K. Narahara, K. Kikkawa, M. Murakami, K. Hiramoto, H. Namba et al., Loss of the 3p25.3 band is critical in the manifestation of del(3p) syndrome: karyotype-phenotype correlation in cases with deficiency of the distal portion of the short arm of chromosome 3, Am. J. Med. Genet, vol.35, pp.269-273, 1990.

N. Dikow, B. Maas, S. Karch, M. Granzow, J. W. Janssen et al., microdeletion of GABA transporters SLC6A1 and SLC6A11 results in intellectual disability, epilepsy and stereotypic behavior, Am. J. Med. Genet. A, vol.164, pp.3061-3068, 2014.

A. Rauch, D. Wieczorek, E. Graf, T. Wieland, S. Endele et al., Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study, Lancet, vol.380, pp.1674-1682, 2012.

D. Grozeva, K. Carss, O. Spasic-boskovic, M. J. Parker, H. Archer et al., De novo lossof-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability, UK10K Consortium, vol.94, pp.618-624, 2014.

A. Kuechler, A. M. Zink, T. Wieland, H. J. Lü-decke, K. Cremer et al., Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome, Eur. J. Hum. Genet, vol.23, pp.753-760, 2015.

V. Geoffroy, C. Pizot, C. Redin, A. Piton, N. Vasli et al., VaRank: a simple and powerful tool for ranking genetic variants, PeerJ, vol.3, p.796, 2015.
DOI : 10.7717/peerj.796

URL : https://peerj.com/articles/796.pdf

C. Redin, B. Gérard, J. Lauer, Y. Herenger, J. Muller et al., Efficient strategy for the molecular diagnosis of intellectual disability using targeted highthroughput sequencing, J. Med. Genet, vol.51, pp.724-736, 2014.

M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks et al., Analysis of protein-coding genetic variation in 60,706 humans, Nature, vol.536, pp.285-291, 2016.

W. E. Lowry, L. Richter, R. Yachechko, A. D. Pyle, J. Tchieu et al., Generation of human induced pluripotent stem cells from dermal fibroblasts, Proc. Natl. Acad. Sci. USA 105, pp.2883-2888, 2008.

J. F. Mcrae, S. Clayton, T. W. Fitzgerald, J. Kaplanis, E. Prigmore et al., Prevalence, phenotype and architecture of developmental disorders caused by de novo mutation, 2016.

B. Xu, J. L. Roos, P. Dexheimer, B. Boone, B. Plummer et al., Exome sequencing supports a de novo mutational paradigm for schizophrenia, Nat. Genet, vol.43, pp.864-868, 2011.
DOI : 10.1038/ng.902

URL : http://europepmc.org/articles/pmc3196550?pdf=render

M. Ullah, N. Pelletier, L. Xiao, S. P. Zhao, K. Wang et al., Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes, Mol. Cell. Biol, vol.28, pp.6828-6843, 2008.
DOI : 10.1128/mcb.01901-08

URL : https://hal.archives-ouvertes.fr/hal-02154226

K. Laue, S. Daujat, J. G. Crump, N. Plaster, H. H. Roehl et al., The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity, Screen Consortium, vol.135, pp.1935-1946, 2000.
DOI : 10.1242/dev.017160

URL : http://dev.biologists.org/content/135/11/1935.full.pdf

Y. Doyon, C. Cayrou, M. Ullah, A. J. Landry, V. Côté et al., , 2006.

, ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation, Mol. Cell, vol.21, pp.51-64

, The American Journal of Human Genetics, vol.100, p.115, 2017.

A. K. Voss, C. Collin, M. P. Dixon, T. , and T. , Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity, Dev. Cell, vol.17, pp.674-686, 2009.
DOI : 10.1016/j.devcel.2009.10.006

URL : https://doi.org/10.1016/j.devcel.2009.10.006

L. You, K. Yan, J. Zou, H. Zhao, N. R. Bertos et al., The chromatin regulator Brpf1 regulates embryo development and cell proliferation, J. Biol. Chem, vol.290, pp.11349-11364, 2015.
DOI : 10.1074/jbc.m115.643189

URL : http://www.jbc.org/content/290/18/11349.full.pdf

K. Hibiya, T. Katsumoto, T. Kondo, I. Kitabayashi, and A. Kudo, Brpf1, a subunit of the MOZ histone acetyl transferase complex, maintains expression of anterior and posterior Hox genes for proper patterning of craniofacial and caudal skeletons, Dev. Biol, vol.329, pp.176-190, 2009.

P. M. Ellery, R. J. Ellis, and S. E. Holder, Interstitial 3p25 deletion in a patient with features of 3p deletion syndrome: further evidence for the role of SRGAP3 in mental retardation, Clin. Dysmorphol, vol.23, pp.29-31, 2014.

D. Pinto, E. Delaby, D. Merico, M. Barbosa, A. Merikangas et al., Convergence of genes and cellular pathways dysregulated in autism spectrum disorders, Am. J. Hum. Genet, vol.94, pp.677-694, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00986225

P. M. Campeau, J. T. Lu, B. C. Dawson, I. F. Fokkema, S. P. Robertson et al., The KAT6B-related disorders genitopatellar syndrome and Ohdo/SBBYS syndrome have distinct clinical features reflecting distinct molecular mechanisms, Hum. Mutat, vol.33, pp.1520-1525, 2012.

J. Clayton-smith, J. O'sullivan, S. Daly, S. Bhaskar, R. Day et al., Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome, Am. J. Hum. Genet, vol.89, pp.675-681, 2011.

M. Kraft, I. C. Cirstea, A. K. Voss, T. Thomas, I. Goehring et al., Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice, J. Clin. Invest, vol.121, pp.3479-3491, 2011.

H. C. Yu, E. A. Geiger, L. Medne, E. H. Zackai, and T. H. Shaikh, An individual with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) and additional features expands the phenotype associated with mutations in KAT6B, Am. J. Med. Genet. A, vol.164, pp.950-957, 2014.

V. A. Arboleda, H. Lee, N. Dorrani, N. Zadeh, M. Willis et al., UCLA Clinical Genomics Center, 2015.

, De novo nonsense mutations in KAT6A, a lysine acetyltransferase gene, cause a syndrome including microcephaly and global developmental delay, Am. J. Hum. Genet, vol.96, pp.498-506

E. Tham, A. Lindstrand, A. Santani, H. Malmgren, A. Nesbitt et al., Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features, Am. J. Hum. Genet, vol.96, pp.507-513, 2015.

L. You, J. Zou, H. Zhao, N. R. Bertos, M. Park et al., Deficiency of the chromatin regulator BRPF1 causes abnormal brain development, J. Biol. Chem, vol.290, pp.7114-7129, 2015.

L. You, K. Yan, J. Zou, H. Zhao, N. R. Bertos et al., The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors, PLoS Genet, vol.11, 2015.

R. Huether, L. Dong, X. Chen, G. Wu, M. Parker et al., The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes, Nat. Commun, vol.5, p.3630, 2014.

M. Kool, D. T. Jones, N. Jäger, P. A. Northcott, T. J. Pugh et al., Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition, ICGC PedBrain Tumor Project, vol.25, pp.393-405, 2014.

, Supplemental References

V. Geoffroy, C. Pizot, C. Redin, A. Piton, N. Vasli et al., VaRank: a simple and powerful tool for ranking genetic variants, PeerJ, vol.3, p.796, 2015.

C. Redin, B. Gerard, J. Lauer, Y. Herenger, J. Muller et al., Efficient strategy for the molecular diagnosis of intellectual disability using targeted high throughput sequencing, J Med Genet, vol.51, p.736, 2014.

P. M. Ellery, R. J. Ellis, and S. E. Holder, Interstitial 3p25 deletion in a patient with features of 3p deletion syndrome: further evidence for the role of SRGAP3 in mental retardation, Clin Dysmorphol, vol.23, p.31, 2014.

D. Grozeva, K. Carss, O. Spasic-boskovic, M. J. Parker, H. Archer et al., De novo loss of function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability, Am J Hum Genet, vol.94, p.624, 2014.

A. Kuechler, A. M. Zink, T. Wieland, H. J. Ludecke, K. Cremer et al., Loss of function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome, Eur J Hum Genet, vol.23, p.760, 2015.

D. Pinto, E. Delaby, D. Merico, M. Barbosa, A. Merikangas et al., Convergence of genes and cellular pathways dysregulated in autism spectrum disorders, Am J Hum Genet, vol.94, p.694, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00986225

M. Ullah, N. Pelletier, L. Xiao, S. P. Zhao, K. Wang et al., Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes, Mol Cell Biol, vol.28, p.6843, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02154226

;. Val234leu and . Casey, Gly275Asp) inherited from unrelated parents was reported, 2016.

, Patient 1 (Figure 1A) underwent multiple genetic testing and no candidate variant was detected 100 by targeted-sequencing. By whole-exome sequencing (WES) we identified only one de novo 101 loss-of-function nonsense variant in the PSPN gene

, This variant, coding for a 10 amino acid truncated protein, was considered to be non-pathogenic 103 as PSPN is largely tolerant to loss-of-function (LoF) variants (probability of LoF intolerance, homozygous variants, p.100

, He presents facial 121 dysmorphism (tall forehead, short palpebral fissures, long noise, retrognathia) consistent with 122 the other BBSI patients previously reported. Genetic and molecular investigations performed 123 in Patient 2 (Figure 1B) include high-resolution karyotype, SNP microarray, plasma amino 124 acids, urine organic acids, and urine amino acids. All of these studies were normal with the 125 exception of urine organic acids and plasma amino acids, which were abnormal in non1.92kg, 43.5cm length, and OFC of 33.3cm. Prenatal concerns included 129 ventriculomegaly and dichorionic-diamniotic twin gestation; her brother is healthy and 130 developmentally appropriate for his age. After birth, a cleft palate, micrognathia, choanal 131 atresia, and a congenital heart defect were noted

, Despite intensive therapies, Patient 2 cycles through periods of achievement followed by 137 regression, usually around one month following skill acquisition (for example, patient 2 stopped G tube. Dysmorphic features associated with BBIS include: 140 microcephaly, prominent forehead, short palpebral fissures with epicanthal folds, low-hanging 141 columella, abnormally shaped dentition with malocclusion. She also presents cupped ears, 142 small anteverted nares, down-turned corners of the mouth with a tented upper lip, maxillary 143 hypoplasia, prominent fetal pads on hands and feet, and bilateral overlapping toes. Patient 2 has 144 additional medical complications that include alternating exotropia, nystagmus, hyperopia

, The haplotype p.(Trp100Arg, Val234Leu, Gly275Asp) is recurrent in the European population

C. , the missense c.596 G>A, p.(Gly190Glu) variant identified in Patient 2 and a patient 172 reported previously, The haplotype composed of the three missense variants p.(Trp100Arg, Val234Leu, Gly275Asp) BBIS form of ID, 2016.

A. , Figure 1C), 2016.

, Gly275Asp alone or the truncating variant Arg87* reduce the THOC6 protein stability 176 At first, we investigated if THOC6 variants affect stability of the proteins in HEK293T cells

, HEK293T cells were transfected with plasmids expressing human FLAG-tagged wild type or 178 mutant forms with: Trp100Arg

, Trp100Arg), p.(Gly190Glu) and p.(Arg87*)

. Dias, All the THO complex subunit proteins, including THOC6 are localized in the nucleus, 187 specifically co-localizing with the splicing factors in the nuclear speckle domains, vol.188, 2005.

. Hela and . Beaulieu, We performed immunostaining on HeLa cells transfected 191 with plasmids expressing FLAG-tagged human wild-type or variant THOC6 cDNAs using anti192 FLAG antibody and found that whereas wild-type showed a normal nuclear localization, the 193 triple mutant, Gly190Asp and Arg87* THOC6 showed an abnormal cytosolic localization 194, 2013.

C. , NLS) was identified in THOC6, we hypothesized that its variant THOC6 expression plasmids. A Coomassie Blue staining revealed the presence, 207 among the immunoprecipitated proteins, of FLAG-THOC6 along with other proteins at an 208 estimated size of 75 and 28 KDa (data not shown), The immunopreciptated proteins were 209 immunoblotted for THOC1, THOC2, THOC3, THOC4/ALY, THOC5, CIP29 and CBP80 another BBSI affected individual, 2016.

. El-bounkari, Thoc1 and Thoc5 knockout mice were embryonically 238 lethal, indicating their important role during development, THOC5/1, 2005.

