C. Brewer, S. Wunderink, R. G. Jones, C. B. Leeper, and K. V. , Ventilator-associated pneumonia due to Pseudomonas aeruginosa, Chest, vol.109, pp.1019-1029, 1996.

G. P. Bodey, R. Bolivar, V. Fainstein, and L. Jadeja, Infections caused by Pseudomonas aeruginosa, Rev Infect Dis, vol.5, pp.279-313, 1983.

H. W. Boucher, G. H. Talbot, J. S. Bradley, J. E. Edwards, D. Gilbert et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin Infect Dis, vol.48, pp.1-12, 2009.

G. L. Winsor, E. J. Griffiths, R. Lo, B. K. Dhillon, J. A. Shay et al., Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database, Nucleic Acids Res, vol.44, pp.646-653, 2016.

A. M. Boukerb, R. Marti, and B. Cournoyer, Genome sequences of three strains of the Pseudomonas aeruginosa PA7 clade, Genome Announc, vol.3, pp.1366-1381, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234247

S. Elsen, P. Huber, S. Bouillot, Y. Couté, P. Fournier et al., A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia, Cell Host Microbe, vol.15, pp.164-176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00993388

V. N. Kos, M. Déraspe, R. E. Mclaughlin, J. D. Whiteaker, P. H. Roy et al., The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility, Antimicrob Agents Chemother, vol.59, pp.427-436, 2015.

P. H. Roy, S. G. Tetu, A. Larouche, L. Elbourne, S. Tremblay et al., Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7, PLoS One, vol.5, 2010.

P. Huber, P. Basso, E. Reboud, and I. Attrée, Pseudomonas aeruginosa renews its virulence factors, Environ Microbiol Rep, vol.8, pp.564-571, 2016.

J. Toska, Y. Sun, D. A. Carbonell, A. N. Foster, M. R. Jacobs et al., Diversity of virulence phenotypes among type III secretion negative Pseudomonas aeruginosa clinical isolates, PLoS One, vol.9, 2014.

A. R. Hauser, The type III secretion system of Pseudomonas aeruginosa: infection by injection, Nat Rev Microbiol, vol.7, pp.654-665, 2009.

J. Engel and P. Balachandran, Role of Pseudomonas aeruginosa type III effectors in disease, Curr Opin Microbiol, vol.12, pp.61-66, 2009.

L. Berre, R. Nguyen, S. Nowak, E. Kipnis, E. Pierre et al., Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia, Crit Care Med, vol.39, pp.2113-2120, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00758242

R. E. Vance, A. Rietsch, and J. J. Mekalanos, Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo, Infect Immun, vol.73, pp.1706-1713, 2005.

F. Jacob-dubuisson, J. Guérin, S. Baelen, and B. Clantin, Two-partner secretion: as simple as it sounds?, Res Microbiol, vol.164, pp.583-595, 2013.

E. Reboud, S. Elsen, S. Bouillot, G. Golovkine, P. Basso et al., Phenotype and toxicity of the recently discovered exlApositive Pseudomonas aeruginosa strains collected worldwide, Environ Microbiol, vol.18, pp.3425-3439, 2016.

B. Clantin, A. S. Delattre, P. Rucktooa, N. Saint, A. C. Méli et al., Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily, Science, vol.317, pp.957-961, 2007.

R. F. Simmerman, A. M. Dave, and B. D. Bruce, Structure and function of POTRA domains of Omp85/TPS superfamily, Int Rev Cell Mol Biol, vol.308, pp.1-34, 2014.

C. Locht, P. Berlin, F. D. Menozzi, and G. Renauld, The filamentous haemagglutinin, a multifaceted adhesin produced by virulent Bordetella spp, 1993.

, Mol Microbiol, vol.9, pp.653-660

A. S. Delattre, B. Clantin, N. Saint, C. Locht, V. Villeret et al., Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily, FEBS J, vol.277, pp.4755-4765, 2010.

J. Guérin, N. Saint, C. Baud, A. C. Meli, E. E. Locht et al., Dynamic interplay of membrane-proximal POTRA domain and conserved loop L6 in Omp85 transporter FhaC, Mol Microbiol, vol.98, pp.490-501, 2015.

T. Maier, B. Clantin, F. Gruss, F. Dewitte, A. S. Delattre et al., Conserved Omp85 lid-lock structure and substrate recognition in FhaC, Nat Commun, vol.6, p.7452, 2015.

D. Zhang, R. F. Souza, V. Anantharaman, L. M. Iyer, and L. Aravind, Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics, Biol Direct, vol.7, 2012.

F. Jacob-dubuisson, B. Kehoe, E. Willery, N. Reveneau, C. Locht et al., Molecular characterization of Bordetella bronchiseptica filamentous haemagglutinin and its secretion machinery, Microbiology, vol.146, pp.1211-1221, 2000.

E. Ruoslahti, RGD and other recognition sequences for integrins, Annu Rev Cell Dev Biol, vol.12, pp.697-715, 1996.

S. M. Julio, C. S. Inatsuka, J. Mazar, C. Dieterich, D. A. Relman et al., Natural-host animal models indicate functional interchangeability between the filamentous haemagglutinins of Bordetella pertussis and Bordetella bronchiseptica and reveal a role for the mature C-terminal domain, but not the RGD motif, during infection, Mol Microbiol, vol.71, pp.1574-1590, 2009.

E. Schiebel and V. Braun, Integration of the Serratia marcescens haemolysin into human erythrocyte membranes, Mol Microbiol, vol.3, pp.445-453, 1989.

A. L. Lobo and R. A. Welch, Identification and assay of RTX family of cytolysins, Methods Enzymol, vol.235, issue.94, pp.35180-35185, 1994.

G. Menestrina, D. Serra, M. Comai, M. Coraiola, M. Viero et al., Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus, FEBS Lett, vol.552, issue.03, pp.850-850, 2003.

R. Hertle, M. Hilger, S. Weingardt-kocher, and I. Walev, Cytotoxic action of Serratia marcescens hemolysin on human epithelial cells, Infect Immun, vol.67, pp.817-825, 1999.

H. Sato and D. W. Frank, ExoU is a potent intracellular phospholipase, Mol Microbiol, vol.53, pp.1279-1290, 2004.

P. J. Matteï, E. Faudry, J. V. Izoré, T. Attree, I. Dessen et al., Membrane targeting and pore formation by the type III secretion system translocon, 2011.

, FEBS J, vol.278, pp.414-426

R. Hertle, Serratia marcescens hemolysin (ShlA) binds artificial membranes and forms pores in a receptor-independent manner, J Membr Biol, vol.189, pp.1-14, 2002.

E. Faudry, G. Vernier, E. Neumann, V. Forge, and I. Attree, Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa, Biochemistry, vol.45, pp.8117-8123, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00379135

J. Koo, T. Tang, H. Harvey, S. Tammam, L. Sampaleanu et al., Functional mapping of PilF and PilQ in the Pseudomonas aeruginosa type IV pilus system, Biochemistry, vol.52, pp.2914-2923, 2013.

C. L. Giltner, M. Habash, and L. L. Burrows, Pseudomonas aeruginosa minor pilins are incorporated into type IV pili, J Mol Biol, vol.398, pp.444-461, 2010.

L. L. Burrows, Pseudomonas aeruginosa twitching motility: type IV pili in action, Annu Rev Microbiol, vol.66, pp.493-520, 2012.

P. Chiang, L. M. Sampaleanu, M. Ayers, M. Pahuta, P. L. Howell et al., Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiology, vol.154, pp.114-126, 2008.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, vol.10, pp.845-858, 2015.
DOI : 10.1038/nprot.2015.053

URL : https://www.nature.com/articles/nprot.2015.053.pdf

Y. Ishibashi, D. A. Relman, and A. Nishikawa, Invasion of human respiratory epithelial cells by Bordetella pertussis: possible role for a filamentous hemagglutinin Arg-Gly-Asp sequence and alpha5beta1 integrin, Microb Pathog, vol.30, pp.279-288, 2001.

M. Dal-peraro and F. G. Van-der-goot, Pore-forming toxins: ancient, but never really out of fashion, Nat Rev Microbiol, vol.14, pp.77-92, 2016.

S. D. Zakharov, E. A. Kotova, Y. N. Antonenko, and W. A. Cramer, On the role of lipid in colicin pore formation, Biochim Biophys Acta, vol.1666, pp.239-249, 2004.

G. Schoehn, D. Guilmi, A. M. Lemaire, D. Attree, I. Weissenhorn et al., Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in pseudomonas, EMBO J, vol.22, pp.4957-4967, 2003.

N. Hayashi, H. Nishizawa, S. Kitao, S. Deguchi, T. Nakamura et al., Pseudomonas aeruginosa injects type III effector ExoS into epithelial cells through the function of type IV pili, FEBS Lett, vol.589, pp.890-896, 2015.

I. Zolfaghar, D. J. Evans, and S. M. Fleiszig, Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa, Infect Immun, vol.71, pp.5389-5393, 2003.

J. C. Comolli, A. R. Hauser, L. Waite, C. B. Whitchurch, J. S. Mattick et al., Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia, Infect Immun, vol.67, pp.3625-3630, 1999.

R. W. Heiniger, H. C. Winther-larsen, R. J. Pickles, M. Koomey, and M. C. Wolfgang, Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin, Cell Microbiol, vol.12, pp.1158-1173, 2010.
DOI : 10.1111/j.1462-5822.2010.01461.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1462-5822.2010.01461.x

M. Shikata, N. Hayashi, A. Fujimoto, T. Nakamura, N. Matsui et al., The pilT gene contributes to type III ExoS effector injection into epithelial cells in Pseudomonas aeruginosa, J Infect Chemother, vol.22, pp.216-220, 2016.

C. Sundin, M. C. Wolfgang, L. S. Forsberg, A. Frithz-lindsten, and E. , Type IV pili are not specifically required for contact dependent translocation of exoenzymes by Pseudomonas aeruginosa, Microb Pathog, vol.33, pp.265-277, 2002.

E. V. Scheller and P. A. Cotter, Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential, vol.73, p.79, 2015.
DOI : 10.1093/femspd/ftv079

URL : https://academic.oup.com/femspd/article-pdf/73/8/ftv079/10750968/ftv079.pdf

P. J. Baynham, D. M. Ramsey, B. V. Gvozdyev, E. M. Cordonnier, and D. J. Wozniak, The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili, J Bacteriol, vol.188, pp.132-140, 2006.

H. D. Kulasekara, I. Ventre, B. R. Kulasekara, A. Lazdunski, and A. Filloux, A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes, Molecular Microbiology, vol.55, pp.368-380, 2005.

. Basso, Different paths to pathogenesis, Trends Microbiol, vol.22, pp.168-169, 2014.

P. Basso, M. Ragno, S. Elsen, E. Reboud, G. Golovkine et al., Pseudomonas aeruginosa poreforming exolysin and type IV pili cooperate to induce host cell lysis, pp.2250-2266, 2017.
DOI : 10.1128/mbio.02250-16

URL : https://mbio.asm.org/content/mbio/8/1/e02250-16.full.pdf

F. G. Bauernfeind, G. Horvath, A. Stutz, E. S. Alnemri, K. Macdonald et al., Cutting edge: NFB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression, J Immunol, vol.183, pp.787-791, 2009.
DOI : 10.4049/jimmunol.0901363

URL : http://www.jimmunol.org/content/183/2/787.full.pdf

T. Bergsbaken, S. L. Fink, C. , and B. T. , Pyroptosis: host cell death and inflammation, Nat Rev Microbiol, vol.7, pp.99-109, 2009.
DOI : 10.1038/nrmicro2070

URL : http://europepmc.org/articles/pmc2910423?pdf=render

P. Berthelot, I. Attree, P. Pl-esiat, J. Chabert, S. De-bentzmann et al., Etudes des Septic emies a Pseudomonas aeruginosa (2003) genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: evidence for a possible association between O serotypes and exo genes, J Infect Dis, vol.188, pp.512-518

M. Bischofberger, I. Iacovache, G. Van-der-goot, and F. , Pathogenic pore-forming proteins: function and host response, Cell Host Microbe, vol.12, pp.266-275, 2012.
DOI : 10.1016/j.chom.2012.08.005

URL : https://doi.org/10.1016/j.chom.2012.08.005

S. Bouillot, P. Munro, B. Gallet, E. Reboud, F. Cretin et al., Pseudomonas aeruginosa exolysin promotes bacterial growth in lungs, alveolar damage and bacterial dissemination, Sci Rep, vol.7, p.2120
URL : https://hal.archives-ouvertes.fr/inserm-01525980

A. M. Boukerb, R. Marti, C. , and B. , Genome sequences of three strains of the Pseudomonas aeruginosa PA7 Clade, Genome Announc, vol.3, pp.1366-01315, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234247

P. Broz and V. M. Dixit, Inflammasomes: mechanism of assembly, regulation and signalling, Nat Rev Immunol, vol.16, pp.407-420, 2016.

P. Broz, J. Von-moltke, J. W. Jones, R. E. Vance, and D. M. Monack, Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing, Cell Host Microbe, vol.8, pp.471-483, 2010.

C. L. Case, R. , and C. R. , Asc modulates the function of NLRC4 in response to infection of macrophages by Legionella pneumophila, vol.2, pp.117-128, 2011.

D. Cheneval, P. Ramage, T. Kastelic, T. Szelestenyi, H. Niggli et al., Increased mature interleukin1 (IL-1) secretion from THP-1 cells induced by nigericin is a result of activation of p45 IL-1-converting enzyme processing, J Biol Chem, vol.273, pp.17846-17851, 1998.

T. S. Cohen, P. , and A. S. , Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia, J Clin Invest, vol.123, pp.1630-1637, 2013.

M. Dal-peraro and F. G. Van-der-goot, Pore-forming toxins: ancient, but never really out of fashion, Nat Rev Microbiol, vol.14, pp.77-92, 2016.

D. Descamps, M. Le-gars, V. Balloy, D. Barbier, S. Maschalidi et al., Toll-like receptor 5 (TLR5), IL-1 secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing, Proc Natl Acad Sci, vol.109, pp.1619-1624, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00667246

D. Venanzio, G. Lazzaro, M. Morales, E. S. Krapf, D. Garc-ia-v-escovi et al., A pore-forming toxin enables Serratia a nonlytic egress from host cells: Serratia exits from host cells by a nonlytic strategy, Cell Microbiol, vol.19, p.12656, 2017.

M. H. Diaz, C. M. Shaver, J. D. King, S. Musunuri, J. A. Kazzaz et al., Pseudomonas aeruginosa induces localized immunosuppression during pneumonia, Infect Immun, vol.76, pp.4414-4421, 2008.

S. Elsen, P. Huber, S. Bouillot, Y. Cout-e, P. Fournier et al., A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia, Cell Host Microbe, vol.15, pp.164-176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00993388

J. Engel and P. Balachandran, Role of Pseudomonas aeruginosa type III effectors in disease, Curr Opin Microbiol, vol.12, pp.61-66, 2009.

E. Faure, J. Mear, K. Faure, S. Normand, A. Couturiermaillard et al., Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome, Am J Respir Crit Care Med, vol.189, pp.799-811, 2014.

M. Fauvarque, E. Bergeret, J. Chabert, D. Dacheux, M. Satre et al., Role and activation of type III secretion system genes in Pseudomonas aeruginosainduced Drosophila killing, Microb Pathog, vol.32, pp.287-295, 2002.

V. Feuillet, S. Medjane, I. Mondor, O. Demaria, P. P. Pagni et al., Involvement of toll-like receptor 5 in the recognition of flagellated bacteria, Proc Natl Acad Sci, vol.103, pp.12487-12492, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00165595

S. L. Fink, C. , and B. T. , Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages, Cell. Microbiol, vol.8, pp.1812-1825, 2006.

L. Franchi, J. Stoolman, T. Kanneganti, A. Verma, R. Ramphal et al., Critical role for Ipaf in Pseudomonas aeruginosa, 2007.

, Eur J Immunol, vol.37, pp.3030-3039

M. Galle, P. Schotte, M. Haegman, A. Wullaert, H. J. Yang et al., The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1b maturation, J Cell Mol Med, vol.12, pp.1767-1776, 2008.

L. Galluzzi, . Bravo-san, J. M. Pedro, I. Vitale, S. A. Aaronson et al., Essential versus accessory aspects of cell death: recommendations of the NCCD 2015, Cell Death Differ, vol.22, pp.58-73, 2015.

D. Garrido-sanz, J. P. Meier-kolthoff, M. G?-oker, M. Mart-in, R. Rivilla et al., Genomic and, 2016.

, Pseudomonas ExlA provokes pyroptotic macrophage death 17

V. Juarbe, N. Gilley, R. P. Hinojosa, C. A. Bradley, K. M. Kamei et al., Environmental Microbiology, 00, 00-00 genetic diversity within the Pseudomonas fluorescens Complex, Society for Applied Microbiology and John Wiley & Sons Ltd, vol.11, p.1005337, 2015.

A. J. Greaney, S. H. Leppla, and M. Moayeri, Bacterial exotoxins and the inflammasome, Front Immunol, vol.6, p.570, 2015.
DOI : 10.3389/fimmu.2015.00570

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2015.00570/pdf

A. M. Hajjar, R. K. Ernst, J. H. Tsai, C. B. Wilson, and S. I. Miller, Human Toll-like receptor 4 recognizes hostspecific LPS modifications, Nat Immunol, vol.3, pp.354-359, 2002.
DOI : 10.1038/ni777

A. R. Hauser, The type III secretion system of Pseudomonas aeruginosa: infection by injection, Nat Rev Microbiol, vol.7, pp.654-665, 2009.

A. R. Hauser, E. Cobb, M. Bodi, D. Mariscal, J. Vall-es et al., Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa, Crit Care Med, vol.30, pp.521-528, 2002.

R. Hertle and H. Schwarz, Serratia marcescens internalization and replication in human bladder epithelial cells, BMC Infect Dis, vol.4, p.6, 2004.

H. A. Howell, L. K. Logan, and A. R. Hauser, Type III secretion of ExoU is critical during early Pseudomonas aeruginosa pneumonia, mBio, vol.4, pp.32-45, 2013.

