-
ulary of the population V(P); which is exactly what we are seeking.
Trying to coordinate with other agents narrows down to coordinate
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with this average population lexicon. This idea is not new, and sev-
eral vocabulary update policies used in previous work reflect this
idea4. However, this also results in a burst of lexicon complexity, 4 e.g. Lateral Inhibition (Wellens, 2012)

or trying to entirely copy at each inter-
action the guessed state of the popula-
tion (Oliphant, 1999)

which is still our main issue.
Could agents build a partial representation Ṽ(P) of the average

vocabulary V(P)? Partial in the sense that it uses only the sparse
information provided by the interactions, but also because it should
not take too much memory (and should therefore stay distant from
the actual state of the population, which has by definition a greater
complexity – Nd – than the individual lexicon). To do so, we will
limit memory by considering a sliding time window.

4.2.3 Reconstructing an average population lexicon

We construct independently the coding and decoding parts Ṽ c(P)

and Ṽd(P). For every meaning m (and every word w), we use a
sliding window over the recent past interactions – of maximal length
τ, the time scale parameter– and count the number of times it is
associated to each word w′ (or meaning m′). This value divided by τ

is the local estimation of the probability of an other agent coding m
using w′ (or decoding w as m′). With this, we retrieve the values of
both matrices Ṽ c(P) and Ṽd(P).

Let Mc(m) be the memory of the past interactions where m was
the topic, if there has been Tm such interactions. wt denotes the word
used during the tth interaction of the agent using the meaning m. We
can now build Ṽ c(P):

Mc(m) = (wt)1≤t≤Tm
Ṽ c(P)mw =

Tm
∑

t=Tm−τ+1
δw,wt

τ
(4.4)

Similarly, by defining Md(w) be the memory of the past interac-
tions where w was the topic, with Tw such interactions, we can build
Ṽd(P):

Md(w) = (mt)1≤t≤Tw
Ṽd(P)mw =

Tw
∑

t=Tw−τ+1
δm,mt

τ
(4.5)

Until τ interactions have been done with a given meaning or word,
∑
w
Ṽ c(P)mw and ∑

m
Ṽd(P)mw do not sum to 1. The remaining proba-

bility weight is assumed to be associated with failure. If we would
normalize to 1, with a single interaction an agent would already es-
timate as 100% sure that the same word-meaning association would
be used again with the same topic for example. Without the normal-
ization, this happens only after τ interactions. In other words, this
reflects lack of information due to small sample size.

The memory needed to build this average vocabulary scales with
M · τ. If τ stays constant and small, this means that it scales with
M, size of the completed lexicon. When using this type of memory,
if we manage to control the local complexity growth, we will still



have to check that τ keeps a small value to avoid simply shifting the
complexity growth to another type of memory.

4.2.4 LAPS measure

Now that we have built a representation of the average state of the
population, how should we use it? Simply by using the same mea-
sure that we use at a global level to characterize convergence, the
TCS. We define the Local Approximated Probability of Success, a lo-
cal equivalent of the Theoretical Communicative Success for an agent
with vocabulary A having built a representation of the population
vocabulary Ṽ(P)A:

LAPSA = TCS
(
A, Ṽ(P)A

)
(4.6)

For simplicity, and to express its similarity to S(t) it will be noted
SLAPS(t). The LAPS measure is a suitable functional to maximize:

Monotonicity: The measure is globally monotonic (see figure 4.3).
Locally, it does not exhibit the properties of the negentropy: it
does not need to go through a maximum before decreasing and
augmenting again. A strategy based on its maximization is possi-
ble.

Parameter: The measure depends on one single parameter, the time
scale τ, which is both principled (it is a direct measure of the ex-
tent in the past of the memory of past interactions), and discrete:
a potential search in parameter space for optimization will be eas-
ier. Moreover, the suitable values for the parameter should be low,
because a high parameter also means higher memory usage.

Measure of confidence: It can directly be seen as a measure of con-
fidence, which can reach 100%. No need to add a threshold like
in previous strategies for designing the first level of a strategy.
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Figure 4.3: Typical evolution of the
LAPS measure. N = 1000, M = 100,
W = ∞, averaged over 8 trials.

4.3 Derived strategies

4.3.1 Exact value

An intuitive approach to the maximization is a greedy algorithm (for
a topic choice policy), maximizing the variation of LAPS at each
interaction. In other words, the speaker should choose the meaning
m yielding the maximum expected ∆SLAPS, presented in pseudo-
algorithms 10 and 11.

Algorithm 10: Computing ∆SLAPS
Require: Word w, Meaning m, Success bsuccess, Lexicons V , Ṽ

1: procedure ∆SLAPS(m,w,bsuccess ,V , Ṽ )
2: Vnew = Update(V ; m, w, bsuccess)

3: Ṽnew = Update
(
Ṽ ; m, w, bsuccess

)
4: return TCS(Vnew , Ṽnew) − TCS(V , Ṽ )
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Algorithm 11: LAPSmax strategy, max-
imizing the expected increase of the
LAPS measure. Level 2b is not de-
scribed: all meanings are equivalent for
the agent in the corresponding case.

Require: Success ratios SR(t) and SR(m, t); parameter αST

1: procedure LAPSmaxExactTopicChoice(SR(m, t); m ∈Mk)
2: if SLAPS(t) =

|Mk |
M then . Level 1

3: Pick random m from Mu . Explore
4: else
5: Pick m = arg maxm∈Mk

(
E
(
∆SLAPS

t→t+1
))

. Level 2

Evaluating the argmax is quite costly computationally: one would
need to evaluate the resulting LAPS for each tested m, w. Per agent,
this is over Nl(t) times, considering possible inventions. An alter-
native is to consider a Monte Carlo estimation, but the number of
evaluations would still be high. As the LAPS measure has to be
computed over the whole lexicon, we can only afford one or two
evaluations per interaction. Above this, it becomes cognitively im-
plausible.

4.3.2 Multi-Armed Bandits

We can however compute the LAPS value at each interaction, and
see the system as a black box, outputting ∆SLAPS after each interac-
tion. As presented in paragraph 3.1.1, Multi-Armed Bandits(Bubeck,
Cesa-Bianchi, et al., 2012) are a set of algorithms that can help solve
this problem: following a decision between a finite set of options, a
reward value is obtained and used to update the choice policy. The
name Multi-Armed Bandit comes from an analogy with a person try-
ing to maximize their gain while facing a set of slot-machines (also
called one armed bandit), and being able to use only one at a time. The
probability distribution of the reward of each machine is unknown,
and the player has to both collect information by playing and ex-
ploit the highest rewarding machine – with limited knowledge of its
reward distribution – hence keep balance between exploration and
exploitation. In our problem, we can see known meanings as the
possible arms, and the reward ∆SLAPS.

Our case is quite specific, as:

1. Reward distributions are non stationary

2. Reward distributions depend on past choices

3. The number of arms grows over time (and starts at 0).

This situation led us to choose an algorithm where weights asso-
ciated to each arm undergo a decay over time, which let them stay at
the same order of magnitude of the initial weights of new arms. We
took inspiration from Clement et al., 2015, where a similar algorithm
is used to model young students learning math.

The resulting algorithm depends on two parameters: integrated
balance between reward-driven exploitation and random exploration
between arms through the parameter γ 5, and time scale n for the 5 to avoid being stuck and ensure that

all meanings have a non-zero probabil-
ity to be chosen

decay of weights. As a reward, we consider the increase of LAPS



yielded by the interaction, ∆SLAPS, or 0 if the latter is negative in
order to avoid negative weights. See algorithm 12.

Algorithm 12: LAPSmax bandit, esti-
mated argmax for the LAPSmax strat-
egy using a Multi-Armed Bandit. At
the end of an interaction with a new
meaning, a new arm is created with a
weight wa equal to the reward ri ob-
tained. Level 2b is not described: all
meanings are equivalent for the agent
in the corresponding case.

Require: parameters γ rate of exploration for bandit
Require: n time scale for weights decay

1: procedure LAPSmaxTopicChoice(SR(m, t); m ∈Mk)
2: if SLAPS(t) =

|Mk |
M then

3: Sample m from Mu

4: else
5: for a ∈ Arms do
6: w̃a =

wa
∑j wj

7: pa = (1− γ) · w̃a +
γ
|Mk |

8: Sample m ∈ Arms using distribution (pa)a∈Arms

9: return m

10: {Interact using topic m and compute reward r}

11: if m ∈ Arms then
12: wm ← n

n+1 · wm + r
13: else
14: Add m to Arms with wm = r
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Figure 4.4: Evolution of the system fol-
lowing the LAPSmax with Bandit strat-
egy, for S(t) and Nl(t). If τ increases,
agents wait longer to be confident to
explore. M = 100, N = 100, W = ∞,
averaged over 8 trials.

The LAPSmax strategy converges faster than any other strategy
seen so far, and keeps memory usage under the final size of the
lexicon M, for τ = 2 and τ = 3 in the shown example figure 4.4.
The minimum τ = 2 is stable across different values of N (from 10 to
1000, data not shown), corresponds by definition to a lower memory
usage than τ = 3, and will be considered as the standard value for
this strategy in the remainder of this thesis. The case τ = 1 is an
outlier, being a simple autocorrelation with the current interaction,
and not a real comparison with data collected after past interactions.
For values of τ greater than 2, agents need more time to get confident
about their lexicon, and dynamics are slowed down. (See figures 4.4
and 4.5)
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Figure 4.5: Dependence of the LAPS-
max strategy with time scale parame-
ter τ. Optimal convergence time is at-
tained at τ = 2 and τ = 3. τ = 1 is
particular, see main text. Both levels of
the strategy contribute to faster conver-
gence. M = 100, N = 100, W = ∞,
averaged over 8 trials.

4.3.3 Coherence Strategy

The previous strategy works quite well, but is a bit costly compu-
tationally, heavily depends on the state of the whole lexicon, and a
part of it works as a blackbox. We can simplify the LAPS measure
by considering only past information about meanings (not taking
homonymy into account), and because we are sure that the last used
word w (for meaning m) is in the lexicon, consider only this one. The
LAPS measure is then proportional to the number of occurences of
w in the stored memory of past interactions for meaning m. We call
this last measure the Coherence measure C(m, t). By definition, its
value is an integer between 0 and τ. As for Success Threshold and
Minimal Counts, we can design a strategy following an incompetence
max6 approach for level 2 (see algorithm 13).

6 Choosing the option associated with
the lowest competence. See Oudeyer
and Kaplan, 2009 for a review of pos-
sible intrinsic rewards.

Algorithm 13: Coherence strategy,
choosing known meanings with the
current minimum coherence. Level
2b is not described: all meanings are
equivalent for the agent in the corre-
sponding case.

1: procedure CoherenceTopicChoice

2: if C(m, t) = τ; ∀m ∈Mk then . Level 1

3: Pick random m from Mu . Explore
4: else
5: Pick m = arg minm∈Mk

(C(m, t)) . Level 2

Figure 4.6 shows us that the Coherence strategy can also converge
faster than Random Topic Choice, but even faster than LAPSmax,
and both levels contribute as well to this property. If the dependence
on parameter τ resembles the one for LAPSmax 7, the optimal value 7 i.e. starting above RTC for τ = 1,

going through a minimum, and then
slowly increasing again

is not as simple as for LAPSmax, with the settings of the experiments
presented in the figure it would be τ = 8.

If we look at the data for other values of N, we can see that the op-
timum shifts towards greater values of τ. For a greater population,
an agent needs to gather more information to be confident and con-
tinue exploring, which can explain this phenomenon. A discussion
on a plausible expression for the optimal value for τ will be found in
the next chapter, in paragraph 5.2.3, but we can already use the asso-
ciated expression: τopt = log2(N) + 1. Values obtained for M = 100
and 10 ≤ N ≤ 1000 follow this tendency: the convergence time as-
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Figure 4.6: Dependence of the Coher-
ence strategy with time scale parameter
τ. Optimal convergence time is attained
at τ ≈ 8. Both levels of the strategy con-
tribute to faster convergence. M = 100,
N = 100, W = ∞, averaged over 8 tri-
als.

sociated to τopt is always close to the observed minimum (data not
shown). A more thorough study of τopt would probably be useful to
prove or refine this expression, but we will keep this expression as is
in this thesis.

4.4 Results

4.4.1 Scaling
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Figure 4.7: Scaling of LAPSmax and
Coherence convergence time and max-
imum local complexity with N. They
both scale more or less like RTC, but
converge significantly faster. Memory
usage is minimal (M), only for LAPS-
max it increases a bit for high values of
N. M = 100, W = ∞, averaged over 8

trials.