, Arg87* lead to a 240 mislocalization of THOC6 in the cytosplasm, and to a loss or a decrease of its interactions with 241 THOC1 and THOC5. Therefore, the variants might make THOC6 unable to carry out its normal 242 function and impact mRNA export, leading to clinical outcomes. Our results combined to the 243 previous ones indicate that compound heterozygosity for the two most common pathogenic 244 missense variants (the haplotype and Gly190Glu found in Patient2) appears, on the basis of 245 single patient descriptions, as severe as homozygosity for the haplotype (Patient 1, and Patient 246 3 described by Casey et al.), homozygosity for a null mutation

. Cheng, El Bounkari 257 et al. previously showed that THOC5 directly interacts with THOC7 and that this interaction is 258 responsible for bringing THOC7 to the nucleus. However, in our case, the amino acid change 259 leading to an abnormal cytoplasmic THOC6 localization, Trp100Arg, does not affect 260 interactions with THOC5 and THOC1. Therefore, disruptions of these interactions might not between THOC2 and THOC6, vol.7, 2005.

. Kumar, Missense variants in THOC2 were reported in patients with an X-linked ID characterized by 269 elevated BMI, speech delay, short stature and seizures a phenotype that do not well overlap 270 with BBIS, 2015.

. Heath, which could explain that consequences are different when they are altered by genetic 276 variants. The microcephaly is significantly more pronounced in these patients than in patients 277 with THOC2 mutations, which is consistent with a role of THOC6 in apoptotic processes, THO/TREX subunits are differentially recruited to specific subsets of mRNA, 2010.

, In conclusion, we have expanded the cohort of BBIS affected individuals by reporting two 283 additional European patients, both carrying the same haplotype

, Europe and composed of three missense variants. This highlights its relative high frequency

, We demonstrated that this haplotype, as well as two other recurrent variants identified in non288 consanguineous European population, the truncating p.(Arg87*) and the missense 289 p.(Gly190Glu) variants, alter THOC6 physiological nuclear localization and its interaction with 290 other members of the THO complex

, MATERIALS AND METHODS Patient recruitment and genomic analysis Patient1 underwent multiple genetic testing that included karyotyping, array comparative 297 genomic hybridization, fragile X-test and targeted-sequencing of more than 400 genes 298 implicated in ID. As no clear pathogenic variant was detected, a trio-whole exome sequencing 299 was then performed. Libraries and captures from genomic blood DNA

. Sureselect-xt-human-;-geoffroy, All Exon V5 Kit (Agilent Technologies), and 100 bp paired-end 301 sequencing was performed on the HiSeq2500 sequencer (Illumina). Reads were aligned and 302 variants called and annotated as described previously, 2014.

. Geoffroy, Variants were filtered according to different inheritance scenarios by using public 305 databases and a large cohort of ID-affected individuals as previously described, A SNP array (Infinium HumanCytoSNP-12 v2.1 BeadChip, Illumina) containing SIFT, vol.304, p.2, 2003.

. Taster and . Schwarz, , 2010.

, Site-directed mutagenesis

. Beaulieu, The variant FLAG-THOC6 expression plasmids were generated by site-directed mutagenesis 314 of thepcDNA3.1-FLAG-THOC6 construct reported previously

, ATAGCATGGTTTCCACCGATtGACATCTGC-3'and c, vol.256

, CTGTCAGGTGGCGAGGATGaAGCTGTTCGAC-3' and c, vol.569

, The variant FLAG-THOC6 plasmids 325 326 were confirmed by sequencing

, Western Blot analysis 328 HEK293T cells were transiently transfected with the different plasmids expressing FLAG329 tagged wild-type or variant forms of THOC6 using Lipofectamine2000 (Invitrogen) and 330 harvested 36 hours after transfection. For immunoblotting analysis, proteins were lysed in RIPA 331 buffer combined with protease inhibitors (Roche), THOC6 expression was analyzed by SDS

, PAGE, and immunoblotting was performed with anti-FLAG (1:1000, F1804, SIGMA) and anti

, TUB2A2 (in house, 1:4000) antibodies. Protein semi-quantification was done by measuring the

, For immunoprecipitation studies, proteins were extracted using a NP40 buffer combined with 339 anti-proteases (Roche) (25mM Tris-HCl pH8, 150mM NaCl, 10% glycerol, p.2

, FLAG-THOC6 was immunoprecipitated with Dynabeads Protein A (Invitrogen) using 341 2?g of mouse anti-FLAG antibody (F1804, SIGMA) or 2?g of a negative control

. Santacruz, After washing steps, proteins were eluted with SDS sample buffer. Coomassie 343 staining revealed the presence of the immunoprecipitated proteins. The presence of proteins of 344 the THO/TREX complex were investigated by immunoblotting with THOC1, 2000.

, ProteinTech, vol.2, p.2500

, THOC4/ALY, p.4000

, Bethyl A302-892A), vol.5, issue.1, p.5000

, Bethyl A302347 120A), vol.29, 2000.

, Thermo Scientific PA5-21783) and CBP80, p.5000

. Bethyl, , pp.301-348

, The experiments were performed in duplicates. with 1×-TBS containing 0,2% TritonX-100, 10% fetal calf serum and 1% bovine 355 serum albumin. Cells were incubated overnight with anti-FLAG antibody (1:500, F1804, 356 SIGMA) and then with the secondary antibody Alexa-594 conjugated goat anti-mouse, p.1000

I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova et al., A method and server for predicting damaging missense mutations, Nat. Methods, vol.7, pp.248-249, 2010.

J. S. Amos, L. Huang, J. Thevenon, A. Kariminedjad, C. L. Beaulieu et al., Autosomal recessive mutations in THOC6 cause intellectual disability: syndrome delineation requiring forward and reverse phenotyping, Clin. Genet, vol.91, pp.92-99, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01405087

S. Anazi, M. Alshammari, D. Moneis, M. Abouelhoda, N. Ibrahim et al., Confirming the candidacy of THOC6 in the etiology of intellectual disability, Am. J. Med. Genet. A, vol.170, pp.1367-1369, 2016.

C. L. Beaulieu, L. Huang, A. M. Innes, M. Akimenko, E. G. Puffenberger et al., A novel autosomal recessive malformation syndrome associated with developmental delay and distinctive facies maps to 16ptel in the Hutterite population, Orphanet J. Rare Dis, vol.8, pp.1349-1356, 2010.

J. Casey, A. Jenkinson, A. Magee, S. Ennis, A. Monavari et al., Beaulieu-Boycott-Innes syndrome: an intellectual disability syndrome with characteristic facies, Clin. Dysmorphol, vol.25, pp.146-151, 2016.

H. Cheng, K. Dufu, C. Lee, J. L. Hsu, A. Dias et al., Human mRNA export machinery recruited to the 5' end of mRNA, Cell, vol.127, pp.1389-1400, 2006.

B. Chi, Q. Wang, G. Wu, M. Tan, L. Wang et al., Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA, Nucleic Acids Res, vol.41, pp.1294-1306, 2013.

A. P. Dias, K. Dufu, H. Lei, R. , and R. , A role for TREX components in the release of spliced mRNA from nuclear speckle domains, Nat. Commun, vol.1, p.97, 2010.

O. El-bounkari, A. Guria, S. Klebba-faerber, M. Claussen, T. Pieler et al., Nuclear localization of the pre-mRNA associating protein THOC7 depends upon its direct interaction with Fms tyrosine kinase interacting protein (FMIP), FEBS Lett, vol.583, pp.13-18, 2009.

F. Gasparri, F. Sola, G. Locatelli, and M. Muzio, The death domain protein p84N5, but not the short isoform p84N5s, is cell cycle-regulated and shuttles between the nucleus and the cytoplasm, FEBS Lett, vol.574, pp.13-19, 2004.

V. Geoffroy, C. Pizot, C. Redin, A. Piton, N. Vasli et al., VaRank: a simple and powerful tool for ranking genetic variants, PeerJ, vol.3, p.796, 2015.

C. Gilissen, J. Y. Hehir-kwa, D. T. Thung, M. Van-de-vorst, B. W. Van-bon et al., Genome sequencing identifies major causes of severe intellectual disability, Nature, vol.511, pp.344-347, 2014.

C. G. Heath, N. Viphakone, W. , and S. A. , The role of TREX in gene expression and disease, Biochem. J, vol.473, pp.2911-2935, 2016.

R. Kumar, M. A. Corbett, B. W. Van-bon, J. A. Woenig, L. Weir et al., THOC2 Mutations Implicate mRNA-Export Pathway in X-Linked Intellectual Disability, Am. J. Hum. Genet, vol.97, pp.302-310, 2015.

Y. Li, X. Wang, X. Zhang, and D. W. Goodrich, Human hHpr1/p84/Thoc1 regulates transcriptional elongation and physically links RNA polymerase II and RNA processing factors, Mol. Cell. Biol, vol.25, pp.4023-4033, 2005.

A. Mancini, S. C. Niemann-seyde, R. Pankow, O. El-bounkari, S. Klebba-färber et al., THOC5/FMIP, an mRNA export TREX complex protein, is essential for hematopoietic primitive cell survival in vivo, BMC Biol, vol.8, p.1, 2010.

S. Masuda, R. Das, H. Cheng, E. Hurt, N. Dorman et al., Recruitment of the human TREX complex to mRNA during splicing, Genes Dev, vol.19, pp.1512-1517, 2005.

P. C. Ng and S. Henikoff, SIFT: Predicting amino acid changes that affect protein function, Nucleic Acids Res, vol.31, pp.3812-3814, 2003.
DOI : 10.1093/nar/gkg509

URL : https://academic.oup.com/nar/article-pdf/31/13/3812/9487105/gkg509.pdf

C. Redin, B. Gérard, J. Lauer, Y. Herenger, J. Muller et al., Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing, J. Med. Genet, vol.51, pp.724-736, 2014.

J. Rehwinkel, A. Herold, K. Gari, T. Köcher, M. Rode et al., , 2004.

, Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster, Nat. Struct. Mol. Biol, vol.11, pp.558-566

J. M. Schwarz, C. Rödelsperger, M. Schuelke, and D. Seelow, MutationTaster evaluates diseasecausing potential of sequence alterations, Nat. Methods, vol.7, pp.575-576, 2010.

D. D. Tran, A. Koch, and T. Tamura, THOC5, a member of the mRNA export complex: a novel link between mRNA export machinery and signal transduction pathways in cell proliferation and differentiation, Cell Commun. Signal. CCS, vol.12, p.3, 2014.

D. D. Tran, S. Saran, A. J. Williamson, A. Pierce, O. Dittrich-breiholz et al., THOC5 controls 3'end-processing of immediate early genes via interaction with polyadenylation specific factor 100 (CPSF100), Nucleic Acids Res, vol.42, pp.12249-12260, 2014.

L. E. Vissers, C. Gilissen, and J. A. Veltman, Genetic studies in intellectual disability and related disorders, Nat. Rev. Genet, vol.17, pp.9-18, 2016.

, FLAG-THOC6 was immunoprecipitated from the cell lysates with 467 anti-FLAG antibody and analysed by Western blot analysis using anti-FLAG, anti-THOC1 and 468 anti-THOC5 antibodies. THOC1 and THOC5 proteins are present in immunoprecipitates of 469 the wild-type, HEK293T cells were transiently transfected with plasmids expressing FLAG-tagged wild-type 466 or THOC6 variant proteins

. Val234leu, Gly275Asp) haplotype compared to the other BBIS patients

. Genomes-project-consortium, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison et al., A global reference for human genetic variation, Nature, vol.526, pp.68-74, 2015.

L. Abbasi-moheb, S. Mertel, M. Gonsior, L. Nouri-vahid, K. Kahrizi et al., Mutations in NSUN2 cause autosomal-recessive intellectual disability, Am. J. Hum. Genet, vol.90, pp.847-855, 2012.

K. Abu-elneel, T. Liu, F. S. Gazzaniga, Y. Nishimura, D. P. Wall et al., Heterogeneous dysregulation of microRNAs across the autism spectrum, Neurogenetics, vol.9, pp.153-161, 2008.

I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova et al., A method and server for predicting damaging missense mutations, Nat. Methods, vol.7, pp.248-249, 2010.

C. A. Albers, D. S. Paul, H. Schulze, K. Freson, J. C. Stephens et al., Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome, Nat. Genet, vol.44, pp.1-2, 2012.

A. F. Alexander-bloch, C. J. Mcdougle, Z. Ullman, and D. A. Sweetser, IQSEC2 and X-linked syndromal intellectual disability, Psychiatr. Genet, vol.26, pp.101-108, 2016.

T. Alrahbeni, F. Sartor, J. Anderson, Z. Miedzybrodzka, C. Mccaig et al., Full UPF3B function is critical for neuronal differentiation of neural stem cells, Mol. Brain, vol.8, p.33, 2015.

