, ?-CD103(clone M290), ?-granzyme-B (clone NGZB), ?-Ki67 (clone B56), ?-PD-1 (clone J43), ?-TIM-3-PE (R&D systems, clone 215008), ?-2B4 (Miltenyi, FITC, clone REA388; or Biolegend, PeCy7, clone m2B4(B6)458.1), ?-TIGIT (clone GIGD7), ?-CD160 (clone CNX46-3), ?-LAG-3 (clone C9B7W), ?-BTLA (clone 6F7), ?-NKG2A (clone 20D5), ?-CD5 (clone 53-7.3), ?MHC-class II (clone 2G9), ?-Sca-1 (clone D7), ?-CD34 (clone RAM34) and ?-EpCAM, ?-TCR?? (clone H57-597), ?-TCR?? (clone eBioGL3), ?-CD4 (clone GK1.5 or RM4-5), ?-CD8b (clone H35-17.2), ?-CD69 (clone H1.2F3)

M. Biotech, Bergish Gladbach, Germany) or eBioscience (now ThermoFisher Scientific

, Fluorescent H-2Kb-restricted SIIC D FEKL or SIIK D FEKL dextramers were synthetized by Immudex

, Intracellular staining was performed using BD Cytofix/Cytoperm solutions (BD Biosciences, Cell viability was analysed using a Fixable Viability Dye, purchased from eBioscience

, CD3-AF700 (clone 17A2), ?-CD4-AF488 (clone RM4-5), ?-CD8b-AF647 (clone YST156.7.7), and ?-TCR??-PE (clone GLE) were purchased from Biolegend

, Chicken-?-Rabbit secondary mAb-AF488 were purchased from Life Technologies

, clone 7D6) was purchase from Life Technologies

Y. , F. ). , and -. , ?-CD45-FITC (clone HI30) and ?-CD8?-APC (clone 2ST8.5H7) were purchased from BD Biosciences

J. A. Odhiambo, Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three, J. Allergy Clin. Immunol, vol.124, issue.e23, pp.1251-1259, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00596385

T. Bieber, Atopic dermatitis, Annals of Dermatology, vol.22, pp.125-137, 2010.

M. Peiser, Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell. Mol. Life Sci, vol.69, pp.763-781, 2012.

K. C. Barnes, An update on the genetics of atopic dermatitis: scratching the surface in 2009, J. Allergy Clin. Immunol, vol.125, issue.e11, pp.16-29, 2010.

M. A. Mcaleer and A. D. Irvine, The multifunctional role of filaggrin in allergic skin disease, Journal of Allergy and Clinical Immunology, vol.131, pp.280-291, 2013.

G. F. Gerberick, A chemical dataset for evaluation of alternative approaches to skinsensitization testing, Contact Dermatitis, vol.50, pp.274-288, 2004.

T. Shiohara, Fixed drug eruption: pathogenesis and diagnostic tests, Current Opinion in Allergy and Clinical Immunology, vol.9, pp.316-321, 2009.
DOI : 10.1097/aci.0b013e32832cda4c

E. Guttman-yassky and J. G. Krueger, Atopic dermatitis and psoriasis: two different immune diseases or one spectrum?, Curr. Opin. Immunol, vol.48, pp.68-73, 2017.
DOI : 10.1016/j.coi.2017.08.008

R. A. Clark, Gone but not forgotten: lesional memory in psoriatic skin, Journal of Investigative Dermatology, vol.131, pp.283-285, 2011.

D. Masopust, Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin, The Journal of Immunology, vol.172, pp.4875-4882, 2004.

J. E. Smith-garvin, G. A. Koretzky, and M. S. Jordan, T cell activation, Annu. Rev. Immunol, vol.27, pp.591-619, 2009.

J. Rossjohn, T cell antigen receptor recognition of antigen-presenting molecules, Annu. Rev. Immunol, vol.33, pp.169-200, 2015.

J. M. Schenkel and D. Masopust, Tissue-resident memory T cells, Immunity, vol.41, pp.886-897, 2014.

S. M. Kaech and W. Cui, Transcriptional control of effector and memory CD8+ T cell differentiation, Nat. Rev. Immunol, vol.12, pp.749-761, 2012.

J. T. Harty and V. P. Badovinac, Shaping and reshaping CD8+ T-cell memory, Nat. Rev. Immunol, vol.8, pp.107-119, 2008.

F. R. Carbone, L. K. Mackay, W. R. Heath, and T. Gebhardt, Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues, Curr. Opin. Immunol, vol.25, pp.329-333, 2013.
DOI : 10.1016/j.coi.2013.05.007

R. A. Clark, Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients, Sci Transl Med, vol.4, pp.117-124, 2012.

T. Gebhardt, Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus, Nature Publishing Group, vol.10, pp.524-530, 2009.

E. M. Steinert, Quantifying Memory CD8 T Cells Reveals Regionalization of Immunosurveillance, Cell, vol.161, pp.737-749, 2015.

X. Jiang, Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity, Nature, vol.483, pp.227-231, 2012.

R. A. Clark, Resident memory T cells in human health and disease, Sci Transl Med, vol.7, pp.269-270, 2015.
DOI : 10.1126/scitranslmed.3010641

URL : http://europepmc.org/articles/pmc4425129?pdf=render

C. O. Park and T. S. Kupper, The emerging role of resident memory T cells in protective immunity and inflammatory disease, Nature Medicine, vol.21, pp.688-697, 2015.

F. O. Nestle, Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production, J. Exp. Med, vol.202, pp.135-143, 2005.

O. Gaide, Common clonal origin of central and resident memory T cells following skin immunization, Nature Medicine, vol.21, pp.1-9, 2015.

J. D. Schmidt, Rapid allergen-induced interleukin-17 and interferon-? secretion by skinresident memory CD8 +T cells, Contact Dermatitis, vol.1, issue.10, 2016.

S. Cheuk, CD49a Expression Defines Tissue-Resident CD8(+) T Cells Poised for Cytotoxic Function in Human Skin, Immunity, vol.46, pp.1-14, 2017.

J. F. Silvestre-salvador, D. Romero-pérez, and B. Encabo-durán, Atopic Dermatitis in Adults: A Diagnostic Challenge, J Investig Allergol Clin Immunol, vol.27, pp.78-88, 2017.

M. Vocanson, A. Hennino, A. Rozieres, G. Poyet, and J. F. Nicolas, Effector and regulatory mechanisms in allergic contact dermatitis, Allergy, vol.64, pp.1699-1714, 2009.

R. L. Rietschel, Clues to an accurate diagnosis of contact dermatitis, Dermatologic Therapy, vol.17, pp.224-230, 2004.

D. L. Holness, Occupational Skin Allergies: Testing and Treatment (The Case of Occupational Allergic Contact Dermatitis), Curr Allergy Asthma Rep, vol.14, pp.1-5, 2014.

A. E. Van-der-hulst, H. Klip, and P. L. Brand, Risk of developing asthma in young children with atopic eczema: a systematic review, Journal of Allergy and Clinical Immunology, vol.120, pp.565-569, 2007.

E. S. Christiansen, The prevalence of atopic diseases and the patterns of sensitization in adolescence, Pediatr Allergy Immunol, vol.27, pp.847-853, 2016.

N. B. Silverberg, Typical and atypical clinical appearance of atopic dermatitis, Clinics in Dermatology, vol.35, pp.354-359, 2017.

J. M. Spergel, Atopic dermatitis and the atopic march, Journal of Allergy and Clinical Immunology, vol.112, pp.118-127, 2003.

Z. Samochocki and J. Dejewska, A comparison of criteria for diagnosis of atopic dermatitis in children, World J Pediatr, vol.8, pp.355-358, 2012.

P. J. Coenraads and M. Gonçalo, Skin diseases with high public health impact. Contact dermatitis, Eur J Dermatol, vol.17, pp.564-565, 2007.

A. Giannetti and G. Girolomoni, Skin diseases with high public health impact. Atopic dermatitis, Eur J Dermatol, vol.17, p.566, 2007.

P. E. Beattie and M. S. Lewis-jones, A comparative study of impairment of quality of life in children with skin disease and children with other chronic childhood diseases, Br. J. Dermatol, vol.155, pp.145-151, 2006.

L. B. Nørreslet, N. E. Ebbehøj, J. P. Bonde, S. F. Thomsen, and T. Agner, The impact of atopic dermatitis on work life-a systematic review, J Eur Acad Dermatol Venereol, 2017.

M. Caminati, Allergy and Sexual Behaviours: an Update, Clin Rev Allergy Immunol, vol.65, pp.290-299, 2017.

C. L. Carroll, R. Balkrishnan, S. R. Feldman, A. B. Fleischer, and J. Manuel, The Burden of Atopic Dermatitis: Impact on the Patient, Family, and Society, vol.22, pp.192-199, 2005.

A. J. Mancini, K. Kaulback, and S. L. Chamlin, The socioeconomic impact of atopic dermatitis in the United States: a systematic review, Pediatr Dermatol, vol.25, pp.1-6, 2008.

J. Whiteley, B. Emir, R. Seitzman, and G. Makinson, The burden of atopic dermatitis in US adults: results from the 2013 National Health and Wellness Survey, Current Medical Research and Opinion, vol.32, pp.1645-1651, 2016.

T. L. Diepgen, Prevalence of contact allergy in the general population in different European regions, British Journal of Dermatology, vol.174, pp.319-329, 2016.