We can see on figure 4.7 that faster convergence is kept across
various values for N for both strategies, and scales more or less like
RTC. We will introduce other tools to better quantify the difference
between these behaviors in the next chapter, developping a more
theoretical approach. Memory usage is kept at the minimum value
M, but for high values of N LAPSmax starts to need a bit more
memory.

4.4.2 Homonymy

Both strategies are robust to the introduction of homonymy: the dy-
namics are quite similar for the different studied ratios between M



Principled measures 73

0 25k 50k 75k 100k 125k 150k
t

0.0

0.2

0.4

0.6

0.8

1.0

S(
t)

LAPSmax homonymy
W=M
W=2M
W=∞

0 25k 50k 75k 100k 125k 150k
t

0.0

0.2

0.4

0.6

0.8

1.0

S(
t)

Coherence homonymy
W=M
W=2M
W=∞

Figure 4.8: Impact of homonymy on
LAPSmax and Coherence strategies, for
different ratios between W and M. Both
strategies are robust to these changes.
N = 100, M = 100, averaged over 8 tri-
als.

and W (see figure 4.8). Three phases can be distinguished: the first
wave of invention, propagation, and agreement on the last meanings
which had the most words. Slight differences can be observed in the
second and final phases8 of the convergence process, but compensate 8 First phase: S(t) > 40%, Second

phase: 40% ≤ S(t) < 95%, Final phase:
S(t) ≥ 95%

to reach the same values of convergence time.

4.4.3 Hearer’s Choice
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Figure 4.9: Hearer’s Choice with
LAPSmax and Coherence strategies.
Hearer’s Choice forces a first wave of
many inventions, which slows down
the convergence. N = 100, M = 100,
τ = 5 for LAPSmax, τ = 2 for Coher-
ence, averaged over 8 trials.

Hearer’s Choice, when used with homonyms and synonyms, is
problematic: for an agent at its second or third interaction, exploiting
may still lead to an invention, if the speaker does not have any word
for the chosen meaning. This results in a longer and higher wave of
inventions, and creating a complexity burst, even if smaller than for
RTC (see figure 4.9). We can still note that the end of the convergence
process does not show a separate slower phase, as can observed for
most of the strategies with Speaker’s Choice (see for example figure
4.8).



4.5 Discussion

In this chapter, we have reintroduced the use of homonymy and syn-
onymy, by using Minimal NG as a vocabulary update. We have
seen that the strategies from last chapter can still converge faster
than Random Topic Choice when adapted to this vocabulary update.
However, abstract parameters have to be further tuned to get to this
behavior, otherwise the dynamics can be slower than RTC.

We have introduced a new measure, LAPS, that measures locally
the agreement of an agent with the population, and relies on a time
scale parameter τ. This time scale controls the size of the recent
memory used to compute the LAPS measure. We have introduced
two strategies based on the maximization of this measure: LAPSmax
and Coherence. LAPSmax is based on the exact expression of the
LAPS measure, but uses a blackbox algorithm for the maximization,
as the computation of its exact expected increase is computationally
costly. Coherence is a simplified expression of the LAPS measure,
but we can follow a heuristic based directly on its maximization. For
LAPSmax, the behavior is similar to a competence progress drive, as for
Coherence it is incompetence max, using the classification of intrinsic
rewards found in Oudeyer and Kaplan, 2009.

The time scale parameter τ is easier to optimize than previous
parameters: it is principled, discrete, easy to optimize 9, and we con- 9 The function to optimize, the conver-

gence time, has a gentle slope leading
to the minimum, while still staying at
low values.

sider a bias towards small values to limit memory usage. It can be
noted that with τ = 1, the LAPS measure is only an auto-correlation
with the current state of the agent, and does not really take into ac-
count the past. The value τ = 2 is then the lowest possible value
taking into account past interactions, taking the lowest amount of
memory (compared to higher values of the time scale), and is cred-
ible for humans. The actual memory usage associated to the LAPS
measure would be ≈ 2τM, as values for both meanings and words
are memorized. The optimal values for LAPSmax and Coherence
being respectively 2 and log2(N) + 1, we can express the total mem-
ory usage associated to those strategies, including the final lexicon:
5M for LAPSmax, M · (2 log2(N) + 3). The optimal value for LAPS-
max may be underevaluated, and would need to also grow with N.
However for N ≤ 10M, it is still enough. For both strategies, the
dependence on N and M for the optimal τ could still be studied
further, but the given values are more than suitable for our range of
parameters.

Both strategies are cognitively plausible, and converge faster than
any other strategy seen so far, with a slight advantage for Coherence.
This small difference is probably due to the fact that the blackbox
algorithm used for LAPSmax introduces a delay through the evalu-
ation of the weights associated to each meaning. While LAPSmax
is more efficient memory-wise, Coherence is easier to compute. De-
pending on the context, one or the other could be more adapted to
solve the problem from an algorithmical point of view.

If both strategies are robust against constraining to low val-
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ues of W (and therefore introducing the necessity of regularizing
homonymy), the slight differences observed (see figure 4.8) reveal an
interesting separation in three distinct phases of the dynamics of the
agreement process: inventions, propagation, and final discarding of
competing associations. This mirrors the three phases of the dynam-
ics of adoption of novel variants described in Fagyal et al., 2010: Innova-
tion, Propagation/Selection, and Fixation. If the first two phases are
well optimized for both strategies, the Fixation phase seems to slow
down the whole process. The same remark applies for the strategies
from the previous chapter, as seen in figure 4.1.

Interestingly, the Fixation phase does not suffer from this draw-
back when using the Hearer’s Choice scenario. But this scenario,
in this case, sees an unevitable burst of complexity, although smaller
than with Random Topic Choice. This is due to the fact that exploiting
as hearer can still result in an invention being made by the speaker.
Hearer’s Choice can therefore not be considered as a serious option.

Coherence and LAPSmax seem to have great properties, but
would it still be possible to find even better performing strategies?
What is the limit? The next chapter will introduce a theoretical anal-
ysis to try to answer this question.
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We have seen in paragraph 2.2 that in the standard Naming Game,
agents typically go through a phase of high complexity, in terms of
numerous synonyms or homonyms to remember. Only after reach-
ing a peak do many of them start to be discarded and the agents
eventually agree on a functional lexicon. In this chapter, we will first
explicit analytical expressions of the characteristics of this peak, and
link it to the number of inventions. We will then determine a lower
bound to the number of inventions, and use this as a lower bound
to convergence time when using active topic choice. Finally, we will
use this lower bound to design performance measures and use them
to compare the algorithms proposed in the previous chapters.



5.1 The memory peak

There are two complexity peaks in the typical evolution of the Nam-
ing Game: a global complexity peak, reached just after the last in-
vention of a convention (see figure 5.2), and a local complexity peak,
when all inventions have spread to the population (see figure 5.1).
Complexity measures were defined in paragraph 2.2, and refer to the
number of associations present in the lexicon of individual agents for
the local complexity, and the number of associations present in the
lexicon of at least one agent for global complexity. For the demon-
strations presented in this section, we will consider M = 1 and
W = ∞, unless specified.
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Figure 5.1: Typical evolution of local
complexity. M = 1, N = 1000, aver-
aged over 8 trials.
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Figure 5.2: Typical evolution of the
number of conventions present in the
population, or global complexity Nd.
M = 1, N = 1000, averaged over 8 tri-
als.

5.1.1 Global Peak

The global peak is reached when all agents have at least one word
for each meaning. In other words, that every agent has interacted at
least once about every meaning, either as speaker or as hearer. In-
ventions happen when those first interactions are done as speaker.
Because when using random topic choice there is a 1

2 chance to be a
speaker during this interaction, there is in total an expected value of
N·M

2 inventions, which is by definition the maximum reached at the
peak of global complexity. The time needed to reach the peak is sim-
ply the time needed for every agent to talk at least once about every
meaning. Let’s consider the case M = 1. If we denote as ut the ex-
pected number of agents having interacted at time t, and considering
the probabilities that speaker and/or hearer of the next interactions
have never interacted before1, we have the following relation:

1 To avoid quadratic terms, we do not
take into account the fact that hearer is
chosen dependently of speaker, i.e. that
it cannot be the speaker.

ut+1 = ut + 2 ·
(

N − ut

N

)
(5.1)

Noting that u0 = 0, we can find the solution:

ut = N ·
(

1−
(

N − 2
N

)t
)

(5.2)

The estimated time of the peak tGP corresponds to the first value
satisfying N − ut ≤ 1, i.e. tGP = ln(N)

ln(N)−ln(N−2) . When N � 1,

ln(N)− ln(N − 2) ≈ 2
N and the expression becomes:

tGP ≈
N · ln(N)

2
(5.3)

5.1.2 Local Peak

The local peak is reached when conventions have spread through
the whole population, and agents start to discard some of them. It
was shown in Baronchelli, 2006 that the time to reach it follows a
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powerlaw of exponent 3
2 , and the maximum value a powerlaw of ex-

ponent 1
2 . By a novel approach, we will retrieve these results as well

as find the proportionality constants associated to the powerlaws.
Let’s consider the spreading process of a word w, and the number

of agents having encountered it at least once ut. Each time the word
is used, ut increases by 1 if the hearer is one of the N− ut agents who
did not see it before. In the first phase of the Naming Game, we can
assume that all conventions spread at a similar pace, and therefore
all conventions (or words when M = 1) are used with an equivalent
probability 1

Ninv
. As we have seen in the previous paragraph, Ninv =

N·M
2 . With M = 1, that gives:

ut+1 = ut +
1

Ninv

(
N − ut

N

)
= ut + 2

N − ut

N2 (5.4)

With solution:

ut = N ·
(

1−
(

1− 2
N2

)t
)

(5.5)

Let us now consider the evolution of Nl(t), the local complexity,
depending on the probability of success p(S) and the probability that
the hearer does not have the convention in its lexicon already:

Nl(t + 1) = Nl(t) + (1− p(S))− p(S) · (Nl(t)− 1) (5.6)

We can note that when deletions are still rare (i.e. in the first phase
of complexity growth) Nl(t) =

Ninv ·ut
N = ut

2 and also p(S) = ut
N . Using

this and the previous equation, we get:

∆Nl(t) =
N − ut

N
− ut

N

(ut

2
− 1
)
≈ N − ut

N
− u2

t
2N

(5.7)

The peak is reached when ∆Nl(tmax) = 0, which translates to
utmax =

√
2N + 1− 1 ≈

√
2N and finally, using equation 5.5:

tmax =

ln
(

1−
√

2
N

)
ln(N2 − 2)− ln(N2)

≈ 1√
2

N
3
2 (5.8)

As for the value of the peak, we have it from utmax :

Nmax
l =

utmax

2
≈ 1√

2
N

1
2 (5.9)

5.1.3 Link with number of inventions

If we repeat all the preceding without replacing Ninv, we get:

tmax ≈ N
√

Ninv (5.10)

Nmax
l ≈ N

2
√

Ninv
(5.11)

Seeing this, an intuitive idea to reduce the pick height and the cor-
responding time is to influence the value of Ninv. Luckily, it is exactly



what is happening when using active topic choice: by exploring less,
agents create less conventions, and Ninv gets smaller; though we will
not be able to use the two equations above. In fact, we derived them
from the usual dynamics of the Naming Game with random topic
choice, and therefore they do not stand anymore. In the next section,
we will adopt a new approach centered on Ninv to get information
about tconv.

5.2 A statistical lower bound to convergence

With active topic choice, agents restrain from inventing new conven-
tions and stick to already existing ones (i.e. exploit, in the terms
of chapter 3), in an extent depending on their strategy. In an ideal
but highly improbable case, there would be only one invented con-
vention per meaning. In other words, there are exactly M inventions
happening during the corresponding simulation, one per each mean-
ing.

After a short summary of what is known about the convergence
time in the classical situation, with random topic choice, we will
study the mentioned optimal case, which will give us a lower bound
of the convergence time. Then, we will estimate the actual number of
inventions and derive a new lower bound taking all this into account.

An important remark: the lower bounds have to be interpreted in
a statistical way. For example, there is always a possibility that the
system converges in really few steps (≈ NM) if the agents involved
in each interaction happen to be picked in a specific order; but this
situation is extremely unlikely. The lower bounds considered here
are lower bounds to the statistical mean, not to the convergence time
of a specific instance of the Naming Game.

