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Abstract

This PhD aims to investigate some western boundary processes in the Arabian Sea.
Namely, we focused on three phenomena : the life cycle of the so-called Great Whirl,
a persistent mesoscale eddy; the dynamics of the Persian Gulf outflow, a marginal sea
dense outflow; and the seasonal Oman upwelling, a coastal upwelling forced by summer
monsoonal winds. The cornerstone of all these phenomena is their location at a west-
ern boundary, which makes them being influenced by both local forcing (e.g., monsoonal
winds) and remote forcing (Rossby waves and drifting eddies). Specifically, the latter is
expected to impact the western boundary dynamics since the low latitude of the Arabian
Sea implies a fast westward propagation of long Rossby waves and eddies. Moreover,
waves are continously excited by the reversing monsoonal winds. We designed numeri-
cal experiments of different complexity using a primitive equation model that allowed to
either realistically simulate the dynamics in the Arabian Sea or to isolate some processes.

Major findings can be summarized as follows : (i) The Great Whirl life cycle is found
to be significantly paced by annual Rossby waves, although the strong monsoonal wind
stress curl is of major importance to sustain the structure. (ii) The Persian Gulf Water
(PGW) spreading in the Gulf of Oman and the northern Arabian Sea can be explained by
the stirring done by mesoscale eddies entering the Gulf. These remotely formed surface
intensified mesoscale eddies propagate into the Gulf and interact with the topography.
These frictional interactions produce intense vorticity strips at the boundary that detach
and roll up in the interior, forming submesoscale coherent vortices (SCV). These SCV trap
PGW initially located on the slope and redistribute it in the interior. This mechanism
of transport ultimately produces mixing that explains the rather large-scale gradient of
salinity in the Gulf. (iii) We find that the dynamics of the seasonal upwelling off Oman
contrasts with the more deeply studied Eastern Boundary Upwelling Systems (EBUS).
In particular, Rossby waves, propagating offshore in EBUS vs. onshore in this western
boundary upwelling, are found to modulate the wind driven upwelling and its sea surface
temperature response.

Overall, these results appear to be rather specific to the western Arabian Sea. The
short zonal extent and the low-latitude of the Arabian Sea, as well as the seasonally
reversing wind forcing are the distinguishing features of this region. Fast waves and
drifting eddies and their interactions with the western boundary significantly shape the
turbulent regimes of the western Arabian Sea.
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Résumé

Le but de cette thèse est d’analyser plusieurs phénomènes de bord ouest de la Mer
d’Arabie. Nous nous sommes concentrés sur trois phénomènes en particulier : le cycle de
vie d’un tourbillon de mésoéchelle persistant, le Great Whirl; la dynamique d’un écoule-
ment d’eau dense (outflow) formée dans une mer adjacente, l’outflow du Golfe Persique;
et une remontée d’eau profonde (upwelling) saisonnière dans la zone côtière d’Oman. Le
point commun entre ces phénomènes est leur localisation sur un bord ouest océanique.
Ils sont donc influencés par des forçages locaux (notamment les vents de mousson) et des
forçages à distance (ondes de Rossby et tourbillons dérivant vers l’ouest). En particulier,
ces derniers vont jouer un rôle particulier car la Mer d’Arabie est située à basses latitudes,
ce qui implique une propagation rapide des ondes longues et tourbillons. De plus, des on-
des sont continuellement excitées par le régime saisonnier des moussons. Nous avons mis
au point des expériences numériques de différentes complexités en utilisant un modèle aux
équations primitives. Ces expériences permettent soit de simuler de manière réaliste la
dynamique complexe de la Mer d’Arabie, soit d’isoler un processus en particulier.

Les résultats principaux peuvent se résumer comme suit : (i) le cycle de vie du Great
Whirl est significativement impacté par les ondes de Rossby annuelles. Le rotationnel
de la tension de vent joue un role important dans le maintien, le renforcement et la
barotropisation du tourbillon. (ii) La dispersion de l’Eau du Golfe Persique (Persian Gulf
Water, PGW) est déterminée par le mélange induit par les tourbillons de mésoéchelle.
Précisément, ces tourbillons entrent dans le Golfe d’Oman (où se déverse la PGW), et
interagissent avec la topographie. Ces interactions frictionnelles produisent des bandes de
vorticité très intenses dans la couche limite du fond. Celles-ci sont arrachées et forment des
tourbillons de sous-mésoéchelle. Ces tourbillons capturent de la PGW initialement située
sur la pente continentale et la redistribuent dans le Golfe d’Oman. Ce mécanisme donne
finalement lieu à du mélange, permettant d’expliquer le gradient de salinité climatologique
observé en profondeur. (iii) La dynamique de l’upwelling saisonnier au large d’Oman
contraste fortement avec la dynamique des upwellings de bord est (Eastern Boundary
Upwelling Systems, EBUS) plus largement étudiés. En effet, les ondes de Rossby se
propagent vers le large dans les EBUS et vers la côte dans l’upwelling de bord ouest
d’Oman. Ces ondes modulent la réponse en temperature de l’upwelling forcé par le vent.

Dans l’ensemble, ces résultats sont relativement spécifiques à la Mer d’Arabie. La
faible extension zonale et la basse latitude de la Mer d’Arabie, ainsi que le régime de
mousson des vents saisonniers en font une région particulière. La propagation rapide des
ondes et tourbillons, et leurs interactions avec le bord ouest façonnent les régimes de
turbulence de la Mer d’Arabie.
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Chapter 1. Introduction

1.1 General Background on the Arabian Sea

In this section, we review the essential characteristics of the Arabian Sea circulation. In
the next section, we detail specific features (Rossby waves, marginal seas outflows and
upwellings) of the oceanic dynamics that are of particular interest in the western Arabian
Sea.

1.1.1 Once Upon a Time . . .

Geomorphology

The Arabian Sea is commonly defined as the western part of the Indian Ocean, extending
from the west coast of India to the east coast of Africa. Its northern boundary is made up
of the Arabian Peninsula (Oman and Yemen) and the Iran and Pakistan coasts. Notice
that the presence of continents at such low latitudes (∼ 25◦N) is specific to the Indian
Ocean and changes the atmospheric circulation1. There is no material southern boundary
and studying the Arabian Sea in terms of ocean currents may involve a knowledge of
the Indian Ocean’s equatorial dynamics. There are two major basins in the Arabian Sea
separated by the Carlsberg Ridge that extends in a northwest-southeast direction. North
of the Carlsberg Ridge, the Arabian basin bathymetry reaches 4600 m and has its eastern
limit with the Chagos-Laccadive Plateau. South of the Ridge, the Somali basin extends
southward of the equator and bathymetry reaches 5200 m (see Figure 1.1).

One of the specific features of the Arabian Sea is the presence of two marginal seas
which connect to it through narrow straits. The Persian Gulf connects with the Gulf
of Oman through the Strait of Hormuz, and the Red Sea connects with the Gulf of
Aden through the Strait of Bab el Mandeb. These two semi-enclosed seas are of crucial
importance in the water mass description of the Arabian Sea. In both seas evaporation
exceeds precipitation, which favours the formation of saline waters that are injected at
certain depths in the Arabian Sea. They can be found far from their source, even in the
Mozambique channel for the Red Sea Water (Beal et al., 2000).

History

The Arabian Sea was firstly described centuries ago by European navigators who passed
by its numerous ports of call on the Route of Spices, discovered by Vasco da Gama2. At
this early time in the navigation history, navigators had already noticed the importance of

1The regime of Trade Winds developed in the Atlantic and in the Pacific does not exist in the Indian
Ocean.

2(1460 or 1469 – 24 December 1524) was a Portuguese explorer, one of the most successful in the Age
of Discovery and the commander of the first ships to sail directly from Europe to India (landed in 1498).
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1.1. General Background on the Arabian Sea

Figure 1.1: Topography of the Indian Ocean and the Indian Continent (dataset is ETOPO2, Smith and
Sandwell, 1997). Ch-L Pl. stands for Chagos-Laccadive Plateau.

the seasonal winds and currents in the Indian Ocean. Subrahmanyam (1998) relates that
in 1511, half of the fleet of Vasco da Gama remained blocked in Mozambique because
they missed the southwest monsoon (downwind on their route) to cross the Arabian
Sea. Indeed, even if there are many possible ethymologies3 of the word monsoon, it
certainly comes from the Portuguese monção, itself from the Arabic mawsim which means
season. One of the first maritime and meteorological description made for navigation needs
was written by Findlay (1876). The seasonal reversal of the winds along the northeast-
southwest axis is described and the southwest monsoon was observed to be the strongest
and longest as opposed to the northeast monsoon, as suggested by the observations in
Figure 1.2.

The seasonal shift of the winds is perhaps the most distinguishing feature of the
Arabian Sea forcing mechanisms, as compared to other oceanic basins (e.g., Atlantic
and Pacific) whose subtropical and subpolar gyres do not experience such a reversing
stress at seasonal time scales. Understanding its effect on oceanic currents has been the
starting point of observational research projects since the 1970’s (e.g., Wyrtki, 1973; Fieux
and Stommel, 1977; Schott, 1983). Furthermore, ocean-atmosphere interactions during
monsoons are known to be strong and to influence the variability of inland precipitations
(Izumo et al., 2008) with high societal impacts.

3Oxford English Dictionary

9



Chapter 1. Introduction

Figure 1.2: Table from Findlay (1876) showing the number of days per month during which the wind
blows from the southwest (S.W.) and the northeast (N.E.) at the east coast of India (similar wind statistics
were observed at the east African coast, not shown).

1.1.2 Ocean Dynamics

Climatology of winds

Observing the monthly climatological wind stress and wind stress curl fields in Figure 1.3,
one clearly notices two distinct periods of sustained winds. The Southwest Monsoon
(SWM) roughly begins between May and June, reaches its peak in July and fades out
during September. The winds are moist and warm as coming from the equatorial band
where moist air convection is high (Lee et al., 2000). The strongest winds are blowing
from the coast of Somalia to Pakistan. This steady wind jet is known as the Findlater
Jet (Findlater, 1969). Its maximum can reach a sustained value of 12 m s−1 and forms a
line where the wind curl changes sign (the so-called zero wind curl line), being negative
on its right side and positive on the coastal left side.

The Northeast Monsoon (NEM) starts blowing in November, reaches its peak in Jan-
uary and vanishes in March. The winds are formed of dry and cool air coming from the
mountains of the Asian continent. The maximum wind speed is about 8 m s−1 offshore
the Arabian Peninsula. Although less intensified than during the SWM, wind stress curl
patterns are reversed, being negative on the northern Arabian Sea and positive south-
ward. Notice that the reversal of the wind stress curl between the monsoons may impact
the large scale circulation, the Ekman pumping and the Sverdrup transport, as suggested
by Godfrey and Golding (1981); Bruce (1983).

The intermonsoon periods, refered to as the Spring Intermonsoon and Fall Intermon-
soon (SIM and FIM, March – May and September – November, respectively, Lee et al.,
2000), are transition stages between the SWM and the NEM. Wind stress and wind stress
curl patterns are reminiscent of the latest monsoon.

10



1.1. General Background on the Arabian Sea

Figure 1.3: Monthly climatology of wind stress (arrows) and wind stress curl (colors) derived from
QuikSCAT data for the period September 1999 – October 2009 (QuikSCOW climatology, Risien and
Chelton, 2008).

Evidence for associated oceanic motions

There is gathered evidence for an oceanic direct response to seasonal winds (Bruce, 1983;
McCreary et al., 1993; Lee et al., 2000; Schott and McCreary, 2001). Observations off the
Somali coast early revealed the existence of a wind-driven coastal upwelling (Schott, 1983)
occuring only during the SWM. Further north, off the Omani coast, the same seasonal
atmospheric jet also forces an upwelling (Elliott and Savidge, 1990). Moreover, studies
based on observations converge toward a predominance of the Ekman pumping in the
mixed-layer depth of the Arabian Sea (Bauer et al., 1991; Hastenrath and Greischar,
1991), thus depending mostly on the seasonal wind stress curl. Maybe the most striking
feature of the seasonality of the oceanic circulation is the reversal of the Somali Current.
This western boundary current settled at the African coast heads northeastward during
the SWM and southwestward during the NEM (Schott, 1983; Luther and O’Brien, 1985).

As examined by Shetye et al. (1994), the circulation in the Arabian Sea follows sea-
sonally the large-scale wind stress and wind stress curl patterns, being anticyclonic during
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Chapter 1. Introduction

the SWM and cyclonic during the NEM (Figure 1.3). Notice that mesoscale eddies dom-
inate the circulation in the inner basin and are ubiquitous in the western basin (Flagg
and Kim, 1998; Carton et al., 2012). Periods between monsoons do not show any distin-
guishing feature in terms of wind forcing. The associated oceanic circulation is often seen
in litterature as undergoing a transition between the evanescence of the ending monsoon
and the onset of the following (Lee et al., 2000). This is why we will only describe the
circulation during the two monsoon periods.

Southwest monsoon circulation

Starting at the onset of the SWM, the circulation is steady in boreal summer under the
influence of strong winds. It shows little intraseasonal variations expect through internal
variability (e.g., in upwellings, Vialard et al., 2012). Here we describe the circulation in
the Arabian Sea, starting from the equator and going northward at the coast, following
the path of the main currents. Those currents are roughly represented on the schematic
map of Figure 1.4.

The Somali Current (SC) is fed by the South Equatorial Current (SEC) that is de-
flected northward when reaching the north of Madagascar and meeting the North East
Madagascar Current (NEMC). Then deflected northeastward, NEMC meets the East
African Coastal Current (EACC), which directly supplies the SC. The SC is the strongest
current observed during this period, transporting about 20 Sv in the upper 500 m on
50-100 km width (Schott et al., 1990). As explained by Schott and McCreary (2001), a
meridional flow can not freely cross the equator because it has to change the sign of its
potential vorticity when changing hemisphere. The SC is thus deflected sharply to the
right and separates into two branches, one of them crossing back the equator, forming
the Southern Gyre (SG) and the other recirculating in the interior basin. Interestingly,
the winds are upwelling favourable near the Somali coast in the northern hemisphere
(Schott and Quadfasel, 1982). As such, the downwind upwelling jet prolongates the SC
northward.

At the northern end of the SC, a highly energetic large anticyclonic eddy develops. The
so-called Great Whirl (GW) has been observed at a quasi steady position between 5◦N
and 10◦N from the end of May until the end of September. Its radius has been observed
to evolve between 350 km in early June 1995 and 540 km in September 1995 (Beal and
Donohue, 2013). The onset of the GW has been controversed in literature for decades.
Authors invoke instability of current, local forcing due to the persistent strong wind or
remote forcing due to waves. Firstly, Schott and Quadfasel (1982) observed westward
propagating signals after the onset of the SWM, interpreted as first-mode Rossby wave
which were reflected at the coast into shortest modes. The first-mode Rossby waves were

12



1.1. General Background on the Arabian Sea

Figure 1.4: Schematic map of the summer monsoon (SWM) surface circulation in the Arabian Sea. The
blue (resp. orange) disks are persistant anticyclones (resp. cyclones) and the green areas are the coastal
upwelling regions. The major currents and steady eddies are coarsely localised and abbreviated this way
(from the north to the south) : Ras Al Hadd Jet (RAHJ), East Arabian Current (EAC), West Indian
Coastal Current (WICC), Socotra Eddy (SE), Great Whirl (GW), Laccadive Low (LL), Somalia Current
(SC), Southern Gyre (SG), East African Coastal Current (EACC), North East Madagascar Current
(NEMC) and South Equatorial Current (SEC). The inset at the top-right corner is the average wind field
in July at the peak of the SWM. Red lines are the boundaries of a realistic model used in this dissertation
and described in Chapter 2.

assessed to be excited by the strong anticyclonic curl of the wind stress. Then, a numerical
study of McCreary et al. (1993) highlighted the arrival of annual Rossby waves from the
tip of India which could be a remote forcing of many structures at the western boundary of
the basin. The influence of the slanted coast and Socotra Island on the western boundary
current instabilities are also discussed in McCreary and Kundu (1988); Luther and O’Brien
(1989). The review of Schott and McCreary (2001) concluded on a domination of local
forcing into the generation of the GW. Soon after, Wirth et al. (2002) proposed a new
point of view in examining the GW as a western boundary current instability. As opposed
to this, the analysis of 18 years of satellite data on sea surface height allows Beal and
Donohue (2013) to observe the propagating anomaly signal reaching the coast before the
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Chapter 1. Introduction

onset of the wind and the settlement of the SC, then swirling into what becomes the GW.
However, this article brings back together former theories with the observation of the GW
enhancement with the winds at the onset of the SWM in June. Moreover, its northen
flank position seems to be constrained by the zero wind curl along the axis of the Findlater
jet. The collapse of the GW is not clear either. It seems to move southwestward under
the influence of flanking cyclones (Beal and Donohue, 2013) but it can also disapear by
mechanisms of internal instabilities (Jensen, 1993; Wirth et al., 2002). Observations of
water masses on a particular year show that it can merge with the Socotra Eddy, another
remarkable steady anticyclonic eddy north of Socotra (Fischer et al., 1996).

The termination of the SC is not well defined as it is overwhelmed by the GW (as
suggested by dotted lines in Figure 1.4). However, evidences of coastal upwellings on both
sides of the GW implies a coastal jet prolongating the SC northward, through the passage
between Socotra and the Horn of Africa (Cape Guardafui).

Also forced by the wind, the East Arabian Current (EAC) has not a very marked
pathway and mesoscale eddies dominate the dynamics in the north Arabian Sea (Flagg
and Kim, 1998; Kim et al., 2001; Carton et al., 2012). Upwelling favourable winds create
wedges of cold waters off the protruding capes (Ras Madraka, Ras Marbat, . . . ). The flow
leaves the coast at the end of the Omani coast in the Ras Al Hadd Jet (RAHJ, Böhm
et al., 1999). The West Indian Coastal Current (WICC) flows southward along the Indian
coast and exits the Arabian Sea at the tip of India (Shetye et al., 1990).

Northeast monsoon circulation

The NEM winds start blowing in November from the north of the basin and largely extend
to the south in December. Then they are quasi-steady until the beginning of March
(Figure 1.3). The wind stress curl in the Arabian Sea changes sign and the circulation
is roughly inversed (Lee et al., 2000). Here we comment on the circulation summarized
on the schematic map in Figure 1.5. Literature about the circulation during the NEM
is poorer than during the SWM. A plausible explanation is that dynamics in this period
do not develop remarkable steady features such as upwellings or persistent eddies as the
Great Whirl.

The Arabian basin is still fed by the SEC but is also fed from the tip of India by
a current resulting from the NEM in the Bay of Bengal. This flow is divided into two
branches, one flowing along the coast in the WICC (notice that this current also reverses,
Shetye et al., 1991) and the other going westward in large paths towards the Somali coast
and forming the SC. The SC flows southward and is tilted to the left when crossing the
equator. It merges the steady EACC to supply the South Equatorial Countercurrent
(SECC, Schott and McCreary, 2001). The circulation in the north of the Arabian Sea
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1.1. General Background on the Arabian Sea

Figure 1.5: Same as figure 1.4 but for the winter monsoon (NEM). New abbreviations are : Laccadive
High (LH), South Equatorial Counter Current (SECC). The inset at the top-right corner is the average
wind field in January, at the peak of the NEM.

is still dominated by mesoscale eddies and the mean flow is westward with a downwelling
along the Omani coast (Shi et al., 2000).
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1.2 Oceanic Variability in the Western Arabian Sea

In this section, we put forward three phenomena occuring in the western Arabian Sea.
These phenomena could interact which each other and some of them are not well under-
stood yet. Therefore, they make the cornerstones of each chapter of this dissertation.

1.2.1 Rossby Waves

Theory

Geophysical fluid dynamics can be studied through different sets of equations, all of them
derived from the Navier-Stokes equations. They differ by their level of complexity, either
depending on the analytical framework (i.e., shallow-water vs. continously stratified) or
depending on the dynamical assumptions (i.e., quasi-geostrophic vs. primitive equations).
Quasi-geostrophic equations hold for motions characterized by :

• A small Rossby number, Ro = U/f0L � 1, where U and L are the velocity and
length scales of motion and f0 is a reference Coriolis parameter. This means that
the flow is in near-geostrophic balance.

• A scale of motion that is not significantly larger than the deformation scale, i.e.,
an order one Burger number Bu = (Rd/L)2 ∼ 1. Rd = NH/f0 for the continously
stratified case, with H the ocean depth. N2 = −(g/ρ0)∂zρ is the Brunt-Väisälä
frequency that measures stratification, where g is the acceleration of gravity, ρ is
the seawater density and ρ0 is a reference density.

A common practice in physics to study a system described by a set of equations is to
start with simplifying the equations, often in linearizing them for the unforced problem.
Following the textbook Ocean Dynamics (Olbers et al., 2012, section 8.2.), the linearized
quasi-geostrophic equation (in potential vorticity form) for the stream function ψ can be
written as :

∂

∂t

[
∇2
hψ + ∂

∂z

(
f 2

0
N2

∂ψ

∂z

)]
+ β

∂ψ

∂x
= 0 (1.1)

Assuming a separation of vertical and horizontal structures ψ(x, y, z, t) = φn(z)ψ̃(x, y, t),
one gets for the horizontal structure :

∇2
h

∂ψ̃

∂t
− 1
Rn

∂ψ̃

∂t
+ β

∂ψ̃

∂x
= 0 (1.2)
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1.2. Oceanic Variability in the Western Arabian Sea

with Rn the Rossby radius4 of mode n. Looking for wave-like solutions of Eq. 1.2 in the
form ψ̃ = ψ̃0 exp[i(kx + ly − ωt)], where ω is the angular frequency (ω = 2πf) and k

and l are the wavenumbers in the zonal and meridional directions respectively, yields the
dispersion relation :

ω = − βk

k2 + l2 +R−2
n

(1.3)

Equation 1.3 is the dispersion relation of the so-called Rossby waves (theory derived in the
atmosphere by Rossby, 1940), solutions of the linearized and unforced quasi-geostrophic
equations. Rossby waves (hereafter RW) owe their existence to the variation of the Coriolis
frequency with latitude (β). In the following, we will refer to RW as the first baroclinic
mode (n = 1) as this mode contains most of the surface kinetic energy (Wunsch, 1997),
except in equatorial bands.

Observation

RW are associated with pressure perturbations (ψ = p/(f0ρ0) in the quasi-geostrophic
framework, thus in Eqs. 1.1 and 1.2), which can be measured with in situ sensors in the
atmosphere. Pressure anomalies in the ocean are much more difficult to measure due to the
dominating static signal. However, they are associated with sea surface height anomalies.
Moreover, for the first baroclinic mode, sea surface height anomalies are mirrored as
pycnocline (that can be approximated by the thermocline) depth variations of the opposite
sign. The order of magnitude of the pycnocline depth anomalies is about three times larger
than the surface height anomalies; a deviation of +2 cm (resp. -2 cm) in sea surface height
gives a deviation of -20 m (resp. +20 m) in the thermocline (LeBlond and Mysak, 1981).
The thermocline displacement is measurable with in situ instruments and historically, RW
have been first detected by arrays of currentmeters (White, 1977; Schott and Quadfasel,
1982; Kessler, 1990). However, their slow propagation speeds (O(1−10 cm s−1)) and long
wavelengths (O(100 − 1000 km)) require sustained observational systems covering large
areas.

The development of satellite altimetry since the beginning of the 1990s (e.g., TOPEX/-
POSEIDON mission, Fu et al., 1994) has made the continuous observation of sea surface
height with a global coverage possible, at a resolution allowing to measure sea surface
height with a precision of 2 cm (Le Traon and Ogor, 1998). Horizontal resolution, limited
by the satellite swath width and instantaneous coverage, is comprised between 1/3◦ and
1/4◦ (∼30 km at mid latitudes). It allows observing signals with an order of magnitude
in O(Rd). The RW scale is thus within the range of observation using altimetry. Since
the beginning of the era of satellite altimetry, they were continously detected in every

4Note that the Rossby radius or deformation scale Rd is often refered to as the characteristic scale of
mode n = 1 (if the mode is not specified).
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oceanic basin. Local observations were first made in the South Atlantic (Le Traon and
Minster, 1993) and basin-wide and global characterizations followed (e.g., Chelton and
Schlax, 1996; Polito and Cornillon, 1997).

Why are Rossby Waves important?

From Eq. 1.3, we deduce that for a positive frequency ω, the zonal wavenumber k must
be negative. The zonal phase propagation component of RW is hence westward. This im-
plies that RW are a mechanism for transporting information from eastern boundaries and
the inner basin towards western boundaries. Anderson and Gill (1975); Anderson et al.
(1979) studied the spin-up of a stratified ocean at rest, suddenly forced by wind stress.
They found that the adjustment can be explained by RW processes, rapidly propagat-
ing westward and leaving a near-equilibrium state behind (eastward). Furthermore, the
structure of the western boundary current appears to be set by the superposition of RW.
More generally, changes in wind stress and atmospheric buoyancy forcing are integrated
by the ocean through RW propagation mechanisms.

Basically, two mechanisms are involved in the excitation of RW (Fu and Qiu, 2002) :
wind stress curl fluctuations and eastern boundary perturbations. Using a linear shallow-
water model in the Pacific forced by eastern boundary anomalies in sea surface height and
wind stress curl, Fu and Qiu (2002) find that wind stress curl fluctuations are the principal
source of forcing at mid and high latitudes whereas eastern boundary signals are the main
RW forcing at low latitudes. RW are considered to be the primary response of the ocean to
atmospheric forcing, at temporal scales varying between seasons to interannual. Indeed,
they contribute significantly to the adjustment of climate (e.g., propagation of El Niño in
the Pacific, Jacobs et al., 1994). RW are also found to modulate biological activity, as
they can be tracked in ocean color data (Cipollini et al., 2001).