I. E. Amarillo, W. L. Li, X. Li, E. Vilain, and S. Kantarci, De novo single exon deletion of AUTS2 in a patient with speech and language disorder: a review of disrupted AUTS2 and further evidence for its role in neurodevelopmental disorders, Am. J. Med. Genet. A, vol.164, pp.958-965, 2014.

J. S. Amos, L. Huang, J. Thevenon, A. Kariminedjad, C. L. Beaulieu et al., Autosomal recessive mutations in THOC6 cause intellectual disability: syndrome delineation requiring forward and reverse phenotyping, Clin. Genet, vol.91, pp.92-99, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01405087

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinforma. Oxf. Engl, vol.31, pp.166-169, 2015.

P. S. Aranda, D. M. Lajoie, J. , and C. L. , Bleach gel: a simple agarose gel for analyzing RNA quality, Electrophoresis, vol.33, pp.366-369, 2012.
DOI : 10.1002/elps.201100335

URL : http://europepmc.org/articles/pmc3699176?pdf=render

P. Y. Au, J. You, O. Caluseriu, J. Schwartzentruber, J. Majewski et al., GeneMatcher aids in the identification of a new malformation syndrome with intellectual disability, unique facial dysmorphisms, and skeletal and connective tissue abnormalities caused by de novo variants in HNRNPK, Hum. Mutat, vol.36, pp.1009-1014, 2015.

I. Augustin, C. Rosenmund, T. C. Südhof, and N. Brose, Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles, Nature, vol.400, pp.457-461, 1999.
DOI : 10.1038/22768

J. M. Bain, M. T. Cho, A. Telegrafi, A. Wilson, S. Brooks et al., Variants in HNRNPH2 on the X Chromosome Are Associated with a Neurodevelopmental Disorder in Females, Am. J. Hum. Genet, vol.99, pp.728-734, 2016.

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res, vol.21, pp.381-395, 2011.
DOI : 10.1038/cr.2011.22

URL : https://www.nature.com/articles/cr201122.pdf

M. Barbelanne and W. Y. Tsang, Molecular and cellular basis of autosomal recessive primary microcephaly, BioMed Res. Int, p.547986, 2014.
DOI : 10.1155/2014/547986

URL : http://downloads.hindawi.com/journals/bmri/2014/547986.pdf

C. L. Beaulieu, L. Huang, A. M. Innes, M. Akimenko, E. G. Puffenberger et al., Intellectual disability associated with a homozygous missense mutation in THOC6, Orphanet J. Rare Dis, vol.8, p.62, 2013.
DOI : 10.1186/1750-1172-8-62

URL : https://ojrd.biomedcentral.com/track/pdf/10.1186/1750-1172-8-62

F. Bedogni, R. D. Hodge, B. R. Nelson, E. A. Frederick, N. Shiba et al., Autism susceptibility candidate 2 (Auts2) encodes a nuclear protein expressed in developing brain regions implicated in autism neuropathology, Gene Expr. Patterns GEP, vol.10, pp.9-15, 2010.
DOI : 10.1016/j.gep.2009.11.005

URL : http://europepmc.org/articles/pmc2818569?pdf=render

F. Bedogni, R. D. Hodge, G. E. Elsen, B. R. Nelson, R. A. Daza et al., Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.13129-13134, 2010.
DOI : 10.1073/pnas.1002285107

URL : http://www.pnas.org/content/107/29/13129.full.pdf

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. R. Stat. Soc. Ser. B Methodol, vol.57, pp.289-300, 1995.
DOI : 10.1111/j.2517-6161.1995.tb02031.x

M. Berdasco and M. Esteller, Genetic syndromes caused by mutations in epigenetic genes, Hum. Genet, vol.132, pp.359-383, 2013.
DOI : 10.1007/s00439-013-1271-x

R. Bernier, C. Golzio, B. Xiong, H. A. Stessman, B. P. Coe et al., Disruptive CHD8 mutations define a subtype of autism early in development, Cell, vol.158, pp.263-276, 2014.

G. Beunders, E. Voorhoeve, C. Golzio, L. M. Pardo, J. A. Rosenfeld et al., Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus, Am. J. Hum. Genet, vol.92, pp.210-220, 2013.

G. Beunders, S. A. De-munnik, N. Van-der-aa, B. Ceulemans, E. Voorhoeve et al., Two male adults with pathogenic AUTS2 variants, including a two-base pair deletion, further delineate the AUTS2 syndrome, Eur. J. Hum. Genet. EJHG, vol.23, pp.803-807, 2015.
DOI : 10.1038/ejhg.2014.173

URL : https://www.nature.com/articles/ejhg2014173.pdf

G. Beunders, J. Van-de-kamp, P. Vasudevan, J. Morton, K. Smets et al., A detailed clinical analysis of 13 patients with AUTS2 syndrome further delineates the phenotypic spectrum and underscores the behavioural phenotype, J. Med. Genet, vol.53, pp.523-532, 2016.

K. Bhalla, H. A. Phillips, J. Crawford, O. L. Mckenzie, J. C. Mulley et al., The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene, J. Hum. Genet, vol.49, pp.308-311, 2004.

S. Bianco, D. G. Lupiáñez, A. M. Chiariello, C. Annunziatella, K. Kraft et al., Polymer physics predicts the effects of structural variants on chromatin architecture, Nat. Genet, vol.50, pp.662-667, 2018.
DOI : 10.1038/s41588-018-0098-8

T. Bienvenu, B. Diebold, J. Chelly, and B. Isidor, Refining the phenotype associated with MEF2C point mutations, Neurogenetics, vol.14, pp.71-75, 2013.
DOI : 10.1007/s10048-012-0344-7

V. Boczonadi, J. S. Müller, A. Pyle, J. Munkley, T. Dor et al., EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia, Annu. Rev. Genet, vol.5, pp.81-104, 2011.
DOI : 10.1038/ncomms5287

URL : https://www.nature.com/articles/ncomms5287.pdf

B. W. Van-bon, H. C. Mefford, B. Menten, D. A. Koolen, A. J. Sharp et al., Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome, J. Med. Genet, vol.46, pp.511-523, 2009.

R. J. Buckanovich, D. , and R. B. , The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo, Mol. Cell. Biol, vol.17, pp.3194-3201, 1997.

C. Cardoso, A. Boys, E. Parrini, C. Mignon-ravix, J. M. Mcmahon et al., Periventricular heterotopia, mental retardation, and epilepsy associated with 5q14.3-q15 deletion, Neurology, vol.72, pp.784-792, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00483473

L. Cartegni, J. Wang, Z. Zhu, M. Q. Zhang, and A. R. Krainer, ESEfinder: a web resource to identify exonic splicing enhancers, Nucleic Acids Res, vol.31, pp.3568-3571, 2003.

G. L. Carvill, S. B. Heavin, S. C. Yendle, J. M. Mcmahon, B. J. O'roak et al., Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1, Nat. Genet, vol.45, pp.825-830, 2013.

J. Casey, A. Jenkinson, A. Magee, S. Ennis, A. Monavari et al., Beaulieu-Boycott-Innes syndrome: an intellectual disability syndrome with characteristic facies, Clin. Dysmorphol, vol.25, pp.146-151, 2016.

S. J. Chamberlain, RNAs of the human chromosome 15q11-q13 imprinted region, Wiley Interdiscip. Rev. RNA, vol.4, pp.155-166, 2013.

J. Chelly, M. Khelfaoui, F. Francis, B. Chérif, and T. Bienvenu, Genetics and pathophysiology of mental retardation, Eur. J. Hum. Genet. EJHG, vol.14, pp.701-713, 2006.

L. Chen, A. S. Zhou, and A. E. West, Transcribing the connectome: roles for transcription factors and chromatin regulators in activity-dependent synapse development, J. Neurophysiol, vol.118, pp.755-770, 2017.

E. Chérot, B. Keren, C. Dubourg, W. Carré, M. Fradin et al., Using medical exome sequencing to identify the causes of neurodevelopmental disorders: Experience of 2 clinical units and 216 patients, Clin. Genet, vol.93, pp.567-576, 2018.

S. Choufani, C. Cytrynbaum, B. H. Chung, A. L. Turinsky, D. Grafodatskaya et al., NSD1 mutations generate a genome-wide DNA methylation signature, Nat. Commun, vol.6, p.10207, 2015.

H. Chuang, T. Huang, and Y. Hsueh, T-Brain-1-A Potential Master Regulator in Autism Spectrum Disorders, Autism Res. Off. J. Int. Soc. Autism Res, vol.8, pp.412-426, 2015.

B. Coffee, K. Keith, I. Albizua, T. Malone, J. Mowrey et al., Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA, Am. J. Hum. Genet, vol.85, pp.503-514, 2009.

G. M. Cooper, B. P. Coe, S. Girirajan, J. A. Rosenfeld, T. H. Vu et al., A copy number variation morbidity map of developmental delay, Nat. Genet, vol.43, pp.838-846, 2011.

P. Couvert, T. Bienvenu, C. Aquaviva, K. Poirier, C. Moraine et al., MECP2 is highly mutated in X-linked mental retardation, Hum. Mol. Genet, vol.10, pp.941-946, 2001.

Y. J. Crow, A. Leitch, B. E. Hayward, A. Garner, R. Parmar et al., Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection, Nat. Genet, vol.38, pp.910-916, 2006.

H. N. Cukier, A. M. Perez, A. L. Collins, Z. Zhou, H. Y. Zoghbi et al., Genetic modifiers of MeCP2 function in Drosophila, PLoS Genet, vol.4, p.1000179, 2008.

B. B. Cummings, J. L. Marshall, T. Tukiainen, M. Lek, S. Donkervoort et al., Improving genetic diagnosis in Mendelian disease with transcriptome sequencing, Sci. Transl. Med, vol.9, 2017.

R. B. Darnell and J. B. Posner, Paraneoplastic syndromes involving the nervous system, N. Engl. J. Med, vol.349, pp.1543-1554, 2003.

A. Dauber, C. Golzio, C. Guenot, F. M. Jodelka, M. Kibaek et al., SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant, Am. J. Hum. Genet, vol.93, pp.798-811, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01707379

S. De-rubeis, X. He, A. P. Goldberg, C. S. Poultney, K. Samocha et al., Synaptic, transcriptional and chromatin genes disrupted in autism, Nature, vol.515, pp.209-215, 2014.

, Large-scale discovery of novel genetic causes of developmental disorders, Nature, vol.519, pp.223-228, 2015.

, Prevalence and architecture of de novo mutations in developmental disorders, Nature, vol.542, pp.433-438, 2017.

C. J. Decker, P. , and R. , P-bodies and stress granules: possible roles in the control of translation and mRNA degradation, Cold Spring Harb. Perspect. Biol, vol.4, p.12286, 2012.

M. A. Depristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire et al., A framework for variation discovery and genotyping using next-generation DNA sequencing data, Nat. Genet, vol.43, pp.491-498, 2011.

F. Desmet, D. Hamroun, M. Lalande, G. Collod-béroud, M. Claustres et al., Human Splicing Finder: an online bioinformatics tool to predict splicing signals, Nucleic Acids Res, vol.37, p.67, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00396239

D. Donato, N. Neuhann, T. Kahlert, A. Klink, B. Hackmann et al., Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt, J. Med. Genet, vol.53, pp.419-425, 2016.

C. Dias, S. B. Estruch, S. A. Graham, J. Mcrae, S. J. Sawiak et al., BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription, Am. J. Hum. Genet, vol.99, pp.253-274, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01680178

S. Edvardson, A. Shaag, O. Kolesnikova, J. M. Gomori, I. Tarassov et al., Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia, Am. J. Hum. Genet, vol.81, pp.857-862, 2007.

A. G. Engel, D. Selcen, X. Shen, M. Milone, and C. M. Harper, Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia, Neurol. Genet, vol.2, p.105, 2016.

H. Engels, E. Wohlleber, A. Zink, J. Hoyer, K. U. Ludwig et al., A novel microdeletion syndrome involving 5q14.3-q15: clinical and molecular cytogenetic characterization of three patients, Eur. J. Hum. Genet. EJHG, vol.17, pp.1592-1599, 2009.

M. Esteller, Non-coding RNAs in human disease, Nat. Rev. Genet, vol.12, pp.861-874, 2011.

W. G. Fairbrother, G. W. Yeo, R. Yeh, P. Goldstein, M. Mawson et al., RESCUEESE identifies candidate exonic splicing enhancers in vertebrate exons, Nucleic Acids Res, vol.32, pp.187-190, 2004.