P. Huber, P. Basso, E. Reboud, and I. Attr-ee, Pseudomonas aeruginosa renews its virulence factors: Pseudomonas aeruginosa renews its virulence factors, Environ Microbiol Rep, vol.8, pp.564-571, 2016.
DOI : 10.1111/1758-2229.12443

D. Ince, F. S. Sutterwala, Y. , and T. L. , Secretion of flagellar proteins by the Pseudomonas aeruginosa type III secretion-injectisome system, J. Bacteriol, vol.197, pp.2003-2011, 2015.

M. S. Jabir, L. Hopkins, N. D. Ritchie, I. Ullah, H. K. Bayes et al., Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy, Autophagy, vol.11, pp.166-182, 2015.

I. Jorgensen, M. Rayamajhi, and E. A. Miao, Programmed cell death as a defence against infection, Nat Rev Immunol, vol.17, pp.151-164, 2017.

T. Kawai, A. , and S. , TLR signaling. Semin Immunol, vol.19, pp.24-32, 2007.

S. E. Kim, S. Park, H. B. Park, K. Park, S. Kim et al., Nosocomial Pseudomonas putida bacteremia: high rates of carbapenem resistance and mortality, Chonnam Med J, vol.48, p.91, 2012.

V. N. Kos, M. Mclaughlin, R. E. Whiteaker, J. D. Roy, P. H. Alm et al., The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility, Antimicrob Agents Chemother, vol.59, pp.427-436, 2015.

M. Lamkanfi and V. M. Dixit, Mechanisms and functions of inflammasomes, Cell, vol.157, pp.1013-1022, 2014.

M. Ledizet, T. S. Murray, S. Puttagunta, M. D. Slade, V. J. Quagliarello et al., The ability of virulence factor expression by Pseudomonas aeruginosa to predict clinical disease in hospitalized patients, PLoS One, vol.7, p.49578, 2012.

C. S. Lindestam-arlehamn and T. J. Evans, Pseudomonas aeruginosa pilin activates the inflammasome: pilin activates the inflammasome, Cell Microbiol, vol.13, pp.388-401, 2011.

J. E. Loper, K. A. Hassan, D. V. Mavrodi, E. W. Davis, C. K. Lim et al., Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions, PLoS Genet, vol.8, p.1002784, 2012.

F. C. Los, T. M. Randis, R. V. Aroian, and A. J. Ratner, Role of pore-forming toxins in bacterial infectious diseases, Microbiol Mol Biol Rev, vol.77, pp.173-207, 2013.

J. B. Lyczak, C. L. Cannon, P. , and G. B. , Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist, Microbes Infect Inst Pasteur, vol.2, pp.1051-1060, 2000.

S. Mariathasan, D. S. Weiss, K. Newton, J. Mcbride, K. O'rourke et al., Cryopyrin activates the inflammasome in response to toxins and ATP, Nature, vol.440, pp.228-232, 2006.

E. Meunier, P. Wallet, R. F. Dreier, S. Costanzo, L. Anton et al., Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida, Nat Immunol, vol.16, pp.476-484, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01924091

E. A. Miao, E. Andersen-nissen, S. E. Warren, A. , and A. , TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system, Semin Immunopathol, vol.29, pp.275-288, 2007.

E. A. Miao, R. K. Ernst, M. Dors, D. P. Mao, A. et al., Pseudomonas aeruginosa activates caspase 1 through Ipaf, Proc Natl Acad Sci, vol.105, pp.2562-2567, 2008.

E. A. Miao, D. P. Mao, N. Yudkovsky, R. Bonneau, C. G. Lorang et al., Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome, Proc Natl Acad Sci, vol.107, pp.3076-3080, 2010.

M. Moayeri and S. H. Leppla, Cellular and systemic effects of anthrax lethal toxin and edema toxin, Mol Aspects Med, vol.30, pp.439-455, 2009.

L. Molina, Z. Udaondo, E. Duque, M. Bernal, P. Roca et al., Specific gene loci of clinical Pseudomonas putida isolates, PLoS One, vol.11, p.147478, 2016.

M. A. Molina, J. Ramos, and M. Espinosa-urgel, A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440, Environ Microbiol, vol.8, pp.639-647, 2006.

L. Monlezun, D. Liebl, D. Fenel, T. Grandjean, A. Berry et al., PscI is a type III secretion needle anchoring protein with in vitro polymerization capacities, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01148992

, Mol Microbiol, vol.96, pp.419-436

R. Mu~-noz-planillo, P. Kuffa, G. Mart-inez-col-on, B. L. Smith, T. M. Rajendiran et al., K1 efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter, Immunity, vol.38, pp.1142-1153, 2013.

K. E. Nelson, C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert et al., Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Environ Microbiol, vol.4, pp.799-808, 2002.

Z. Pang, G. Sun, R. D. Junkins, L. , and T. J. , AIM2 inflammasome is dispensable for the host defense against Pseudomonas aeruginosa infection, Cell Mol Biol Noisy-Gd Fr, vol.61, pp.63-70, 2015.

J. Pardo, C. Urban, E. M. Galvez, P. G. Ekert, U. M?-uller et al., The mitochondrial protein, 2006.

P. Basso,

V. , Society for Applied Microbiology, vol.00, pp.0-00, 2017.

, Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice, J Cell Biol, vol.174, pp.509-519

Y. R. Patankar, R. R. Lovewell, M. E. Poynter, J. Jyot, B. I. Kazmierczak et al., Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa, Infect Immun, vol.81, pp.2043-2052, 2013.

P. Pelegrin, C. Barroso-gutierrez, A. Surprenant, V. ;-p-etrilli, S. Papin et al., P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage, J Immunol Baltim Md, vol.180, pp.1583-1589, 1950.

B. F. Py, M. Kim, H. Vakifahmetoglu-norberg, Y. , and J. , Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity, Mol Cell, vol.49, pp.331-338, 2013.
DOI : 10.1016/j.molcel.2012.11.009

URL : https://doi.org/10.1016/j.molcel.2012.11.009

J. Rassow, Helicobacter pylori vacuolating toxin A and apoptosis, Cell Commun Signal, vol.9, p.26, 2011.
DOI : 10.1186/1478-811x-9-26

URL : https://biosignaling.biomedcentral.com/track/pdf/10.1186/1478-811X-9-26

E. Reboud, S. Elsen, S. Bouillot, G. Golovkine, P. Basso et al., Phenotype and toxicity of the recently discovered exlA-positive Pseudomonas aeruginosa strains collected worldwide, Environ Microbiol, vol.18, pp.3425-3439, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687748

A. Rietsch, I. Vallet-gely, S. L. Dove, and J. J. Mekalanos, ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa, Proc Natl Acad Sci, vol.102, pp.8006-8011, 2005.

P. H. Roy, S. G. Tetu, A. Larouche, L. Elbourne, S. Tremblay et al., Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7, PLoS One, vol.5, p.8842, 2010.

A. Roy-burman, R. H. Savel, S. Racine, B. L. Swanson, N. S. Revadigar et al., Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections, J Infect Dis, vol.183, pp.1767-1774, 2001.

V. Sagulenko, S. J. Thygesen, D. P. Sester, A. Idris, J. A. Cridland et al., AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC, Cell Death Differ, vol.20, pp.1149-1160, 2013.
DOI : 10.1038/cdd.2013.37

URL : https://www.nature.com/articles/cdd201337.pdf

H. Sato and D. W. Frank, ExoU is a potent intracellular phospholipase: ExoU phospholipase activity, Mol Microbiol, vol.53, pp.1279-1290, 2004.
DOI : 10.1111/j.1365-2958.2004.04194.x

H. Sato, D. W. Frank, C. J. Hillard, J. B. Feix, R. R. Pankhaniya et al., The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J, vol.22, pp.2959-2969, 2003.

K. Schroder and J. Tschopp, The inflammasomes, Cell, vol.140, pp.821-832, 2010.

M. J. Schultz, A. W. Rijneveld, S. Florquin, C. K. Edwards, C. A. Dinarello et al., Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia, Am J Physiol Lung Cell Mol Physiol, vol.282, pp.285-290, 2002.

J. Shi, Y. Zhao, Y. Wang, W. Gao, J. Ding et al., Inflammatory caspases are innate immune receptors for intracellular LPS, Nature, vol.514, pp.187-192, 2014.
DOI : 10.1038/nature13683

M. W. Silby, A. M. Cerde~-no-t-arraga, G. S. Vernikos, S. R. Giddens, R. W. Jackson et al., Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens, Genome Biol, vol.10, p.51, 2009.

M. Stanzani, Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes, Blood, vol.105, pp.2258-2265, 2005.

V. O. Stockwell, E. W. Davis, A. Carey, B. T. Shaffer, D. V. Mavrodi et al., , p.506, 2013.

, Appl Environ Microbiol, vol.79, pp.5272-5282

K. M. Storek and D. M. Monack, Bacterial recognition pathways that lead to inflammasome activation, Immunol Rev, vol.265, pp.112-129, 2015.
DOI : 10.1111/imr.12289

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/imr.12289

F. S. Sutterwala, L. A. Mijares, L. Li, Y. Ogura, B. I. Kazmierczak et al., Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome, J Exp Med, vol.204, pp.3235-3245, 2007.

S. W. Thrane, V. L. Taylor, L. Freschi, I. Kukavica-ibrulj, B. Boyle et al., The widespread multidrug-resistant serotype O12 Pseudomonas aeruginosa clone emerged through concomitant horizontal transfer of serotype antigen and antibiotic resistance gene clusters, vol.6, pp.1396-01315, 2015.

A. J. Vallis, V. Finck-barbançon, T. L. Yahr, and D. W. Frank, Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells, Infect Immun, vol.67, pp.2040-2044, 1999.

N. Ward and G. Moreno-hagelsieb, Quickly finding orthologs as reciprocal best hits with BLAT, LAST, and UBLAST: how much do we miss?, PLoS One, vol.9, p.101850, 2014.

M. Wilson and S. E. Lindow, Ecological similarity and coexistence of epiphytic ice-nucleating (ice) Pseudomonas syringae strains and a non-ice-nucleating (ice) biological control agent, Appl Environ Microbiol, vol.60, pp.3128-3137, 1994.

G. L. Winsor, D. K. Lam, L. Fleming, R. Lo, M. D. Whiteside et al., Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes, Nucleic Acids Res, vol.39, pp.596-600, 2011.

G. L. Winsor, E. J. Griffiths, R. Lo, B. K. Dhillon, J. A. Shay et al., Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database, Nucleic Acids Res, vol.44, pp.646-653, 2016.

J. Yang, Y. Zhao, J. Shi, and F. Shao, Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation, Proc Natl Acad Sci, vol.110, pp.14408-14413, 2013.

J. R. Yaron, S. Gangaraju, M. Y. Rao, X. Kong, L. Zhang et al., K1 regulates Ca21 to drive inflammasome signaling: dynamic visualization of ion flux in live cells, Cell Death Dis, vol.6, p.1954, 2015.

Y. Yoshino, T. Kitazawa, M. Kamimura, K. Tatsuno, H. Yotsuyanagi et al., Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature, J Infect Chemother, vol.17, pp.278-282, 2011.

Y. Zhao and F. Shao, The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus, Immunol Rev, vol.265, pp.85-102, 2015.

, Pseudomonas ExlA provokes pyroptotic macrophage death 19

V. , Society for Applied Microbiology, vol.00, pp.0-00, 2017.

M. Cisz, P. Lee, and A. Rietsch, ExoS controls the cell contact-mediated switch to effector secretion in Pseudomonas aeruginosa, J Bacteriol, vol.190, issue.8, pp.2726-2764, 2008.

P. Berthelot, I. Attree, P. Plésiat, J. Chabert, S. De-bentzmann et al., Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: evidence for a possible association between O serotypes and exo genes, J Infect Dis, vol.15, issue.4, pp.512-520, 2003.

V. N. Kos, M. Déraspe, R. E. Mclaughlin, J. D. Whiteaker, P. H. Roy et al., The Resistome of Pseudomonas aeruginosa in Relationship to Phenotypic Susceptibility, Antimicrob Agents Chemother, vol.59, issue.1, pp.427-463, 2015.

P. Basso, M. Ragno, S. Elsen, E. Reboud, G. Golovkine et al., Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis, vol.8, 2017.

S. Elsen, P. Huber, S. Bouillot, Y. Couté, P. Fournier et al., A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia, Cell Host Microbe, vol.15, issue.2, pp.164-76, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00993388

P. H. Roy, S. G. Tetu, A. Larouche, L. Elbourne, S. Tremblay et al., Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7, PLoS ONE, vol.5, issue.1, p.8842, 2010.

K. E. Nelson, C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert et al., Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Environ Microbiol, vol.4, issue.12, pp.799-808, 2002.

M. A. Molina, J. Ramos, and M. Espinosa-urgel, A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440, Environ Microbiol, 2006.

N. Vodovar, D. Vallenet, S. Cruveiller, Z. Rouy, V. Barbe et al., Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila, Nat Biotechnol, vol.24, issue.6, pp.673-682, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133119

C. Voisard, C. T. Bull, C. Keel, J. Laville, M. Maurhofer et al., Biocontrol of Root Diseases byPseudomonas fluorescens CHA0: Current Concepts and Experimental Approaches, Molecular Ecology of Rhizosphere Microorganisms, pp.67-89, 1994.

M. Wilson and S. E. Lindow, Ecological Similarity and Coexistence of Epiphytic Ice-Nucleating (Ice) Pseudomonas syringae Strains and a Non-Ice-Nucleating (Ice) Biological Control Agent, Appl Environ Microbiol, vol.60, issue.9, pp.3128-3165, 1994.

C. L. Kurz, S. Chauvet, E. Andrès, M. Aurouze, I. Vallet et al., Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening, EMBO J, vol.22, issue.7, pp.1451-60, 2003.

J. B. Lyczak, C. L. Cannon, and G. B. Pier, Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist, Microbes Infect, vol.2, pp.1051-1060, 2000.

H. Cao, R. L. Baldini, and L. G. Rahme, Common mechanisms for pathogens of plants and animals

, Annu. Rev. Phytopathol, vol.39, pp.259-284, 2001.

L. G. Rahme, F. M. Ausubel, H. Cao, E. Drenkard, B. C. Goumnerov et al., Plants and animals share functionally common bacterial virulence factors, Proc. Natl. Acad. Sci, vol.97, pp.8815-8821, 2000.

C. Brewer, R. G. Wunderink, C. B. Jones, and K. V. Leeper, Ventilator-associated pneumonia due to Pseudomonas aeruginosa, Chest, vol.109, pp.1019-1029, 1996.

V. N. Kos, M. Deraspe, R. E. Mclaughlin, J. D. Whiteaker, P. H. Roy et al., The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility, Antimicrob. Agents Chemother, vol.59, pp.427-436, 2015.

P. Huber, P. Basso, and E. Reboud, Attree, I. Pseudomonas aeruginosa renews its virulence factors, Environ. Microbiol. Rep, 2016.

P. H. Roy, S. G. Tetu, A. Larouche, L. Elbourne, S. Tremblay et al., Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7, PLoS ONE, vol.5, 2010.

, Toxins, vol.9, p.12, 2017.

C. K. Stover, X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, vol.406, pp.959-964, 2000.

D. G. Lee, J. M. Urbach, G. Wu, N. T. Liberati, R. L. Feinbaum et al., Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial, Genome Biol, vol.7, 2006.

, Pseudomonas Database. Available online: www.pseudomonas.com, 2017.

L. Wiehlmann, N. Cramer, and B. Tummler, Habitat-associated skew of clone abundance in the Pseudomonas aeruginosa population, Environ. Microbiol. Rep, vol.7, pp.955-960, 2015.

S. W. Thrane, V. L. Taylor, L. Freschi, I. Kukavica-ibrulj, B. Boyle et al., The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters, vol.6, pp.1396-1411, 2015.

R. Hilker, A. Munder, J. Klockgether, P. M. Losada, P. Chouvarine et al., Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment, Environ. Microbiol, vol.17, pp.29-46, 2015.

A. R. Hauser, The type III secretion system of Pseudomonas aeruginosa: Infection by injection, Nat. Rev. Microbiol, vol.7, pp.654-665, 2009.

A. Filloux, Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front. Microbiol. 2011, 2, 155

P. Berthelot, I. Attree, P. Plesiat, J. Chabert, S. De-bentzmann et al., Groupe d'Etudes des Septicémies à Pseudomonas aeruginosa. Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: Evidence for a possible association between O serotypes and exo genes, J. Infect. Dis, vol.188, pp.512-518, 2003.

C. M. Shaver and A. R. Hauser, Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung, Infect. Immun, vol.72, pp.6969-6977, 2004.

E. Reboud, S. Elsen, S. Bouillot, G. Golovkine, P. Basso et al., Phenotype and toxicity of the recently discovered exlA-positive Pseudomonas aeruginosa strains collected worldwide, Environ. Microbiol, vol.18, pp.3425-3439, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687748

S. Elsen, P. Huber, S. Bouillot, Y. Coute, P. Fournier et al., Attree, I. A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia, Cell Host Microbe, vol.15, pp.164-176, 2014.

P. Basso, P. Wallet, S. Elsen, E. Soleilhac, T. Henry et al., Attrée, I. Multiple Pseudomonas species secrete Exolysin-like toxins and provoke Caspase-1-dependent macrophage death, Environ. Microbiol, 2017.

P. Basso, M. Ragno, S. Elsen, E. Reboud, G. Golovkine et al., Attree, I. Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis, vol.8, 2017.

F. Jacob-dubuisson, J. Guerin, S. Baelen, and B. Clantin, Two-partner secretion: as simple as it sounds?, Res. Microbiol, vol.164, pp.583-595, 2013.

F. Jacob-dubuisson, C. Locht, and R. Antoine, Two-partner secretion in Gram-negative bacteria: A thrifty, specific pathway for large virulence proteins, Mol. Microbiol, vol.40, pp.306-313, 2001.

F. Jacob-dubuisson, V. Villeret, B. Clantin, A. S. Delattre, and N. Saint, First structural insights into the TpsB/Omp85 superfamily, Biol. Chem, vol.390, pp.675-684, 2009.