Why are Rossby Waves important in the Arabian Sea?

We recall in the previous paragraph that oceanic RW are a mean to propagate changes
in atmospheric forcing. We also presented in Section 1.1.2 a distinguishing feature of the
Arabian Sea, which is the seasonal reversing of monsoonal winds (wind stress and wind
stress curl, Figure 1.3). As such, RW are expected to play a key role in the Arabian Sea
oceanic adjustment to these seasonal forcing, as early examined by Lighthill (1969) in the
northern Indian Ocean (Arabian Sea and Bay of Bengal).

The fastest baroclinic RW have the lowest frequencies and longest wavelengths. They
are of particular interest since they propagate the bulk of the oceanic response to atmo-
spheric forcing (for the first baroclinic mode, thus the principal movement of the thermo-
cline, Wunsch, 1997, 2011) and have the property to be non-dispersive (i.e., the westward
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Figure 1.6: (a) Zonally averaged first baroclinic radius of deformation Rd (black) and β (gray) as functions
of latitude in the northern hemisphere. Rd is computed using the WKB approximation, similarly to Chel-
ton et al. (1998), Rd ∼ 1

|f |π
∫ 0
−H N(z) dz, where N2(z) = − g

ρ0

∂ρ
∂z is the Brunt-Väisälä frequency computed

with the World Ocean Atlas (release 2013, WOA13) temperature and salinity (Antonov et al., 2010; Lo-
carnini et al., 2010) (dataset available at https://www.nodc.noaa.gov/OC5/woa13/). (b) Rossby wave
phase speed in the long wave approximation clwφ = −βR2

d (black) and maximum frequency allowed at a
given latitude ωmax (gray). The dashed line corresponds to the semi-annual frequency. In both panels,
the gray area embeds the Arabian Sea latitudes.

component of phase speed is independent of wavelength). From Eq. 1.3, their phase speed
clwφ is often approximated as :

clwφ = ω

k

∣∣∣∣
k�R−2

d

∼ −βR2
d (1.4)

The Arabian Sea is situated at low latitudes (< 25◦N) where both β and Rd are
maximum (Rd is maximum due to the minimum Coriolis frequency and the maximum
of stratification, Chelton et al., 1998). Figure 1.6a highlights this dependence of β and
Rd to latitude in the Northern Hemisphere, computed with the same method as Chelton
et al. (1998) (see the caption for details on the computation). As a consequence, long
RW travel at a high speed compared to mid and high latitudes (Figure 1.6b). Figure 1.7a
shows specifically clwφ in the Arabian Sea. Brandt et al. (2002) use hydrographic data and
altimetric sea surface height to reveal the existence of annual RW radiated from the tip
of India at 8◦N. Mode 1 has an estimated phase speed of 38 cm s−1, in the range of values
computed in the linear theory (∼ 40 cm s−1, Figures 1.6a and 1.7a).

Another distinguishing feature of the Arabian Sea is its relatively small zonal extent
(2800 km from the tip of India to the Somali coast, vs. ∼5000 km in the North Atlantic
and ∼8000 km in the Pacific), which, associated with high phase speed, allows long RW
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Figure 1.7: (a) Rossby wave phase speed in the the long wave approximation clwφ = −βR2
d (Rd is computed

using the WKB method with the WOA13 temperature and salinity, as in Figure 1.6). Notice that the
colorscale is nonlinear. (b) Time for a long Rossby wave travelling at clwφ to cross the Arabian Sea at
each latitude. Dashed line indicates a transit time of one year.

to rapidly cross the basin. Indeed, transit time has an order of magnitude of months
to seasons (Figure 1.7b), whereas transit time at mid and high latitudes in the Atlantic
or in the Pacific have interannual scales (10-20 years at 40◦N in the Atlantic, Figure 9
in Wunsch, 2011). This supports the idea that waves act to rapidly adjust the seasonal
monsoonal forcing5. Furthermore, from Eq. 1.3, one can find that a maximum frequency
exists for a given set of parameters (Rd, β) :

ωmax = βRd

2 (1.5)

This frequency ωmax is represented in Figure 1.6b as a function of latitude. It illustrates
that the lower the latitudes, the higher frequencies can be excited. This further supports
that time scales involved with RW processes at mid and high latitudes are preferentially
annual to interannual whereas they can be much shorter at low latitudes.

Ambiguities and clarification

Here we point out two ambiguous questions that may bother the reader, and explain how
we deal with them in the dissertation.

5We do not focus on interannual and decadal variability in the Arabian Sea, which is part of a larger
scale system involving the whole Indian Ocean (e.g., Indian Ocean Dipole mode of variability, Saji et al.,
1999).
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1.2. Oceanic Variability in the Western Arabian Sea

1. Rossby Waves vs. Forced Waves. In the current section, we first derive theoretical
aspects on RW, emphasizing on the fact that they are the solutions of the unforced
linear quasi-geostrophic equations, i.e., they are free waves. Then we have reviewed
that RW were a mean to integrate and propagate atmospheric forcing. The question
that follows is : should they be considered as forced waves? Chelton and Schlax
(1996) considered that the westward propagation of wave-like motions are unforced,
in the sense that waves are not continously forced along their propagation (no ev-
idence for resonance), although their characteristics may be altered. Soon after,
Qiu et al. (1997) separated two types of waves, free and forced (both called RW),
depending whether they emerge from eastern boundaries (spontaneously generated
and free) or they are generated by wind anomalies (forced). Their major result is
that the nature of the generation of RW may influence their propagation speed. In
this dissertation, in the spirit of Qiu et al. (1997), we will refer to Rossby waves
all wave-like motions, linear (with a propagation speed consistent with the linear
theory) or not, and whatever the generation mechanism is.

2. Rossby Waves vs. Eddies. Since the development of satellite altimetry, oceanog-
raphers firstly focused (mainly) on RW (1990’s). In the 2000’s, in parallel of the
development of high resolution models resolving mesoscale turbulence, they became
more interested in tracking eddy-like features in altimetry (e.g., Morrow et al., 2004;
Chelton et al., 2007). Sea surface height has to be filtered to remove the background
field encoding the basin-wide circulation, in order to isolate eddies. They were found
to propagate in the open ocean (except in the Antarctic Circumpolar Current) at
the phase speed of long baroclinic RW clwφ . This finding raised an unresolved debate
on the nature of the signals observed, waves vs. eddies (e.g., Polito and Sato, 2015,
and references therein). We will not participate in this debate and just consider
the influence of remotely forced signals propagating westward (generalized β-effect)
on the western Arabian Sea dynamics. This westward drift, associated with the
intensified circulation at the western boundary, increases the level of Eddy Kinetic
Energy (EKE) in the western Arabian Sea (Figure 1.8). The mesoscale circulation is
at least one order of magnitude more energetic in the western part of the bassin than
in its eastern part (Figure 1.8). It is expected to significantly impact the outflow
and upwelling dynamics.
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Figure 1.8: Surface Eddy Kinetic Energy (EKE) computed on the period 1993-2010 with geostrophic
currents derived from Aviso’s Absolute Dynamics Topography (ADT). The black dotted line separates
the energetic western part of the Arabian Sea from its more quiescent eastern part.

Summary of Section 1.2.1 Rossby Waves

• The Arabian Sea low latitudes imply a fast propagation of Rossby waves.
They are a mean to adjust the ocean dynamics to the seasonal variability
of atmospheric forcing.

• Mainly travelling westward, Rossby waves and eddies, generated in the
inner basin or at the eastern boundary, are expected to impact the dy-
namics in the western Arabian Sea, noticeably the spreading of outflows
and seasonal upwellings.

1.2.2 Marginal Seas Outflows

Background

The Arabian Sea connects with two marginal seas, the Red Sea and the Persian Gulf,
through narrow straits, the Strait of Bab el Mandeb and the Strait of Hormuz respec-
tively (see Figure 1.5 for geographical information). In both seas evaporation exceeds
precipitation and dense, salty and warm waters are formed (see the review of Bower
et al., 2000). These waters spread in the Arabian Sea, and more precisely in the Gulf of
Aden and in the Gulf of Oman respectively. They have strong signatures in salinity clima-
tological maps, around their equilibrium depths, namely 250 m and 600 m (Figure 1.9).

Dense water outflows are likely to play an important role in the overturning circulation

22



1.2. Oceanic Variability in the Western Arabian Sea

0°

10°N

20°N

30°N

40°E 50°E 60°E 70°E

 250 m 

a

40°E 50°E 60°E 70°E

 600 m 

b

35.0 35.3 35.6 35.9 36.2 36.5 36.8 37.1
Salinity [psu]

Figure 1.9: Salinity maps in the Arabian Sea at (a) 250 m showing the Persian Gulf outflow signature
and (b) 600 m showing the Red Sea outflow signature. Dataset is the World Ocean Atlas, release 2013
(WOA2013, Antonov et al., 2010; Locarnini et al., 2010) at 1/4◦ of horizontal resolution.

thus in the Earth climate system (review of Legg et al., 2009). In fact, they deliver
specific water masses formed in marginal seas in the open ocean. As such, understanding
the dynamics of outflows and in particular how water masses are spread is of primary
importance. Dynamics of outflows involves a wide range of processes, from the descent
and entrainment of ambient water to the formation of eddies containing outflow waters, as
illustrated in Figure 1.10. Thus, it has been studied through many perspectives, including
laminar buoyancy-driven flows (e.g., Griffiths, 1986; Price and O’Neil Baringer, 1994),
turbulent mixing (e.g., Baringer and Price, 1997), and eddy formation (e.g., the so-called
"meddies" containing Mediterranean Sea Water). The latter can be either due to shear
instability and detachment of a slope current (e.g., D’Asaro, 1988; Bower et al., 1997),
balanced adjustment of a weakly stratified fluid into a stratified ocean (McWilliams, 1988)
or mixed barotropic/baroclinic instability of a slope current (e.g., Cherubin et al., 2000).

Although the Red Sea outflow has been deeply studied using both observational in
situ data (Bower et al., 2002, 2005; Peters et al., 2005; Peters and Johns, 2005; Bower and
Furey, 2012) and numerical models (Özgökmen et al., 2003; Ilıcak et al., 2011), the Persian
Gulf outflow is poorly documented. Part of this dissertation (Chapter 4) is dedicated to
the study of the Persian Gulf outflow. In the following, we give an overview of our current
understanding of the Persian Gulf outflow. Then we review some of the processes occuring
in the Red Sea outflow and explain why we expect similarities in the Persian Gulf outflow.
In Appendix A, we present another outflow problem that is the Congo River outflow6.
The objective is the same than for the Persian Gulf outflow, which is the understanding

6This work has been mainly done during my Master II’s internship at the Laboratoire de Physique
des Océans, under the supervision of Anne-Marie Tréguier.
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Figure 1.10: Figure from Legg et al. (2009). Schematic illustrating the physical processes acting in
overflows.

of the spreading of outflowing waters. However, this outflow dynamics strongly contrasts
with the Persian Gulf and the Red Sea outflows.

Current knowledge of the Persian Gulf outflow

The Persian Gulf has been early revealed to be an evaporation basin (Privett, 1959).
However, the first experiment that measured the water mass exchanges in the Strait of
Hormuz was carried out recently, compared to other outflows (Brewer and Dyrssen, 1985,
mention a "classical Mediterranean type of circulation", i.e., a two-layer flow at the Strait,
with light inflowing waters in the upper layer and dense outflowing waters in the bottom
layer). An extensive survey of the Persian Gulf carried out by the NOAA7 confirmed
the existence of a two-layer flow in the Strait (Reynolds, 1993). Two distinct campaigns
sampled Persian Gulf Water (PGW) in the Gulf of Oman, contained in small scale struc-
tures (in the submesoscale range), but none of them could conclude on their formation
process and no footprint of a slope current is mentioned (Banse, 1997; Senjyu et al., 1998).
Banse (1997) insists on the turbulent nature of the outflow and on the chaotic spreading
of PGW infered from salinity and oxygen casts : "Rules about this variability could not
be recognized". Using repeated conductivity-temperature-depth (CTD) and expendable
bathythermograph (XBT) measurements in the Gulf of Oman, Bower et al. (2000) were
the first to sample PGW extensively. Measurements reveal a vein of saline (37.5-38 psu)
waters at ∼200 m depth along the southern boundary of the Gulf.

The GOGP-99 campaign (Golfe d’Oman Golfe Persique), carried out in 1999 by the

7The National Oceanic and Atmospheric Administration (NOAA) conducted an extensive survey in
the Persian Gulf after the Gulf War (1990-1991) to monitore the spread of crude oil discharged by Iraq
against Kuwait.
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Service Hydrographique et Océanographique de la Marine (SHOM), provides a good sam-
pling of the water mass structure in the Strait of Hormuz and in the Gulf of Oman (Pous
et al., 2004a,b). The main conclusions obtained from those data analyses are : (i) strong
mixing occurs in the near Strait plume, whose variability is dominated by short time
scales (∼1 month); (ii) a slope current located near 200-250 m depth is observed to veer
seaward at Ras-Al-Hadd (a cape on its way) and (iii) mesoscale variability may influence
the spreading of PGW. Examining Argo floats trajectories, L’Hégaret et al. (2013) high-
light the influence of the mesoscale surface-intensified circulation (reaching 700 m) on the
PGW seaward expelling from the slope current. However, all these observational studies
acknowledge the lack of repeated sampling with a sufficient spatio-temporal coverage to
draw a consistent picture on the fate of the PGW. Besides, literature on the Red Sea
outflow could give us insight on the PGW spread, as the geomorphological frames and
dynamics of these outflows share similarities : they both spread into confined gulfs domi-
nated by mesoscale circulation of gulf-wide, westward travelling eddies (e.g., Ilıcak et al.,
2011; Bower and Furey, 2012; Carton et al., 2012).

Lessons from the Red Sea outflow literature

Classic literature on outflow problems cited above (e.g., Price and O’Neil Baringer, 1994)
is mostly derived for waters outflowing in relatively quiescent environments. This means
that the background eddy activity is considered to be low enough not to influence the
buoyancy-driven dynamics of the slope current, i.e., the assumption is made that the
surrounding flow is at rest. This assumption is justified by the fact that the studied
outflows (mainly, Mediterranean outflow, Denmark Strait Overflow, Faroe Bank channel
outflows, Ross and Weddell Seas outflows) are situated (i) far from western boundary
intensified circulation and (ii) at depths where the surface intensified mesoscale circulation
has no signature (cf Table 1.1). To the contrary, the Red Sea outflow and the Persian
Gulf outflow (i) are situated on western boundaries and (ii) equilibrate at shallow depths
(notice that strait depths are also slightly shallower). For comparison, surface EKE near
the Strait of Gibraltar is less than 100 cm2 s−2 whereas it reaches more than 1000 cm2 s−2

in the western Arabian Sea (EKE derived from satellite altimetry, Ducet et al., 2000).
Bower and Furey (2012) sum up the effect of (i) and (ii) in comparing the Red Sea

outflow with the Mediterranean outflow : "The observations contain little evidence of
features that have been shown previously to be important in the spreading of Mediter-
ranean Outflow Water (MOW) in the North Atlantic, namely a wall-bounded subsurface
jet (the Mediterranean Undercurrent) and submesoscale coherent lenses containing a core
of MOW ("meddies"). This is attributed to the fact that the Red Sea Outflow Water en-
ters the open ocean on a western boundary. High background eddy kinetic energy typical
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Table 1.1: Sill depth and equilibrium depth of some of the world ocean outflows, see Legg et al. (2009)
for additional properties.

Sill depth [m] Equilibrium depth [m]
Faroe Bank 800 3000
Denmark Strait 500 1600
Ross Sea 600 >3000
Weddell Sea 500 2000
Mediterranean Sea 300 800-1000
Red Sea 200 600-800
Persian Gulf 100 200-300

of western boundary regimes will tend to shear apart submesoscale eddies and boundary
undercurrents." The modelling study of Ilıcak et al. (2011) has similar conclusions and
specifically shows that the spreading of Red Sea waters is dominated by the stirring done
by surface intensified mesoscale eddies.

Summary of Section 1.2.2 Marginal Seas Outflows

• The Red Sea and the Persian Gulf feed the western Arabian Sea with
dense salty outflows.

• Because they are situated at a western boundary and equilibrate at shal-
low depths, their dynamics is known/expected (Red Sea/Persian Gulf
outflow) to be influenced by incoming eddies propagating into the Gulf
of Aden/Gulf of Oman.

• Details on how eddies spread the Persian Gulf outflow are unknown.

1.2.3 Western Boundary Coastal Upwellings

Background

During the summer monsoon, the winds are dominantly northeastward near the western
boundary of the Arabian Sea (Figure 1.3). As such, they drive upwellings off the coasts
of Somalia and Oman through Ekman divergence mechanism (Schott and McCreary,
2001). The atmospheric jet crossing the Arabian Sea (Findlater Jet) leaves a region of
strong positive wind curl shoreward, reinforcing the upwelling through Ekman pumping.
Figure 1.11 shows climatological sea surface temperature (SST) in January and July.
SST is clearly reduced all along the Arabian Sea western boundary (compared to offshore
values) in July (Figure 1.11b) and reveals wind driven upwellings. During the winter
monsoon, the winds reverse and are downwelling favorable in this area.
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Figure 1.11: Sea surface temperature maps in the Arabian Sea in (a) January and (b) July. Seasonal
upwellings are visible along the coasts of Somalia and along the Arabian Peninsula in July. Dataset is
the World Ocean Atlas, release 2013 (WOA2013, Antonov et al., 2010; Locarnini et al., 2010) at 1/4◦ of
horizontal resolution.

Arabian Sea upwellings are particularly important in driving a summer phytoplank-
ton bloom (Resplandy et al., 2011). They also play a major role in ocean-atmosphere
interactions during the monsoon (Vecchi et al., 2004) and strongly impact the mixed
layer heat budget (de Boyer Montégut et al., 2007). Furtermore, they influence Indian
rainfall variability (Izumo et al., 2008), triggering strong societal consequences. In cou-
pled ocean-atmosphere general circulation models, warm biases along eastern boundaries
(where major upwelling systems take place but are not properly resolved due to the
coarse resolution) were shown to be responsible for uncertainties and biases in precipita-
tions (Large and Danabasoglu, 2006). We can expect a similar significance of the Arabian
Sea upwellings, especially for the monsoon rainfall variability which is still modestly pre-
dictable.

Despite their importance, the Somali and Oman upwelling structures remain poorly
documented (Shi et al., 2000) and no comprehensive study has been dedicated to the
understanding of their dynamics. In Chapter 5 we investigate the Oman upwelling system
and in the following we briefly introduce why we expect a different regime than in eastern
boundary upwelling systems.

Why are western boundary upwellings specific?

The Somali and the Oman upwellings have specific features making them fundamentally
different from more deeply studied Eastern Boundary Upwelling Systems (EBUS, Canary,
Benguela, Peru-Chile and California upwelling systems, see the review of Capet et al.,
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2008a). In fact, the Somali and the Oman upwellings are (i) active only seasonally and (ii)
coupled with a very intense and turbulent surface circulation linked with their position
on a western boundary (Elliott and Savidge, 1990, on the Oman upwelling). EBUS show
less seasonal fluctuations and are dynamically more isolated because of their position on
eastern boundaries. Schematically, as explained in Section 1.2.1, turbulence generated
at eastern boundaries is radiated westward, whereas western boundaries receive turbu-
lent features generated in the inner basin. Specifically in EBUS, mesoscale turbulence8,
whose strength is measured by eddy kinetic energy, is continously radiated offshore due
to β (Kelly et al., 1998). On the contrary, in western boundary upwellings, the locally
generated mesoscale turbulence is trapped, thus increasing the eddy kinetic energy of
the system. Furthermore, we expect the Arabian Sea upwellings to be influenced by re-
motely forced signals. More specifically, the interaction of incoming Rossby Waves with
a western boundary current system has been suggested by McCreary and Kundu (1985)
for the upwelling off Somalia. It has also been highlighted by Marchesiello et al. (2000)
for the East Australian Current associated upwelling : "At eastern boundaries, coastal
upwelling currents leak consistently offshore by means of the radiation of Rossby waves
[. . . ] At western boundaries, according to McCreary and Kundu (1985), the same mecha-
nism does not occur since the Rossby waves propagate onshore". However, the impact of
Rossby waves on SST during upwelling events has not been precisely quantified yet and
still deserves a particular attention.

Summary of Section 1.2.3 Western Boundary Coastal Upwellings

• Summer monsoonal winds trigger upwellings along the western boundary
of the Arabian Sea (Somalia and Oman).

• Western boundary upwellings are poorly studied and their dynamics is
expected to differ significantly from eastern boundary upwellings (Rossby
waves propagating onshore).

• Impacts on oceanic heat balance and ocean-atmosphere interactions
should be strong.

8mainly comprised of eddies generated by baroclinic instability of the upwelling jet (Marchesiello et al.,
2003).
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1.3 Aims of the PhD

In this general introduction, we highlighted that the western Arabian Sea is dynamically
complex. Three main processes are expected to play an important role in the variability
of the dynamics : Rossby waves, and westward (thus, onshore) drifting of remotely gen-
erated mesoscale turbulence, marginal seas outflows and western boundary upwellings.
Figure 1.12 summarizes these processes and illustrates the fact that they are stronly sus-
pected to interact with each other. Those interactions are conceptually rather simple to
figure out (e.g., interaction of the Oman upwelling with remotely forced turbulence) but
specific treatments lack and a lot of issues remain unresolved. This PhD dissertation aims
at adressing this issues.

Our main investigation tool is numerical modelling. It allows to either reproduce the
full dynamics in its whole complexity or to isolate specific mechanisms. Thus, we believe
that this tool is specifically well designed for studying the interactions between processes.
Chapter 2 describes the numerical framework we use in this dissertation.
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Figure 1.12: Schematic summarizing the different dynamical features of the western Arabian Sea presented
in the introduction of this dissertation (Rossby waves, outflows and upwellings) and showing the topics
of investigation of each chapter in their geographical and dynamical contexts.

The first issue we tackle is related to the life cycle of the dominating mesoscale struc-
ture in the Arabian Sea, namely, the Great Whirl, which has been introduced in Sec-
tion 1.1.2. This anticyclone remains at a quasi steady place along the coast of Somalia
during the Southwest (summer) Monsoon. The onset, reinforcement and demise of this
structure remain unexplained, and influences of local forcing (wind stress and wind stress
curl) vs. remote forcing (Rossby waves) is still debated. We address these questions in
Chapter 3. Results were published in the Journal of Geophysical Research (Vic et al.,
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2014b). We notably find that Rossby waves significantly pace the life cycle of the Great
Whirl and quantify the wind-driven intensification of the eddy. Far from being exclusive
to this eddy, the results give insights on remote influences on mesoscale dynamics further
north in the area (as recently illustrated by L’Hégaret et al., 2015).

The general question of how Persian Gulf Water spreads in the Gulf of Oman is ad-
dressed in Chapter 4. We investigate how remotely formed mesoscale eddies propagating
into the Gulf of Oman interact with the outflow. Their basin-wide size makes them inter-
act with the topography leading to the formation of submesoscales participating actively
to the spreading of outflowing waters.

Dynamics of the upwelling off Oman is investigated in Chapter 5. The philosophy of
this study is to characterize the upwelling (focusing on the vertical structure of tempera-
ture and currents, and energy conversion) in regards to deeply studied eastern boundary
upwelling systems and to bring points of comparison. Specifically, we investigate how
Rossby waves influence the upwelling and the surface layer heat budget. Rossby waves
are found to modulate the sea surface temperature response to wind forcing.

To summarize, the guideline of this dissertation is to analyse turbulent processes in the
western Arabian Sea under the assumption that the western boundary brings dynamical
complexity. Namely, different processes are interacting with each other unlike in eastern
boundary systems that are more isolated.
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Numerical Framework

Contents
2.1 Model and Configuration . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 The Regional Oceanic Modeling System . . . . . . . . . . . . . 32

2.1.2 The Arabian Sea Configuration . . . . . . . . . . . . . . . . . . 34

2.2 Nesting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Post-processing Lagrangian Diagnostics . . . . . . . . . . . . . 42

31



Chapter 2. Numerical Framework

2.1 Model and Configuration

In this section we briefly present the essential characteristics of the Regional Oceanic Mod-
eling System (ROMS) as well as numerical options used in the configuration set up. For a
complete description of the model, the reader is refered to Shchepetkin and McWilliams
(2005); Penven et al. (2006); Debreu et al. (2012) and further technical information can
be found on the ROMS-AGRIF website1. We willingly do not extend much on the con-
figuration set up as it is done in a classic way, regarding the history of regional modeling
studies using ROMS (e.g., Marchesiello et al., 2003; Penven et al., 2005; Capet et al.,
2008b; Mason et al., 2011). By classic we mean that the ocean is forced by the atmo-
sphere (there is no coupling) and that surface and boundary conditions are provided by
climatological observational (or reanalysed) datasets. The spirit of this modeling strategy
is to study the balanced oceanic response to atmospheric forcing. On the contrary, I pay
more attention to the procedure of an offline one-way nesting done on the northwestern
Arabian Sea (section 2.2).

2.1.1 The Regional Oceanic Modeling System

Physics

ROMS solves the primitive equations on a curvilinear terrain-following coordinate system
(called σ coordinates). The three primary assumptions required to derive the primitive
equations from the Navier-Stokes equations are (i) the Boussinesq approximation, (ii) the
hydrostatic approximation and (iii) the incompressibility of the fluid :

• The Boussinesq approximation states that density variations are sufficiently small
to be neglected in the Navier-Stokes equations, except in the gravity force. An
underlying assumption is that inertia (horizontal acceleration of fluid motions) is
far less than gravity 2.

