L. .. Des-figures,

I. Liste and . .. Abreviations,

V. I. Le-canal-Épendymaire and .. .. ,

C. Ii, Composition cellulaire de la moelle spinale

I. Les and .. .. ,

. , 3’-cyclic nucleotide-3’-phosphodiesterase, vol.34

. , Le potentiel d’action et la conduction saltatoire

V. Les-cellules-Épendymaires and .. .. , 38 2. Composition du canal central et place des cellules épendymaires

. , 42 4. Les cellules épendymaires, cellules souches neurales ?

. , CHAPITRE III : Les lésions médullaires traumatiques

I. .. Incidence,

, Histogram of control DF-10S (green) and bOECs (blue) transplanted

C. S. Ahuja, J. R. Wilson, S. Nori, M. R. Kotter, C. Druschel et al., Traumatic spinal cord injury, Nat Rev Primer, vol.3, 2017.

M. A. Anderson, J. E. Burda, Y. Ren, Y. Ao, T. M. O’shea et al., Astrocyte scar formation aids central nervous system axon regeneration, Nature, vol.532, pp.195-200, 2016.
DOI : 10.1038/nature17623

URL : https://infoscience.epfl.ch/record/219266/files/Nature2016.pdf

P. Assinck, G. J. Duncan, B. J. Hilton, J. R. Plemel, and W. Tetzlaff, Cell transplantation therapy for spinal cord injury, Nat Neurosci, vol.20, pp.637-647, 2017.

F. Barnabe-heider, K. Meletis, M. Eriksson, O. Bergmann, H. Sabelstrom et al., Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation, Nat Methods, vol.5, pp.189-196, 2008.

F. Barnabe-heider, C. Goritz, H. Sabelstrom, H. Takebayashi, F. W. Pfrieger et al., Origin of new glial cells in intact and injured adult spinal cord, Cell Stem Cell, vol.7, pp.470-482, 2010.

J. M. Cregg, M. A. Depaul, A. R. Filous, B. T. Lang, A. Tran et al., Functional regeneration beyond the glial scar, Exp Neurol, vol.253, 2014.

R. Fiorelli, A. Cebrian-silla, J. M. Garcia-verdugo, and O. Raineteau, The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential, Glia, vol.61, pp.2100-2113, 2013.

C. A. Gregoire, B. L. Goldenstein, E. M. Floriddia, F. Barnabe-heider, and K. J. Fernandes, Endogenous neural stem cell responses to stroke and spinal cord injury, Glia, vol.63, pp.1469-1482, 2015.

N. Guerout, C. Derambure, L. Drouot, N. Bon-mardion, C. Duclos et al., Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa, Glia, vol.58, pp.1570-1580, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02329567

F. Guo, Y. Maeda, J. Ma, M. Delgado, J. Sohn et al., Macroglial Plasticity and the Origins of Reactive Astroglia in Experimental Autoimmune Encephalomyelitis, J. Neurosci, vol.31, p.11914, 2011.

N. Habib, Y. Li, M. Heidenreich, L. Swiech, I. Avraham-davidi et al., Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons, Science, vol.353, pp.925-928, 2016.

L. K. Hamilton, M. K. Truong, M. R. Bednarczyk, A. Aumont, and K. J. Fernandes, Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord, Neuroscience, vol.164, 2009.

A. Honore, S. Le-corre, C. Derambure, R. Normand, C. Duclos et al., , 2012.

, Isolation, characterization, and genetic profiling of subpopulations of olfactory ensheathing cells from the olfactory bulb, Glia, vol.60, pp.404-413

B. V. Jacquet, R. Salinas-mondragon, H. Liang, B. Therit, J. D. Buie et al., FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain, Development, vol.136, pp.4021-4031, 2009.

B. V. Jacquet, N. Muthusamy, L. J. Sommerville, G. Xiao, H. Liang et al., Specification of a Foxj1-dependent lineage in the forebrain is required for embryonic-to-postnatal transition of neurogenesis in the olfactory bulb, J Neurosci, vol.31, pp.9368-9382, 2011.

R. R. Khankan, K. G. Griffis, J. R. Haggerty-skeans, H. Zhong, R. R. Roy et al., Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration, J Neurosci, vol.36, pp.6269-6286, 2016.

S. Lacroix, L. K. Hamilton, A. Vaugeois, S. Beaudoin, C. Breault-dugas et al., Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions, PLoS One, vol.9, p.85916, 2014.

X. Li, E. M. Floriddia, K. Toskas, K. J. Fernandes, N. Guerout et al., Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time, vol.13, pp.55-65, 2016.
DOI : 10.1016/j.ebiom.2016.10.035

URL : https://doi.org/10.1016/j.ebiom.2016.10.035

A. Mayeur, C. Duclos, A. Honore, M. Gauberti, L. Drouot et al., Potential of olfactory ensheathing cells from different sources for spinal cord repair, PLoS One, vol.8, 2013.

K. Meletis, F. Barnabe-heider, M. Carlen, E. Evergren, N. Tomilin et al., Spinal cord injury reveals multilineage differentiation of ependymal cells, PLoS Biol, vol.6, p.182, 2008.

T. M. O’shea, J. E. Burda, and M. V. Sofroniew, Cell biology of spinal cord injury and repair, J Clin Invest, vol.127, pp.3259-3270, 2017.

L. E. Ostrowski, J. R. Hutchins, K. Zakel, and W. K. O’neal, Targeting expression of a transgene to the airway surface epithelium using a ciliated cell-specific promoter, Mol Ther, vol.8, pp.637-645, 2003.

S. I. Park, J. Y. Lim, C. H. Jeong, S. M. Kim, J. A. Jun et al., Human umbilical cord blood-derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis, J Biomed Biotechnol, p.362473, 2012.

Y. Qin, W. Zhang, Y. , and P. , Current states of endogenous stem cells in adult spinal cord, J Neurosci Res, vol.93, pp.391-398, 2015.

H. Sabelstrom, M. Stenudd, P. Reu, D. O. Dias, M. Elfineh et al., Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice, Science, vol.342, pp.637-640, 2013.

A. M. Siddiqui, M. Khazaei, and M. G. Fehlings, Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury, Prog Brain Res, vol.218, pp.15-54, 2015.

Z. Su, W. Niu, M. L. Liu, Y. Zou, and C. L. Zhang, In vivo conversion of astrocytes to neurons in the injured adult spinal cord, Nat Commun, vol.5, p.3338, 2014.

P. Tabakow, W. Jarmundowicz, B. Czapiga, W. Fortuna, R. Miedzybrodzki et al., Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury, Cell Transpl, vol.22, pp.1591-1612, 2013.

W. Tetzlaff, E. B. Okon, S. Karimi-abdolrezaee, C. E. Hill, J. S. Sparling et al., A systematic review of cellular transplantation therapies for spinal cord injury, J Neurotrauma, vol.28, pp.1611-1682, 2011.

R. Watzlawick, J. Rind, E. S. Sena, B. Brommer, T. Zhang et al., Olfactory Ensheathing Cell Transplantation in Experimental Spinal Cord Injury: Effect size and Reporting Bias of 62 Experimental Treatments: A Systematic Review and MetaAnalysis, PLoS Biol, vol.14, 2016.

N. Westgren, L. , and R. , Quality of life and traumatic spinal cord injury, Arch Phys Med Rehabil, vol.79, pp.1433-1439, 1998.

L. Xu, V. Mahairaki, and V. E. Koliatsos, Host induction by transplanted neural stem cells in the spinal cord: further evidence for an adult spinal cord neurogenic niche, Regen Med, vol.7, pp.785-797, 2012.

H. R. Barbour, C. D. Plant, A. R. Harvey, and G. W. Plant, Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion, BMC Neurosci, vol.14, p.106, 2013.

F. Barnabe-heider and J. Frisen, Stem cells for spinal cord repair, Cell Stem Cell, vol.3, pp.16-24, 2008.

F. Barnabe-heider, C. Goritz, H. Sabelstrom, H. Takebayashi, F. W. Pfrieger et al., Origin of new glial cells in intact and injured adult spinal cord, Cell Stem Cell, vol.7, pp.470-482, 2010.

P. Barraud, A. A. Seferiadis, L. D. Tyson, M. F. Zwart, H. L. Szabo-rogers et al., Neural crest origin of olfactory ensheathing glia, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.21040-21045, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01769064

B. A. Barres, The mystery and magic of glia: a perspective on their roles in health and disease, Neuron, vol.60, pp.430-440, 2008.

B. A. Barres and M. C. Raff, Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons, Nature, vol.361, pp.258-260, 1993.

V. Bartanusz, D. Jezova, B. Alajajian, and M. Digicaylioglu, The blood-spinal cord barrier: morphology and clinical implications, Ann Neurol, vol.70, pp.194-206, 2011.

G. Bartzokis, P. H. Lu, P. Heydari, A. Couvrette, G. J. Lee et al., Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individuals, Biological psychiatry, vol.72, pp.1026-1034, 2012.

N. Baumann and D. Pham-dinh, Biology of oligodendrocyte and myelin in the mammalian central nervous system, Physiol Rev, vol.81, pp.871-927, 2001.

M. S. Beattie, A. A. Farooqui, and J. C. Bresnahan, Review of current evidence for apoptosis after spinal cord injury, J Neurotrauma, vol.17, pp.915-925, 2000.

M. S. Beattie, G. E. Hermann, R. C. Rogers, and J. C. Bresnahan, Cell death in models of spinal cord injury, Progress in brain research, vol.137, pp.37-47, 2002.

T. Becker and C. G. Becker, Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish, The Journal of comparative neurology, vol.433, pp.131-147, 2001.

L. Ben-haim and D. H. Rowitch, Functional diversity of astrocytes in neural circuit regulation, Nature reviews Neuroscience, vol.18, pp.31-41, 2017.

M. J. Berridge, M. D. Bootman, and P. Lipp, Calcium-a life and death signal, Nature, vol.395, pp.645-648, 1998.

O. Bican, A. Minagar, and A. A. Pruitt, The spinal cord: a review of functional neuroanatomy, Neurol Clin, vol.31, pp.1-18, 2013.

E. Biesiada, M. Razandi, L. , and E. R. , Egr-1 activates basic fibroblast growth factor transcription. Mechanistic implications for astrocyte proliferation, The Journal of biological chemistry, vol.271, pp.18576-18581, 1996.

M. Bijlard, B. Klunder, J. C. De-jonge, A. Nomden, S. Tyagi et al., Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling, Molecular and cellular biology, vol.35, pp.675-687, 2015.

J. M. Boggs, Myelin basic protein: a multifunctional protein. Cellular and molecular life sciences : CMLS 63, pp.1945-1961, 2006.

J. M. Boggs, W. , and H. , Co-clustering of galactosylceramide and membrane proteins in oligodendrocyte membranes on interaction with polyvalent carbohydrate and prevention by an intact cytoskeleton, J Neurosci Res, vol.76, pp.342-355, 2004.

G. Bohme, Formation of the central canal and dorsal glial septum in the spinal cord of the domestic cat, Journal of anatomy, vol.159, pp.37-47, 1988.

M. Boido, D. Garbossa, M. Fontanella, A. Ducati, and A. Vercelli, Mesenchymal stem cell transplantation reduces glial cyst and improves functional outcome after spinal cord compression, World Neurosurg, vol.81, pp.183-190, 2014.