R. D. Finn, P. Coggill, R. Y. Eberhardt, S. R. Eddy, J. Mistry et al., The Pfam protein families database: towards a more sustainable future, Nucleic Acids Res, vol.44, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01294685

R. Ondraczek, S. Hobbie, and V. Braun, In vitro activation of the Serratia marcescens hemolysin through modification and complementation, J. Bacteriol, vol.174, pp.5086-5094, 1992.

V. Braun, B. Neuss, Y. Ruan, E. Schiebel, H. Schoffler et al., Identification of the Serratia marcescens hemolysin determinant by cloning into Escherichia coli, J. Bacteriol, vol.169, pp.2113-2120, 1987.

E. Schiebel, H. Schwarz, and V. Braun, Subcellular location and unique secretion of the hemolysin of Serratia marcescens, J. Biol. Chem, vol.264, pp.16311-16320, 1989.

, Toxins, vol.9, p.12, 2017.

T. M. Weaver, J. A. Smith, J. M. Hocking, L. J. Bailey, G. T. Wawrzyn et al., Structural and functional studies of truncated hemolysin A from Proteus mirabilis, J. Biol. Chem, vol.284, pp.22297-22309, 2009.

E. Schiebel and V. Braun, Integration of the Serratia marcescens haemolysin into human erythrocyte membranes, Mol. Microbiol, vol.3, pp.445-453, 1989.

R. Schonherr, M. Hilger, S. Broer, R. Benz, and V. Braun, Interaction of Serratia marcescens hemolysin (ShlA) with artificial and erythrocyte membranes. Demonstration of the formation of aqueous multistate channels, Eur. J. Biochem, vol.223, pp.655-663, 1994.

E. Reboud, S. Bouillot, S. Patot, B. Beganton, I. Attree et al., Pseudomonas aeruginosa ExIA and Serratia marcescens ShIA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation, PLoS Pathog, vol.13, 2017.

M. Dal-peraro and F. G. Van-der-goot, Pore-forming toxins: ancient, but never really out of fashion, Nat. Rev. Microbiol, vol.14, pp.77-92, 2016.

E. Faudry, G. Vernier, E. Neumann, V. Forge, and I. Attree, Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa, Biochemistry, vol.45, pp.8117-8123, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00379135

R. Hertle, Serratia marcescens hemolysin (ShIA) binds artificial membranes and forms pores in a receptor-independent manner, J. Membr. Biol, vol.189, pp.1-14, 2002.

S. Bouillot, P. Munro, B. Gallet, E. Reboud, F. Cretin et al., Pseudomonas aeruginosa Exolysin promotes bacterial growth in lungs, alveolar damage and bacterial dissemination, Sci. Rep, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01525980

N. Gonzalez-juarbe, C. A. Mares, C. A. Hinojosa, J. L. Medina, A. Cantwell et al., Requirement for Serratia marcescens cytolysin in a murine model of hemorrhagic pneumonia, Infect. Immun, vol.83, pp.614-624, 2015.

G. Mdel, M. Florez, N. Astudillo, A. Vazquez, F. Villaverde et al., The role of pneumolysin in mediating lung damage in a lethal pneumococcal pneumonia murine model, Respir. Res, vol.8, issue.3, 2007.

B. A. Diep, L. Chan, P. Tattevin, O. Kajikawa, T. R. Martin et al., Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury, Proc. Natl. Acad. Sci, vol.107, pp.5587-5592, 2010.

A. J. Greaney, S. H. Leppla, and M. Moayeri, Bacterial exotoxins and the inflammasome, Front. Immunol, vol.6, 2015.

H. Ebsen, M. Lettau, D. Kabelitz, and O. Janssen, Identification of SH3 Domain Proteins Interacting with the Cytoplasmic Tail of the A Disintegrin and Metalloprotease 10 (ADAM10), PLoS ONE, vol.9, 2014.

D. F. Seals and S. A. Courtneidge, The ADAMs family of metalloproteases: multidomain proteins with multiple functions, Genes Dev, vol.17, pp.7-30, 2003.

K. Horiuchi, S. Gall, M. Schulte, T. Yamaguchi, K. Reiss et al., Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx, Mol. Biol. Cell, vol.18, pp.176-188, 2007.

O. Nagano, D. Murakami, D. Hartmann, B. De-strooper, P. Saftig et al., Cell-matrix interaction via CD44 is independently regulated by different metal loproteinases activated in response to extracellular Ca2+ influx and PKC activation, J. Cell Biol, vol.165, pp.893-902, 2004.

I. Inoshima, N. Inoshima, G. A. Wilke, M. E. Powers, K. M. Frank et al., A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice, Nat. Med, vol.17, 2011.

M. E. Powers, H. K. Kim, Y. Wang, and J. Wardenburg, ADAM10 Mediates Vascular Injury Induced by Staphylococcus aureus alpha-Hemolysin, J. Infect. Dis, vol.206, pp.352-356, 2012.

K. Poole, E. Schiebel, and V. Braun, Molecular characterization of the hemolysin determinant of Serratia marcescens, J. Bacteriol, vol.170, pp.3177-3188, 1988.

, Toxins, vol.9, p.12, 2017.

J. Guérin, S. Bigot, R. Schneider, S. K. Buchanan, and F. Jacob-dubuisson, Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions, Front. Cell. Infect. Microbiol, vol.7, p.148, 2017.

S. Zambolin, B. Clantin, M. Chami, S. Hoos, A. Haouz et al., Structural basis for haem piracy from host haemopexin by Haemophilus influenzae, Nat. Commun, 2016.

E. Ruoslahti, RGD and other recognition sequences for integrins, Annu. Rev. Cell Dev. Biol, vol.12, pp.697-715, 1996.

Y. Ishibashi, D. A. Relman, and A. Nishikawa, Invasion of human respiratory epithelial cells by Bordetella pertussis: Possible role for a filamentous hemagglutinin Arg-Gly-Asp sequence and alpha 5 beta 1 integrin, Microb. Pathog, vol.30, pp.279-288, 2001.

S. M. Julio, C. S. Inatsuka, J. Mazar, C. Dieterich, D. A. Relman et al., Natural-host animal models indicate functional interchangeability between the filamentous haemagglutinins of Bordetella pertussis and Bordetella bronchiseptica and reveal a role for the mature C-terminal domain, but not the RGD motif, during infection, Mol. Microbiol, vol.71, pp.1574-1590, 2009.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, pp.845-858, 2015.

B. Clantin, H. Hodak, E. Willery, C. Locht, F. Jacob-dubuisson et al., The crystal structure of filamentous hemagglutinin secretion domain and its implications for the two-partner secretion pathway, Proc. Natl. Acad. Sci, vol.101, pp.6194-6199, 2004.

H. J. Yeo, T. Yokoyama, K. Walkiewicz, Y. Kim, S. Grass et al., The structure of the Haemophilus influenzae HMW1 pro-piece reveals a structural domain essential for bacterial two-partner secretion, J. Biol. Chem, vol.282, pp.31076-31084, 2007.

A. V. Kajava and A. C. Steven, The turn of the screw: variations of the abundant beta-solenoid motif in passenger domains of Type V secretory proteins, J. Struct. Biol, vol.155, pp.306-315, 2006.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

G. Walker, R. Hertle, and V. Braun, Activation of Serratia marcescens hemolysin through a conformational change, Infect. Immun, vol.72, pp.611-614, 2004.

F. C. Los, T. M. Randis, R. V. Aroian, and A. J. Ratner, Role of Pore-Forming Toxins in, Bacterial Infectious Diseases. Microbiol. Mol. Biol. Rev, vol.77, pp.173-207, 2013.

S. K. Cassidy and M. X. O'riordan, More Than a Pore: The Cellular Response to Cholesterol-Dependent Cytolysins, Toxins, vol.5, pp.618-636, 2013.

M. Romero, M. Keyel, G. L. Shi, P. Bhattacharjee, R. Roth et al., Intrinsic repair protects cells from pore-forming toxins by microvesicle shedding, Cell Death Differ, vol.24, pp.798-808, 2017.
DOI : 10.1038/cdd.2017.11

URL : https://www.nature.com/articles/cdd201711.pdf

G. Von-hoven, A. J. Rivas, C. Neukirch, M. Meyenburg, Q. Qin et al., Repair of a Bacterial Small beta-Barrel Toxin Pore Depends on Channel Width, vol.8, 2017.

T. R. Costa, C. Felisberto-rodrigues, A. Meir, M. S. Prevost, A. Redzej et al., Secretion systems in gram-negative bacteria: structural and mechanistic insights, Nat. Rev. Microbiol, vol.13, pp.343-359, 2015.

K. Sato, M. Naito, H. Yukitake, H. Hirakawa, M. Shoji et al., A protein secretion system linked to bacteroidete gliding motility and pathogenesis, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.276-281, 2010.

T. Izoré, V. Job, and A. Dessen, Biogenesis, regulation, and targeting of the type III secretion system, Structures, vol.19, pp.603-612, 2011.

C. S. Hayes, S. K. Aoki, and D. A. Low, Bacterial contact-dependent delivery systems, Annu. Rev. Genet, vol.44, pp.567-573, 2010.
DOI : 10.1146/annurev.genet.42.110807.091449

L. J. Worrall, E. Lameignere, and N. C. Strynadka, Structural overview of the bacterial injectisome, Curr. Opin. Microbiol, vol.14, pp.3-8, 2011.

J. Grijpstra, J. Arenas, L. Rutten, and J. Tommassen, Autotransporter secretion: varying on a theme, Res. Microbiol, vol.164, pp.562-582, 2013.

J. C. Leo, I. Grin, and D. Linke, Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane, Philos. Trans. R. Soc. Lond. B, vol.367, pp.1088-1101, 2012.

S. K. Aoki, R. Pamma, A. D. Hernday, J. E. Bickham, B. A. Braaten et al., Contact-dependent inhibition of growth in Escherichia coli, Science, vol.309, pp.1245-1248, 2005.

I. R. Henderson, F. Navarro-garcia, M. Desvaux, R. C. Fernandez, and D. , Ala'Aldeen, Type V protein secretion pathway: the autotransporter story, Mol. Biol. Rev, vol.68, pp.692-744, 2004.

P. Van-ulsen, S. Rahman, W. S. Jong, M. H. Dalekeschermerhorn, and J. Luirink, Type V secretion: from biogenesis to biotechnology, Biochim. Biophys. Acta, vol.1843, pp.1592-1611, 2014.

F. Jacob-dubuisson, J. Guerin, S. Baelen, and B. Clantin, Twopartner secretion: as simple as it sounds?, Res. Microbiol, vol.164, pp.583-595, 2013.

S. Bleves, V. Viarre, R. Salacha, G. P. Michel, A. Filloux et al., Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons, Int. J. Med. Microbiol, vol.300, pp.534-543, 2010.

R. Salacha, F. Kovacic, C. Brochier-armanet, S. Wilhelm, J. Tommassen et al., The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel type V secretion system, Environ. Microbiol, vol.12, pp.1498-1512, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00698204

S. Banerji and A. Flieger, Patatin-like proteins: a new family of lipolytic enzymes present in bacteria?, Microbiology, vol.150, pp.522-525, 2004.

S. Wilhelm, F. Rosneau, H. Kolmar, and K. E. Jaeger, Autotransporters with GDSL passenger domains: molecular physiology and biotechnological applications, Chembiochem, vol.12, pp.1476-1485, 2011.

C. Gendrin, C. Contreras-martel, S. Bouillot, S. Elsen, D. Lemaire et al., Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa, PLoS Pathog, vol.8, p.1002637, 2012.
URL : https://hal.archives-ouvertes.fr/cea-02019507

A. Dessen, J. Tang, H. Schmidt, M. Stahl, J. D. Clark et al., Crystal structure of human cytosolic phospholipase A 2 reveals a novel topology and catalytic mechanism, Cell, vol.97, pp.349-360, 1999.

M. Lucas, A. H. Gaspar, C. Pallara, A. L. Rojas, J. Fernandezrecio et al., Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.3514-3523, 2014.

H. J. Hirschberg, J. W. Simons, N. Dekker, and M. R. Egmond, Cloning, expression, purification and characterization of patatin, a novel phospholipase A, Eur. J. Biochem, vol.268, pp.5037-5044, 2001.

E. A. Dennis, J. Cao, Y. H. Hsu, V. Magrioti, and G. Kokotos, Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention, Chem. Rev, vol.111, pp.6130-6185, 2011.

A. S. Halavaty, D. Borek, G. H. Tyson, J. L. Veesenmeyer, L. Shuvalova et al.,

A. , Structure of the type III secretion effector protein ExoU in complex with its chaperone SpcU, PLoS One, vol.7, p.49388, 2012.

R. H. Schaloske and E. A. Dennis, The phospholipase A2 superfamily and its group numbering system, Biochim. Biophys. Acta, vol.1761, pp.1246-1259, 2006.

B. Ku, K. H. Lee, W. S. Park, C. S. Yang, J. Ge et al., VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages, PLoS Pathog, vol.8, p.1003082, 2012.

S. Rengachari, P. Aschauer, M. Schittmayer, N. Mayer, K. Gruber et al., Conformational plasticity and ligand binding of bacterial monoacylglycerol lipase, J. Biol. Chem, vol.288, pp.31093-31104, 2013.

C. Schalk-hihi, C. Schubert, R. Alexander, S. Bayoumy, J. C. Clemente et al., Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 Å resolution, Protein Sci, vol.20, pp.670-683, 2011.

L. Liu, C. Gao, D. Lan, and Y. Yang, Molecular basis for substrate selectivity of a mono-and diacylglycerol lipase from Malassezia globosa, Biochem. Biophys. Res. Commun, vol.424, pp.285-289, 2012.

T. Xu, L. Liu, S. Hou, J. Xu, B. Yang et al., Crystal structure of a mono-and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity, J. Struct. Biol, vol.178, pp.363-369, 2012.

H. Sato and D. W. Frank, ExoU is a potent intracellular phospholipase, Mol. Microbiol, vol.53, pp.1279-1290, 2004.

H. Sato and D. W. Frank, Intoxication of host cells by the T3SS phospholipase ExoU: PI(4,5), p.2

P. V. Da-mata-madeira, Structural Basis of Lipid Targeting and Destruction by the Type V Secretion System of Pseudomonas aeruginosa, J. Mol. Biol, vol.9, p.103127, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01342981

H. Sato, D. W. Frank, C. J. Hillard, J. B. Feix, R. R. Pankhaniya et al., The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU, EMBO J, vol.22, pp.2959-2969, 2003.

R. M. Phillips, D. A. Six, E. A. Dennis, and P. Ghosh, In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors, J. Biol. Chem, vol.278, pp.41326-41332, 2003.

B. Van-den and . Berg, Crystal structure of a full-length autotransporter, vol.396, pp.627-633, 2010.

E. Heinz and T. Lithgow, A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution, Front. Microbiol, vol.5, p.370, 2014.

G. H. Tyson, A. S. Halavaty, H. Kim, B. Geissler, M. Agard et al., A novel phosphatidylinositol 4,5-bisphosphate binding domain mediates plasma membrane localization of ExoU and other patatin-like phospholipases, J. Biol. Chem, vol.290, pp.2919-2937, 2015.

T. S. Istivan and P. J. Coloe, Phospholipase A in Gram-negative bacteria and its role in pathogenesis, Microbiology, vol.152, pp.1263-1274, 2006.

J. Xerry and R. J. Owen, Conservation and microdiversity of phospholipase A (pldA) gene of Helicobacter pylori infecting dyspeptics from different countries, FEMS Immunol. Med. Microbiol, vol.32, pp.17-25, 2001.

E. Schunder, P. Adam, F. Higa, K. A. Remer, U. Lorenz et al., Phospholipase PlaB is a new virulence factor of Legionella pneumophila, Int. J. Med. Microbiol, vol.300, pp.313-323, 2010.

J. L. Veesenmeyer, H. Howell, A. S. Halavaty, S. Ahrens, W. F. Anderson et al., Role of the membrane localization domain of the Pseudomonas aeruginosa effector protein ExoU in cytotoxicity, Infect. Immun, vol.78, pp.3346-3357, 2010.

W. Kabsch, XDS, Acta Crystallogr. Sect. D, vol.66, pp.125-132, 2010.

M. Krug, M. S. Weiss, U. Mueller, and U. Heinemann, XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS, J. Appl. Crystallogr, vol.45, pp.568-572, 2012.

E. De-la-fortelle and G. Bricogne, Maximum-likelihood heavyatom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods, Methods Enzymol, vol.276, pp.472-494, 1997.

C. Vonrhein, E. Blanc, P. Roversi, and G. Bricogne, Automated structure solution with autoSHARP, Methods Mol. Biol, vol.364, pp.215-230, 2007.
DOI : 10.1385/1-59745-266-1:215

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al.,

A. J. Grosse-kunstleve, N. W. Mccoy, R. D. Moriarty, R. J. Oeffner, D. C. Read et al., PHENIX: a comprehensive python-based system for macromolecular structure solution, Acta Crystallogr. Sect. D, vol.66, pp.213-221, 2010.

K. Cowtan, Recent developments in classical density modification, Acta Crystallogr. Sect. D, vol.66, pp.470-478, 2010.
DOI : 10.1107/s090744490903947x

URL : http://journals.iucr.org/d/issues/2010/04/00/ba5136/ba5136.pdf

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. Sect. D, vol.60, pp.2126-2132, 2004.
DOI : 10.1107/s0907444904019158

URL : http://journals.iucr.org/d/issues/2004/12/01/ba5070/ba5070.pdf

E. Blanc, P. Roversi, C. Vonrhein, C. Flensburg, S. M. Lea et al., Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT, Acta Crystallogr. Sect. D, vol.60, pp.2210-2221, 2004.