• The hydrostatic approximation comes from the assumption that the ocean is a
thin layer of fluid with horizontal scales dominating over vertical scales. As such,
variations of pressure p on the vertical are only due to changes in density ρ (not to
inertial motions), so ∂zp = −ρg (g is the acceleration of gravity).

• Incompressibility of fluid relies on the assumption that the mass of a particle does
not vary with pressure. This leads to simplify the continuity equation to a non-
divergence condition of the fluid velocity, ∂xu + ∂yv + ∂zw = 0. This diagnostic

1http://www.romsagrif.org/index.php/documentation
2One may verify that this is trivial, considering a variation of fluid velocity of 1 m s−1 over 1 h

(already a substantial acceleration in the scales we model) gives an acceleration in O(10−4 m s−2)� g =
O(10 m s−2)
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2.1. Model and Configuration

equation allows to infer the vertical velocity w from the horizontal velocity (u, v),
which are determined by the prognostic equations of momentum.

Primitive equations are thus composed of the conservation of horizontal momentum,
hydrostatic balance, incompressibility of fluid, an equation of state for seawater linking
temperature and salinity to density at a given depth and transport equations for tracers.
Dynamics in a given basin is forced at the surface by the atmosphere (wind stress, fresh-
water flux and heating) and at open boundaries by currents associated with temperature
and salinity properties.

Numerics

The primitive equations are discretized horizontally on the Arakawa C-grid that is well
suited to solve problems with horizontal resolution smaller than the first radius of defor-
mation (Arakawa and Lamb, 1977), hence motions we are interested in (meso to subme-
soscale). Discretization on the vertical is done on a staggered grid with distinct ρ and w
levels (called the Lorenz discretization). Equations are written in flux form, allowing to
limit the number of averaging operations while ensuring a better conservation of momen-
tum and tracers. Temporal discretization uses a split-explicit time step with leap-frog
predictor and 3rd order Adams-Moulton corrector (Shchepetkin and McWilliams, 2005).
Barotropic equations are solved using a smaller time step than the full 3D equations
(baroclinic). Without going into details, the idea is to propagate the barotropic equations
several times between two baroclinic time steps3 before reinjecting prognostic variables
(η, u, v, · denotes a vertical average) in the baroclinic equations. In order to avoid aliasing
due to the high frequency propagation of the barotropic equations, η,u and v are aver-
aged over one baroclinic time step before being reinjected (Shchepetkin and McWilliams,
2005).

The advection scheme is 3rd order upstream biased. It allows the generation of steep
gradients (ubiquitous features at scales smaller than the mesoscale) while being diffusive
implicitely at a scale of a few grid points (Shchepetkin and McWilliams, 1998). As the
implicit diffusion is commonly assessed to be sufficient, explicit lateral viscosity is not
needed (unlike in centered schemes), except in sponge layers near the open boundaries.
The advection operator can be split into a purely advective part and a diffusive part.
The latter is naturally along σ coordinates, producing a spurious (not physical) mixing,
sometimes in a diapycnal direction (where σ levels are the most tilted, over sloping to-
pography). For tracers (temperature and salinity), it can be rotated along geopotentials

3In practice, the ratio of the baroclinic/barotropic time step is tighted to the wave speed of inter-
nal/external gravity waves, that is

√
g′h/
√
gH, H and h being the ocean depth and the thickness of the

equivalent depth, and g′ being the reduced gravity (in shallow-water models). Considering g′ = O(10−3g)
and h = O(10−1H) gives a ratio in O(10−2).
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(Marchesiello et al., 2009) or isopycnals (Lemarié et al., 2012) to better conserve water
mass properties. This can be of crucial importance for long term integration in regions
with wide water mass spectra near the bottom topography (e.g., outflows).

Open boundary conditions are treated using a mixed active/passive scheme (March-
esiello et al., 2001). Larger-scale information (u, v, u, v, T, S, η) is prescribed to force the
model, while dynamics generated in the model is allowed to radiate outside. The explicit
lateral viscosity increases smoothly close to the lateral open boundaries to fade out the
reflection of internal signals.

The turbulent closure scheme mostly used4 to parameterize subgrid-scale vertical mix-
ing is the K-Profile Planetary (KPP) boundary layer (surface and bottom) scheme (Large
et al., 1994) connected to an interior mixing scheme. It produces vertical viscosity coef-
ficient (entering the momentum equations) and vertical diffusion coefficient for potential
temperature and salinity. The boundary layer depth (often called mixed-layer depth)
varies with surface momentum and buoyancy forcing and is determined by comparing a
bulk Richardson number (Ri = N2/(∂zu)2, N being the Brunt-Väisälä frequency, measur-
ing stratification) to a critical value. At the base (top) of the surface (bottom) boundary
layer, both diffusivity and its gradient are forced to match the interior values. In the
interior, vertical diffusivity is computed taking into account three processes generating
vertical mixing : vertical shear instability, internal wave breaking and hydrostatic insta-
bility (convective adjustment). Note that there is no tide in the simulations so that there
is diapycnal mixing induced by breaking tidal internal waves.

2.1.2 The Arabian Sea Configuration

Running ROMS requires a grid (coordinates and associated metrics), surface and op-
tionally boundary forcing and an initial state (T, S and horizontal velocity field). For
the Arabian Sea configuration, all these fields were built using Penven et al. (2008)’s
pre-processing tools.

Grid and initial state

The grid extends meridionally from 10◦S to 28◦N and zonally from 38.3◦E to 77.6◦E
(Figure 2.1). It covers the whole Arabian Sea and partly encompasses marginal seas (Red
Sea and Persian Gulf). Dynamical connections between both hemispheres are important
in the Indian Ocean (e.g., Lighthill, 1969). As such, the study of the Arabian Sea
requires to resolve the dynamics as far south as 10◦S to properly model these exchanges,
occuring mainly through the cross-equatorial Somali Current (Schott et al., 1990). The

4Generalized Length Scale (GLS) scheme is also available.
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choice of representing partially adjacent seas (thus not fully resolving their dynamics) is
a compromise in terms of computation cost. In fact, embedding the whole Red Sea (resp.
Persian Gulf) would have led to enlarge the grid importantly westward (resp. northward),
unfortunately filling it mostly with land points (useless information but still entering the
computation). These compromises allow to barely model the exchanges although we
keep in mind that Red Sea and Persian Gulf outflows are poorly resolved in the parent
simulation. The grid has 640 × 640 horizontal ρ-points and 56 σ-levels on the vertical.
The mean horizontal resolution is 6.6 km and the vertical resolution varies between 2 m
at the surface to 500 m at the bottom above the deepest bathymetry (5403 m). Stretching
occurs only on the surface layers above hc = 300 m, with stretching parameters θs = 6.5
(surface) and θb = 0 (bottom). We use the parameter Vtransform=2 which provides a
better repartition of levels below the thermocline.

Figure 2.1: Bathymetry of the Indian Ocean (ETOPO2 dataset, Smith and Sandwell, 1997). Dashed
black lines are the equator and tropics of Cancer (23◦N ) and Capricorne (23◦S ). Red and orange
rectangles are the parent and child configuration domains respectively. Child configuration set up is
presented in section 2.2.

The bathymetry comes from ETOPO2 dataset (Smith and Sandwell, 1997) at 2’ of
horizontal resolution, interpolated on the model grid. To avoid too steep gradients in the
topography that may lead to pressure gradient errors (Beckmann and Haidvogel, 1993),
the bathymetry h is smoothed under the constraint δh/2h < 0.2. More generally, for
numerical consistency of the solution, one may avoid to introduce forcing with spatial
scales near or under the grid point size. In fact, the smallest spatial scales resolved are at
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a few grid points so forcing below this scale is meaningless. Here, the effective resolution of
the bathymetry dataset (∼ 3.7 km around mean latitude) is less than the model resolution
(6.6 km) and thus requires some smoothing5.

Initial state is at rest (u, v, u, v, η = 0) and (T, S) are derived from the monthly
climatology World Ocean Atlas 2009 (WOA09, Antonov et al., 2010; Locarnini et al.,
2010) in January.

Surface and lateral boundary forcing

We chose to force the simulation with climatological fields (no interannual variability)
to focus on the intrinsic variability of the ocean. Moreover, the monsoon regime of the
Arabian Sea is typically an ocean-atmosphere coupled phenomenon (Vecchi et al., 2004)
involving interannual feedbacks (Beal et al., 2013). Hence, adding interannual atmospheric
forcing with no oceanic feedback would lead to get an unbalanced oceanic solution at intra-
annual scales. Wind stress comes from the Scatterometer Climatology of Ocean Winds
(QuikSCOW) data set (Risien and Chelton, 2008), computed on 122 months (September
1999 to October 2009) of QuikSCAT scatterometer data with a horizontal resolution of
1/4◦. This climatology contains persistent small-scale features (Chelton et al., 2004) such
as island corner acceleration near Socotra Island and resolves the influence of orography
of the Arabian Peninsula (capes in Oman) and the Horn of Africa. Such accelerations
have been shown to influence importantly the onshore upwelling dynamics of the US West
Coast (Renault et al., 2015) and we expect similar significance for the Oman upwelling
(Chapter 5). Atmospheric fluxes (net heat flux, short wave radiation and freshwater
flux, evaporation minus precipitation) come from the in-situ International Comprehensive
Ocean Atmosphere Dataset (ICOADS) at 1/2◦ of resolution (Worley et al., 2005). Eastern
and southern boundaries are forced (u, v, u, v, η) with Simple Ocean Data Assimilation
(SODA) data set release 2.1.6 [Carton et al., 2000]. To get temporal consistency between
forcings, we computed a monthly climatology from this dataset on almost the same period
as QuikSCOW. Northern (in the Persian Gulf) and western (in the Red Sea) boundaries
are closed.

According to Dai and Trenberth (2002) who have listed the 200 most important rivers
in the world and their mean rate of flow, the major freshwater discharge in our configura-
tion domain is brought by the Indus River (Pakistan) and represents an average of 0.0033
Sv (104 km3 yr−1 = 3300 m3 s−1). This is not much compared to the major rivers inflows
(for instance, the Congo River rate of flow, 2nd largest in the world, is 40000 m3 s−1, cf
Appendix A). Actually, the major rivers which take source in the Himalaya Moutains

5Bathymetry is seen here as a forcing but it is also true for wind issues near the coast : the so-called
blind zone for satellites implies an extrapolation that involves small spatial scales, both in the wind field
and in the oceanic response (e.g., Desbiolles et al., 2014)
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mainly discharge in the Bay of Bengal. Therefore we consider that the impact of river
inflows can be neglected.

Numerical options

We mainly kept the basic options offered in the ROMS-AGRIF release of ROMS. Given
the diffusivity of the advection scheme, no explicit lateral viscosity nor tracer diffusivity
is added. We have tested the sensitivity of the salt tongue in the northern Arabian Sea
(due to the spread of the Persian Gulf outflow) to the tracer advection scheme. We tested
the genuine 3rd order upstream biased scheme (UP3) and its variants, whose diffusion
parts are rotated, either along geopotentials (RSUP3-GEO, Marchesiello et al., 2009) or
along isopycnals (RSUP3-ISO, Lemarié et al., 2012). UP3 severely alters the hydrological
properties of the salt tongue (similarly to the results by Couvelard et al., 2008), whereas
RSUP3-GEO and RSUP3-ISO better conserve properties on yearly time scales. We finally
chose RSUP3-GEO which was less expensive than RSUP3-ISO6. The background vertical
mixing is set to zero for momentum and tracers. Sponge layers near open boundaries
have a width of 150 km (25 grid points) with a maximum diffusivity of 1000 m2 s−1. The
bottom stress is linear, τ b = −ρ0CDu with a drag coefficient CD = 3 10−4 m s−1 (default
value). In Chapter 4 we discuss the impact of the bottom stress parameterization on the
dynamics of boundary layers.

Computational performances

ROMS is efficiently parallelized for distributed memory and message-passing interface
(MPI) architectures. Computational resources were provided by the Pôle de Calcul In-
tensif pour la Mer (CAPARMOR cluster) at Ifremer, Brest, France. We use a two-
dimensional partitioning into subdomains and 64 processors were used for the parent
simulation. An adjustement stage of ∼ 10 days, consisting in the radiation of gravity
waves generated by the wind burst (given the state of rest of the ocean), requires a small
time step (100 s). Then a time step of 500 s is used, requiring about 20 wall-clock hours
to complete a year’s simulation.

2.2 Nesting Procedure

The nesting procedure is one-way and offline and follows Mason et al. (2010). This means
that the high resolution child simulation is forced at lateral boundaries by the coarser
resolution parent solution but has no feedback on it. Moreover, the child simulation is

6At the time we ran the simulation (Fall 2012), RSUP3-ISO still had bugs and was indecently expen-
sive.
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run independently of the parent one. The one-way procedure only allows downscaling
effects (instead of downscaling and upscaling effects in two-way nesting procedures) but
presents highest flexibility in terms of grid dimensions and orientations (the grid can be
rotated to maximise the ratio of ocean to land points) and in computational resources.
All tools used to build grid and forcing variables are derived from Jeroen Molemaker’s
Roms2roms toolbox7. Although surface forcing is done in a classic way, using the same
datasets as in the parent solution, the grid and boundary forcing files necessitate particular
attention.

Grid and initial state

The grid is rotated clockwise 22◦ compared to the parent grid (both grids in Figure 2.1)
to maximise the number of ocean points. As we are particularly interested in the Persian
Gulf outflow and the Oman upwelling, the grid orientation and dimension is a compromise
to cover the whole Gulf of Oman including the Strait of Hormuz and the Oman coast until
Yemen (Figure 2.2 for geographical information). The grid has 502×702×56 ρ-points and
the horizontal resolution is 2 km, approximately one third of the parent resolution. This
grid refinement coefficient (∆xparent/∆xchild = 3.3) is in the standards for regional nestings
(ranging from 2 to 5, according to Debreu and Blayo, 2008). Stretching parameters for
vertical distribution of σ-levels are the same as in the parent configuration.

Bathymetry is from the SRTM30-plus dataset at 30’ (∼ 1 km) of resolution8. It is
based on the Sandwell and Smith (2009) global 1-minute grid corrected by higher reso-
lution data wherever available (local depth soundings, Becker et al., 2009). A Gaussian
smoothing with a width of 4×∆x is applied to avoid aliasing as ∆x is greater than the
bathymetry resolution. Then, to avoid pressure gradient errors caused by too steep to-
pography gradients, bathymetry is smoothed under the constraint ∆h/2h < 0.2 (same as
in the parent configuration). Special treatment is required near the boundaries to match
the parent and child bathymetries. Indeed, higher resolution of the dataset (SRTM-30
resolution is 4 times higher than ETOPO2) increases the steepness of the continental
shelf and isolated seamounts for instance, leading to depth mismatches between parent
and child grids. This becomes a problem where bathymetry mismatches lie along open
boundaries. To recover continuity of the bathymetry, a correction is applied following
Mason et al. (2010) :

hchild = αhchild + (1− α)hiparent, (2.1)

where hchild and hiparent are the child bathymetry and parent bathymetry interpolated on
the child grid respectively. α is a function of the distance to lateral boundaries, varying

7available at http://molemaker.org/software.html
8available at http://topex.ucsd.edu/WWW_html/srtm30_plus.html
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Figure 2.2: Bathymetry of the parent and child domains (inside and outside orange rectangle, respec-
tively). Gray (black) lines are the parent (child) grid bathymetry isolines 1000, 2000, 3000 and 4000 m.
Inside the child domain, the bathymetry near the boundaries is matched to the parent grid bathymetry,
following the procedure in Mason et al. (2010). GO, PG and SH stand for Gulf of Oman, Persian Gulf
and Strait of Hormuz respectively.

between 0 at the boundaries to 1 in the interior9. Figure 2.2 illustrates how the match is
done for some isobaths (1000, 2000, 3000 and 4000 m).

The interpolation process used to build the 3D initial state is generic to interpolate
data from a ROMS grid to another ROMS grid. It is therefore employed to build the
lateral boundary forcing files (next paragraph). It consists in three separated stages at a
given time step. First, all variables are horizontally interpolated from the parent to the
child grid at each level (still in the parent σ-coordinate system). Second, all 3D variables
are vertically interpolated from the parent σ-coordinates to z-coordinates. Lastly, they
are interpolated from z-coordinates to the child σ-coordinates. If there is no parent
information available at a given point (often near the bottom where bathymetries may
mismatch in the interior), a nearest neighbour extrapolation is done to fill gaps while
avoiding creation of potential extrema.

Lateral boundary forcing

The child simulation is forced at the northern, southern and eastern boundaries by the
parent simulation with a 10-day frequency. We use the same procedure for interpolation
as shown precedently (horizontal, then σparent → z → σchild interpolation) at each time

9In practice, α is a tanh with a characteristic decay scale of 50 km.
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step. To ensure volume conservation inside the child domain, baroclinic and barotropic
normal velocities (u⊥, u⊥) are corrected :

(u⊥, u⊥) = (u⊥, u⊥)−
∫

Γ
(u⊥, u⊥) · h dΓ

/∫
Γ
h dΓ (2.2)

where Γ follows the northern, southern and eastern boundaries and h is the water depth.
Consequently, the net inflow through these boundaries is zero.

At the western boundary, ocean points are confined to the Strait of Hormuz (SH)
in a shallow region (< 100 m, Figure 2.2). As the parent outflow is not satisfactory
in terms of hydrology and volume transport, we build synthetic boundary forcing fields
(T, S, ζ, u, v, ū, v̄) representative of the Persian Gulf outflow in the SH. The only data in
the SH that has a sufficient temporal coverage to depict an annual cycle are the Acoustic
Doppler Current Profilers (ADCPs) moored during the period December 1996 – March
1998 (Johns et al., 2003). Other cruises were conducted in regions embedding the SH but
they are too temporally sparse for our purpose (e.g., Pous et al., 2004a). We use this
data to assess a posteriori the validity of the prescribed boundary forcing regarding the
modeled outflow in the Gulf of Oman. Given the sparseness of the data, we build our
synthetic forcing on the following assumptions :

1. There is no tangential velocity at the boundary, u‖ = 0;

2. the analytical profiles of T–S and u⊥ depend only on time and on the vertical
(horizontally homogeneous at the boundary, modulo a geostrophic correction);

3. we assume a two-layer flow as most commonly observed, surface inflow in the Persian
Gulf and deep outflow to the Gulf of Oman (e.g., Bower et al., 2000);

4. the total transport through the boundary is zero. Indeed, even if the Persian Gulf
is an evaporative basin and thus a net inflow should balance this evaporative loss,
it is less than 0.02 Sv (Johns et al., 2003) and thus we neglect it.

Figure 7 in Johns et al. (2003) illustrates the annual cycle in T–S properties. We build
the boundary variables in 4 stages :

1. We use these data to define two linear vertical profiles associated with two seasons
(January–June and July–December). Synoptic cruise observations may overestimate
the mean velocities in the SH (Figure 10 in Johns et al., 2003) and we rather define
velocity profiles that are coherent with integrated transport in both layers (Bower
et al., 2000; Johns et al., 2003).

2. After interpolating these profiles on the child grid, we compute the gradient of η (sea
surface height) that balances geostrophically the surface flow. Then we constrain
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Figure 2.3: Synthetic northwestern boundary forcing for the child simulation : (left) salinity S, (middle)
temperature T and (right) normal velocity u⊥. Top (bottom) panels represent variables at date 01/01
(07/01). Temporal interpolation is done following Equation 2.3 to get variables at all dates.

the mean value of η to be equal to the mean of other boundaries at the same time (to
avoid having pressure gradients between boundaries that would generate large-scale
flow). S is also modified to account for a balanced thermal-wind flow in the interior.

3. We enforce the total transport to be zero by removing the mean velocity through the
boundary to baroclinic and barotropic velocities (Equation 2.2). Figure 2.3 presents
the synthetic variables at the western boundary of the child grid.

4. Lastly, we interpolate temporally between the two profiles to get any variable X(t)
every 10 days :

X(t) = X01/01

2

[
1 + cos

(2π
nt
t
)]

+ X07/01

2

[
1− cos

(2π
nt
t
)]
, (2.3)

where X01/01 and X07/01 are variables at dates 01/01 and 07/01 and nt is the number
of days in a year (360 in ROMS).

41



Chapter 2. Numerical Framework

2.3 Post-processing Lagrangian Diagnostics

In order to get a Lagrangian perspective on the fate of the Persian Gulf outflow, we
released synthetic particles in the outflow (Chapter 4). The code used is Pyticles10, de-
veloped by Jonathan Gula. Pyticles is a Python/Fortran hybrid parallelized code for
Lagrangian particles 3D advection. Processing is offline, using the 3D velocity field out-
puts from simulations to advect particles. It has been used to illustrate and quantify the
submesoscale vertical pump in filaments (Gula et al., 2014). In this section, I give some
general characteristics of the code and describe the parameters we use.
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Figure 2.4: Particle (left) horizontal and (right) vertical coordinates (xp, yp, zp). The red point represents
a particle. xp coordinate is on the u-grid, yp coordinate is on the v-grid (horizontal C-grid) and zp
coordinate is on the w-levels.

A patch of particles is initialized11 in the model coordinates system (xu,yv,σ), where
xu and yv are coordinates on u- and v-grid respectively. Each particle is described by its
position (xp, yp, zp) at a given time t (Figure 2.4 shows the coordinate system). The 3D
velocity field is extracted from simulation outputs with a given frequency (the higher the
better) and is linearly interpolated in time between two outputs with a higher frequency.
We use the child simulation outputs at a 12 h-frequency and interpolate 100 times between
two outputs. As such, the velocity field is updated every ∼7 minutes. The interpolation
frequency is chosen following the reasoning that particles must not cross more than a
grid cell between two time steps to ensure the continuity of trajectories (this is especially
important near fronts). As the maximum horizontal velocity in the simulation is umax =
1.7 m s−1 and the grid size is ∆x = 2 km, the maximum time step required to verify this
condition is ∆t = ∆x/umax ∼ 20 minutes.

10available at http://web.atmos.ucla.edu/∼gula/2/codes.php
11The code can be either used in a continous injection mode with particles being added continously or

with an initial patch.
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2.3. Post-processing Lagrangian Diagnostics

The timestepping uses a 4th order Runge-Kutta (RK4) scheme. Although more expen-
sive than Adams methods (same family of predictor-corrector algorithms) of comparable
order, Runge-Kutta methods are more stable and accurate (Kuzmin, 2010). As advection
of particles requires both stability and accuracy (at the expense of higher computational
cost), RK4 method is particularly well suited. In space, linear interpolation of the velocity
field is performed at each particle location. More complex interpolation schemes are im-
plemented (cubic, spline, WENO) but they do not provide substantial changes (regarding
Jonathan Gula’s experience with the code).

The simulation consists in the mere advection of particles continuously injected in the
Strait of Hormuz during 2 years to cover the seasonal cycle of the outflow. Figure 2.5
illustrates how the distribution of particles looks like after a sufficient time of integration
for particles to populate to whole Gulf of Oman.

Figure 2.5: Snapshot of particles distribution after almost 2 years of integration superimposed on salinity
at 150 m. 399 Particles are released every 12 h in the Strait of Hormuz. We only keep particles that "live"
more than 10 days (meaning that they do not go back to the strait in surface layers) and with a salinity
greater than 38.5 psu (ensuring they are in the outflow). We only plot 1/20th of particles for clarity of
the map. The age of particles (shades of grey) is the time spent in the bassin since their release.
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Chapter 3. Mesoscale Dynamics in the Western Arabian Sea

3.1 Introduction

In Chapter 1, we presented an important feature of the Arabian Sea that is the reversing
seasonal wind forcing. We also explained why Rossby waves play an important role in the
Arabian Sea. The dynamics of the western Arabian Sea thus involves local forcing by the
wind and remote forcing by the waves. In this chapter, we investigate the dynamics of a
particular structure, the Great Whirl, which involves both mechanisms in ways that we
clarify in article Vic et al. (2014b). The Great Whirl is a well-known persistent mesoscale
anticyclone off the coast of Somalia during the summer monsoon. Its onset has been
controversial for decades. On the one hand, some authors claim dominating local forcing
mechanism (instability of the Somali Current or forcing by the strong negative wind stress
curl, Schott, 1983; Luther and O’Brien, 1989; Wirth et al., 2002). On the other hand,
a tight link between the arrival of a downwelling Rossby wave at the African coast and
the onset of the Great Whirl has been observed (Schott and Quadfasel, 1982; McCreary
et al., 1993; Beal and Donohue, 2013). Moreover, the sustainment of the eddy and its
demise remain poorly studied. Using the numerical simulations described in Chapter 2,
we find that the arrival of the downwelling Rossby wave is indeed significant in setting
the onset of the Great Whirl (position and time). Nonetheless, the wind stress curl is of
primary importance to reinforce the eddy. We also found that the collapse of the Great
Whirl is linked with the arrival of an upwelling Rossby wave.

In a more general perspective than the life cycle of a single eddy, the results give
insight into the importance of the wind stress curl and Rossby waves to impact mesoscale
dynamics in the Arabian Sea. Recently, L’Hégaret (2015) and L’Hégaret et al. (2015)
specifically analyzed how strong wind stress curl can reinforce eddies that have the same
polarity.

These results are rather specific to the Arabian Sea, which has a short zonal extent and
is situated at low latitudes. They contrast with the general functioning of large-scale sub-
tropical and subpolar oceanic gyres. In short, these gyres are forced by large-scale winds,
setting the oceanic gyre circulation and in particular the eastern and western boundary
currents. These boundary currents are known to be unstable (baroclinic instability often
seems to dominate) and account for the production of the majority of mesoscale eddies
(Spall, 2000; Smith, 2007; Tulloch et al., 2011). Waves and winds are not known to be
significant in the mesoscale variability.