J. P. Thyssen, A. Linneberg, T. Menné, N. H. Nielsen, and J. D. Johansen, Contact allergy to allergens of the TRUEtest (panels 1 and 2) has decreased modestly in the general population, British Journal of Dermatology, vol.161, pp.1124-1129, 2009.

S. Admani and S. E. Jacob, Allergic contact dermatitis in children: review of the past decade, Curr Allergy Asthma Rep, vol.14, pp.1-13, 2014.

M. G. Ahlström, J. P. Thyssen, T. Menné, and J. D. Johansen, Prevalence of nickel allergy in Europe following the EU Nickel Directive-a review, Contact Dermatitis, vol.77, pp.193-200, 2017.

I. A. Deckers, Investigating International Time Trends in the Incidence and Prevalence of Atopic Eczema 1990-2010: A Systematic Review of Epidemiological Studies, PLoS ONE, vol.7, p.39803, 2012.

S. Nutten, Atopic dermatitis: global epidemiology and risk factors, Ann. Nutr. Metab, vol.66, issue.1, pp.8-16, 2015.

S. F. Thomsen, Epidemiology and natural history of atopic diseases, European Clinical Respiratory Journal, vol.2, 2015.

C. Flohr, D. Pascoe, and H. C. Williams, Atopic dermatitis and the 'hygiene hypothesis': too clean to be true?, Br. J. Dermatol, vol.152, pp.202-216, 2005.

H. Brüssow, Turning the inside out: the microbiology of atopic dermatitis, Environmental Microbiology, vol.18, pp.2089-2102, 2016.

J. D. Bos and M. M. Meinardi, The 500 Dalton rule for the skin penetration of chemical compounds and drugs, Exp. Dermatol, vol.9, pp.165-169, 2000.

D. V. Belsito, The diagnostic evaluation, treatment, and prevention of allergic contact dermatitis in the new millennium, Journal of Allergy and Clinical Immunology, vol.105, pp.409-420, 2000.

S. Guedes, Contact dermatitis: in pursuit of sensitizer's molecular targets through proteomics, Arch. Toxicol, vol.91, pp.811-825, 2017.

S. Jahn, H. Faber, R. Zazzeroni, and U. Karst, Electrochemistry/liquid chromatography/mass spectrometry to demonstrate irreversible binding of the skin allergen p-phenylenediamine to proteins, Rapid Commun. Mass Spectrom, vol.26, pp.1415-1425, 2012.

A. T. Karlberg, M. A. Bergström, A. Börje, K. Luthman, and J. L. Nilsson, Allergic Contact Dermatitis-Formation, Structural Requirements, and Reactivity of Skin Sensitizers, Chem. Res. Toxicol, vol.21, pp.53-69, 2007.

E. Gäfvert, L. P. Shao, A. T. Karlberg, U. Nilsson, and J. L. Nilsson, Contact allergy to resin acid hydroperoxides. Hapten binding via free radicals and epoxides, Chem. Res. Toxicol, vol.7, pp.260-266, 1994.

C. Moulon, J. Vollmer, and H. U. Weltzien, Characterization of processing requirements and metal crossreactivities in T cell clones from patients with allergic contact dermatitis to nickel, Eur. J. Immunol, vol.25, pp.3308-3315, 1995.

L. T. Van-den-broeke, Direct Ni2+ antigen formation on cultured human dendritic cells, Immunology, vol.96, pp.578-585, 1999.

A. T. Karlberg, Activation of nonsensitizing or lowsensitizing fragrance substances into potent sensitizers-prehaptens and prohaptens, Contact Dermatitis, vol.69, pp.323-334, 2013.

D. Urbisch, Assessment of Pre-and Pro-haptens Using Nonanimal Test Methods for Skin Sensitization, Chem. Res. Toxicol, vol.29, pp.901-913, 2016.

G. Patlewicz, Can currently available non-animal methods detect pre and pro-haptens relevant for skin sensitization, vol.82, pp.147-155, 2016.

A. Kerr and J. Ferguson, Photoallergic contact dermatitis. Photodermatology, Photoimmunology & Photomedicine, vol.26, pp.56-65, 2010.

A. R. Smith, G. Knaysi, J. M. Wilson, and J. A. Wisniewski, The Skin as a Route of Allergen Exposure: Part I. Immune Components and Mechanisms, Curr Allergy Asthma Rep, vol.17, pp.1-11, 2017.

S. Shimura, Epicutaneous Allergic Sensitization by Cooperation between Allergen Protease Activity and Mechanical Skin Barrier Damage in Mice, Journal of Investigative Dermatology, vol.136, pp.1408-1417, 2016.

Y. Yamazaki, Y. Nakamura, and G. Núñez, Role of the microbiota in skin immunity and atopic dermatitis, Allergol Int, vol.66, pp.539-544, 2017.

S. M. Yim, Molecular analysis of malassezia microflora on the skin of the patients with atopic dermatitis, Annals of Dermatology, vol.22, pp.41-47, 2010.

B. S. Baker, The role of microorganisms in atopic dermatitis, Clin. exp. Immunol, vol.144, pp.1-9, 2006.

G. A. Mueller, The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins, J. Allergy Clin. Immunol, vol.125, 2010.

Y. Cui, Structural biology of mite allergens, Mol. Biol. Rep, vol.40, pp.681-686, 2013.

M. Vilhelmsson, Crystal structure of the major Malassezia sympodialis allergen Mala s 1 reveals a beta-propeller fold: a novel fold among allergens, J. Mol. Biol, vol.369, pp.1079-1086, 2007.

T. Hiragun, Fungal protein MGL_1304 in sweat is an allergen for atopic dermatitis patients, J. Allergy Clin. Immunol, vol.132, pp.608-615, 2013.

S. G. Hostetler, B. Kaffenberger, T. Hostetler, and M. J. Zirwas, The role of airborne proteins in atopic dermatitis, The Journal of clinical and aesthetic dermatology, vol.3, pp.22-31, 2010.

J. H. Lee, S. W. Son, and S. H. Cho, A Comprehensive Review of the Treatment of Atopic Eczema, Allergy, Asthma & Immunology Research, vol.8, pp.181-190, 2016.

D. Basketter, R. Darlenski, and J. W. Fluhr, Skin irritation and sensitization: mechanisms and new approaches for risk assessment, SPP, vol.21, pp.191-202, 2008.

J. Brasch, New' contact allergens, Current Opinion in Allergy and Clinical Immunology, vol.7, pp.409-412, 2007.

A. C. De-groot, New Contact Allergens, Dermatitis, vol.26, pp.199-215, 2008.

D. A. Basketter, J. P. Mcfadden, and I. Kimber, Assessing the severity of allergic reactions: a regulatory dilemma, Contact Dermatitis, vol.67, pp.3-8, 2012.

P. Saint-mezard, Psychological Stress Exerts an Adjuvant Effect on Skin Dendritic Cell Functions In Vivo, The Journal of Immunology, vol.171, pp.4073-4080, 2003.

L. Jordan, Efficacy of a Hand Regimen in Skin Barrier Protection in Individuals With Occupational Irritant Contact Dermatitis, J Drugs Dermatol, vol.15, pp.81-85, 2016.

K. S. Ibler, G. B. Jemec, L. H. Garvey, and T. Agner, Prevalence of delayed-type and immediate-type hypersensitivity in healthcare workers with hand eczema, Contact Dermatitis, vol.75, pp.223-229, 2016.

E. Guttman-yassky, K. E. Nograles, and J. G. Krueger, Contrasting pathogenesis of atopic dermatitisand psoriasis-Part I: Clinical and pathologic concepts, Journal of Allergy and Clinical Immunology, vol.127, pp.1110-1118, 2011.

M. S. Sullivan and N. B. Silverberg, Current and emerging concepts in atopic dermatitis pathogenesis, Clinics in Dermatology, vol.35, pp.349-353, 2017.

P. M. Elias and M. Schmuth, Abnormal skin barrier in the etiopathogenesis of atopic dermatitis, Curr Allergy Asthma Rep, vol.9, pp.265-272, 2009.

G. Knaysi, A. R. Smith, J. M. Wilson, and J. A. Wisniewski, The Skin as a Route of Allergen Exposure: Part II. Allergens and Role of the Microbiome and Environmental Exposures, Curr Allergy Asthma Rep, vol.17, pp.1-7, 2017.

C. N. Palmer, Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis, Nat. Genet, vol.38, pp.441-446, 2006.

G. M. O'regan, A. Sandilands, W. H. Mclean, and A. D. Irvine, Filaggrin in atopic dermatitis, J. Allergy Clin. Immunol, vol.122, pp.689-693, 2008.

P. M. Elias and M. Steinhoff, Outside-to-inside" (and now back to 'outside') pathogenic mechanisms in atopic dermatitis, Journal of Investigative Dermatology, vol.128, pp.1067-1070, 2008.

P. M. Elias, Y. Hatano, and M. L. Williams, Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms, J. Allergy Clin. Immunol, vol.121, pp.1337-1343, 2008.

E. Proksch, J. M. Brandner, and J. Jensen, The skin: an indispensable barrier, Exp. Dermatol, vol.17, pp.1063-1072, 2008.

G. M. O'regan, A. Sandilands, W. H. Mclean, and A. D. Irvine, Filaggrin in atopic dermatitis, J. Allergy Clin. Immunol, vol.124, pp.2-6, 2009.

D. Malajian and E. Guttman-yassky, New pathogenic and therapeutic paradigms in atopic dermatitis, Cytokine, vol.73, pp.311-318, 2015.