I. W. Davis, A. Leaver-fay, V. B. Chen, J. N. Block, G. J. Kapral et al., Molprobity: all-atom contacts and structure validation for proteins and nucleic acids, Nucleic Acids Res, vol.35, pp.375-383, 2007.
DOI : 10.1093/nar/gkm216

URL : https://academic.oup.com/nar/article-pdf/35/suppl_2/W375/9583893/gkm216.pdf

P. Schuck, Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling, Biophys. J, vol.78, pp.1609-1616, 2000.

E. Faudry, G. Vernier, E. Neumann, V. Forge, and I. Attree, Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa, Biochemistry, vol.45, pp.8117-8123, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00379135

, Structure of a PLA 1 from the T5SS of P. aeruginosa

P. V. Da-mata-madeira, Structural Basis of Lipid Targeting and Destruction by the Type V Secretion System of Pseudomonas aeruginosa, J. Mol. Biol, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01342981

, In vitro studies have demonstrated that GBPs act upstream of the AIM2 inflammasome [13,15,16] suggesting that the Gbp chr3 deficiency should phenocopy deficiencies in the AIM2 inflammasome. In a survival experiment, Gbp chr3-KO and Asc-/-were almost as susceptible to F. novicida infection (Fig 1A) although we consistently noticed that Gbp chr3 KO mice died slightly faster than Asc-/-mice. Similarly, Gbp chr3-KO and Asc-/-mice displayed very high bacterial burden both in the spleen and in the liver at day 2 post-infection (PI) with an average of 40-fold more bacteria than WT mice (Fig 1B). Surprisingly, at 48 h PI, IFN-? level in the serum of Gbp chr3-deficient mice reached WT levels while in agreement, We and others have previously reported that Gbp chr3-deficient and inflammasome-deficient mice (Aim2-/-, Asc-/-and Casp1/Casp11-/-mice) were highly susceptible to F. novicida infection

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 20173-10-02.

,

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 20176-10-02.

, A-D) Cell death was measured in real-time by assessing propidium iodide fluorescence in BMDMs of the indicated genotype infected with F. novicida at an MOI of 10. (B, D) Kinetics were quantified by calculating the corresponding area under the curve. (C) Aim2-/-BMDMs were treated with Non-Targeting (NT) or indicated gene-specific siRNA. (E-G) IL-1? levels in the supernatant of BMDMs of the indicated genotype treated (E, F) or not (G) with the indicated siRNA and infected with F. novicida at an MOI of 10 were quantified at 6 or 9 h post-infection as indicated. Graphs show mean and s.d. of triplicate assays. Data are representative of three independent experiments, Fig 3. F. novicida infection triggers AIM2-, NLRP3-dependent canonical and caspase-11 non-canonical inflammasomes activation in a hierarchical manner

,

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 20177-10-02.

, Indeed, caspase-11 expression knock-down strongly decreased the late secretion of IL-1? observed in Aim2-/-macrophages (Fig 3F). Nlrp3 expression knockdown or knock-out also consistently decreased IL-1? release in Aim2-/-macrophages (Fig 3F and 3G), 11 in the immune response of Aim2-/-macrophages was further strengthened by investigating IL-1? release

, This result suggests that while chromosome 3-encoded GBPs are instrumental in promoting fast inflammasome activation upon F. novicida infection, they are not strictly required to trigger inflammasome activation likely explaining the bi-phasic dependence of IL-18 serum level on GBPs (Fig 1D and 1E). Interestingly, analysis of macrophages deficient for both Asc and Gbp chr3 demonstrated a strong delay in propidium iodide incorporation/fluorescence increase compared to that of Asc-/-and Gbp chr3-KO BMDMs (S6A . novicida-infected BMDMs (Figs 2A-2F and 3A-3D and S3 and S4 Figs) revealed both known and unsuspected cell death pathways. In agreement with previously reported LDHrelease quantifications [13], IFN-? could complement Ifnar1-/-BMDMs inability to rapidly undergo cell death upon F. novicida infection (Fig 2). Furthermore, as previously described [35,38], Casp1/Casp11-/-BMDMs died significantly faster than Aim2-/-BMDMs (Fig 2A-2G, S3 Fig). cell retraction (S1 Movie, Fig 4B and 4C), a morphological feature of apoptosis. The ability of AIM2/ASC complex to recruit caspase-8 and trigger apoptosis in Casp1/Casp11-/-BMDMs [35,38] may explain the kinetics of cell death observed in Casp1/ Casp11-/-BMDMs. Indeed, at 10 h post-infection, we observed processing of the apoptotic caspases-8, 9 and 3 in infected Casp1/Casp11-/-BMDMs. As expected and as previously reported [35], we did not observe such apoptotic caspases processing in WT pyroptotic macrophages (Fig 4D). Furthermore, a strong DEVDase activity suggestive of active caspase-3 (or caspase-7) was observed in Casp1/Casp11-/-BMDMs but not in WT macrophages (Fig 4E and 4F), Altogether, our data demonstrate the involvement of at least two sequential cell death pathways (mediated by the sensors AIM2, NLRP3 and caspase-11) elicited in response to F. novicida infection. The extensive survival of Gbp chr3-KO BMDMs strongly suggests that GBPs contribute to activation of these three inflammasome complexes during F. novicida infection. Of note, at 24 h post-infection in absence of IFN-?, propidium iodide incorporation/ fluorescence was similar in Asc-/-and Gbp chr3-KO BMDMs

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 20178-10-02.

, In contrast, TX100 addition in Gbp chr3-KO BMDMs led to a strong increase in propidium iodide fluorescence indicating that the plasma membrane of most Gbp chr3-KO BMDMs was still intact (and not permeable to Fig 4. GBPs control apoptosis in inflammasome-deficient BMDMs. (A-C) Cell retraction in propidium iodide positive cells was assessed by quantifying wheat germ agglutinin staining intensity at (A) 90 minutes post Nigericin (Ng, a pyroptotis stimulus) or postGliotoxin (GlioTx, an apoptotic stimulus) or at (B, C) 21 h post-infection in (A, B) unprimed or (C) IFN-?-primed (100 U/ml for 16 h) BMDMs from the indicated genotypes infected (B, C) or not with F. novicida at a MOI of 10. (D) Lysates from BMDMs from the indicated genotypes infected or not with F. novicida at a MOI of 10 were analyzed by Western blotting analysis. IFN-?-priming (100 U/ml for 16 h) is indicated. The dotted vertical lines in Casp9 Western blot illustrate that the samples from a single original Western blot gel/ image were reorganized to fit the indicated order without any other image manipulation. The dotted horizontal lines in Casp8 and Casp3 Western blot indicate images from two different exposure times or from the use of two different primary antibodies (pro-and cleaved Casp3), respectively. (E, F) DEVDase activity was analyzed using a fluorogenic caspase3/7 substrate at 4 h post-GlioTx addition or at the indicated time post-infection in BMDMs from the indicated genotypes infected or not with F. novicida at a MOI of 10 and primed (F) or not (E) with IFN-? (100 U/ml for 16 h), Fig 2C-2F). Indeed, we did not detect any substantial propidium iodide incorporation/fluorescence increase in IFN-?-primed Gbp chr3-KO macrophages while IFN-?-primed Asc-/BMDMs died although with delayed kinetics compared with that of WT macrophages (Fig 2C-2F, S3B Fig

,

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 20179-10-02.

, GBPs and the inflammasomes positions GBPs as the molecular platform promoting the inflammasome supramolecular complex

. Gbps, 16] suggesting that GBPs mostly act to release bacterial DNA into the host cytosol. The polymeric nature of DNA might alleviate the requirement for host factors to promote AIM2 inflammasome activation. Indeed, cytosolic dsDNA could provide the scaffold for AIM2 oligomerization and subsequent inflammasome activation, cooperation with IRGB10, were demonstrated to participate in F. novicida lysis into the host cytosol, vol.13

, In vitro, in F. novicida-infected WT murine BMDMs, so far the only described cell death pathway was the AIM2 inflammasome. Yet, using various knock-out macrophages, we have demonstrated here that several canonical and noncanonical inflammasome complexes can be active during F. novicida infection. These alternative pathways were revealed thanks to the use of Aim2-/-BMDMs and are masked in WT macrophages. Interestingly, Harton and colleagues recently demonstrated that F. tularensis strains, this work, we demonstrate that GBPs are required not only for the AIM2 canonical inflammasome activation but for most of the programmed cell death pathways that can take place in F. novicida-infected macrophages

, effect of IFN-? treatment in each genotype, (D) comparison of IFN-?-treated Asc-/-and Gbp chr3-KO mice. (E-F) Bacterial burden in the liver and spleen 2 days after sc inoculation with 5×10 4 F. novicida (E) or or 5×10 3 F. novicida (F), Log-rank Cox-Mantel test (A-D)

,

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 201714-10-02.

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 201717-10-02.

, Protein lysates and caspase activity assay

, Fluorimetric analysis of caspase-3/ 7 activity was performed as previously described [35] by incubating protein extracts (4 ?g/sample) with Ac-DEVD-AFC (Enzo pharma, ALX-260-037) at 40 ?M final concentration, Following BMDMs infection, protein extracts were obtained by lysing cells in the following buffer (10 mM Hepes/KOH, 2mM EDTA, 0.1% CHAPS

, Cell lysates were probed with anti?-actin antibody (Sigma) at 1:2,000. , washed with PBS, incubated for 1 h with appropriate secondary antibodies at room temperature (1:500, AlexaFluor, Invitrogen), washed with PBS and mounted on glass slides with Vectashield containing 6-diamidino-2-phenylindole (DAPI) (Vector Labs). Antibodies used were chicken anti-Francisella (1:1000, a gift from D. Monack). Coverslips were imaged on a Zeiss LSM710. Quantification of GFP in GFP-expressing F. novicida was performed using an automated process in ImageJ (NIH, USA). iodide. For the microscopy in flow experiments, macrophages infected with GFP-expressing bacteria were, Antibodies used were rabbit anti-GBP2 and rabbit anti-GBP5 (1:1,000; 11854-1-AP/13220-1-AP; Proteintech)

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 201718-10-02.

, D) GBP2, GBP5 and ?-actin protein levels were analyzed by qRT-PCR (A-C) or western blotting analysis (D) in BMDMs from the indicated genotypes infected with F. novicida at a MOI of 10 for 4 h or treated for 16 h with 100 U/ml of IFN-?, IFN-? or 100 ng/ ml of Pam 3 CSK 4 (NT: not treated). (A-B) One-way ANOVA analysis was performed with Tukey's correction to compare GBP induction following IFN-? and IFN-? priming. (A-D)-infection, TX-100 (1% v/v final) was added leading to a strong increase in fluorescence in Gbp chr3-KO BMDMs but not in WT nor Asc-/-BMDMs confirming that most Gbp chr3-KO BMDMs had an intact (propidium iodide-impermeant) plasma membrane before TX-100 addition in contrast to most WT and Asc-/-BMDMs, S1 Fig. IFN-? priming induces a quantitative shift in GBPs levels. (A) GBP2, (B) GBP5 (C) ProIL-1? mRNA levels

. Fig, Time-lapse microscopy demonstrates that F. novicida-infected BMDMs trigger, in a hierarchical manner, various GBPs-dependent cell death pathways

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 201719-10-02.

, A-B) BMDMs from the indicated genotypes were primed or not overnight with 100 U/ml of IFN-?. BMDMs were infected with (A) F. novicida or (B) F. tularensis LVS at a multiplicity of infection (MOI) of 1 and 0.4, respectively. Intracellular bacterial burden was assessed by determination of viable GBPs-dependent, inflammasome-independent anti-Francisella immunity, S7 Fig. IFN-?-induced GBPs control intracellular bacterial replication, 201720-10-02.

, Interferon-inducible effector mechanisms in cell-autonomous immunity, References 1. MacMicking JD, vol.12, p.22531325, 2012.

D. Pilla-moffett, M. F. Barber, G. A. Taylor, and J. Coers, Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease, J Mol Biol, vol.428, p.27181197, 2016.

E. Meunier and P. Broz, Interferon-inducible GTPases in cell autonomous and innate immunity, Cell Microbiol, vol.18, p.26572694, 2016.

B. Prakash, G. J. Praefcke, R. L. Wittinghofer, A. Herrmann, and C. , Structure of human guanylate-binding protein 1 representing a unique class of, Nature, vol.403, p.10676968, 2000.

G. Praefcke and H. T. Mcmahon, The dynamin superfamily: universal membrane tubulation and fission molecules?, Nat Rev Mol Cell Biol, vol.5, p.15040446, 2004.

M. A. Olszewski, J. Gray, and D. J. Vestal, In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters, J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res, vol.26, p.16689661, 2006.

A. Kresse, C. Konermann, D. Degrandi, C. Beuter-gunia, J. Wuerthner et al., Analyses of murine GBP homology clusters based on in silico, in vitro and in vivo studies, BMC Genomics, vol.9, p.18402675, 2008.

M. Yamamoto, M. Okuyama, J. S. Ma, T. Kimura, N. Kamiyama et al., A cluster of interferongamma-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii, Immunity, vol.37, p.22795875, 2012.

D. Degrandi, E. Kravets, C. Konermann, C. Beuter-gunia, V. Klumpers et al., Murine guanylate binding protein 2 (mGBP2) controls Toxoplasma gondii replication, Proc Natl Acad Sci U S A, vol.110, p.23248289, 2013.
DOI : 10.1073/pnas.1205635110

URL : http://www.pnas.org/content/110/1/294.full.pdf

E. Meunier, M. S. Dick, R. F. Dreier, N. Schurmann, K. Broz et al., Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases, Nature, vol.509, p.24739961, 2014.

R. Finethy, I. Jorgensen, A. K. Haldar, M. R. De-zoete, T. Strowig et al., Guanylate Binding Proteins Enable Rapid Activation of Canonical and Noncanonical Inflammasomes in Chlamydia-Infected Macrophages, Infect Immun, vol.83, p.26416908, 2015.

D. M. Pilla, J. A. Hagar, A. K. Haldar, A. K. Mason, D. Degrandi et al., Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS, Proc Natl Acad Sci U S A, vol.111, p.24715728, 2014.

E. Meunier, P. Wallet, R. F. Dreier, S. Costanzo, A. L. Ruhl et al., Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida, Nat Immunol, vol.16, p.25774716, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01924091

A. R. Shenoy, D. A. Wellington, P. Kumar, H. Kassa, C. J. Booth et al., GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals, Science, vol.336, p.22461501, 2012.

S. M. Man, R. Karki, R. Malireddi, G. Neale, P. Vogel et al., The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection, Nat Immunol, vol.16, p.25774715, 2015.

S. M. Man, R. Karki, M. Sasai, D. E. Place, S. Kesavardhana et al., IRGB10 Liberates Bacterial Ligands for Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes, Cell, vol.167, p.27693356, 2016.

S. Martens, I. Parvanova, J. Zerrahn, G. Griffiths, G. Schell et al., Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases, PLoS Pathog, vol.1, p.16304607, 2005.

P. Wallet, B. Lagrange, and T. Henry, Francisella Inflammasomes: Integrated Responses to a Cytosolic Stealth Bacterium, Curr Top Microbiol Immunol, vol.397, p.27460813, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01927023

I. Golovliov, V. Baranov, Z. Krocova, H. Kovarova, and A. Sjostedt, An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells, Infect Immun, vol.71, p.14500514, 2003.

D. L. Clemens, B. Y. Lee, and M. A. Horwitz, Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages, Infect Immun, vol.72, p.15155622, 2004.

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 201723-10-02.

F. E. Nano, N. Zhang, S. C. Cowley, K. E. Klose, K. K. Cheung et al., A Francisella tularensis pathogenicity island required for intramacrophage growth, J Bacteriol, vol.186, pp.6430-6436, 2004.

/. Jb, , p.15375123, 2004.

H. Lindgren, I. Golovliov, V. Baranov, R. K. Ernst, M. Telepnev et al., Factors affecting the escape of Francisella tularensis from the phagolysosome, J Med Microbiol, vol.53, p.15358816, 2004.

J. E. Broms, A. Sjostedt, and M. Lavander, The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling, Front Microbiol, vol.1, p.21687753, 2010.

J. W. Jones, N. Kayagaki, P. Broz, T. Henry, K. Newton et al., Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis, Proc Natl Acad Sci U S A, vol.107, p.20457908, 2010.

T. Fernandes-alnemri, J. W. Yu, C. Juliana, L. Solorzano, S. Kang et al., The AIM2 inflammasome is critical for innate immunity to Francisella tularensis, Nat Immunol, vol.11, p.20351693, 2010.

V. A. Rathinam, Z. Jiang, S. N. Waggoner, S. Sharma, L. E. Cole et al., The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses, Nat Immunol, vol.11, p.20351692, 2010.

S. Mariathasan, D. S. Weiss, V. M. Dixit, and D. M. Monack, Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis, J Exp Med, vol.202, p.16230474, 2005.

R. Pierini, M. Perret, S. Djebali, C. Juruj, M. C. Michallet et al., ASC Controls IFN-gamma Levels in an IL-18-Dependent Manner in Caspase-1-Deficient Mice Infected with Francisella novicida, J Immunol, vol.191, p.23975862, 2013.

K. L. Elkins, T. R. Rhinehart-jones, S. J. Culkin, D. Yee, and R. K. Winegar, Minimal requirements for murine resistance to infection with Francisella tularensis LVS, Infect Immun, vol.64, p.8757866, 1996.

K. L. Elkins, S. M. Colombini, A. I. Meierovics, M. C. Chu, A. Y. Chou et al., Survival of secondary lethal systemic Francisella LVS challenge depends largely on interferon gamma, Microbes Infect, vol.12, p.19781659, 2010.

A. Sjostedt, R. J. North, and J. W. Conlan, The requirement of tumour necrosis factor-alpha and interferongamma for the expression of protective immunity to secondary murine tularaemia depends on the size of the challenge inoculum, Microbiol Read Engl, vol.142, p.8704976, 1996.

K. M. Storek, N. A. Gertsvolf, M. B. Ohlson, and D. M. Monack, cGAS and Ifi204 Cooperate To Produce Type I IFNs in Response to Francisella Infection, J Immunol Baltim Md, vol.194, p.25710914, 1950.

L. Wei, M. Fan, L. Xu, K. Heinrich, M. W. Berry et al., Bioinformatic analysis reveals cRel as a regulator of a subset of interferon-stimulated genes, J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res, vol.28, p.18715197, 2008.

D. Degrandi, C. Konermann, C. Beuter-gunia, A. Kresse, J. Wurthner et al., Extensive characterization of IFN-induced GTPases mGBP1 to mGBP10 involved in host defense, J Immunol Baltim Md, vol.179, pp.7729-7740, 1950.