3.2 Article Published in Journal of Geophysical Re-
search
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Abstract The Great Whirl (GW) is a persistent anticyclonic mesoscale eddy that is observed seasonally in
the Arabian Sea during a period embedding the 3 months of the southwest monsoon (June–July–August)
at a quasi-steady location. Its dynamics remain unclear despite it being one of the largest coherent vortices
in the world ocean. Realistic regional numerical experiments using ROMS are performed to investigate the
life cycle of the GW, which is not well resolved by sparse available in situ measurements in the region. Using
a set of sensitivity experiments and an accurate temporal characterization of the eddy properties (including
position, radius, depth, and vorticity) we (i) confirm the role of basin-scale downwelling Rossby waves in the
GW generation, (ii) clarify the role of the monsoonal strong anticyclonic wind in its maintenance and baro-
tropization, and (iii) suggest a connection between basin-scale Rossby wave dynamics and GW collapse.

1. Introduction

The circulation in the Arabian Sea is highly seasonal due to the reversing winds in the region, blowing
mainly from the southwest in summer (southwest monsoon, SWM, commonly occurring from June to
August) and from the northeast in winter (northeast monsoon, NEM, from December to February) [Bruce,
1983]. The basin circulation mainly follows the large-scale wind stress curl pattern, being cyclonic during
the NEM and anticyclonic during the SWM [Shetye et al., 1994]. Circulations during the spring and fall inter-
monsoons (SIM, from March to May and FIM, from September to November, respectively) are often inter-
preted as relaxation of wind forced circulations during the monsoons [Lee et al., 2000].

The western boundary current along the Eastern African Coast, between the equator and 429�N (depend-
ing on the season), known as the Somali Current (SC), also reverses [Schott, 1983]. This seasonal shift of the
currents is a distinguishing feature of the Arabian Sea due to the wind seasonality (the word monsoon
comes from the Portuguese monç~ao, itself from the Arabic mawsim which means season). To first order, it
can be explained by the low latitude of the region, which implies a rapid adjustment of the dynamics by
planetary waves [Lighthill, 1969]. It has however recently been shown that retroaction at interannual time
scales exist [Beal et al., 2013]. During the SWM, the SC flows northward and is accompanied by a coastal
upwelling triggered by the winds parallel to the coast (Figure 1).

At the northern end of the SC, during the SWM, a remarkable mesoscale anticyclonic eddy has been
observed with in situ [Leetmaa et al., 1982; Schott and Quadfasel, 1982; Wirth et al., 2002] and satellite
[Schott, 1983; Beal and Donohue, 2013] data. The position of the so-called Great Whirl (as first described by
sailors), located close to the Somali coast between 5�N and 10�N and embedded in the very turbulent envi-
ronment of the western boundary upwelling (winds blow parallel to the coast in a direction triggering
upwelling), is quasi-steady from the onset of the monsoon until the end of October, about 1 month after
the end of the SWM. Being the dominant persistent mesoscale structure of the region, it has been studied
for decades.

The onset of the GW, its life cycle, and the mechanisms underlying its collapse are issues which have
received attention, but which are not yet totally resolved. In particular, the respective role of local forcing by
the wind versus remote effects induced by Rossby waves remains to be settled. Schott and Quadfasel [1982]
observed in situ westward propagating signals after the onset of the SWM, which they interpreted as a pos-
sible first-mode Rossby wave that reflects at the coast into shorter modes and leads to the formation of
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eddies at the boundary. A numerical study of McCreary et al. [1993] highlighted the arrival of annual Rossby
waves from the tip of India which could be a remote forcing of many structures at the western boundary of
the basin. This has recently been confirmed by the analysis of 18 years of satellite data that shows positive
sea surface height anomalies reaching the coast and then swirling into what becomes the GW [Beal and
Donohue, 2013]. In a more general framework, the importance of wave-like signals emerging from the east-
ern side of the basin in the dynamics of the Arabian Sea has also been highlighted by Kim et al. [2001] and
Rao et al. [2010] and is consistent with the low-latitude planetary wave dynamics, e.g., in terms of high
propagation speed [Lighthill, 1969].

On the other hand, the wind has often been considered as the dominant forcing of the GW because the
eddy is located where the wind stress curl is the most negative, hence anticyclonic favorable [Schott,
1983; Luther and O’Brien, 1989]. The review of Schott and McCreary [2001] concluded that local forcing
dominates the generation and variability of the GW. The Findlater Jet is defined as the monsoonal south-
westerly wind maximum in the Arabian Sea [Findlater, 1969]. It is characterized by a zero wind stress curl
along its axis that separate the two regions of different wind stress curl polarity (negative southward and
positive northward). The position of the GW seems to be constrained by this change of wind stress curl
sign and is confined in the southern area [Schott and McCreary, 2001; Beal et al., 2013, their Figure 8]. The
winds can also play a remote role in reinforcing the waves during their propagation across the Arabian
basin [Brandt et al., 2002].

Figure 1. Wind stress (arrows) and wind stress curl (contours) derived from QuikSCAT climatology (see Table 1 for details) and averaged
for the periods (a) NEM (December–February), (b) SIM (March–May), (c) SWM (June–August), and (d) FIM (September–November). Black
contour is the zero wind stress curl.
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The GW has also been considered as a manifestation of the local western boundary current instability
regime [Wirth et al., 2002]. The influence of the slanted coastline (roughly southwest-northeast) and the
presence of Socotra Island on this regime have also been discussed in McCreary and Kundu [1988] and
Luther and O’Brien [1989]. Their geomorphological constraint could also play a role in the steadiness of the
eddy.

Finally, the collapse of the GW is not clear either. Prior to collapse, it sometimes moves southwestward
seemingly under the influence of flanking cyclones before interacting with the equatorial dynamics [Beal
and Donohue, 2013]. Other mechanisms have also been proposed such as internal instabilities [Jensen,
1993; Wirth et al., 2002] and merging with the Socotra Eddy, another remarkable steady anticyclonic eddy
north of Socotra [Fischer et al., 1996].

In the present paper, we focus on the GW life cycle that is a key aspect of the mesoscale dynamics of the
Arabian Sea, successively addressing the issues of generation, persistence, and collapse of the eddy. The
use of a numerical model allows a consistent spatiotemporal view contrary to in situ measurements that are
sparse in the region. In the next section, we present the model and the Arabian Sea configuration used
here, along with a brief assessment of the simulation and a description of the seasonal dynamics as seen in
the model. Then we focus on the GW life cycle before disentangling the role of remote versus local forcing
on the regional dynamics using experiments that have been designed in such a way that those forcings can
be independently switched off.

2. The ROMS Model

We use the version 3.0 of the Regional Ocean Modelling System - Agrif [ROMS, see Shchepetkin and McWil-
liams, 2005 for a complete description] (branch of ROMS developed by the Institut de Recherche pour le
D�eveloppement [IRD] and INRIA; information can be found at http://www.romsagrif.org/). ROMS solves the
primitive equations on an orthogonal curvilinear coordinates system. Its vertical component is terrain-
following to better represent the effect of topography on the fluid. The advection scheme is third-order
upstream-biased which acts as a subgrid-scale closure and allows not to add physical explicit eddy viscosity
nor tracer diffusivity in the interior of the domain. The diffusive part of the advection scheme is rotated
along the iso-geopotential surfaces to avoid spurious diapycnal mixing [Marchesiello et al., 2009]. Subgrid-
scale vertical mixing processes are parameterized using the K-profile parameterization (KPP) boundary for-
mulation [Large et al., 1994].

2.1. The Reference Arabian Sea Configuration
The grid has 6403640356 points covering the Arabian Sea and a part of its adjacent seas, the Red Sea, and
the Persian Gulf (10�S–28�N, 38:3�E–77:6�E, domain represented in Figure 2). The horizontal resolution is 1=
16� which corresponds to �6:6 km. We use stretching parameters hs56:5 and hb50 [Haidvogel and Beck-
mann, 1999] and the newly defined function of the vertical levels (Vtransform52) which allows a more
homogeneous distribution than the original function [Lemari�e et al., 2012]. The minimum depth at which
stretching occurs is defined with the parameter hc 5 300 m. It ensures a good representation of outflows in
the shallow straits [depth less than 200 m, Bower et al., 2000] as well as in the interior basin. Bathymetry is
taken from ETOPO2 data set [Smith and Sandwell, 1997]. It is smoothed under the constraint Dh=2h < 0:2
and the minimum depth represented is 15 m. Southern and eastern boundaries are open whereas northern
(Persian Gulf) and western (Red Sea) boundaries are closed.

We use climatological forcing to investigate the proper seasonal and interannual variability of the ocean.
Information on the data sets used for the forcing of the model and the validation is sum up in Table 1. Wind
stress is taken from the Scatterometer Climatology of Ocean Winds (SCOW) data set [Risien and Chelton,
2008], computed on 122 months (September 1999 to October 2009) of QuikSCAT scatterometer data with a
resolution of 1=4�. This climatology contains small-scale features [Chelton et al., 2004] such as island corner
acceleration near Socotra Island and resolves the persistent influence of orography of the Arabian Peninsula
and the Horn of Africa. Air-sea fluxes are taken from the in situ International Comprehensive Ocean Atmos-
phere Dataset (ICOADS) at 1=2� of resolution [Worley et al., 2005]. Boundaries are forced with Simple Ocean
Data Assimilation (SODA) data set release 2.1.6 [Carton et al., 2000]. To get temporal consistency between
forcings, we computed a monthly climatology from this data set on nearly the same period as QuickSCOW.
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Figure 2. Schematic of the summer surface circulation in the Arabian Sea. The main source for the current paths is the reviews of Schott
and McCreary [2001] and Schott et al. [2009] updated with Beal et al. [2013]. Green contoured wedges are the upwelling regions and blue
(resp. orange) disks are nearly persistent anticyclones (resp. cyclones) during the SWM. The red lines represent the boundaries of the con-
figuration used, plain lines are closed boundaries, and dashed lines are open boundaries. The inset at the top-right corner represents the
climatological wind field in July at the peak of the SWM monsoon. The major currents and steady eddies are coarsely localized and abbre-
viated this way (from the north to the south): Ras Al Hadd Jet (RAHJ), East Arabian Current (EAC), West Indian Coastal Current (WICC), Soco-
tra Eddy (SE), Great Whirl (GW), Laccadive Low (LL), Somalia Current (SC), South Equatorial Counter Current (SECC), East African Coastal
Current (EACC), North East Madagascar Current (NEMC), and South Equatorial Current (SEC). The green dashed rectangle is the area over
which surface kinetic energy is averaged in Figure 4c.

Table 1. Description of Data Sets Used for Forcing and Validation of the Model

Data Set Resolution Description

ETOPO2 1=30� Global topography data set [Smith and Sandwell, 1997]. http://www.ngdc.noaa.gov/
mgg/global/global.html

WOA09 1� World Ocean Atlas, climatological fields of in situ temperature [Locarnini et al., 2010]
and salinity [Antonov et al., 2010]. http://www.nodc.noaa.gov/OC5/WOA09/pr_
woa09.html

SCOW 1=4� Climatology of wind stress from QuickSCAT computed for the period September 1999
to October 2009 [Risien and Chelton, 2008]. Used to force the model. http://cioss.
coas.oregonstate.edu/scow/

SODA 1=2� Simple Ocean Data Assimilation data set, release 2.1.6 [Carton et al., 2000], climatology
computed on the same period as SCOW. Used to force the model at open bounda-
ries. http://soda.tamu.edu/data.htm

ICOADS 1=2� International Comprehensive Ocean Atmosphere Dataset [Worley et al., 2005], in situ
climatology. Air-sea fluxes used to force the model. http://icoads.noaa.gov/prod-
ucts.html

Aviso 1=3� Absolute Dynamic Topography [Rio and Hernandez, 2004]. Variance computed for the
same period as SCOW. http://www.aviso.oceanobs.com/en/data.html

OSTIA 1=20� Operational Sea Surface Temperature and Sea Ice Analysis Seasonal climatology com-
puted on period 2000–2008 [Stark et al., 2007] http://podaac.jpl.nasa.gov/dataset/
UKMO-L4HRfnd-GLOB-OSTIA

GDP 1=2� Global Drifter Program (Satellite-tracked surface drifting buoys) [Lumpkin and Johnson,
2013]. http://www.aoml.noaa.gov/phod/dac/index.php
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The ocean is initially at rest, with temperature and salinity fields taken from the World Ocean Atlas 2009
data set [WOA09, Antonov et al., 2010; Locarnini et al., 2010] at 1� of resolution, in January (beginning of the
simulation). This is our reference simulation (REF).

2.2. Sensitivity Experiments
In order to evaluate the impact of local and remote forcing on the GW life cycle, we set up sensitivity experi-
ments to separate the role of different forcings. We ran each experiment for 10 years following 2 years of
dynamical spin-up. All configuration parameters are identical to those of the reference simulation.

2.2.1. The NO-RW Experiment
The NO-RW experiment is designed to impede the propagation of long Rossby waves into the Arabian Sea
by insulating the western basin from Rossby waves with a meridional wall at 67�E between 2�N and 10�N
(Figure 3a). The physical consequence is the confinement of the western part of the basin from nearly any
signal generated at the eastern side. Therefore, we ensure that the dynamics in the western Arabian Sea is
nearly locally driven.

2.2.2. The NO-WIND Experiment
The NO-WIND experiment is designed to prevent the GW from being forced by local wind stress and wind
stress curl (strongly negative) during the SWM (extended from May to September). The wind is linearly
smoothed from its original value at 550 km (5� of longitude) from the coast to zero at 330 km (3� of longi-
tude) from the coast. The smoothing is done over this relatively large area in order to avoid the creation of
strong localized spurious Ekman pumping. The smoothing operator aðx; y; tÞ is defined as

ðsx
NO-WIND; s

y
NO-WINDÞ5a 3 ðsx

REF; s
y
REFÞ; (1)

ðsx ; syÞ being the wind stress in the zonal and meridional directions. a is shown for the period May–Septem-
ber in Figure 3b.

2.2.3. The MERID-COAST Experiment
The influence of a slanted coastline on the reflection of waves at the western boundary and on the gyre cir-
culation has been discussed by Cane and Gent [1984] and McCreary and Kundu [1988] but little has been
said on its impact on the GW drift. To assess its importance, we set up the experiment MERID-COAST by set-
ting a meridional coastline at the western boundary passing through Cape Guardafui (Figure 3c).

2.3. Evaluation of the Model and Description of the Basin Dynamics
Here we perform a comparison of the model solution with observed fields in order to evaluate the degree
of confidence we can give to the diagnostics described further on. This includes an assessment of the Ara-
bian Sea dynamics so as to better understand the processes governing the GW life cycle.

Figure 4 shows domain averaged kinetic energy at the surface and at 2000 m, and kinetic energy averaged
near the western boundary encompassing the upwelling region (see legend for details). This is a good proxy
to visualize the spin-up stage of the model. Starting from rest, we consider that the spin-up is done after

Figure 3. (a) The NO-RW domain with the wall in black line. (b) The damping function a by which is multiplied the reference wind stress in
the domain for experiment NO-WIND (damping is linear). (c) The domain of the MERID-COAST experiment, black line is the new coastline.
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the first 2 years as there is no significant trend even at depth where the dynamics takes more time to reach
an equilibrium. Consequently, all further diagnostics will be performed using the last 8 years of the simula-
tion. Figure 4 also highlights a strong seasonal variability with the SWM (peak of the monsoon in July)
dynamics being nearly twice as energetic as the NEM (centered in January) dynamics at the surface and
even six times more energetic at the western boundary, consistent with a strong Ekman response to wind
forcing [Beal et al., 2013]. The seasonal variability is also observed at 2000 m depth but with a less well-
defined cycle. During the SWM, the kinetic energy extrema in the upwelling area (Figure 4c) arise at differ-
ent dates and have different amplitudes depending on the year, although it should be noted that the forc-
ing is climatological. This is due to intrinsic interannual variability associated with the chaotic nature of the
forced turbulent flow [Wirth et al., 2002; Penduff et al., 2011].

As we noticed previously, the regional dynamics is highly seasonal due to the influence of monsoonal wind
forcing. For this reason, we compute seasonal means based on the four periods NEM, SIM, SWM, and FIM, as
commonly done in this region [e.g., Resplandy et al., 2011]. Figure 5 compares the climatology of Sea Surface
Temperature (SST) computed over 8 years for the model with the SST from the Operational Sea Surface
Temperature and Sea Ice Analysis product [OSTIA, Stark et al., 2007, see Table 1]. The OSTIA data set, deliv-
ered by the Met Office, has a horizontal resolution of 1=20� and combines infrared and microwave satellites
data as well as in situ data. Superimposed on these fields are the model and the Lumpkin and Johnson
[2013] surface velocity climatologies (see Table 1). This data set uses quality controlled data from drogued
drifters of the Global Drifter Program (GDP) from 1979 to June 2012. The general distribution of the model
and OSTIA SSTs agree well in the interior of the domain during all seasons. The seasonal cycle is well repre-
sented in simulations north of 5�N, with large-scale patterns of colder SST during the NEM (a and b) and
warmer SST during the SWM (e and f). This seasonal variability is seemingly driven by air-sea exchanges
[Vecchi et al., 2004]. The coastal wind-driven upwellings off the Somali and Oman coasts [Shi et al., 2000] are
spatially and seasonally consistent between model and observations during the SWM and the FIM. The min-
imum temperature in the Somali upwelling area is about 17�C, consistent with Schott and McCreary [2001].
The largest discrepancies appear in the adjacent seas during summer with a warm bias of the model of
approximately 2�C. As these seas are not entirely represented in the domain, thermodynamical processes
are partial and may account for those differences. Nonetheless, this may not influence much the inner
dynamics of the Arabian Sea since the gulfs behind Hormuz and Bab El Mandeb straits, the Gulf of Oman
and Gulf of Aden (see Figure 2 for geographical information), do not exhibit SST anomalies. The other bias
appears at the equator during the SWM where the model surface water is approximately 1:5�C colder than
the OSTIA SST. We diagnose that this anomaly comes from the open southern boundary according to the 3-
D analysis of the velocity field.

Figure 4. Kinetic energy (KE) averaged (a) at the surface on the whole domain, (b) at 2000 m depth on the whole domain, and (c) at the
surface on the upwelling area marked in green dashed line in Figure 2. Year 8 is shadowed in gray to emphasize the normality of this year
in terms of energetics as we take it to display typical scenario of the GW life cycle in Figure 8.
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Because the Ekman compo-
nent of the velocity is of pri-
mary importance in the
Arabian Sea [Hastenrath and
Greischar, 1991; Beal et al.,
2013], we choose to compare
the total velocity of the model
with the observations rather
than just the geostrophic com-
ponent (derived from the sea
surface height both in model
and altimetry) as commonly
done in model studies [e.g.,
Mason et al., 2011]. Another
reason for this choice is that
our model encompasses the
equatorial band where esti-
mating geostrophic velocity is
difficult. To this end, we use
the Lumpkin and Johnson
[2013] surface drifter climatol-
ogy that has been recently
used in the region [Beal et al.,
2013]. We find that the large-
scale circulation agrees well
during both monsoons, with
the major zonal currents
adequately represented. In
addition to these qualitative
comparisons, we compare the
model SC structure with the
equatorial observations of
Schott et al. [1990]. Based on 2
years of an array of six moor-
ings at 0� latitude between
the coast and 175 km offshore,
they computed a northward
flow of 21 Sv (1Sv5106m3s21)
between the surface and
500 m for the period 1 June to
13 September. Taking the
same area and time window,
we find a SC mean transport
of 23.1 Sv (std dev 3.2 Sv) for
the 8 last years of simulation,
in good agreement with
Schott et al. [1990].

Mesoscale persistent structures at seasonal scales are effectively conserved in those climatologies, and the domi-
nant imprint is the one of the GW close to the Somali coast at approximately 7�N during SWM. This is present in
both the model and the in situ data, surrounded by a cold tongue of upwelled water [Schott and McCreary,
2001]. The model slightly overestimates horizontal velocities compared to drifter’s climatology. This may partly
be due to the low resolution of the latter (�50km), for which mesoscale features are crudely resolved owing to
a deformation radius of�140km in the region [Chelton et al., 1998]. The Southern Gyre [recirculation of the SC,
Schott et al., 1990] south of the GW centered at the latitude of the equator is also represented in the model.

Figure 5. Climatology of Sea Surface Temperature (SST) and surface velocity computed for
(left) the model and (right) OSTIA (SST) and the Lumpkin and Johnson [2013] surface drifter
climatology for each season (from top to bottom: NEM, SIM, SWM, and FIM).
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Figure 6 shows the sea surface
height (SSH) variance com-
puted over the last 8 years of
the model simulation and the
Aviso satellite altimetry-
derived Absolute Dynamic
Topography [ADP, Rio and Her-
nandez, 2004] variance com-
puted on the same period as
the SCOW wind forcing
(Table 1). Here SSH variance is
preferred over Eddy Kinetic
Energy (EKE) because the geo-
strophic assumption [e.g.,
Penven et al., 2005] is not valid
in part of our computation
domain. Therefore, we rather
use the SSH variance as an
integrated proxy for available
potential energy, thus EKE in a
geostrophic turbulence frame-
work [Rhines, 1979]. Global pat-
terns show a strong seasonality
that is very similar in the model
and in the data except at lati-
tudes south of 5�S, maybe due
to inadequacies related to the
forcing field at the southern
boundary as previously
noticed. We remark that for all
seasons, the SSH variance is
maximum at the western
boundary, as expected from
the basin large-scale circula-
tion. During the NEM, the
strong zonal strip of large SSH
variance is consistent with the
traveling of Rossby waves that
emerges from the tip of India
[Brandt et al., 2002], presum-
ably created by a downwelling
coastal Kelvin wave in the Bay
of Bengal [Rao et al., 2010]. The
SWM SSH variance underscores
enhanced differences between
the ocean interior and western
boundary dynamics. The rapid

onset of the SC is often interpreted in terms of reflection of long equatorial Rossby waves into short east-
ward Rossby waves [slowly propagating and accounting for the dynamics in a narrow coastal band, Lighthill,
1969; Anderson and Gill, 1975]. The enhanced energy level and variability can thus be attributed to Rossby
wave-driven motions. The wind stress in the Arabian Sea is also found to be geographically and temporally
at its peak (Figure 1). Hence, the wind work on the ocean circulation is maximum, implicitly forcing turbu-
lent motions [Hughes and Wilson, 2008, and references therein]. The presence of a local minimum sur-
rounded by a ring of elevated SSH variance reveals the position of the GW center which is relatively steady

Figure 6. Sea surface height (SSH) variance for (left) the 8 years of simulation and (right) 10
years of MADT Aviso data (same period than the QuickSCOW climatology).
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over much of the SWM period. Model (7�170N, 52�540E) and data (6�530N, 53�000E) GW positions are in close
agreement (the Aviso resolution at this latitude is �36km, thus the difference is of the order of one or two
pixels), separated by approximately 45 km. Surprisingly, the largest pattern of SSH variance is reached dur-
ing the FIM which is a season of low forcing by the wind, being a transition period between monsoons. SSH
variance is representative of the level of geostrophic turbulence, itself essentially triggered by instability of
the main currents [Smith, 2007]. During the SWM, seasonally steady currents set up and are fed by the con-
stant wind stress field. After the end of the monsoon, the relaxing of the wind during the FIM leads to desta-
bilization of the currents [Lee et al., 2000] thus to an enhancement of the geostrophic turbulence. SSH
variance in our solution is generally lower than in the observations. We attribute this to the fact that interan-
nual and intraseasonal (less than the monthly frequency) variabilities in the forcings (atmospheric and oce-
anic) are absent. Additional sources of variability would in particular contribute to displacements of the GW
away from its mean location and enhance SSH variance levels in its vicinity.

We have also calculated EKE of the region and found high values within the upwelling area, reaching local
values of 3000cm2s22 both in Aviso and the model, compatible with EKE generation of western boundary
currents [Ducet et al., 2000]. As mentioned in section 1, this is substantially more than the EKE generated in
the four major EBUS which is lower than 250cm2s22 [Capet et al., 2008]. Another particularity of this western
boundary upwelling is that the maxima of EKE are very close to the coast (less than 100 km) whereas they
are farther offshore in EBUS (more than 300 km from the coast). In the latter, the distance is attributed to
the generation of small-scale eddy activity that undergoes an inverse cascade while moving westward, thus
contributing to a maximum of geostrophic EKE offshore [Kelly et al., 1998]. In the Somali upwelling, eddying
structures are prevented from moving westward by the coast, hence EKE remains concentrated nearshore.

This evaluation step helps us gain confidence in the realism of the simulated Arabian Sea circulation and
eddy activity. Apart from discrepancies with observations near the southern boundary of the domain, the
main large-scale currents are well represented and the global level of energy is consistent with satellite
measurements. Importantly, excellent model-data agreement is achieved in terms of SSH variance patterns,
including the location of the local minimum associated with the GW center (Figures 6e and 6f).

3. Dynamics of the Great Whirl

In this section, we describe the GW dynamics and show that it follows a well-defined life cycle on seasonal
time scales, with some year-to-year variability, arising due to nonlinear interactions in our climatologically
forced simulations [Marchesiello et al., 2003].