S. Stemmler, Q. Parwez, E. Petrasch-parwez, J. T. Epplen, and S. Hoffjan, Association of variation in the LAMA3 gene, encoding the alpha-chain of laminin 5, with atopic dermatitis in a German case-control cohort, BMC Dermatol, vol.14, pp.1-6, 2014.

M. Trzeciak, Association of a Single Nucleotide Polymorphism in a Late Cornified Envelope-like Proline-rich 1 Gene (LELP1) with Atopic Dermatitis, Acta Derm. Venereol, vol.96, pp.459-463, 2016.

D. E. Moormeier and K. W. Bayles, Staphylococcus aureus biofilm: a complex developmental organism, Mol. Microbiol, vol.104, pp.365-376, 2017.

E. D. Son, Staphylococcus aureus inhibits terminal differentiation of normal human keratinocytes by stimulating interleukin-6 secretion, J. Dermatol. Sci, vol.74, pp.64-71, 2014.

C. W. Rundle, D. B. Bergman, A. G. Goldenberg, and S. E. Jacob, Contact dermatitis considerations in atopic dermatitis, Clinics in Dermatology, vol.35, pp.367-374, 2017.

A. Sonesson, Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis, Sci. Rep, vol.7, pp.1-12, 2017.

S. X. Xu and J. K. Mccormick, Staphylococcal superantigens in colonization and disease, Front Cell Infect Microbiol, vol.2, pp.1-11, 2012.

A. L. Byrd, Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis, Sci Transl Med, vol.9, p.4651, 2017.

A. D. Irvine, W. H. Mclean, and D. Y. Leung, Filaggrin mutations associated with skin and allergic diseases, N. Engl. J. Med, vol.365, pp.1315-1327, 2011.

J. Henderson, The burden of disease associated with filaggrin mutations: a populationbased, longitudinal birth cohort study, J. Allergy Clin. Immunol, vol.121, pp.872-877, 2008.

D. Y. Leung and E. Guttman-yassky, Deciphering the complexities of atopic dermatitis: Shifting paradigms in treatment approaches, Journal of Allergy and Clinical Immunology, vol.134, pp.769-779, 2014.

J. K. Gittler, Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis, J. Allergy Clin. Immunol, vol.130, pp.1344-1354, 2012.

M. Suárez-fariñas, Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities, J. Allergy Clin. Immunol, vol.127, pp.954-964, 2011.

D. F. Rodrigues and E. M. Goulart, Patch-test results in children and adolescents: systematic review of a 15-year period, An Bras Dermatol, vol.91, pp.64-72, 2016.

C. R. Hamann, Association between atopic dermatitis and contact sensitization: A systematic review and meta-analysis, J. Am. Acad. Dermatol, vol.77, pp.70-78, 2017.

D. Kim, J. Park, G. Na, S. Lee, and W. Lee, Correlation of clinical features and skin barrier function in adolescent and adult patients with atopic dermatitis, Int. J. Dermatol, vol.45, pp.698-701, 2006.

F. Rippke, V. Schreiner, T. Doering, and H. I. Maibach, Stratum corneum pH in atopic dermatitis: impact on skin barrier function and colonization with Staphylococcus Aureus, Am J Clin Dermatol, vol.5, pp.217-223, 2004.

D. L. Rosenstreich, Evaluation of delayed hypersensitivity: from PPD to poison ivy, Allergy Proc, vol.14, pp.395-400, 1993.

M. Vocanson, CD8+ T cells are effector cells of contact dermatitis to common skin allergens in mice, J. Invest. Dermatol, vol.126, pp.815-820, 2006.

P. Saint-mezard, Afferent and efferent phases of allergic contact dermatitis (ACD) can be induced after a single skin contact with haptens: evidence using a mouse model of primary ACD, J. Invest. Dermatol, vol.120, pp.641-647, 2003.

C. M. Mowad, Allergic contact dermatitis: Patient diagnosis and evaluation, J. Am. Acad. Dermatol, vol.74, pp.1029-1040, 2016.

D. H. Kaplan, B. Z. Igyártó, and A. A. Gaspari, Early immune events in the induction of allergic contact dermatitis, Nat. Rev. Immunol, vol.12, pp.114-124, 2012.

J. Deckers, Epicutaneous sensitization to house dust mite allergen requires IRF4dependent dermal dendritic cells, J. Allergy Clin. Immunol, 2017.

K. L. Rock, E. Reits, and J. Neefjes, Present Yourself! By MHC Class I and MHC Class II Molecules, Trends Immunol, vol.37, pp.724-737, 2016.

M. Wieczorek, Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation, Front Immunol, vol.8, pp.1-16, 2017.

Y. Keum, Regulation of Nrf2-Mediated Phase II Detoxification and Anti-oxidant Genes, Biomol Ther (Seoul), vol.20, pp.144-151, 2012.

C. Migdal, Reactivity of chemical sensitizers toward amino acids in cellulo plays a role in the activation of the Nrf2-ARE pathway in human monocyte dendritic cells and the THP-1 cell line, Toxicol. Sci, vol.133, pp.259-274, 2013.

D. Y. Leung, M. Boguniewicz, M. D. Howell, I. Nomura, and Q. A. Hamid, New insights into atopic dermatitis, J. Clin. Invest, vol.113, pp.651-657, 2004.

S. Pastore, F. Mascia, and G. Girolomoni, The contribution of keratinocytes to the pathogenesis of atopic dermatitis, Eur J Dermatol, vol.16, pp.125-131, 2006.

J. M. Leyva-castillo, P. Hener, H. Jiang, and M. Li, TSLP Produced by Keratinocytes Promotes Allergen Sensitization through Skin and Thereby Triggers Atopic March in Mice, Journal of Investigative Dermatology, vol.133, pp.154-163, 2013.

M. Peiser, Role of Th17 cells in skin inflammation of allergic contact dermatits, Clinical and developmental immunology, vol.2013, pp.1-10, 2013.

P. Y. Ong, New insights in the pathogenesis of atopic dermatitis, Pediatr. Res, vol.75, pp.171-175, 2014.

E. Guttman-yassky, K. E. Nograles, and J. G. Krueger, Contrasting pathogenesis of atopic dermatitis and psoriasis-Part II: Immune cell subsets and therapeutic concepts, Journal of Allergy and Clinical Immunology, vol.127, pp.1420-1432, 2011.
DOI : 10.1016/j.jaci.2011.01.054

N. D. Pennock, T cell responses: naïve to memory and everything in between, Advances in Physiology Education, vol.37, pp.273-283, 2013.
DOI : 10.1152/advan.00066.2013

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089090/pdf

A. Hennino, CD8+ T cells are recruited early to allergen exposure sites in atopy patch test reactions in human atopic dermatitis, Journal of Allergy and Clinical Immunology, vol.127, pp.1064-1067, 2011.

A. Hennino, Skin-Infiltrating CD8+ T Cells Initiate Atopic Dermatitis Lesions, The Journal of Immunology, vol.178, pp.5571-5577, 2007.

L. M. Francisco, P. T. Sage, and A. H. Sharpe, The PD1 pathway in tolerance and autoimmunity, Immunol. Rev, vol.236, pp.219-242, 2010.

I. K. Gratz, M. D. Rosenblum, and A. K. Abbas, The life of regulatory T cells, Ann. N. Y. Acad. Sci, vol.1283, pp.8-12, 2013.

J. M. Lykken, K. M. Candando, and T. F. Tedder, Regulatory B10 cell development and function, Int. Immunol, vol.27, pp.471-477, 2015.

A. Goubier, Invariant NKT Cells Suppress CD8+ T-Cell-Mediated Allergic Contact Dermatitis Independently of Regulatory CD4+ T Cells, Journal of Investigative Dermatology, vol.133, pp.980-987, 2012.

J. Fjelbye, J. C. Antvorskov, K. Buschard, S. Issazadeh-navikas, and K. Engkilde, CD1d knockout mice exhibit aggravated contact hypersensitivity responses due to reduced interleukin-10 production predominantly by regulatory B cells, Exp. Dermatol, vol.24, pp.853-856, 2015.

V. Gimenez-rivera, Mast Cells Limit the Exacerbation of Chronic Allergic Contact Dermatitis in Response to Repeated Allergen Exposure, The Journal of Immunology, vol.197, pp.4240-4246, 2016.

A. Otsuka, Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity, PLoS ONE, vol.6, p.25538, 2011.
DOI : 10.1371/journal.pone.0025538

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0025538&type=printable

A. Dudeck, Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens, Immunity, vol.34, pp.973-984, 2011.

M. Suárez-fariñas, Residual genomic signature of atopic dermatitis despite clinical resolution with narrow-band UVB, Journal of Allergy and Clinical Immunology, vol.131, pp.577-579, 2013.

T. Shiohara and Y. Mizukawa, Fixed drug eruption: a disease mediated by self-inflicted responses of intraepidermal T cells, Eur J Dermatol, vol.17, pp.201-208, 2007.

S. F. Martin, T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays, Cell. Mol. Life Sci, vol.67, pp.4171-4184, 2010.

L. Bin and D. Y. Leung, Genetic and epigenetic studies of atopic dermatitis, Allergy Asthma Clin Immunol, vol.12, pp.12-52, 2016.

J. M. Hanifin, Diagnostic features of atopic dermatitis, Acta Derm Venereol (Stockh), vol.92, pp.44-47, 1980.

L. F. Eichenfield, Guidelines of care for the management of atopic dermatitis: Section 1. Diagnosis and assessment of atopic dermatitis, J. Am. Acad. Dermatol, vol.70, pp.338-351, 2014.