R. Pierini, C. Juruj, M. Perret, C. L. Jones, P. Mangeot et al., AIM2/ASC triggers caspase-8dependent apoptosis in Francisella-infected caspase-1-deficient macrophages, Cell Death Differ, vol.19, p.22555457, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00965390

J. A. Hagar, D. A. Powell, Y. Aachoui, R. K. Ernst, and E. A. Miao, Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock, Science, vol.341, p.24031018, 2013.

N. Kayagaki, S. Warming, M. Lamkanfi, L. Vande-walle, S. Louie et al., Non-canonical inflammasome activation targets caspase-11, Nature, vol.479, p.22002608, 2011.

V. Sagulenko, S. J. Thygesen, D. P. Sester, A. Idris, J. A. Cridland et al., AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC, Cell Death Differ, vol.3, pp.1-12, 2013.

S. L. Fink and B. T. Cookson, Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages, Cell Microbiol, vol.8, p.16824040, 2006.

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 201724-10-02.

S. Mariathasan, D. S. Weiss, K. Newton, J. Mcbride, K. O'rourke et al., Cryopyrin activates the inflammasome in response to toxins and ATP, Nature, vol.440, p.16407890, 2006.

J. Pardo, C. Urban, E. M. Galvez, P. G. Ekert, U. Muller et al., The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice, J Cell Biol, vol.174, p.16893972, 2006.

B. B. Mishra, V. Rathinam, G. W. Martens, A. J. Martinot, H. Kornfeld et al., Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta, Nat Immunol, vol.14, p.23160153, 2013.

E. Hernandez-cuellar, K. Tsuchiya, H. Hara, R. Fang, S. Sakai et al., Cutting edge: nitric oxide inhibits the NLRP3 inflammasome, J Immunol Baltim Md, vol.189, p.23100513, 1950.

L. Galluzzi, S. A. Aaronson, J. Abrams, E. S. Alnemri, D. W. Andrews et al., Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes, Cell Death Differ, vol.16, p.19373242, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420382

J. A. Edwards, D. Rockx-brouwer, V. Nair, and J. Celli, Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFN-{gamma} activation of macrophages, Microbiology, 2009.

B. H. Kim, A. R. Shenoy, P. Kumar, R. Das, S. Tiwari et al., A family of IFN-gamma-inducible 65kD GTPases protects against bacterial infection, Science, vol.332, p.21551061, 2011.

L. Del-barrio, M. Sahoo, L. Lantier, J. M. Reynolds, I. Ceballos-olvera et al., Production of anti-LPS IgM by B1a B cells depends on IL-1beta and is protective against lung infection with Francisella tularensis LVS, PLoS Pathog, vol.11, p.25768794, 2015.

B. Kim, J. D. Chee, C. J. Bradfield, E. Park, P. Kumar et al., Interferon-induced guanylatebinding proteins in inflammasome activation and host defense, Nat Immunol, vol.17, p.27092805, 2016.

S. D. Tyrkalska, S. Candel, D. Angosto, V. Gomez-abellan, F. Martin-sanchez et al., Neutrophils mediate Salmonella Typhimurium clearance through the GBP4 inflammasome-dependent production of prostaglandins, Nat Commun, vol.7, p.27363812, 2016.

S. R. Morrone, M. Matyszewski, X. Yu, M. Delannoy, E. H. Egelman et al., Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC, Nat Commun, vol.6, p.7827, 2015.

T. Jin, A. Perry, J. Jiang, P. Smith, J. A. Curry et al., Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor, Immunity, vol.36, p.22483801, 2012.

S. Periasamy, H. T. Le, E. B. Duffy, H. Chin, and J. A. Harton, Inflammasome-Independent NLRP3 Restriction of a Protective Early Neutrophil Response to Pulmonary Tularemia, PLoS Pathog, vol.12, p.27926940, 2016.

E. Theisen and J. Sauer, Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy, Curr Top Microbiol Immunol, vol.397, p.27460808, 2016.

S. M. Crowley, L. A. Knodler, and B. A. Vallance, Salmonella and the Inflammasome: Battle for Intracellular Dominance, Curr Top Microbiol Immunol, vol.397, p.27460804, 2016.

I. Tattoli, L. Lembo-fazio, G. Nigro, L. Carneiro, E. Ferraro et al., Intracellular bacteriolysis triggers a massive apoptotic cell death in Shigella-infected epithelial cells, Microbes Infect, vol.10, p.18606244, 2008.

C. Kantari and H. Walczak, Caspase-8 and bid: caught in the act between death receptors and mitochondria, Biochim Biophys Acta, vol.1813, p.21295084, 2011.

L. Carneiro, L. H. Travassos, F. Soares, I. Tattoli, J. G. Magalhaes et al., Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells, Cell Host Microbe, vol.5, p.19218084, 2009.

Y. O. Zhao, A. Khaminets, J. P. Hunn, and J. C. Howard, Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death, PLoS Pathog, vol.5, p.19197351, 2009.

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 201725-10-02.

T. Thurston, S. A. Matthews, J. E. , A. E. Shao, F. Shenoy et al., Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death, Nat Commun, vol.7, p.27808091, 2016.

C. Bekpen, J. P. Hunn, C. Rohde, I. Parvanova, L. Guethlein et al., The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage

, Genome Biol, vol.6, p.16277747, 2005.

D. S. Weiss, A. Brotcke, T. Henry, J. J. Margolis, K. Chan et al., In vivo negative selection screen identifies genes required for Francisella virulence, Proc Natl Acad Sci U A, vol.104, pp.6037-6079, 2007.

K. Kuoppa, A. Forsberg, and A. Norqvist, Construction of a reporter plasmid for screening in vivo promoter activity in Francisella tularensis, FEMS Microbiol Lett, vol.205, p.11728719, 2001.

T. Henry, A. Brotcke, D. S. Weiss, L. J. Thompson, and D. M. Monack, Type I interferon signaling is required for activation of the inflammasome during Francisella infection, J Exp Med, vol.204, p.17452523, 2007.

P. Basso, P. Wallet, S. Elsen, E. Soleilhac, T. Henry et al., Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death, Environ Microbiol, p.28654176, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01911523

. Gbps-dependent, inflammasome-independent anti-Francisella immunity PLOS Pathogens, 201726-10-02.

, Addgene plasmid #12259), psPAX2 (Gift from Didier Trono, Addgene plasmid #12260), and LentiCas9-Blast or pKLV-U6gRNA(BbsI)-PGKpuro2ABFP

C. Juruj, V. L. Pierini, R. Perret, M. Py, B. F. Jamilloux et al., caspase-1 activity affects AIM2 speck formation/ stability through a negative feedback loop, Front Cell Infect Microbiol, pp.1-11, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00965029

M. Rigard, J. E. Broms, A. Mosnier, M. Hologne, A. Martin et al., Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence, PLoS Pathog, vol.12, p.1005821, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01546486

H. Lindgren, L. Stenman, A. Tarnvik, and A. Sjostedt, The contribution of reactive nitrogen and oxygen species to the killing of Francisella tularensis LVS by murine macrophages, Microbes Infect Inst Pasteur, vol.7, pp.467-75, 2005.

, Structure-function relationship of the Pseudomonas aeruginosa two-partner secreted toxin Exolysin

P. Basso, E. Faudry, M. Ragno, S. Elsen, and I. Attree,

I. ,

B. Pathogenesis, C. Responses, . Cnrs, . Irtsv, F. Cea/grenoble et al., ExlA secretion provokes damages of the eukaryotic membrane and cell lysis, which can be attenuated by addition of PEG 3350 during the infection. We further characterized the activity of ExlA by cellular and in vitro assays. We showed that the C-Terminal domain was absolutely required for cell lysis, and that RGD motifs were not essential for the action of ExlA on eukaryotic cells, 2014.

S. Elsen, P. Huber, S. Bouillot, Y. Couté, P. Fournier et al., A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia, Cell Host Microbe, vol.15, issue.2, pp.164-76, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00993388

D. Zhang, R. F. Souza, V. Anantharaman, L. M. Iyer, and L. Aravind, Po lymorphic toxin systems : comprehensive characterization of trafficking modes, processing mechanisms of action, immunity and ecology using comparative genomics, Biol Direct, vol.7, p.18, 2012.

E. Reboud, Phenotype and toxicity of the recently discovered exlA-positive Pseudomonas aeruginosa strains collected worldwide, Environmental Microbiology, vol.18, p.3425, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687748

P. Huber, Pseudomonas aeruginosa renews its virulence factors, Environmental Microbiology Reports, vol.8, p.564, 2016.

P. V. Da-mata-madeira, Structural Basis of Lipid Targeting and Destruction by the Type V Secretion System of Pseudomonas aeruginosa, Journal of Molecular Biology, vol.428, p.1790, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01342981

P. Wallet, IFN-? extends the immune functions of Guanylate Binding Proteins to inflammasome-independent antibacterial activities during Francisella novicida infection, PLoS Pathogens, vol.13, p.1006630, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01911420

B. Bonnemain, Pharmaciens militaires français lors de l'expédition de Tunisie, vol.95, p.163, 2008.

J. B. Lyczak, C. L. Cannon, and G. B. Pier, Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist, Microbes and infection, Institut Pasteur, vol.2, p.1051, 2000.

T. R. Oberhofer, Growth of nonfermentative bacteria at 42??c, Journal of Clinical Microbiology, vol.10, p.800, 1979.

K. Kerr and A. Snelling, Pseudomonas aeruginosa: a formidable and everpresent adversary, Journal of Hospital Infection, vol.73, p.338, 2009.

M. F. Moradali, S. Ghods, and B. H. Rehm, Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence, Frontiers in Cellular and Infection Microbiology, vol.7, 2017.

M. D. Obritsch, Nosocomial Infections Due to Multidrug-Resistant Pseudomonas aeruginosa : Epidemiology and Treatment Options, Pharmacotherapy, vol.25, p.1353, 2005.

V. D. Rosenthal, International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module, American Journal of Infection Control, vol.44, p.1495, 2016.

M. S. Thomas and S. Wigneshweraraj, Regulation of virulence gene expression, Virulence, vol.5, p.832, 2014.

S. L. Vogt, The stringent response is essential for pseudomonas aeruginosa virulence in the rat lung agar bead and drosophila melanogaster feeding models of infection, Infection and Immunity, vol.79, p.4094, 2011.

F. Aujoulat, From environment to man: Genome evolution and adaptation of human opportunistic bacterial pathogens, Genes, vol.3, p.191, 2012.

C. K. Stover, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, vol.406, p.959, 2000.

K. Mathee, Dynamics of Pseudomonas aeruginosa genome evolution, Proceedings of the National Academy of Sciences, vol.105, p.3100, 2008.

B. Valot, What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated, PLOS ONE, vol.10, p.126468, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01306062

J. Klockgether, Pseudomonas aeruginosa Genomic Structure and Diversity, Frontiers in Microbiology, vol.2, 2011.

V. L. Kung, E. A. Ozer, and A. R. Hauser, The Accessory Genome of Pseudomonas aeruginosa, Microbiology and Molecular Biology Reviews, vol.74, p.621, 2010.

P. H. Roy, Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7, PloS one, vol.5, p.8842, 2010.

J. J. Varga, Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains, BMC Genomics, vol.16, p.883, 2015.

L. Cullen and S. Mcclean, Bacterial Adaptation during Chronic Respiratory Infections, Pathogens, vol.4, p.66, 2015.

E. B. Breidenstein, C. De-la-fuente-núñez, and R. E. Hancock, Pseudomonas aeruginosa: all roads lead to resistance, Trends in Microbiology, vol.19, p.419, 2011.

E. E. Smith, Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients, Proceedings of the National Academy of Sciences, vol.103, p.8487, 2006.

R. Adamo, Pseudomonas aeruginosa Flagella Activate Airway Epithelial Cells through asialoGM1 and Toll-Like Receptor 2 as well as Toll-Like Receptor 5, American Journal of Respiratory Cell and Molecular Biology, vol.30, p.627, 2004.

E. Mahenthiralingam, M. E. Campbell, and D. P. Speert, Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis, Infection and immunity, vol.62, p.596, 1994.

C. Winstanley, S. O'brien, and M. A. Brockhurst, Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections, Trends in Microbiology, vol.24, p.327, 2016.

A. R. Hauser, The type III secretion system of Pseudomonas aeruginosa: infection by injection, Nature Reviews Microbiology, vol.7, p.654, 2009.

D. L. Mcewan, N. V. Kirienko, and F. M. Ausubel, Host Translational Inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an Immune Response in Caenorhabditis elegans, Cell Host & Microbe, vol.11, p.364, 2012.

A. J. Laarman, Pseudomonas aeruginosa Alkaline Protease Blocks Complement Activation via the Classical and Lectin Pathways, The Journal of Immunology, vol.188, p.386, 2012.

G. Golovkine, VE-Cadherin Cleavage by LasB Protease from Pseudomonas aeruginosa Facilitates Type III Secretion System Toxicity in Endothelial Cells, PLoS Pathogens, vol.10, p.1003939, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458199

A. Ghafoor, I. D. Hay, and B. H. Rehm, Role of Exopolysaccharides in Pseudomonas aeruginosa Biofilm Formation and Architecture, Applied and Environmental Microbiology, vol.77, p.5238, 2011.

E. Kipnis, T. Sawa, and J. Wiener-kronish, Targeting mechanisms of Pseudomonas aeruginosa pathogenesis, Médecine et Maladies Infectieuses, vol.36, p.78, 2006.

N. Høiby, O. Ciofu, and T. Bjarnsholt, Pseudomonas aeruginosa biofilms in cystic fibrosis, Future Microbiology, vol.5, p.1663, 2010.

M. Hentzer, Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function, Journal of Bacteriology, vol.183, p.5395, 2001.

T. I. Nicas and R. E. Hancock, Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant, Journal of bacteriology, vol.153, p.281, 1983.

W. Wu, MucA-Mediated Coordination of Type III Secretion and Alginate Synthesis in Pseudomonas aeruginosa, Journal of Bacteriology, vol.186, p.7575, 2004.

L. F. Wood and D. E. Ohman, Identification of Genes in the 22 Regulon of Pseudomonas aeruginosa Required for Cell Envelope Homeostasis in Either the Planktonic or the Sessile Mode of Growth, mBio, vol.3, p.94, 2012.

E. S. Garrett, D. Perlegas, and D. J. Wozniak, Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU), Journal of bacteriology, vol.181, p.7401, 1999.

A. L. Goodman, A Signaling Network Reciprocally Regulates Genes Associated with Acute Infection and Chronic Persistence in Pseudomonas aeruginosa, Developmental Cell, vol.7, p.745, 2004.

A. Brencic, The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs, Molecular Microbiology, vol.73, p.434, 2009.

P. Jorth, Regional Isolation Drives Bacterial Diversification within Cystic Fibrosis Lungs, Cell Host & Microbe, vol.18, p.307, 2015.

C. Winstanley, S. O'brien, and M. A. Brockhurst, Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections, Trends in Microbiology, vol.24, p.327, 2016.

R. and L. Berre, Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia*, Critical Care Medicine, vol.39, p.2113, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00758242

A. Roy-burman, Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections, The Journal of Infectious Diseases, vol.183, p.1767, 2001.

A. R. Hauser, The type III secretion system of Pseudomonas aeruginosa: infection by injection, Nature Reviews Microbiology, vol.7, p.654, 2009.

T. R. Costa, Secretion systems in Gram-negative bacteria: structural and mechanistic insights, Nature Reviews Microbiology, vol.13, p.343, 2015.

G. R. Cornelis, The type III secretion injectisome, Nature Reviews Microbiology, vol.4, p.811, 2006.

T. Morita-ishihara, Shigella Spa33 Is an Essential C-ring Component of Type III Secretion Machinery, Journal of Biological Chemistry, vol.281, p.599, 2006.

A. Pastor, PscF is a major component of the Pseudomonas aeruginosa type III secretion needle, FEMS Microbiology Letters, vol.253, p.95, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00378748

P. J. Matteï, Membrane targeting and pore formation by the type III secretion system translocon, FEBS Journal, vol.278, p.414, 2011.

V. Job, Structural Basis of Chaperone Recognition of Type III Secretion System Minor Translocator Proteins, Journal of Biological Chemistry, vol.285, p.23224, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542680

A. Filloux, Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function, Frontiers in Microbiology, vol.2, 2011.

D. Dacheux, Pore-forming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages, Molecular Microbiology, vol.40, p.76, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00192534

T. L. Yahr, J. Goranson, and D. W. Frank, Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway, Molecular microbiology, vol.22, p.991, 1996.

M. L. Mccaw, ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon, Molecular microbiology, vol.46, p.1123, 2002.

N. Dasgupta, A novel anti-anti-activator mechanism regulates expression of the Pseudomonas aeruginosa type III secretion system, Molecular Microbiology, vol.53, p.297, 2004.

M. L. Urbanowski, E. D. Brutinel, and T. L. Yahr, Translocation of ExsE into Chinese Hamster Ovary Cells Is Required for Transcriptional Induction of the Pseudomonas aeruginosa Type III Secretion System, Infection and Immunity, vol.75, p.4432, 2007.

T. Sawa, Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review, Critical Care, vol.18, p.668, 2014.

C. Vareechon, Pseudomonas aeruginosa Effector ExoS Inhibits ROS Production in Human Neutrophils, Cell Host & Microbe, vol.21, p.611, 2017.

S. M. Rangel, The Role of ExoS in Dissemination of Pseudomonas aeruginosa during Pneumonia, PLOS Pathogens, vol.11, p.1004945, 2015.

S. Wood, J. Goldufsky, and S. H. Shafikhani, Pseudomonas aeruginosa ExoT Induces Atypical Anoikis Apoptosis in Target Host Cells by Transforming Crk Adaptor Protein into a Cytotoxin, PLOS Pathogens, vol.11, p.1004934, 2015.

P. Huber, Sequential inactivation of Rho GTPases and Lim kinase by Pseudomonas aeruginosa toxins ExoS and ExoT leads to endothelial monolayer breakdown, Cellular and Molecular Life Sciences, vol.71, p.1927, 2014.

Y. Sun, ExoS and ExoT ADP Ribosyltransferase Activities Mediate Pseudomonas aeruginosa Keratitis by Promoting Neutrophil Apoptosis and Bacterial Survival, The Journal of Immunology, vol.188, p.1884, 2012.