3.1. A Rossby Wave Linked With the Onset of the Great Whirl
We start by examining the remotely forced Rossby waves present in our reference simulation. Figures 7a,
7c, and 7e represent SSH at 7:5�N as a function of time and longitude in the model and in the observations.
They reveal the clear annual propagation of planetary waves that have been identified as first and second
baroclinic modes of long Rossby waves [Subrahmanyam et al., 2001] that are continuously reinforced by the
wind while traveling along the basin [Brandt et al., 2002]. The typical phase speed in the model is 35cms21.
It can be compared to the theoretical long Rossby wave speed c/:

c/52bR2
d52bðc1=f Þ2

52
b

p2f 2

ð0

2H
NðzÞdz

� �2 (2)

where f and b are the planetary vorticity and its gradient, N is the Brunt-Vaisala frequency, and H is the ocean
depth. Rd5c1=f is the first baroclinic Rossby radius of deformation where we use the WKB approximation to
deduce the wave speed for c1 [see e.g., Chelton et al., 1998]. Using equation (2), we find c/544cms21 which
is close to the 38cms21 found in Brandt et al. [2002] with the actual stratification. The discrepancy between
the observed and the estimated model phase speed can be attributed to the modulation by the wind
[Subrahmanyam et al., 2001], which can arise from the background flow velocity that induces a Doppler effect
while propagating in the second half of the basin at the beginning of the SIM (Figure 5). The attenuation of
the signal between 55�E and the coast is presumably related to the reflected signal into shorter waves which
adds higher frequency noise to the original signal. In fact, according to Cane and Gent [1984], the long
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equatorial Rossby waves reaching a western boundary are reflected into eastward propagating Kelvin waves
and short Rossby waves.

In this longitudinal band, we see during spring and summer the local maxima in SSH. In the interior of the
basin, they are characteristic of downwelling Rossby waves, and at the coast from May to September it is
the footprint of the GW. Although only qualitative, these elements indicate that our simulation produces
realistic Rossby wave activity, the spring pulse being primarily generated by the eastern boundary condition
with important modulations in the Arabian Sea.

3.2. Mature Stage of the Great Whirl
Figure 8 shows 10 day averaged SSH anomalies at different dates (on which the 10 day averages are centered)
during year 8 of the simulation (whose energetics is comparable to the other years, as emphasized in the gray
areas in Figure 4). It illustrates the typical scenario of the GW life cycle in the model, although there are some
lags between different years in the various stages of the life cycle (onset, growth, and collapse), due to an
intrinsic year-to-year variability. This figure can be examined alongside Figures 9 and 10 which present time
series of the GW climatological attributes (latitude and longitude, SSH anomaly, radius, vorticity, and depth) in
REF and the sensitivity runs. In this section, we focus on the REF simulation (black lines in Figures 9 and 10).
The radius is computed by taking the area inside the contour of SSH anomaly of 16cm; then assuming that
the GW geometry is circular, we obtain the equivalent radius. The choice of the contour ensures that a closed
contour representative of the GW is defined at each time step. The value of the radius is therefore not absolute,
as it depends on the chosen SSH level, but has a time-relative value that allows a quantitative comparison. The
last feature displayed is the surface vertical relative vorticity <f > 5 < @x v2@y u >, nondimensionalized by
the local Coriolis frequency f, where <� > 5 1

S

Ð Ð
S�dS and S is the GW surface area (inside contour of SSH

anomaly of 6 cm). The GW depth h is defined as being the depth at which the kinetic energy of the upper
water column equals 75% of the kinetic energy of the whole water column:

ð0

2h
<

1
2

u2 > dz50:75
ð0

2H
<

1
2

u2 > dz (3)

where H is the depth of the ocean and u5ðu; vÞ is the horizontal velocity field. Again, h has no absolute sig-
nification but the 75% value has been chosen to ensure that the bulk of the eddy energy is captured. Super-
imposed with dashed line is the time-integrated Ekman pumping vertical velocity over the GW area:

Figure 7. Hovm€oller diagram of sea surface height (SSH) in the model at (a, c) 7:5�N and (b, d) 9:5�N on (Figures 7a, 7b) the last 8 years of
simulation and (Figures 7c, 7d) for a climatological year (mean of years 3–8). (e, f) Aviso climatological SSH computed for years 1999–2009
(same period as forcing wind stress SCOW in the model). Aviso mean SSH has been shifted to match ROMS mean SSH to make plots
comparable.
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1
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dt01hðt0Þ (4)

where s5ðsx ; syÞ is the wind stress, q is the mean water density in the Ekman layer, and t0 is 15 May. It cor-
responds to the depth of a layer forced solely by the Ekman pumping.

On 15 April (Figure 8a, on both the map and the zonal mean), we see the arrival of the Rossby wave at the
coast, identified as a positive SSH anomaly roughly between 5�N and 10�N (also seen in Figures 7c and 7d).
As mentioned before, the local SSH maximum around position (8�N; 52�E) is modulated by the superimposi-
tion of the incident and reflected waves. This is noticeable in Figures 7a and 7c in spring. From 25 May
onward, the positive SSH anomaly seemingly trapped at the coast starts to swirl anticyclonically and gains
negative vorticity (seen from 15 May onward in Figure 9e).

The GW reaches its most coherent state after the onset of the SWM at the beginning of June. On the 5 July
snapshot, the eddy is seen in its commonly associated environment, flanked by two cyclones and by a cold
filament of coastally upwelled water on its northern side [Beal and Donohue, 2013]. A close examination of
the SSH field at a temporal resolution of 2 days (not shown) indicates that the flanking cyclones that sur-
round the GW during the SWM originate from this mesoscale filament. The GW pulls the upwelled waters
off the coast at its northern side, forming cyclones that detach from the pool of cold water as also observed
in EBUS [Mason et al., 2011, their Figure 7]. Their positions tend to evolve rapidly, and sometimes another
anticyclone is found eastward of the GW on the other side of the cold wedge.

The Ekman forced depression of sea level at the coast (seen clearly on 25 July in Figure 8 as well as in
Figures 7c and 7d) reveals the geostrophic path of the SC, flowing northeastward during the upwelling sea-
son of the SWM. The location of the GW is quasi-steady (Figures 9a and 9b) while its radius and its SSH

Figure 8. Sea surface height at year 8 averaged on 10 days centered on each date marked above figures. Zonal mean is computed for each figure and displayed on its right side. Black
lines represent locations of sections in Figure 11. Colorbar is the same as Figure 7.
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anomaly increase until 5 July
(Figures 9c and 9d), at which
point they both start decreas-
ing while the width to height
aspect ratio of the GW remains
relatively constant (not shown).
The steadiness of this ratio is
coherent with the constant sur-
face velocity seen in Figure 11.

We see in the model the arrival
of a second downwelling Rossby
wave transporting another SSH
maximum at 9:5�N (Figures 7b
and 7d and in SSH zonal mean,
Figures 8c–8e) in mid-July
although it is not as clear in the
data (Figure 7f). The presence of
the wind curl maximum in this
area (Figure 1) and at this time
(Figure 10b, representative of
the wind stress curl evolution in
the GW vicinity) reinforces the
positive anomaly at 57�E [as
observed earlier in the season in
Brandt et al., 2002]. The highest
interannual variability is found
during this stage (largest stand-
ard deviation). We interpret this
as a manifestation of the interan-
nual variability of the Rossby
wave itself (this is confirmed in
further sensitivity experiment
where Rossby waves are shut
off). For instance, years 7 and 8
show a difference of 10cm in
SSH (Figure 7), thus inducing dif-
ferent perturbations on the GW.
Moreover, the SSH standard
deviation also increases because

of merging phenomena between anticyclones occurring at different times. The depth of the model GW dramati-
cally increases from 50 m to 300 m, in agreement with the cruise observations of Beal and Donohue [2013] where
the strongest surface intensified currents reach deeper than 200 m. This depth increase is also confirmed by the
velocity and temperature sections of Figure 11. Thermal wind, deduced from the isopycnal slope, is observed to
reach deep in the water column. We discuss the reasons accounting for this deepening in section 3.4.

During all years but one, the GW merges with the positive SSH anomaly (Figure 8e) that could be identified
as the Socotra eddy [Beal and Donohue, 2013]. The resulting anticyclone migrates northward (Figure 9a, 15
August onward). The odd year displays a low decrease of the GW southward of the cold upwelling wedge,
which seems to prevent northern merging. Even if the scenario described in this section is observed most
of the years, lags exist between all these phases. The standard deviation from the mean accounts for this
intrinsic interannual variability.

3.3. Dynamical Balance
It has been shown that, at a global scale [Maximenko and Niiler, 2006] and at a regional scale [Penven et al.,
2014], taking into account the effects of inertia reduce the error between geostrophic velocity from

Figure 9. Temporal series of (a) latitude and (b) longitude of the Great Whirl center defined
as the (c) local maximum of sea surface height anomaly, (d) radius, and (e) surface averaged
relative vorticity nondimensionalized by the local Coriolis frequency. Shaded areas represent
one standard deviation on each part of the mean. Standard deviation is computed by taking
the biased estimator over eight realizations (8 years). Black line is for the REF simulation,
green line for the NO-RW simulation, and red line for the MERID-COAST simulation.
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altimetry and direct in situ measurements [as observed in Fratantoni, 2001]. In the case of anticyclonic
eddies, neglecting inertia may lead to a 40% underestimate of the velocity [Penven et al., 2014]. The GW is
nested in a western boundary where inertia is found to play a major role in dynamical balances. Moreover,
nonlinear effects are expected to actively contribute to the dynamics as revealed by the local Rossby num-
ber jf=f j, which is often greater than 0.5 during the GW life cycle (Figure 9e). Thus, we assess if the GW
obeys a cyclostrophic regime (supposing axisymmetry of the eddy):

2fuh52g
@g
@r

1
u2

h

r
(5)

where uh is the azimuthal velocity, g is the SSH, r is the distance to the center of the eddy, and g is the accel-
eration of gravity.

Figure 12 shows the evolution of the different terms in equation (5) as well as the absolute value of the
residual (i.e., j2fuh1g@g=@r2u2

h=rj). All terms are azimuthally averaged around the eddy center at each
time step. The dominant balance all along the GW life cycle is geostrophic. However, the inertial term some-
times reaches 30% of either the Coriolis acceleration or the pressure gradient. This departure from geostro-
phy is to be expected considering the local Rossby number (jf=f j > 0:5, Figure 9e). It is noticeable that all
the terms are maximum around the peak of the monsoon when the wind stress curl is maximum (around
15 July, see Figure 10b). This adds support to a massive energy input into the GW by the wind stress curl, an
assumption that will be tested in section 4.2.

Figure 10. Temporal series of (a) depth (see text for computation), (b) wind stress curl averaged on the GW surface, (c) energy input by
the wind acting to maintain the local anomaly of sea surface height [Pdown, same notation as in Roquet et al., 2011], (d) transfer term
between kinetic energy of the baroclinic flow and kinetic energy of the barotropic flow, and (e) is the sum of Figures 10c and 10d. Shaded
areas represent one standard deviation on each part of the mean (biased estimator). Black line is for the REF simulation and green line for
the NO-RW simulation. The dashed line in Figure 10a represents the deepening of the surface layer due to Ekman pumping (see text for
details). The black trapezoid area on the inset map in Figure 10c is the area over which is computed the anomaly of sea surface height ~g .
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Before September, the residual is less than 10% of the amplitude of the Coriolis acceleration within 250 km
from the eddy center, thus confirming the validity of the cyclostrophic balance. Farther away, the hypothesis
of axisymmetry is not necessarily valid and radial velocity may come into play in the balance. From the begin-
ning of September onward, the residual slightly increases, sometimes being comparable to the inertial term.
Although the main balance is still geostrophic, acceleration of velocity (@uh=@t) may become important. This
is consistent with the slowing down of the GW seen through the decrease in relative vorticity (Figure 9e).

3.4. Discussion on the Great Whirl Depth Evolution
We use the kinetic energy criterion (equation (3)) as a proxy to define the GW depth because it accurately
reveals its deepening observed in sections such as shown in Figure 11. However, the reasons for the deep-
ening observed during almost the whole eddy life cycle are not explained in the literature. In this section,
we perform diagnostics on the wind input of energy to the GW and on internal kinetic energy transfers,
then we comment on the mechanism of barotropization.

The wind can enhance the level of barotropic energy through wind work u � s. Following Roquet et al. [2011],
we compute the fraction of that wind work that contributes to maintaining (or producing) a local anomaly of
sea surface height relative to its surrounding, and hence can reinforce the GW barotropic energy:

Pdown52q0g < ~g wEk > (6)

where wEk5r3 s
q0f

� �
and ~� denotes a deviation from areal and yearly averaging performed over a domain

D that covers our entire region of interest including that occupied by the GW at any given time (precisely D
has a trapezoid shape defined by the vertices 24�N,63.4�E; 24�N,66.1�E; 4�N,76.1�E; 4�N,48.7�E, see inset
map in Figure 10c). Results are not sensitive to the particular choice of D unless D is made so small that it
only covers the GW area. Using sea level deviations from the areal mean over D ensures that the barotropic
energy input we compute is not biased by the fact that wEk time and space averaged over our regional
domain may not be exactly zero (computed over the entire domain D, Pdown vanishes).

Figure 11. Velocity and temperature zonal sections in the Great Whirl core at locations of black lines in Figure 8. Black plain (resp. dashed) lines are contours of positive (resp. negative)
velocity 60:1; 0:5; 1ms21 around 0ms21 gray line. White lines in temperature parts represent isopycnals with CI 5 0.5.
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Haney et al. [2001] studied the kinetic energy transformation between the vertical shear flow (i.e., baroclinic)
and the vertical mean flow (i.e., barotropic) in California Current eddies. They find that these nonlinear proc-
esses of kinetic energy transformation are of crucial importance to account for the barotropization of
eddies. The transformation of kinetic energy from the baroclinic flow ðu0; v0Þ to the barotropic flow ð�u; �vÞ
can be written as follows:

fK 0�Kg5fK 0�Kgf1fK 0�Kgd (7)

with

fK 0�Kgf 5 q0H < f0ð�uv02�v u0Þ > (8)

fK 0�Kgd 5 2q0H < r � uð�uu01�v v0Þ > (9)

where H is still the total depth of the ocean and q0 is a mean density. The overbar denotes a depth aver-
aged quantity (�5 1

H

Ð 0
2H �dz) and prime is the deviation from it. fK 0�Kgf is the conversion term associated with

the baroclinic vorticity and fK 0�Kgd is linked to the flow divergence. If fK 0�Kg > 0, kinetic energy is trans-
ferred from the baroclinic to the barotropic flow, thus increasing the deep ocean energy. When the flow
obeys quasi-geostrophy, the exchange term associated with flow divergence (fK 0�Kgd) is at least one order
of magnitude smaller than the exchange term containing the relative vorticity (fK 0�Kgf). We also find this to
be true for the GW, with mean values of fK 0�Kgf around 431023Wm22 and fK 0�Kgd smaller by a factor 11.
Hence, we ignore fK 0�Kgd in our analysis.

Figures 10c and 10d show the time series of Pdown and fK 0�Kgf, respectively, during the GW life cycle, i.e., the
two key sources of energy for the barotropic mode. In Figure 10e, a strong correlation is found between the
evolutions of the sum of both terms and GW depth: the deepening of the GW is associated with a plateau
in the energy input (from 5 June to 15 September); then the reduction of the energy input coincides with a
shallowing of the GW (presumably as a result of dissipation which we do not compute here).

Figure 12. Different terms of the cyclostrophic balance (see equation (5)) azimuthally averaged around the GW center on years 2–8. (a)
The Coriolis acceleration 2fuh , (b) the surface pressure gradient 2g@g=@r, (c) the inertial term u2

h=r, and (d) the absolute residual
j2fuh1g@g=@r2u2

h=rj. The derivative of SSH @g=@r has been spatially low-pass filtered using a Lanczos filter with cutoff frequency at the
grid scale to suppress noisy patterns due to differentiation.
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Examination of the separate contribution of each term in the evolution of the GW depth suggests to con-
sider two stages during the deepening of the eddy. First, from 15 May to 15 August, the depth increases
with a rate compatible with the integrated Ekman pumping being the dominant driver (Figure 10a). Pdown is
greater than fK 0�Kgf, confirming the leading role of the wind stress curl in the deepening of the eddy. The
second stage is from 15 August to 15–25 September where the GW keeps deepening (plausibly at a faster
rate but the range of uncertainty is quite large) but with the baroclinic to barotropic kinetic energy conver-
sion term as the dominant source of energy, especially in September.

From 25 September on, the GW suddenly shallows. Pdown is still positive at this time but is small in amplitude com-
pared to fK 0�Kgf that is now negative, revealing an extraction of energy from the barotropic mode. Wiin-Nielsen
[1962] gives a simple interpretation of the sign of this term using a two-layer quasi-geostrophic framework. When
fK 0�Kgf < 0, there is warm advection in the region of cyclonic vorticity (f0 > 0) or cold advection in the region of
anticyclonic vorticity (f0 < 0). Over the GW area, f0 < 0 in the surface layer, thus there must be an input of cold
water in the GW area. It may not be coincidental that the rapid change of sign of fK 0�Kgf takes place at the time of
arrival of an upwelling Rossby wave (Figures 7c and 7d). We discuss this further in the following section.

Overall, we must recognize that these diagnostics offer a caveat in the interpretation due to the important
error bar on fK 0�Kgf.

3.5. Collapse of the Great Whirl
The physical processes at play in the GW demise are still debated, as noted in section 1 (internal instability,
merging, interaction with the equatorial band, etc.). The GW is commonly observable for more than a
month after the monsoonal winds switch off at the end of September. This is also the case in the REF simu-
lation for which the GW can be tracked until the end of October (Figure 9).

At the end of September, the GW has started weakening; its size and intensity jointly decrease while it
moves northward at speed �7kmd21 (Figure 9) through advection by the SC, the interactions with sur-
rounding eddies and the self-induced advection by interaction with the boundary (discussed in section 4.3).
Its position is not limited by the zero wind curl line at this time as the Findlater jet is not active anymore
during the FIM. The GW is also affected by an upwelling Rossby wave that reaches longitude 58�E and
enters the GW influence area. It is noticeable in the Hovm€oller diagram (Figures 7c and 7d) and signals con-
cur between latitudes 7:5�N and 9:5�N [Rao et al., 2010]. Aviso data (Figures 7e and 7f) confirm the presence
of this wave with very close timing and propagation speed, although amplitude is slightly reduced. At the
beginning of October, this wave strengthens (Figures 8h and 8i, snapshot and zonal mean), imprinting a
negative SSH anomaly shift to the entire zone, hence reducing the GW area and thus decreasing its radius.
The propagation of this wave is closely observed in a 1993–2011 climatology of Aviso SSH anomaly in Fig-
ure 7c in Beal et al. [2013]. The characteristics of the GW show this loss of energy is through the damping of
vorticity and the decrease of both the radius and the SSH anomaly. The upwelling triggered by this wave
acts in favor of a shallowing of the eddy (Figure 10a). The Ekman depth does not evolve much and stays at
the level it had at the end of the SWM, reflecting the inability of the wind to explain the eddy vertical exten-
sion at this stage. At the end of October, the Rossby wave has imposed a shift of roughly 25cm in SSH to
the whole area (zonal means in Figures 8g–8i), which may contribute to the development of cyclonic eddies
as seen on 25 October snapshot. The GW keeps shrinking and is not distinguishable after November for
most of the years, in agreement with Beal and Donohue [2013].

Overall, our numerical solution suggests that the annual upwelling Rossby wave crossing the basin and
reaching the coast during the FIM plays a crucial role in the GW collapse. We do not see in our model any
sign of internal instability. The GW decays progressively toward the end of the SWM and somewhat more
abruptly after the end of October, presumably under the influence of an upwelling Rossby wave. The weak-
ening of the GW before the arrival of this wave is attributed to interactions with its highly turbulent environ-
ment which probably plays a role over the entire collapse period.

4. Local Versus Remote Forcing

We now further elaborate on the role of Rossby waves, local wind, and slanted coastline on the GW life
cycle, especially on the generation and collapse mechanisms. We use the three sensitivity experiments pre-
sented in section 2.2 to isolate each of the effect.
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As reviewed in section 1, there is no definite conclusion on the role of local (wind-induced eddy or current
instability) and remote (planetary wave) forcing into the generation mechanisms. Before going into the
results of the sensitivity experiments, we prior dismiss the possibility that parallel flow instabilities are impli-
cated in the generation. When the GW is generated, there is no evidence in the model for a well-defined
energetic current that could destabilize baroclinically. In fact, the SC starts to flow northward when the
monsoonal winds start blowing, more than a month after the GW generation. We thus exclude baroclinic
instability for the GW generation mechanism. This is consistent with Smith [2007] and Tulloch et al. [2011]
who demonstrated that low-latitude flows are poorly inclined to baroclinic instability. Scaling analysis for
the lateral shear maximum U0 0max of the SC at 5�N at the end of May (during the generation stage of the
GW) gives U00max � 5 3 10212m21s21 while the b-effect modulated by the current orientation is bcos /5

1:5310211m21s21, where / � 45� is the angle between the current and the zonal direction. This indicates
that the SC does not undergo a change of sign of bcos /2U00. As such, the Rayleigh-Kuo inflection point
criterion is not satisfied [e.g., Vallis, 2006] and the SC is not barotropically unstable at this time.

4.1. The NO-RW Experiment
The typical GW evolution in the NO-RW experiment is illustrated in Figures 13a–13f, again for year 8. On 15
April, we observe the blocking of the Rossby wave at the artificial wall, leaving a smoother SSH field on the
western side in comparison with the REF simulation. At the beginning of July, 1 month after the onset of
the monsoon, the anticyclonic structure that will evolve into the GW (Figure 13b, 5 July) has a shape resem-
bling that for REF between 15 April and 25 May (Figures 8a and 8b). Therefore, the GW onset is delayed by
approximately 2 months when Rossby waves are shut off. Statistically, the positive SSH anomaly gets its cir-
cular shape and starts swirling only around 15 June onward; we therefore calculate statistics for the NO-RW
experiment from this date onward in Figure 9. This eddy is enhanced in its anticyclonic swirl (Figure 9e) by
the wind curl, which provides negative vorticity throughout the SWM. During the following month, this
anomaly strengthens and has roughly the same characteristics as in the REF simulation, albeit with a lag of
1–2 months in the GW life cycle (the lag slightly decreases as the season goes on).

During the growing phase, the position of the GW is also shifted �250 km to the southeast compared to
REF. For this reason, we can unambiguously attribute the settlement of the GW at its characteristic position
to the Rossby wave arrival at the coast. As a matter of fact, this phase-locking is absent in the NO-RW experi-
ment, which explains the discrepancies. This is another argument in favor of the importance of this signal
for the growth of the GW [supported by satellite observations of Beal and Donohue, 2013] against a wind-
induced generation of the eddy.

A more general observation concerns the standard deviations of all the characteristics of the GW that are
noticeably decreased in the NO-RW experiment compared to the REF simulation. As this simulation is to first
order only forced by the wind west of the frontier, the fate of the GW is more deterministic, isolated from
remotely forced signals which could perturb its life cycle. As a consequence, it keeps growing much longer
than in REF. This is observed in the SSH anomaly and radius evolution (Figures 9c and 9d) that increase con-
tinuously under the influence of the wind without any merging or modulation by other signals. The vorticity
is also higher and less variable than in REF as it is only forced by the local negative wind curl (this is likely
linked with the slowly varying forcing [1 month of temporal resolution] and accounting for atmospheric
synoptic variability could lead to smaller temporal scales in the ocean variability [Desbiolles et al., 2014]) (Fig-
ure 9e). As standard deviations in the time series account for the interannual variability (deviation from the
climatological mean), we attribute a strong part of year-to-year variability of the GW to the Rossby waves.

The GW collapse is also observed later because the eddy is not perturbed by the incoming upwelling Rossby
wave emerging from the east of the basin. It should be noted that the blocking of this wave appears to be only
partial (Figures 13e–13f), but it delays and strongly reduces the amplitude of the wave. The GW is still observable
on snapshot 5 November and eventually disappears 20–30 days later than in REF. Furthermore, Figures 9c, 9d,
and 9e demonstrate that the GW in NO-RW is stronger than in REF during its last month of existence (i.e., Octo-
ber). This behavior confirms that Rossby wave dynamics have a major impact on the GW collapse.

4.2. The NO-WIND Experiment
This experiment shows reduced interannual variability and a less intense coastal forcing, promoting a more
linear response of the ocean over a wide area. The basic scenario is displayed in Figures 13g–13i. The
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Rossby wave signal, identified through a local maximum of SSH, reaches the coast between the end of
March and the beginning of April, before swirling anticyclonically close to the coast to become the GW.
Until mid-April, there is no qualitative difference between the REF and NO-WIND mean ocean states. Gen-
eral patterns of the snapshot on 15 April (Figures 8a and 13g) are very similar. Differences occur after mid-
May as the wind is damped sufficiently. The enhancement of the Rossby wave by the wind does not occur
and the signal gradually attenuates until reaching the coast. Therefore, we observe a decrease in the GW
intensity before its rapid disappearance among other ephemeral small eddying patterns. This highlights the
role of the local winds as a source of negative vorticity driving the evolution of the GW and in particular its
growth. Incidentally, statistics cannot easily be computed for the more diffuse shape of the GW (as done for
REF and NO-RW, see Figure 9). The strong negative SSH anomaly visible on 15 June (Figure 13i) is the conse-
quence of the wind damping which occurs a 100 km offshore of this anomaly. In this situation, the cyclone
is reinforced by the positive wind curl artificially induced by the damping.

4.3. The MERID-COAST Experiment
Once generated and stabilized by the monsoonal winds, the GW remains quasi-stationary during more than
3 months. This temporal and geographical steadiness is unusual and does not occur in the open ocean as

Figure 13. Same as Figure 8 but for experiments (a–f) NO-RW, (g–i) NO-WIND, and (j–l) MERID-COAST.
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the longest satellite-tracked eddies always move westward [Chelton et al., 2007]. The local geomorphology
with the almost 45�-oriented coastline could influence the eddy drift as modeled by McCreary and Kundu
[1988] in a very simplified numerical setup.