L. F. Eichenfield, J. M. Hanifin, T. A. Luger, S. R. Stevens, and H. B. Pride, Consensus conference on pediatric atopic dermatitis, vol.49, pp.1088-1095, 2003.

A. Taieb, Severity scoring of atopic dermatitis: The SCORAD index: Consensus report of the european task force on atopic dermatitis, Dermatology, vol.186, pp.23-31, 1993.

M. E. Schram, EASI, (objective) SCORAD and POEM for atopic eczema: responsiveness and minimal clinically important difference, Allergy, vol.67, pp.99-106, 2012.

J. M. Hanifin, The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis, EASI Evaluator Group. Exp. Dermatol, vol.10, pp.11-18, 2001.

J. F. Stalder, Patient-Oriented SCORAD (PO-SCORAD): a new self-assessment scale in atopic dermatitis validated in Europe, Allergy, vol.66, pp.1114-1121, 2011.
DOI : 10.1111/j.1398-9995.2011.02577.x

J. Udkoff, A. W. Waldman, J. A. Ahluwalia, J. B. Borok, and L. F. Eichenfield, Current and emerging topical therapies for atopic dermatitis, Clinics in Dermatology, vol.35, pp.375-382, 2017.
DOI : 10.1016/j.clindermatol.2017.03.010

P. J. Barnes, How corticosteroids control inflammation: Quintiles Prize Lecture, Br. J. Pharmacol, vol.148, pp.245-254, 2005.
DOI : 10.1038/sj.bjp.0706736

URL : http://europepmc.org/articles/pmc1751559?pdf=render

C. Hoare, A. Li-wan-po, and H. Williams, Systematic review of treatments for atopic eczema, Health Technol Assess, vol.4, pp.1-191, 2000.

J. P. Hachem, Efficacy of topical corticosteroids in nickel-induced contact allergy, Clin. Exp. Dermatol, vol.27, pp.47-50, 2002.

L. F. Eichenfield, Guidelines of care for the management of atopic dermatitis: Section 2. Management and treatment of atopic dermatitis with topical therapies, J. Am. Acad. Dermatol, vol.71, pp.116-132, 2014.

D. E. Cohen and N. Heidary, Treatment of irritant and allergic contact dermatitis, Dermatologic Therapy, vol.17, pp.334-340, 2004.

J. Callen, A systematic review of the safety of topical therapies for atopic dermatitis, Br. J. Dermatol, vol.156, pp.203-221, 2007.

E. J. Nilsson, C. G. Henning, and J. Magnusson, Topical corticosteroids and Staphylococcus aureus in atopic dermatitis, J. Am. Acad. Dermatol, vol.27, pp.29-34, 1992.
DOI : 10.1016/0190-9622(92)70151-5

E. Bornhövd, W. H. Burgdorf, and A. Wollenberg, Macrolactam immunomodulators for topical treatment of inflammatory skin diseases, J. Am. Acad. Dermatol, vol.45, pp.736-743, 2001.

A. S. Paller, K. Kabashima, and T. Bieber, Therapeutic pipeline for atopic dermatitis: End of the drought?, J. Allergy Clin. Immunol, vol.140, pp.633-643, 2017.

Y. V. Saripalli, J. E. Gadzia, and D. V. Belsito, Tacrolimus ointment 0.1% in the treatment of nickel-induced allergic contact dermatitis, J. Am. Acad. Dermatol, vol.49, pp.477-482, 2003.

A. K. Gupta and M. Chow, Pimecrolimus: A review, J Eur Acad Dermatol Venereol, vol.17, pp.493-503, 2003.

W. L. Morison, J. A. Parrish, and T. B. Fitzpatrick, Oral psoralen photochemotherapy of atopic eczema, British Journal of Dermatology, vol.98, pp.25-30, 1978.

N. J. Mørk and J. Austad, Short-wave ultraviolet light (UVB) treatment of allergic contact dermatitis of the hands, Acta Derm. Venereol, vol.63, pp.87-89, 1983.

R. Sidbury, Guidelines of care for the management of atopic dermatitis: Section 3. Management and treatment with phototherapy and systemic agents, J. Am. Acad. Dermatol, vol.71, pp.327-349, 2014.

A. Menter, Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 5. Guidelines of care for the treatment of psoriasis with phototherapy and photochemotherapy, J. Am. Acad. Dermatol, vol.62, pp.114-135, 2010.

Z. Mu, Y. Zhao, X. Liu, C. Chang, and J. Zhang, Molecular biology of atopic dermatitis, Clin Rev Allergy Immunol, vol.47, pp.193-218, 2014.

A. V. Rawlings, D. A. Canestrari, and B. Dobkowski, Moisturizer technology versus clinical performance, Dermatologic Therapy, vol.17, pp.49-56, 2004.

R. Grimalt, V. Mengeaud, and F. Cambazard, The Steroid-Sparing Effect of an Emollient Therapy in Infants with Atopic Dermatitis: A Randomized Controlled Study, Dermatology, vol.214, pp.61-67, 2007.

Z. D. Draelos, An evaluation of prescription device moisturizers, J Cosmet Dermatol, vol.8, pp.40-43, 2009.

E. L. Simpson, Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention, J. Allergy Clin. Immunol, vol.134, pp.818-823, 2014.

C. Schnopp, Topical steroids under wet-wrap dressings in atopic dermatitis-a vehiclecontrolled trial, Dermatology, vol.204, pp.56-59, 2002.

A. Wolkerstorfer, R. L. Visser, F. B. De-waard, P. G. Mulder, and A. P. Oranje, Efficacy and safety of wetwrap dressings in children with severe atopic dermatitis: influence of corticosteroid dilution, British Journal of Dermatology, vol.143, pp.999-1004, 2000.

A. B. Gutman, A. M. Kligman, J. Sciacca, and W. D. James, Soak and Smear: A Standard Technique Revisited, Arch Dermatol, vol.141, pp.1556-1559, 2005.

G. Solodkin, Benefits of mild cleansing: synthetic surfactant based (syndet) bars for patients with atopic dermatitis, Cutis, vol.77, pp.317-324, 2006.

R. Spiewak, Immunotherapy of allergic contact dermatitis, Immunotherapy, vol.3, pp.979-996, 2011.

I. M. Van-hoogstraten, Oral Induction of Tolerance to Nickel Sensitization in Mice, J. Invest. Dermatol, vol.101, pp.26-31, 1993.

X. Wu, Dose dependence of oral tolerance to nickel, Int. Immunol, vol.19, pp.965-975, 2007.

K. Prystupa and E. Rudzki, Oral tolerance of nickel in patients with dyshidrosis, Contact Dermatitis, vol.42, pp.276-277, 2000.

M. Bagot, Oral desensitization in nickel allergy induces a decrease in nickel-specific Tcells, Eur J Dermatol, vol.5, pp.614-617, 1995.

W. Seidel-guyenot, Low zone tolerance induced by systemic application of allergens inhibits Tc1-mediated skin inflammation, Journal of Allergy and Clinical Immunology, vol.117, pp.1170-1177, 2006.

K. Steinbrink, C. Sorg, and E. Macher, Low zone tolerance to contact allergens in mice: a functional role for CD8+ T helper type 2 cells, J. Exp. Med, vol.183, pp.759-768, 1996.

U. Luckey, Crosstalk of regulatory T cells and tolerogenic dendritic cells prevents contact allergy in subjects with low zone tolerance, J. Allergy Clin. Immunol, vol.130, issue.e11, pp.781-797, 2012.

N. Shershakova, Allergen-Specific Immunotherapy with Monomeric Allergoid in a Mouse Model of Atopic Dermatitis, PLoS ONE, vol.10, p.135070, 2015.

D. Nahm, Personalized Immunomodulatory Therapy for Atopic Dermatitis: An Allergist's View, Annals of Dermatology, vol.27, pp.355-363, 2015.

M. Vocanson, Allergic contact dermatitis: how to re-induce tolerance?, Med Sci, vol.22, pp.158-163, 2006.

H. Saeki, Clinical Practice Guidelines for the Management of Atopic Dermatitis, The Journal of Dermatology, vol.43, pp.1117-1145, 2016.

L. T. Zane, Crisaborole and its potential role in treating atopic dermatitis: overview of early clinical studies, Immunotherapy, vol.8, pp.853-866, 2016.

M. Kucharekova, The effect of the PDE-4 inhibitor (cipamfylline) in two human models of irritant contact dermatitis, Arch. Dermatol. Res, vol.295, pp.29-32, 2003.

C. Dong, Treatment of Skin Inflammation with Benzoxaborole Phosphodiesterase Inhibitors: Selectivity, Cellular Activity, and Effect on Cytokines Associated with Skin Inflammation and Skin Architecture Changes, J. Pharmacol. Exp. Ther, vol.358, pp.413-422, 2016.

L. F. Eichenfield, S. F. Friedlander, E. L. Simpson, and A. D. Irvine, Assessing the New and Emerging Treatments for Atopic Dermatitis, Semin Cutan Med Surg, vol.35, pp.92-96, 2016.

K. Welsch, J. Holstein, A. Laurence, and K. Ghoreschi, Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors, Eur. J. Immunol, vol.47, pp.1096-1107, 2017.
DOI : 10.1002/eji.201646680

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/eji.201646680

W. Amano, The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling, J. Allergy Clin. Immunol, vol.136, pp.667-677, 2015.

K. Kabashima, New concept of the pathogenesis of atopic dermatitis: Interplay among the barrier, allergy, and pruritus as a trinity, J. Dermatol. Sci, vol.70, pp.3-11, 2013.