F. P. Favaro, L. Alvizi, R. M. Zechi-ceide, D. Bertola, T. M. Felix et al., A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects, Am. J. Hum. Genet, vol.94, pp.120-128, 2014.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, vol.391, pp.806-811, 1998.

H. V. Firth, S. M. Richards, A. P. Bevan, S. Clayton, M. Corpas et al., DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources, Am. J. Hum. Genet, vol.84, pp.524-533, 2009.

B. L. Fogel, E. Wexler, A. Wahnich, T. Friedrich, C. Vijayendran et al., RBFOX1 regulates both splicing and transcriptional networks in human neuronal development, Hum. Mol. Genet, vol.21, pp.4171-4186, 2012.

S. L. Forsberg, M. Ilieva, M. Michel, and T. , Epigenetics and cerebral organoids: promising directions in autism spectrum disorders, Transl. Psychiatry, vol.8, p.14, 2018.

S. G. Frints, A. Ozanturk, G. Rodríguez-criado, U. Grasshoff, B. De-hoon et al., Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder, Mol. Psychiatry, 2018.

Z. Gao, P. Lee, J. M. Stafford, M. Von-schimmelmann, A. Schaefer et al., An AUTS2Polycomb complex activates gene expression in the CNS, Nature, vol.516, pp.349-354, 2014.

T. Gaugler, L. Klei, S. J. Sanders, C. A. Bodea, A. P. Goldberg et al., Most genetic risk for autism resides with common variation, Nat. Genet, vol.46, pp.881-885, 2014.

J. Gecz, A. K. Gedeon, G. R. Sutherland, and J. C. Mulley, Identification of the gene FMR2, associated with FRAXE mental retardation, Nat. Genet, vol.13, pp.105-108, 1996.

J. Gécz, C. Shoubridge, and M. Corbett, The genetic landscape of intellectual disability arising from chromosome X, Trends Genet. TIG, vol.25, pp.308-316, 2009.

M. R. Geisheker, G. Heymann, T. Wang, B. P. Coe, T. N. Turner et al., Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains, Nat. Neurosci, vol.20, pp.1043-1051, 2017.

V. A. Gennarino, R. K. Singh, J. J. White, A. De-maio, K. Han et al., Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wildtype Ataxin1 levels, Cell, vol.160, pp.1087-1098, 2015.

V. A. Gennarino, E. E. Palmer, L. M. Mcdonell, L. Wang, C. J. Adamski et al., A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures, Cell, vol.172, pp.924-936, 2018.

V. Geoffroy, C. Pizot, C. Redin, A. Piton, N. Vasli et al., VaRank: a simple and powerful tool for ranking genetic variants, PeerJ, vol.3, p.796, 2015.

C. Gilissen, J. Y. Hehir-kwa, D. T. Thung, M. Van-de-vorst, B. W. Van-bon et al., Genome sequencing identifies major causes of severe intellectual disability, Nature, vol.511, pp.344-347, 2014.

S. R. Gilman, I. Iossifov, D. Levy, M. Ronemus, M. Wigler et al., Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses, Neuron, vol.70, pp.898-907, 2011.

S. Girirajan, J. A. Rosenfeld, G. M. Cooper, F. Antonacci, P. Siswara et al., A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay, Nat. Genet, vol.42, pp.203-209, 2010.

R. E. Green, J. Krause, A. W. Briggs, T. Maricic, U. Stenzel et al., A draft sequence of the Neandertal genome, Science, vol.328, pp.710-722, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00920381

D. Grozeva, K. Carss, O. Spasic-boskovic, M. J. Parker, H. Archer et al., De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability, Am. J. Hum. Genet, vol.94, pp.618-624, 2014.

D. Grozeva, K. Carss, O. Spasic-boskovic, M. Tejada, J. Gecz et al., Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability, Hum. Mutat, vol.36, pp.1197-1204, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01664310

, Genetic effects on gene expression across human tissues, Data Analysis &Coordinating Center (LDACC)-Analysis Working Group, Statistical Methods groups-Analysis Working Group, vol.550, pp.204-213, 2017.

A. Guilmatre, C. Dubourg, A. Mosca, S. Legallic, A. Goldenberg et al., Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation, Arch. Gen. Psychiatry, vol.66, pp.947-956, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00417413

A. Halevy, I. Lerer, R. Cohen, L. Kornreich, A. Shuper et al., Novel EXOSC3 mutation causes complicated hereditary spastic paraplegia, J. Neurol, vol.261, pp.2165-2169, 2014.

F. F. Hamdan, A. Piton, J. Gauthier, A. Lortie, F. Dubeau et al., De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy, Ann. Neurol, vol.65, pp.748-753, 2009.

F. F. Hamdan, J. Gauthier, D. Spiegelman, A. Noreau, Y. Yang et al., Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation, N. Engl. J. Med, vol.360, pp.599-605, 2009.

F. F. Hamdan, H. Daoud, D. Rochefort, A. Piton, J. Gauthier et al., De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment, Am. J. Hum. Genet, vol.87, pp.671-678, 2010.

F. F. Hamdan, M. Srour, J. Capo-chichi, H. Daoud, C. Nassif et al., De novo mutations in moderate or severe intellectual disability, PLoS Genet, vol.10, p.1004772, 2014.

K. Han, U. C. Müller, and S. Hülsmann, Amyloid-precursor Like Proteins APLP1 and APLP2 Are Dispensable for Normal Development of the Neonatal Respiratory Network, Front. Mol. Neurosci, vol.10, p.189, 2017.

R. R. Haraksingh and M. P. Snyder, Impacts of Variation in the Human Genome on Gene Regulation, J. Mol. Biol, vol.425, pp.3970-3977, 2013.

R. Harripaul, A. Noor, M. Ayub, and J. B. Vincent, The Use of Next-Generation Sequencing for Research and Diagnostics for Intellectual Disability, Cold Spring Harb. Perspect. Med, vol.7, 2017.

S. W. Hartley and J. C. Mullikin, Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq, Nucleic Acids Res, vol.44, p.127, 2016.

J. L. Hartman, B. Garvik, H. , and L. , Principles for the buffering of genetic variation, Science, vol.291, pp.1001-1004, 2001.

N. Hirokawa, Y. Noda, Y. Tanaka, and S. Niwa, Kinesin superfamily motor proteins and intracellular transport, Nat. Rev. Mol. Cell Biol, vol.10, pp.682-696, 2009.
DOI : 10.1038/nrm2774

A. Hoischen, N. Krumm, and E. E. Eichler, Prioritization of neurodevelopmental disease genes by discovery of new mutations, Nat. Neurosci, vol.17, pp.764-772, 2014.

K. Hori, T. Nagai, W. Shan, A. Sakamoto, S. Taya et al., Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis, Cell Rep, vol.9, pp.2166-2179, 2014.

K. Hori, T. Nagai, W. Shan, A. Sakamoto, M. Abe et al., Heterozygous Disruption of Autism susceptibility candidate 2 Causes Impaired Emotional Control and Cognitive Memory, PLOS ONE, vol.10, p.145979, 2015.
DOI : 10.1371/journal.pone.0145979

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0145979&type=printable

H. Hu, S. A. Haas, J. Chelly, H. Van-esch, M. Raynaud et al., X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes, Mol. Psychiatry, vol.21, pp.133-148, 2016.
DOI : 10.1038/mp.2014.193

URL : https://www.nature.com/articles/mp2014193.pdf

H. Hu, K. Kahrizi, L. Musante, Z. Fattahi, R. Herwig et al., Genetics of intellectual disability in consanguineous families, Mol. Psychiatry, 2018.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc, vol.4, pp.44-57, 2009.

G. Huguet, E. Ey, and T. Bourgeron, The genetic landscapes of autism spectrum disorders, Annu. Rev. Genomics Hum. Genet, vol.14, pp.191-213, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01470293

S. A. Huisman, E. J. Redeker, S. M. Maas, M. M. Mannens, and R. C. Hennekam, High rate of mosaicism in individuals with Cornelia de Lange syndrome, J. Med. Genet, vol.50, pp.339-344, 2013.

I. Iossifov, M. Ronemus, D. Levy, Z. Wang, I. Hakker et al., De novo gene disruptions in children on the autistic spectrum, Neuron, vol.74, pp.285-299, 2012.

I. Iossifov, B. J. O'roak, S. J. Sanders, M. Ronemus, N. Krumm et al., The contribution of de novo coding mutations to autism spectrum disorder, Nature, vol.515, pp.216-221, 2014.

J. Iulio, . Di, I. Bartha, E. H. Wong, H. Yu et al., The human noncoding genome defined by genetic diversity, Nat. Genet, vol.50, pp.333-337, 2018.

C. K. Iwahashi, D. H. Yasui, H. An, C. M. Greco, F. Tassone et al., Protein composition of the intranuclear inclusions of FXTAS, Brain J. Neurol, vol.129, pp.256-271, 2006.

S. Jansen, S. Geuer, R. Pfundt, R. Brough, P. Ghongane et al., De Novo Truncating Mutations in the Last and Penultimate Exons of PPM1D Cause an Intellectual Disability Syndrome, Am. J. Hum. Genet, vol.100, pp.650-658, 2017.

K. B. Jensen, K. Musunuru, H. A. Lewis, S. K. Burley, D. et al., The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.5740-5745, 2000.

K. B. Jensen, B. K. Dredge, G. Stefani, R. Zhong, R. J. Buckanovich et al., Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability, Neuron, vol.25, pp.359-371, 2000.
DOI : 10.1016/s0896-6273(00)80900-9

URL : https://doi.org/10.1016/s0896-6273(00)80900-9

P. Jin, R. S. Alisch, W. , and S. T. , RNA and microRNAs in fragile X mental retardation, Nat. Cell Biol, vol.6, pp.1048-1053, 2004.
DOI : 10.1038/ncb1104-1048

S. S. Kalia, K. Adelman, S. J. Bale, W. K. Chung, C. Eng et al., Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics, Genet. Med. Off. J. Am. Coll. Med. Genet, vol.19, pp.249-255, 2017.

V. M. Kalscheuer, K. Freude, L. Musante, L. R. Jensen, H. G. Yntema et al., Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation, Nat. Genet, vol.35, pp.313-315, 2003.
DOI : 10.1038/ng1264

URL : http://edoc.mpg.de/get.epl?fid=81917&did=127750&ver=0

Y. Kanai, N. Dohmae, and N. Hirokawa, Kinesin transports RNA: isolation and characterization of an RNA-transporting granule, Neuron, vol.43, pp.513-525, 2004.

L. Kaufman, M. Ayub, and J. B. Vincent, The genetic basis of non-syndromic intellectual disability: a review, J. Neurodev. Disord, vol.2, pp.182-209, 2010.

R. Ke, M. Mignardi, T. Hauling, and M. Nilsson, Fourth Generation of Next-Generation Sequencing Technologies: Promise and Consequences, Hum. Mutat, vol.37, pp.1363-1367, 2016.
DOI : 10.1002/humu.23051

URL : http://europepmc.org/articles/pmc5111608?pdf=render

M. A. Kiebler and G. J. Bassell, Neuronal RNA granules: movers and makers, Neuron, vol.51, pp.685-690, 2006.
DOI : 10.1016/j.neuron.2006.08.021

URL : https://doi.org/10.1016/j.neuron.2006.08.021

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley et al., TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, p.36, 2013.

S. Kirchner and Z. Ignatova, Emerging roles of tRNA in adaptive translation, signalling dynamics and disease, Nat. Rev. Genet, vol.16, pp.98-112, 2015.
DOI : 10.1038/nrg3861

N. Kishi and J. D. Macklis, MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions, Mol. Cell. Neurosci, vol.27, pp.306-321, 2004.
DOI : 10.1016/j.mcn.2004.07.006

T. Kleefstra, A. Schenck, J. M. Kramer, and H. Van-bokhoven, The genetics of cognitive epigenetics, Neuropharmacology, vol.80, pp.83-94, 2014.
DOI : 10.1016/j.neuropharm.2013.12.025

L. Klei, S. J. Sanders, M. T. Murtha, V. Hus, J. K. Lowe et al., Common genetic variants, acting additively, are a major source of risk for autism, Mol. Autism, vol.3, p.9, 2012.