5.2.1 Convergence Time with Random Topic Choice

The convergence time tconv has been introduced in chapter 2. We call
tRTC(N) the convergence time for a population of N agents talking
about a single meaning. Its dependence on size of the population
N was extensively studied in Baronchelli, 2006. It is a powerlaw of
parameter 3

2 , as tmax. In fact, we have necessarily tconv ≥ tmax, hence
the exponent of the powerlaw cannot be less than 3

2 . However, there
are some log-periodic oscillations, modifying consequently the per-
ceived exponent of the powerlaw if the span of values for N is not big
enough, especially in the range 102 ≤ N ≤ 105. A relatively accurate
fit of the data, found in Baronchelli, 2006, gives us the formula:

tRTC(N) ≈ (2.3 + sin (1 + 0.4 ln(N))) · N
3
2 (5.12)

In the following paragraphs, we will use the values of tRTC(N).
In practice, those are recomputed for small values (N ≤ 100, average
over 20 iterations), and the formula used for values N > 100. Con-
cerning the precision of the fitted constants, they will not interfere at
all in this work, as we will not study N > 100M.
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5.2.2 Convergence time with single invention per meaning

We will here consider the case where there is only a single invention
per meaning. We will focus on the dynamics of only one meaning m,
and redefine the time t as the number of interactions having involved
m only. Let ut be the number of agents having adopted or been ex-
posed to the meaning m. They all use the same word w, as there has
been only one invented convention with meaning m. Under our as-
sumptions, new interactions involving m have necessarily as speaker
an agent among the ut ones having been exposed to the convention.
Increase of ut will only happen if the hearer is not among them:

ut+1 = ut +
N − ut

N
(5.13)

We set u0 = 0. A more exact solution would be to consider u1 = 2
as an inital condition, as the first interaction spreads the convention
to both hearer and speaker, then only to hearer. However, for the
sake of simplicity, and because the approximation can be done (we
generally have the required conditions N � 1 and tconv � 1), we
will consider u0 = 0 as initial condition. This gives us the solution:

ut = N

(
1−

(
N − 1

N

)t
)

(5.14)

Convergence for the meaning m can be defined as the first moment
t1 when the conventions has spread to all agents, i.e. when ut1 >

N − 1 2. This translates as: 2 N itself cannot be reached, as it is
an asymptotical value. Anyhow, for
ut > N − 1, considering ut as contin-
uous does not make sense anymore.t1 =

ln(N)

ln(N)− ln(N − 1)
≈ N · ln(N) (5.15)

If this situation extends to all meanings – which is definitely a best
case scenario – the global convergence time will be:

tconv ≈ MN ln(N) (5.16)

We can get the same result via reasoning similarly to the Coupon
Collector’s problem (Blom, Holst, and Sandell, 1994), formalizing the
number of samples necessary to see at least once every item from a
set sampled uniformly.

5.2.3 Backpropagation of the information

We have seen in the previous paragraph how information can spread
from one agent to the whole population. The reverse question, but
quite analog, is the following: how is information about the whole
population gathered by an agent? After how many interactions does
an agent know that its state has been influenced (potentially indi-
rectly) by most agents in the population?

Let us consider an agent A and note ut the number of agents that
A has had information about after t interactions. After 1 interaction,
obviously A has information only about its interlocutor and itself.
u1 = 2 After the second interaction however, it gathers information



from the new interlocutor, which was influenced by its own previous
interlocutor. In other words, u2 = u1 + 2 = 4; and ut = 2t.3 3 One could say that interactions could

happen with agents that are already in
the set: however, before ut ≈ N, the
probability of this happening stays low
enough; and the relevant factor here is
the order of magnitude to reach a sig-
nificative sample of the population, not
the whole population.

The average time needed, in number of interactions were A is
involved, to gather relevant information about the population is :

tgather = dlog2(N)e (5.17)

The sliding window of past interactions considered for the Coher-
ence strategy in chapter 4.3.3 is using this value, adding 1 to poten-
tially trigger success of the interaction.

5.2.4 Statistical lower bound to the number of inventions

Of course, it is highly improbable to be in the situation described
above. The natural intuition is that at least one meaning should be
involved in more than one invention. Let us first consider a situation
with full-exploitation, i.e. exploration only when an agent’s lexicon
is empty. Because every agent has an equal chance to be speaker
or hearer for its first interaction, there are in total N

2 inventions. The
number of meanings corresponding to these inventions naturally sat-
isfies Minv ≤ N

2 . If we note ui the number of meanings that have been
involved in at least one of the first i inventions, we have:

ui+1 = ui +
M− ui

M
(5.18)

And therefore, with u0 = 0:

ui = M ·
(

1−
(

M− 1
M

)i
)

(5.19)

Which gives us:

Minv = f (N, M) = u N
2
= M ·

(
1−

(
M− 1

M

) N
2
)

(5.20)

We can conclude at this point that N
2 −Minv inventions were done

with meanings that had already been involved in a previous inven-
tion. After converging on all those meanings, agents will move to
the remaining ones. With the assumption that this switching behav-
ior happens at the right moment, we are faced with the exact same
problem, only with a reduced number of meanings M1 = M−Minv.
They will engage in the same process of inventing conventions
for a part Minv

1 of the remaining meanings, and start again with
M2 = M1 − f (N, M1). The progression in the space of meanings
is done by chunks of meanings, of decreasing size, until all mean-
ings have been involved. The size of the set of unexplored meanings
obeys the following law, with initial condition M0 = M:

Mi+1 = Mi − f (N, Mi) = Mi ·
((

Mi − 1
Mi

) N
2
)

(5.21)
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The number of chunks nch corresponds to the first index satisfying
Mnch < 1. Having the number of chunks nch, we can derive the total
number of inventions Ninv = nch · N

2 .
A few values are presented in table 5.1. These values, and more

importantly their corresponding set (Mi)0≤i≤nch
were used in chapter

3.2.4, for the Chunks Decision Vector strategy.

N M
⌊

2·M
N

⌋
+ 1 nch

20 100 11 11
200 1000 11 12

2000 10000 11 12
50 100 5 5

500 1000 5 5
5000 10000 5 6
100 100 3 3

1000 1000 3 3
10000 10000 3 3

200 100 2 2
2000 1000 2 2
20000 10000 2 2

500 100 1 1
5000 1000 1 1
50000 10000 1 1
1000 100 1 1
10000 1000 1 1

Table 5.1: A few values of the num-
ber nch of chunks of invented mean-
ings. Values were computed by iterat-
ing equation 5.21 and with the stopping
condition Mi < 1.

If N � M : nch = 1 and Ninv = N
2

If N � M : nch ≈ 2·M
N and Ninv ≈ M

If N ≈ M : nch ≈
⌊

2·M
N

⌋
+ 1 and Ninv ≈ M + N

2 .

We will in all cases consider Ninv ≈ M + N
2 .

5.2.5 Statistical lower bound to convergence time

During a Naming Game, the dynamics of individual meanings m fall
under two categories: they are either topic of a single invention of
a convention, or several. In the first case, the minimum number of
required interactions per meaning was calculated in paragraph 5.2.2,
and its value is t1(N) ≈ N ln(N). In the second case, the dynamics
are in a first phase similar to the Naming Game with M = 1, but with
Ninv(m) agents only; those who have invented a convention related
to meaning m, converging in a time tRTC(2 · Ninv(m)). Both speaker
and hearer are concerned in the same way at the time of invention,
hence the factor 2. Interactions with other agents that might happen
already during this process are counted as part of the second phase:
spreading the winning convention to the rest of the population.

Again, the optimal dynamics of spreading can be described by the
relation 5.13; the only parameter changing is the initial condition u0.



If N ≈ M or N � M, there is on average only a single invention per
meaning, which leads to a similar u0 = 1. The maximum average
number of inventions per meaning is obtained when N � M, and is
equal to N

M . u0 = N
M gives us:

ut = N

(
1−

(
M− 1

M

)
·
(

N − 1
N

)t
)

(5.22)

With M � 1 and N � 1 the solution verifies t1 ≈ N ·(
ln(N)− 1

M

)
≈ N · ln(N).

We can eventually write the corresponding expression for a lower
bound of the convergence time tconv, as the optimal time topt, us-
ing the approximations of the previous paragraph and the relation
Ninv(m) ≈ Ninv

M :

topt(M, N) = M ·
(

N · ln(N) + tRTC

(
2 +

N
M

))
(5.23)

Of course, there can be more than 2 + N
M inventions for a given

meaning m, the relation above is just a mean field approximation.
However, if for m there are more than average inventions, its con-
tribution will be more than average, because of the exponent 3

2 > 1
of the corresponding powerlaw. To illustrate this, let us take the ex-
ample where all the Ninv inventions concern only one meaning, the
second term of topt will then be equal to:

tRTC(Ninv) ∝ N
3
2

inv > M · tRTC

(
Ninv
M

)
∝

N
3
2

inv√
M

(5.24)

The mean field approximation leads to a lower bound of the value
corresponding to the real scenario, and is therefore acceptable in our
case.

5.3 Performance measures

How close to optimal behavior are our topic choice strategies? We
will here define a few performance measures based on the lower
bounds expressed in the previous parts of this chapter, to classify
them and be able to compare them directly across different values of
M and N. Each performance measure will be in the range [0 ; 1], 1
being the optimal value.

5.3.1 Convergence time

The ratio of convergence times (inverse to keep the value in [0 ; 1])
reflects how close to optimal convergence time topt the observed con-
vergence time tconv is.

PCT =
topt(N, M)

tconv
=

M ·
(

N · ln(N) + tRTC

(
2 + N

M

))
tconv

(5.25)
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Figure 5.3: Performance measure for
convergence time, for several strategies.
M = 100, W = ∞, averaged over 8 tri-
als.

We can see on figure 5.3 that Success Threshold has the best per-
formance for the lowest values of N, but quickly drops as N ap-
proaches 2M. On the contrary, Coherence and LAPSmax are stable
or increasing with higher values of N, and Coherence even reaches
0.5. As topt is a lower bound, nothing ensures that values close to 1.
can actually be reached. The play smart word choice policy starts to
influence the Random Topic Choice only when N ≥ 2M.

5.3.2 Convergence speed

We call speed the increase over time of the theoretical communicative
success S(t). In the optimal case, the maximum value 1 is reached in
topt interactions. The performance value below reflects how close to
optimal speed the observed dynamics are, by comparing the values
of S(topt) in the optimal case and in the observed case.

PCS =
S
(
topt(N, M)

)
Sopt

(
topt(N, M)

) = S
(
topt(N, M)

)
(5.26)
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Figure 5.4: Performance measure for
convergence speed, for several strate-
gies. M = 100, W = ∞, averaged over 8

trials.

We can see on figure 5.4 that Success Threshold, although not con-
verging within a reasonable time4 for N ≥ 2M, still quickly reaches 4 Less than 107 interactions.

high values for S(t). This suggests that the system may have slower



dynamics in level 2.b of the ATC description found in 3.1.3. LAPS-
max strategy has a high performance, but drops for high values of
N. Coherence on the contrary dominates and seem to asymptotically
reach 1. Both versions of RTC have similar behavior.

5.3.3 Exploration

Exploration can be characterized by the number of inventions. A nat-
ural performance measure is thus the ratio of inventions of optimal
case and observed case (inverse to keep the value in [0 ; 1])

PEX =
Nopt

inv (N, M)

Ninv
=

M + N
2

Ninv
(5.27)
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Figure 5.5: Performance measure for
exploration, for several strategies. M =
100, W = ∞, averaged over 8 trials.

We can see on figure 5.5 that the behavior of all active strategies is
similar and slowly decreasing for N ≤ 2M, then LAPSmax is stable,
and Coherence increases again. All perform significantly better than
RTC strategies.

5.3.4 Spreading

We have distinguished exploration and convergence performances,
but what if a stragey optimizes the spreading process, but not the
exploration phase? By applying the same principles as for the op-
timal case, we can determine an optimal convergence time given a
number Ninv of inventions:

tinv
opt(M, N, Ninv) = M ·

(
N · ln(N) + tRTC

(
Ninv
M

))
(5.28)

And derive from that the spreading time performance:

PST =
tinv
opt(N, M, Ninv)

tconv
=

M ·
(

N · ln(N) + tRTC

(
Ninv
M

))
tconv

(5.29)

We can see on figure 5.6 that the active strategies have a simi-
lar shape than for the convergence time performance measure: in
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Figure 5.6: Performance measure for
spreading, for several strategies. M =
100, W = ∞, averaged over 8 trials.

fact, with Ninv close to minimum, those two measures are almost
the same. The two RTC strategies have high values, because their
corresponding Ninv is high, and their convergence time tRTC(M, N)

gets close to M · tRTC(
Ninv
M ). Play smart even goes above 1: The lower

bound was calculated with the assumption of random word choice,
the values for tRTC(N) used in the formula of the performance mea-
sure should consider this as well. This would constitute a direction
for a future development.