T. Haarmann-stemmann, C. Esser, and J. Krutmann, The Janus-Faced Role of Aryl Hydrocarbon Receptor Signaling in the Skin: Consequences for Prevention and Treatment of Skin Disorders, Journal of Investigative Dermatology, vol.135, pp.2572-2576, 2015.

E. H. Van-den-bogaard, Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis, J. Clin. Invest, vol.123, pp.917-927, 2013.

R. Bissonnette, Efficacy and safety of topical WBI1001 in patients with mild to severe atopic dermatitis: results from a 12week, multicentre, randomized, placebocontrolled doubleblind trial, British Journal of Dermatology, vol.166, pp.853-860, 2012.

Y. R. Renert-yuval and E. Guttman-yassky, Systemic therapies in atopic dermatitis: The pipeline, Clinics in Dermatology, vol.35, pp.387-397, 2017.

S. Nakajima, Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling, Journal of Allergy and Clinical Immunology, vol.129, 2012.

K. Verstraete, Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma, Nature Communications, vol.8, pp.1-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605011

A. Zink, Targeting IgE in Severe Atopic Dermatitis with a Combination of Immunoadsorption and Omalizumab, Acta Derm. Venereol, vol.96, pp.72-76, 2016.

A. D. Christensen and C. Haase, Immunological mechanisms of contact hypersensitivity in mice, APMIS, vol.120, pp.1-27, 2012.

T. Honda, G. Egawa, S. Grabbe, and K. Kabashima, Update of Immune Events in the Murine Contact Hypersensitivity Model: Toward the Understanding of Allergic Contact Dermatitis, Journal of Investigative Dermatology, vol.133, pp.303-315, 2013.

F. Mussotter, Proteomics analysis of dendritic cell activation by contact allergens reveals possible biomarkers regulated by Nrf2, Toxicol. Appl. Pharmacol, vol.313, pp.170-179, 2016.

J. W. Van-der-veen, E. R. Gremmer, J. P. Vermeulen, H. Van-loveren, and J. Ezendam, Induction of skin sensitization is augmented in Nrf2-deficient mice, Arch. Toxicol, vol.87, pp.763-766, 2013.

B. Wang, Cytokine knockouts in contact hypersensitivity research, Cytokine Growth Factor Rev, vol.14, pp.381-389, 2003.

C. Traidl, F. Jugert, H. Merk, T. Krieg, and N. Hunzelmann, Inhibition of Allergic Contact Dermatitis to DNCB But Not to Oxazolone in Interleukin-4-Deficient Mice, Journal of Investigative Dermatology, vol.112, pp.476-482, 1999.

A. Tanaka, Y. Amagai, K. Oida, and H. Matsuda, Recent findings in mouse models for human atopic dermatitis, Exp. Anim, vol.61, pp.77-84, 2012.

H. Jin, R. He, M. Oyoshi, and R. S. Geha, Animal models of atopic dermatitis, Journal of Investigative Dermatology, vol.129, pp.31-40, 2009.

Y. Kawakami and T. Kawakami, A mouse model of atopic dermatitis, Methods Mol. Biol, vol.1220, pp.497-502, 2015.

M. Li, Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin, PNAS, vol.102, pp.14795-14800, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187660

J. Yoo, Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin, J. Exp. Med, vol.202, pp.541-549, 2005.

L. S. Chan, N. Robinson, and L. Xu, Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis, J. Invest. Dermatol, vol.117, pp.977-983, 2001.

S. R. Dillon, Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice, Nat. Immunol, vol.5, pp.752-760, 2004.

K. Yamanaka, Skin-specific caspase-1-transgenic mice show cutaneous apoptosis and pre-endotoxin shock condition with a high serum level of IL-18, The Journal of Immunology, vol.165, pp.997-1003, 2000.

M. Li, Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis, PNAS, vol.103, pp.11736-11741, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188019

J. Choi, The atopic dermatitis-like symptoms induced by MC903 were alleviated in JNK1 knockout mice, Toxicol. Sci, vol.136, pp.443-449, 2013.

C. S. Moniaga and K. Kabashima, Filaggrin in atopic dermatitis: flaky tail mice as a novel model for developing drug targets in atopic dermatitis, Inflamm Allergy Drug Targets, vol.10, pp.477-485, 2011.

M. K. Oyoshi, G. F. Murphy, and R. S. Geha, Filaggrin-deficient mice exhibit TH17dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen, J. Allergy Clin. Immunol, vol.124, pp.485-493, 2009.

T. Tsukuba, Association of cathepsin E deficiency with development of atopic dermatitis, J. Biochem, vol.134, pp.893-902, 2003.

H. Matsuda, Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice, Int. Immunol, vol.9, pp.461-466, 1997.

D. Tang, R. Kang, C. B. Coyne, H. J. Zeh, and M. T. Lotze, PAMPs and DAMPs: signal 0s that spur autophagy and immunity, Immunol. Rev, vol.249, pp.158-175, 2012.

R. J. Brownlie and R. Zamoyska, T cell receptor signalling networks: branched, diversified and bounded, Nat. Rev. Immunol, vol.13, pp.257-269, 2013.

P. Bousso, T-cell activation by dendritic cells in the lymph node: lessons from the movies, Nat. Rev. Immunol, vol.8, pp.675-684, 2008.

B. A. Heesters, C. E. Van-der-poel, A. Das, and M. C. Carroll, Antigen Presentation to B Cells, Trends Immunol, vol.37, pp.844-854, 2016.

I. A. Parish, Tissue destruction caused by cytotoxic T lymphocytes induces deletional tolerance, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.3901-3906, 2009.

M. T. Esser, Memory T cells and vaccines, Vaccine, vol.21, pp.419-430, 2003.

J. Zhu and W. E. Paul, CD4 T cells: fates, functions, and faults, Blood, vol.112, pp.1557-1569, 2008.

L. Cosmi, L. Maggi, V. Santarlasci, F. Liotta, and F. Annunziato, T helper cells plasticity in inflammation, Cytometry A, vol.85, pp.36-42, 2014.

T. A. Wynn, Type 2 cytokines: mechanisms and therapeutic strategies, Nat. Rev. Immunol, vol.15, pp.271-282, 2015.

J. E. Allen, J. E. Allen, T. A. Wynn, and T. A. Wynn, Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens, PLoS Pathog, vol.7, p.1002003, 2011.

B. Stockinger and S. Omenetti, The dichotomous nature of T helper 17 cells, Nat. Rev. Immunol, vol.17, pp.535-544, 2017.

K. Hirota, Fate mapping of IL-17-producing T cells in inflammatory responses, Nature Publishing Group, vol.12, pp.255-263, 2011.

B. Kim, Y. Park, and Y. Chung, Targeting IL-17 in autoimmunity and inflammation, Arch. Pharm. Res, vol.39, pp.1537-1547, 2016.

M. H. Kaplan, M. M. Hufford, and M. R. Olson, The development and in vivo function of T helper 9 cells, Nat. Rev. Immunol, vol.15, pp.295-307, 2015.

N. Ohkura, Y. Kitagawa, and S. Sakaguchi, Development and maintenance of regulatory T cells, Immunity, vol.38, pp.414-423, 2013.

E. Cretney, A. Kallies, and S. L. Nutt, Differentiation and function of Foxp3(+) effector regulatory T cells, Trends Immunol, vol.34, pp.74-80, 2013.

S. Z. Josefowicz, L. Lu, and A. Y. Rudensky, Regulatory T Cells: Mechanisms of Differentiation and Function, Annu. Rev. Immunol, vol.30, pp.531-564, 2012.

S. Halle, O. Halle, and R. Förster, Mechanisms and Dynamics of T Cell-Mediated Cytotoxicity In Vivo, Trends Immunol, vol.38, pp.432-443, 2017.

G. Lauvau and S. Goriely, Memory CD8+ T Cells: Orchestrators and Key Players of Innate Immunity?, PLoS Pathog, vol.12, p.1005722, 2016.

F. Sallusto and A. Lanzavecchia, Memory in disguise, Nature Medicine, vol.17, pp.1182-1183, 2011.

F. Sallusto, D. Lenig, R. Förster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, vol.401, pp.708-712, 1999.

R. L. Reinhardt, A. Khoruts, R. Merica, T. Zell, and M. K. Jenkins, Visualizing the generation of memory CD4 T cells in the whole body, Nature, vol.410, pp.101-105, 2001.

D. Masopust, V. Vezys, A. L. Marzo, and L. Lefrançois, Preferential Localization of Effector Memory Cells in Nonlymphoid Tissue, Science, vol.291, pp.2413-2417, 2001.

S. N. Mueller, T. Gebhardt, F. R. Carbone, and W. R. Heath, Memory T cell subsets, migration patterns, and tissue residence, Annu. Rev. Immunol, vol.31, pp.137-161, 2013.

S. N. Mueller and L. K. Mackay, Tissue-resident memory T cells: local specialists in immune defence, Nat. Rev. Immunol, vol.16, pp.79-89, 2016.

S. Takamura, Specific niches for lung-resident memory CD8 +T cells at the site of tissue regeneration enable CD69-independent maintenance, J. Exp. Med, vol.213, pp.3057-3073, 2016.

R. Watanabe, Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells, Sci Transl Med, vol.7, pp.279-318, 2015.

J. D. Bos, The Skin Immune System (SIS): Distribution and Immunophenotype of Lymphocyte Subpopulations in Normal Human Skin, Journal of Investigative Dermatology, vol.88, pp.569-573, 1987.