E. Klopocki, H. Schulze, G. Strauss, C. Ott, J. Hall et al., Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome, Am. J. Hum. Genet, vol.80, pp.232-240, 2007.
DOI : 10.1086/510919

URL : https://doi.org/10.1086/510919

K. Kochinke, C. Zweier, B. Nijhof, M. Fenckova, P. Cizek et al., Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules, Am. J. Hum. Genet, vol.98, pp.149-164, 2016.
DOI : 10.1016/j.ajhg.2015.11.024

URL : https://doi.org/10.1016/j.ajhg.2015.11.024

I. Kondrychyn, L. Robra, and V. Thirumalai, Transcriptional Complexity and Distinct Expression Patterns ofauts2Paralogs inDanio rerio, G3 Bethesda Md, vol.7, pp.2577-2593, 2017.
DOI : 10.1534/g3.117.042622

URL : http://www.g3journal.org/content/ggg/7/8/2577.full.pdf

R. Kopajtich, K. Murayama, A. R. Janecke, T. B. Haack, M. Breuer et al., Biallelic IARS Mutations Cause Growth Retardation with Prenatal Onset, Intellectual Disability, Muscular Hypotonia, and Infantile Hepatopathy, Am. J. Hum. Genet, vol.99, pp.414-422, 2016.
DOI : 10.1016/j.ajhg.2016.05.027

URL : https://doi.org/10.1016/j.ajhg.2016.05.027

C. G. De-kovel, E. H. Brilstra, M. J. Van-kempen, R. Van't-slot, I. J. Nijman et al., Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients, Mol. Genet. Genomic Med, vol.4, pp.568-580, 2016.

R. A. Kozol, A. J. Abrams, D. M. James, E. Buglo, Q. Yan et al., Function Over Form: Modeling Groups of Inherited Neurological Conditions in, Zebrafish. Front. Mol. Neurosci, vol.9, p.55, 2016.
DOI : 10.3389/fnmol.2016.00055

URL : https://www.frontiersin.org/articles/10.3389/fnmol.2016.00055/pdf

L. S. Kremer, D. M. Bader, C. Mertes, R. Kopajtich, G. Pichler et al., Genetic diagnosis of Mendelian disorders via RNA sequencing, Nat. Commun, vol.8, p.15824, 2017.
DOI : 10.1038/ncomms15824

URL : https://www.nature.com/articles/ncomms15824.pdf

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protoc, vol.4, pp.1073-1081, 2009.

R. Kumar, M. A. Corbett, B. W. Van-bon, J. A. Woenig, L. Weir et al., THOC2 Mutations Implicate mRNA-Export Pathway in X-Linked Intellectual Disability, Am. J. Hum. Genet, vol.97, pp.302-310, 2015.

S. Küry, G. M. Van-woerden, T. Besnard, M. Proietti-onori, X. Latypova et al., De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability, Am. J. Hum. Genet, vol.101, pp.768-788, 2017.

A. W. Kuss, M. Garshasbi, K. Kahrizi, A. Tzschach, F. Behjati et al., Autosomal recessive mental retardation: homozygosity mapping identifies 27 single linkage intervals, at least 14 novel loci and several mutation hotspots, Hum. Genet, vol.129, pp.141-148, 2011.

D. Lal, K. Pernhorst, K. M. Klein, P. Reif, R. Tozzi et al., Extending the phenotypic spectrum of RBFOX1 deletions: Sporadic focal epilepsy, Epilepsia, vol.56, pp.129-133, 2015.

E. Landucci, M. Brindisi, L. Bianciardi, L. M. Catania, S. Daga et al., iPSC-derived neurons profiling reveals GABAergic circuit disruption and acetylated ?tubulin defect which improves after iHDAC6 treatment in Rett syndrome, Exp. Cell Res, 2018.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

R. M. Lardelli, A. E. Schaffer, V. R. Eggens, M. S. Zaki, S. Grainger et al., Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing, Nat. Genet, vol.49, pp.457-464, 2017.

L. Meur, N. Holder-espinasse, M. Jaillard, S. Goldenberg, A. Joriot et al., MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations, J. Med. Genet, vol.47, pp.22-29, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00406331

C. S. Leblond, J. Heinrich, R. Delorme, C. Proepper, C. Betancur et al., Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders, PLoS Genet, vol.8, p.1002521, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00834560

T. Lee, Z. Lin, S. Hsieh, N. A. Bretaña, and C. Lu, Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences, Bioinforma. Oxf. Engl, vol.27, pp.1780-1787, 2011.

J. Lejeune, R. Turpin, and M. Gautier, Arch. Fr. Pediatr, vol.16, pp.962-963, 1959.

M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks et al., Analysis of protein-coding genetic variation in 60,706 humans, Nature, vol.536, pp.285-291, 2016.

J. R. Lemke, E. Riesch, T. Scheurenbrand, M. Schubach, C. Wilhelm et al., Targeted next generation sequencing as a diagnostic tool in epileptic disorders, Epilepsia, vol.53, pp.1387-1398, 2012.

D. Lessel, C. Schob, S. Küry, M. R. Reijnders, T. Harel et al., De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder, Am. J. Hum. Genet, vol.101, pp.716-724, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02083022

J. Lévy, A. Coussement, C. Dupont, F. Guimiot, C. Baumann et al., Molecular and clinical delineation of 2p15p16.1 microdeletion syndrome, Am. J. Med. Genet. A, vol.173, pp.2081-2087, 2017.

H. A. Lewis, K. Musunuru, K. B. Jensen, C. Edo, H. Chen et al., Sequencespecific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome, Cell, vol.100, pp.323-332, 2000.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinforma. Oxf. Engl, vol.25, pp.1754-1760, 2009.

H. Li, J. C. Radford, M. J. Ragusa, K. L. Shea, S. R. Mckercher et al., Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.9397-9402, 2008.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., , p.1000

, The Sequence Alignment/Map format and SAMtools, Genome Project Data Processing Subgroup, vol.25, pp.2078-2079, 2009.

J. J. Li, P. J. Bickel, and M. D. Biggin, System wide analyses have underestimated protein abundances and the importance of transcription in mammals, PeerJ, vol.2, p.270, 2014.

Y. Li, H. Wang, J. Muffat, A. W. Cheng, D. A. Orlando et al., Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons, Cell Stem Cell, vol.13, pp.446-458, 2013.
DOI : 10.1016/j.stem.2013.09.001

URL : https://doi.org/10.1016/j.stem.2013.09.001

Y. I. Li, D. A. Knowles, J. Humphrey, A. N. Barbeira, S. P. Dickinson et al., , 2018.

, Annotation-free quantification of RNA splicing using LeafCutter, Nat. Genet, vol.50, pp.151-158

D. D. Licatalosi, A. Mele, J. J. Fak, J. Ule, M. Kayikci et al., HITS-CLIP yields genome-wide insights into brain alternative RNA processing, Nature, vol.456, pp.464-469, 2008.

J. De-ligt, M. H. Willemsen, B. W. Van-bon, T. Kleefstra, H. G. Yntema et al., Diagnostic exome sequencing in persons with severe intellectual disability, N. Engl. J. Med, vol.367, pp.1921-1929, 2012.

M. A. Lines, L. Huang, J. Schwartzentruber, S. L. Douglas, D. C. Lynch et al., Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly, Am. J. Hum. Genet, vol.90, pp.369-377, 2012.

C. Lintas and A. M. Persico, Neocortical RELN promoter methylation increases significantly after puberty, Neuroreport, vol.21, pp.114-118, 2010.

A. C. Lionel, G. Costain, N. Monfared, S. Walker, M. S. Reuter et al., Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test, Genet. Med. Off. J. Am. Coll. Med. Genet, 2017.

N. Lipstein, N. M. Verhoeven-duif, F. E. Michelassi, N. Calloway, P. M. Van-hasselt et al., Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder, J. Clin. Invest, vol.127, pp.1005-1018, 2017.

R. Lister, E. A. Mukamel, J. R. Nery, M. Urich, C. A. Puddifoot et al., Global epigenomic reconfiguration during mammalian brain development, Science, vol.341, p.1237905, 2013.

H. Liu and L. Wong, Data mining tools for biological sequences, J. Bioinform. Comput. Biol, vol.1, pp.139-167, 2003.

Y. Liu, D. Zhao, R. Dong, X. Yang, Y. Zhang et al., De novo exon 1 deletion of AUTS2 gene in a patient with autism spectrum disorder and developmental delay: a case report and a brief literature review, Am. J. Med. Genet. A, vol.167, pp.1381-1385, 2015.

C. H. Lou, A. Shao, E. Y. Shum, J. L. Espinoza, L. Huang et al., Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway, Cell Rep, vol.6, pp.748-764, 2014.

M. I. Love, W. Huber, A. , and S. , Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

M. N. Loviglio, M. Leleu, K. Männik, M. Passeggeri, G. Giannuzzi et al., Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes, Mol. Psychiatry, vol.22, pp.836-849, 2017.

H. A. Lubs, A marker X chromosome, Am. J. Hum. Genet, vol.21, pp.231-244, 1969.

H. A. Lubs, R. E. Stevenson, and C. E. Schwartz, Fragile X and X-linked intellectual disability: four decades of discovery, Am. J. Hum. Genet, vol.90, pp.579-590, 2012.

D. G. Lupiáñez, K. Kraft, V. Heinrich, P. Krawitz, F. Brancati et al., Disruptions of topological chromatin domains cause pathogenic rewiring of geneenhancer interactions, Cell, vol.161, pp.1012-1025, 2015.

D. G. Lupiáñez, M. Spielmann, M. , and S. , Breaking TADs: How Alterations of Chromatin Domains Result in Disease, Trends Genet. TIG, vol.32, pp.225-237, 2016.

J. R. Lupski, Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits, Trends Genet. TIG, vol.14, pp.417-422, 1998.

J. R. Lupski, J. G. Reid, C. Gonzaga-jauregui, D. Rio-deiros, D. C. Chen et al., Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy, N. Engl. J. Med, vol.362, pp.1181-1191, 2010.

T. Mannen, S. Yamashita, K. Tomita, N. Goshima, and T. Hirose, The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL, J. Cell Biol, vol.214, pp.45-59, 2016.

M. C. Marchetto, C. Carromeu, A. Acab, D. Yu, G. W. Yeo et al., A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells, Cell, vol.143, pp.527-539, 2010.

C. L. Martin, J. A. Duvall, Y. Ilkin, J. S. Simon, M. G. Arreaza et al., Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism, Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet, vol.144, pp.869-876, 2007.

F. Martínez, A. Caro-llopis, M. Roselló, S. Oltra, S. Mayo et al., High diagnostic yield of syndromic intellectual disability by targeted next-generation sequencing, J. Med. Genet, vol.54, pp.87-92, 2017.

L. Mary, A. Piton, E. Schaefer, F. Mattioli, E. Nourisson et al., Disease-causing variants in TCF4 are a frequent cause of intellectual disability: lessons from large-scale sequencing approaches in diagnosis, Eur. J. Hum. Genet. EJHG, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01870355

V. Matarazzo, D. Cohen, A. M. Palmer, P. J. Simpson, B. Khokhar et al., The transcriptional repressor Mecp2 regulates terminal neuronal differentiation, Mol. Cell. Neurosci, vol.27, pp.44-58, 2004.

E. Mathe, M. Olivier, S. Kato, C. Ishioka, P. Hainaut et al., Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods, Nucleic Acids Res, vol.34, pp.1317-1325, 2006.

F. Mattioli, A. Piton, B. Gérard, A. Superti-furga, J. Mandel et al., Novel de novo mutations in ZBTB20 in Primrose syndrome with congenital hypothyroidism, Am. J. Med. Genet. A, vol.170, pp.1626-1629, 2016.

F. Mattioli, E. Schaefer, A. Magee, P. Mark, G. M. Mancini et al., Mutations in Histone Acetylase Modifier BRPF1 Cause an AutosomalDominant Form of Intellectual Disability with Associated Ptosis, Am. J. Hum. Genet, vol.100, pp.105-116, 2017.

P. K. Maulik, M. N. Mascarenhas, C. D. Mathers, T. Dua, and S. Saxena, Prevalence of intellectual disability: a meta-analysis of population-based studies, Res. Dev. Disabil, vol.32, pp.419-436, 2011.

J. Mclaren and S. E. Bryson, Review of recent epidemiological studies of mental retardation: prevalence, associated disorders, and etiology, Am. J. Ment. Retard. AJMR, vol.92, pp.243-254, 1987.

I. Meloni, M. Bruttini, I. Longo, F. Mari, F. Rizzolio et al., A mutation in the rett syndrome gene, MECP2, causes X-linked mental retardation and progressive spasticity in males, Am. J. Hum. Genet, vol.67, pp.982-985, 2000.

R. Meyer-schuman, A. , and A. , Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease, Hum. Mol. Genet, vol.26, pp.114-127, 2017.