D. Boison and W. Stoffel, Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice, Proc Natl Acad Sci U S A, vol.91, pp.11709-11713, 1994.

M. A. Bonaguidi, J. Song, G. L. Ming, and H. Song, A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus, Curr Opin Neurobiol, vol.22, pp.754-761, 2012.

D. Bottai, L. Madaschi, A. M. Di-giulio, G. , and A. , Viability-dependent promoting action of adult neural precursors in spinal cord injury, Mol Med, vol.14, pp.634-644, 2008.

A. I. Boullerne, The history of myelin, Exp Neurol, vol.283, pp.431-445, 2016.

A. K. Bouzier-sore, P. Voisin, V. Bouchaud, E. Bezancon, J. M. Franconi et al., Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study, Eur J Neurosci, vol.24, pp.1687-1694, 2006.

A. K. Bouzier-sore, P. Voisin, P. Canioni, P. J. Magistretti, P. et al., Lactate is a preferential oxidative energy substrate over glucose for neurons in culture, J Cereb Blood Flow Metab, vol.23, pp.1298-1306, 2003.

M. Bradl and H. Lassmann, Oligodendrocytes: biology and pathology, Acta Neuropathol, vol.119, pp.37-53, 2010.

F. Bretzner, F. Gilbert, F. Baylis, and R. M. Brownstone, Target populations for first-in-human embryonic stem cell research in spinal cord injury, Cell Stem Cell, vol.8, pp.468-475, 2011.

J. Briscoe, E. , and J. , Specification of neuronal fates in the ventral neural tube, Curr Opin Neurobiol, vol.11, pp.43-49, 2001.

S. L. Brody, X. H. Yan, M. K. Wuerffel, S. K. Song, and S. D. Shapiro, Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice, Am J Respir Cell Mol Biol, vol.23, pp.45-51, 2000.

G. A. Brook, D. Plate, R. Franzen, D. Martin, G. Moonen et al., Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat, Journal of neuroscience research, vol.53, pp.51-65, 1998.

J. E. Bruni, Ependymal development, proliferation, and functions: a review, Microscopy research and technique, vol.41, pp.2-13, 1998.

A. Buffo, I. Rite, P. Tripathi, A. Lepier, D. Colak et al., Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain, Proc Natl Acad Sci U S A, vol.105, pp.3581-3586, 2008.

M. B. Bunge and P. M. Wood, Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury, Handb Clin Neurol, vol.109, pp.523-540, 2012.

J. E. Burda and M. V. Sofroniew, Reactive gliosis and the multicellular response to CNS damage and disease, Neuron, vol.81, pp.229-248, 2014.

E. A. Bushong, M. E. Martone, Y. Z. Jones, and M. H. Ellisman, Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, J Neurosci, vol.22, pp.183-192, 2002.

O. Butovsky, Y. Ziv, A. Schwartz, G. Landa, A. E. Talpalar et al., Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells, Molecular and cellular neurosciences, vol.31, pp.149-160, 2006.

A. M. Butt, Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology, Glia, vol.54, pp.666-675, 2006.

J. D. Cahoy, B. Emery, A. Kaushal, L. C. Foo, J. L. Zamanian et al., A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function, J Neurosci, vol.28, pp.264-278, 2008.

J. Camara, Z. Wang, C. Nunes-fonseca, H. C. Friedman, M. Grove et al., Integrin-mediated axoglial interactions initiate myelination in the central nervous system, J Cell Biol, vol.185, pp.699-712, 2009.

A. T. Campagnoni, C. W. Campagnoni, J. M. Bourre, C. Jacque, and N. Baumann, Cell-free synthesis of myelin basic proteins in normal and dysmyelinating mutant mice, J Neurochem, vol.42, pp.733-739, 1984.

Q. L. Cao, Y. P. Zhang, R. M. Howard, W. M. Walters, P. Tsoulfas et al., Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage, Experimental neurology, vol.167, pp.48-58, 2001.

M. Carlen, K. Meletis, C. Goritz, V. Darsalia, E. Evergren et al., Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke, Nature neuroscience, vol.12, p.210, 2009.

S. L. Carlson, M. E. Parrish, J. E. Springer, K. Doty, and L. Dossett, Acute inflammatory response in spinal cord following impact injury, Exp Neurol, vol.151, pp.77-88, 1998.

P. A. Carpentier, P. , and T. D. , Immune influence on adult neural stem cell regulation and function, Neuron, vol.64, pp.79-92, 2009.

D. D. Carrade, V. K. Affolter, C. A. Outerbridge, J. L. Watson, L. D. Galuppo et al., Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions, Cytotherapy, vol.13, pp.1180-1192, 2011.

S. Casha, W. R. Yu, and M. G. Fehlings, Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat, Neuroscience, vol.103, pp.203-218, 2001.

S. Casha, W. R. Yu, and M. G. Fehlings, FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury, Experimental neurology, vol.196, pp.390-400, 2005.

A. Charles, Intercellular calcium waves in glia, Glia, vol.24, pp.39-49, 1998.

A. C. Charles, C. C. Naus, D. Zhu, G. M. Kidder, E. R. Dirksen et al., Intercellular calcium signaling via gap junctions in glioma cells, J Cell Biol, vol.118, pp.195-201, 1992.

Y. Chen, M. J. Devivo, J. S. Richards, and T. B. Sanagustin, Spinal Cord Injury Model Systems: Review of Program and National Database From, Archives of physical medicine and rehabilitation, vol.97, pp.1797-1804, 1970.

M. A. Chernousov, C. , and D. J. , Schwann cell extracellular matrix molecules and their receptors, Histol Histopathol, vol.15, pp.593-601, 2000.

L. J. Chew, W. Shen, X. Ming, V. V. Senatorov, . Jr et al., SRY-box containing gene 17 regulates the Wnt/beta-catenin signaling pathway in oligodendrocyte progenitor cells, J Neurosci, vol.31, pp.13921-13935, 2011.

T. A. Cho, Spinal cord functional anatomy, Continuum (Minneap Minn), vol.21, pp.13-35, 2015.

M. I. Chuah and R. Teague, Basic fibroblast growth factor in the primary olfactory pathway: mitogenic effect on ensheathing cells, Neuroscience, vol.88, pp.1043-1050, 1999.

D. E. Clevidence, D. G. Overdier, R. S. Peterson, A. Porcella, H. Ye et al., Members of the HNF-3/forkhead family of transcription factors exhibit distinct cellular expression patterns in lung and regulate the surfactant protein B promoter, Developmental biology, vol.166, pp.195-209, 1994.

B. J. Conley, J. C. Young, A. O. Trounson, M. , and R. , Derivation, propagation and differentiation of human embryonic stem cells, Int J Biochem Cell Biol, vol.36, pp.555-567, 2004.

A. H. Cornell-bell, S. M. Finkbeiner, M. S. Cooper, and S. J. Smith, Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, vol.247, pp.470-473, 1990.

S. Corti, M. Nizzardo, C. Simone, M. Falcone, C. Donadoni et al., Direct reprogramming of human astrocytes into neural stem cells and neurons, Experimental cell research, vol.318, pp.1528-1541, 2012.

J. M. Cregg, M. A. Depaul, A. R. Filous, B. T. Lang, A. Tran et al., Functional regeneration beyond the glial scar, Experimental neurology, vol.253, pp.197-207, 2014.

V. R. Dasari, K. K. Veeravalli, and D. H. Dinh, Mesenchymal stem cells in the treatment of spinal cord injuries: A review, World journal of stem cells, vol.6, pp.120-133, 2014.

S. David and A. Kroner, Repertoire of microglial and macrophage responses after spinal cord injury, Nat Rev Neurosci, vol.12, pp.388-399, 2011.

M. R. Dawson, A. Polito, J. M. Levine, R. , and R. , NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS, Mol Cell Neurosci, vol.24, pp.476-488, 2003.

I. Decimo, F. Bifari, F. J. Rodriguez, G. Malpeli, S. Dolci et al., Nestin-and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction, Stem cells, vol.29, pp.2062-2076, 2011.

I. Decimo, G. Fumagalli, V. Berton, M. Krampera, and F. Bifari, Meninges: from protective membrane to stem cell niche, Am J Stem Cells, vol.1, p.211, 2012.

J. Defelipe, L. Alonso-nanclares, and J. I. Arellano, Microstructure of the neocortex: comparative aspects, J Neurocytol, vol.31, pp.299-316, 2002.

T. Deierborg, L. Roybon, A. R. Inacio, J. Pesic, and P. Brundin, Brain injury activates microglia that induce neural stem cell proliferation ex vivo and promote differentiation of neurosphere-derived cells into neurons and oligodendrocytes, Neuroscience, vol.171, pp.1386-1396, 2010.

D. Bigio and M. R. , Ependymal cells: biology and pathology, Acta neuropathologica, vol.119, pp.55-73, 2010.

M. J. Devivo, Epidemiology of traumatic spinal cord injury: trends and future implications, Spinal Cord, vol.50, pp.365-372, 2012.

M. J. Devivo, F. Biering-sorensen, P. New, and Y. Chen, Standardization of data analysis and reporting of results from the International Spinal Cord Injury Core Data Set, Spinal cord, vol.49, pp.596-599, 2011.

J. M. Dietschy and S. D. Turley, Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal, Journal of lipid research, vol.45, pp.1375-1397, 2004.

L. Dimou, G. , and M. , Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain, Physiological reviews, vol.94, pp.709-737, 2014.

B. J. Dlouhy, O. Awe, R. C. Rao, P. A. Kirby, and P. W. Hitchon, Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient: Case report, Journal of neurosurgery Spine, vol.21, pp.618-622, 2014.

F. Doetsch, I. Caille, D. A. Lim, J. M. Garcia-verdugo, and A. Alvarez-buylla, Subventricular zone astrocytes are neural stem cells in the adult mammalian brain, Cell, vol.97, pp.703-716, 1999.

F. Doetsch, J. M. Garcia-verdugo, and A. Alvarez-buylla, Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain, J Neurosci, vol.17, pp.5046-5061, 1997.

D. J. Donnelly and P. G. Popovich, Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury, Exp Neurol, vol.209, pp.378-388, 2008.

R. Doucette, Glial influences on axonal growth in the primary olfactory system, Glia, vol.3, pp.433-449, 1990.

R. Doucette, PNS-CNS transitional zone of the first cranial nerve, J Comp Neurol, vol.312, pp.451-466, 1991.

J. C. Dugas, T. L. Cuellar, A. Scholze, B. Ason, A. Ibrahim et al., Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination, Neuron, vol.65, pp.597-611, 2010.

R. J. Dumont, D. O. Okonkwo, S. Verma, R. J. Hurlbert, P. T. Boulos et al., Acute spinal cord injury, part I: pathophysiologic mechanisms, Clinical neuropharmacology, vol.24, pp.254-264, 2001.
DOI : 10.1097/00002826-200109000-00002

I. D. Duncan, A. J. Aguayo, R. P. Bunge, and P. M. Wood, Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord, J Neurol Sci, vol.49, pp.241-252, 1981.

J. M. Edgar and J. Garbern, The myelinated axon is dependent on the myelinating cell for support and maintenance: molecules involved, J Neurosci Res, vol.76, pp.593-598, 2004.

J. M. Edgar and I. R. Griffiths, White Matter Structure: A Microscopist’s View. In Diffusion MRI, pp.127-153, 2014.

J. M. Edgar and K. A. Nave, The role of CNS glia in preserving axon function, Curr Opin Neurobiol, vol.19, pp.498-504, 2009.