D. Masopust, Dynamic T cell migration program provides resident memory within intestinal epithelium, J. Exp. Med, vol.207, pp.553-564, 2010.

T. Sathaliyawala, Distribution and Compartmentalization of Human Circulating and Tissue-Resident Memory T Cell Subsets, Immunity, vol.38, pp.187-197, 2013.

A. Zaid, Persistence of skin-resident memory T cells within an epidermal niche, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.5307-5312, 2014.

J. M. Schenkel, K. A. Fraser, V. Vezys, and D. Masopust, Sensing and alarm function of resident memory CD8+ T cells, Nature Publishing Group, vol.14, pp.509-513, 2013.

H. Shin and A. Iwasaki, A vaccine strategy that protects against genital herpes by establishing local memory T cells, Nature, vol.491, pp.463-467, 2012.

L. M. Wakim, The Molecular Signature of Tissue Resident Memory CD8 T Cells Isolated from the Brain, The Journal of Immunology, vol.189, pp.3462-3471, 2012.

J. B. Graham, A. Da-costa, and J. M. Lund, Regulatory T cells shape the resident memory T cell response to virus infection in the tissues, The Journal of Immunology, vol.192, pp.683-690, 2014.

C. Ma, S. Mishra, E. L. Demel, Y. Liu, and N. Zhang, TGF-? Controls the Formation of Kidney-Resident T Cells via Promoting Effector T Cell Extravasation, The Journal of Immunology, vol.198, pp.749-756, 2017.

D. Fernandez-ruiz, Liver-Resident Memory CD8 + T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection, Immunity, vol.45, pp.889-902, 2016.

M. Hofmann, A. Oschowitzer, S. R. Kurzhals, C. C. Krüger, and H. Pircher, Thymusresident memory CD8+ T cells mediate local immunity, Eur. J. Immunol, vol.43, pp.2295-2304, 2013.
DOI : 10.1002/eji.201343519

S. L. Park, L. K. Mackay, and T. Gebhardt, Distinct recirculation potential of CD69(+)CD103(-) and CD103(+) thymic memory CD8(+) T cells, Immunol Cell Biol, vol.94, pp.975-980, 2016.

J. M. Schenkel, K. A. Fraser, and D. Masopust, Cutting edge: resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs, The Journal of Immunology, vol.192, pp.2961-2964, 2014.

C. L. Marriott, E. E. Dutton, M. Tomura, and D. R. Withers, Retention of Ag-specific memory CD4(+) T cells in the draining lymph node indicates lymphoid tissue resident memory populations, Eur. J. Immunol, vol.47, pp.860-871, 2017.

S. Ariotti, Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.19739-19744, 2012.

L. K. Mackay and A. Kallies, Transcriptional Regulation of Tissue-Resident Lymphocytes, Trends Immunol, vol.38, pp.94-103, 2017.

X. Fan and A. Y. Rudensky, Hallmarks of Tissue-Resident Lymphocytes, Cell, vol.164, pp.1198-1211, 2016.

T. Gebhardt, Different patterns of peripheral migration by memory CD4+ and CD8+ T cells, Nature, vol.477, pp.216-219, 2011.

S. Steinfelder, S. Rausch, D. Michael, A. A. Kühl, and S. Hartmann, Intestinal helminth infection induces highly functional resident memory CD4(+) T cells in mice, Eur. J. Immunol, vol.47, pp.353-363, 2017.

J. R. Teijaro, Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection, The Journal of Immunology, vol.187, pp.5510-5514, 2011.

N. Iijima and A. Iwasaki, T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells, Science, vol.346, pp.93-98, 2014.

J. T. Thom, T. C. Weber, S. M. Walton, N. Torti, and A. Oxenius, The Salivary Gland Acts as a Sink for Tissue-Resident Memory CD8(+) T Cells, Facilitating Protection from Local Cytomegalovirus Infection, CellReports, vol.13, pp.1125-1136, 2015.

R. Sanchez-rodriguez, Memory regulatory T cells reside in human skin, J. Clin. Invest, vol.124, pp.1027-1036, 2014.

S. N. Mueller, A. Zaid, and F. R. Carbone, Tissue-resident T cells: dynamic players in skin immunity, Front Immunol, vol.5, pp.1-6, 2014.

M. Miyara, Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor, Immunity, vol.30, pp.899-911, 2009.

M. D. Rosenblum, Response to self antigen imprints regulatory memory in tissues, Nature, vol.480, pp.538-542, 2011.

J. Rossjohn, D. G. Pellicci, O. Patel, L. Gapin, and D. I. Godfrey, Recognition of CD1drestricted antigens by natural killer T cells, Nat. Rev. Immunol, vol.12, pp.845-857, 2012.

W. L. Havran, Limited diversity of T-cell receptor gamma-chain expression of murine Thy-1+ dendritic epidermal cells revealed by V gamma 3-specific monoclonal antibody, PNAS, vol.86, pp.4185-4189, 1989.

D. M. Asarnow, Limited diversity of ?? antigen receptor genes of thy-1+ dendritic epidermal cells, Cell, vol.55, pp.837-847, 1988.

H. Cheroutre, F. Lambolez, and D. Mucida, The light and dark sides of intestinal intraepithelial lymphocytes, Nat. Rev. Immunol, vol.11, pp.445-456, 2011.

W. L. Havran and J. M. Jameson, Epidermal T cells and wound healing, The Journal of Immunology, vol.184, pp.5423-5428, 2010.

B. S. Kim, E. D. Wojno, and D. Artis, Innate lymphoid cells and allergic inflammation, Curr. Opin. Immunol, vol.25, pp.738-744, 2013.

G. Gasteiger, X. Fan, S. Dikiy, S. Y. Lee, and A. Y. Rudensky, Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs, Science, vol.350, pp.981-985, 2015.

L. Liu, R. C. Fuhlbrigge, K. Karibian, T. Tian, and T. S. Kupper, Dynamic Programing of CD8+ T Cell Trafficking after Live Viral Immunization, Immunity, vol.25, pp.511-520, 2006.

D. J. Campbell and E. C. Butcher, Rapid Acquisition of Tissue-specific Homing Phenotypes by CD4+ T Cells Activated in Cutaneous or Mucosal Lymphoid Tissues, J. Exp. Med, vol.195, pp.135-141, 2002.

M. L. Mccully, Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells, The Journal of Immunology, vol.195, pp.96-104, 2015.

M. L. Mccully, Epidermis instructs skin homing receptor expression in human T cells, Blood, vol.120, pp.4591-4598, 2012.

D. Bouvard, J. Pouwels, N. De-franceschi, and J. Ivaska, Integrin inactivators: balancing cellular functions in vitro and in vivo, Nat Rev Mol Cell Biol, vol.14, pp.430-442, 2013.

A. E. Proudfoot, Chemokine receptors: multifaceted therapeutic targets, Nat. Rev. Immunol, vol.2, pp.106-115, 2002.

M. Iwata, Retinoic Acid Imprints Gut-Homing Specificity on T Cells. Immunity, vol.21, pp.527-538, 2004.

C. Berlin, Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1, Cell, vol.74, pp.185-195, 1993.

Y. Tian, A Context-Dependent Role for IL-21 in Modulating the Differentiation, Distribution, and Abundance of Effector and Memory CD8 T Cell Subsets, The Journal of Immunology, vol.196, pp.2153-2166, 2016.

N. Zhang and M. J. Bevan, Transforming Growth Factor-beta Signaling Controls the Formation and Maintenance of Gut-Resident Memory T Cells by Regulating Migration and Retention, Immunity, vol.39, pp.687-696, 2013.

B. A. Zabel, Human G Protein-Coupled Receptor Gpr-9-6/Cc Chemokine Receptor 9 Is Selectively Expressed on Intestinal Homing T Lymphocytes, Mucosal Lymphocytes, and Thymocytes and Is Required for Thymus-Expressed Chemokine-Mediated Chemotaxis, J. Exp. Med, vol.190, pp.1241-1256, 1999.

R. A. Clark, The Vast Majority of CLA+ T Cells Are Resident in Normal Skin, The Journal of Immunology, vol.176, pp.4431-4439, 2006.

S. R. Barthel, J. D. Gavino, L. Descheny, and C. J. Dimitroff, Targeting selectins and selectin ligands in inflammation and cancer, Expert Opinion on Therapeutic Targets, vol.11, pp.1473-1491, 2007.

L. K. Mackay, The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin, Nature Publishing Group, vol.14, pp.1294-1301, 2013.

H. Sigmundsdottir, DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27, Nat. Immunol, vol.8, pp.285-293, 2007.

B. Homey, CCL27-CCR10 interactions regulate T cell-mediated skin inflammation, Nature Medicine, vol.8, pp.157-165, 2002.

D. Soler, T. L. Humphreys, S. M. Spinola, and J. J. Campbell, CCR4 versus CCR10 in human cutaneous Th lymphocyte trafficking, Blood, vol.101, pp.1677-1682, 2003.

A. Zaid, Chemokine Receptor-Dependent Control of Skin Tissue-Resident Memory T Cell Formation, The Journal of Immunology, vol.199, pp.2451-2459, 2017.

S. J. Ray, The Collagen Binding ?1?1 Integrin VLA-1 Regulates CD8 T Cell-Mediated Immune Protection against Heterologous Influenza Infection, Immunity, vol.20, pp.167-179, 2004.