E. M. Harrison, Pathogenicity Islands PAPI-1 and PAPI-2 Contribute Individually and Synergistically to the Virulence of Pseudomonas aeruginosa Strain PA14, Infection and Immunity, vol.78, p.1437, 2010.

B. R. Kulasekara, Acquisition and Evolution of the exoU Locus in Pseudomonas aeruginosa, Journal of Bacteriology, vol.188, p.4037, 2006.

C. Gendrin, Structural Basis of Cytotoxicity Mediated by the Type III Secretion Toxin ExoU from Pseudomonas aeruginosa, PLoS Pathogens, vol.8, p.1002637, 2012.
URL : https://hal.archives-ouvertes.fr/cea-02019507

S. Bouillot, I. Attrée, and P. Huber, Pharmacological Activation of Rap1 Antagonizes the Endothelial Barrier Disruption Induced by Exotoxins ExoS and ExoT of Pseudomonas aeruginosa, Infection and Immunity, vol.83, p.1820, 2015.

M. C. Plotkowski, ExoU-induced procoagulant activity in Pseudomonas aeruginosa-infected airway cells, European Respiratory Journal, vol.32, p.1591, 2008.

M. H. Diaz and A. R. Hauser, Pseudomonas aeruginosa Cytotoxin ExoU Is Injected into Phagocytic Cells during Acute Pneumonia, Infection and Immunity, vol.78, p.1447, 2010.

U. Beckert, ExoY from Pseudomonas aeruginosa is a nucleotidyl cyclase with preference for cGMP and cUMP formation, Biochemical and Biophysical Research Communications, vol.450, p.870, 2014.

C. D. Ochoa, Pseudomonas aeruginosa Exotoxin Y Is a Promiscuous Cyclase That Increases Endothelial Tau Phosphorylation and Permeability, Journal of Biological Chemistry, vol.287, p.25407, 2012.

M. T. Ganter, Role of Small GTPases and ?v?5 Integrin in Pseudomonas aeruginosa-Induced Increase in Lung Endothelial Permeability, American Journal of Respiratory Cell and Molecular Biology, vol.40, p.108, 2009.

C. D. Ochoa, Pseudomonas aeruginosa Exotoxin Y Is a Promiscuous Cyclase That Increases Endothelial Tau Phosphorylation and Permeability, Journal of Biological Chemistry, vol.287, p.25407, 2012.

A. Belyy, Actin activates Pseudomonas aeruginosa ExoY nucleotidyl cyclase toxin and ExoY-like effector domains from MARTX toxins, Nature Communications, vol.7, p.13582, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01424743

H. Bähre, cCMP and cUMP occur in vivo, Biochemical and Biophysical Research Communications, vol.460, p.909, 2015.

K. Garey, Prevalence of Type III Secretion Protein Exoenzymes and Antimicrobial Susceptibility Patterns from Bloodstream Isolates of Patients with Pseudomonas aeruginosa Bacteremia, Journal of Chemotherapy, vol.20, p.714, 2008.

E. Latz, T. S. Xiao, and A. Stutz, Activation and regulation of the inflammasomes, Nature Reviews Immunology, vol.13, p.397, 2013.

L. M. Faure, Characterization of a novel two-partner secretion system implicated in the virulence of Pseudomonas aeruginosa, Microbiology, vol.160, p.1940, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458200

F. S. Sutterwala, Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome, The Journal of Experimental Medicine, vol.204, p.3235, 2007.

E. A. Miao, Pseudomonas aeruginosa activates caspase 1 through Ipaf, Proceedings of the National Academy of Sciences, vol.105, p.2562, 2008.

J. Yang, Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation, Proceedings of the National Academy of Sciences, vol.110, p.14408, 2013.

D. Ince, F. S. Sutterwala, and T. L. Yahr, Secretion of Flagellar Proteins by the Pseudomonas aeruginosa Type III Secretion-Injectisome System, Journal of Bacteriology, vol.197, 2003.

L. Monlezun, PscI is a type III secretion needle anchoring protein with in vitro polymerization capacities, Molecular Microbiology, vol.96, p.419, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01148992

I. Bianconi, Positive Signature-Tagged Mutagenesis in Pseudomonas aeruginosa: Tracking Patho-Adaptive Mutations Promoting Airways Chronic Infection, PLoS Pathogens, vol.7, p.1001270, 2011.

N. T. Liberati, An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants, Proceedings of the National Academy of Sciences, vol.103, p.2833, 2006.

D. Skurnik, A Comprehensive Analysis of In Vitro and In Vivo Genetic Fitness of Pseudomonas aeruginosa Using High-Throughput Sequencing of Transposon Libraries, PLoS Pathogens, vol.9, p.1003582, 2013.

A. Beaussart, Nanoscale Adhesion Forces of Pseudomonas aeruginosa Type IV Pili, ACS Nano, vol.8, p.10723, 2014.

T. L. Leighton, Biogenesis of P seudomonas aeruginosa type IV pili and regulation of their function, Environmental Microbiology, vol.17, p.4148, 2015.

J. Koo, L. L. Burrows, and P. L. Howell, Decoding the roles of pilotins and accessory proteins in secretin escort services, FEMS Microbiology Letters, vol.328, p.1, 2012.

Y. W. Chang, Architecture of the type IVa pilus machine, Science, vol.351, 2016.

K. V. Korotkov, T. Gonen, and W. G. Hol, Secretins: Dynamic channels for protein transport across membranes, Trends in Biochemical Sciences, vol.36, p.433, 2011.

S. Graupner, Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI, Journal of Bacteriology, vol.183, p.4694, 2001.

H. K. Takhar, The platform protein is essential for type IV pilus biogenesis, Journal of Biological Chemistry, vol.288, p.9721, 2013.

C. Li, Type IV Pilus Proteins Form an Integrated Structure Extending from the Cytoplasm to the Outer Membrane, PLoS ONE, vol.8, 2013.

M. S. Strom and S. Lory, Structure-Function and Biogenesis of the Type Iv Pili, Annual Review of Microbiology, vol.47, p.565, 1993.

L. L. Burrows, Pseudomonas aeruginosa Twitching Motility: Type IV Pili in Action, vol.66, p.493, 2012.

C. L. Giltner, Y. Nguyen, and L. L. Burrows, Type IV Pilin Proteins: Versatile Molecular Modules, vol.76, p.740, 2012.

J. V. Kus, Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients, Microbiology, vol.150, p.1315, 2004.

J. M. Boyd, T. Koga, and S. Lory, Identification and characterization of PilS, an essential regulator of pilin expression in Pseudomonas aeruginosa, Molecular and General Genetics, vol.243, p.565, 1994.

H. Mikkelsen, M. Sivaneson, and A. Filloux, Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa, Environmental Microbiology, vol.13, p.1666, 2011.

N. B. Fulcher, The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity, Molecular Microbiology, vol.76, p.889, 2010.

S. E. West, A. K. Sample, and L. J. Runyen-janecky, The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family, Journal of bacteriology, vol.176, p.7532, 1994.

K. K. Lee, The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit, Mol Microbiol, vol.11, p.705, 1994.

M. D. Johnson, Pseudomonas aeruginosa PilY1 binds integrin in an RGDand calcium-dependent manner, PLoS ONE, vol.6, p.1, 2011.

C. Sundin, Type IV pili are not specifically required for contact dependent translocation of exoenzymes by Pseudomonas aeruginosa, Microbial Pathogenesis, vol.33, p.265, 2002.

H. B. Sheth, The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence ?, GalNAc(1?4)?Gal found in glycosphingolipids asialo-GM 1 and asialo-GM, vol.2, p.715, 1994.

J. C. Comolli, Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa, Infection and immunity, vol.67, p.3207, 1999.

I. Zolfaghar, D. J. Evans, and S. M. Fleiszig, Twitching Motility Contributes to the Role of Pili in Corneal Infection Caused by Pseudomonas aeruginosa, Infection and Immunity, vol.71, p.5389, 2003.

A. Persat, Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa, Proceedings of the National Academy of Sciences, vol.112, p.7563, 2015.

E. V. Davies, Temperate phages both mediate and drive adaptive evolution in pathogen biofilms, Proceedings of the National Academy of Sciences, vol.113, p.8266, 2016.

D. Roux, Fitness cost of antibiotic susceptibility during bacterial infection, Science Translational Medicine, vol.7, pp.297-114, 2015.

S. Wang, Coordination of Swarming Motility, Biosurfactant Synthesis, and Biofilm Matrix Exopolysaccharide Production in Pseudomonas aeruginosa, Applied and Environmental Microbiology, vol.80, p.6724, 2014.

J. C. Conrad, Flagella and Pili-Mediated Near-Surface Single-Cell Motility Mechanisms in P. aeruginosa, Biophysical Journal, vol.100, p.1608, 2011.

G. Golovkine, Pseudomonas aeruginosa Transmigrates at Epithelial CellCell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion, PLOS Pathogens, vol.12, p.1005377, 2016.

M. Floyd, Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa, PLOS Pathogens, vol.12, p.1005987, 2016.

D. Parker and A. Prince, Innate Immunity in the Respiratory Epithelium, American Journal of Respiratory Cell and Molecular Biology, vol.45, p.189, 2011.

Z. Zhang, Human Airway Epithelial Cells Sense Pseudomonas aeruginosa Infection via Recognition of Flagellin by Toll-Like Receptor 5, Infection and Immunity, vol.73, p.7151, 2005.

C. J. Blohmke, TLR5 as an Anti-Inflammatory Target and Modifier Gene in Cystic Fibrosis, The Journal of Immunology, vol.185, p.7731, 2010.

R. Ramphal, C. Guay, and G. B. Pier, Pseudomonas aeruginosa adhesins for tracheobronchial mucin, Infection and Immunity, vol.55, p.600, 1987.

J. Bruzaud, Flagella but not type IV pili are involved in the initial adhesion of Pseudomonas aeruginosa PAO1 to hydrophobic or superhydrophobic surfaces, Colloids and Surfaces B: Biointerfaces, vol.131, p.59, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01151646

I. Bucior, J. F. Pielage, and J. N. Engel, Pseudomonas aeruginosa Pili and Flagella Mediate Distinct Binding and Signaling Events at the Apical and Basolateral Surface of Airway Epithelium, PLoS Pathogens, vol.8, p.1002616, 2012.

C. P. Tanase, I. Ogrezeanu, and C. Badiu, Molecular Pathology of Pituitary Adenomas, p.53, 2012.

A. Y. Bhagirath, Cystic fibrosis lung environment and Pseudomonas aeruginosa infection, BMC Pulmonary Medicine, vol.16, p.1, 2016.

M. Sahoo, Role of the Inflammasome, IL-1 ?, and IL-18 in Bacterial Infections, The Scientific World JOURNAL, vol.11, p.2037, 2011.

S. Elsen, A Type III Secretion Negative Clinical Strain of Pseudomonas aeruginosa Employs a Two-Partner Secreted Exolysin to Induce Hemorrhagic Pneumonia, Cell Host & Microbe, vol.15, p.164, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00993388

T. Horng, G. M. Barton, R. Medzhitov, and N. Title, Nature Immunology, vol.2, p.835, 2001.

P. R. Imbert, A Pseudomonas aeruginosa TIR effector mediates immune evasion by targeting UBAP1 and TLR adaptors, The EMBO Journal, p.201695343, 2017.

F. Cadoret, Txc, a New Type II Secretion System of Pseudomonas aeruginosa Strain PA7, Is Regulated by the TtsS/TtsR Two-Component System and Directs Specific Secretion of the CbpE Chitin-Binding Protein, Journal of Bacteriology, vol.196, p.2376, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458218

P. Braun, Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa, Journal of Bacteriology, vol.180, p.3467, 1998.

S. Bleves, Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons, International journal of medical microbiology : IJMM, vol.300, p.534, 2010.

H. M. Lu and S. Lory, A specific targeting domain in mature exotoxin A is required for its extracellular secretion from Pseudomonas aeruginosa, The EMBO journal, vol.15, p.429, 1996.

L. S. Engel, Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa, The Journal of biological chemistry, vol.273, p.16792, 1998.

J. L. Malloy, Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions, AJP: Lung Cellular and Molecular Physiology, vol.288, p.409, 2004.

A. O. Azghani, E. J. Miller, and B. T. Peterson, Virulence factors from Pseudomonas aeruginosa increase lung epithelial permeability, Lung, vol.178, p.261, 2000.

F. Casilag, The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition, Infection and Immunity, vol.84, p.162, 2016.

G. Ball, A novel type II secretion system in Pseudomonas aeruginosa, Molecular Microbiology, vol.43, p.475, 2002.

J. C. Leo, I. Grin, and D. Linke, Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol.367, p.1088, 2012.

F. Jacob-dubuisson, R. Fernandez, and L. Coutte, Protein Secretion through Autotransporter and Two-Partner Pathways, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol.1694, p.235, 2004.

F. Jacob-dubuisson, C. Locht, and R. Antoine, Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins, Molecular microbiology, vol.40, p.306, 2001.

J. Guérin, Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions, Frontiers in Cellular and Infection Microbiology, vol.7, 2017.

I. R. Henderson, F. Navarro-garcia, and J. P. Nataro, The Great Escape: Structure and Function of the Autotransporter Proteins, Trends in Microbiology, vol.6, p.370, 1998.

P. Natale, T. Brüser, and A. J. Driessen, Sec-and Tat-mediated protein secretion across the bacterial cytoplasmic membrane-Distinct translocases and mechanisms, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.1778, p.1735, 2008.

T. Palmer and B. C. Berks, The twin-arginine translocation (Tat) protein export pathway, Nature Reviews Microbiology, 2012.

I. R. Henderson, Type V Protein Secretion Pathway: the Autotransporter Story, vol.68, p.692, 2004.

P. Emsley, Structure of Bordetella pertussis virulence factor P.69 pertactin, Nature, vol.381, p.90, 1996.

B. R. Otto, Crystal Structure of Hemoglobin Protease, a Heme Binding Autotransporter Protein from Pathogenic Escherichia coli, Journal of Biological Chemistry, vol.280, p.17339, 2005.

B. Van-den and . Berg, Crystal Structure of a Full-Length Autotransporter, vol.396, p.627, 2010.

D. C. Oliver, A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain, Molecular microbiology, vol.47, p.1367, 2003.

J. J. Velarde and J. P. Nataro, Hydrophobic Residues of the Autotransporter EspP Linker Domain Are Important for Outer Membrane Translocation of Its Passenger, Journal of Biological Chemistry, vol.279, p.31495, 2004.

F. Berthiaume, N. Rutherford, and M. Mourez, Mutations affecting the biogenesis of the AIDA-I autotransporter, Research in Microbiology, vol.158, p.348, 2007.

C. J. Oomen, Structure of the Translocator Domain of a Bacterial Autotransporter, The EMBO Journal, vol.23, p.1257, 2004.

T. J. Barnard, Autotransporter structure reveals intra-barrel cleavage followed by conformational changes, Nature Structural & Molecular Biology, vol.14, p.1214, 2007.
DOI : 10.1038/nsmb1322

URL : http://europepmc.org/articles/pmc2551741?pdf=render

M. Remmert, Evolution of Outer Membrane ?-Barrels from an Ancestral ?? Hairpin, Molecular Biology and Evolution, vol.27, p.1348, 2010.

J. Pohlner, Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease, Nature, vol.325, p.458, 1987.

Q. Ma, Protein secretion systems of Pseudomonas aeruginosa and P. fluorescens, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.1611, p.223, 2003.

A. Filloux, The underlying mechanisms of type II protein secretion, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol.1694, p.163, 2004.

S. Wilhelm, J. Tommassen, and K. E. Jaeger, A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa, Journal of bacteriology, vol.181, p.6977, 1999.

S. Wilhelm, The Autotransporter Esterase EstA of Pseudomonas aeruginosa Is Required for Rhamnolipid Production, Cell Motility, and Biofilm Formation, Journal of Bacteriology, vol.189, p.6695, 2007.

S. Becker, A generic system for the Escherichia coli cell-surface display of lipolytic enzymes, FEBS Letters, vol.579, p.1177, 2005.

C. C. Akoh, GDSL family of serine esterases/lipases, Progress in Lipid Research, vol.43, p.534, 2004.

E. Potvin, In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets, Environmental Microbiology, vol.5, p.1294, 2003.

D. Linke, Trimeric autotransporter adhesins: variable structure, common function, Trends in Microbiology, vol.14, p.264, 2006.

A. Roggenkamp, Molecular Analysis of Transport and Oligomerization of the Yersinia enterocolitica Adhesin YadA, Journal of Bacteriology, vol.185, p.3735, 2003.

E. Hoiczyk, Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins, The EMBO Journal, vol.19, p.5989, 2000.

N. K. Surana, The Haemophilus influenzae Hia Autotransporter Contains an Unusually Short Trimeric Translocator Domain, Journal of Biological Chemistry, vol.279, p.14679, 2004.

P. Szczesny, Structure of the Head of the Bartonella Adhesin BadA, PLoS Pathogens, vol.4, p.1000119, 2008.

V. Finck-barbançon, ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury, Molecular microbiology, vol.25, p.547, 1997.

A. R. Hauser, P. J. Kang, and J. N. Engel, PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence, Molecular microbiology, vol.27, p.807, 1998.

R. Salacha, The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system, Environmental Microbiology, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00698204

P. Oberhettinger, Intimin and Invasin Export Their C-Terminus to the Bacterial Cell Surface Using an Inverse Mechanism Compared to Classical Autotransport, PLoS ONE, vol.7, p.47069, 2012.

J. M. Leong, R. S. Fournier, and R. R. Isberg, Identification of the integrin binding domain of the Yersinia pseudotuberculosis invasin protein, The EMBO Journal, vol.9, p.1979, 1990.

S. Jain, Polar Localization of the Autotransporter Family of Large Bacterial Virulence Proteins, Journal of Bacteriology, vol.188, p.4841, 2006.

R. Hertle, Cytotoxic action of Serratia marcescens hemolysin on human epithelial cells, Infection and immunity, vol.67, p.817, 1999.

A. V. Kajava, Beta-helix model for the filamentous haemagglutinin adhesin of Bordetella pertussis and related bacterial secretory proteins, Molecular microbiology, vol.42, p.279, 2001.