J. A. Ekberg and J. A. St-john, Olfactory ensheathing cells for spinal cord repair: crucial differences between subpopulations of the glia, Neural regeneration research, vol.10, pp.1395-1396, 2015.

B. Emery, Regulation of oligodendrocyte differentiation and myelination, Science, vol.330, pp.779-782, 2010.

B. Emery, D. Agalliu, J. D. Cahoy, T. A. Watkins, J. C. Dugas et al., Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination, Cell, vol.138, pp.172-185, 2009.

M. Emgard, L. Holmberg, E. B. Samuelsson, B. A. Bahr, S. Falci et al., Human neural precursor cells continue to proliferate and exhibit low cell death after transplantation to the injured rat spinal cord, Brain research, vol.1278, p.213, 2009.

F. H. Gage, Mammalian neural stem cells, Science, vol.287, pp.1433-1438, 2000.

J. R. Genzen, J. C. Platel, M. E. Rubio, and A. Bordey, Ependymal cells along the lateral ventricle express functional P2X(7) receptors, Purinergic signalling, vol.5, pp.299-307, 2009.

C. Giaume, Astroglial Wiring is Adding Complexity to Neuroglial Networking, Front Neuroenergetics, vol.2, 2010.

C. Giaume and C. C. Naus, Connexins, gap junctions, and glia, Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, vol.2, pp.133-142, 2013.

S. A. Goldman and N. J. Kuypers, How to make an oligodendrocyte, Development, vol.142, pp.3983-3995, 2015.
DOI : 10.1242/dev.126409

URL : http://dev.biologists.org/content/142/23/3983.full.pdf

Y. Goldshmit, T. E. Sztal, P. R. Jusuf, T. E. Hall, M. Nguyen-chi et al., Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.32, pp.7477-7492, 2012.
DOI : 10.1523/jneurosci.0758-12.2012

URL : http://www.jneurosci.org/content/jneuro/32/22/7477.full.pdf

C. Goritz, D. O. Dias, N. Tomilin, M. Barbacid, O. Shupliakov et al., A pericyte origin of spinal cord scar tissue, Science, vol.333, pp.238-242, 2011.

J. Goto, T. Tezuka, T. Nakazawa, H. Sagara, Y. et al., Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development, Mol Cell Neurosci, vol.38, pp.203-212, 2008.

M. Gravel, J. Peterson, V. W. Yong, V. Kottis, B. Trapp et al., Overexpression of 2',3'-cyclic nucleotide 3'-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination, Mol Cell Neurosci, vol.7, pp.453-466, 1996.

P. P. Graziadei and G. A. Graziadei, Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons, J Neurocytol, vol.8, pp.1-18, 1979.

C. A. Gregoire, B. L. Goldenstein, E. M. Floriddia, F. Barnabe-heider, and K. J. Fernandes, Endogenous neural stem cell responses to stroke and spinal cord injury, Glia, vol.63, pp.1469-1482, 2015.

S. D. Grossman, L. J. Rosenberg, and J. R. Wrathall, Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion, Experimental neurology, vol.168, pp.273-282, 2001.

N. Guerout, C. Derambure, L. Drouot, N. Bon-mardion, C. Duclos et al., Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa, Glia, vol.58, pp.1570-1580, 2010.

N. Guerout, X. Li, B. , and F. , Cell fate control in the developing central nervous system, Experimental cell research, vol.321, pp.77-83, 2014.

N. Guerout, A. Paviot, N. Bon-mardion, C. Duclos, D. Genty et al., Cotransplantation of olfactory ensheathing cells from mucosa and bulb origin enhances functional recovery after peripheral nerve lesion, PloS one, vol.6, 2011.

N. Guerout, A. Paviot, N. Bon-mardion, A. Honore, R. Obongo et al., Transplantation of olfactory ensheathing cells to evaluate functional recovery after peripheral nerve injury, Journal of visualized experiments, p.50590, 2014.
DOI : 10.3791/50590

URL : http://europepmc.org/articles/pmc4130567?pdf=render

N. Habib, Y. Li, M. Heidenreich, L. Swiech, I. Avraham-davidi et al., Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons, Science, vol.353, pp.925-928, 2016.
DOI : 10.1126/science.aad7038

URL : https://science.sciencemag.org/content/sci/353/6302/925.full.pdf

A. R. Hackett and J. K. Lee, Understanding the NG2 Glial Scar after, Spinal Cord Injury. Front Neurol, vol.7, 0199.
DOI : 10.3389/fneur.2016.00199

URL : https://www.frontiersin.org/articles/10.3389/fneur.2016.00199/pdf

E. D. Hall and J. M. Braughler, Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale, Surg Neurol, vol.18, pp.320-327, 1982.

P. A. Hall and F. M. Watt, Stem cells: the generation and maintenance of cellular diversity, Development, vol.106, pp.619-633, 1989.

L. K. Hamilton, M. K. Truong, M. R. Bednarczyk, A. Aumont, and K. J. Fernandes, Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord, Neuroscience, vol.164, pp.1044-1056, 2009.

T. D. Hassinger, P. B. Guthrie, P. B. Atkinson, M. V. Bennett, and S. B. Kater, An extracellular signaling component in propagation of astrocytic calcium waves, Proc Natl Acad Sci, pp.13268-13273, 1996.

H. Iwai, H. Shimada, S. Nishimura, Y. Kobayashi, G. Itakura et al., Allogeneic Neural Stem/Progenitor Cells Derived From Embryonic Stem Cells Promote Functional Recovery After Transplantation Into Injured Spinal Cord of Nonhuman Primates, Stem Cells Transl Med, vol.4, pp.708-719, 2015.

N. Jackman, A. Ishii, and R. Bansal, Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids, Physiology, vol.24, pp.290-297, 2009.

B. V. Jacquet, N. Muthusamy, L. J. Sommerville, G. Xiao, H. Liang et al., Specification of a Foxj1-dependent lineage in the forebrain is required for embryonic-to-postnatal transition of neurogenesis in the olfactory bulb, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.31, pp.9368-9382, 2011.

B. V. Jacquet, R. Salinas-mondragon, H. Liang, B. Therit, J. D. Buie et al., FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain, Development, vol.136, pp.4021-4031, 2009.

A. J. Jimenez, M. D. Dominguez-pinos, M. M. Guerra, P. Fernandez-llebrez, and J. M. Perez-figares, Structure and function of the ependymal barrier and diseases associated with ependyma disruption, Tissue Barriers, vol.2, 2014.

C. B. Johansson, S. Momma, D. L. Clarke, M. Risling, U. Lendahl et al., Identification of a neural stem cell in the adult mammalian central nervous system, Cell, vol.96, pp.25-34, 1999.

K. K. Johe, T. G. Hazel, T. Muller, M. M. Dugich-djordjevic, and R. D. Mckay, Single factors direct the differentiation of stem cells from the fetal and adult central nervous system, Genes & development, vol.10, pp.3129-3140, 1996.

V. C. Jordan, New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer, Steroids, vol.72, pp.829-842, 2007.

M. K. Kang and S. K. Kang, Interleukin-6 induces proliferation in adult spinal cord-derived neural progenitors via the JAK2/STAT3 pathway with EGF-induced MAPK phosphorylation, Cell proliferation, vol.41, pp.377-392, 2008.

H. Kanno, D. D. Pearse, H. Ozawa, E. Itoi, and M. B. Bunge, Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus, Rev Neurosci, vol.26, pp.121-128, 2015.

H. Kanno, Y. Pressman, A. Moody, R. Berg, E. M. Muir et al., Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.34, pp.1838-1855, 2014.

S. Karimi-abdolrezaee, E. Eftekharpour, J. Wang, D. Schut, and M. G. Fehlings, Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.30, pp.1657-1676, 2010.

H. S. Keirstead, G. Nistor, G. Bernal, M. Totoiu, F. Cloutier et al., Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.25, pp.4694-4705, 2005.

H. Kettenmann and B. R. Ransom, Neuroglia, 2013.

H. Kettenmann and A. Verkhratsky, Neuroglia: the 150 years after, Trends Neurosci, vol.31, pp.653-659, 2008.

R. R. Khankan, K. G. Griffis, J. R. Haggerty-skeans, H. Zhong, R. R. Roy et al., Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.36, pp.6269-6286, 2016.

J. A. Kiernan, Hypotheses concerned with axonal regeneration in the mammalian nervous system, Biol Rev Camb Philos Soc, vol.54, pp.155-197, 1979.

K. A. Kigerl, V. M. Mcgaughy, and P. G. Popovich, Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury, J Comp Neurol, vol.494, pp.578-594, 2006.

C. Laule, I. M. Vavasour, S. H. Kolind, D. K. Li, T. L. Traboulsee et al., Magnetic resonance imaging of myelin, Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, vol.4, pp.460-484, 2007.

L. S. Laursen, C. W. Chan, and C. Ffrench-constant, Translation of myelin basic protein mRNA in oligodendrocytes is regulated by integrin activation and hnRNP-K, J Cell Biol, vol.192, pp.797-811, 2011.

M. Lazzari, S. Bettini, and V. Franceschini, Immunocytochemical characterisation of olfactory ensheathing cells of zebrafish, Journal of anatomy, vol.224, pp.192-206, 2014.

S. W. Lee, W. J. Kim, Y. K. Choi, H. S. Song, M. J. Son et al., SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier, Nat Med, vol.9, pp.900-906, 2003.

B. Lehner, B. Sandner, J. Marschallinger, C. Lehner, T. Furtner et al., The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival, Cell and tissue research, vol.345, pp.313-328, 2011.

J. Y. Leung, J. A. Chapman, J. A. Harris, D. Hale, R. S. Chung et al., Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cellular and molecular life sciences : CMLS 65, pp.2732-2739, 2008.

L. Leybaert, K. Paemeleire, A. Strahonja, and M. J. Sanderson, Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells, Glia, vol.24, pp.398-407, 1998.

L. Leybaert and M. J. Sanderson, Intercellular Ca(2+) waves: mechanisms and function, Physiol Rev, vol.92, pp.1359-1392, 2012.

B. C. Li, C. Xu, J. Y. Zhang, Y. Li, and Z. X. Duan, Differing Schwann cells and olfactory ensheathing cells behaviors, from interacting with astrocyte, produce similar improvements in contused rat spinal cord's motor function, J Mol Neurosci, vol.48, pp.35-44, 2012.

G. L. Li, M. Farooque, A. Holtz, and Y. Olsson, Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord, Acta neuropathologica, vol.98, pp.473-480, 1999.

J. Y. Li, N. S. Christophersen, V. Hall, D. Soulet, and P. Brundin, Critical issues of clinical human embryonic stem cell therapy for brain repair, Trends in neurosciences, vol.31, pp.146-153, 2008.

S. Li, X. Wang, Q. H. Ma, W. L. Yang, X. G. Zhang et al., Amyloid precursor protein modulates Nav1.6 sodium channel currents through a Go-coupled JNK pathway, Sci Rep, vol.6, p.39320, 2016.

X. Li, E. M. Floriddia, K. Toskas, K. J. Fernandes, N. Guerout et al., Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time, EBioMedicine, vol.13, pp.55-65, 2016.

X. Liang, N. A. Draghi, and M. D. Resh, Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes, J Neurosci, vol.24, pp.7140-7149, 2004.