Eddy drift is determined by several processes: (i) the westward dominated drift at the long Rossby wave
speed bR2

d , modulated by an equatorward (resp. poleward) deflection for anticyclones (resp. cyclones) [Mor-
row et al., 2004]; (ii) advection by the mean currents; (iii) interactions with surrounding eddies [e.g., Carton,
2001], and (iv) self-induced advection by interaction with a boundary in the vicinity of a coast [e.g., Carton
et al., 2013]. The GW is subject to all of these processes and the slant of the coast relative to the meridional
direction primarily affects (i) and (iv). The MERID-COAST experiment is designed to assess the relative impor-
tance of this slanted coastline.

Figure 9a shows the climatological latitude of the GW in the MERID-COAST experiment. Longitude is not
presented because it is overly affected by the coastline modification and therefore not comparable with the
other experiments. The GW position is shifted to the north by approximately 1:5� from the REF experiment
but undergoes the same northward translation from August onward. The Rossby wave reaches the coast
further north than in REF, thus also settling the GW position northward. However, it obviously does not
affect the fate of the eddy drift. Hence, we conclude that the slanted coastline has a limited impact on the
GW drift.

Interestingly, MERID-COAST confirms that until the end of the monsoonal winds in early September, the
northern flank of the GW cannot cross the zero wind curl line. Therefore, this certainly accounts for the
steadiness of the GW position during the monsoon, regardless of fluctuations attributed to eddy-eddy inter-
actions. After the end of the monsoon, the GW is more isolated and its northward drift is more likely due to
a combination of advection by the SC and self-advection of the eddy by interacting with the boundary; (ii)
and (iv) becoming the dominant processes among those enumerated in the preceding paragraph.

5. Summary

In this paper, we presented a ROMS regional simulation of the Arabian Sea circulation, climatologically
forced at a horizontal resolution allowing for an adequate representation of mesoscale dynamics. After
approximately 2 years, the model reaches statistical equilibrium and exhibits a marked interannual variabili-
ty of intrinsic origin. Overall, the characteristic seasonality of the regional dynamics due to monsoonal winds
in the Indian Ocean is well represented in the model. This therefore gives us confidence in the model for
use to investigate the southwest monsoon dynamics, particularly its dominant mesoscale structure, the GW.

We precisely characterize the life cycle of the GW. We confirm the preconditioning effect of an annual
downwelling Rossby wave. This wave exerts a major influence on the GW initial phase (location and timing
of initiation), as suggested by McCreary et al. [1993] and observed by Beal and Donohue [2013]. The roles of
the strong wind stress and anticyclonic wind stress curl remain crucial to explain the maintenance and the
barotropization of the eddy. In fact, we found that although the strong Ekman pumping can explain the
deepening of the eddy during the early stage of the monsoon, nonlinear kinetic energy transfer from the
baroclinic flow to the barotropic flow may come into play to redistribute the input of surface energy by the
wind stress curl into the deeper layers. The sudden shallowing of the GW at the end of its life cycle is com-
patible with the arrival of an upwelling Rossby wave. Nonetheless, this diagnostic of kinetic energy transfer
appeared to be difficult to interpret in terms of water mass exchanges as proposed by Wiin-Nielsen [1962]
and Haney et al. [2001] and investigation on the GW deepening is not closed.

An examination of the different terms constituting the cyclostrophic balance reveals that inertia is impor-
tant for the GW dynamical structure, reaching 30% of the geostrophic terms.

The GW sits in a very turbulent western boundary upwelling region and detaches cyclones from the north-
ern cold filament of upwelled water that circles it. Cyclones move around it and interact, leading to intrasea-
sonal and interannual variability in its position. After the shutoff of the monsoonal winds, the GW starts to
shrink during the FIM when the EKE is found to be at its peak, revealing a strongly turbulent environment. It
is then mainly influenced by its interaction with surrounding eddies and the coast and self-induced advec-
tion by interaction with the boundary, causing it to drift northward. The arrival of an annual upwelling
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Rossby wave at the end of October causes the collapse of the GW, which then dramatically shrinks and
finally disappears.

A parallel could be made with the Loop Current Eddies where a dominant anticyclone dominates a turbu-
lent environment made of smaller cyclones. As in the study of Ch�erubin et al. [2006], we suggest that the
stability of the GW and its interaction with surrounding eddies could be studied by taking into account its
baroclinic structure.

Sensitivity tests confirm the importance of Rossby waves to pace the GW life cycle. When Rossby waves are
shut off, the GW onset is delayed by almost 2 months and its position is shifted by �250 km southward. The
GW collapse is also delayed by approximately 1 month. The role of these waves has been generally underes-
timated in comparison to the role of local high winds. However, their importance in interacting with eddies
is not that surprising since Polito and Liu [2003] qualified the annual and semiannual Rossby waves are
among the most energetic of the planetary waves. However, when the wind is shut off, the GW disappears
rapidly after its onset. This also confirms the crucial importance of the wind stress and wind stress curl to
energetize the GW. Finally, the role of the slanted coastline is found to be negligible in the GW drift as the
eddy gradually undergoes the same northward translation as modeled in the reference experiment.
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Chapter 4. On the Fate of the Persian Gulf Outflow

4.1 Introduction

In many marginal seas1, atmospheric conditions favor the formation of dense waters, ei-
ther due to an excess of evaporation over precipitation or due to strong cooling. Dense
water outflows are an important part of the climate system as they are a mean to export
heat, salt, chemical and biological tracers in open oceans, thus to join the general circula-
tion. Consequently, the fate of outflows near the straits where strong mixing occurs, and
far from the strait where eddies often form, has been an important subject of investiga-
tion for decades. For instance, the Gravity Current Entrainment Climate Process Team,
established by the U.S. Climate Variability and Predictability (CLIVAR) Program, had
the goal to improve the parameterization of outflows in general circulation models (Legg
et al., 2009).

The Mediterranean outflow has been the most studied outflow. The first Mediter-
ranean water eddy (Meddy) was sampled in the 1970’s (McDowell and Rossby, 1978).
Since then, some generation mechanisms for these lenses have been discussed (see Sec-
tion 1.2.2). Figure 4.1, taken from the Woods Hole 1997 summer school report illustrates
the mechanism of Meddy formation. The arrow going from the Mediterranean Sea to the
Atlantic, is surrounded by wiggling lines evoking turbulent processes. It summarizes how
complex the mechanism of formation is, involving small scale processes such as mixing,
entrainment and convection. All these processes occur at depths making them difficult to
sample.

Figure 4.1: Cartoon from the Woods Hole Oceanographic Institution 1997 summer school report
(Meacham, 1997). The original caption is "Mechanism of Meddy formation".

Two outflows spread in the Arabian Sea, from the Red Sea and the Persian Gulf. The
Red Sea outflow has been more studied than the Persian Gulf outflow and recent findings
converge towards a domination of stirring by surface intensified mesoscale eddies to ex-
plain the spreading of Red Sea Water (Bower et al., 2002; Ilıcak et al., 2011; Bower and
Furey, 2012). As discussed in Chapter 1, we expect a similar contribution of mesoscale
eddies to spread Persian Gulf Water (PGW). This has been recently revealed by Argo

1marginal is used to contrast with major oceanic basins (Atlantic, Pacific and Indian Oceans).
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floats (L’Hégaret et al., 2013). In the following article (Vic et al., 2015), we discuss the
spreading of PGW. It involves a new process (not described in an outflow context) that is
the interaction of eddy with topography leading to the generation of submesoscale coher-
ent vortices (SCV, named following McWilliams, 1985) trapping PGW. This modelling
work is inspired by the recent research on the interactions of flows with topography car-
ried out at UCLA (Molemaker et al., 2015; Gula et al., 2015a,b, and ongoing work by
Kaushik Srinivasan). Some idealized experiments isolate the eddy-topography interac-
tions and would deserve further investigation. Namely, the shear instability involved in
the formation of SCV is different whether a cyclone or an anticyclone impinges on the
slope and details of the instability are not fully understood yet. Sensitivity of the SCV
size and intensity to the resolution and sensitivity of the formation process to the slope
angle would also require further investigation.

4.2 Article Published in Journal of Geophysical Re-
search
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Abstract The Persian Gulf feeds a warm and salty outflow in the Gulf of Oman (northern Arabian Sea).
The salt climatological distribution is relatively smooth in the Gulf of Oman, and the signature of a slope cur-
rent carrying salty waters is difficult to distinguish hundreds of kilometers past the Strait of Hormuz, in con-
trast to other outflows of the world ocean. This study focuses on the mechanisms involved in the spreading
of Persian Gulf Water (PGW) in the Gulf of Oman, using a regional primitive equation numerical simulation.
The authors show that the dispersion of PGW occurs through a regime that is distinct from, for example, the
one responsible for the Mediterranean outflow dispersion. The background mesoscale eddy field is ener-
getic and participates actively to the spreading of PGW. Remotely formed eddies propagate into the Gulf of
Oman and interact with the topography, leading to submesoscales formation and PGW shedding. Eddy-
topography interactions are isolated in idealized simulations and reveal the formation of intense frictional
boundary layers, generating submesoscale coherent vortices (SCVs). Interactions take place at depths
encompassing the PGW depth, thus SCVs trap PGW and contribute to its redistribution from the boundaries
to the interior of the Gulf of Oman. The overall efficiency of these processes is confirmed by a strong contri-
bution of eddy salt fluxes in the interior of the basin, and is quantified using particle statistics. It is found to
be a highly dispersive regime, with an approximated eddy diffusivity of �1700 m2 s21.

1. Introduction

Dense water outflows are a major component of the Earth climate system. They deliver water masses into
the global ocean, whose properties have been transformed in marginal seas. How these waters spread and
mix is an important and delicate subject. It involves a series of processes over a wide range of scales that
combine their effects in ways unique to each outflow (e.g., review of Legg et al. [2009]). While each outflow
is different, broad categories can be distinguished. Three of the main outflows, the Mediterranean and
Faroe Bank channel outflows and the Denmark Strait overflow, take place in regions with low background
eddy activity. In addition, they have a relatively deep equilibrium depth (>600 m). In these deep and rela-
tively quiescent environments, intrinsic instabilities of the outflows are a fundamental ingredient of their
dispersal which takes place over hundreds or thousands of kilometers. An example is the spread of Mediter-
ranean water by Meddies that are generated along the Iberian slope. This outflow regime has been the sub-
ject of numerous process studies in the past [e.g., Griffiths, 1986; Price and O’Neil Baringer, 1994; Wirth, 2009].
A different dynamical regime is to be expected when an external source of mesoscale turbulence is present
and outflow waters can be passively stirred by mesoscale eddies.

Persian Gulf Water (PGW) is formed in the Persian Gulf and is delivered to the Gulf of Oman through the
Strait of Hormuz (see the geographic setting in Figure 1). Initially, it has a large temperature (T) and salinity
(S) signature [Bower et al., 2000]. Gulf of Oman climatologies are characterized by subsurface T,S maxima at
around 250 m depth where Gulf eddy energy is relatively high, and smooth horizontal T,S gradients around
that depth [see Carton et al., 2012, Appendix] and in particular the quasi absence of a T,S signature
along the southern Gulf side where PGW would be transported within a continental slope current resulting
from the gravitational adjustment of the outflow.

The Persian Gulf Outflow differs from most outflows that it equilibrates at a relatively shallow depth in an
energetic environment (located at a western boundary). Figure 2 shows Eddy Available Potential Energy
(EAPE) in the three outflow environments mentioned earlier and in the Gulf of Oman. EAPE has been shown
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to be a good proxy to quantify the
intensity of mesoscale turbulence in
the ocean interior [Roullet et al., 2014].
It reveals intense eddy activity in the
Gulf of Oman around the PGW equilib-
rium depth (EAPE � 800 cm2 s22 cor-
responds to a mean current speed
standard deviation, i.e., eddy mean
speed, of 40 cm s21) and confirms that
the other outflow regions are quies-
cent in comparison. Similar to the
spread of Red Sea Water in the Gulf of
Aden [Ilicak et al., 2011; Bower and
Furey, 2012], background mesoscale
activity may play an important role in
the rapid dispersal of PGW in the Gulf
of Oman. Although this has been par-
tially observed in the latter region
(using Argo floats in L’H�egaret et al.
[2013]), the details of the dispersal
phase are unknown.

Surface-intensified mesoscale eddies
in the Gulf of Oman have a strong

imprint until depths greater than the outflow equilibrium depth (circulation at 700 m depth is highly corre-
lated with the surface circulation) [Carton et al., 2012]. As such, outflow-eddy interactions are to be expected

Figure 1. Bathymetry in the Arabian Sea and Persian Gulf derived from ETOPO2
[Smith and Sandwell, 1997]. The red rectangle represents the child domain. The
parent domain encompasses the area covered by the map.

Figure 2. Eddy Available Potential Energy (EAPE) derived from Argo floats (data set described in Roullet et al. [2014]) in (a) the Persian Gulf
Outflow environment at 200 m depth, (b) the Mediterranean Outflow environment at 1000 m depth, (c) the Denmark Strait Outflow envi-
ronment at 600 m, and (d) the Faroe Bank Channel Outflow at 800 m. Depths are chosen to be the equilibrium depths of these outflows
following Price and O’Neil Baringer [1994].
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[L’H�egaret et al., 2013]. Moreover, the relative narrowness of the Gulf associated with the b-driven westward
drift of eddies causes the latter to interact with the topography. Interactions of eddies with topography has
received significant attention in idealized contexts. Simplest models with vertical walls as lateral boundaries
are useful to study eddy drift, leakage, and decay. A richer variety of processes is present in models with a
realistic geomorphology. Noticeably, eddy-topography interactions often produce smaller-scale vortices
with an opposite polarity (‘‘bursting’’ effect) [Robinson, 1991; Akuetevi and Wirth, 2015] and allow the genera-
tion of coastally trapped waves [e.g., Sutyrin and Grimshaw, 2010]. An inviscid well-known mechanism
involved in the generation of a cyclone when a surface-intensified anticyclone encounters a shelf is the off-
shelf advection of waters with high potential vorticity [Frolov et al., 2004; Sutyrin and Grimshaw, 2010]. The
resulting eddy is also surface-intensified. In contrast, the viscous response at smaller scales implies the for-
mation of a frictional bottom boundary layer, preferentially on the continental slope. It is found to be a pre-
ferred site for strong lateral shears to develop and shear instability to occur, hence generating subsurface
vortices [Oey and Zhang, 2004; Molemaker et al., 2015]. We will see that frictional boundary layers play an
important role in the dispersion of PGW.

In this study, we describe the spreading of dense PGW beyond the initial phase of gravitational equilibration
and investigate the processes at play, using primitive equation numerical simulations. Our results suggest
that PGW is efficiently transferred from the boundaries into the Gulf interior where it is rapidly stirred and
mixed by mesoscale eddies. In this study, we show that the transfer from the boundaries is the result of sub-
mesoscale turbulent structures. Submesoscale turbulence is energized by the interaction of mesoscale
eddies with the sloping sides of the Gulf (as opposed to internally generated by the outflow). Thus, both
mesoscale and accompanying, frictionally generated, submesoscale eddies conspire to enhance PGW
dispersion.

The outline of this paper is as follows. After presenting our investigation tools (section 2), we use the results
of a realistic numerical experiment to get phenomenological insight in the dynamics (section 3). We find
that PGW is often trapped into submesoscale coherent vortices and that the spread of PGW in the Gulf of
Oman may be explained by the cross-Gulf transport of these structures. Idealized numerical experiments, in
which the outflow is absent, are presented in section 4. They allow us to confirm that the outflow is not
implicated in the formation of the submesoscale vortices. In contrast, they result from the detachment of
frictional boundary layers that are found over the continental slope and are associated with mesoscale
eddies. In section 5, we assess the efficiency of eddy-topography interactions in diffusing salinity in the Gulf
of Oman using both Eulerian and Lagrangian perspectives. Main conclusions of this study are drawn in sec-
tion 6.

2. Numerical Framework

We use the Regional Oceanic Modelling System (ROMS) [Shchepetkin and McWilliams, 2005] in two different
configurations. In the following sections 2.1 and 2.2, we describe the setups used as well as interesting
dynamical features in the realistic simulation.

2.1. Realistic Configuration
An off-line one-way nested configuration with a 2 km horizontal resolution is set up from a parent solution
described in Vic et al. [2014] at 6.6 km resolution. The nesting approach follows the procedure of Mason
et al. [2010]. The domain is shown in Figure 1. For consistency, the atmospheric forcing is monthly and cli-
matological, identical to the data sets used to force the parent solution [Vic et al., 2014, Table 1]. We use the
SCOW climatology of wind stress [Risien and Chelton, 2008] and the ICOADS climatology for heat and fresh-
water fluxes [Worley et al., 2005]. We changed the bathymetry data set from ETOPO2 [Smith and Sandwell,
1997] to the Shuttle Radar Topography Mission data set (SRTM30-plus) [Becker et al., 2009] for improved
spatial resolution (3000 instead of 20). Coordinate parameters and numerical operators are the same as in the
parent solution, except for the tracer advection scheme whose diffusive part is rotated along isopycnals for
a better conservation of tracer properties [Lemari�e et al., 2012]. Open boundary conditions are extracted
from the parent solution (years 3–6; the nested configuration was thus run for 4 years) except for the north-
western boundary, situated in the Strait of Hormuz (Figure 1). We carefully tuned the northwestern bound-
ary conditions to have a realistic representation of the outflow properties (barely resolved in the parent
solution) using an analytical boundary forcing based on moored Acoustic Doppler Current Profilers (ADCPs)
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and temperature-salinity measure-
ments in the Strait, including a
seasonal cycle (measurements
described in Johns et al. [2003]).
This choice deliberately impedes
the exploration of intermittent
PGW outflow [Banse, 1997; Thoppil
and Hogan, 2009]. We will see
that high-frequency fluctuations
in the outflow at the Hormuz
Strait are not needed to produce
a rich variability downstream.

Figure 3 compares Sea Surface Temperature (SST) and geostrophic EKE of observational data sets with the
modeled solution. Although not an extensive evaluation, these comparisons confirm the models ability to
produce realistic solutions. The SST snapshots (modeled and from the Moderate Resolution Imaging Spec-
troradiometer, MODIS) underline comparable variability throughout the domain and very similar frontal fea-
tures from the coastal upwelling area (Arabian Peninsula) to the north of the domain. In the Gulf of Oman,
the presence of a mesoscale eddy is characteristic of the observed dynamics [e.g., Pous et al., 2004]. A warm
bias is noticeable in the Persian Gulf [Vic et al., 2014] but does not affect the nested simulation as the north-
western boundary is constructed directly from observational data. EKE is derived from the Absolute
Dynamic Topography at 1/48 resolution from Aviso. It is found to be slightly higher (by 20% within the
domain area) in ROMS although currents have been spatially filtered (Gaussian filtering at 35 km, following
Capet et al. [2008]) to remove the energy contained in the submesoscale range that is absent in Aviso data.

Table 1. Description of the Sensitivity Tests on Bottom Stress Parameterizationsa

Type CD

hsi
ð31023N m22Þ

stdðubottomÞ
ðcm s21Þ

Linear 3:031024 m s21 12.4 4.7
Linear 6:031024 m s21 17.1 (138%) 3.3 (230%)
Quadratic 2:531023 8.7 5.1
Quadratic 5:031023 12.2 (140%) 4.2 (218%)
Quadratic with

Von Karman CD

Varying 7.9 5.1

ahsi is the temporally averaged bottom stress and stdðubottomÞ is the standard devia-
tion of the zonal velocity in the bottom layer (we only monitor u because eddy-
topography interactions mainly arise in the zonal direction).

Figure 3. (left) Sea Surface Temperature (SST) from (a) MODIS and (c) the parent and nested (inside the blue rectangle) simulations at for
the same period (September). (right) Surface Eddy Kinetic Energy (EKE) derived (b) from Aviso Absolute Dynamic Topography at 1/48 reso-
lution and (c) from almost 4 years of simulation. Currents have been low-pass filtered using a Gaussian spatial filter with 35 km half width
following Capet et al. [2008].
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Nonetheless, ranges of variability fit well and confirm that the northwestern Arabian Sea turbulent activity
is energetic. The maximum of EKE is situated off Ras al Hadd and is seemingly associated with the seasonal
Ras al Hadd jet and surrounding mesoscale eddies [B€ohm et al., 1999]. The EKE reduction toward the end of
the Gulf is due to the mesoscale eddy decay as they slowly progress westward as we shall see below.

Figure 4a shows Sea Surface Height (SSH) in the Gulf of Oman and reveals a typical situation with sev-
eral mesoscale eddies present. Their polarity (cyclones and anticyclones are associated with SSH minima
and maxima, respectively) alternates here but this is not always the case. Figure 4b reveals the origin of
these eddies, coming from the northern Arabian Sea. Once they enter in the Gulf, they are trapped and
invariably migrate westward as seen across paths of almost constant SSH. Eddy diameters (�802120
km) are similar to the full width of the Gulf. As such, the Gulf of Oman acts as an ‘‘eddy-guide’’ for their
propagation (a similar situation is found in the Gulf of Aden) [Bower and Furey, 2012]. Mesoscale eddies
see their intensity (visible in the amplitude of SSH) decreasing westward. They finally reach the back of
the Gulf where they ultimately dissipate, mainly through frictional effects. Cyclones and anticyclones
propagate through the Gulf in a chaotic manner, i.e., we could not discern any recurrent pattern. In par-
ticular, we found no seasonal preference in polarity. This indicates the fundamentally turbulent nature of
the circulation. In the back of the Gulf, around 57:5�E (Figure 4b), there is a tendency for anticyclones
to dominate. The time scale for alternating is between 2 and 6 months. This switch has previously been
noticed in satellite altimetry (empirical orthogonal function analysis in L’H�egaret [2015]). Hence, by its
western position in the Arabian Sea, the Gulf of Oman is continuously forced by remotely formed
eddies. Because of the configuration of the Gulf, eddies cannot escape and, as a result, dominate the
circulation.

2.2. Idealized Configuration
In order to isolate the interaction of mesoscale eddies with topography, we set up a simplified Gulf of
Oman configuration that deliberately omits the outflow. Simplifications also include alongshore invariance
of the bathymetry so that flow-topography interactions are easier to analyze. The domain size, the bathym-
etry profile, and the stratification are realistic (World Ocean Atlas, release 2009). The experiments consist of
the free-decay evolution of two horizontally Gaussian-shaped mesoscale eddies that are initially in thermal-
wind balance. They are surface-intensified and their kinetic energy vanishes at depth (a similar setup is
used in Wei and Wang [2009, Figure 1]). We define each eddy by its center position (x0, y0), its surface tem-
perature anomaly T 0s (no salinity anomaly), its radius R, and its depth range D. We define the temperature
field associated with the eddy (prime denotes deviation from the background stratification) as follows:

Figure 4. (a) Ten day average map of SSH in the model. (b) Hovmoller diagram of SSH through the 4 years of simulation along the track
shown in Figure 4a.
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T 0ðx; y; zÞ5T 0s Gðx; yÞ; if z > d

T 0ðx; y; zÞ5T 0s Gðx; yÞexp ð2z=DÞ; if z < d
;

(
(1)

where Gðx; yÞ5exp 2
ðx2x0Þ21ðy2y0Þ2

R2

� �
and d5300 m. We then compute g (SSH) and (u, v) (horizontal veloc-

ity) in two phases. First, we assume that each eddy is isolated and that its associated pressure field does not
reach the bottom. Hydrostatic balance integrated over the water column allows us to deduce g. Second, we
assume a geostrophic balance to compute the velocity field:

uðx; y; zÞ5 g
q0f

ðz

g
@yq 1 uðx; y; gÞ|fflfflfflfflffl{zfflfflfflfflffl}

52ðg=f Þ@yg

vðx; y; zÞ52
g

q0f

ðz

g
@xq 1 vðx; y; gÞ|fflfflfflfflffl{zfflfflfflfflffl}

5ðg=f Þ@xg

:

8>>>>>><
>>>>>>:

(2)

Figures 5a and 5b show horizontal and vertical sections of temperature and anomaly and meridional veloc-
ity across the cyclone and the anticyclone. As we are particularly interested in the role of eddies in the Gulf
of Oman, we ensure that the vertical structure of simulated eddies in terms of velocity is consistent with
local eddies. To do so, we adjust the vertical structure of the temperature anomaly, hence also the velocity
profiles of the analytical eddies to match the observations (Figure 5). In fact, we can compare the vertical
kinetic energy profiles at the position of the surface velocity maximum for the synthetic eddy and for a mes-
oscale eddy sampled in the Gulf of Oman during the Physindien-2011 cruise [L’H�egaret, 2015] carried out by
the Service Hydrographique et Oc�eanographique de la Marine (SHOM and ADCP measurements). Figure 5c
exhibits a fair agreement between the two. It also reveals significant velocities at depth (e.g., 30 cm s21 at
500 m). After migrating westward due to beta drift, the eddy evolution is governed by mutual interaction
and topographic influence.

Figure 5. Characteristics of the synthetic cyclone and anticyclone initializing the simulations. Figures 5a and 5b show temperature anom-
aly (mean vertical background profile has been removed) and contours of meridional velocity from 610 to 670 cm s21 with CI 5 10 cm s21

(dashed lines are negative values). In Figure 5a, thin black lines are contours of bathymetry and the blue line is the location of the section
in Figure 5b. Figure 5c shows kinetic energy profiles in the core of the eddies (black thick line) and derived from ADCP measurements in a
mesoscale eddy (gray thin lines, Physindien-2011 cruise) [L’H�egaret, 2015].
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3. Phenomenology

In this section, we analyze the fate of the modeled outflow in the realistic simulation.