D. Mircsof, M. Langouët, M. Rio, S. Moutton, K. Siquier-pernet et al., Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects, Nat. Neurosci, vol.18, pp.1731-1736, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02088168

G. M. Mirzaa, L. Enyedi, G. Parsons, S. Collins, L. Medne et al., Congenital microcephaly and chorioretinopathy due to de novo heterozygous KIF11 mutations: five novel mutations and review of the literature, Am. J. Med. Genet. A, vol.164, pp.2879-2886, 2014.

M. J. Moore, From birth to death: the complex lives of eukaryotic mRNAs, Science, vol.309, pp.1514-1518, 2005.

M. Morita, Y. Oike, T. Nagashima, T. Kadomatsu, M. Tabata et al., Obesity resistance and increased hepatic expression of catabolism-related mRNAs in Cnot3+/-mice, EMBO J, vol.30, pp.4678-4691, 2011.

A. Mortazavi, B. A. Williams, K. Mccue, L. Schaeffer, W. et al., Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat. Methods, vol.5, pp.621-628, 2008.

D. J. Morton, E. G. Kuiper, S. K. Jones, S. W. Leung, A. H. Corbett et al., The RNA exosome and RNA exosome-linked disease, RNA N. Y. N, vol.24, pp.127-142, 2018.

L. Musante, R. , and H. H. , Genetics of recessive cognitive disorders, Trends Genet, vol.30, pp.32-39, 2014.

L. Musante, R. , and H. H. , Genetics of recessive cognitive disorders, Trends Genet. TIG, vol.30, pp.32-39, 2014.

S. Nachtergaele and C. He, The emerging biology of RNA post-transcriptional modifications, RNA Biol, vol.14, pp.156-163, 2017.

S. C. Nagamani, A. Erez, B. Ben-zeev, M. Frydman, S. Winter et al., Detection of copy-number variation in AUTS2 gene by targeted exonic array CGH in patients with developmental delay and autistic spectrum disorders, Eur. J. Hum. Genet. EJHG, vol.21, pp.343-346, 2013.

H. Najmabadi, H. Hu, M. Garshasbi, T. Zemojtel, S. S. Abedini et al., Deep sequencing reveals 50 novel genes for recessive cognitive disorders, Nature, vol.478, pp.57-63, 2011.

J. Nakajima, N. Okamoto, J. Tohyama, M. Kato, H. Arai et al., De novo EEF1A2 mutations in patients with characteristic facial features, intellectual disability, autistic behaviors and epilepsy, Clin. Genet, vol.87, pp.356-361, 2015.

I. Napoli, V. Mercaldo, P. P. Boyl, B. Eleuteri, F. Zalfa et al., The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP, Cell, vol.134, pp.1042-1054, 2008.

B. M. Neale, Y. Kou, L. Liu, A. Ma'ayan, K. E. Samocha et al., Patterns and rates of exonic de novo mutations in autism spectrum disorders, Nature, vol.485, pp.242-245, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00939274

A. C. Need, V. Shashi, Y. Hitomi, K. Schoch, K. V. Shianna et al., Clinical application of exome sequencing in undiagnosed genetic conditions, J. Med. Genet, vol.49, pp.353-361, 2012.

A. Nesbitt, E. J. Bhoj, K. Mcdonald-gibson, Z. Yu, E. Denenberg et al., Exome sequencing expands the mechanism of SOX5-associated intellectual disability: A case presentation with review of sox-related disorders, Am. J. Med. Genet. A, vol.167, pp.2548-2554, 2015.

M. Neves-pereira, B. Müller, D. Massie, J. H. Williams, P. C. O'brien et al., Deregulation of EIF4E: a novel mechanism for autism, J. Med. Genet, vol.46, pp.759-765, 2009.

P. C. Ng and S. Henikoff, SIFT: Predicting amino acid changes that affect protein function, Nucleic Acids Res, vol.31, pp.3812-3814, 2003.

S. B. Ng, K. J. Buckingham, C. Lee, A. W. Bigham, H. K. Tabor et al., Exome sequencing identifies the cause of a mendelian disorder, Nat. Genet, vol.42, pp.30-35, 2010.

S. B. Ng, A. W. Bigham, K. J. Buckingham, M. C. Hannibal, M. J. Mcmillin et al., Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome, Nat. Genet, vol.42, pp.790-793, 2010.

L. S. Nguyen, H. Kim, J. A. Rosenfeld, Y. Shen, J. F. Gusella et al., Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders, Hum. Mol. Genet, vol.22, pp.1816-1825, 2013.

J. H. Notwell, W. E. Heavner, S. F. Darbandi, S. Katzman, W. L. Mckenna et al., TBR1 regulates autism risk genes in the developing neocortex, vol.26, pp.1013-1022, 2016.

J. Nousbeck, R. Spiegel, A. Ishida-yamamoto, M. Indelman, A. Shani-adir et al., Alopecia, neurological defects, and endocrinopathy syndrome caused by decreased expression of RBM28, a nucleolar protein associated with ribosome biogenesis, Am. J. Hum. Genet, vol.82, pp.1114-1121, 2008.

I. Oberlé, A. Vincent, N. Abbadi, F. Rousseau, P. E. Hupkes et al., New polymorphism and a new chromosome breakpoint establish the physical and genetic mapping of DXS369 in the DXS98-FRAXA interval, Am. J. Med. Genet, vol.38, pp.336-342, 1991.

N. Oksenberg, G. D. Haliburton, W. L. Eckalbar, I. Oren, S. Nishizaki et al., Genome-wide distribution of Auts2 binding localizes with active neurodevelopmental genes, Transl. Psychiatry, vol.4, p.431, 2014.

B. J. O'roak, L. Vives, S. Girirajan, E. Karakoc, N. Krumm et al., Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations, Nature, vol.485, pp.246-250, 2012.

B. J. O'roak, H. A. Stessman, E. A. Boyle, K. T. Witherspoon, B. Martin et al., Recurrent de novo mutations implicate novel genes underlying simplex autism risk, Nat. Commun, vol.5, p.5595, 2014.

P. Ostergaard, M. A. Simpson, A. Mendola, P. Vasudevan, F. C. Connell et al., Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy, Am. J. Hum. Genet, vol.90, pp.356-362, 2012.

C. Pak, M. Garshasbi, K. Kahrizi, C. Gross, L. H. Apponi et al., Mutation of the conserved polyadenosine RNA binding protein, ZC3H14/dNab2, impairs neural function in Drosophila and humans, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.12390-12395, 2011.

A. Palmer, J. Qayumi, R. , and G. , MeCP2 mutation causes distinguishable phases of acute and chronic defects in synaptogenesis and maintenance, respectively, Mol. Cell. Neurosci, vol.37, pp.794-807, 2008.

E. Park, Z. Pan, Z. Zhang, L. Lin, and Y. Xing, The Expanding Landscape of Alternative Splicing Variation in Human Populations, Am. J. Hum. Genet, vol.102, pp.11-26, 2018.

M. Pertea, X. Lin, and S. L. Salzberg, GeneSplicer: a new computational method for splice site prediction, Nucleic Acids Res, vol.29, pp.1185-1190, 2001.

B. Petterson, J. Bourke, H. Leonard, P. Jacoby, and C. Bower, Co-occurrence of birth defects and intellectual disability, Paediatr. Perinat. Epidemiol, vol.21, pp.65-75, 2007.

A. A. Philippakis, D. R. Azzariti, S. Beltran, A. J. Brookes, C. A. Brownstein et al., The Matchmaker Exchange: A Platform for Rare Disease Gene Discovery, Hum. Mutat, vol.36, pp.915-921, 2015.

B. R. Pober, Williams-Beuren syndrome, N. Engl. J. Med, vol.362, pp.239-252, 2010.

K. Poirier, N. Lebrun, L. Broix, G. Tian, Y. Saillour et al., Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly, Nat. Genet, vol.45, pp.639-647, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00838073

K. S. Pollard, M. J. Hubisz, K. R. Rosenbloom, and A. Siepel, Detection of nonneutral substitution rates on mammalian phylogenies, Genome Res, vol.20, pp.110-121, 2010.

B. Popp, S. I. Støve, S. Endele, L. M. Myklebust, J. Hoyer et al., De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females, Eur. J. Hum. Genet. EJHG, vol.23, pp.602-609, 2015.

E. G. Puffenberger, R. N. Jinks, C. Sougnez, K. Cibulskis, R. A. Willert et al., Genetic mapping and exome sequencing identify variants associated with five novel diseases, PloS One, vol.7, 2012.

A. Quartier, L. Chatrousse, C. Redin, C. Keime, N. Haumesser et al., Genes and Pathways Regulated by Androgens in Human Neural Cells, Potential Candidates for the Male Excess in, Autism Spectrum Disorder. Biol. Psychiatry, 2018.

A. Rauch, J. Hoyer, S. Guth, C. Zweier, C. Kraus et al., Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation, Am. J. Med. Genet. A, vol.140, pp.2063-2074, 2006.

A. Rauch, D. Wieczorek, E. Graf, T. Wieland, S. Endele et al., Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study, Lancet Lond. Engl, vol.380, pp.1674-1682, 2012.

C. Redin, B. Gérard, J. Lauer, Y. Herenger, J. Muller et al., Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing, J. Med. Genet, vol.51, pp.724-736, 2014.

C. Redin, H. Brand, R. L. Collins, T. Kammin, E. Mitchell et al., The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies, Nat. Genet, vol.49, p.36, 2017.

R. Redon, S. Ishikawa, K. R. Fitch, L. Feuk, G. H. Perry et al., Global variation in copy number in the human genome, Nature, vol.444, pp.444-454, 2006.

M. G. Reese, F. H. Eeckman, D. Kulp, and D. Haussler, Improved splice site detection in Genie, J. Comput. Biol. J. Comput. Mol. Cell Biol, vol.4, pp.311-323, 1997.

R. Regan and L. Willatt, Mental Retardation: Definition, Classification and Etiology, vol.18, pp.16-30, 2010.

S. Riazuddin, M. Hussain, A. Razzaq, Z. Iqbal, M. Shahzad et al., Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability, Mol. Psychiatry, 2016.

G. Rice, T. Patrick, R. Parmar, C. F. Taylor, A. Aeby et al., Clinical and molecular phenotype of Aicardi-Goutieres syndrome, Am. J. Hum. Genet, vol.81, pp.713-725, 2007.

G. I. Rice, J. Bond, A. Asipu, R. L. Brunette, I. W. Manfield et al., Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response, Nat. Genet, vol.41, pp.829-832, 2009.

G. I. Rice, P. R. Kasher, G. M. Forte, N. M. Mannion, S. M. Greenwood et al., Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature, Nat. Genet, vol.44, pp.1243-1248, 2012.

J. L. Ronan, W. Wu, and G. R. Crabtree, From neural development to cognition: unexpected roles for chromatin, Nat. Rev. Genet, vol.14, pp.347-359, 2013.

M. Ronemus, I. Iossifov, D. Levy, and M. Wigler, The role of de novo mutations in the genetics of autism spectrum disorders, Nat. Rev. Genet, vol.15, pp.133-141, 2014.

H. H. Ropers, Genetics of early onset cognitive impairment, Annu. Rev. Genomics Hum. Genet, vol.11, pp.161-187, 2010.

S. L. Rutherford, From genotype to phenotype: buffering mechanisms and the storage of genetic information, BioEssays News Rev. Mol. Cell. Dev. Biol, vol.22, pp.1095-1105, 2000.

Y. Saito, S. Miranda-rottmann, M. Ruggiu, C. Y. Park, J. J. Fak et al., NOVA2-mediated RNA regulation is required for axonal pathfinding during development, 2016.

A. Sanchis, L. Cerveró, A. Bataller, J. L. Tortajada, J. Huguet et al., Genetic syndromes mimic congenital infections, J. Pediatr, vol.146, pp.701-705, 2005.

S. J. Sanders, M. T. Murtha, A. R. Gupta, J. D. Murdoch, M. J. Raubeson et al., De novo mutations revealed by whole-exome sequencing are strongly associated with autism, Nature, vol.485, pp.237-241, 2012.

T. Sarachana, R. Zhou, G. Chen, H. K. Manji, and V. W. Hu, Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines, Genome Med, vol.2, p.23, 2010.

F. Sartor, J. Anderson, C. Mccaig, Z. Miedzybrodzka, and B. Müller, Mutation of genes controlling mRNA metabolism and protein synthesis predisposes to neurodevelopmental disorders, Biochem. Soc. Trans, vol.43, pp.1259-1265, 2015.

C. P. Schaaf, A. Sabo, Y. Sakai, J. Crosby, D. Muzny et al., Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders, Hum. Mol. Genet, vol.20, pp.3366-3375, 2011.