A. C. Lipson, J. Widenfalk, E. Lindqvist, T. Ebendal, and L. Olson, Neurotrophic properties of olfactory ensheathing glia, Experimental neurology, vol.180, pp.167-171, 2003.

Z. Liu, Y. Fan, S. J. Won, M. Neumann, D. Hu et al., Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia, Stroke, vol.38, pp.146-152, 2007.
DOI : 10.1161/01.str.0000251791.64910.cd

URL : https://www.ahajournals.org/doi/pdf/10.1161/01.STR.0000251791.64910.cd

H. F. Lodish, A. Berk, C. Kaiser, M. Krieger, M. Scott et al., Molecular Cell Biology, 2008.

R. Lopez-vales, G. Garcia-alias, J. Fores, J. M. Vela, X. Navarro et al., Transplanted olfactory ensheathing cells modulate the inflammatory response in the injured spinal cord, Neuron glia biology, vol.1, pp.201-209, 2004.

D. Lovatt, U. Sonnewald, H. S. Waagepetersen, A. Schousboe, W. He et al., The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex, J Neurosci, vol.27, pp.12255-12266, 2007.

P. Lu, Stem cell transplantation for spinal cord injury repair, Progress in brain research, vol.231, pp.1-32, 2017.

P. Lu, L. L. Jones, E. Y. Snyder, and M. H. Tuszynski, Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury, Experimental neurology, vol.181, pp.115-129, 2003.

P. Lu, Y. Wang, L. Graham, K. Mchale, M. Gao et al., Long-distance growth and connectivity of neural stem cells after severe spinal cord injury, Cell, vol.150, pp.1264-1273, 2012.

P. Lu, G. Woodruff, Y. Wang, L. Graham, M. Hunt et al., Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury, Neuron, vol.83, pp.789-796, 2014.

D. Lukovic, M. Stojkovic, V. Moreno-manzano, P. Jendelova, E. Sykova et al., Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys?, Stem cells, vol.33, pp.1036-1041, 2015.
DOI : 10.1002/stem.1959

K. F. Lunn, P. W. Baas, D. , and I. D. , Microtubule organization and stability in the oligodendrocyte, J Neurosci, vol.17, pp.4921-4932, 1997.
DOI : 10.1523/jneurosci.17-13-04921.1997

URL : http://www.jneurosci.org/content/17/13/4921.full.pdf

J. Luo and M. W. Miller, Transforming growth factor beta1-regulated cell proliferation and expression of neural cell adhesion molecule in B104 neuroblastoma cells: differential effects of ethanol, Journal of neurochemistry, vol.72, pp.2286-2293, 1999.

A. Mackay-sim, Olfactory ensheathing cells and spinal cord repair, Keio J Med, vol.54, pp.8-14, 2005.
DOI : 10.2302/kjm.54.8

W. B. Macklin, C. W. Campagnoni, P. L. Deininger, and M. V. Gardinier, Structure and expression of the mouse myelin proteolipid protein gene, J Neurosci Res, vol.18, pp.383-394, 1987.

J. P. Magnusson, C. Goritz, J. Tatarishvili, D. O. Dias, E. M. Smith et al., A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse, Science, vol.346, pp.237-241, 2014.

A. Malgieri, E. Kantzari, M. P. Patrizi, and S. Gambardella, Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art, Int J Clin Exp Med, vol.3, pp.248-269, 2010.

N. Marichal, G. Garcia, M. Radmilovich, O. Trujillo-cenoz, and R. E. Russo, Enigmatic central canal contacting cells: immature neurons in "standby mode, J Neurosci, vol.29, pp.10010-10024, 2009.

D. J. Martens, R. M. Seaberg, and D. Van-der-kooy, In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord, Eur J Neurosci, vol.16, pp.1045-1057, 2002.

A. E. Mautes, M. R. Weinzierl, F. Donovan, and L. J. Noble, Vascular events after spinal cord injury: contribution to secondary pathogenesis, Physical therapy, vol.80, pp.673-687, 2000.

A. Mayeur, C. Duclos, A. Honore, M. Gauberti, L. Drouot et al., Potential of olfactory ensheathing cells from different sources for spinal cord repair, PloS one, vol.8, 2013.

J. W. Mcdonald and C. Sadowsky, Spinal-cord injury, Lancet, vol.359, pp.417-425, 2002.

M. A. Mclellan, N. A. Rosenthal, and A. R. Pinto, Cre-loxP-Mediated Recombination: General Principles and Experimental Considerations, Current protocols in mouse biology, vol.7, pp.1-12, 2017.

K. Meletis, F. Barnabe-heider, M. Carlen, E. Evergren, N. Tomilin et al., Spinal cord injury reveals multilineage differentiation of ependymal cells, PLoS biology, vol.6, p.182, 2008.

H. Mi, H. Haeberle, and B. A. Barres, Induction of astrocyte differentiation by endothelial cells, J Neurosci, vol.21, pp.1538-1547, 2001.

S. Mi, R. H. Miller, X. Lee, M. L. Scott, S. Shulag-morskaya et al., LINGO-1 negatively regulates myelination by oligodendrocytes, Nat Neurosci, vol.8, pp.745-751, 2005.

J. Middeldorp and E. M. Hol, GFAP in health and disease, Prog Neurobiol, vol.93, pp.421-443, 2011.

R. H. Miller, Regulation of oligodendrocyte development in the vertebrate CNS, Prog Neurobiol, vol.67, pp.451-467, 2002.

R. Mirsky, K. R. Jessen, A. Brennan, D. Parkinson, Z. Dong et al., Schwann cells as regulators of nerve development, J Physiol Paris, vol.96, pp.17-24, 2002.

S. Mitew, C. M. Hay, H. Peckham, J. Xiao, M. Koenning et al., Mechanisms regulating the development of oligodendrocytes and central nervous system myelin, Neuroscience, vol.276, pp.29-47, 2014.

M. H. Mokalled, C. Patra, A. L. Dickson, T. Endo, D. Y. Stainier et al., Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish, Science, vol.354, p.219, 2016.

H. R. Momeni, Role of calpain in apoptosis, Cell journal, vol.13, pp.65-72, 2011.

P. Morell, N. , and W. T. , Myelin. Scientific American, vol.242, pp.88-90, 1980.

S. Morgello, R. R. Uson, E. J. Schwartz, and R. S. Haber, The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes, Glia, vol.14, pp.43-54, 1995.

A. J. Mothe, G. Bozkurt, J. Catapano, J. Zabojova, X. Wang et al., Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat, Spinal Cord, vol.49, pp.967-973, 2011.

A. J. Mothe and C. H. Tator, Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat, Neuroscience, vol.131, pp.177-187, 2005.

A. J. Mothe and C. H. Tator, Review of transplantation of neural stem/progenitor cells for spinal cord injury, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience, vol.31, pp.701-713, 2013.

N. Muthusamy, A. Vijayakumar, G. Cheng, . Jr, and H. T. Ghashghaei, A knock-in Foxj1(CreERT2::GFP) mouse for recombination in epithelial cells with motile cilia, Genesis, vol.52, pp.350-358, 2014.

N. Nagoshi, S. Shibata, M. Hamanoue, Y. Mabuchi, Y. Matsuzaki et al., Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing, Glia, vol.59, pp.771-784, 2011.

J. I. Nagy and J. E. Rash, Astrocyte and oligodendrocyte connexins of the glial syncytium in relation to astrocyte anatomical domains and spatial buffering, Cell Commun Adhes, vol.10, pp.401-406, 2003.

T. Nakagomi, Z. Molnar, A. Nakano-doi, A. Taguchi, O. Saino et al., Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction, Stem Cells Dev, vol.20, pp.2037-2051, 2011.

H. H. Nash, R. C. Borke, A. , and J. J. , New method of purification for establishing primary cultures of ensheathing cells from the adult olfactory bulb, Glia, vol.34, pp.81-87, 2001.

L. Nazareth, K. E. Lineburg, M. I. Chuah, J. Tello-velasquez, F. Chehrehasa et al., Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system, The Journal of comparative neurology, vol.523, pp.479-494, 2015.

M. Nedergaard, B. Ransom, and S. A. Goldman, New roles for astrocytes: redefining the functional architecture of the brain, Trends in neurosciences, vol.26, pp.523-530, 2003.

V. Neirinckx, C. Coste, R. Franzen, A. Gothot, B. Rogister et al., Neutrophil contribution to spinal cord injury and repair, Journal of neuroinflammation, vol.11, p.150, 2014.

F. H. Netter, Atlas of human anatomy, 2006.

L. J. Noble and J. R. Wrathall, Distribution and time course of protein extravasation in the rat spinal cord after contusive injury, Brain Res, vol.482, pp.57-66, 1989.

A. Nogradi, K. Pajer, M. , and G. , The role of embryonic motoneuron transplants to restore the lost motor function of the injured spinal cord, Ann Anat, vol.193, pp.362-370, 2011.

H. Nomura, H. Kim, A. Mothe, T. Zahir, I. Kulbatski et al., Endogenous radial glial cells support regenerating axons after spinal cord transection, Neuroreport, vol.21, pp.871-876, 2010.

M. D. Norenberg, Distribution of glutamine synthetase in the rat central nervous system, J Histochem Cytochem, vol.27, pp.756-762, 1979.

W. T. Norton, Recent advances in myelin biochemistry, Ann N Y Acad Sci, vol.436, pp.5-10, 1984.

S. E. Nutt, E. A. Chang, S. T. Suhr, L. O. Schlosser, S. E. Mondello et al., Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model, Experimental neurology, vol.248, pp.491-503, 2013.

O. Shea, T. M. Burda, J. E. Sofroniew, and M. V. , Cell biology of spinal cord injury and repair, J Clin Invest, vol.127, pp.3259-3270, 2017.

D. A. O'toole, A. K. West, and M. I. Chuah, Effect of olfactory ensheathing cells on reactive astrocytes in vitro. Cellular and molecular life sciences : CMLS 64, pp.1303-1309, 2007.

N. A. Oberheim, S. A. Goldman, N. , and M. , Heterogeneity of astrocytic form and function, Methods Mol Biol, vol.814, pp.23-45, 2012.

N. A. Oberheim, T. Takano, X. Han, W. He, J. H. Lin et al., Uniquely hominid features of adult human astrocytes, J Neurosci, vol.29, pp.3276-3287, 2009.

K. Ogata and T. Kosaka, Structural and quantitative analysis of astrocytes in the mouse hippocampus, Neuroscience, vol.113, pp.221-233, 2002.

Y. Ohori, S. Yamamoto, M. Nagao, M. Sugimori, N. Yamamoto et al., Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord, J Neurosci, vol.26, pp.11948-11960, 2006.

T. Okano-uchida, M. Naruse, T. Ikezawa, K. Shibasaki, and Y. Ishizaki, Cerebellar neural stem cells differentiate into two distinct types of astrocytes in response to CNTF and BMP2, Neuroscience letters, vol.552, pp.15-20, 2013.

L. E. Ostrowski, J. R. Hutchins, K. Zakel, and W. K. Neal, Targeting expression of a transgene to the airway surface epithelium using a ciliated cell-specific promoter, Mol Ther, vol.8, pp.637-645, 2003.

M. Oudega and M. A. Perez, Corticospinal reorganization after spinal cord injury, J Physiol, vol.590, pp.3647-3663, 2012.