3.1. Mean Structure
The dense PGW cascades down the continental shelf break (�100 km downstream from the Strait, Figure 1).
We do not analyze this phase, which involves small-scale turbulence processes that are not properly repre-
sented in our model. The outflow reaches a depth of equal density at which point the flow is hydrostatic
and geostrophically balanced, and the outflow establishes itself with the coast on its right, as expected
from a density current in the northern hemisphere. Figure 6a shows salinity averaged during the 4 years of
simulation between 100 and 250 m. It reveals a salty plume with a maximum located on the right of the
Gulf close to the Strait of Hormuz but there is no significant variation of salinity across the Gulf further
away. This plume morphology is also found in observations [Carton et al., 2012]. Figure 6b shows salinity
and along-gulf velocity averaged in the along-gulf direction and in time (�� is an along-gulf average and h�i
is a time average). Figure 6c is the same for standard deviations. The dominant signal is the dipolar velocity
structure corresponding to a surface-intensified eddy with a diameter of �100 km. After 4 years of averag-
ing, the remaining polarity is anticyclonic, corresponding to a slight dominance of positive SSH at this longi-
tude in Figure 4. However, the standard deviation dominates the mean, consistent with the alternating
presence of cyclones and anticyclones.

The salinity local maximum hugs the coast and is associated with a maximum in velocity. This gravity cur-
rent is characterized by a mean speed of h�ui � 0:0520:1 m s21, comparable to the Nof’s [1983] speed
ug5g0a=f 50:13 m s21, where g0 is the reduced gravity and a is the slope of topography evaluated using the
section shown in Figure 6b. Note that the Nof speed does not account for frictional processes which may
explain the discrepancy. The mean salinity of the current is h�Si � 36:8 psu (slightly less than synoptic meas-
urements, 37 psu) [Pous et al., 2004]. The level of equilibration of PGW (100–250 m) is also slightly shallower
than observed (150–300 m) [Pous et al., 2004]. We attribute this to the imperfect representation of the
frictional Ekman bottom layer (the downslope movement of density currents is strongly constrained by the
vertical resolution at depth) [Laanaia et al., 2010] and gravitational adjustment as a whole is a difficult pro-
cess to reproduce [Peters et al., 2005]. As in the observations [Carton et al., 2012], the mean salinity distribu-
tion is smooth, in particular in the cross-Gulf direction, with maximum salinity values located between 100
and 250 m throughout the gulf. There are two maxima in salt variability that are located in the slope current
and in the interior (stdð�SÞ50:4 psu). This suggests that the slope current, bringing saline waters, displays a
strong temporal variability and that saline water may be injected in the inner basin. This is supported by
the weak imprint of the density current. Salinity at the boundary is only 0.3 psu higher than in the interior.
For comparison, salinity contrast for the Mediterranean outflow is larger than 0.6 psu [Legg et al., 2009].

Figure 6. (a) Map of salinity averaged in time (4 years) and vertically between 100 and 250 m. (b, c) Vertical sections of along-gulf velocity (colors) and salinity (black contours) averaged
in the along-gulf direction between the two thin black lines in Figure 6a. Figure 6b are time means (4 years) and Figure 6c are standard deviations (biased estimator).
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The mean salinity structure in the far field (downstream from Ras al Hamra, Figure 1) exhibits a very low
imprint of PGW (anomalies are less than 0.1 psu) and there is no imprint of a density current. This supports
that PGW has been almost completely diluted at this location.

3.2. Intermittency of the Slope Current
Figure 7 makes use of the 4 years of simulation to quantify the salinity distribution evolution in the Gulf of
Oman. Salinity in Figure 7b is depth averaged between 100 and 250 m and cross-shore integrated over a
20 km wide strip (�Rd=2, typical of the slope current width, Rd being the deformation radius). Salinity in Fig-
ure 7c is depth averaged between 100 and 250 m. These figures illustrate the spatiotemporal variability of
the salt content in the PGW current (Figure 7b) and through a cross-basin section (Figure 7c). The southern
filament (that may be associated with the slope current) exhibits a very strong intermittence: salinity in the
coastal range, upstream of Ras al Hamra (longitude <58:5�E), varies between 36 and 38 psu. Values above
37 psu are characteristic of PGW [Pous et al., 2004] and peak approximately twice a year. This is not related
to the boundary forcing as the seasonal variability in salinity is weak (maximum is always above at 39.5
psu). It thus has to be the result of another process, which is the intermittent interaction of the coastal
undercurrent with the mesoscale eddy field.

Figure 7d shows SSH on the same line as the section in Figure 7c. Latitude-time diagrams (Figures 7c and
7d) show the alternating presence of PGW along the northern (resp. southern) coast depending on whether
an anticyclone (resp. a cyclone) occupies the end of the Gulf. This strongly suggests a steering of PGW by
mesoscale turbulence. Similar latitude-time diagrams at locations downstream of Ras al Hamra (not shown)
reveal the same steering of PGW, and very diluted waters (salinity �36:1 psu) occasionally reaching the Gulf

Figure 7. (a) Salinity map at 200 m averaged on 10 days. (b) Longitude-time diagram of salinity (depth averaged between 100 and 250 m
and cross-shore integrated from the coastline to 20 km offshore) along the path of PGW delimited by black lines in Figure 7a. (c, d)
Latitude-time diagram of salinity (depth averaged between 100 and 250 m) and sea surface height, respectively, at the section shown as
white line in Figure 7a.
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entrance. This variability in outflowing water paths driven by mesoscale eddies is similar to the fate of the
Red Sea Water outflowing in the Gulf of Aden [Ilicak et al., 2011].

A close examination of the salinity field at a temporal resolution of 12 h allows to focus on some particular
events. Events labeled Ai (i 2 1 . . . 5, Figure 7b) correspond to detachments of PGW from the southern coast
propagating into the interior (dynamical characteristics are discussed in the next section 3.3). They are asso-
ciated with the presence of a cyclone that seemingly sheds the saline water seaward. Similar events occur
on the northern coast when an anticyclone lies at the back of the Gulf. These events break the slope cur-
rent, expel PGW seaward, and efficiently redistribute PGW into the basin interior (in coherence with the
salinity standard deviation maximum in the interior in Figure 6). They are season-lasting events, relying on
surface-intensified eddies to imprint their dynamics at depth. Hence, they provide a hint of explanation for
horizontally isotropic plumes of PGW seen on climatological fields in the Gulf of Oman. Events labeled B
and C (also in Figure 7c), respectively, correspond to a ‘‘reattachment’’ and a flush of PGW. They are charac-
terized by a salinity maximum at the southern boundary corresponding to a continuous saline filament
heading to the entrance of the Gulf. These events are rarely observed and the slope current is almost always
discontinuous.

3.3. Submesoscale Coherent Vortices Contain PGW
The realistic simulation shows a rich diversity of situations in terms of PGW distribution and turbulent fea-
tures containing PGW. Figure 8 presents a typical event (from the family of events Ai in Figure 7 identified
above) occurring in the simulation that helps to understand this spread. A cyclone fills the Gulf of Oman
downstream of Ras al Hamra. It can be identified by means of a positive core of vertical relative vorticity
(f5@x v2@y u � 0:5f , (u, v) is the horizontal velocity) and a maximum in density (Figures 8a and 8b). The
mean radius of deformation in this region is Rd541 km and the eddy diameter is 120 km � 3 Rd , i.e., in the
mesoscale range. The cyclone is energetic with a maximum velocity at 200 m of 0:5 m s21. Its deep-
reaching flow field (isopycnal tilts reach 1000 m) is consistent with Carton et al. [2012], who showed a
strong correlation between a float trajectory at 700 m and geostrophic surface circulation derived from
altimetry.

Around the rim of the cyclone, five small patches of negative vorticity are present. They correspond to Sub-
mesoscale Coherent Vortices (SCV) [McWilliams, 1985] with horizontal length scales less than Rd (between
Rd=2 and Rd). Their vertical extension is consistent with that of the Peddy (standing for Persian Gulf Eddy,
similarly to Meddy) sampled by Senjyu et al. [1998]. The SCV core vorticity reaches Oð2f Þ, consistent with
the high intensity of such submesoscale structures. Embedded within the SCVs are anomalously high values
of salinity (Figures 8c and 8f), hence revealing PGW. The core of PGW in this section is shallower than its
mean because it is contained into a mesoscale cyclonic structure, thus having tilted isopycnals upward (this
vertical shift of PGW position depending on the polarity of the structure has been noticed in cruise and
Argo floats observations in L’H�egaret et al. [2015]). Interestingly, at the period of formation of the SCV (Fig-
ure 8f), there is no exact colocalization of the hydrological (salinity) and dynamical (vorticity) cores. In fact,
the patch of positive anomaly of salinity is more diffuse horizontally and vertically than the vorticity core. To
confirm the robustness of this visual feature, we compute the Probability Density Functions (PDFs) of the
depth of relative vorticity maximum and the depth of salinity maximum through all water columns in an
area covering the Gulf of Oman, during a period of 20 days encompassing the snapshot in Figure 8 (see the
caption of Figure 9 for details on the computation). PDFs in Figure 9 show that the vorticity maximum is
found around 125–150 m (we investigate the processes responsible for this subsurface vorticity maximum
in section 4) whereas the salinity maximum have mainly three distinct peaks, between 100 and 275 m,
depending on the location of PGW (in fact, a shift in PGW depth is noticed whether it is embedded in a
cyclone or an anticyclone, and PGW core also deepens downstream from the Strait). Indeed, vorticity and
PGW cores are seemingly decorrelated. This is a clue to infer on the passive role of the slope current in the
formation of SCVs (further arguments on spatiotemporal scales involved are discussed in section 4.2). Insta-
bility of the current would have led to a colocalization of hydrological and dynamical cores (e.g., saline
Levantine Intermediate Water spread through SCVs generated by an undercurrent detachment) [Bosse
et al., 2015].

The coherence of the structures (f=f � 21) allows to infer a mechanism of transport of PGW seaward as
entrained in a rotation around the central mesoscale eddy (see velocity field in Figure 8d). This kind of
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trajectory has been reported with a mode water SCV around a mesoscale anticyclone in the Atlantic [Rever-
din et al., 2009]. However, SCVs in the model rapidly collapse and coherent structures cannot be tracked lon-
ger than 10 days in the simulation. We attribute this short life cycle to the strong deformation field (shear s
and strain r) in the vicinity of mesoscale eddies (Figure 10). In fact, although we have s;r < f in SCVs (con-
firming their coherence as rotating structures), the magnitude of the mesoscale shear and strain is compara-
ble with SCV vorticity values. As such, they compete with it and tend to damage the submesoscale
structures.

4. Processes at Play

In this section, we evidence how the kind of SCVs described previously can arise from interactions of meso-
scale eddies with topography. We did several idealized experiments and present the most interesting
results.

4.1. Vorticity Production on the Slope
Figure 11 shows maps and a section of relative vorticity for a snapshot of an idealized experiment. We recall
that the experiment is initialized with two opposite polarity mesoscale eddies representative of the ones
encountered in the Gulf of Oman. At the surface, the dominant feature is thus the mesoscale dipole with

Figure 8. (top) Maps at 200 m and (bottom) sections of (left) relative vorticity f nondimensionalized by the planetary vorticity f, (middle) density, and (right) salinity. The black line in
Figure 8a is the location of the sections. Black contours in Figure 8d are cross-section velocity ranging from 20.5 to 0:5 m s21 with CI 5 0:1 m s21 (negative values are dashed). Black
contours in Figures 8e and 8f are f=f (60:4; 0:6).
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core vorticity values of �60:5f (similar
to the ones realistically simulated). At
depth, the footprint of the dipole is
noticeable and each mesoscale eddy
is surrounded by some smaller eddies
of opposite polarity whose sizes (� Rd)
and vorticity amplitudes (jf=f j � 1)
are typical of SCVs. Note that these
SCVs exist in a subsurface layer and
have no surface signature.

Below 150 m, a very thin layer of high
vorticity jf=f j > 1 develops where
mesoscale eddies encounter the conti-
nental slope. Vorticity in the boundary
layer has an opposed polarity to the
eddy dragging on the slope. It is gen-
erated as the velocity field slows down
toward the shore due to friction in the
boundary layer. Vorticity would prob-
ably be even larger in a higher-
resolution simulation as found in Mole-
maker et al. [2015] because the vortic-

ity intensity depends on the width of the frictional layer. Vorticity strips are shed from the continental slope
at the edge of their ‘‘parent’’ mesoscale eddies and suddenly roll up into SCVs (Figure 11b, x � 350 km).
Instability of those vorticity strips carrying horizontal velocity shears is discussed in section 4.2. Notice that
we characterize these vortices as submesoscales as their diameters are in the range �35–40 km, thus
slightly less or comparable to Rd.

Similar processes are discussed in D’Asaro [1988] and Molemaker et al. [2015] of the formation of a frictional
boundary layer at depth. A key difference here is that friction acts on mesoscale eddy velocities instead of a
boundary current (upwelling undercurrent for instance). Another difference is that detachment does not
require a topographic irregularity like a cape or a canyon. Here rotation of the flow around mesoscale struc-
tures implies that currents are in some places oriented across the continental slope which promotes detach-
ment, in the same fashion as in Oey and Zhang [2004] and Akuetevi and Wirth [2015]. Among the eddy-
topography interaction processes described in the introduction, the dominating one in our simulation is
thus the frictional formation of boundary layers and the relaxation of smaller-scale eddies.

To test the hypotheses that vorticity is produced: (i) on the continental slope, and (ii) due to bottom friction
(the model vertical boundary layer implies a horizontal shear layer [Molemaker et al., 2015, Figure 7]), we ran
two experiments with and without bottom stress. We use a linear bottom stress with a drag coefficient Clin

D

53 1024 m s21 (similar to what is commonly used) [e.g., Dong et al., 2007]. Sensitivity to the bottom stress
parameterization is tested in the next section 4.2. Figures 12a and 12b present the enstrophy horizontal
spectra f2=2 as a function of depth for both experiments, computed on the same rectangular box
(x 2 ½46 km; 457 km�; y 2 ½49 km; 217 km�) and averaged over the same period (between days 45 and 75 to
allow for the eddies to interact with the topography while keeping a sufficient level of energy because the
system is freely decaying). The global picture matches what is expected from geostrophic turbulence in the
ocean: enstrophy is mostly contained in surface-intensified structures with a scale of 2–3 Rd (mesoscale
eddies in this case) and vanishes with depth at a given wave number. Looking more specifically at isoline
27 in Figure 12a reveals a positive anomaly of enstrophy between 200 and 800 m. An interior source of
enstrophy at scales smaller than or equal to Rd is thus located on the continental slope. The simulation with-
out bottom stress does not exhibit the same enstrophy creation at depth (Figure 12b). Moreover, neither
frictional boundary layer nor SCV are observed, in agreement with similar experiments carried out in Oey
and Zhang [2004]. Enstrophy is monotonically decreasing with depth for all wave numbers. The ratio of the
two enstrophy power density spectra quantifies this fundamental difference to be an order of magnitude
greater (Figure 12c) and validate hypotheses (i) and (ii).

Figure 9. Probability density functions (PDFs) of the depth of (green histogram)
relative vorticity maximum jfjmax and (red histogram) salinity maximum Smax,
computed on 20 days around snapshot in Figure 8, in an area covering the Gulf of
Oman (between vertices 23:8�N, 56:6�E; 26:5�N, 57:8�E; 25:2�N, 61:2�E; 22:5�N,
59:7�E). Depth is binned from 25 to 800 m with a constant bin width of 25 m (x
axis is cut at 500 m). Lines are cubic splines interpolations between histogram
rectangles.
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4.2. Generation of SCVs
We observe both cyclonic and anticy-
clonic SCVs in the realistic (although
not precisely quantified, we observe a
slight preference for anticyclones) and
in the idealized simulations. The polar-
ity of an SCV is opposed to the polarity
of its parent mesoscale eddy that has
dragged on the slope. Mechanisms
leading to the formation of vortical
structures emerging from intense fric-
tional boundary layers was first
observed by D’Asaro [1988] and has
recently been revisited using high-
resolution models [Dewar et al., 2015;
Gula et al., 2015; Molemaker et al.,
2015]. They involve different instability
processes depending on the polarity
of the boundary layer.

The case of anticyclonic boundary layers
has been studied in the context of the
California Undercurrent [Molemaker
et al., 2015; Dewar et al., 2015]. Flowing
poleward along the US West Coast, it
generates negative vorticity in the
boundary layer. With a sufficient resolu-
tion, vorticity in the boundary layer
becomes larger than f and instigates
centrifugal instability when the flow
separates from the slope. While our sim-

ulation does no justice to the details of evolving centrifugal instability and subsequent mixing of momentum
due to the limitations of resolution and the hydrostatic assumption, the flow does quickly adjust to a state that
is subcritical. Negative vorticity values that are lower than –f are routinely generated in frictional boundary
layers. These values are diluted to satisfy f > 2f as soon as vorticity strips detach from the stabilizing continen-
tal slope. We argue that the same mechanism occurs in our simulations when a mesoscale cyclone drags on the
continental slope and generates anticyclonic SCVs (Figure 8).

The cyclonic case has been studied on the cyclonic side of the Gulf Stream at the exit of the Florida Strait
[Gula et al., 2015]. The Gulf Stream drags on the continental slope on its left, generating positive vorticity by
friction. After separation of the flow from the slope, the vorticity filament becomes unstable and rolls up
into a string of cyclonic submesoscale vortices. Gula et al. [2015] show that barotropic instability, thus linked
with the instability of a horizontal shear flow, is the main process generating those vortices.

Another potential candidate for the generation of eddies in the realistic simulation could be the baroclinic
instability of the slope current [Griffiths, 1986]. The linear stability analysis of a slope current [Stephens, 1997]
applied to the intermittent slope current in our simulation gives a maximum growth rate of �0:12 U=Rd cor-
responding to a wavelength of �2pRd=0:7 (using a continental slope of 0.02, mean value upstream Ras al
Hamra). With a slope current that reaches U � 0:3 m s21 and Rd541 km, this gives a growth rate of 1/13
days21 and a wavelength of 360 km. These spatiotemporal scales are incompatible with SCVs and we there-
fore reject this as a generation mechanism of SVCs.

4.3. Sensitivity to the Bottom Stress Parameterization
The development of frictional layers in the simulations occurs when an eddy drags on the bottom slope.
The strength of the friction depends on how the bottom stress sb is parameterized in ROMS. We are able to
use either a linear bottom stress sb5q0Clin

D u or a quadratic bottom stress sb5q0Cquad
D jjujju where q0 is a

Figure 10. Maps at 200 m of the absolute value of (a) relative vorticity jfj=f , (b)
divergence jdj=f , (c) shear jsj=f , and (d) strain jrj=f . All fields are computed at the
same time, identical to Figure 8.
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reference density, CD is a drag coefficient, and u is the horizontal velocity. In the linear formulation, CD is
constant. In the quadratic formulation, it can be constant or vary with the thickness of the lowest layer of

the grid Dzb. This uses the Von Karman-Prandtl logarithmic formulation CVonKarman
D 5ð j

log ðDzb=zrÞÞ
2 where j5

0:41 is the Von Karman constant and zr is the roughness parameter usually taken in the range

Oð102221023 mÞ.

We made several simulations with linear and quadratic bottom stresses and varying CD. Experiments are
described in Table 1. The first observation we made is that neither the nature of the parameterization (linear
or quadratic) nor the value of CD changes qualitatively the eddy-topography interactions. Formation of fric-
tional boundary layers is still present and roll-up of vorticity strips into vortices in the interior occurs as soon
as a drag is parameterized. The evolution of the bottom stress is very similar in all cases (Figure 13). A peak
occurs at the beginning of the simulation when the velocity field is dramatically damped in the bottom
level (initialization does not take into account a reduction of velocity in the bottom level). Then the bottom
stress decreases and fluctuates around its mean value from day 20 onward. An interesting point is that the
mean bottom stress increases with CD (Table 1) but with a smaller rate: doubling CD only increases hjjsjji by
38% (linear case) and 40% (quadratic case). It also reduces the bottom layer velocity standard deviation stdð
ubottomÞ by comparable factors. This suggests that the bottom stress is not very sensitive to the drag coeffi-
cient itself. The Von Karman formulation of the drag coefficient does not really impact the bottom stress

Figure 11. Snapshot maps and section of relative vorticity f=f in the idealized experiment with linear bottom stress. Maps are (a) at the
surface and (b) at 400 m. Black line in Figure 11b indicates location of section in Figure 11c. Black contours in Figure 11c are cross-section
velocity ranging from 20.6 to 0:6 m s21 with CI 5 0:1 m s21 (negative values are dashed).
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and its integrated value is very similar to the quadratic case with CD52:5 1023 (Figure 13). This is not sur-
prising since the bottom stress mainly acts around 400 m (see the large vorticity values in Figure 3 of the
manuscript) and CVonKarman

D ð� 400 mÞ � 224 1023. This more sophisticated formulation does not really
bring changes in the simulations here.

To conclude, we can state that the velocity field is not sensitive to the bottom stress formulation and the
drag coefficient used in our simulations. All sensitivity tests exhibit similar eddy-topography interactions,
thus the phenomenology described in the manuscript is robust.

5. Turbulent Diffusion

In this section, we assess the efficiency of eddy-topography interactions described previously in diffusing
the salinity in the Gulf of Oman.

5.1. Eulerian Perspective
We start with an Eulerian point of view that reveals the significance of eddy fluxes in distributing salinity in
the Gulf. We separate the contributions of salt fluxes into a mean and an eddy part:

r3D � uS|fflfflfflffl{zfflfflfflffl}
total

5r3D � �u �S|fflfflfflfflffl{zfflfflfflfflffl}
mean

1r3D � u0S0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
eddy

: (3)

We average the total term computed
online during 1 year, and compute off-
line the mean term from the averaged
velocity and salinity fields. As such, we
can estimate the eddy contribution as
the difference between the total and
the mean terms. In addition, contribu-
tions are vertically integrated over the
salt tongue depth range (100–250 m).
The first-order balance is between the
mean and the eddy contributions, and
the total advection term is weaker
than both contributions. All other
terms (mixing, rate, and forcing) are at
least 1 order of magnitude smaller. As

Figure 12. Enstrophy spectral density as a function of depth averaged over 1 month in the idealized experiments (a) with linear bottom stress and (b) with no bottom stress. Figure 12c
is the ratio of (a)/(b). k5ðk2

x 1k2
y Þ

1=2 is the horizontal wave number. The vertical dashed line shows the deformation radius scale (Rd).

Figure 13. Horizontally integrated bottom stress as a function of time (120 days of
simulation) with five different bottom stress parameterizations (see the legend for
correspondence).
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such, we only show the total and the eddy terms in Figure 14 (the mean term is almost equal to the
opposite of the eddy term). Displayed are opposite quantities of those in equation (3), i.e., convergence of
fluxes. The most important contribution of eddy fluxes is done in the inner basin, where eddy fluxes contrib-
ute to the supply in salty waters (convergence of eddy fluxes). Values reach �231027 psu s21, i.e.,
0:6 psu month21. Along the southern boundary, a dominance of negative convergence of eddy salt fluxes
indicates that salt is extracted from the slope current at roughly similar rates. The role of eddy fluxes is thus
to extract salinity from the boundaries (preferentially from the southern boundary where the slope current
sits) and redistribute it in the interior of the Gulf. This provides a hint of explanation to understand how the
almost isotropic salinity plume can form. In fact, the mean salinity gradient is directed in the along-gulf
direction and the signature of the slope current is very weak (Figure 6a).

5.2. Lagrangian Perspective
We now examine synthetic particle trajectories released in the source of the outflow, in the Strait of Hor-
muz. This Lagrangian approach brings complementary information in terms of dispersion rate of particles
during their journey through the Gulf of Oman which can under some assumptions and approximations be
translated into eddy diffusivities (e.g., review on Lagrangian statistics in LaCasce [2008]). Particles are
released off-line in the model solution, using the code described in Gula et al. [2014]. Neutrally buoyant par-
ticles are advected directly by the model velocity fields without any additional dispersion from the model’s
mixing processes. Model 12 hourly outputs are linearly interpolated in space and time. A time step of 7 min
is chosen to respect the Friedrich-Courant-Levy condition imposed by Dx52 km and maximum model
velocities of 1:8 m s21. A total of 120,000 particles are continuously injected in the outflow during 2 years to
cover seasonal variations.

The mean trajectory of all released particles, i.e., the trajectory of their center of mass, is shown in Figure
15a. The trajectory is well centered in the cross-Gulf direction, from their release in the Strait until reaching
the middle of the Gulf. This confirms the insignificant role played by the slope current. Examining an anima-
tion of their pathways confirms the role of mesoscale eddies in stirring them, northward (southward) when
a cyclone (anticyclone) occupies the end of the Gulf.

On average, the PGW salt anomalies are diluted as they are transported toward the mouth of the Gulf. This
is noticeable in particle’s mean salinity (Figure 15a). To quantify this diffusion, we compute the absolute dis-
persion of particles around their mean position, that is, the mean square distance between particles and
their center of mass hd2ðtÞi at a function of time t, relative to the release absolute time (h�i denotes an
ensemble average). It reveals how a cloud of tracer spreads about its center of mass [LaCasce, 2008]. Figure
15b shows the dispersion evolution, computed with all particles released in the Strait. Three regimes are

Figure 14. Convergence (i.e., minus divergence) of salt fluxes computed over 1 year and integrated between 100 and 250 m in the vertical.
Figure 14a is the mean of total fluxes computed online and Figure 14b is the eddy salt flux divergence. Both fields have been spatially
smoothed with a Gaussian filter of width 10 km.