5.3.5 Spreading speed

Again, as for PCS the speed can be compared to the optimal case with
the relation:

PSS = S
(

tinv
opt(N, M, Ninv)

)
(5.30)
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Figure 5.7: Performance measure for
spreading speed, for several strategies.
M = 100, W = ∞, averaged over 8 tri-
als.

We can see on figure 5.7 results related to the previous measure:
performance is similar to the convergence speed measure for active
strategies, and RTC strategies are close to or reach optimal value 1.



5.3.6 Lexicon size

Last but not least, we can define a measure comparing the maximum
average lexicon size to its minimal value M:

PLS =
M

Nmax
l

(5.31)

Typically for efficient strategies, this value reaches 1. We can see
on figure 5.8 that it is the case for active strategies, only LAPSmax
starts to drop for N ≥ 2M.
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Figure 5.8: Performance measure for
lexicon size, for several strategies. M =
100, W = ∞, averaged over 8 trials.

5.4 Discussion

We defined six criterias to classify ATC strategies, based on the esti-
mation of a statistical lower bound for the convergence time.

The first performance measure, which is the one characterizing
convergence time, relies directly on the statistical lower bound, and
we do not know if this boundary is in fact reachable. However, we
showed that at least the order of magnitude is right, as half of the
value (performance 0.5) seems to be the asymptotical limit for one
of the strategies (Coherence). Interestingly, this corresponds to a
convergence time per meaning in 2 · N · ln(N), which is the time to
propagate one specific word to the whole population with Random
Topic Choice5. 5 A proof can be found in De Vylder,

2007.We showed that Coherence is systematically best scoring for all
the performance measures (if considered over all values of N), and
has stable or increasing scores (with respect to N). It even stays at
the maximum for PLS, meaning that lowest possible memory usage
(for the lexicon) is achieved. LAPSmax on the contrary starts to show
a small decrease in performance around N = 2M. This is probably
due to the choice τ = 2, which should maybe start being higher
for these values of N. This would allow to take into account more
information from the past, which may be necessary as N increases.

We have discussed in the previous chapter the limit N = 2M cor-
responding to a change in behavior, this can be seen directly on the
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performance measures for some of the strategies. This change in be-
havior also result in the apparition of the second term (equal to 0

before) in the expression of topt
conv.

This second term is still neglectable, within the parameter ranges
that we chose6. It would be interesting to further the study to higher 6 For example for N = 1000, we should

have M ≈ 5 to have a symetric contri-
bution from both terms. With M = 100,
the contribution of the second term is
≈ 10%

ratios of N
M to study its impact. We could lower the value of M, but

for low values of M (≈ 10), it may be difficult to distinguish statistical
effects of low values with the impact of the second term. Simulations
should be done for greater values of N (above 106), which would
require more computational resources than what we are currently
using, or to further optimize the code.

We saw that the Random Topic Choice performs quite bad com-
pared to other strategies, excepted for spreading and spreading
speed: in fact, given a high number of inventions, the optimal behav-
ior gets closer to RTC. In other words Random Topic Choice spreads
conventions more efficiently, but because of the presence of too many
conflicts fails to get good scores for the other measures. The differ-
ence between the two word choice policies for RTC is only slightly
noticeable for most measures: this is because they only start to quan-
titatively differ when N ≥ 104 (Baronchelli, Dall’Asta, et al., 2005).
As for the spreading measure reaching values above 1 for Play smart,
as explained in the main text this is due to the usage of convergence
time associated to normal RTC. To retrieve 1 as upper boundary, one
should consider a normalization by convergence times for Play smart
associated to M = 1.
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6.1 Introduction

Do real people control the complexity of their interactions, espe-
cially in the context of lexicon emergence?

A famous physicist joke1 involves finding a solution to the dis- 1 See Winckler, 2009 for a detailed re-
view of scientific humor.eased cows of a farmer. A physicist studies the problem and gives

a solution working for a billion spherical cows in vacuum. The prob-
lem might be really interesting and the solutions found extremely
elegant, they can still be far from being useful to the initial question.

Since the root of our problematic lies in reality, it is important to
come back to it and assess the viability of the theoretical findings, as-
suring that the simplifying assumptions that were made and ranges
of parameters that were studied are not approximated cows.

Experimental semiotics
2 is a way to do so, while studying the 2 See paragraph 1.3.2 for an introduc-

tion.emergence and evolution of social consensus in real humans. We



designed an experiment in this sense, inspired mainly by the work
of Centola and Baronchelli, 2015 on the Naming Game. The idea is to
have participants take the role of an agent within our model, and see
whether they exhibit a pattern in their topic choice policies which
would be different from random topic choice. From the start we
considered recruiting participants online, either on crowdsourcing
platforms or by making the experiment attractive, in the form of a
game.

The experiment went through several phases of development:
A first version was developed in 2017 for a presentation to the
Kreyon Conference in Rome3, where the public could try the ex- 3 Conference on Innovation and Cre-

ativity, see kreyon.netperiment among several others. It was extended as a project of the
Hack’1Cerveau hackathon in the Cap Sciences fablab of Bordeaux,
to include the possibility of a multiplayer game4. The final version 4 The other versions being one real hu-

man interacting with simulated agentswas brought up with the help of Sandy Manolios, as subject of her
master’s thesis.

In this chapter, we will detail the experiment that we designed,
and show that first results clearly indicate that people tend to limit
the number of inventions during the game. Software aspects5 are to 5 Available as easily usable open source

code on github: wschuell/ng_userxp.be found as appendix at the end of this manuscript A.

6.2 Design of the experiment

6.2.1 Constraints

Our goal is to check whether humans do use mechanisms as active
topic choice to control complexity growth during the negotiation of
new conventions. We can do this by replacing agents from our model
by real participants and record their behavior. We can then analyze
the behavioral trace using relevant measures (detailed in paragraph
6.3.1) and compare the results to the theoretical trace of a passive
behavior (i.e. random topic choice).

Compared to theoretical/simulated work, conducting a user ex-
periment is subject to a certain number of new constraints:

1. The experience should not be frustrating for participants, on the
contrary they should be motivated to complete the task.

2. It should not take too long for someone to take the experiment:
strictly less than 20 minutes, ideally less than 5 minutes.

3. Participants should understand easily the context of the experi-
ment and what they are asked to do.

4. The data produced by a reasonable number of participants should
allow to draw conclusions.

5. The experiment should be conducted with a reasonable number
of participants.

http://kreyon.net
https://mindlabdx.github.io/hack1cerveau/
https://github.com/wschuell/ng_userxp
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6.2.2 Recruiting participants

In many semiotic experiments (Centola and Baronchelli, 2015; Ra-
viv, Meyer, and Lev-Ari, 2019; Verhoef, Kirby, and De Boer, 2014;
Vollmer et al., 2014), participants are invited to physically come to
the laboratory and perform a specific task. Conducting such an ex-
periment needs a lot of time, and even space in the lab if participants
are required to come by groups. Because of that, the number of par-
ticipants stays low. Attempts to scale up the number of participants,
e.g. by organizing a big event concentrating the participations, may
as well fail as participants will not feel as committed to attend as in
a small setting.

An alternative is to recruit participants online: they do not have to
physically come to the laboratory,many participants can do the task
at the same time and the experimenter’s presence is not required.
The experiment becomes easily scalable. Several crowdsourcing plat-
forms are available to recruit a large number of participants:

Amazon Mechanical Turk: 6 This platform is the most famous, and 6 The name comes from a tale where a
man hidden in a machine was playing
chess, giving the illusion that people
were playing with a robot.

allows to recruit people to perform online tasks. Its original goal
is to deal with work that cannot be done by computers, but has
to be scaled and performed by many people. The platform offers
the possibility to ask for this type of work to be done as it would
be to a computer: participants are automatically recruited and
results collected. Participants are recruited world-wide, and are
remunerated.

Foulefactory: A french equivalent to the Mechanical Turk.

Prolific.ac: This platform was built by and for academics, as an al-
ternative to the Mechanical Turk. Remuneration is controlled to
be ethical considering european standards.

CrowdCurio: A platform collecting online research experiments.
Participants are volunteers, and their recruitment is more based
on interest and willingness to contribute to science. Focus on the
domain of curiosity.

XTribe: Similar to CrowCurio. Focus on the domain of creativity
and innovation.

Platforms usually rely on the experimenter putting up your exper-
iment on a website, and provide participants with the link. Partici-
pants can be screened to fit certain criterias. The platformhas to be
notified when a participant finishes their task. Of course, in this con-
figuration, promotion and recruitment of volunteers through social
media can be done in parallel.

To recruit participants without remuneration, or to keep them mo-
tivated, experiments can be presented as games (Morin, Winters, T. F.
Müller, et al., 2018), which also has the advantage of potentially
reaching a great number of participants without needing propor-
tional funding. This is for example the strategy chosen by the Color
Game (Morin, Winters, T. Müller, et al., 2018), where participants are
players of an online app involving a communication task.



In our case, we designed the experiment in the form of a game,
each run of the game being an instance of the Naming Game. We
collected data first at a conference open to the public (Kreyon Con-
ference in Rome, 2017), and later through advertising on social media
with a second version of the interface. Each dataset has around 80

individual games. Participants may have done more than one game,
but usually not more than three. To scale up and check consistency
on a larger sample of participants, a third set of data will be crowd-
sourced through prolific.ac.

6.2.3 Interactions

Compared to Iterated Learning, communication games like the Nam-
ing Game involve several interacting agents at the same time. Iter-
ated Learning tasks can be crowdsourced easily, as individual tasks
do not require to wait for another participant’s action. Waiting for
the others to finish their respective task can result in a high dropout
of participants. If some suggested that people could be provided
with entertaining unrelated content while waiting (e.g. cat videos),
this solution would still not be robust for the number of participants
required by the Naming Game (at least 4 or 5). Solutions that do
not require participants to stay connected include asking them to re-
connect within 24 hours (Schaekermann et al., 2018); or separating
the production and understanding parts of the communication game
and making them available to all players7 (Morin, Winters, T. Müller, 7 In practice, a connected player can ei-

ther produce a set of signals to be in-
terpreted later, or pick the sets of sig-
nals that have been produced earlier by
other participants.

et al., 2018).
In our case, the first solution is not feasible: one experiment

should include at least a dozen data points per participant, which
would result in a two weeks-long experiment, provided all partic-
ipants do reconnect everyday, and in an adapted order. The sec-
ond solution has another drawback: participants are not picked ran-
domly but proportionally to their presence online. We relied instead
on another solution: simulating the other agents. Each participant
has the impression of interacting with other people, but without la-
tency. Of course, the global properties of the game depend on the
behavior of all agents, and the overall dynamics will only slightly be
modified by the participant’s behavior; but as our work focuses on
the local behavior of the participants, this does not matter.

Interactions should be short (a few seconds) and not too numerous
(around 20 maximum).

6.2.4 Structure of the experiment

The experiment is organized in a succession of screens, presenting
different information to the participant, and letting them interact via
buttons. For a detailed view of the organigram of the screens and
their transitions, see figure 6.1. The different screens are:

Home: When connecting to the website, the participant lands on
this screen. It presents basic information: language (possibility to
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change), identifying charachter for the participant, a logout but-
ton, and a button to start the game, which leads to the Information
screen.

Information: More detailed information about the context: back-
story, notion of interaction, roles (speaker, hearer, or waiting), no-
tion of feedback (success or failure). A button to start the game,
leading to one of the three interaction screens: Speaker, Hearer or
Waiting.

Speaker: The participant has the role of the speaker for this interac-
tion. This screen informs the participant of their role, and offers
a first choice between the M meanings, presented as pictures. Af-
ter this choice, the W words are displayed and the participant can
pick one, and eventually send this information by clicking on a
button, leading to the Feedback screen.

Hearer: The participant has the role of the hearer for this interaction.
This screen informs the participant of their role, and of the word
that was chosen by the speaker. The M meanings are displayed,
along with an I don’t know option: after picking one the participant
can send the information by clicking on a button, leading to the
Feedback screen.

Waiting: The participant is not involved in one or several interac-
tions (if more than one consecutively, this nulmber is indicated).
A button is available to proceed to the next interaction, and will
lead to either Speaker or Hearer. If more than Tmax = 50 interac-
tions have been done, this same button leads to Result.