M. Oudega and X. M. Xu, Schwann cell transplantation for repair of the adult spinal cord, Journal of neurotrauma, vol.23, pp.453-467, 2006.

C. A. Oyinbo, Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade, Acta neurobiologiae experimentalis, vol.71, pp.281-299, 2011.

H. Ozgen, W. Baron, D. Hoekstra, and N. Kahya, Oligodendroglial membrane dynamics in relation to myelin biogenesis. Cellular and molecular life sciences : CMLS 73, pp.3291-3310, 2016.

R. Pallini, L. R. Vitiani, A. Bez, P. Casalbore, F. Facchiano et al., Homologous transplantation of neural stem cells to the injured spinal cord of mice, Neurosurgery, vol.57, pp.1014-1025, 2005.

E. Panayiotou and S. Malas, Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury, Frontiers in physiology, vol.4, p.340, 2013.

P. Panni, I. A. Ferguson, I. Beacham, A. Mackay-sim, J. A. Ekberg et al., Phagocytosis of bacteria by olfactory ensheathing cells and Schwann cells, Neuroscience letters, vol.539, pp.65-70, 2013.

B. Pansky, Review of medical embryology, 1982.

E. Park, A. A. Velumian, and M. G. Fehlings, The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration, Journal of neurotrauma, vol.21, pp.754-774, 2004.

H. W. Park, M. J. Lim, H. Jung, S. P. Lee, K. S. Paik et al., Human mesenchymal stem cellderived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury, Glia, vol.58, pp.1118-1132, 2010.

P. Pasinelli and R. H. Brown, Molecular biology of amyotrophic lateral sclerosis: insights from genetics, Nature reviews Neuroscience, vol.7, pp.710-723, 2006.

E. Pastrana, M. T. Moreno-flores, J. Avila, F. Wandosell, L. Minichiello et al., BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons, Neurochemistry international, vol.50, pp.491-498, 2007.

A. Paviot, N. Guerout, N. Bon-mardion, C. Duclos, L. Jean et al., Efficiency of laryngeal motor nerve repair is greater with bulbar than with mucosal olfactory ensheathing cells, Neurobiol Dis, vol.41, pp.688-694, 2011.

L. Pellerin, Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity, Diabetes Metab, vol.36, issue.3, pp.59-63, 2010.

L. Pellerin and P. J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc Natl Acad Sci U S A, vol.91, pp.10625-10629, 1994.

P. Peschl, M. Bradl, R. Hoftberger, T. Berger, R. et al., Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases, Frontiers in immunology, vol.8, p.529, 2017.

A. Peters, S. L. Palay, and H. F. Webster, The fine structure of the nervous system: neurons and their supporting cells, 1991.

A. Petit, A. D. Sanders, T. E. Kennedy, W. Tetzlaff, K. J. Glattfelder et al., Adult spinal cord radial glia display a unique progenitor phenotype, PloS one, vol.6, 2011.

I. Pineau and S. Lacroix, Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved, The Journal of comparative neurology, vol.500, pp.267-285, 2007.

S. Poliak, D. Salomon, H. Elhanany, H. Sabanay, B. Kiernan et al., Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1, The Journal of cell biology, vol.162, pp.1149-1160, 2003.

L. Qian, E. C. Berry, J. D. Fu, M. Ieda, and D. Srivastava, Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro, Nature protocols, vol.8, pp.1204-1215, 2013.

L. Qian and D. Srivastava, Direct cardiac reprogramming: from developmental biology to cardiac regeneration, Circulation research, vol.113, pp.915-921, 2013.

Y. Qin, W. Zhang, Y. , and P. , Current states of endogenous stem cells in adult spinal cord, J Neurosci Res, vol.93, pp.391-398, 2015.

R. H. Quarles, Glycoproteins of myelin sheaths, Journal of molecular neuroscience : MN, vol.8, pp.1-12, 1997.

R. H. Quarles, Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration. Cellular and molecular life sciences : CMLS 59, pp.1851-1871, 2002.

M. Ramsauer, D. Krause, and R. Dermietzel, Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes, FASEB J, vol.16, pp.1274-1276, 2002.

B. R. Ransom and H. Sontheimer, The neurophysiology of glial cells, J Clin Neurophysiol, vol.9, pp.224-251, 1992.

M. N. Rasband, Clustered K+ channel complexes in axons, Neurosci Lett, vol.486, pp.101-106, 2010.

M. N. Rasband, Glial Contributions to Neural Function and Disease, Molecular & cellular proteomics : MCP, vol.15, pp.355-361, 2016.

M. N. Rasband, P. , and E. , The Nodes of Ranvier: Molecular Assembly and Maintenance. Cold Spring Harbor perspectives in biology 8, 2015.

J. Ray and F. H. Gage, Spinal cord neuroblasts proliferate in response to basic fibroblast growth factor, J Neurosci, vol.14, pp.3548-3564, 1994.

J. B. Reece, N. Meyers, L. A. Urry, M. L. Cain, S. A. Wasserman et al., Campbell biology Tenth Edition (Australian version) edn (Frenchs Forest, 2015.

L. Rela, A. Bordey, G. , and C. A. , Olfactory ensheathing cell membrane properties are shaped by connectivity, Glia, vol.58, pp.665-678, 2010.

Y. Ren, Y. Ao, T. M. O'shea, J. E. Burda, A. M. Bernstein et al., Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury, vol.7, p.41122, 2017.

D. K. Resnick, Updated Guidelines for the Management of Acute Cervical Spine and Spinal Cord Injury, Neurosurgery, vol.72, 2013.

B. Rexed, The cytoarchitectonic organization of the spinal cord in the cat, J Comp Neurol, vol.96, pp.414-495, 1952.

W. D. Richardson, N. Kessaris, and N. Pringle, Oligodendrocyte wars, Nat Rev Neurosci, vol.7, pp.11-18, 2006.

W. D. Richardson, N. P. Pringle, W. P. Yu, and A. C. Hall, Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons, Developmental neuroscience, vol.19, pp.58-68, 1997.

W. D. Richardson, K. M. Young, R. B. Tripathi, M. , and I. , NG2-glia as multipotent neural stem cells: fact or fantasy?, Neuron, vol.70, pp.661-673, 2011.

L. E. Rivers, K. M. Young, M. Rizzi, F. Jamen, K. Psachoulia et al., PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice, Nat Neurosci, vol.11, pp.1392-1401, 2008.

U. Roessmann, M. E. Velasco, S. D. Sindely, and P. Gambetti, Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study, Brain Res, vol.200, pp.13-21, 1980.

A. Rolls, R. Shechter, A. London, Y. Ziv, A. Ronen et al., Toll-like receptors modulate adult hippocampal neurogenesis, Nature cell biology, vol.9, pp.1081-1088, 2007.

S. L. Rossi, G. Nistor, T. Wyatt, H. Z. Yin, A. J. Poole et al., Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord, PloS one, vol.5, p.11852, 2010.

J. D. Rothstein, L. Martin, A. I. Levey, M. Dykes-hoberg, L. Jin et al., Localization of neuronal and glial glutamate transporters, Neuron, vol.13, pp.713-725, 1994.

D. H. Rowitch and A. R. Kriegstein, Developmental genetics of vertebrate glial-cell specification, Nature, vol.468, pp.214-222, 2010.

J. W. Rowland, G. W. Hawryluk, B. Kwon, and M. G. Fehlings, Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon, Neurosurgical focus, vol.25, p.2, 2008.

C. S. Roy and C. S. Sherrington, On the Regulation of the Blood-supply of the Brain, J Physiol, vol.11, pp.85-158, 1890.

D. A. Rusakov, Disentangling calcium-driven astrocyte physiology, Nat Rev Neurosci, vol.16, pp.226-233, 2015.

A. M. Rush, T. R. Cummins, and S. G. Waxman, Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons, J Physiol, vol.579, pp.1-14, 2007.

H. Sabelstrom, M. Stenudd, and J. Frisen, Neural stem cells in the adult spinal cord, Experimental neurology, vol.260, pp.44-49, 2014.

H. Sabelstrom, M. Stenudd, P. Reu, D. O. Dias, M. Elfineh et al., Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice, Science, vol.342, pp.637-640, 2013.

H. Saberi, M. Firouzi, Z. Habibi, P. Moshayedi, H. R. Aghayan et al., Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases, Journal of neurosurgery Spine, vol.15, pp.515-525, 2011.

J. C. Sabourin, K. B. Ackema, D. Ohayon, P. O. Guichet, F. E. Perrin et al., A mesenchymal-like ZEB1(+) niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord, Stem Cells, vol.27, pp.2722-2733, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02156253

N. Sachewsky, R. Leeder, W. Xu, K. L. Rose, F. Yu et al., Primitive neural stem cells in the adult mammalian brain give rise to GFAP-expressing neural stem cells, Stem cell reports, vol.2, pp.810-824, 2014.

G. Saher, B. Brugger, C. Lappe-siefke, W. Mobius, R. Tozawa et al., High cholesterol level is essential for myelin membrane growth, Nat Neurosci, vol.8, pp.468-475, 2005.

G. Saher and M. Simons, Cholesterol and myelin biogenesis, Sub-cellular biochemistry, vol.51, pp.489-508, 2010.
DOI : 10.1007/978-90-481-8622-8_18

E. Saker, B. M. Henry, K. A. Tomaszewski, M. Loukas, J. Iwanaga et al., The Human Central Canal of the Spinal Cord: A Comprehensive Review of its Anatomy, Embryology, Molecular Development, Variants, and Pathology, vol.8, p.927, 2016.

R. P. Salewski, J. Buttigieg, R. A. Mitchell, D. Van-der-kooy, A. Nagy et al., The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway, Stem Cells Dev, vol.22, pp.383-396, 2013.

J. Schummers, H. Yu, and M. Sur, Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex, Science, vol.320, pp.1638-1643, 2008.

J. M. Schwab, K. Brechtel, T. D. Nguyen, and H. J. Schluesener, Persistent accumulation of cyclooxygenase-1 (COX-1) expressing microglia/macrophages and upregulation by endothelium following spinal cord injury, J Neuroimmunol, vol.111, pp.122-130, 2000.

R. Seidenfaden, A. Desoeuvre, A. Bosio, I. Virard, and H. Cremer, Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain, Molecular and cellular neurosciences, vol.32, p.223, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00088903

R. Sethi, R. Sethi, A. Redmond, and E. Lavik, Olfactory ensheathing cells promote differentiation of neural stem cells and robust neurite extension, Stem cell reviews, vol.10, pp.772-785, 2014.

T. Setoguchi and T. Kondo, Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation, The Journal of cell biology, vol.166, pp.963-968, 2004.

J. Sevc, Z. Daxnerova, V. Hanova, and J. Koval, Novel observations on the origin of ependymal cells in the ventricular zone of the rat spinal cord, Acta histochemica, vol.113, pp.156-162, 2011.

R. Shechter, Y. Ziv, and M. Schwartz, New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord, Stem cells, vol.25, pp.2277-2282, 2007.

F. Sheerin, Spinal cord injury: anatomy and physiology of the spinal cord, Emerg Nurse, vol.12, pp.30-36, 2004.

Q. Shen, Y. Wang, E. Kokovay, G. Lin, S. M. Chuang et al., Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions, Cell stem cell, vol.3, pp.289-300, 2008.

S. Shen, J. Li, and P. Casaccia-bonnefil, Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain, J Cell Biol, vol.169, pp.577-589, 2005.