R. J. Willems, Mutational analysis of the Bordetella pertussis fim/fha gene cluster: identification of a gene with sequence similarities to haemolysin accessory genes involved in export of FHA, Molecular microbiology, vol.11, p.337, 1994.

C. M. Rojas, HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings, Proceedings of the National Academy of Sciences, vol.99, p.13142, 2002.

F. Jacob-dubuisson, Lack of functional complementation between Bordetella pertussis filamentous hemagglutinin and Proteus mirabilis HpmA hemolysin secretion machineries, Journal of bacteriology, vol.179, p.775, 1997.

S. Grass and J. W. St-geme, Maturation and secretion of the non-typable Haemophilus influenzae HMW1 adhesin: roles of the N-terminal and C-terminal domains, Molecular microbiology, vol.36, p.55, 2000.

R. Schönherr, Amino acid replacements in the Serratia marcescens haemolysin ShIA define sites involved in activation and secretion, Molecular microbiology, vol.9, p.1229, 1993.

G. Renauld-mongénie, Distinct roles of the N-terminal and C-terminal precursor domains in the biogenesis of the Bordetella pertussis filamentous hemagglutinin, Journal of bacteriology, vol.178, p.1053, 1996.

B. Clantin, The crystal structure of filamentous hemagglutinin secretion domain and its implications for the two-partner secretion pathway, Proceedings of the National Academy of Sciences, vol.101, p.6194, 2004.

H. Hodak, Secretion signal of the filamentous haemagglutinin, a model two-partner secretion substrate, Molecular microbiology, p.368, 2006.

T. M. Weaver, Structural and functional studies of truncated hemolysin A from Proteus mirabilis, The Journal of biological chemistry, vol.284, p.22297, 2009.

H. J. Yeo, The Structure of the Haemophilus influenzae HMW1 Pro-piece Reveals a Structural Domain Essential for Bacterial Two-partner Secretion, Journal of Biological Chemistry, vol.282, p.31076, 2007.

S. Baelen, Structure of the secretion domain of HxuA from Haemophilus influenzae, Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol.69, p.1322, 2013.

S. Zambolin, Structural basis for haem piracy from host haemopexin by Haemophilus influenzae, Nature Communications, vol.7, p.11590, 2016.

B. Clantin, Structure of the Membrane Protein FhaC: A Member of the Omp85-TpsB Transporter Superfamily, vol.317, p.957, 2007.

T. Maier, Conserved Omp85 lid-lock structure and substrate recognition in FhaC, Nature Communications, vol.6, p.7452, 2015.

N. Noinaj, Structural insight into the biogenesis of ?-barrel membrane proteins, Nature, vol.501, p.385, 2013.

T. W. Kim, A critical role for IRAK4 kinase activity in Toll-like receptormediated innate immunity, The Journal of Experimental Medicine, vol.204, p.1025, 2007.

S. Guédin, Novel Topological Features of FhaC, the Outer Membrane Transporter Involved in the Secretion of the Bordetella pertussis Filamentous Hemagglutinin, Journal of Biological Chemistry, vol.275, p.30202, 2000.

C. Baud, Translocation path of a substrate protein through its Omp85 transporter, Nature Communications, vol.5, p.5271, 2014.

A. S. Delattre, Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily, FEBS Journal, vol.277, p.4755, 2010.

M. Leonard-rivera and R. Misra, Conserved Residues of the Putative L6 Loop of Escherichia coli BamA Play a Critical Role in the Assembly of-Barrel Outer Membrane Proteins, Including That of BamA Itself, Journal of Bacteriology, vol.194, p.4662, 2012.

N. W. Rigel, D. P. Ricci, and T. J. Silhavy, Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for-barrel assembly in Escherichia coli, Proceedings of the National Academy of Sciences, vol.110, p.5151, 2013.

E. Schiebel, H. Schwarz, and V. Braun, Subcellular location and unique secretion of the hemolysin of Serratia marcescens, The Journal of biological chemistry, vol.264, p.16311, 1989.

P. Van-ulsen, Two-Partner Secretion Systems of Neisseria meningitidis Associated with Invasive Clonal Complexes, Infection and Immunity, vol.76, p.4649, 2008.

P. S. Choi and H. D. Bernstein, Sequential translocation of an Escherchia coli two-partner secretion pathway exoprotein across the inner and outer membranes, Molecular Microbiology, vol.75, p.440, 2010.

C. Baud, Role of DegP for two-partner secretion in Bordetella, Molecular Microbiology, vol.74, p.315, 2009.

C. Baud, Membrane-associated DegP in Bordetella chaperones a repeatrich secretory protein, Molecular Microbiology, vol.80, p.1625, 2011.

J. E. Mogensen and D. E. Otzen, Interactions between folding factors and bacterial outer membrane proteins, Molecular Microbiology, vol.57, p.326, 2005.

U. Grosskinsky, A Conserved Glycine Residue of Trimeric Autotransporter Domains Plays a Key Role in Yersinia Adhesin A Autotransport, Journal of Bacteriology, vol.189, p.9011, 2007.

H. Hodak and F. Jacob-dubuisson, Current Challenges in Autotransport and Two-Partner Protein Secretion Pathways, vol.158, p.631, 2007.

J. Mazar and P. A. Cotter, Topology and maturation of filamentous haemagglutinin suggest a new model for two-partner secretion, Molecular Microbiology, vol.62, p.641, 2006.

H. Hodak and F. Jacob-dubuisson, Current challenges in autotransport and two-partner protein secretion pathways, Research in Microbiology, vol.158, p.631, 2007.

J. Guérin, Conformational dynamics of protein transporter FhaC: largescale motions of plug helix, Molecular Microbiology, vol.92, p.1164, 2014.

G. Walker, R. Hertle, and V. Braun, Activation of Serratia marcescens hemolysin through a conformational change, Infection and immunity, vol.72, p.611, 2004.

T. M. Weaver, Structural and Functional Studies of Truncated Hemolysin A from Proteus mirabilis, Journal of Biological Chemistry, vol.284, p.22297, 2009.

M. Junker, R. N. Besingi, and P. L. Clark, Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion, Molecular Microbiology, vol.71, p.1323, 2009.

J. H. Peterson, Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment, Proceedings of the National Academy of Sciences, vol.107, p.17739, 2010.

R. N. Besingi, J. L. Chaney, and P. L. Clark, An alternative outer membrane secretion mechanism for an autotransporter protein lacking a C-terminal stable core, Molecular Microbiology, vol.90, p.1028, 2013.
DOI : 10.1111/mmi.12414

URL : https://www.onlinelibrary.wiley.com/doi/pdf/10.1111/mmi.12414

J. Guérin, Dynamic interplay of membrane-proximal POTRA domain and conserved loop L6 in Omp85 transporter FhaC, Molecular Microbiology, vol.98, p.490, 2015.

M. Van-schilfgaarde, Characterization of Adherence of Nontypeable Haemophilus Influenzae to Human Epithelial Cells, Infection and Immunity, vol.68, p.4658, 2000.

A. Z. Buscher, Surface Anchoring of a Bacterial Adhesin Secreted by the Two-Partner Secretion Pathway, Molecular Microbiology, vol.61, p.470, 2006.

L. Coutte, Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway, The EMBO Journal, vol.20, p.5040, 2001.
DOI : 10.1093/emboj/20.18.5040

URL : http://emboj.embopress.org/content/20/18/5040.full.pdf

J. Mazar and P. Cotter, New insight into the molecular mechanisms of two-partner secretion, Trends in microbiology, vol.15, p.508, 2007.

R. Antoine, New virulence-activated and virulence-repressed genes identified by systematic gene inactivation and generation of transcriptional fusions in Bordetella pertussis, Journal of bacteriology, vol.182, p.5902, 2000.

D. O. Serra, FHA-Mediated Cell-Substrate and Cell-Cell Adhesions Are Critical for Bordetella pertussis Biofilm Formation on Abiotic Surfaces and in the Mouse Nose and the Trachea, PLoS ONE, vol.6, p.28811, 2011.

S. E. Cotter, N. K. Surana, J. W. St, and . Geme, Trimeric autotransporters: a distinct subfamily of autotransporter proteins, Trends in Microbiology, vol.13, p.199, 2005.

B. R. Borlee, Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix, Molecular Microbiology, vol.75, p.827, 2010.

C. Baraquet and C. S. Harwood, FleQ DNA Binding Consensus Sequence Revealed by Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in Pseudomonas aeruginosa, Journal of Bacteriology, vol.198, p.178, 2016.

R. B. Cooley, Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate, Journal of Bacteriology, vol.198, p.66, 2016.

M. Rybtke, The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface, MicrobiologyOpen, vol.4, p.917, 2015.

M. Vakevainen, S. Greenberg, and E. J. Hansen, Inhibition of phagocytosis by Haemophilus ducreyi requires expression of the LspA1 and LspA2 proteins, Infection and immunity, vol.71, p.5994, 2003.

D. A. Dodd, The Haemophilus ducreyi LspA1 Protein Inhibits Phagocytosis By Using a New Mechanism Involving Activation of C-Terminal Src Kinase, mBio, vol.5, p.1178, 2014.

K. Roy, Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells, Nature, vol.457, p.594, 2009.
DOI : 10.1038/nature07568

URL : http://europepmc.org/articles/pmc2646463?pdf=render

S. K. Aoki, Contact-Dependent Inhibition of Growth in Escherichia coli, Science, vol.309, p.1245, 2005.

R. Hertle, Serratia marcescens Hemolysin (ShlA) Binds Artificial Membranes and Forms Pores in a Receptor-independent Manner, Journal of Membrane Biology, vol.189, p.1, 2002.

R. Hertle and H. Schwarz, Serratia marcescens internalization and replication in human bladder epithelial cells, BMC Infectious Diseases, vol.4, 2004.

N. González-juarbe, Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia, PLOS Pathogens, vol.11, p.1005337, 2015.

G. D. Venanzio, T. M. Stepanenko, E. García, and . Véscovi, Serratia marcescens ShlA Pore-Forming Toxin Is Responsible for Early Induction of Autophagy in Host Cells and Is Transcriptionally Regulated by RcsB, Infection and Immunity, vol.82, p.3542, 2014.

J. E. Alouf, Molecular features of the cytolytic pore-forming bacterial protein toxins, Folia microbiologica, vol.48, p.5, 2003.

M. W. Parker, Structure of the membrane-pore-forming fragment of colicin A, Nature, vol.337, p.93, 1989.

G. G. Alves, Clostridium perfringens epsilon toxin: The third most potent bacterial toxin known, Anaerobe, vol.30, p.102, 2014.

S. D. Zakharov, On the role of lipid in colicin pore formation, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.1666, p.239, 2004.

E. Cascales, Colicin Biology, Microbiology and Molecular Biology Reviews, vol.71, p.158, 2007.

M. W. Parker, Refined structure of the pore-forming domain of colicin A at 2.4 A resolution, Journal of molecular biology, vol.224, p.639, 1992.

S. J. Tilley and H. R. Saibil, The mechanism of pore formation by bacterial toxins, Current Opinion in Structural Biology, vol.16, p.230, 2006.

M. D. Peraro and F. G. Van-der-goot, Pore-forming toxins: ancient, but never really out of fashion, Nature Reviews Microbiology, vol.14, p.77, 2015.

M. Madegowda, X-ray crystal structure of the B component of Hemolysin BL fromBacillus cereus, Proteins: Structure, Function, and Bioinformatics, vol.71, p.534, 2008.

S. Hunt, J. Green, and P. J. Artymiuk, Hemolysin E (HlyE, ClyA, SheA) and related toxins, Advances in experimental medicine and biology, vol.677, p.116, 2010.

A. J. Wallace, X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy, Cell, vol.100, p.265, 2000.

M. Mueller, The structure of a cytolytic ?-helical toxin pore reveals its assembly mechanism, Nature, vol.459, p.726, 2009.

M. S. Vaidyanathan, Lysis dynamics and membrane oligomerization pathways for Cytolysin A (ClyA) pore-forming toxin, RSC Advances, vol.4, p.4930, 2014.

D. Roderer, Soluble Oligomers of the Pore-forming Toxin Cytolysin A from Escherichia coli Are Off-pathway Products of Pore Assembly, Journal of Biological Chemistry, vol.291, p.5652, 2016.

M. Fahie, A Non-classical Assembly Pathway of Escherichia coli Poreforming Toxin Cytolysin A, Journal of Biological Chemistry, vol.288, p.31042, 2013.

A. Soloaga, Insertion of Escherichia coli alpha-haemolysin in lipid bilayers as a non-transmembrane integral protein: prediction and experiment, Molecular microbiology, vol.31, p.1013, 1999.

L. Sánchez-magraner, The Calcium-binding C-terminal Domain of Escherichia coli ?-Hemolysin Is a Major Determinant in the Surface-active Properties of the Protein, Journal of Biological Chemistry, vol.282, p.11827, 2007.

A. L. Dumont and V. J. Torres, Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids, Trends in Microbiology, vol.22, p.21, 2014.

G. Menestrina, M. D. Serra, and G. Prévost, Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family, Toxicon : official journal of the International Society on Toxinology, vol.39, p.1661, 2001.

L. Jayasinghe and H. Bayley, The leukocidin pore: evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis, Protein science : a publication of the Protein Society, vol.14, p.2550, 2005.

M. J. Aman, Structural model of the pre-pore ring-like structure of PantonValentine leukocidin: providing dimensionality to biophysical and mutational data, Journal of biomolecular structure & dynamics, vol.28, p.1, 2010.

L. Song, Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore, Science, vol.274, p.1859, 1996.

K. Yamashita, Crystal structure of the octameric pore of staphylococcal ?hemolysin reveals the ?-barrel pore formation mechanism by two components, Proceedings of the National Academy of Sciences of the United States of America, vol.108, p.17314, 2011.

O. Opota, Monalysin, a Novel ß-Pore-Forming Toxin from the Drosophila Pathogen Pseudomonas entomophila, Contributes to Host Intestinal Damage and Lethality, PLoS Pathogens, vol.7, p.1002259, 2011.

I. Iacovache, Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process, Nature Communications, vol.7, p.12062, 2016.

C. L. Johnson, The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein, Molecular Microbiology, vol.92, p.440, 2014.

E. M. Hotze, Identification and Characterization of the First CholesterolDependent Cytolysins from Gram-Negative Bacteria, Infection and Immunity, vol.81, p.216, 2013.

E. M. Hotze and R. K. Tweten, Membrane assembly of the cholesterol-dependent cytolysin pore complex, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.1818, p.1028, 2012.

S. J. Tilley, Structural Basis of Pore Formation by the Bacterial Toxin Pneumolysin, Cell, vol.121, p.247, 2005.

D. M. Czajkowsky, Vertical collapse of a cytolysin prepore moves its transmembrane ?-hairpins to the membrane, The EMBO Journal, vol.23, p.3206, 2004.

T. K. Sato, R. K. Tweten, and A. E. Johnson, Disulfide-bond scanning reveals assembly state and ?-strand tilt angle of the PFO ?-barrel, Nature Chemical Biology, vol.9, p.383, 2013.

L. Abrami, M. Fivaz, and F. G. Van-der-goot, Adventures of a pore-forming toxin at the target cell surface, Trends in microbiology, vol.8, p.168, 2000.

Y. Hong, Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum ?-toxin, The EMBO Journal, vol.21, p.5047, 2002.

D. B. Diep, Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin, The Journal of biological chemistry, vol.273, p.2355, 1998.

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids: where they are and how they behave, Nature Reviews Molecular Cell Biology, vol.9, p.112, 2008.

R. K. Tweten, Cholesterol-Dependent Cytolysins, a Family of Versatile PoreForming Toxins, Infection and Immunity, vol.73, p.6199, 2005.

K. J. Dowd and R. K. Tweten, The Cholesterol-Dependent Cytolysin Signature Motif: A Critical Element in the Allosteric Pathway that Couples Membrane Binding to Pore Assembly, PLoS Pathogens, vol.8, p.1002787, 2012.

J. G. Bann, L. Cegelski, and S. J. Hultgren, LRP6 Holds the Key to the Entry of Anthrax Toxin, vol.124, p.1119, 2006.

L. P. Pulagam and H. J. Steinhoff, Acidic pH-Induced Membrane Insertion of Colicin A into E. coli Natural Lipids Probed by Site-Directed Spin Labeling, Journal of Molecular Biology, vol.425, p.1782, 2013.

G. A. Wilke and J. B. Wardenburg, Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus-hemolysin-mediated cellular injury, Proceedings of the National Academy of Sciences, vol.107, p.13473, 2010.

B. J. Berube and J. Bubeck-wardenburg, Staphylococcus aureus ?-toxin: nearly a century of intrigue, Toxins, vol.5, p.1140, 2013.

S. Winter, A. Zychlinsky, and B. W. Bardoel, Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus ?hemolysin-mediated toxicity, Scientific Reports, vol.6, p.24242, 2016.

M. A. Hamon, Listeriolysin O: the Swiss army knife of Listeria, Trends in Microbiology, vol.20, p.360, 2012.

A. L. Radtke, Listeria monocytogenes exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome, Proceedings of the National Academy of Sciences, vol.108, p.1633, 2011.

I. Linhartová, RTX proteins: a highly diverse family secreted by a common mechanism, FEMS Microbiology Reviews, vol.34, p.1076, 2010.

R. Fiser, Calcium Influx Rescues Adenylate Cyclase-Hemolysin from Rapid Cell Membrane Removal and Enables Phagocyte Permeabilization by Toxin Pores, PLoS Pathogens, vol.8, p.1002580, 2012.

A. Osickova, Adenylate cyclase toxin translocates across target cell membrane without forming a pore, Molecular Microbiology, vol.75, p.1550, 2010.

A. Richter-dahlfors, No Title, Nature, vol.405, p.694, 2000.

R. Jiang, Intermediate closed channel state(s) precede(s) activation in the ATP-gated P2X2 receptor, Channels, vol.6, p.398, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01498119

M. Skals, Hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis, Proceedings of the National Academy of Sciences, vol.106, p.4030, 2009.

M. Skals, J. Leipziger, and H. A. Praetorius, Haemolysis induced by ?-toxin from Staphylococcus aureus requires P2X receptor activation, Pflügers Archiv-European Journal of Physiology, vol.462, p.669, 2011.