Feedback: After Speaker or Hearer screens, the participant is in-
formed of the outcome of the interaction: failure or success of
communication. In both cases the meaning initially selected by
the speaker and the meaning understood by the hearer (poten-
tially I don’t know) are presented. A button is available to proceed
to the next interaction: Speaker, Hearer or Waiting. If more than 50

interactions have been done, this same button leads to Result.

Result: This screen ends the current game and shows a final feed-
back about the level of agreement of the whole population, in the
form of a score proportional to S(Tmax). A button leads back to
Home.

The exact instructions given to the participant can be seen in figure
6.4 for the first version, and in the appendix for the second version.

6.2.5 Setting parameters

To include the participant in a Naming Game, we need to define
its parameters: population size N, number of words W, number of
meanings M, maximum number of interactions Tmax, and the behav-
ior of the other agents.

Population size should not be too high, or the number of interac-
tions to reach at least one success would be too high. It also should
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Figure 6.1: Structure of the user ex-
periment: the different screens are
represented by black rectangles, and
the transitions between them by ar-
rows. The participant arrives on a Home
screen, showing some information and
a button to start playing, leading to
an Information screen, explaning a few
details concerning the context of the
game. The rest of the game is a loop:
for some interactions the user is not in-
volved, indicated on a screen Waiting;
for the others they are either Speaker or
Hearer. As a speaker, the participant
chooses a meaning and a word. As a
hearer, a word is provided, and the par-
ticipant picks a corresponding mean-
ing. After the respective choices, both
screens lead to a Feedback screen telling
them the result of the interaction: Fail-
ure or Success. If a count of Tmax = 50
interactions has been reached, the game
stops and a Results screen shows the fi-
nal score (level of agreement, total and
per meaning). If the count has not been
reached, a new interaction starts and
the next screen is again one of the three
possible roles: Speaker, Hearer or Wait-
ing.



Human Behavior 99

not be too low, otherwise global agreement would be reached in only
a few interactions and having a strategy would not matter. We chose
the value N = 5.

The number of meanings should not be too high, otherwise par-
ticipants may not differentiate them easily, let alone remembering
the information associated to each meaning. It should also not be
too low, as we focus on exploration of new meanings. We chose the
value M = 5.

The number of words should be at least equal to M. A value a bit
higher than M adds a degree of freedom: with W = M, homonymy
would be necessarily associated to synonymy. A high value would
have the same drawbacks as for M: confusion between words, and
not remembering well associations with meanings. We chose the
value W = 6.

The number of played interactions should not exceed 20, but a
reasonable level of agreement should still be reachable (above 60%
on average). The number of interactions per player (as either a hearer
or speaker) is 2Tmax

N
8. With the population size N = 5, this gives us 8 Each interaction involves two agents:

speaker and hearer.Tmax = 50. The dynamics of such a configuration can be seen on
figure 6.2.5.

Other agents (simulated) follow a Random Topic Choice policy,
and only regularize synonyms, not homonyms. This last modifica-
tion was used to slow down the process and avoid reaching consen-
sus too quickly.
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Figure 6.2: Communicative Success for
Random Topic Choice with the param-
eters chosen for the experiment: only
regularizing synonyms, M = 5, W = 6,
N = 5, Tmax = 50, averaged over 100

trials.

6.2.6 First version: Kreyon Conference

The first version of the game was developped for the Kreyon Con-
ference in Rome, which was open to the public on the two last days.
This conference hosted a few other experiments, freely accessible to
the public on computers set up for the occasion (see figure 6.2.6).
Elisabetta Falivene helped to design the HTML skeleton of the ap-
plication and Théo Segonds helped to deploy the application online.
They both provided really useful advice and knowledge.

Figure 6.3: Experiment at the kreyon
Conference in Rome: computers run-
ning several types of experiments were
freely accessible to the public.

Meanings were represented as picture of common objects (a
flower, a hat, water, fruits and bread), and words were randomly
generated as a sequence of three syllables, each being composed of
one consonant and one vowel. It was not possible for participants
to write their own words, as they maybe would stick to it, or think
that other agents in the game would also be people and understand
english words. The information that has to be presented and under-
stood by the participant include:

1. There are several agents interacting

2. They all start, as the participant, with empty lexicons

3. There is no preexisting language

4. A learning phase is necessary before reaching success

5. The choices of the participant can influence the global dynamics



6. The participant can have varying roles depending on the interac-
tion (speaker, hearer, not involved)

7. Information collected at past interactions is relevant for next
choices.

An illustrated example of an interaction was shown to participants
(see figure 6.4 and appendix for a complete set of all screens), and a
tutorial (or basic) version of the game was suggested to participants,
in order to learn by playing. This version has lower values for a few
parameters: N = 3, M = 2 and Tmax = 10 to allow fast convergence
and quick positive feedback.

Figure 6.4: Interface of the first ver-
sion. Upper image: Information screen.
Lower image: Speaker screen. See ap-
pendix for a complete set of all screens
from both versions of the experiment.

A certain number of elements were implemented to add attractiv-
ity and clarity to the experiment:

Identification of the participant’s character: The participant was
represented as a green little character, all other agents being blue.
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Login: Possibility to be identified as a pseudonym and reconnect
later. Along with the previous element, it is part of a gamification
process, where attractivity of the game is increased by indentify-
ing the player in the game.

History of past interactions: To avoid having to memorize informa-
tion from the past interactions, they are summed up in a side
column. Each past interaction is associated with the role of the
participant (speaker or hearer), the meaning and word used by
the speaker, and the feedback (failure or success).

Illustration of the interaction role: A right-side column shows a
picture with the whole population, and the participant interact-
ing or not, as a speaker or hearer.

Best scores: On the Home screen, a right side column shows the
best scores so far (only for players who connected from the same
machine).

Speaker items: The words only appear after the participant (as
speaker) chooses a meaning. This avoid presenting too much new
information on the screen, and focuses the attention of the partic-
ipant on the set of meanings.

This version yielded a lot of feedback from the users: many
dropped after a couple of interactions because they did not identify
the context of the game, and many were frustrated by the strongly
negative feedback provided by the red cross (presented when com-
munication failed). Seeing this, to make them stay focused on the
game and try to finish it, many people were told what underlies the
dynamics, sometimes even a few interactions were played for them
as a demonstration. The data collected in this way is therefore biased,
and cannot be considered as the only source for an analysis.

We collected 71 distinct completed games. During the processing
of the data, participants were not identified. Each participant may
have completed several games. Not all participants were recruited
during the conference: as the link was accessible for almost a year,
some connected after, as well as some labmates and friends who
wanted to try it as well.

6.2.7 Second version

Given the remarks of the last paragraph of the previous section, the
experiment had to be redesigned, to avoid frustration, trigger more
motivation, and be more understandable. For this part, we received
the help of Sandy Manolios who did her master’s internship on the
topic. She helped to spot the elements that were missing for a more
efficient gamification, and implement them in the new version. At-
lal Boudir helped for graphical design and simplification of the in-
terface. Théo Segonds helped again for the deployment and load-
testing of the experiment on the servers.

Improvements in the second version include:



Figure 6.5: Interface of the second ver-
sion. Upper image: Speaker interaction
screen. Lower image: Feedback screen.
See appendix for a complete set of all
screens from both versions of the exper-
iment.
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Backstory: Providing context helps to understand the game and the
goal of the interactions. As in the experiments of Verhoef, Kirby,
and De Boer, 2014, the participant is told that they are interact-
ing with aliens. In our case, aliens composing the group are from
different planets, and need to build up a common language from
scratch to escape the spaceship they are trapped in. The few para-
graphs presenting the story also link the different concepts with
pictures: the player’s character, the other participants and their
number (as a numbered icon), and the icons associated to the dif-
ferent roles (speaker, hearer, not involved).

History of past interactions: The column of the first version repre-
sented too much visual information. The new interface provides
this information only when clicking on a clock button. Also, only
information acquired as hearer is provided, it corresponds to pas-
sive assimilation and allows us to remove one item from each past
interactions: the role, as it is in this case always hearer.

No important information on the right side: A right-side column
is almost always ignored by intuitive visual exploration.

Success and failure pictures: Not anymore a red cross and a green
check, but a happy face and a perplex face. There is still feedback,
but less frustrating.

Meanings: The picture of the first version were known objects, and
people did not understand why they had to come up with new
words when they already had a word for those object (in their
mothertongue). Unknown objects, but still recognisable, were cho-
sen instead: those used in K. Smith, A. D. Smith, and Richard A
Blythe, 2011

9. 9 The same pictures were reused in Ver-
hoef, Kirby, and De Boer, 2014. We
gratefully thank Kenny Smith for pro-
viding those images.

Locked levels: At the beginning, only the tutorial is accessible. Af-
ter finishing it, the participant can access the main game. A third
level is unlocked only after finishing the game (condition of suc-
cess: reach an agreement of 65%, happening half of the time). This
third level is only a bonus page, with few information about the
design of the experiment and the scientific background, as well
as a quick survey10 Having something unknown to unlock can be 10 Data from the survey was not ana-

lyzed: too few people actually filled it.
The crowdsourced version of the game
on prolific.ac will solve this, as it will be
a mandatory requirement to finish the
task.

efficient to keep participants motivated by the task.

Interactive bubbles: containing relevant but short information, ap-
pearing when hovering with the mouse over an item (population
icon, character icon, etc.).

Feedback was positive compared to the first version, and the game
spread quickly through social networks, even if affluence dropped
after a few days. A couple of messages (which were shared a certain
number of times) triggered almost all the data available.

We collected 85 distinct completed games, done by 47 individual
participants.



6.3 Results

6.3.1 Measures

Our aim is to determine whether the average behavior of participants
corresponds to an active topic choice, or is closer to random. To be
able to do this, we need a few measures, listed below. The input for
those measures is a sequence of interactions done by the participant,
including role (speaker or hearer), feedback (failure or success), and
the meaning and word used by the speaker. Following the stream of
interactions, we can determine whether a chosen meaning m when
the participant is a speaker was already in the participant’s lexicon or
not. If it was not, the participant has explored during this interaction,
and it is marked as an exploration event.

Scores: The obtained score (between 0 and 100), which is the value
of the communicative success S(t) at the end of the experiment.

Number of inventions: Number of inventions per experiment, done
by the participant. As we have seen in previous chapters, limiting
inventions is the key feature of active topic choice policies.

Exploration rate: The ratio of exploration events among all interac-
tions where the participant is a speaker. This value is directly
linked to the number of inventions11, and is kept low in active 11 For a given experiment, the explo-

ration rate is the ratio of the number
of inventions over the number of inter-
actions involving the participant as a
speaker in this experiment.

strategies. Considered per lexicon size 12, the M + 1 correspond-

12 i.e. counting exploration events
among all interactions where the par-
ticipant both is a speaker and knows a
given number of meanings.

ing values13 is to be compared with the Decision Vectors introduced

13 For lexicon size from 0 to M.

in paragraph 3.2.1. As the vectors are well-defined for baseline
strategies (Random Topic Choice and Exploration Biased Topic
Choice), we will study exploration rates under this form.

Success threshold: We can compute the ratio of successes and fail-
ures in the same way as for the Success Threshold strategy, for
every exploration events.

Min. Counts: Same as above, but for the absolute count of suc-
cesses, used in the Minimal Counts strategy.

LAPS: LAPS value during exploration event. We normalize this
value so it can be compared between different lexicon sizes (nor-
malization factor |M||Mk |

) and it has always a maximum of 1.

Coherence: Coherence value when exploring, as for the Coherence
strategy.

6.3.2 Description of the analysis

The measures themselves do not serve any purpose: we need to com-
pare them to their values when a known strategy (possibly Random
Topic Choice) is used. To do this, we built a small database of exper-
iments where the participant is also simulated, having a given strat-
egy. Studied strategies include: Random Topic Choice, Exploration
Biased, Success Threshold (with a threshold of 50% given the small
number of meanings and agents), Minimal Counts (with a threshold
of 1), LAPSmax (time scale τ = 2) and Coherence (time scale τ = 3).
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We did 80 simulations for each configuration, to be comparable with
the available data from both versions of the experiment.

6.3.3 Scores
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Scores Figure 6.6: Comparison of scores for
user data and several simulated strate-
gies. Data for the first version of
the experiment (DataKreyon) was not
recorded. Data: 85 experiments,
DataKreyon: 72 experiments, simula-
tions: 80 experiments for each config-
uration.

If we look at the distribution of scores on figure 6.6, there is no
significative difference between the different strategies. No conclu-
sion can be drawn from this measure. Data for the first version of
the experiment (DataKreyon) was not recorded.