L. Sherwood, E. , and F. , , 2015.

L. S. Shihabuddin, P. J. Horner, J. Ray, and F. H. Gage, Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.20, pp.8727-8735, 2000.

A. M. Siddiqui, M. Khazaei, and M. G. Fehlings, Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury, Progress in brain research, vol.218, pp.15-54, 2015.

N. A. Silva, N. Sousa, R. L. Reis, and A. J. Salgado, From basics to clinical: a comprehensive review on spinal cord injury, Prog Neurobiol, vol.114, pp.25-57, 2014.

J. Silver and J. H. Miller, Regeneration beyond the glial scar, Nature reviews Neuroscience, vol.5, pp.146-156, 2004.

M. Simons and K. Trajkovic, Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis, J Cell Sci, vol.119, pp.4381-4389, 2006.

S. Sirko, G. Behrendt, P. A. Johansson, P. Tripathi, M. Costa et al., Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog, 2013.

, Cell Stem Cell, vol.12, pp.426-439

M. Slezak, C. Goritz, A. Niemiec, J. Frisen, P. Chambon et al., Transgenic mice for conditional gene manipulation in astroglial cells, Glia, vol.55, pp.1565-1576, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00188914

C. Soderblom, X. Luo, E. Blumenthal, E. Bray, K. Lyapichev et al., Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.33, pp.13882-13887, 2013.

M. V. Sofroniew, Astrocyte barriers to neurotoxic inflammation, Nature reviews Neuroscience, vol.16, pp.249-263, 2015.

M. V. Sofroniew and H. V. Vinters, Astrocytes: biology and pathology, Acta Neuropathol, vol.119, pp.7-35, 2010.

I. Spiegel, P. , and E. , Cellular junctions of myelinated nerves (Review), Molecular membrane biology, vol.19, pp.95-101, 2002.

J. M. Sroga, T. B. Jones, K. A. Kigerl, V. M. Mcgaughy, and P. G. Popovich, Rats and mice exhibit distinct inflammatory reactions after spinal cord injury, J Comp Neurol, vol.462, pp.223-240, 2003.

D. E. Stange, B. K. Koo, M. Huch, G. Sibbel, O. Basak et al., Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium, Cell, vol.155, pp.357-368, 2013.

M. Stenudd, H. Sabelstrom, and J. Frisen, Role of endogenous neural stem cells in spinal cord injury and repair, JAMA Neurol, vol.72, pp.235-237, 2015.

N. Sternberg, H. , and D. , Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites, Journal of molecular biology, vol.150, pp.467-486, 1981.

N. Sternberg, D. Hamilton, and R. Hoess, Bacteriophage P1 site-specific recombination. II. Recombination between loxP and the bacterial chromosome, Journal of molecular biology, vol.150, pp.487-507, 1981.

J. L. Stobart, A. , and C. M. , Multifunctional role of astrocytes as gatekeepers of neuronal energy supply, Frontiers in cellular neuroscience, vol.7, p.38, 2013.

Z. Su, W. Niu, M. L. Liu, Y. Zou, and C. L. Zhang, In vivo conversion of astrocytes to neurons in the injured adult spinal cord, Nature communications, vol.5, p.3338, 2014.

P. Tabakow, W. Jarmundowicz, B. Czapiga, W. Fortuna, R. Miedzybrodzki et al., Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury, Cell transplantation, vol.22, pp.1591-1612, 2013.

P. Tabakow, G. Raisman, W. Fortuna, M. Czyz, J. Huber et al., Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging, Cell transplantation, vol.23, pp.1631-1655, 2014.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, vol.131, pp.861-872, 2007.

K. Takahashi, Y. , and S. , Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, pp.663-676, 2006.

Y. Taoka, K. Okajima, M. Uchiba, K. Murakami, S. Kushimoto et al., Gabexate mesilate, a synthetic protease inhibitor, prevents compression-induced spinal cord injury by inhibiting activation of leukocytes in rats, Critical care medicine, vol.25, pp.874-879, 1997.

W. Tetzlaff, E. B. Okon, S. Karimi-abdolrezaee, C. E. Hill, J. S. Sparling et al., A systematic review of cellular transplantation therapies for spinal cord injury, Journal of neurotrauma, vol.28, pp.1611-1682, 2011.

O. Torper, U. Pfisterer, D. A. Wolf, M. Pereira, S. Lau et al., Generation of induced neurons via direct conversion in vivo, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.7038-7043, 2013.

M. O. Totoiu and H. S. Keirstead, Spinal cord injury is accompanied by chronic progressive demyelination, The Journal of comparative neurology, vol.486, pp.373-383, 2005.

M. Traka, J. L. Dupree, B. Popko, K. , and D. , The neuronal adhesion protein TAG-1 is expressed by Schwann cells and oligodendrocytes and is localized to the juxtaparanodal region of myelinated fibers, J Neurosci, vol.22, pp.3016-3024, 2002.

B. D. Trapp, Myelin-associated glycoprotein. Location and potential functions, Ann N Y Acad Sci, vol.605, pp.29-43, 1990.

M. Tsacopoulos and P. J. Magistretti, Metabolic coupling between glia and neurons, J Neurosci, vol.16, pp.877-885, 1996.

A. Tzekou and M. G. Fehlings, Treatment of spinal cord injury with intravenous immunoglobulin G: preliminary evidence and future perspectives, Journal of clinical immunology, vol.34, pp.132-138, 2014.

A. Vallstedt, J. M. Klos, E. , and J. , Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain, Neuron, vol.45, pp.55-67, 2005.

M. Valny, P. Honsa, D. Kirdajova, Z. Kamenik, A. et al., Tamoxifen in the Mouse Brain: Implications for Fate-Mapping Studies Using the Tamoxifen-Inducible Cre-loxP System, Frontiers in cellular neuroscience, vol.10, p.243, 2016.

R. Vawda, J. Wilcox, and M. Fehlings, Current stem cell treatments for spinal cord injury, Indian J Orthop, vol.46, pp.10-18, 2012.

L. Venance, N. Stella, J. Glowinski, G. , and C. , Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes, J Neurosci, vol.17, 1981.

A. Verkhratsky and A. Butt, Astrocytes. In Glial Neurobiology, pp.93-123, 2007.

A. Verkhratsky and A. Butt, Oligodendrocytes. In Glial Physiology and Pathophysiology, pp.245-319, 2013.

A. Verkhratsky, J. J. Rodriguez, and V. Parpura, Calcium signalling in astroglia, Molecular and cellular endocrinology, vol.353, pp.45-56, 2012.

J. D. Verrier, T. C. Jackson, R. Bansal, P. M. Kochanek, A. M. Puccio et al., The brain in vivo expresses the 2',3'-cAMP-adenosine pathway, J Neurochem, vol.122, p.225, 2012.

B. Vigh, M. J. Manzano-e-silva, C. L. Frank, C. Vincze, S. J. Czirok et al., The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain, Histology and histopathology, vol.19, pp.607-628, 2004.

A. J. Vincent, J. M. Taylor, D. L. Choi-lundberg, A. K. West, and M. I. Chuah, Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes, Glia, vol.51, pp.132-147, 2005.

A. J. Vincent, A. K. West, and M. I. Chuah, Morphological and functional plasticity of olfactory ensheathing cells, J Neurocytol, vol.34, pp.65-80, 2005.

R. Virchow, Die cellularpathologie in ihrer Begrundung auf physiologische and pathologische Gewebelehre, 1858.

T. Y. Vue, E. J. Kim, C. M. Parras, F. Guillemot, J. et al., Ascl1 controls the number and distribution of astrocytes and oligodendrocytes in the gray matter and white matter of the spinal cord, Development, vol.141, pp.3721-3731, 2014.

N. M. Walton, B. M. Sutter, E. D. Laywell, L. H. Levkoff, S. M. Kearns et al., Microglia instruct subventricular zone neurogenesis, Glia, vol.54, pp.815-825, 2006.

G. Wang, Q. Ao, K. Gong, H. Zuo, Y. Gong et al., Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury, Cell transplantation, vol.19, pp.1325-1337, 2010.

L. Wang, Z. G. Zhang, R. L. Zhang, S. R. Gregg, A. Hozeska-solgot et al., Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.26, pp.5996-6003, 2006.

I. B. Wanner, M. A. Anderson, B. Song, J. Levine, A. Fernandez et al., Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.33, pp.12870-12886, 2013.

C. Watson and G. Kayalioglu, Chapter 1-The Organization of the Spinal Cord, The Spinal Cord, pp.1-7, 2009.

R. Watzlawick, J. Rind, E. S. Sena, B. Brommer, T. Zhang et al., Olfactory Ensheathing Cell Transplantation in Experimental Spinal Cord Injury: Effect size and Reporting Bias of 62 Experimental Treatments: A Systematic Review and MetaAnalysis, PLoS biology, vol.14, 2016.

M. Wegner, A matter of identity: transcriptional control in oligodendrocytes, Journal of molecular neuroscience : MN, vol.35, pp.3-12, 2008.

S. Weiss, C. Dunne, J. Hewson, C. Wohl, M. Wheatley et al., Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.16, pp.7599-7609, 1996.

J. T. Wilcox, D. Cadotte, and M. G. Fehlings, Spinal cord clinical trials and the role for bioengineering, Neuroscience letters, vol.519, pp.93-102, 2012.

L. C. Windus, K. E. Lineburg, S. E. Scott, C. Claxton, A. Mackay-sim et al., Lamellipodia mediate the heterogeneity of central olfactory ensheathing cell interactions, Cellular and molecular life sciences : CMLS, vol.67, pp.1735-1750, 2010.

H. Wolburg, S. Noell, A. Mack, K. Wolburg-buchholz, and P. Becker, Brain endothelial cells and the glio-vascular complex, Cell Tissue Res, vol.335, pp.75-96, 2009.

H. Wolburg, R. , and A. , Structure-function relationships in gap junctions, Int Rev Cytol, vol.157, pp.315-373, 1995.

L. Wolman, The Disturbance of Circulation in Traumatic Paraplegia in Acute and Late Stages: A Pathological Study, Paraplegia, vol.2, pp.213-226, 1965.

E. Woodhall, A. K. West, and M. I. Chuah, Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors, Brain research Molecular brain research, vol.88, pp.203-213, 2001.

W. Xu, L. Chi, R. Xu, Y. Ke, C. Luo et al., Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury, Spinal cord, vol.43, pp.204-213, 2005.

M. Yaguchi, S. Ohta, Y. Toyama, Y. Kawakami, and M. Toda, Functional recovery after spinal cord injury in mice through activation of microglia and dendritic cells after IL-12 administration, Journal of neuroscience research, vol.86, pp.1972-1980, 2008.

S. Yamamoto, N. Yamamoto, T. Kitamura, K. Nakamura, and M. Nakafuku, Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord, Exp Neurol, vol.172, pp.115-127, 2001.

K. Yasui, Y. Hashizume, M. Yoshida, T. Kameyama, and G. Sobue, Age-related morphologic changes of the central canal of the human spinal cord, Acta Neuropathol, vol.97, pp.253-259, 1999.

S. Yoo and J. R. Wrathall, Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors, Developmental neurobiology, vol.67, pp.860-874, 2007.

K. M. Young, K. Psachoulia, R. B. Tripathi, S. J. Dunn, L. Cossell et al., Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling, Neuron, vol.77, pp.873-885, 2013.