A. Schenck, B. Bardoni, C. Langmann, N. Harden, J. L. Mandel et al., CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein, Neuron, vol.38, pp.887-898, 2003.

A. D. Schmitt, M. Hu, R. , and B. , Genome-wide mapping and analysis of chromosome architecture, Nat. Rev. Mol. Cell Biol, vol.17, pp.743-755, 2016.

J. H. Schuurs-hoeijmakers, A. T. Vulto-van-silfhout, L. E. Vissers, I. I. Van-de-vondervoort, B. W. Van-bon et al., Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing, J. Med. Genet, vol.50, pp.802-811, 2013.

J. M. Schwarz, C. Rödelsperger, M. Schuelke, and D. Seelow, MutationTaster evaluates disease-causing potential of sequence alterations, Nat. Methods, vol.7, pp.575-576, 2010.

D. A. Scott, A. Hernandez-garcia, M. S. Azamian, V. K. Jordan, B. J. Kim et al., Congenital heart defects and left ventricular non-compaction in males with loss-of-function variants in NONO, J. Med. Genet, vol.54, pp.47-53, 2017.

C. Sellier, R. A. Buijsen, F. He, S. Natla, L. Jung et al., Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome, Neuron, vol.93, pp.331-347, 2017.
DOI : 10.1016/j.neuron.2016.12.016

URL : https://doi.org/10.1016/j.neuron.2016.12.016

R. Shaheen, L. Han, E. Faqeih, N. Ewida, E. Alobeid et al., A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition, Hum. Genet, vol.135, pp.707-713, 2016.

V. Shashi, P. Xie, K. Schoch, D. B. Goldstein, T. D. Howard et al., The RBMX gene as a candidate for the Shashi X-linked intellectual disability syndrome, Clin. Genet, vol.88, pp.386-390, 2015.
DOI : 10.1111/cge.12511

S. Shen, J. W. Park, Z. Lu, L. Lin, M. D. Henry et al., rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.5593-5601, 2014.
DOI : 10.1073/pnas.1419161111

URL : http://www.pnas.org/content/111/51/E5593.full.pdf

P. J. Short, J. F. Mcrae, G. Gallone, A. Sifrim, H. Won et al., De novo mutations in regulatory elements in neurodevelopmental disorders, Nature, 2018.
DOI : 10.1038/nature25983

URL : http://europepmc.org/articles/pmc5912909?pdf=render

A. Siepel, G. Bejerano, J. S. Pedersen, A. S. Hinrichs, M. Hou et al., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes, Genome Res, vol.15, pp.1034-1050, 2005.
DOI : 10.1101/gr.3715005

URL : http://genome.cshlp.org/content/15/8/1034.full.pdf

C. Simons, L. B. Griffin, G. Helman, G. Golas, A. Pizzino et al., Loss-of-function alanyl-tRNA synthetase mutations cause an autosomal-recessive early-onset epileptic encephalopathy with persistent myelination defect, Am. J. Hum. Genet, vol.96, pp.675-681, 2015.
DOI : 10.1016/j.ajhg.2015.02.012

URL : https://doi.org/10.1016/j.ajhg.2015.02.012

C. M. Skraban, C. F. Wells, P. Markose, M. T. Cho, A. I. Nesbitt et al., WDR26 Haploinsufficiency Causes a Recognizable Syndrome of Intellectual Disability, Seizures, Abnormal Gait, and Distinctive Facial Features, Am. J. Hum. Genet, vol.101, pp.139-148, 2017.
DOI : 10.1016/j.ajhg.2017.06.002

URL : http://europepmc.org/articles/pmc5501873?pdf=render

L. Snijders-blok, E. Madsen, J. Juusola, C. Gilissen, D. Baralle et al., Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling, Am. J. Hum. Genet, vol.97, pp.343-352, 2015.

L. Snijders-blok, S. M. Hiatt, K. M. Bowling, J. W. Prokop, K. L. Engel et al., De novo mutations in MED13, 2018.

N. Sobreira, F. Schiettecatte, D. Valle, and A. Hamosh, GeneMatcher: A Matching Tool for Connecting Investigators with an Interest in the Same Gene, Hum. Mutat, vol.36, pp.928-930, 2015.

N. L. Sobreira, E. T. Cirulli, D. Avramopoulos, E. Wohler, G. L. Oswald et al., Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene, PLoS Genet, vol.6, p.1000991, 2010.

S. E. Soden, C. J. Saunders, L. K. Willig, E. G. Farrow, L. D. Smith et al., Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders, Sci. Transl. Med, vol.6, pp.265-168, 2014.

A. K. Srivastava and C. E. Schwartz, Intellectual disability and autism spectrum disorders: causal genes and molecular mechanisms, Neurosci. Biobehav. Rev. 46 Pt, vol.2, pp.161-174, 2014.
DOI : 10.1016/j.neubiorev.2014.02.015

URL : http://europepmc.org/articles/pmc4185273?pdf=render

A. Srivastava, B. Mcgrath, and S. L. Bielas, Histone H2A Monoubiquitination in Neurodevelopmental Disorders, Trends Genet. TIG, vol.33, pp.566-578, 2017.
DOI : 10.1016/j.tig.2017.06.002

R. Stadhouders, Expanding the toolbox for 3D genomics, Nat. Genet, vol.50, pp.634-635, 2018.
DOI : 10.1038/s41588-018-0112-1

H. A. Stessman, B. Xiong, B. P. Coe, T. Wang, K. Hoekzema et al., Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases, Nat. Genet, vol.49, pp.515-526, 2017.
DOI : 10.1038/ng.3792

URL : http://europepmc.org/articles/pmc5374041?pdf=render

G. M. Stettner, M. Shoukier, C. Höger, K. Brockmann, A. et al., Familial intellectual disability and autistic behavior caused by a small FMR2 gene deletion, Am. J. Med. Genet. A, vol.155, 2003.
DOI : 10.1002/ajmg.a.34122

J. Straub, E. D. Konrad, J. Grüner, A. Toutain, L. A. Bok et al., Missense Variants in RHOBTB2 Cause a Developmental and Epileptic Encephalopathy in Humans, and Altered Levels Cause Neurological Defects in Drosophila, Am. J. Hum. Genet, vol.102, pp.44-57, 2018.

R. Sultana, C. Yu, J. Yu, J. Munson, D. Chen et al., Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins, Genomics, vol.80, pp.129-134, 2002.

E. Sun and Y. Shi, MicroRNAs: Small molecules with big roles in neurodevelopment and diseases, Exp. Neurol, vol.268, pp.46-53, 2015.

Y. Sun, C. A. Ruivenkamp, M. J. Hoffer, T. Vrijenhoek, M. Kriek et al., Next-generation diagnostics: gene panel, exome, or whole genome?, Hum. Mutat, vol.36, pp.648-655, 2015.

R. Tabet, E. Moutin, J. A. Becker, D. Heintz, L. Fouillen et al., Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.3619-3628, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02174131

R. J. Taft, A. Vanderver, R. J. Leventer, S. A. Damiani, C. Simons et al., Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity, Am. J. Hum. Genet, vol.92, pp.774-780, 2013.

Z. Talebizadeh, M. G. Butler, and M. F. Theodoro, Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism, Autism Res. Off. J. Int. Soc. Autism Res, vol.1, pp.240-250, 2008.

K. Tammimies, C. R. Marshall, S. Walker, G. Kaur, B. Thiruvahindrapuram et al., Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder, JAMA, vol.314, pp.895-903, 2015.

C. A. Tan, S. Topper, D. Del-gaudio, V. Nelakuditi, O. Shchelochkov et al., Characterization of patients referred for non-specific intellectual disability testing: the importance of autosomal genes for diagnosis, Clin. Genet, 2015.

P. S. Tarpey, F. L. Raymond, L. S. Nguyen, J. Rodriguez, A. Hackett et al., Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation, Nat. Genet, vol.39, pp.1127-1133, 2007.

P. S. Tarpey, R. Smith, E. Pleasance, A. Whibley, S. Edkins et al., A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation, Nat. Genet, vol.41, pp.535-543, 2009.

K. Tatton-brown and N. Rahman, The NSD1 and EZH2 overgrowth genes, similarities and differences, Am. J. Med. Genet. C Semin. Med. Genet, vol.163, pp.86-91, 2013.

K. Tatton-brown, S. Seal, E. Ruark, J. Harmer, E. Ramsay et al., Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability, Nat. Genet, vol.46, pp.385-388, 2014.

L. P. Ten-kate, M. Teeuw, L. Henneman, and M. C. Cornel, Autosomal recessive disease in children of consanguineous parents: inferences from the proportion of compound heterozygotes, J. Community Genet, vol.1, pp.37-40, 2010.

A. Tzschach, U. Grasshoff, S. Beck-woedl, C. Dufke, C. Bauer et al., Next-generation sequencing in X-linked intellectual disability, Eur. J. Hum. Genet. EJHG, vol.23, pp.1513-1518, 2015.

J. Ule, G. Stefani, A. Mele, M. Ruggiu, X. Wang et al., An RNA map predicting Nova-dependent splicing regulation, Nature, vol.444, pp.580-586, 2006.

H. Van-esch, M. Bauters, J. Ignatius, M. Jansen, M. Raynaud et al., Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males, Am. J. Hum. Genet, vol.77, pp.442-453, 2005.

G. Vasileiou, S. Vergarajauregui, S. Endele, B. Popp, C. Büttner et al., Mutations in the BAF-Complex Subunit DPF2 Are Associated with Coffin-Siris Syndrome, Am. J. Hum. Genet, vol.102, pp.468-479, 2018.

L. E. Vissers, J. De-ligt, C. Gilissen, I. Janssen, M. Steehouwer et al., A de novo paradigm for mental retardation, Nat. Genet, vol.42, pp.1109-1112, 2010.

L. E. Vissers, C. Gilissen, J. A. Veltman, . Van-der, M. Voet et al., Drosophila models of early onset cognitive disorders and their clinical applications, Neurosci. Biobehav. Rev. 46 Pt, vol.17, pp.326-342, 2014.

I. Voineagu, X. Wang, P. Johnston, J. K. Lowe, Y. Tian et al., Transcriptomic analysis of autistic brain reveals convergent molecular pathology, Nature, vol.474, pp.380-384, 2011.

B. B. De-vries, R. Pfundt, M. Leisink, D. A. Koolen, L. E. Vissers et al., Diagnostic genome profiling in mental retardation, Am. J. Hum. Genet, vol.77, pp.606-616, 2005.

E. Wahle and G. S. Winkler, RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes, Biochim. Biophys. Acta, vol.1829, pp.561-570, 2013.

J. Wan, M. Yourshaw, H. Mamsa, S. Rudnik-schöneborn, M. P. Menezes et al., Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration, Nat. Genet, vol.44, pp.704-708, 2012.

E. T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang et al., Alternative isoform regulation in human tissue transcriptomes, Nature, vol.456, pp.470-476, 2008.

V. O. Wickramasinghe and R. A. Laskey, Control of mammalian gene expression by selective mRNA export, Nat. Rev. Mol. Cell Biol, vol.16, pp.431-442, 2015.

C. L. Will and R. Lührmann, Spliceosome structure and function, Cold Spring Harb. Perspect. Biol, vol.3, 2011.

M. H. Willemsen, W. Ba, W. M. Wissink-lindhout, A. P. De-brouwer, S. A. Haas et al., Involvement of the kinesin family members KIF4A and KIF5C in intellectual disability and synaptic function, J. Med. Genet, vol.51, pp.487-494, 2014.

N. H. Wilson and B. Key, Neogenin: one receptor, many functions, Int. J. Biochem. Cell Biol, vol.39, pp.874-878, 2007.

C. Windpassinger, J. Piard, C. Bonnard, M. Alfadhel, S. Lim et al., CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays, Am. J. Hum. Genet, vol.101, pp.391-403, 2017.

J. Winkelmann, L. Lin, B. Schormair, B. R. Kornum, J. Faraco et al., Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy, Hum. Mol. Genet, vol.21, pp.2205-2210, 2012.

J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat. Cell Biol, vol.11, pp.228-234, 2009.

G. L. Xu, T. H. Bestor, D. Bourc'his, C. L. Hsieh, N. Tommerup et al., Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene, Nature, vol.402, pp.187-191, 1999.

Y. Yang, D. M. Muzny, J. G. Reid, M. N. Bainbridge, A. Willis et al., Clinical whole-exome sequencing for the diagnosis of mendelian disorders, N. Engl. J. Med, vol.369, pp.1502-1511, 2013.