S. Haddadi, Expression and role of VLA-1 in resident memory CD8 T cell responses to respiratory mucosal viral-vectored immunization against tuberculosis, Sci. Rep, vol.7, pp.1-14, 2017.

J. J. Taylor and M. K. Jenkins, CD4+ memory T cell survival, Curr. Opin. Immunol, vol.23, pp.319-323, 2011.

D. Cibrián and F. Sánchez-madrid, CD69: from activation marker to metabolic gatekeeper, Eur. J. Immunol, vol.47, pp.946-953, 2017.

A. J. Zajac and L. E. Harrington, Tissue-resident T cells lose their S1P1 exit visas, Cell Mol Immunol, vol.11, pp.221-223, 2014.

J. T. Chang, E. J. Wherry, and A. W. Goldrath, Molecular regulation of effector and memory T cell differentiation, Nature Publishing Group, vol.15, pp.1104-1115, 2014.

C. N. Skon, Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8, Nature Publishing Group, vol.14, pp.1285-1293, 2013.

L. R. Shiow, CD69 acts downstream of interferon-?/? to inhibit S1P1 and lymphocyte egress from lymphoid organs, Nature, vol.440, pp.540-544, 2006.

L. K. Mackay, Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention, The Journal of Immunology, vol.194, pp.2059-2063, 2015.

B. S. Sheridan and L. Lefrançois, Regional and mucosal memory T cells, Nat. Immunol, vol.12, pp.485-491, 2011.
DOI : 10.1038/ni.2029

URL : http://europepmc.org/articles/pmc3224372?pdf=render

R. Watanabe, J. E. Teague, D. C. Fisher, T. S. Kupper, and R. A. Clark, Alemtuzumab therapy for leukemic cutaneous T-cell lymphoma: diffuse erythema as a positive predictor of complete remission, JAMA Dermatol, vol.150, pp.776-779, 2014.

K. A. Casey, Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues, The Journal of Immunology, vol.188, pp.4866-4875, 2012.

S. Woyciechowski, M. Hofmann, and H. Pircher, ?4 ?1 integrin promotes accumulation of tissue-resident memory CD8(+) T cells in salivary glands, Eur. J. Immunol, vol.47, pp.244-250, 2017.

K. Shimamura and M. Takeichi, Local and transient expression of E-cadherin involved in mouse embryonic brain morphogenesis, Development, vol.116, pp.1011-1019, 1992.

B. S. Sheridan, Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function, Immunity, vol.40, pp.747-757, 2014.

B. Piet, CD8 T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung, J. Clin. Invest, vol.121, pp.2254-2263, 2011.

S. K. Bromley, S. Y. Thomas, and A. D. Luster, Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics, Nat. Immunol, vol.6, pp.895-901, 2005.

S. K. Bromley, S. Yan, M. Tomura, O. Kanagawa, and A. D. Luster, Recirculating Memory T Cells Are a Unique Subset of CD4+ T Cells with a Distinct Phenotype and Migratory Pattern, J. Immunol, vol.190, pp.970-976, 2013.

J. J. Worthington, T. M. Fenton, B. I. Czajkowska, J. E. Klementowicz, and M. A. Travis, Regulation of TGF? in the immune system: An emerging role for integrins and dendritic cells, Immunobiology, vol.217, pp.1259-1265, 2012.

R. J. Akhurst and A. Hata, Targeting the TGF? signalling pathway in disease, Nat Rev Drug Discov, vol.11, pp.790-811, 2012.

T. Bergsbaken and M. J. Bevan, Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8 T cells responding to infection, Nature Publishing Group, vol.16, pp.406-414, 2015.

T. Bergsbaken, M. J. Bevan, and P. J. Fink, Local Inflammatory Cues Regulate Differentiation and Persistence of CD8(+) Tissue-Resident, Memory T Cells. CellReports, vol.19, pp.114-124, 2017.
DOI : 10.1016/j.celrep.2017.03.031

URL : https://doi.org/10.1016/j.celrep.2017.03.031

J. Mohammed, Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-&beta, Nature Publishing Group, vol.17, pp.1-10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01812677

T. Adachi, Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma, Nature Medicine, vol.21, pp.1-10, 2015.

J. M. Schenkel, IL-15-Independent Maintenance of Tissue-Resident and Boosted Effector Memory CD8 T Cells, The Journal of Immunology, vol.196, pp.3920-3926, 2016.

H. G. Woon, Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs, PLoS Pathog, vol.12, p.1005799, 2016.

R. T. Sowell, M. Rogozinska, C. E. Nelson, V. Vezys, and A. L. Marzo, Cutting edge: generation of effector cells that localize to mucosal tissues and form resident memory CD8 T cells is controlled by mTOR, The Journal of Immunology, vol.193, pp.2067-2071, 2014.

R. T. Sowell, IL-15 Complexes Induce Migration of Resting Memory CD8 T Cells into Mucosal Tissues, The Journal of Immunology, vol.199, pp.2536-2546, 2017.

B. J. Laidlaw, CD4+ T Cell Help Guides Formation of CD103+ Lung-Resident Memory CD8+ T Cells during Influenza Viral Infection, Immunity, vol.41, pp.633-645, 2014.

Y. Pan, Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism, Nature, vol.1, p.17, 2017.

S. Kadow, Aryl Hydrocarbon Receptor Is Critical for Homeostasis of Invariant ?? T Cells in the Murine Epidermis, The Journal of Immunology, vol.187, pp.3104-3110, 2011.

S. Maru, G. Jin, T. D. Schell, and A. E. Lukacher, TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection, PLoS Pathog, vol.13, p.1006318, 2017.

L. K. Mackay, Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.7037-7042, 2012.

K. Steinbach, Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection, Journal of Experimental Medicine, vol.213, pp.1571-1587, 2016.

E. L. Frost, A. E. Kersh, B. D. Evavold, and A. E. Lukacher, Cutting Edge: Resident Memory CD8 T Cells Express High-Affinity TCRs, The Journal of Immunology, vol.195, pp.3520-3524, 2015.

J. E. Kohlmeier, T. Cookenham, A. D. Roberts, S. C. Miller, and D. L. Woodland, Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge, Immunity, vol.33, pp.96-105, 2010.

K. H. Ely, Nonspecific recruitment of memory CD8+ T cells to the lung airways during respiratory virus infections, The Journal of Immunology, vol.170, pp.1423-1429, 2003.

T. N. Khan, J. L. Mooster, A. M. Kilgore, J. F. Osborn, and J. C. Nolz, Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection, Journal of Experimental Medicine, vol.213, pp.951-966, 2016.

B. Davies, Cutting Edge: Tissue-Resident Memory T Cells Generated by Multiple Immunizations or Localized Deposition Provide Enhanced Immunity, The Journal of Immunology, vol.198, pp.2233-2237, 2017.

A. Muschaweckh, Antigen-dependent competition shapes the local repertoire of tissueresident memory CD8 +T cells, J. Exp. Med, vol.213, pp.3075-3086, 2016.

C. J. Smith, S. Caldeira-dantas, H. Turula, and C. M. Snyder, Murine CMV Infection Induces the Continuous Production of Mucosal Resident T Cells, Cell Reports, vol.13, pp.1137-1148, 2015.

D. Souza, W. N. Hedrick, and S. M. , Cutting Edge: Latecomer CD8 T Cells Are Imprinted with a Unique Differentiation Program, The Journal of Immunology, vol.177, pp.777-781, 2006.

D. M. Catron, L. K. Rusch, J. Hataye, A. A. Itano, and M. K. Jenkins, CD4+ T cells that enter the draining lymph nodes after antigen injection participate in the primary response and become central-memory cells, J. Exp. Med, vol.203, pp.1045-1054, 2006.

S. Iborra, Optimal Generation of Tissue-Resident but Not Circulating Memory T Cells during Viral Infection Requires Crosspriming by DNGR-1+ Dendritic Cells, Immunity, vol.45, pp.847-860, 2016.

L. K. Mackay, Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes, Science, vol.352, pp.459-463, 2016.

A. Kallies, A. Xin, G. T. Belz, and S. L. Nutt, Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses, Immunity, vol.31, pp.283-295, 2009.

K. P. Van-gisbergen, Mouse Hobit is a homolog of the transcriptional repressor Blimp-1 that regulates NKT cell effector differentiation, Nature Publishing Group, vol.13, pp.864-871, 2012.

V. Wilson, F. L. Conlon, T. The, and . Family, Genome Biology, vol.3, 2002.

V. E. Papaioannou and L. M. Silver, The T-box gene family, BioEssays, vol.20, pp.9-19, 1998.

L. K. Mackay, T-box Transcription Factors Combine with the Cytokines TGF-&beta

, IL-15 to Control Tissue-Resident Memory T Cell Fate, Immunity, vol.43, pp.1101-1111, 2015.

P. Hombrink, Programs for the persistence, vigilance and control of human CD8+ lungresident memory T cells, Nat. Immunol, vol.17, pp.1467-1478, 2016.

Y. Li, Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation, Cell, vol.147, pp.629-640, 2011.

L. H. Zhang, J. H. Shin, M. D. Haggadone, and J. B. Sunwoo, The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells, J. Exp. Med, vol.213, pp.2249-2257, 2016.

S. N. Mueller and L. K. Mackay, Tissue-resident memory T cells: local specialists in immune defence, Nat. Rev. Immunol, vol.16, pp.1-11, 2015.

J. M. Schenkel, T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses, Science, vol.346, pp.98-101, 2014.

S. Ariotti, T cell memory. Skin-resident memory CD8 T cells trigger a state of tissuewide pathogen alert, Science, vol.346, pp.101-105, 2014.