K. Yu, S. Mcglynn, and M. P. Matise, Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord, Development, vol.140, pp.1594-1604, 2013.

X. Yu, C. P. Ng, H. Habacher, R. , and S. , Foxj1 transcription factors are master regulators of the motile ciliogenic program, Nat Genet, vol.40, pp.1445-1453, 2008.

S. Yui, D. Ito, N. Fujita, and R. Nishimura, Effects of fibroblasts derived from the olfactory bulb and nasal olfactory mucosa on proliferation of olfactory ensheathing cells harvested from the olfactory bulb, The Journal of veterinary medical science, vol.73, pp.133-137, 2011.

C. Zeng, F. Pan, L. A. Jones, M. M. Lim, E. A. Griffin et al., Evaluation of 5-ethynyl-2'-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system, Brain research, vol.1319, pp.21-32, 2010.

J. Zhang, B. Wang, Z. Xiao, Y. Zhao, B. Chen et al., Olfactory ensheathing cells promote proliferation and inhibit neuronal differentiation of neural progenitor cells through activation of Notch signaling, Neuroscience, vol.153, pp.406-413, 2008.

N. Zhang, Y. Yin, S. J. Xu, Y. P. Wu, C. et al., Inflammation & apoptosis in spinal cord injury, The Indian journal of medical research, vol.135, pp.287-296, 2012.

X. Zhang, K. M. Klueber, Z. Guo, J. Cai, C. Lu et al., Induction of neuronal differentiation of adult human olfactory neuroepithelial-derived progenitors, pp.109-119, 2006.

X. Zhao, X. He, X. Han, Y. Yu, F. Ye et al., MicroRNAmediated control of oligodendrocyte differentiation, Neuron, vol.65, pp.612-626, 2010.

X. H. Zhou, G. Z. Ning, S. Q. Feng, X. H. Kong, J. T. Chen et al., Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up, Cell transplantation, vol.21, pp.39-47, 2012.

Q. Zhu, S. R. Whittemore, W. H. Devries, X. Zhao, N. J. Kuypers et al., Dorsally-derived oligodendrocytes in the spinal cord contribute to axonal myelination during development and remyelination following focal demyelination, Glia, vol.59, pp.1612-1621, 2011.

X. Zhu, D. E. Bergles, and A. Nishiyama, NG2 cells generate both oligodendrocytes and gray matter astrocytes, Development, vol.135, pp.145-157, 2008.

X. Zhu, R. A. Hill, and A. Nishiyama, NG2 cells generate oligodendrocytes and gray matter astrocytes in the spinal cord, Neuron glia biology, vol.4, pp.19-26, 2008.

J. L. Ziskin, A. Nishiyama, M. Rubio, M. Fukaya, and D. E. Bergles, Vesicular release of glutamate from unmyelinated axons in white matter, Nat Neurosci, vol.10, pp.321-330, 2007.

K. Zukor, S. Belin, C. Wang, N. Keelan, X. Wang et al., Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.33, pp.15350-15361, 2013.

E. Angot, K. Loulier, K. T. Nguyen-ba-charvet, A. P. Gadeau, M. Ruat et al., Chemoattractive activity of sonic hedgehog in the adult subventricular zone modulates the number of neural precursors reaching the olfactory bulb, Stem Cells, vol.26, pp.2311-2320, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00334981

E. Au, M. W. Richter, A. J. Vincent, W. Tetzlaff, R. Aebersold et al., SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair, J Neurosci, vol.27, pp.7208-7221, 2007.

W. W. Au, H. B. Treloar, and C. A. Greer, Sublaminar organization of the mouse olfactory bulb nerve layer, J Comp Neurol, vol.446, pp.68-80, 2002.

J. Babiarz, N. Kane-goldsmith, S. Basak, K. Liu, W. Young et al., Juvenile and adult olfactory ensheathing cells bundle and myelinate dorsal root ganglion axons in culture, Exp Neurol, vol.229, pp.72-79, 2011.

P. Barraud, A. A. Seferiadis, L. D. Tyson, M. F. Zwart, H. L. Szabo-rogers et al., Neural crest origin of olfactory ensheathing glia, Proc Natl Acad Sci, vol.107, pp.21040-21045, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01769064

S. Cappello, P. Monzo, and R. B. Vallee, NudC is required for interkinetic nuclear migration and neuronal migration during neocortical development, Dev Biol, vol.357, pp.326-335, 2011.

P. E. Forni, C. Taylor-burds, V. S. Melvin, T. Williams, and S. Wray, Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells, J Neurosci, vol.31, pp.6915-6927, 2011.

E. H. Franssen, K. C. Roet, F. M. De-bree, and J. Verhaagen, Olfactory ensheathing glia and Schwann cells exhibit a distinct interaction behavior with meningeal cells, J Neurosci Res, vol.87, pp.1556-1564, 2009.

C. A. Gorrie, I. Hayward, N. Cameron, G. Kailainathan, N. Nandapalan et al., Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury, Brain Res, vol.1337, pp.8-20, 2010.

P. P. Graziadei and G. A. Graziadei, Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons, J Neurocytol, vol.8, pp.1-18, 1979.

N. Guerout, C. Derambure, L. Drouot, N. Bon-mardion, C. Duclos et al., Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa, Glia, vol.58, pp.1570-1580, 2010.

A. D. Guertin, D. P. Zhang, K. S. Mak, J. A. Alberta, and H. A. Kim, Microanatomy of axon/glial signaling during Wallerian degeneration, J Neurosci, vol.25, pp.3478-3487, 2005.

Y. Gueye, L. Ferhat, O. Sbai, J. Bianco, A. Ould-yahoui et al., Trafficking and secretion of matrix metalloproteinase-2 in olfactory ensheathing glial cells: A role in cell migration, Glia, vol.59, pp.750-770, 2011.

S. Hippenmeyer, Y. H. Youn, H. M. Moon, K. Miyamichi, H. Zong et al., Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration, Neuron, vol.68, pp.695-709, 2010.

Z. H. Huang, Y. Wang, L. Cao, Z. D. Su, Y. L. Zhu et al., Migratory properties of cultured olfactory ensheathing cells by single-cell migration assay, Cell Res, vol.18, pp.479-490, 2008.

S. A. Ismail, I. R. Vetter, B. Sot, and A. Wittinghofer, The structure of an Arf-ArfGAP complex reveals a Ca21 regulatory mechanism, Cell, vol.141, pp.812-821, 2010.

H. R. Jani and G. Raisman, Ensheathing cell cultures from the olfactory bulb and mucosa, Glia, vol.47, pp.130-137, 2004.

J. L. Kueh, G. Raisman, Y. Li, R. Stevens, and D. Li, Comparison of bulbar and mucosal olfactory ensheathing cells using FACS and simultaneous antigenic bivariate cell cycle analysis, Glia, vol.59, pp.1658-1671, 2011.

A. Lakatos, R. J. Franklin, and S. C. Barnett, Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes, Glia, vol.32, pp.214-225, 2000.

J. E. Lattin, K. P. Greenwood, N. L. Daly, G. Kelly, D. A. Zidar et al., Betaarrestin 2 is required for complement C1q expression in macrophages and constrains factor-independent survival, Mol Immunol, vol.47, pp.340-347, 2009.

Y. Li, P. M. Field, and G. Raisman, Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells, Science, vol.277, pp.2000-2002, 1997.

Y. Li, D. Li, and G. Raisman, Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: The ''pathway hypothesis, J Neurocytol, vol.34, pp.343-351, 2005.

R. Lopez-vales, G. Garcia-alias, J. Fores, J. M. Vela, X. Navarro et al., Transplanted olfactory ensheathing cells modulate the inflammatory response in the injured spinal cord, Neuron Glia Biol, vol.1, pp.201-209, 2004.

H. H. Nash, R. C. Borke, and J. J. Anders, New method of purification for establishing primary cultures of ensheathing cells from the adult olfactory bulb, Glia, vol.34, pp.81-87, 2001.

L. N. Novikova, S. Lobov, M. Wiberg, and L. N. Novikov, Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation, Exp Neurol, vol.229, pp.132-142, 2011.

S. Parrinello, I. Napoli, S. Ribeiro, P. W. Digby, M. Fedorova et al., EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting, Cell, vol.143, pp.145-155, 2010.

A. Paviot, N. Guerout, N. Bon-mardion, C. Duclos, L. Jean et al., Efficiency of laryngeal motor nerve repair is greater with bulbar than with mucosal olfactory ensheathing cells, Neurobiol Dis, vol.41, pp.688-694, 2011.

N. Plachta, C. Annaheim, S. Bissiere, S. Lin, M. Ruegg et al., Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells, Nat Neurosci, vol.10, pp.712-719, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00159240

R. Avila and J. , Olfactory ensheathing glia: properties and function, Brain Res Bull, vol.46, pp.175-187, 1998.

A. Ramon-cueto and M. Nieto-sampedro, Glial cells from adult rat olfactory bulb: Immunocytochemical properties of pure cultures of ensheathing cells, Neuroscience, vol.47, pp.213-220, 1992.

A. Ramon-cueto and M. Nieto-sampedro, Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants, Exp Neurol, vol.127, pp.232-244, 1994.

L. Rela, A. Bordey, and C. A. Greer, Olfactory ensheathing cell membrane properties are shaped by connectivity, Glia, vol.58, pp.665-678, 2010.
DOI : 10.1002/glia.20953

URL : http://ri.conicet.gov.ar/bitstream/11336/16322/2/CONICET_Digital_Nro.20063_A.pdf

M. W. Richter, P. A. Fletcher, J. Liu, W. Tetzlaff, and A. J. Roskams, Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord, J Neurosci, vol.25, pp.10700-10711, 2005.

M. J. Ruitenberg, G. W. Plant, F. P. Hamers, J. Wortel, B. Blits et al., Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: Effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord, J Neurosci, vol.23, pp.7045-7058, 2003.

J. Saez-de-guinoa, L. Barrio, M. Mellado, and Y. R. Carrasco, CXCL13/ CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics, Blood, vol.118, pp.1560-1569, 2011.

D. L. Sherman, C. Fabrizi, C. S. Gillespie, and P. J. Brophy, Specific disruption of a schwann cell dystrophin-related protein complex in a demyelinating neuropathy, Neuron, vol.30, pp.677-687, 2001.

L. C. Windus, K. E. Lineburg, S. E. Scott, C. Claxton, A. Mackay-sim et al., Lamellipodia mediate the heterogeneity of central olfactory ensheathing cell interactions, Cell Mol Life Sci, vol.67, p.1735, 2010.