Y. Y. Yang, G. L. Yin, D. , and R. B. , The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.13254-13259, 1998.

G. Yeo and C. B. Burge, Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals, J. Comput. Biol. J. Comput. Mol. Cell Biol, vol.11, pp.377-394, 2004.

E. Ylikallio, R. Woldegebriel, M. Tumiati, P. Isohanni, M. M. Ryan et al., MCM3AP in recessive Charcot-Marie-Tooth neuropathy and mild intellectual disability, Brain J. Neurol, vol.140, pp.2093-2103, 2017.

B. B. Zeev, Y. Yaron, N. C. Schanen, H. Wolf, N. Brandt et al., Rett syndrome: clinical manifestations in males with MECP2 mutations, J. Child Neurol, vol.17, pp.20-24, 2002.

P. Zhang, R. Casaday-potts, P. Precht, H. Jiang, Y. Liu et al., Nontelomeric splice variant of telomere repeat-binding factor 2 maintains neuronal traits by sequestering repressor element 1-silencing transcription factor, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.16434-16439, 2011.

Y. Zhang, K. Chen, S. A. Sloan, M. L. Bennett, A. R. Scholze et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex, J. Neurosci. Off. J. Soc. Neurosci, vol.34, pp.11929-11947, 2014.

G. Zheng, J. A. Dahl, Y. Niu, Y. Fu, A. Klungland et al., Sprouts of RNA epigenetics: the discovery of mammalian RNA demethylases, RNA Biol, vol.10, pp.915-918, 2013.

X. Zheng, P. Yang, B. Lackford, B. D. Bennett, L. Wang et al., CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State, Stem Cell Rep, vol.7, pp.897-910, 2016.

M. N. Ziats and O. M. Rennert, The Evolving Diagnostic and Genetic Landscapes of, Autism Spectrum Disorder. Front. Genet, vol.7, p.65, 2016.

F. Zufferey, E. H. Sherr, N. D. Beckmann, E. Hanson, A. M. Maillard et al., A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders, J. Med. Genet, vol.49, pp.660-668, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01120401

M. Zweier, A. Gregor, C. Zweier, H. Engels, H. Sticht et al., Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression, Hum. Mutat, vol.31, pp.1466-1468, 2002.

D. R. Carvalho and C. E. Speck-martins, Additional features of unique Primrose syndrome phenotype, Am J Med Genet Part A, vol.155, pp.1379-1383, 2011.

F. Chatonnet, R. Guyot, G. Beno??tbeno??t, and F. Flamant, Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells, Proc Natl Acad Sci, vol.110, pp.766-775, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02164761

R. A. Collacott, O. Malley, B. P. , and Y. Id, The syndrome of mental handicap, cataracts, muscle wasting and skeletal abnormalities: Report of a second case, J Ment Defic Res, vol.30, pp.301-308, 1986.

V. Cordeddu, B. Redeker, E. Stellacci, A. Jongejan, A. Fragale et al., Mutations in ZBTB20 cause Primrose syndrome, Nat Genet, vol.46, pp.815-817, 2014.

P. Dalal, N. D. Leslie, N. M. Lindor, D. L. Gilbert, and A. J. Espay, Motor tics, stereotypies, and self-flagellation in primrose syndrome, Neurology, vol.75, pp.284-286, 2010.

V. Geoffroy, C. Pizot, C. Redin, A. Piton, N. Vasli et al., VaRank: A simple and powerful tool for ranking genetic variants, PeerJ, vol.3, p.796, 2015.

N. M. Lindor, A. D. Hoffman, and D. A. Primrose, A neuropsychiatric disorder associated with dense calcification of the external ears and distal muscle wasting: 'Primrose syndrome, Clin Dysmorphol, vol.5, pp.27-34, 1996.

I. B. Mathijssen, J. Van-hasselt-van-der-velde, and R. C. Hennekam, Testicular cancer in a patient with Primrose syndrome, Eur J Med Genet, vol.49, pp.127-133, 2006.

R. Posmyk, R. Le'-sniewicz, M. Chora?-z-_-y, &. Wo?czyn, and S. , New case of Primrose syndrome with mild intellectual disability, Am J Med Genet Part A, vol.155, pp.2838-2840, 2011.

D. A. Primrose, A slowly progressive degenerative condition characterized by mental deficiency, wasting of limb musculature and bone abnormalities, including ossification of the pinnae, J Ment Defic Res, vol.26, pp.101-106, 1982.

C. Redin, G. '-erard, B. Lauer, J. Herenger, Y. Muller et al., Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing, J Med Genet, vol.51, pp.724-736, 2014.

, European Journal of Human Genetics

, European Society of Human Genetics, 2018.

, We studied a cohort of 903 patients with ID not reminiscent of a well-known syndrome, using an ID-targeted HTS of several hundred genes and found de novo heterozygous variants in TCF4 (transcription factor 4) in eight novel patients. Piecing together the patients from this study and those from previous large-scale unbiased HTS studies, we estimated the rate of individuals with ID carrying a disease-causing TCF4 mutation to 0.7%. So far, TCF4 molecular abnormalities were known to cause a syndromic form of ID, Pitt-Hopkins syndrome (PTHS), which combines severe ID, developmental delay, absence of speech, behavioral and ventilation disorders, and a distinctive facial gestalt. Therefore, we reevaluated ten patients carrying a pathogenic or likely pathogenic variant in TCF4 (eight patients included in this study and two from our previous ID-HTS study) for PTHS criteria defined by Whalen and Marangi. A posteriori, five patients had a score highly evocative of PTHS, three were possibly consistent with this diagnosis, and two had a score below the defined PTHS threshold, Abstract High-throughput sequencing (HTS) of human genome coding regions allows the simultaneous screen of a large number of genes, significantly improving the diagnosis of non-syndromic intellectual disabilities (ID)

C. Redin, B. Gerard, and J. Lauer, Efficient strategy for the molecular diagnosis of intellectual disability using targeted highthroughput sequencing, J Med Genet, vol.51, pp.724-760, 2014.

J. Amiel, M. Rio, and L. De-pontual, Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction, Am J Hum Genet, vol.80, pp.988-93, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02142167

A. Brockschmidt, U. Todt, and S. Ryu, Severe mental retardation with breathing abnormalities (Pitt-Hopkins syndrome) is caused by haploinsufficiency of the neuronal bHLH transcription factor TCF4, Hum Mol Genet, vol.16, pp.1488-94, 2007.

C. Zweier, M. M. Peippo, and J. Hoyer, Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome), Am J Hum Genet, vol.80, pp.994-1001, 2007.

Y. Zhuang, P. Cheng, and H. Weintraub, B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB, Mol Cell Biol, vol.16, pp.2898-905, 1996.

S. Whalen, D. Heron, and T. Gaillon, Novel comprehensive diagnostic strategy in Pitt-Hopkins syndrome: clinical score and further delineation of the TCF4 mutational spectrum, Hum Mutat, vol.33, pp.64-72, 2012.

G. Marangi, S. Ricciardi, and D. Orteschi, Proposal of a clinical score for the molecular test for Pitt-Hopkins syndrome, Am J Med Genet A, vol.158, pp.1604-1615, 2012.

F. F. Hamdan, H. Daoud, and L. Patry, Parent-child exome sequencing identifies a de novo truncating mutation in TCF4 in non-syndromic intellectual disability, Clin Genet, vol.83, pp.198-200, 2013.

V. M. Kalscheuer, I. Feenstra, and C. M. Van-ravenswaaij-arts, Disruption of the TCF4 gene in a girl with mental retardation but without the classical Pitt-Hopkins syndrome, Am J Med Genet A, vol.146, pp.2053-2062, 2008.

M. Kharbanda, K. Kannike, A. Lampe, J. Berg, T. Timmusk et al., Partial deletion of TCF4 in three generation family with nonsyndromic intellectual disability, without features of Pitt-Hopkins syndrome, Eur J Med Genet, vol.59, pp.310-314, 2016.

J. De-ligt, M. H. Willemsen, and B. W. Van-bon, Diagnostic exome sequencing in persons with severe intellectual disability, N Engl J Med, vol.367, pp.1921-1930, 2012.

D. Grozeva, K. Carss, and O. Spasic-boskovic, Targeted nextgeneration sequencing analysis of 1000 individuals with intellectual disability, Hum Mutat, vol.36, pp.1197-204, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01664310

F. F. Hamdan, M. Srour, and J. M. Capo-chichi, De novo mutations in moderate or severe intellectual disability, PLoS Genet, vol.10, p.1004772, 2014.

A. Rauch, D. Wieczorek, and E. Graf, Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study, Lancet, vol.380, pp.1674-82, 2012.

C. A. Tan, S. Topper, D. Gaudio, and D. , Characterization of patients referred for non-specific intellectual disability testing: the importance of autosomal genes for diagnosis, Clin Genet, vol.89, pp.478-483, 2016.

V. Geoffroy, C. Pizot, and C. Redin, VaRank: a simple and powerful tool for ranking genetic variants, PeerJ, vol.3, p.796, 2015.

V. Biancalana, C. Beldjord, and A. Taillandier, ): a collaborative study reporting 95% of the activity in France, Am J Med Genet A, vol.129, pp.218-242, 1997.

P. J. Hagerman, The fragile X prevalence paradox, J Med Genet, vol.45, pp.498-507, 2008.

J. Hoyer, A. B. Ekici, and S. Endele, Haploinsufficiency of ARID1B, a member of the SWI/SNF-a chromatin-remodeling complex, is a frequent cause of intellectual disability, Am J Hum Genet, vol.90, pp.565-72, 2012.

, Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders, Nature, vol.542, pp.433-441, 2017.

C. F. Winter, M. Baas, E. K. Bijlsma, J. Van-heukelingen, S. Routledge et al., Phenotype and natural history in 101 individuals with Pitt-Hopkins syndrome through an internet questionnaire system, Orphanet J Rare Dis, vol.11, p.37, 2016.

C. Zweier, H. Sticht, and E. K. Bijlsma, Further delineation of PittHopkins syndrome: phenotypic and genotypic description of 16 novel patients, J Med Genet, vol.45, pp.738-782, 2008.

G. Marangi and M. Zollino, Pitt-Hopkins syndrome and differential diagnosis: a molecular and clinical challenge, J Pediatr Genet, vol.4, pp.168-76, 2015.

M. Sepp, P. Pruunsild, and T. Timmusk, Pitt-Hopkins syndrome-associated mutations in TCF4 lead to variable impairment of the transcription factor function ranging from hypomorphic to dominant-negative effects, Hum Mol Genet, vol.21, pp.2873-88, 2012.

J. A. Rosenfeld, K. Leppig, and B. C. Ballif, Genotype-phenotype analysis of TCF4 mutations causing Pitt-Hopkins syndrome shows increased seizure activity with missense mutations, Genet Med, vol.11, pp.797-805, 2009.

I. Giurgea, C. Missirian, and P. Cacciagli, TCF4 deletions in PittHopkins Syndrome, Hum Mutat, vol.29, pp.242-51, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00325404

L. Kousoulidou, G. Tanteles, M. Moutafi, C. Sismani, and P. C. Patsalis, Anastasiadou V. 263.4 kb deletion within the TCF4 gene consistent with Pitt-Hopkins syndrome, inherited from a mosaic parent with normal phenotype, Eur J Med Genet, vol.56, pp.314-322, 2013.

M. Rossi, A. Labalme, and M. P. Cordier, Mosaic 18q21.2 deletions including the TCF4 gene: a clinical report, Am J Med Genet A, vol.158, pp.3174-81, 2012.

C. V. Steinbusch, K. E. Van-roozendaal, and D. Tserpelis, Somatic mosaicism in a mother of two children with Pitt-Hopkins syndrome, Clin Genet, vol.83, pp.73-77, 2013.

C. Schluth-bolard, A. Labalme, and M. P. Cordier, Breakpoint mapping by next generation sequencing reveals causative gene disruption in patients carrying apparently balanced chromosome rearrangements with intellectual deficiency and/or congenital malformations, J Med Genet, vol.50, pp.144-50, 2013.

V. Maduro, B. N. Pusey, and P. F. Cherukuri, Complex translocation disrupting TCF4 and altering TCF4 isoform expression segregates as mild autosomal dominant intellectual disability, Orphanet J Rare Dis, vol.11, p.62, 2016.

L. De-pontual, Y. Mathieu, and C. Golzio, Mutational, functional, and expression studies of the TCF4 gene in Pitt-Hopkins syndrome, Hum Mutat, vol.30, pp.669-76, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02134020

M. M. Peippo, K. O. Simola, and L. K. Valanne, Pitt-Hopkins syndrome in two patients and further definition of the phenotype, Clin Dysmorphol, vol.15, pp.47-54, 2006.