C. L. Kennedy, Programmed Cellular Necrosis Mediated by the PoreForming ?-Toxin from Clostridium septicum, PLoS Pathogens, vol.5, p.1000516, 2009.

C. F. Lin, Different Types of Cell Death Induced by Enterotoxins, Toxins, vol.2, p.2158, 2010.

R. R. Craven, Staphylococcus aureus ?-Hemolysin Activates the NLRP3Inflammasome in Human and Mouse Monocytic Cells, PLoS ONE, vol.4, p.7446, 2009.

J. N. Radin, Helicobacter pylori VacA Induces Programmed Necrosis in Gastric Epithelial Cells, Infection and Immunity, vol.79, p.2535, 2011.

J. Rassow, Helicobacter pylori vacuolating toxin A and apoptosis, Cell Communication and Signaling, vol.9, p.26, 2011.

J. A. Smyth and T. G. Martin, Disease producing capability of netB positive isolates of C. perfringens recovered from normal chickens and a cow, and netB positive and negative isolates from chickens with necrotic enteritis, Veterinary Microbiology, vol.146, p.76, 2010.

K. K. Cooper and J. G. Songer, Virulence of Clostridium perfringens in an experimental model of poultry necrotic enteritis, Veterinary Microbiology, vol.142, p.323, 2010.

A. L. Keyburn, NetB, a New Toxin That Is Associated with Avian Necrotic Enteritis Caused by Clostridium perfringens, PLoS Pathogens, vol.4, p.26, 2008.
DOI : 10.1371/journal.ppat.0040026

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.0040026&type=printable

N. Sugimoto, Botulinolysin, a thiol-activated hemolysin produced by Clostridium botulinum, inhibits endothelium-dependent relaxation of rat aortic ring, Toxicon : official journal of the International Society on Toxinology, vol.35, p.1011, 1997.
DOI : 10.1016/s0041-0101(97)00002-0

N. Sugimoto, Coronary vasoconstriction is the most probable cause of death of rats intoxicated with botulinolysin, a hemolysin produced by Clostridium botulinum, Toxicon : official journal of the International Society on Toxinology, vol.33, p.1215, 1995.

P. Broz and V. M. Dixit, Inflammasomes: mechanism of assembly, regulation and signalling, Nature Reviews Immunology, vol.16, p.407, 2016.
DOI : 10.1038/nri.2016.58

V. Feuillet, Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria, Proceedings of the National Academy of Sciences, vol.103, p.12487, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00165595

E. A. Miao, TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system, Seminars in Immunopathology, vol.29, p.275, 2007.

S. K. Vanaja, V. A. Rathinam, and K. A. Fitzgerald, Mechanisms of inflammasome activation: recent advances and novel insights, Trends in Cell Biology, vol.25, p.308, 2015.
DOI : 10.1016/j.tcb.2014.12.009

URL : http://europepmc.org/articles/pmc4409512?pdf=render

L. A. Mijares, Airway Epithelial MyD88 Restores Control of Pseudomonas aeruginosa Murine Infection via an IL-1-Dependent Pathway, The Journal of Immunology, vol.186, p.7080, 2011.
DOI : 10.4049/jimmunol.1003687

URL : http://www.jimmunol.org/content/186/12/7080.full.pdf

A. J. Mccoy, Cytotoxins of the human pathogen Aeromonas hydrophila trigger, via the NLRP3 inflammasome, caspase-1 activation in macrophages, European journal of immunology, vol.40, p.2797, 2010.

H. Nishiwaki, Cloning, Functional Characterization, and Mode of Action of a Novel Insecticidal Pore-Forming Toxin, Sphaericolysin, Produced by Bacillus sphaericus, Applied and Environmental Microbiology, vol.73, p.3404, 2007.

K. Srisucharitpanit, Expression and purification of the active soluble form of Bacillus sphaericus binary toxin for structural analysis, Protein Expression and Purification, vol.82, p.368, 2012.

J. F. Brunet, Pore-forming properties of the Bacillus thuringiensis toxin Cry9Ca in Manduca sexta brush border membrane vesicles, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.1798, p.1111, 2010.

E. Gazit, The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis deltaendotoxin are consistent with an "umbrella-like" structure of the pore., Proceedings of the National Academy of, Sciences of the United States of America, vol.95, p.12289, 1998.

T. Lund, M. L. De-buyser, and P. E. Granum, A new cytotoxin from Bacillus cereus that may cause necrotic enteritis, Molecular microbiology, vol.38, p.254, 2000.
DOI : 10.1046/j.1365-2958.2000.02147.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2958.2000.02147.x

P. Grochulski, Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation, Journal of molecular biology, vol.254, p.447, 1995.
DOI : 10.1006/jmbi.1995.0630

L. Masson, A Novel Bacillus thuringiensis (PS149B1) Containing a Cry34Ab1/Cry35Ab1 Binary Toxin Specific for the Western Corn Rootworm Diabrotica virgifera virgifera LeConte Forms Ion Channels in Lipid Membranes, Biochemistry, vol.43, p.12349, 2004.

J. L. Schwartz, Early response of cultured lepidopteran cells to exposure to delta-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels, Biochimica et biophysica acta, vol.1065, p.250, 1991.

V. Steinthorsdottir, H. Halldórsson, and O. S. Andrésson, Clostridium perfringens beta-toxin forms multimeric transmembrane pores in human endothelial cells, Microbial Pathogenesis, vol.28, p.45, 2000.
DOI : 10.1006/mpat.1999.0323

S. Springer and H. J. Selbitz, The control of necrotic enteritis in sucking piglets by means of a Clostridium perfringens toxoid vaccine, FEMS immunology and medical microbiology, vol.24, p.333, 1999.

L. Petit, Clostridium perfringens Epsilon Toxin Induces a Rapid Change of Cell Membrane Permeability to Ions and Forms Channels in Artificial Lipid Bilayers, Journal of Biological Chemistry, vol.276, p.15736, 2001.
URL : https://hal.archives-ouvertes.fr/pasteur-01811229

A. J. Brosnahan, Cytolysins Augment Superantigen Penetration of Stratified Mucosa, The Journal of Immunology, vol.182, p.2364, 2009.
DOI : 10.4049/jimmunol.0803283

URL : http://www.jimmunol.org/content/182/4/2364.full.pdf

L. Debellis, The Vibrio cholerae Cytolysin Promotes Chloride Secretion from Intact Human Intestinal Mucosa, PLoS ONE, vol.4, p.5074, 2009.
DOI : 10.1371/journal.pone.0005074

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0005074&type=printable

H. A. Saka, Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain, Microbial Pathogenesis, vol.44, p.118, 2008.
DOI : 10.1016/j.micpath.2007.08.013

M. D. García-suárez, The role of pneumolysin in mediating lung damage in a lethal pneumococcal pneumonia murine model, Respiratory Research, vol.8, p.3, 2007.

I. Inoshima, A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice, Nature Medicine, vol.17, p.1310, 2011.

B. A. Diep, Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury, Proceedings of the National Academy of Sciences, vol.107, p.5587, 2010.
DOI : 10.1073/pnas.0912403107

URL : http://www.pnas.org/content/107/12/5587.full.pdf

S. T. Cooper and P. L. Mcneil, Membrane Repair: Mechanisms and Pathophysiology, vol.95, p.1205, 2015.
DOI : 10.1152/physrev.00037.2014

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600952/pdf

F. C. Los, Role of Pore-Forming Toxins in Bacterial Infectious Diseases, Microbiology and Molecular Biology Reviews, vol.77, p.173, 2013.

G. Von-hoven, Repair of a Bacterial Small ?-Barrel Toxin Pore Depends on Channel Width, mBio, vol.8, p.2083, 2017.

P. Basso, Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis, mBio, vol.8, p.2250, 2017.

H. Harvey, Pseudomonas aeruginosa d-Arabinofuranose Biosynthetic Pathway and Its Role in Type IV Pilus Assembly, Journal of Biological Chemistry, vol.286, p.28128, 2011.
DOI : 10.1074/jbc.m111.255794

URL : http://www.jbc.org/content/286/32/28128.full.pdf

V. L. Kung, An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome, Proceedings of the National Academy of Sciences, vol.109, p.1275, 2012.

S. Koskiniemi, Rhs proteins from diverse bacteria mediate intercellular competition, Proceedings of the National Academy of Sciences, vol.110, p.7032, 2013.
DOI : 10.1073/pnas.1300627110

URL : https://www.pnas.org/content/pnas/110/17/7032.full.pdf

R. L. Feinbaum, Genome-Wide Identification of Pseudomonas aeruginosa Virulence-Related Genes Using a Caenorhabditis elegans Infection Model, PLoS Pathogens, vol.8, p.1002813, 2012.

A. J. Greaney, S. H. Leppla, and M. Moayeri, Bacterial Exotoxins and the Inflammasome, Frontiers in Immunology, vol.6, 2015.
DOI : 10.3389/fimmu.2015.00570

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2015.00570/pdf

P. Huber, Pseudomonas aeruginosa renews its virulence factors, Environmental Microbiology Reports, vol.8, p.564, 2016.
DOI : 10.1111/1758-2229.12443

H. Y. Chang, Characterization of a putative Pseudomonas UDPglucose pyrophosphorylase, Proceedings of the National Science Council, vol.23, p.74, 1999.

P. A. Castric, Hydrogen cyanide production by Pseudomonas aeruginosa at reduced oxygen levels, Canadian journal of microbiology, vol.29, p.1344, 1983.
DOI : 10.1139/m83-209

R. Barrangou and L. A. Marraffini, CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity, Molecular Cell, vol.54, p.234, 2014.

L. A. Marraffini and E. J. Sontheimer, CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea, Nature Reviews Genetics, vol.11, p.181, 2010.

R. Barrangou, CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes, Science, vol.315, p.1709, 2007.

C. Yu, Small Molecules Enhance CRISPR Genome Editing in Pluripotent Stem Cells, Cell Stem Cell, vol.16, p.142, 2015.

F. Wang and L. S. Qi, Applications of CRISPR Genome Engineering in Cell Biology, Trends in Cell Biology, vol.26, p.875, 2016.

P. D. Hsu, E. S. Lander, and F. Zhang, Development and Applications of CRISPR-Cas9 for Genome Engineering, Cell, vol.157, p.1262, 2014.

T. Wang, Genetic Screens in Human Cells Using the CRISPR-Cas9 System, Science, vol.343, p.80, 2014.

P. Mali, RNA-Guided Human Genome Engineering via Cas9, Science, vol.339, p.823, 2013.

O. Shalem, Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells, Science, vol.343, p.84, 2014.

F. A. Ran, Genome engineering using the CRISPR-Cas9 system, Nature Protocols, vol.8, p.2281, 2013.

Y. Jiang, Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System, Applied and Environmental Microbiology, vol.81, p.2506, 2015.

J. Altenbuchner, Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System, Applied and Environmental Microbiology, vol.82, p.5421, 2016.

P. Burby and L. Simmons, CRISPR/Cas9 Editing of the Bacillus subtilis Genome, 2017.

P. Basso, Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death, Environmental Microbiology, vol.19, p.4045, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01911523

E. A. Miao, Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome, Proceedings of the National Academy of Sciences, vol.107, p.3076, 2010.

E. Faure, Pseudomonas aeruginosa Type-3 Secretion System Dampens Host Defense by Exploiting the NLRC4-coupled Inflammasome, American Journal of Respiratory and Critical Care Medicine, vol.189, p.799, 2014.

N. E. Sanjana, O. Shalem, and F. Zhang, Improved vectors and genome-wide libraries for CRISPR screening, Nature Methods, vol.11, p.783, 2014.

M. Cisz, P. C. Lee, and A. Rietsch, ExoS Controls the Cell Contact-Mediated Switch to Effector Secretion in Pseudomonas aeruginosa, Journal of Bacteriology, vol.190, p.2726, 2008.

P. Berthelot, Genotypic and Phenotypic Analysis of Type III Secretion System in a Cohort of Pseudomonas aeruginosa Bacteremia Isolates: Evidence for a Possible Association between O Serotypes and exo Genes, The Journal of Infectious Diseases, vol.188, p.512, 2003.

V. N. Kos, The Resistome of Pseudomonas aeruginosa in Relationship to Phenotypic Susceptibility, Antimicrobial Agents and Chemotherapy, vol.59, p.427, 2015.

K. E. Nelson, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440, Environmental Microbiology, vol.4, p.799, 2002.

M. A. Molina, J. L. Ramos, and M. Espinosa-urgel, A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440, Environmental Microbiology, vol.8, p.639, 2006.

N. Vodovar, Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila, Nature Biotechnology, vol.24, p.673, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133119

C. Voisard, Biocontrol of Root Diseases byPseudomonas fluorescens CHA0: Current Concepts and Experimental Approaches, Molecular Ecology of Rhizosphere Microorganisms

C. Kurz, Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening, The EMBO Journal, vol.22, p.1451, 2003.

T. Kawagoe, Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling, The Journal of Experimental Medicine, vol.204, p.1013, 2007.

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids: where they are and how they behave, Nature Reviews Molecular Cell Biology, vol.9, p.112, 2008.

D. P. Lee, A novel pathway for lipid biosynthesis: the direct acylation of glycerol, Journal of lipid research, vol.42, p.1979, 2001.

R. K. Yu, Structures, biosynthesis, and functions of gangliosides-an overview, Journal of oleo science, vol.60, p.537, 2011.

S. S. Prasad, A. Garg, and A. K. Agarwal, Enzymatic activities of the human AGPAT isoform 3 and isoform 5: localization of AGPAT5 to mitochondria, Journal of Lipid Research, vol.52, p.451, 2011.

G. Fuertes, Role of membrane lipids for the activity of pore forming peptides and proteins, Advances in experimental medicine and biology, vol.677, p.31, 2010.

M. Marchioretto, What planar lipid membranes tell us about the poreforming activity of cholesterol-dependent cytolysins, Biophysical Chemistry, vol.182, p.64, 2013.

N. Rojko and G. Anderluh, How Lipid Membranes Affect Pore Forming Toxin Activity, Accounts of Chemical Research, vol.48, p.3073, 2015.

A. J. Drummond, Bayesian Phylogenetics with BEAUti and the BEAST, vol.1, p.1969, 2012.

A. S. Delattre, Substrate recognition by the POTRA domains of TpsB transporter FhaC, Molecular microbiology, vol.81, p.99, 2011.

K. Poole, E. Schiebel, and V. Braun, Molecular characterization of the hemolysin determinant of Serratia marcescens, Journal of bacteriology, vol.170, p.3177, 1988.

G. Menestrina, Ion channels and bacterial infection: the case of ?-barrel pore-forming protein toxins of Staphylococcus aureus, FEBS Letters, vol.552, p.54, 2003.

S. D. Zakharov, On the role of lipid in colicin pore formation, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.1666, p.239, 2004.

B. Berube and J. Wardenburg, Staphylococcus aureus ?-Toxin: Nearly a Century of Intrigue, Toxins, vol.5, p.1140, 2013.

E. Reboud, Pseudomonas aeruginosa ExlA and Serratia marcescens ShlA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation, PLoS Pathogens, vol.13, p.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01917836

H. P. Hahn, The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa-A review, Gene, vol.192, p.99, 1997.

L. Franchi, Critical role for Ipaf inPseudomonas aeruginosa-induced caspase-1 activation, European Journal of Immunology, vol.37, p.3030, 2007.
DOI : 10.1002/eji.200737532

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/eji.200737532

D. Descamps, IL-1 secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing, Toll-like receptor 5 (TLR5), vol.109, p.1619, 2012.
DOI : 10.1073/pnas.1108464109

URL : https://hal.archives-ouvertes.fr/pasteur-00667246

J. W. Newman, R. V. Floyd, and J. L. Fothergill, The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections, FEMS microbiology letters, 2017.

J. C. Comolli, Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa, Infection and Immunity, vol.67, p.3207, 1999.

J. Steinhauer, The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface, Molecular microbiology, vol.32, p.367, 1999.

S. Bouillot, Pseudomonas aeruginosa Exolysin promotes bacterial growth in lungs, alveolar damage and bacterial dissemination, Scientific Reports, vol.7, p.2120, 2017.
DOI : 10.1038/s41598-017-02349-0

URL : https://hal.archives-ouvertes.fr/inserm-01525980

A. M. Hajjar, Human Toll-like receptor 4 recognizes host-specific LPS modifications, Nature Immunology, vol.3, p.354, 2002.
DOI : 10.1038/ni777

M. Lamkanfi and V. M. Dixit, Mechanisms and Functions of Inflammasomes, Cell, vol.157, p.1013, 2014.
DOI : 10.1016/j.cell.2014.04.007

URL : https://doi.org/10.1016/j.cell.2014.04.007

J. R. Yaron, K+ regulates Ca2+ to drive inflammasome signaling: dynamic visualization of ion flux in live cells, Cell Death and Disease, vol.6, p.1954, 2015.
DOI : 10.1038/cddis.2015.277

URL : https://www.nature.com/articles/cddis2015277.pdf

S. L. Fink and B. T. Cookson, Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages, Cellular Microbiology, vol.8, p.1812, 2006.
DOI : 10.1111/j.1462-5822.2006.00751.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1462-5822.2006.00751.x

L. Molina, Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital, PLoS ONE, vol.9, p.81604, 2014.
DOI : 10.1371/journal.pone.0081604

URL : https://hal.archives-ouvertes.fr/hal-01688754

T. Kolter and G. Biochemistry, Biochemistry, vol.2012, p.1, 2012.

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, p.569, 1997.
DOI : 10.1038/42408

L. Abrami, Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway, The Journal of Cell Biology, vol.166, p.645, 2004.

S. A. Sanchez, Methyl-?-Cyclodextrins Preferentially Remove Cholesterol from the Liquid Disordered Phase in Giant Unilamellar Vesicles, The Journal of Membrane Biology, vol.241, p.1, 2011.

S. Mahammad and I. Parmryd, Cholesterol Depletion Using Methyl-?cyclodextrin
DOI : 10.1007/978-1-4939-1752-5_8

URL : http://uu.diva-portal.org/smash/get/diva2:761979/FULLTEXT01

E. Reboud, Exolysin Shapes the Virulence of Pseudomonas aeruginosa Clonal Outliers, Toxins, vol.9, p.364, 2017.