, Cé lia Duclos 1 , Axel Honoré 1 , Maxime Gauberti 3 , Laurent Drouot 4 , Jean-Claude do Rego 5 , Nicolas Bon-Mardion 1,2 , Laetitia Jean 4 , Eric Vé rin 1 , Evelyne Emery 3, Sighild Lemarchant, vol.1

U. Ea, OECs can be obtained from either the olfactory bulbs (OB-OECs) or from olfactory mucosa (OM-OECs), involving a less invasive approach for autotransplantation. However the vast majority of experimental transplantations have been focusing on OB-OECs although the OM represents a more accessible source of OECs. Importantly, the ability of OM-OECs in comparison to OB-OECs to induce spinal cord recovery in the same lesion paradigm has never been described. We here present data using a multiparametric approach, based on electrophysiological, behavioral, histological and magnetic resonance imaging experiments on the repair potential of OB-OECs and OM-OECs from either primary or purified cultures after a severe model of SCI. Our data demonstrate that transplantation of OECs obtained from OB or OM induces electrophysiological and functional recovery, reduces astrocyte reactivity and glial scar formation and improves axonal regrowth. We also show that the purification step is essential for OM-OECs while not required for OB-OECs. Altogether, our study strongly indicates that transplantation of OECs from OM represents the best benefit/risk ratio according to the safety of access of OM and the results induced by transplantations of OM-OECs, Serine Proteases and Pathophysiology of the Neurovascular Unit, vol.919

A. Mayeur, C. Duclos, A. Honoré, M. Gauberti, and L. Drouot, Potential of Olfactory Ensheathing Cells from Different Sources for Spinal Cord Repair, PLoS ONE, vol.8, issue.4, p.62860, 2013.

, Italy Received, 2012.

. Mayeur, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, 2013.

K. P. Horn, S. A. Busch, A. L. Hawthorne, N. Van-rooijen, and J. Silver, Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions, The study was financially supported by ADIR (Aide a ` Domicile aux Insuffisants Respiratoires), vol.28, pp.9330-9341, 2008.

J. Silver and J. H. Miller, Regeneration beyond the glial scar, Nat Rev Neurosci, vol.5, pp.146-156, 2004.

W. J. Alilain, K. P. Horn, H. Hu, T. E. Dick, and J. Silver, Functional regeneration of respiratory pathways after spinal cord injury, Nature, vol.475, pp.196-200, 2011.

R. Tauchi, S. Imagama, T. Natori, T. Ohgomori, and A. Muramoto, The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury, J Neuroinflammation, vol.9, p.53, 2012.
DOI : 10.1186/1742-2094-9-53

URL : https://doi.org/10.1186/1742-2094-9-53

D. K. Resnick, C. F. Cechvala, Y. Yan, B. P. Witwer, and D. Sun, Adult olfactory ensheathing cell transplantation for acute spinal cord injury, J Neurotrauma, vol.20, pp.279-285, 2003.
DOI : 10.1089/089771503321532860

A. Takeoka, D. L. Jindrich, C. Munoz-quiles, H. Zhong, and R. Van-den-brand, Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation, J Neurosci, vol.31, pp.4298-4310, 2011.
DOI : 10.1523/jneurosci.4967-10.2011

URL : http://www.jneurosci.org/content/31/11/4298.full.pdf

S. A. Busch, J. A. Hamilton, K. P. Horn, F. X. Cuascut, and R. Cutrone, Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury, J Neurosci, vol.31, pp.944-953, 2011.
DOI : 10.1523/jneurosci.3566-10.2011

URL : http://www.jneurosci.org/content/31/3/944.full.pdf

M. Ghosh, L. M. Tuesta, R. Puentes, S. Patel, and K. Melendez, Extensive cell migration, axon regeneration, and improved function with polysialic acidmodified Schwann cells after spinal cord injury, Glia, vol.60, pp.979-992, 2012.

Y. Fujimoto, M. Abematsu, A. Falk, K. Tsujimura, and T. Sanosaka, Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepitheliallike stem cells, Stem Cells, vol.30, pp.1163-1173, 2012.

F. E. Perrin, G. Boniface, C. Serguera, N. Lonjon, and A. Serre, Grafted human embryonic progenitors expressing neurogenin-2 stimulate axonal sprouting and improve motor recovery after severe spinal cord injury, PLoS One, vol.5, p.15914, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02156245

J. Lu, F. Feron, S. M. Ho, A. Mackay-sim, and P. M. Waite, Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats, Brain Res, vol.889, pp.344-357, 2001.

O. Steward, K. Sharp, G. Selvan, A. Hadden, and M. Hofstadter, A reassessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats, Exp Neurol, vol.198, pp.483-499, 2006.

Y. Li, P. M. Field, and G. Raisman, Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells, Science, vol.277, pp.2000-2002, 1997.

P. Barraud, A. A. Seferiadis, L. D. Tyson, M. F. Zwart, and H. L. Szabo-rogers, Neural crest origin of olfactory ensheathing glia, Proc Natl Acad Sci U S A, vol.107, pp.21040-21045, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01769064

J. Polentes, J. C. Stamegna, M. Nieto-sampedro, and P. Gauthier, Phrenic rehabilitation and diaphragm recovery after cervical injury and transplantation of olfactory ensheathing cells, Neurobiol Dis, vol.16, pp.638-653, 2004.
DOI : 10.1016/j.nbd.2004.04.009

M. Yamamoto, G. Raisman, D. Li, and Y. Li, Transplanted olfactory mucosal cells restore paw reaching function without regeneration of severed corticospinal tract fibres across the lesion, Brain Res, vol.1303, pp.26-31, 2009.

A. Ramon-cueto, G. W. Plant, J. Avila, and M. B. Bunge, Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants, J Neurosci, vol.18, pp.3803-3815, 1998.

A. Lakatos, R. J. Franklin, and S. C. Barnett, Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes, Glia, vol.32, pp.214-225, 2000.
DOI : 10.1002/1098-1136(200012)32:3<214::aid-glia20>3.0.co;2-7

J. C. Stamegna, M. S. Felix, J. Roux-peyronnet, V. Rossi, and F. Feron, Nasal OEC transplantation promotes respiratory recovery in a subchronic rat model of cervical spinal cord contusion, Exp Neurol, vol.229, pp.120-131, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00625288

N. Guerout, C. Derambure, L. Drouot, N. Bon-mardion, and C. Duclos, Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa, Glia, vol.58, pp.1570-1580, 2010.

A. Honore, L. Corre, S. Derambure, C. Normand, R. Duclos et al., Isolation, characterization, and genetic profiling of subpopulations of olfactory ensheathing cells from the olfactory bulb, Glia, vol.60, pp.404-413, 2012.

M. W. Richter, P. A. Fletcher, J. Liu, W. Tetzlaff, and A. J. Roskams, Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord, J Neurosci, vol.25, pp.10700-10711, 2005.

A. Paviot, N. Guerout, N. Bon-mardion, C. Duclos, and L. Jean, Efficiency of laryngeal motor nerve repair is greater with bulbar than with mucosal olfactory ensheathing cells, Neurobiol Dis, vol.41, pp.688-694, 2011.

A. Lakatos, P. M. Smith, S. C. Barnett, and R. J. Franklin, Meningeal cells enhance limited CNS remyelination by transplanted olfactory ensheathing cells, Brain, vol.126, pp.598-609, 2003.

A. Ramon-cueto and M. Nieto-sampedro, Glial cells from adult rat olfactory bulb: immunocytochemical properties of pure cultures of ensheathing cells, Neuroscience, vol.47, pp.213-220, 1992.

H. R. Jani and G. Raisman, Ensheathing cell cultures from the olfactory bulb and mucosa, Glia, vol.47, pp.130-137, 2004.

L. C. Windus, K. E. Lineburg, S. E. Scott, C. Claxton, and A. Mackay-sim, Lamellipodia mediate the heterogeneity of central olfactory ensheathing cell interactions, Cell Mol Life Sci, vol.67, pp.1735-1750, 2010.

Y. Li, D. Li, and G. Raisman, Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the 'pathway hypothesis, J Neurocytol, vol.34, pp.343-351, 2005.

M. P. Rubio, C. Munoz-quiles, R. , and A. , Adult olfactory bulbs from primates provide reliable ensheathing glia for cell therapy, Glia, vol.56, pp.539-551, 2008.

E. Pastrana, M. T. Moreno-flores, J. Avila, F. Wandosell, and L. Minichiello, BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons, Neurochem Int, vol.50, pp.491-498, 2007.

C. Radtke, K. L. Lankford, K. Wewetzer, T. Imaizumi, and W. L. Fodor, Impaired spinal cord remyelination by long-term cultured adult porcine olfactory ensheathing cells correlates with altered in vitro phenotypic properties, Xenotransplantation, vol.17, pp.71-80, 2010.

H. H. Nash, R. C. Borke, and J. J. Anders, New method of purification for establishing primary cultures of ensheathing cells from the adult olfactory bulb, Glia, vol.34, pp.81-87, 2001.

L. N. Novikova, S. Lobov, M. Wiberg, and L. N. Novikov, Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation, Exp Neurol, vol.229, pp.132-142, 2011.

J. I. Bianco, C. Perry, D. G. Harkin, A. Mackay-sim, and F. Feron, Neurotrophin 3 promotes purification and proliferation of olfactory ensheathing cells from human nose, Glia, vol.45, pp.111-123, 2004.

Y. Gueye, L. Ferhat, O. Sbai, J. Bianco, and A. Ould-yahoui, Trafficking and secretion of matrix metalloproteinase-2 in olfactory ensheathing glial cells: A role in cell migration, Glia, vol.59, pp.750-770, 2011.

J. C. Rego, M. H. Orta, J. Leprince, M. C. Tonon, and H. Vaudry, Pharmacological characterization of the receptor mediating the anorexigenic action of the octadecaneuropeptide: evidence for an endozepinergic tone regulating food intake, Neuropsychopharmacology, vol.32, pp.1641-1648, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01962716

F. P. Hamers, A. J. Lankhorst, T. J. Van-laar, W. B. Veldhuis, and W. H. Gispen, Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries, J Neurotrauma, vol.18, pp.187-201, 2001.
DOI : 10.1089/08977150150502613

A. Toft, M. Tome, S. C. Barnett, and J. S. Riddell, A comparative study of glial and non-neural cell properties for transplant-mediated repair of the injured spinal cord, Glia, 2013.

K. Fouad, L. Schnell, M. B. Bunge, M. E. Schwab, and T. Liebscher, Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord, J Neurosci, vol.25, pp.1169-1178, 2005.

A. Ramon-cueto, M. I. Cordero, F. F. Santos-benito, and J. Avila, Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia, Neuron, vol.25, pp.425-435, 2000.

M. J. Ruitenberg, G. W. Plant, C. L. Christensen, B. Blits, and S. P. Niclou, Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord, Gene Ther, vol.9, pp.135-146, 2002.

L. M. Ramer, E. Au, M. W. Richter, J. Liu, and W. Tetzlaff, Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury, J Comp Neurol, vol.473, pp.1-15, 2004.

P. Lu, Y. Wang, L. Graham, K. Mchale, and M. Gao, Long-distance growth and connectivity of neural stem cells after severe spinal cord injury, Cell, vol.150, pp.1264-1273, 2012.

K. Sakai, A. Yamamoto, K. Matsubara, S. Nakamura, and M. Naruse, Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms, J Clin Invest, vol.122, pp.80-90, 2012.

Y. Li, P. M. Field, and G. Raisman, Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres, Glia, vol.52, pp.245-251, 2005.

S. Parrinello, I. Napoli, S. Ribeiro, P. W. Digby, and M. Fedorova, EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting, Cell, vol.143, pp.145-155, 2010.
DOI : 10.1016/j.cell.2010.08.039

URL : https://doi.org/10.1016/j.cell.2010.08.039

P. E. Forni, C. Taylor-burds, V. S. Melvin, T. Williams, and S. Wray, Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells, J Neurosci, vol.31, pp.6915-6927, 2011.

B. C. Li, C. Xu, J. Y. Zhang, Y. Li, and Z. X. Duan, Differing Schwann Cells and Olfactory Ensheathing Cells Behaviors, from Interacting with Astrocyte, 2012.