Skip to Main content Skip to Navigation

Exolysin, a novel virulence factor of Pseudomonas aeruginosa clonal outliers

Abstract : Pseudomonas aeruginosa is a human opportunistic pathogen responsible for nosocomial infections associated with high mortality. The type III secretion system (T3SS) and T3SS-exported toxins have been considered as key infectivity virulence factors. Our team recently characterized a group of strains lacking T3SS, but employing a new pore-forming toxin of 172 kDa, named Exolysin (ExlA) that provokes cell membrane disruption. In this work we demonstrated that the ExlA secretion requires ExlB, a predicted outer membrane protein encoded in the same operon, showing that ExlA-ExlB define a new active Two-Partner Secretion (TPS) system. In addition to the TPS secretion signals, ExlA harbors several distinct domains, which comprise hemagglutinin domains, five Arginine-Glycine-Aspartic acid (RGD) motifs and a non-conserved C-terminal region lacking any identifiable sequence motifs. Cytotoxic assays showed that the deletion of the C-terminal region abolishes host-cell cytolysis. Using liposomes and eukaryotic cells, including red blood cells, we demonstrated that ExlA forms membrane pores of 1.6 nm. Based on a transposon mutagenesis strategy and a high throughput cellular live-dead screen, we identified additional bacterial factors required for ExlA-mediated cell lysis. Among 7 400 mutants, we identified three transposons inserted in genes encoding components of the Type IV pili, which are adhesive extracellular appendices. Type IV pili probably mediate close contact between bacteria and host cells and facilitate ExlA cytotoxic activity. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages to achieve host cell intoxication. Using mice primary bone marrow macrophages we showed that ExlA pores provoke activation of Caspase-1 via the NLRP3-inflamasomme followed by the maturation of the pro-interleukin-1ß. Mining of microbial genomic databases revealed the presence of exlA-like genes in other Pseudomonas species rarely associated with human infections P. putida, P. protegens and P. entomophila. Interestingly, we showed that these environmental bacteria are also able to provoke Caspase-1 cleavage and pro-inflammatory cell death of macrophages. Finally, genome-wide loss-of-function CRISPR/cas9 RAW library screen revealed that several components of the immune system response, indirectly linked to Caspase-1 are involved in the ExlA-mediated cell lysis. Moreover, we found at least three sgRNAs targeting miRNA, mir-741 were highly enriched in resistant macrophages challenged by ExlA. This miRNA regulates enzymes (St8sIa1 and Agpat5) in the sphingolipids and glycerophololipids biosynthesis pathways, suggesting that ExlA activity may require proper lipid environment.
Complete list of metadatas

Cited literature [778 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Monday, January 14, 2019 - 3:26:43 PM
Last modification on : Friday, November 6, 2020 - 4:27:42 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01965183, version 2



Pauline Basso. Exolysin, a novel virulence factor of Pseudomonas aeruginosa clonal outliers. Cellular Biology. Université Grenoble Alpes, 2017. English. ⟨NNT : 2017GREAV063⟩. ⟨tel-01965183v2⟩



Record views


Files downloads