6.3.4 Number of inventions and exploration rate

The number of inventions on the contrary shows a pattern that dis-
tinguishes the different strategies (see figure 6.7): we can see the
clear tendency towards less inventions of active strategies. The ex-
ploration rate per lexicon size corroborates this hypothesis (see fig-
ure6.8). Data from both versions of the game show similar results,
and have smaller values than Random Topic Choice, but still high
compared to most active strategies. They seem to agree well with
Exploration Biased strategy.

The previous result is corroborated by the exploration rates for
each lexicon size, that can be seen on figure 6.8. We can also see
on this figure that Coherence strategy explores only if the lexicon is
empty; which is inevitable.

6.3.5 Strategy parameters

If we compare the values of the criterias for deterministic strategies
(ST, MC, LAPSmax and Coherence, seen on figure 6.9), the pattern
exhibited by the data of both experiments is again different from
Random Topic Choice, and close to the distributuions associated to
Exploration Biased. One exception can be noted: the LAPS mea-
sure, where user data is closer to Random Topic Choice. For each



Da
ta

Da
taK

re
yo

n

Ra
nd

om

Ex
pl

oB
ias

ed

ST
0.

5

M
C1

LA
PS

m
ax

Co
he

re
nc

e0.0

0.5

1.0

1.5

2.0

2.5

 

Number of inventions Figure 6.7: Number of inventions for
user data and several simulated strate-
gies. Active strategies invent less than
Random Topic Choice, which is also the
case of user data for both experiments.
Data: 85 experiments, DataKreyon: 72

experiments, simulations: 80 experi-
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Exploration rate per lexicon size
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Figure 6.8: Exploration per number of
known meanings µ, data and simu-
lated strategies. Active strategies ex-
plore less than Random Topic Choice,
which is also the case of user data for
both experiments. This can be related
with Decision Vectors, described in para-
graph 3.2.1. Data: 85 experiments,
DataKreyon: 72 experiments, simula-
tions: 80 experiments for each config-
uration.
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Figure 6.9: Parameter values from dif-
ferent strategies associated to explo-
ration events for user data and several
simulated strategies: Success thresh-
old, minimal counts, normalized LAPS
measure, and Coherence measure. See
paragraph 6.3.1 for a description of the
measures. The Coherence strategy is
not represented, as no data is avail-
able (no observed exploration event).
For the strategies depending on one of
these parameters (ST, MC, LAPSmax
and Coherence), we can retrieve the
value by observing the corresponding
figure. Coherence is not represented, as
no exploration event has been observed
in the simulated data. Data: 85 exper-
iments, DataKreyon: 72 experiments,
simulations: 80 experiments for each
configuration.



deterministic strategy depending on one of these parameters, we can
clearly retrieve the corresponding value (0.5 for Success Threshold, 1
for Minimal Counts, and 2 for LAPSmax.).

6.4 Discussion

We designed a user experiment placing participants in the context
of the Naming Game in the form of a web application. We recorded
their decisions, in particular when they decide to invent new conven-
tions. We simulated a population of agents for each participant, so as
not to depend on other participants finishing their respective task. A
first version was presenting only the Naming Game and its rules, a
second version was gamified and introducing a background story to
get people motivated to finish the game, as well as understand it bet-
ter. We defined a few measures to compare the obtained behavioral
traces to several of the strategies introduced in the second part of this
thesis: Random Topic Choice, Exploration Biased, Success Thresh-
old, Minimal Counts, LAPSmax and Coherence. Measures include
the number of inventions, the probability of exploring depending on
lexicon size, and the values of the different confidence parameters
associated to each deterministic strategy.

We showed that there is a clear tendency to control inventions
(compared to Random Topic Choice). In terms of inventions and ex-
ploration, the average user behavior seems similar to Exploration Bi-
ased strategy, a bit more exploratory than other deterministic strate-
gies. Exploration Biased is a really simple policy, and is still efficient
in terms of convergence speed.

The average values of confidence parameters were measured as
well, and for simulated strategies depending on one of those param-
eters, each corresponding value could be easily retrieved.

The next step will be to crowdsource the experiment on prolific.ac,
and collect more data to confirm these results. Information collected
in an end survey (with a mandatory completion for participants)
could help to build more evidence.

However, if we want to characterize strategies and identify some
of them 14, we do not need more data in the form of more experi- 14 Using criterions such as the Bayesian

Information Criterion or BIC, typically
used to compare likelihood of different
models given a set of data points.

ments, since the strategy for each experiment may be different; but
more data in the form of more interactions per game and maybe
more meanings. A modification to the game that could make it last
longer (in number of interactions) is to stop only when consensus is
reached, and change the score to a minimum convergence time. We can
as well reintroduce overall best scores, for example being displayed
in the Bonus screen.

Increasing the number of meanings M could be more problematic,
as a natural limitation of working memory could appear. However,
this could also be studied through the same framework. Another
possibility is to slowly introduce new meanings in the system, as an
expanding space of available meanings.

Both features can be introduced in a multiplayer version, were par-
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ticipants actually have an impact on the experience of others. They
cannot directly interact, as was argumented in paragraph 6.2.2. An
idea, introduced as a project for a hackathon and already partially
implemented, is to regularly exchange simulated agents between
participants. Each participant has its own population of simulated
agents to interact with, but regularly either new agents are created,
or agents are exchanged with a global pool. Agents from other par-
ticipants that are taken from the global pool remember what was
learned with the first player, and participants influence each other in
this way, without having to all be connected at the same time. This
could also be used for other interactive Art & Science exhibitions,
letting people build a language not just on their own but also with
fellow visitors over a few days. This idea was already exploited be-
fore with the Talking Heads Experiment (Steels, 2015) where people
were interacting with robotic agents and influencing their language
over the course of several months, and later with an artistic purpose
as part of an interactive exhibition at the Fondation Cartier pour l’art
contemporain in Paris (figure 6.4), also with robots.

Figure 6.10: A language game as part
of an interactive exhibition Mathéma-
tiques, un dépaysement soudain at Fon-
dation Cartier pour l’art contemporain in
Paris, 2011. This part of the exhibi-
tion was the result of a collaboration
between Pierre-Yves Oudeyer, David
Lynch, and Mikhaïl Gromov.
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7
Conclusion

The main goal of this thesis was to study the impact of intrinsic moti-
vation in the Naming Game, in the particular domain of active topic
choice policies. These policies allow agents to actively control the
growth of their lexicon. After reviewing many variants of the Nam-
ing Game model, we presented a new classification for them. We
pointed out the issues that can be encountered with the model, in
particular the burst of memory happening before reaching consen-
sus.

We identified topic choice policies as a way to introduce in-
trinsically motivated active choices in the Naming Game, and de-
signed several strategies relying on different mechanisms and mem-
ory needs. Under hard memory constraints 1, Chunks, Success 1 without synonymy and homonymy,

thus preventing artificially the memory
burst.

Threshold and Minimal Counts strategies show convergence prop-
erties that are close to the original model with random topic choice.
Without artificially constraining memory, we defined the LAPSmax
and Coherence strategies, both based on a representation of the aver-
age population vocabulary. The latter strategies do not only prevent
the memory burst, but converge significantly faster than the origi-
nal model. Moreover, they are robust to constraints on the space of
words (introducing the possibility of high degree of homonymy).

A theoretical approach allowed us to define a statistical lower
bound to convergence time and several measures of performance
to compare topic choice policies. Using those measures, we showed
that the Coherence strategy is not only stable, but close to optimal
over a wide range of population sizes.

We finally designed a user experiment, to place people in the situ-
ation of the model and record their decision concerning topic choice.
We showed that there is a clear tendency towards limiting invention
of new conventions, which is the key mechanism found in all the
strategies that we defined before.

We showed that actively controlling the rate of invention of new
conventions can result in faster agreement with less memory using
computer simulations, and that people use this kind of mechanism
as a natural behavior.
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8
Future perspectives

8.1 Hearer’s Choice

Hearer’s Choice was introduced in paragraph 3.4.3 as an alternative
scenario for topic choice: the hearer picks the topic, and not the
speaker.

We have seen in chapters 3 and 4 that this scenario has some in-
teresting properties: it reaches convergence in a time comparable
to the standard topic choice scenario, but fails to control the num-
ber of inventions as efficiently, resulting in a moderate complexity
burst. However, an interesting aspect is the dynamics at the end of
the agreement process: there is no slow down like in the standard
scenario. In other words, Speaker’s Choice is more efficient to boot-
strap the system and control the first wave of inventions, but for a
later phase of fixation of the conventions, Hearer’s Choice becomes
more efficient.

To take advantage of both aspects, we could imagine a third sce-
nario, where agents negotiate first who is going to choose the topic.
At population level, this decision should be based on the average
agreement level, i.e. the theoretical communicative success: low val-
ues would favor speaker choosing, and high values hearer. This can
in fact be implemented at the agent level, using either the LAPS mea-
sure and an appropriate threshold, or criterias like lexicon size.

The resulting dynamics could have higher performance values
than known strategies: At theoretical minimum convergence time,
Coherence strategy reaches a communicative success really close to
1, but later the same amount of interactions is needed to reach com-
plete convergence. As Hearer’s Choice improves this part of the
dynamics, the mixed scenario could be a way to get closer to the
theoretical lower bound for convergence time.

It can be noted that the negotiation happening in the mixed sce-
nario is another type of active behavior, that can be intrinsically mo-
tivated.

This alternative scenario can be reimplemented easily in the ex-
isting framework, aside the existing Speaker’s Choice and Hearer’s
Choice scenarios, and reuse everything already in place.



8.2 Population turnover and acceptance policy

Population turnover mechanisms were explained in paragraph 2.4.2,
and were studied in the Naming Game in Steels and Kaplan, 1998

and Vogt and Coumans, 2003. An effect of population turnover is
the instability of the lexicon: if agents are replaced faster than a cer-
tain rate, a reasonable level of agreement cannot be reached anymore.
Active behaviors could help to change this critical rate to higher val-
ues.

It seems that another mechanism may play a more important role,
potentially coupled with active topic choice: acceptance policy. De-
ciding whether to accept or not a new convention can be based on
measures like LAPS, and older agents that have built enough confi-
dence about the lexicon will not easily accept conventions invented
by newcomers, when the latter will accept what they are taught.

An efficient setup to study this aspect would be to start with a
population that has already converged, and keep track of the agree-
ment (TCS measure) of the current lexicon present in the population
with the initial lexicon. The agreement decays over time, and the
decay period characterizes lexicon stability.

Preliminary work has been done, and shows that previous topic
choice strategies are not efficient in this setting. An explanation
would be that the mechanism used for level 2 of the topic choice
policy uses a type of intrinsic reward that is not adapted to this case:
agents should maybe keep reinforcing associations that they are the
most certain about to at least keep a part of the lexicon stable, instead
of the ones associated with most uncertainty.

The mentioned modifications have already been implemented in
the framework: starting with a full lexicon, decay measures, and
acceptance policies. New strategies for both acceptance policy and
topic choice can be written and tested easily.

8.3 Diffusion on networks

As was explained in chapter 2, variants of the Naming Game include
agents interacting not with everyone, but only with their neighbors
on a social network. One of the issues encountered with the Nam-
ing Game is the diffusion of conventions on such networks: in some
cases it can be slow, or even lead to the emergence of metastable
clusters of agents having distinct lexicons. Active topic choice (and
maybe acceptance policy, introduced in the previous section) may
help solve these problems: if less conventions are created, the ones
shared in each cluster may be complementary with each other. Also,
the active mechanisms may help the selective diffusion of some
meanings, and improve the overall diffusion time per meaning.

An interesting setup, apart from random networks, is a line of
agents already sharing a completed lexicon for all meanings but one:
the remaining meaning is associated to one word for the first half of
the line, and another word in the other. This setup has been studied
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analytically and simulated for a single meaning in Baronchelli, 2006,
and a diffusion coefficient can be defined. The effect of active topic
choice on the diffusion coefficient could be studied.

Using networks between agents has already been implemented in
the framework, along with the half-line setup.

8.4 Structured meaning spaces

In this thesis, we have only studied a finite meaning space without
structure. It has been shown that intrinsically motivated behavior can
use the characteristics of a structured meaning space to faster build
a shared language (Cornudella Gaya, 2017), but could we adapt our
topic choice policies to such cases?

8.4.1 Continuous spaces

A first example is the domain of color, a continuous space. A lan-
guage game model in particular, called the Category Game, was in-
troduced in Puglisi, Baronchelli, and Loreto, 2008. Agents see the
color space as a one-dimensional segment, and simultaneously build
a perceptual representation of colors by splitting this segment into
subsegments, and negotiate a lexicon to be able to refer to those seg-
ments and subsegments. At the end of the simulation, the perceptual
segmentation is as precise as possible, but the lexical segmentation
regroups large number of segments. The average number of such
categories matches more or less the number of colors observed in
natural languages.