N. D. Glennie, S. W. Volk, and P. Scott, Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes, PLoS Pathog, vol.13, p.1006349, 2017.
DOI : 10.1371/journal.ppat.1006349

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1006349&type=printable

N. D. Glennie, Skin-resident memory CD4 +T cells enhance protection against Leishmania majorinfection, J. Exp. Med, vol.212, pp.1405-1414, 2015.
DOI : 10.1084/jem.20142101

URL : http://jem.rupress.org/content/212/9/1405.full.pdf

J. Seneschal, R. A. Clark, A. Gehad, C. M. Baecher-allan, and T. S. Kupper, Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells, Immunity, vol.36, pp.873-884, 2012.

J. Seneschal, X. Jiang, and T. S. Kupper, Langerin+ dermal DC, but not Langerhans cells, are required for effective CD8-mediated immune responses after skin scarification with vaccinia virus, Journal of Investigative Dermatology, vol.134, pp.686-694, 2014.

N. Collins, K. Hochheiser, F. R. Carbone, and T. Gebhardt, Sustained accumulation of antigen-presenting cells after infection promotes local T-cell immunity, Immunol Cell Biol, 2017.

R. Purwar, Resident Memory T Cells (TRM) Are Abundant in Human Lung: Diversity, Function, and Antigen Specificity, vol.6, p.16245, 2011.

R. J. Hogan, Protection from Respiratory Virus Infections Can Be Mediated by Antigen-Specific Cd4+ T Cells That Persist in the Lungs, J. Exp. Med, vol.193, pp.981-986, 2001.

S. R. Mcmaster, J. J. Wilson, H. Wang, and J. E. Kohlmeier, Airway-Resident Memory CD8 T Cells Provide Antigen-Specific Protection against Respiratory Virus Challenge through Rapid IFN-? Production, The Journal of Immunology, vol.195, pp.203-209, 2015.

A. Ganesan, Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer, Nat. Immunol, vol.18, pp.940-950, 2017.

M. Nizard, Induction of resident memory T cells enhances the efficacy of cancer vaccine, Nature Communications, vol.8, pp.1-11, 2017.

S. Cheuk, Epidermal Th22 and Tc17 Cells Form a Localized Disease Memory in Clinically Healed Psoriasis, The Journal of Immunology, vol.192, pp.3111-3120, 2014.

J. J. Campbell, R. A. Clark, R. Watanabe, and T. S. Kupper, Sézary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors, Blood, vol.116, pp.767-771, 2010.

D. Hijnen, CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-?, IL-13, IL-17, and IL-22, J. Invest. Dermatol, vol.133, pp.973-979, 2013.

Y. Mizukawa, Direct evidence for interferon-gamma production by effector-memorytype intraepidermal T cells residing at an effector site of immunopathology in fixed drug eruption, Am J Pathol, vol.161, pp.1337-1347, 2002.

Y. Teraki and T. Shiohara, IFN-?-producing effector CD8+ T cells and IL-10-producing regulatory CD4+ T cells in fixed drug eruption, Journal of Allergy and Clinical Immunology, vol.112, pp.609-615, 2003.

B. D. Hondowicz, Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma, Immunity, vol.44, pp.155-166, 2016.

C. E. Griffiths, P. Van-de-kerkhof, M. Czarnecka-operacz, A. Psoriasis, and . Dermatitis, Dermatol Ther (Heidelb), vol.7, pp.31-41, 2017.

O. Boyman, Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha, J. Exp. Med, vol.199, pp.731-736, 2004.

I. Kryczek, Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis, The Journal of Immunology, vol.181, pp.4733-4741, 2008.

M. Suárez-fariñas, J. Fuentes-duculan, M. A. Lowes, and J. G. Krueger, Resolved Psoriasis Lesions Retain Expression of a Subset of Disease-Related Genes, Journal of Investigative Dermatology, vol.131, pp.391-400, 2011.

Y. Mizukawa, Y. Yamazaki, and T. Shiohara, In vivo dynamics of intraepidermal CD8+ T cells and CD4+ T cells during the evolution of fixed drug eruption, Br. J. Dermatol, vol.158, pp.1230-1238, 2008.

A. Rozieres, CD8+ T cells mediate skin allergy to amoxicillin in a mouse model, Allergy, vol.65, pp.996-1003, 2010.

A. R. Mangold, Early clinical manifestations of Sézary syndrome: A multicenter retrospective cohort study, J. Am. Acad. Dermatol, vol.77, pp.719-727, 2017.

R. J. Scheper, Induction of immunological memory in the skin. Role of local T cell retention, Clin. exp. Immunol, vol.51, pp.141-148, 1983.

P. M. Brunner, Nonlesional atopic dermatitis skin shares similar T-cell clones with lesional tissues, Allergy, vol.00, pp.1-9, 2017.

S. C. Balmert, In vivo induction of regulatory T cells promotes allergen tolerance and suppresses allergic contact dermatitis, J Control Release, vol.261, pp.223-233, 2017.

A. Schietinger and P. D. Greenberg, Tolerance and exhaustion: defining mechanisms of T cell dysfunction, Trends Immunol, vol.35, pp.51-60, 2014.

E. J. Wherry, T cell exhaustion, Nat. Immunol, vol.12, pp.492-499, 2011.

S. E. Hamilton and S. C. Jameson, CD8 T cell memory: it takes all kinds, Front Immunol, vol.3, pp.1-7, 2012.

E. J. Wherry and M. Kurachi, Molecular and cellular insights into T cell exhaustion, Nat. Rev. Immunol, vol.15, pp.486-499, 2015.
DOI : 10.1038/nri3862

URL : http://europepmc.org/articles/pmc4889009?pdf=render

C. M. Menendez, J. K. Jinkins, and D. J. Carr, Resident T Cells Are Unable To Control Herpes Simplex Virus-1 Activity in the Brain Ependymal Region during Latency, The Journal of Immunology, vol.197, pp.1262-1275, 2016.

J. Boldison, Tissue-Resident Exhausted Effector Memory CD8+ T Cells Accumulate in the Retina during Chronic Experimental Autoimmune Uveoretinitis, The Journal of Immunology, vol.192, pp.4541-4550, 2014.

W. Hirunwidchayarat, Site-specific regulation of oral mucosa-recruiting CD8(+) T cells in a mouse contact allergy model, Biochem. Biophys. Res. Commun, vol.490, pp.1294-1300, 2017.

D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat Rev Cancer, vol.12, pp.252-264, 2012.

K. E. Pauken, Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade, Science, vol.354, pp.1160-1165, 2016.

R. M. Pereira, P. G. Hogan, A. Rao, and G. J. Martinez, Transcriptional and epigenetic regulation of T cell hyporesponsiveness, Journal of Leukocyte Biology, vol.102, pp.601-615, 2017.

F. O. Nestle, P. Di-meglio, J. Qin, and B. J. Nickoloff, Skin immune sentinels in health and disease, Nat. Rev. Immunol, vol.9, pp.679-691, 2009.

M. Pasparakis, I. Haase, and F. O. Nestle, Mechanisms regulating skin immunity and inflammation, Nat. Rev. Immunol, vol.14, pp.289-301, 2014.

H. Moed, Increased CCL27-CCR10 expression in allergic contact dermatitis: implications for local skin memory, J. Pathol, vol.204, pp.39-46, 2004.

R. A. Clark, A novel method for the isolation of skin resident T cells from normal and diseased human skin, J. Invest. Dermatol, vol.126, pp.1059-1070, 2006.

K. Bang, M. Lund, S. C. Mogensen, and K. Thestrup-pedersen, In vitro culture of skinhoming T lymphocytes from inflammatory skin diseases, Exp. Dermatol, vol.14, pp.391-397, 2005.

M. Bonneville, Skin contact irritation conditions the development and severity of allergic contact dermatitis, J. Invest. Dermatol, vol.127, pp.1430-1435, 2007.

J. Li, M. Olshansky, F. R. Carbone, and J. Ma, Transcriptional Analysis of T Cells Resident in Human Skin, PLoS ONE, vol.11, p.148351, 2016.

A. M. Jamieson, Role of tissue protection in lethal respiratory viral-bacterial coinfection, Science, vol.340, pp.1230-1234, 2013.

J. D. Mintern, C. Guillonneau, F. R. Carbone, P. C. Doherty, and S. J. Turner, Cutting edge: Tissue-resident memory CTL down-regulate cytolytic molecule expression following virus clearance, The Journal of Immunology, vol.179, pp.7220-7224, 2007.

M. K. Prinsen, T. Romijn, and N. J. Snoeij, Skin sensitization testing: the relevance of rechallenge and pretreatment with sodium lauryl sulfate in the guinea pig maximization test, Food Chem. Toxicol, vol.35, pp.923-926, 1997.

M. Man, Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges, J. Invest. Dermatol, vol.128, pp.79-86, 2008.

S. F. Martin, Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity, Journal of Experimental Medicine, vol.205, pp.2151-2162, 2008.

K. Boniface, Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3, J. Invest. Dermatol, 2017.

T. Buch, A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration, Nat. Methods, vol.2, pp.419-426, 2005.

N. H. Overgaard, J. Jung, R. J. Steptoe, and J. W. Wells, CD4+/CD8+ double-positive T cells: more than just a developmental stage, Journal of Leukocyte Biology, vol.97, pp.31-38, 2015.

R. Bosselut, CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals, Nat. Rev. Immunol, vol.4, pp.529-540, 2004.