In this model, agents only have two possible meanings that they
can refer during each interaction, sampled from a given distribution
over the color segment. In this case, topic choice does not make much
sense. Nevertheless, it is possible to sample several couples of colors
in this way, each being a context.

Preliminary work showed that active context choice accelerates the
dynamics, but leads to a lower number of lexical categories at the
end: typically 3 or 4, compared to ≥ 10 in the original model. This
is due to the inner mechanics of the model, but could be solved by
considering a hierarchical version of the Category Game, introduced
in Loreto, Mukherjee, and Tria, 2012.

The Category Game, along with a few associated measures, is
already implemented in the framework. However, it is not computa-
tionally efficient.

8.4.2 Zipfian bias

Another type of structure is a prior bias when sampling on mean-
ing and/or word spaces. In fact, word occurences in speech are not
uniform, but follow a powerlaw distribution called Zipf’s law (Zipf,
1949). Also, it is obvious that some meanings are relatively more im-
portant or useful than others: eating and sleeping are naturally more
frequent in language than PhD thesis or success threshold. However,



in certain contexts, their relative utility might change, and as a result
so would their relative frequencies.

Random sampling on meaning and/or word spaces could be
changed from uniform to zipfianly biased. This can help to limit
the complexity burst (few meanings are concerned by the first inven-
tions, and conflicts are solved faster), but also slow down the con-
vergence process: some meanings are rarely selected. Using active
topic choice, it is possible to take advantage of the first feature (when
meanings are considered equivalent), while not having the drawback
of selecting some meanings only with a low probability.

Zipfian biased meaning and word spaces are already implemented
in the framework.

8.4.3 Expanding spaces

We have seen an example of non-finite meaning space with the Cat-
egory Game, but this case was a continuous space. An unbounded
but discrete meaning space cannot be accessible from the beginning
to an agent: they would never talk twice about the same meaning
if using random topic choice. An alternative is to build accessibility
to this space meaning per meaning: starting from a core meaning
or group of meanings accessible to every agent, the accessible space
would expand when some of the accessible meanings are chosen as
topic. Meanings can be seen as nodes of a graph, and talking about
one triggers accessibility to its immediate neighbors. The accessible
meanings that have not been explored, at the edge of the accessi-
ble graph, constitute the adjacent possible, a concept introduced by
Kauffman, 1996 to refer to the constant expansion of the space of
possibilities due to the occurence of novel events.

Figure 8.1: Illustration of the dynam-
ics on a meaning space structured as a
graph.

Preliminary work shows that Random Topic Choice explores
faster, but without reaching an agreement on individual meanings.
Active topic choice strategies can limit exploration so as to reach full
agreement, and the number of explored meanings grows linearly. An
interesting direction in this model is to see if Zipf-like distribution
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would arise from meaning usage. In fact, it has been shown than zip-
fian distributions are related to this kind of exploration/innovation
processes (Tria, Loreto, and V. Servedio, 2018).

The graph structure of the meaning space and the exploration dy-
namics are already implemented in the framework. A first visualiza-
tion of the dynamics of random vs. active topic choice can be seen
on figure 8.1 or in video here:

https://www.dropbox.com/s/bl4ytaykbmcnlta/ngal_struct.mp4?dl=0

8.5 Consensus dynamics

Communication between individual agents without a centralized
control is not only found in humans, but has a role in many compu-
tational problems: coordinating the movement of a swarm of drones,
routing data on a big network like Internet, synchronizing parallel
tasks on nodes of a computing cluster,... In particular, it can be nec-
essary to reach a consensus on the value of a variable that depends
on the state of all agents, as for example the maximum temperature
of a node on a computing cluster, the average humidity of a zone for
drones doing meteorological monitoring, or which hubs are more re-
liable on a network. Those problems are gathered under the term
consensus dynamics (Ren, Beard, and Atkins, 2005), and are studied in
various conditions with constraints on memory, network structure,
and pre-shared knowledge by the agents. These problems are related
to our models, even if the interaction scenario of our model is very
specific and the end consensus cannot be known in advance. Typi-
cally, algorithms in this field are designed and studied to solve one
consensus problem, but our algorithms could be helpful when there
are several parallel consensus to be agreed upon simultaneously.

8.6 Human behavior

8.6.1 User experiments

As discussed in chapter 6, several possibilities are offered by the
framework that we built to conduct our experiment, including big-
ger meaning spaces and changing ending conditions, to study both
exploratory behavior and memory limitations. Also, all modifica-
tions to the standard Naming Game model can be directly imported
and studied as a user experiment.

A particular alternative direction for the user experiment is the
multiplayer version introduced in the discussion of chapter 6, and
already used in previous scientific work (Steels, 2015) or artistic ex-
hibitions1. In this setup, each participant has its own population of 1 Mathématiques, un dépaysement soudain,

Paris, 2011simulated agents, and exchanges agents with a global pool. Agents
remember what they learned with one participant, and will spread
their knowledge when interacting with others. In this way, no syn-
chronization is needed between participants, and there is no ob-
served latency for players. Agents could also adapt their strategies

https://www.dropbox.com/s/bl4ytaykbmcnlta/ngal_struct.mp4?dl=0


to mimick the player’s, thus being closer to a Naming Game with
only human agents. This version of the experiment is more prone
to biases and somehow ill-defined situations, but it could make the
experiment more attractive for participants, and reach a larger pop-
ulation on a longer term.

8.6.2 Analyzing existing databases

If recruiting participants for user experiments can be complicated,
there is another way to collect behavioral traces: use existing
databases. Linguistic properties have for example been studied Twit-
ter data (Mocanu et al., 2013), and predictions of Language Games
models were compared with databases including a survey on sta-
tistical properties of color names in natural languages (Kay et al.,
2009) for the Category Game (Baronchelli, Gong, et al., 2010; Puglisi,
Baronchelli, and Loreto, 2008), or census data from the United States
to model the emergence of creole languages (Tria, V. D. P. Servedio,
et al., 2015).

Recently, work has been done on the analysis of online corpuses
and find a pattern of topic change (Karjus et al., 2018) but on the
time scale of several years. In Grieve, Nini, and Guo, 2018, a method
is defined to identify lexical innovation and spreading, using Twit-
ter data (i.e. on much shorter time scales). A combination of both
approaches could be used to identify topic choice policies. However,
the dynamics and importance of topic choice on expanding spaces
would have to be studied first, as the meaning space is unbounded
when considering this kind of data.
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Appendix A
An open-source simulation framework
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In this appendix, we will present two Python libraries that we
built in the last few years, and how to rerun the experiments of this
thesis using them. The two libraries are:

NamingGamesAL: This library gathers all modular parts of the
Naming Game and its variants.

Experiment manager: This library generalizes the concept of run-
ning multiple computational models by abstracting away the exe-
cution, update and parameter management parts.

They can be found respectively on:
http://github.com/flowersteam/naminggamesal
http://github.com/wschuell/experiment_manager

In this appendix, we will not spell out the complete URLs to refer
to specific files but their position in the tree of the corresponding
repository. Links are still clickable.

It has to be mentionned that those libraries were developped un-
der the course of the PhD, and are not well commented and doc-
umented yet. They are still intertwined for a few parts, but will
be clearly defined separately in the near future. This appendix is
a glimpse at the possibilities offered by those libraries, and a few
guidelines to start using it. Reproducing the simulation results pre-
sented in this thesis is easily doable thanks to the configuration files
that are to be found on another repository:

http://github.com/wschuell/notebooks_thesis

A.1 Simulating the Naming Game and its variants

The first Python library, Naming Games AL (for Active Learning)
gathers a series of modular elements to simulate the Naming Game.
Configuration for simulation are a nested dictionary describing the

http://github.com/flowersteam/naminggamesal
http://github.com/wschuell/experiment_manager
http://github.com/flowersteam/naminggamesal
http://github.com/wschuell/experiment_manager
http://github.com/wschuell/notebooks_thesis


different modules. Below is an example of configuration for a popu-
lation, and how to use it to create the Population object:

import naminggamesal as ngal

pop_cfg = {

"nbagent": 5,

"strat_cfg": {

"vu_cfg": {"vu_type": "minimal"},

"success_cfg": {"success_type": "global_norandom"},

"wordchoice_cfg": {"wordchoice_type": "random"},

"strat_type": "naive"

},

"env_cfg": {

"env_type": "simple",

"M": 5,

"W": 20},

"interact_cfg": {"interact_type": "speakerschoice"}

}

pop = ngal.ngpop.Population(**pop_cfg)

The configuration mirrors the hierarchical classification that was
introduced in chapter 2. It describes here a population of 5 agents,
in a world with 20 words and 5 meanings, using Speaker’s Choice
scenario, Random Topic Choice (naive strategy) and random word
choice. An more complete view can be seen in figure A.1. The differ-
ent values possible for each module can be seen in the corresponding
folder. For example for Word Choice Policy, it is situated in the file
ngstrat/word_choice/__init__.py.

To run the simulation for one interaction:

pop.play_game()

Population are encapsulated in Experiment objects, linked to a local
database. Their purpose and structure will be described in the next
section, but we can already show how to use them. In the code below,
an experiment will be instanciated with the population configuration
defined above and run for 100 interactions. We will then compute
and plot S(t), the theoretical communicative success. This measure
will is noted srtheo for success rate theoretical.

db = ngal.ngdb.NamingGamesDB()

xp = db.get_experiment(pop_cfg=pop_cfg)

xp.continue_exp_until(T=100)

xp.graph(’srtheo’).show()

A.2 Experiment manager: the need for a simulation frame-
work

In this section, we will briefly present the experiment manager
framework. A much more detailed description could be provided,

https://github.com/flowersteam/naminggamesal/blob/nguser_xp/naminggamesal/ngstrat/word_choice/__init__.py
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Figure A.1: Modular representation of
the NG models used in the library.
Some modules are not represented, but
these are enough to understand all ex-
periments of the thesis.

but is beyond the scope of this thesis. We will focus on introducing
the key concepts and commands to be able to rerun and analyze the
experiments of the thesis.

If the library is still a bit entangled with the Naming Games AL
library, we are slowly converging towards a generalized framework.

Motivation and basic concepts

The behavior of many models and dynamical systems can be diffi-
cult to describe analytically. However, computer simulations are an
efficient tool to gather data and empirical evidence, giving powerful
clues and hypotheses that can sometimes lead to theoretical findings.
This approach can be used in many scientific fields, not only physics
but also ecology and social sciences. Models often rely on many pa-
rameters, and searching for interesting behaviors can result in the
necessity of conducting big experimental campaigns, running simu-
lations for a lot of different parameter settings. Keeping track of the
data, the parameters, and controlling execution (more efficient on a
computing cluster for example) is usually done by the experimenter,
and may be at the limit of the scope of their skills. Also, manag-
ing this part of the code can induce bugs and errors, and therefore
constitute an unnecessary weak point in the scientist’s work.



All those simulations have a structure in common: an object (the
dynamical system) goes through a series of steps, its evolution at
every step being defined by a given set of rules. Metrics can be mon-
itored over time, or at the final step. The construction of the object
uses the values of the parameters, and can often be organized in a
hierarchical way, as for the Population object that was introduced
in the previous section. If the construction and rules evolution of
the object are specific to the model, the remaining structure of the
code is usually really similar from model to model. However, many
scientists spend a lot of time to recode those parts, and each time in-
troduce new bugs, or copy/paste existing ones and fail to efficiently
adapt old code to new models.

With the Experiment Manager library, our aim is to create a frame-
work and specific concepts to generalize this part of the simulation
code, and make it reusable for new models.

Our starting point will be the dynamical system, with a set of
rules to construct it or configuration1, the rules of its evolution, and a 1 containing among other things the pa-

rameter valueslist of metrics on this object.

Experiment, batch- and meta-experiment objects

Experiments are the basic concept of our framework. An exper-
iment encapsulates an object (the dynamical system) and manages
its evolution and monitoring. Experiments are linked to a database
(typically SQLite), where they are stored alongside their associated
monitored values. They are not defined by the values of the param-
eters that were used to construct their object, but have a unique ID
(UUID). In fact, models are often stochastic, and the evolution of the
dynamical system can be different even if the object was the same at
the beginning. Conducting several experiments with the same con-
figuration can be necessary to estimate an average behavior of the
object. With a UUID, it is possible to have several experiments with
the same configuration and keep track of them.

Experiments also have a random seed, defined at creation, to make
their execution deterministic, and interruptable.

If the experiments run for a high number of steps, we may not
need to record the monitored metrics for all steps: it could induce a
high memory usage, as well as an unnecessary computational over-
head. Experiments can be specified a step policy, for when to com-
pute those metrics. By default, we chose a near-logarithmic evolution
of the monitored steps; keeping round values: from 10 to 40, every
value. From 40 to 70, every second step. From 70 to 100, every 5

step. Then, start over at the new order of magnitude. This entails
a logarithmic computational cost of the monitoring metrics with the
maximum step Tmax instead of linear.

Experiments can either store snapshots of the simulated object to be
able to compute monitoring functions later, or compute them while
running the experiment and only storing the last snapshot, or current
state of the object.
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Batch-experiments regroup many experiments, potentially with
different configurations, and manage their construction and exe-
cution. They package the experiments as Jobs and executes them
through a Job queue, two concepts that will be introduced in a para-
graph further in this section. Batch-experiments also take care of
defining what are the metrics to be monitored on which experiment.

Meta-experiments are the object that we will mostly interact with:
they correspond to the level of an experimental campaign. They
possess a batch-experiment object, and use it to run their associated
experiments. But the main feature of meta-experiments is parameter
management: they are provided a list of parameters, each with a
name, a range, a label, and a default value. The meta-experiment also
has two functions: one to build the configuration from the parameter
values, another to define the maximum number of steps. Using this
information, experiments are built and executed through the batch-
experiment. Plotting metrics is straight forward, using this type of
syntax:

meta_exp.plot(’srtheo’)

meta_exp.plot(’srtheo’,N=10,nb_iter=10)

meta_exp.plot(’srtheo’,N=[10,20,50],nb_iter=10)

meta_exp.plot(’srtheo’,N=’all’,M=100,nb_iter=1)

Correct labels, units, minimum and maximum values, and even leg-
end when several configurations are asked are automatically set. A
default number of iterations is associated to the meta-experiment,
but can be changed while using the plot instruction. When missing
from the command, a parameter is given its default value. Metrics
that have a value only at the end of the experiment (global metrics),
can be plotted with respect to a parameter:

meta_exp.plot(measure=’conv_time’,token=’N’)

meta_exp.plot(measure=’conv_time’,token=’N’,M=100,N=[10,20,50])

Examples of usage can be seen here:
github.com/wschuell/notebooks_cogsci2018

Execution: Jobs and Job queues

We have talked so far about parameter management and keeping
track of individual experiments, but not of how and where they are
executed.

Jobs are packaging experiments to be executed: isolating them in a
specific folder, keeping track of execution time, saving checkpoints
when necessary and keeping a backup copy of all associated files
as well as checksums to verify integrity. Another important feature
of jobs is the possibility to profile the execution, helping to detect
particularly time consuming parts of the code. Typically for a meta-
experiment, the last possible configuration (often associated to the

https://github.com/wschuell/notebooks_cogsci2018


highest values of parameters and therefore the longtest to execute)
is used to set up a profiled Job with a maximum number of steps
divided by 100. It will run way faster than the normal configuration,
and provide profiling information. The notion of jobs is not specific
to experiments: other subclasses of Jobs have been implemented, as
examples or templates to package non-Python code.

Job Queues ensure that Jobs are executed where they should be:
locally, locally using all processors available, on a remote server, or
on a computing cluster. When used with a computing cluster, Job
queues can be provided the specific policies of that cluster: syntax
to talk with the scheduler, folders to do the execution, maximum
number and time for job submissions, and efficient data transfer (re-
grouping files when needed, as file by file can be really long over
SSH). When jobs are submitted to the cluster with an estimated exe-
cution time that is too low, they are resubmitted in their current state
(last checkpoint) with a longer time. Job queues can keep track of av-
erage completion level of jobs. Also, Job queues ensure that the last
version of your code is on the cluster, by setting up python virtual
environments and for example pulling the last version of the code
from an online git repository. After execution, Jobs are retrieved and
unpacked: experiments are reintegrated in the local database.

All these features are completely transparent to the user, pro-
vided they set up correctly the meta-experiment. The creation
and execution of all experiments can be done with the sole
meta_exp.run(). Changing the default job queue is not more com-
plicated: meta_exp.run(batch=’local_multiprocess’).

A.3 ReScience: experiments of this thesis

Procedure to rerun experiments

Dependencies: both libraries (naminggamesal and experiment man-
ager). If there are troubles to install them, a docker-compose file is
present at the root of the thesis repository.

For the thesis repository (github.com/wschuell/notebooks_thesis),
we do not rely on a single meta-experiment, but on a few dozens of
them. We designed an even higher level, where meta-experiment are
automatically generated, using a set of possible configurations and
parameter definitions. On the repository, configs_gen.py contains
the list of meta-experiments, and relies on configuration files in the
configs folder. Running this python file creates each folder contain-
ing a metaexp_settings.py file. Running it runs all the associated
experiments, and later importing it enables to plot and analyze data,
for example in an interactive notebook. In particular, the configs

folder contains a metrics.json file describing all available metrics.
An important remark: execution directives may need to be

changed to rerun some experiments to local execution. By default,

https://github.com/wschuell/notebooks_thesis
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we were using the Avakas computing cluster.

Use databases

Because rerunning all experiments can be extremely long: we esti-
mate at many months, probably years, the CPU time that was used to
generate the data. Databases for all meta-experiments will be made
available, as a link on the repository description. The total size is a
few gigabytes.

Replotting figures

Running the configs_gen.py file will generate a get_figs.py file
in each folder corresponding to a meta-experiment. Executing the
latter file will recreate the figures. They are all defined in a mono-
lithic file, get_figs_list.py, that is not executable but is parsed to
generate the individual python files. The content of a get_figs.py

file can be for example transferred in an interactive notebook and
reused/modified to plot similar figures.
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Appendix B
User experiment web application
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The user experiment was built and deployed as a web application,
written in the Django Python framework. The experiment is freely
accessible at http://naming-game.space.

B.1 Setting up, testing and running analysis on a new server

Docker containers are a way of packaging software so that it can run
easily on very different computer systems, without having to worry
of dependencies and compatibility. Moreover, containers packaging
different softwares (a database, a specific server, etc.) can be com-
bined with a tool called docker-compose.

We use this framework for our server, composing three containers:
a PostgreSQL database, an nginx web server, and a container specifi-
cally for our application, using written in the Django Python frame-
work. The only dependencies are Docker, docker-compose and Python
(docker-compose requires Python). Instructions to install them can
be found here. The few commands that have to be executed outside
Docker suppose that you have access to a Unix shell.

The first step is to clone the git repository:

git clone http://github.com/wschuell/ng_userxp

Then, change directory and simply run:

cd ng_userxp

docker-compose up

The docker containers should be installed, up and running in
about 10 to 30 minutes, depending on your bandwidth and system.
Of course, a later execution will only require half a minute to be
operational. To connect to the application, if you are running the ser-
vice on your local computer visit the following URL in your browser:

http://naming-game.space
https://docs.docker.com/compose/install/


http://127.0.0.1 If you are running it on a distant server, change the
IP by your server’s IP or name. To avoid killing the process when
disconnecting from teh server or closing the terminal, you can run
it as a daemon with the option -d or run it in a detachable terminal
like tmux.

To run it in Django debug mode, here is the command:

docker-compose -f docker-compose.yml -f docker-compose.dev.yml up

Update: updates are done via pulling from the source git repository.
In parallel the library NamingGamesAL can also be updated, by
default from the branch ng_userxp. A script at the root of the
repository does it all, and can be executed while the server is run-
ning: bash docker_update.sh

Administration: The Django administration app is available on
http://127.0.0.1/admin. The admin login and password are ran-
domly generated at the first run of the server, in the file supe-
rusers.json, at the root of the repository.

Load testing: To test connections of multiple fake users on the
server, you can run locust --host=http://0.0.0.0. Then con-
nect to http://127.0.0.1:8089 to manage the tests. After test-
ing, fake entries in the database can be removed by running
bash remove_locust.sh.

Data backup: At each update, a backup of the PostgreSQL
database is done and compressed, named by date in the folder
backup_postgres. However, this cannot be used directly for the anal-
ysis. To get the json file usable for the analysis, run:

docker exec -it ng /bin/bash -c "python3 manage.py dumpdata > dump_tests.json"

This will create the file dump_tests.json, that you can use for the
data analysis.

Data analysis: Place the json file obtained earlier in the analysis
folder. In this folder, run python3 analysis.py. Tools to manipu-
late the data can be found in this file and in measures.py.

Changing the behavior of simulated agents: as well as other pa-
rameters of the experiment, can be done in the file ng/models.py.
The NamingGamesAL configuration dict for example is located at
the beginning of the file.

http://127.0.0.1
http://127.0.0.1/admin
http://127.0.0.1:8089
https://github.com/wschuell/ng_userxp/blob/master/ng/models.py
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B.2 Screens of the first version

Home

Info.

Feedback

Result

#interactions≥50?

Yes

No

Hearer

Interaction as:

Speaker

Interaction as:

Waiting

No Interaction

Game loop

Figure B.1: Reminder of the structure
of the user experiment: the different
screens are represented by black rectan-
gles, and the transitions between them
by arrows. The participant arrives on
a Home screen, showing some informa-
tion and a button to start playing, lead-
ing to an Information screen, explaning
a few details concerning the context of
the game. The rest of the game is a
loop: for some interactions the user
is not involved, indicated on a screen
Waiting; for the others they are either
Speaker or Hearer. As a speaker, the
participant chooses a meaning and a
word. As a hearer, a word is pro-
vided, and the participant picks a cor-
responding meaning. After the respec-
tive choices, both screens lead to a Feed-
back screen telling them the result of
the interaction: Failure or Success. If
a count of Tmax = 50 interactions has
been reached, the game stops and a Re-
sults screen shows the final score (level
of agreement, total and per meaning). If
the count has not been reached, a new
interaction starts and the next screen is
again one of the three possible roles:
Speaker, Hearer or Waiting.



Figure B.2: Home

Figure B.3: Info screen: page 1/2
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Figure B.4: Info screen: page 2/2

Figure B.5: Waiting



Figure B.6: Hearer

Figure B.7: Speaker
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Figure B.8: Feedback screen: failure or
success



Figure B.9: Result

B.3 Screens of the second version

Figure B.10: Home
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Figure B.11: Info: page 1/2

Figure B.12: Info: page 2/2



Figure B.13: Waiting, and past interac-
tions information

Figure B.14: Hearer
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Figure B.15: Speaker

Figure B.16: Feedback screen: learning



Figure B.17: Feedback screen: failure

Figure B.18: Feedback screen: success
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Figure B.19: Result

Figure B.20: Bonus screen



Figure B.21: End survey
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Table of symbols

M Meaning space
M Size of the meaning space
Mk Set of known meanings
µ Number of known meanings
Mu Set of unknown meanings
mi Element of the meaning space
W Word space
W Size of the word space
wi Element of the word space
mS Meaning picked by the speaker, or topic
mH Meaning interpreted by the hearer
S Speaker (one of the two possible roles in a Naming Game interaction)
H Hearer (one of the two possible roles in a Naming Game interaction)
t time, in total number of interactions
S(t) Theoretical Communicative Success measure
tconv Time when reaching a global agreement: every agent has the same completed lexicon.
SLAPS(t) Local Approximated Probability of Success measure
SO(t) Observed Communicative Success
Nl(t) Local Complexity measure
Nmax

l Maximum of Local Complexity measure
tmax Time when reaching the maximum of Local Complexity measure
Nd(t) Global Complexity measure
Nmax

d Maximum of Global Complexity measure
tGC Time when reaching the maximum of Local Complexity measure
Ninv Number of inventions during a Naming Game
nch Number of chunks for the Chunks strategy, depending on N and W
αST Parameter for the Success Threshold, normalized (divided by N)
nMC Parameter for the minimal counts strategy
ñMC Parameter for the Minimal Counts strategy, normalized (divided by N)
τ Time scale parameter for LAPSmax and Coherence strategies
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Table of Abbreviations and Acronyms

MAB Multi-Armed Bandit
LAPS Local Approximated Probability of Success
ATC Active Topic Choice
RTC Random Topic Choice
AP Acceptance Policy
NG Naming Game
BLIS Basic Lateral Inhibition Stategy, a vocabulary update policy
TCS Theoretical Communicative Success measure
LC Local Complexity measure
GC Global Complexity measure
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