Journal of Geophysical Research: Oceans 10.1002/2015JC011033

VIC ET AL. PERSIAN GULF OUTFLOW 6714

Chapter 4. On the Fate of the Persian Gulf Outflow

86



noticeable. First, from the release time to about 50 days, hd2ðtÞi can be approximated by a linear function.
hd2ðtÞi / t suggests a diffusive behavior typical of a random walk process (same behavior was found in
the surface and subsurface North Atlantic) [Colin de Verdière, 1983; LaCasce and Bower, 2000]. In a two-
dimensional flow, in case of a linear dispersion, one can infer a diffusivity D:

hd2ðtÞi54D t: (4)

Assuming this model is valid and using a linear regression, we obtain a diffusivity D51692627 m2 s21. This
value accounts for a variety of 3-D dispersive processes. Excluding particles whose depth evolution deviates
from that of the center of mass by more than 6d0 a priori leads to a lower value Dd0 . For small d0 this esti-
mate should be more directly comparable to classical quasi-2-D isopycnal diffusivity values because the
influence of dispersive processes in the vertical direction is limited. For d0550 m, we find Dd0 � 1600 m2 s21

which is still large and comparable to those obtained for well-known highly diffusive environments,
e.g., in the Antarctic Circumpolar Current (ACC). For comparison, Abernathey et al. [2010] find values reach-
ing �2000 m2 s21 in the ACC (although the method is different, it is also representative of an eddy diffusiv-
ity) whereas Colas et al. [2013] obtain 3002750 m2 s21 in an eastern boundary regime (California Current
System). Note that this diffusivity corresponds to the dispersion during almost the first 2 months (50 days,
until the second star in Figure 15a). A slight deep is visible in the dispersion curve after t � 20 days. It is due
to a saturation of the across-gulf dispersion (not shown) component that is consistent with the elongated
shape of the gulf. A transition occurs at 50 days, which corresponds to a standard deviation of �170 km of
the particle distance to the center of mass. This makes a disk of diameter 340 km that fills the Gulf.

Between days 50–150, there is a second stage, which is subdiffusive (hd2i � ta; a < 1). As the majority of the
particles fill the Gulf, their overall dispersion is slowed down in the cross-Gulf direction (dispersion is aniso-
tropic due to the Gulf geometry, not shown). A transition occurs around 150 days and marks the beginning of
a third stage, which is associated with an even slower dispersion (i.e., smaller diffusivities). We hesitate to
dynamically interpret this regime during which particles progressively exit the computational domain.

6. Summary

The realistic simulation evidences the important role of mesoscale eddies in spreading PGW in the
Gulf of Oman at seasonal time scales, similarly to the fate of the Red Sea outflow in the Gulf of

Figure 15. (a) Trajectory of the center of mass of 120,000 particles released in the outflow in the Strait of Hormuz during 2 years. There is
one point per day, one small star every month, and one big star every year. Color is the mean salinity of the particles and isobaths 100,
250, and 1000 m are shown in gray lines. (b) Relative dispersion of particles relative to the center of mass as a function of time (black line)
and linear regression computed between days 1 and 50 (red line). Correlation coefficient for linear fit is 0.98.
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Aden [Ilicak et al., 2011]. Unlike in many other outflows, the slope current (along the southern coast) associ-
ated with outflowing waters is very intermittent and not instrumental in generating turbulence. The ideal-
ized simulations isolate the interaction of mesoscale eddies with the topography and reveal an enstrophy
source at depth, located on the continental slope, that is produced by frictional effects in boundary layers.
Friction is responsible for the formation of intense relative vorticity strips that detach from the continental
slope and rapidly roll up into SCVs produced by instability. It is found in the realistic simulation that these
SCVs trap PGW in their vicinity and contribute to PGW advection in the interior of the Gulf of Oman. SCVs
are advected along the edges of the surrounding mesoscale eddies and do not live longer than 10 days
due to the strong deformation rates there. Overall, this combination of processes mixes the salt input asso-
ciated with PGW and produces a smooth large-scale salinity gradient in the Gulf. A release of virtual par-
ticles in the realistic simulation allowed to infer a diffusive regime with an estimated eddy diffusivity of
�1700 m2 s21, typical of highly turbulent and dispersive regimes. This study thus brings an additional
dynamical ingredient to the observations in L’H�egaret et al. [2013]: PGW in the interior of the basin is partly
contained into SCVs that participate actively to its spreading.

Furthermore, we suggest that eddy-topography interactions creating submesoscale structures may often
occur on continental slopes. Water masses trapped into SCVs may be spread into inner basins (away from
boundaries) through this mechanism of transport. Eddy-topography interactions may well be a frequent
and important process along continental slopes and contribute to offshore advection, dispersion and mix-
ing of slope current waters in many other ocean sectors. For instance, recent fine-scale measurements by
gliders in the Mediterranean Sea revealed the importance of SCVs, generated on the continental slope, to
spread Levantine Intermediate Waters [Bosse et al., 2015]. It is likely that the formation of SCVs by boundary
layer detachment is not a rare process in the ocean. However, it is hard to observe because it is essentially a
submesoscale process.

A step further in the study of the PGW spreading should be to focus on diabatic processes, especially on
vertical mixing during the adjustment phase and horizontal mixing associated with SCVs collapse. The con-
tribution of near Strait turbulence generated by pulses in the outflow could also lead to a richer variability
in the spreading of PGW.
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4.3 Supplementary Information

4.3.1 Parallel Shear Flow Instabilities

In this section, we test the hypothesis that the size of Submesoscale Coherent Vortices
(SCVs) generated by friction in boundary layers (Figure 4.2) is compatible with the size
of vortices generated by parallel shear flow instability (purely barotropic). We use the
simple framework of Rayleigh (1880) for two-dimensional incompressible flow. We solve
the linear instability problem for a piecewise linear flow (pages 251-256 in Vallis, 2006).

Figure 4.2: Snapshot at 400 m from the idealized experiment. A mesoscale anticyclone (blue core of
negative relative vorticity) drags on the northern slope and generates opposite sign vorticity. The thin
vorticity strip detaches from the slope and rolls up into submesoscale cyclones (red structures).

Analysis

We suppose the basic state to be a parallel flow in the x direction (Figure 4.3). It illustrates
what occurs just after the vorticity strip detachment (Figure 4.2, x ∼ 300 km, y ∼ 240
km). The background velocity field (y < −b) is thus the one of the mesoscale eddy (except
that it does not decrease going to the eddy center) that has been sheared in the boundary
layer. Vorticity is concentrated in the shear layer of width d (−b < y < −a). The basic
state is :


U1 = 0, −a < y < 0

U2 = −U0
d

(y + b) + U0, −b < y < −a

U3 = U0, y < −b

(4.1)

We assume a solution of Rayleigh’s equation (linear vorticity equation for disturbances
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Figure 4.3: Barotropically unstable parallel shear flow U(y) (blue line). The vorticity is concentrated in
−b < y < −a (layer of width d = b − a). Distance from the boundary layer (where vorticity has been
created) is a.

to parallel shear flow) of the form :

ψ1 = A e−k(y+a) +B ek(y+a), −a < y < 0

ψ2 = C e−k(y+a) +D ek(y+b), −b < y < −a

ψ3 = E ek(y+b), y < −b

(4.2)

Where total solutions for disturbances are written Ψ′i = ψi(y) eik(x−ct), i = 1, 2, 3. The
wavenumber of the disturbance is k and c is the phase speed of the wave if purely real (the
disturbance is not a growing mode) and is related to the growth rate of the disturbance
if it has a positive imaginary part (the growth rate is k=(c)). These solutions (4.2) must
match two conditions :

1. Continuity of pressure across interfaces (namely, at y = −a and y = −b) :

∆
[
(U − c)∂ψ

∂y
− ψ∂U

∂y

]
= 0, (4.3)

2. Continuity of normal velocity across interfaces :

∆
[

ψ

U − c

]
= 0, (4.4)

where ∆ is the difference between values across the interface.

We apply the jump conditions at the interfaces at y = −a and y = −b and obtain the
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following relations between the coefficients :

A(kc) +B(−kc) + C
(
−kc− U0

d

)
+D

[(
kc− U0

d

)
ekd
]

= 0
A+B − C −D ekd = 0

C
[(
−(U0 − c)k + U0

d

)
ekd
]

+D
(
(U0 − c)k + U0

d

)
+ E (−(U0 − c)k) = 0

C ekd +D − E = 0

(4.5)

The second condition also applies to the northern boundary interface :

A e−ka +B eka = 0 (4.6)

This set of 5 homogeneous equations (4.5-4.6) may be written in the form of a matrix
equation :

M (A B C D E)T = 0 (4.7)

with :

M =



eka e−ka 0 0 0
kc −kc −kc− U0

d

(
kc− U0

d

)
ekd 0

1 1 −1 − ekd 0
0 0

(
−(U0 − c)k + U0

d

)
ekd (U0 − c)k + U0

d
−(U0 − c)k

0 0 ekd 1 −1


(4.8)

The determinant of the matrix must be zero for non-trivial solutions. In the general
case, det(M) has a (very) complicated form. If we assume that the boundary is far from
the shear layer, a → ∞, we have det(M) → eka det(M’), M’ being the extraction of M
from lines 2 to 5 and columns 2 to 5. In this case, we just solve det(M’) = 0.

det(M’) = 4 e2dk

d2

[
d2k2c2 + U2

0
4
(
e−2dk−(1− dk)2

)]
(4.9)

det(M’) = 0⇐⇒ c2 = U2
0

4d2k2

[
(1− dk)2 − e−2dk

]
(4.10)

Results

From relation (4.10), one may find that instability occurs if c2 < 0 and c has a positive
imaginary part. It is the case for wavelengths (λ = 2π/k) that are long enough : dk . 1.3,
i.e., λ & 4.8 d. Figure 4.4 shows the growth rate as function of wavenumber, computed
from relation (4.10). The most unstable wavenumber is dk ∼ 0.78, i.e., λ ∼ 8.1 d. This
means that we can expect, in the limit of validity of the linear instability theory, that a
characteristic length scale of the SCVs is 8 times the width of the boundary layer.
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Figure 4.4: Growth rate k =(c) as a function of wavenumber k. c and k are non-dimensionalized by U0
and 1/d respectively.

Redimensionalizing the growth rate and the wavelength of the most unstable wave with
U0 = 0.3 m s−1 and d = 5 km gives a wavelength of 40 km and a growth rate of 1 day−1.
This is approximately the size of the SCVs (Figure 4.2) and the order of magnitude of
time necessary for the shear layer to roll up into SCVs. Hence, the mechanism generating
SCVs in our numerical experiments (once the vorticity strip, i.e. shear layer, is detached
from the boundary) is compatible with the simple parallel shear flow instability theory.

To go further : in a course note by McIntyre (2005), the suppression of shear insta-
bilities by boundary constraints is alluded. "These are cases with the side boundaries so
close to the shear layer that the Rossby-wave propagation mechanism does not have room
to operate sufficiently strongly to hold a phase-locked configuration."
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Dynamics of the Oman Upwelling
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Chapter 5. Dynamics of the Oman Upwelling

5.1 Introduction

The seasonal upwellings occuring along the coasts of Somalia and Oman have not been
deeply examined compared to Eastern Boundary Upwelling Systems (EBUS, see the re-
view of Capet et al., 2008a). Motivation to study the Arabian Sea upwellings is twofold.
On the one hand, their impacts on regional climate1 and ecosystems have been found to be
strong. In fact, they were early revealed to be of primary importance in the heat budget
of the Arabian Sea (Düing and Leetmaa, 1980). Besides, their role in the sustainment of
ecosystems in driving the summer phytoplankton bloom has also been observed for a long
time (Banse, 1987). On the other hand, there is a more theoretical motivation to study
these upwellings as there are fundamental reasons to elaborate on a different functioning
of western and eastern boundary upwelling systems. The principal one is the onshore vs.
offshore propagation of Rossby waves that allow dissipating vs. delivering energy to the
system (as mentioned in Marchesiello et al., 2000).

The following manuscript (to be submitted soon) focuses on the upwelling off Oman
and has two main objectives. The first one is to provide a modeled description of the
upwelling off Oman in terms of currents, temperature structure and eddy kinetic energy
budget. This part is strongly inspired by the work done on EBUS by Marchesiello et al.
(2003); Capet et al. (2008a,b); Colas et al. (2012, 2013). It thus allows a systematic
comparison between eastern and western boundary upwellings, with dynamical interpre-
tations. The second objective is to investigate closely the Rossby wave dynamics in the
upwelling context. Therefore, we give a qualitative and quantitative description of the
regional scale functioning of the upwelling. On the other hand, the study mostly leaves
aside the ∼10-50 km details of the dynamics that is due to some small scales in the forc-
ing : topographic irregularities, indented coastline and cape effects on wind stress curl.
These details are resolved by the model. They certainly play a role on the continental
shelf and shelf break dynamics and would deserve a study on their own right.

1They influence precipitations over the Indian continent for instance (Izumo et al., 2008; Xie et al.,
2009)
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5.2 Article in preparation

Western boundary upwelling dynamics off Oman

C. Vic,1 X. Capet,2 G. Roullet1 and X. Carton1

1Laboratoire de Physique des Océans, UMR 6523, CNRS/Ifremer/IRD/UBO, 6 Avenue
Le Gorgeu, 29200 Brest, France.

2IPSL/LOCEAN, UMR 7159, CNRS/UPMC/IRD/MNHN, 4 Place Jussieu, 75252
Paris cedex 05, France.

5.2.1 Abstract

Despite its climatic and ecosystemic significance, the coastal upwelling taking place off
Oman is poorly known. The authors use a regional model forced by climatological wind
stress to investigate its dynamics. The model is found to compare favorably with existing
observations. In particular, the thermal structure, the surface circulation pattern (mean
and turbulent) and the sea surface temperature (SST) seasonal cycle are well represented.
The underlying dynamics is examined and it is demonstrated that : (i) EKE generation
through baroclinic/barotropic instability of the upwelling jet has a contribution to EKE
comparable to that of the remote open ocean sources (which tend to feed the western part
of the basin through beta drift); (ii) Rossby wave field excited by wind stress curl, in an
area situated O(1− 10)Rd from the coast, interacts with the western boundary and plays
an essential role in sustaining the cooling of the upwelling area. Specifically, linear Rossby
wave arguments allow the authors to explain the 1.5 month lag between SST minimum
and forcing maximum (wind stress and wind stress curl). These results strongly contrast
with those for eastern boundary upwelling systems where EKE essentially results from
local instability of the upwelling system and SST is more tightly coupled to wind forcing.
At smaller scales, ∼10–50 km major heterogeneities due to geomorphological irregularities
are present in the system and would need further investigation.

5.2.2 Introduction

Currents in the Arabian Sea are primarily driven by monsoonal winds (Lee et al., 2000;
Schott and McCreary, 2001). Along with the twice yearly reversal of the monsoonal
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winds, surface boundary currents also reverse. During the summer monsoon, strong up-
wellings occur in the western Arabian Sea, over a wide area along Somali and the Arabian
Peninsula. Their strong impact on the heat budget of the Arabian Sea was early revealed
by Düing and Leetmaa (1980). The Somali upwelling was subsequently thoroughly in-
vestigated (e.g., Schott and Quadfasel, 1982; Schott, 1983; McCreary and Kundu, 1985;
Fischer et al., 1996) while the upwelling sector situated further north offshore of Oman
has received comparatively limited attention.

The Oman upwelling is of primary importance in the ecosystems of the Arabian Sea in
driving the summer phytoplankton bloom (e.g., Banse, 1987; Lévy et al., 2007). It also
plays a major role in the Indian monsoon rainfall variability, hence on the Asian continent
climate, as revealed by global coupled ocean-atmosphere numerical models (Izumo et al.,
2008). Only a few studies are dedicated to observation and understanding of this upwelling
functioning but measures are sparse with a very limited temporal coverage (Elliott and
Savidge, 1990; Savidge et al., 1990; Manghnani et al., 1998; Shi et al., 2000).

Elliott and Savidge (1990) highlight specific features of this upwelling. It is found
to be (i) active only seasonally, roughly during the summer monsoon, being driven by
alongshore reversing monsoonal winds and (ii) coupled with a very intense and turbulent
surface circulation linked with its position on a western boundary. These make it be-
ing fundamentally different from more thoroughly studied Eastern Boundary Upwelling
Systems (EBUS, composed of the Canary, Benguela, Peru-Chile and California upwelling
systems, Capet et al., 2008a), which show less seasonal variability at similar or even
higher latitudes and are dynamically more isolated because of their position on eastern
boundaries. In fact, transient features in the ocean (except in the Antarctic Circumpolar
Current), whether being coherent structures (eddies) or wave-like motions, mostly follow
a westward propagation (e.g., Fu, 2004). Schematically, turbulence generated at east-
ern boundaries is radiated westward in the open ocean, whereas western boundaries can
receive turbulent features generated far to the east in the inner basin (Chelton et al.,
2011). As such, we expect the Oman upwelling to be influenced by remotely forced sig-
nals. Interactions between incoming Rossby waves and western boundary currents have
been documented and analysed in several regions, including the East Australian Current
(Marchesiello et al., 2000) and the Brazil Current (Azevedo et al., 2012). It has also been
suggested to occur in the Somali Current by McCreary and Kundu (1985). Whereas "at
eastern boundaries, coastal upwelling currents leak consistently offshore by means of the
radiation of Rossby waves" (Marchesiello et al., 2000), energy transported by these waves
tends to pile up at western boundaries (McCreary and Kundu, 1985).

The objective of this study is threefold. First, we aim to investigate the structure
and dynamics of the Oman upwelling in light of what has been done for EBUS, with a
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particular focus on eddy kinetic energy (EKE) distribution, generation and propagation.
Second, we investigate specifically the impact of Rossby waves on the upwelling struc-
ture, as they are expected to influence its dynamics. Third, we assess the contribution of
different mechanisms in the mixed layer cooling during the upwelling. We use a regional
model to do so, with a sufficient resolution to fully resolve mesoscales (∆x=2 km). This
rather high resolution ensures that the mesoscale is well resolved and that its accompany-
ing frontal activity is in large part accounted for (Capet et al., 2008b; Marchesiello et al.,
2011). In parallel, the use of a two-layer linear shallow-water model forced by a realistic
wind stress curl allows to isolate wave mechanisms. It gives instructive insights on the
reflection of waves in the upwelling context.

Our main findings can be summarized as follows : Similarly to EBUS, the coastal up-
welling jet is found to generate significant EKE (mainly through baroclinic instability) but
the upwelling area is also impacted by mesoscale turbulence generated offshore that drifts
onshore. Besides, a lag of ∼ 1.5 month is found between the maximum of the upwelling
favorable atmospheric conditions (wind stress and wind stress curl) and the peak of the
associated oceanic response (when the surface temperature reaches its minimum). We
argue that this is consistent with a Rossby wave propagation and reflection mechanism
that traps anomalies at the coast, thus reinforcing and sustaining the wind-driven up-
welling. Precisely, an upwelling long wave is triggered by an intense positive wind stress
curl during the summer monsoon. It propagates westward and reflects at the western
boundary into a shorter mode. This mode propagates eastward at a very slow speed, thus
traps the upwelling anomaly at the coast at a seasonal scale. Finally, the mixed layer
heat budget confirms the importance of vertical advection, thus of the wind stress curl,
in cooling the surface layers during the upwelling.

The outline of the paper is as follows. The model configuration is presented in sec-
tion 5.2.3 and an extensive characterization of the upwelling follows in section 5.2.4. EKE
generation and propagation is quantified in section 5.2.5. The mechanisms of Rossby
wave reflection are investigated in section 5.2.6 and a mixed-layer heat budget is per-
formed in section 5.2.7. Finally, conclusions are drawn and perspectives on future work
are elaborated in section 5.2.8.

5.2.3 Numerical framework

We use the Regional Oceanic Modelling System (ROMS, Shchepetkin and McWilliams,
2005). An off-line one-way nested configuration with a 2 km horizontal resolution is set up
from a parent solution described in Vic et al. (2014b) at 6.6 km resolution. The fine-scale
domain and topography are shown in Fig. 5.1. The nesting approach follows the procedure
of Mason et al. (2010). Boundary conditions are extracted from the parent solution to
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force the nested solution for 4 years. Topography is from the Shuttle Radar Topography
Mission dataset at 30’ of resolution (SRTM30-plus, Becker et al., 2009). Atmospheric
forcing is monthly and climatological as we do not elaborate on interannual variability
(that may involve ocean-atmosphere interactions, Izumo et al., 2008) but rather focus on
the upwelling merely forced by the atmosphere. Wind stress is from the Scatterometer
Climatology of Ocean Winds (SCOW, Risien and Chelton, 2008) and heat and water
fluxes are from the International Comprehensive Ocean Atmosphere Dataset (ICOADS,
Worley et al., 2005).

Figure 5.1: Snapshot of sea surface temperature during an upwelling event off the Oman coast. Thick
black lines are isobaths 100, 200 and 1000 m. The blue rectangle is the area where variables in Fig. 5.2
are averaged. Thin parallel black lines limit a region where the shelf is almost alongshore invariant. The
(x, y) arrows represent the coordinate system used to draw sections (e.g., Fig. 5.5). The inset map on
the right shows the nested domain (orange rectangle) and isobaths 1000, 2000, 3000 and 4000 m (black
lines).

The turbulent vertical mixing is parameterized by the K-profile parameterization
(KPP, Large et al., 1994) for the surface and bottom boundary layers. The boundary
layer thickness (used to compute mixed layer heat budget in section 5.2.7) is diagnosed
by comparing a bulk Richardson number to a critical value. The boundary layer mixing
scheme connects to an interior mixing scheme that takes into account three processes :
static instability (convection), vertical shear and internal wave breaking (for details on in-
terior and boundary layer mixing, see appendix in Jullien et al., 2012). The bottom stress
is linear with a drag coefficient Cd = 3 × 10−4 m s−1 (in the range of values commonly
used, e.g., Dong et al., 2007).

The simulation has already been used in a different context and the reader is refered
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to Vic et al. (2015) for further information. In section 5.2.4, we assess the model ability
to reproduce observational fields related to the upwelling season.

5.2.4 Model regional circulation and evaluation

In this section, we consider the seasonality of the dynamics off Oman which helps us
define the upwelling season. We then examine some general characteristics of the mean
circulation and hydrography during this period of interest. In parallel, we assess the
model performance in comparison to observational datasets.
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Figure 5.2: Time series of (a) alongshore wind stress, (b) wind stress curl, (c) atmospheric net heat flux,
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defines the upwelling season.
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System seasonality

Due to the sparseness of observations in the region, literature is vague on the upwelling
spin up and spin down periods. Figure 5.2a,b,c show a climatological time series of the
surface atmospheric forcing relevant to describe the regional seasonal cycle : alongshore
wind stress τalong, wind stress curl ∇ × τ , and net heat flux Qatm

2. These fields are
averaged in an area covering the upwelling (blue box in Fig. 5.1). Figure 5.2d,e show
the modeled climatological sea surface temperature (SST) and sea surface height (SSH),
averaged in the same area. All oceanic forcing display a dominant annual cycle, charac-
teristic of the monsoonal pace in the Arabian Sea (e.g., Schott and McCreary, 2001).
τalong is approximately in the direction of the dominant monsoonal winds in this region,
blowing northeastward during the summer monsoon (mid-May to mid-September) and
southwestward during the winter monsoon (mid-November to March). The winds are
stronger during the summer monsoon and τalong partly reflects the signature of the Find-
later Jet that is almost parallel to the Arabian Peninsula during this season (Findlater,
1969). The onshore side from the axis of the Findlater Jet is characterized by a strong
positive wind stress curl extending on more than 200 km offshore the Oman coast (e.g.,
Fig. 1c in Vic et al., 2014b). Thus both τalong and ∇ × τ are upwelling favorable forc-
ing during the summer monsoon (Manghnani et al., 1998), respectively triggering Ekman
coastal divergence and Ekman pumping (e.g., Bakun and Nelson, 1991). This explains
the weak SST from mid-May to mid-October that reveals the seasonal coastal upwelling
(Fig. 5.2d). We define the upwelling season from June to September (4 months) using
Fig. 5.2d, when SST is significantly lower (by ∼ 0.5◦C) than semi-annual maxima. In the
following, the brackets denote an average on the upwelling season through the 4 years of
simulation.

A remarkable feature of the annual cycle of SST is the ∼ 1.5 month lag between the
maximum of upwelling forcing (τalong and ∇ × τ) and the response of the ocean (SST
and SSH minima). Although not quantified, this phase difference has been noticed in
observing SST derived from Advanced Very High Resolution Radiometer and SSH derived
from satellite altimetry (Manghnani et al., 1998). In EBUS, it has been shown that the
ocean’s Ekman response to synoptic events of upwelling favorable winds has a lag of a
few days (Wang, 1997; Renault et al., 2012). This raises the issue of a companion forcing
to the wind in the upwelling sustainment that may be specific to western boundaries (we
tackle this question in section 5.2.6). Another noticeable feature is the strong standard
deviation in SST that occurs primarily during the upwelling season. It reveals an intense

2In the model, the wind stress is directly prescribed and the net heat flux is adjusted to better
simulate SST. Notice that the adjustment is limited and the net heat flux received by the model is
essentially identical to ICOADS observations presented in Fig. 5.2c.
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Figure 5.3: (left) Mean SSH 〈η〉, (center) surface geostrophic currents (g/f)||∇〈η〉|| and (right) EKE
during the upwelling season for (top) the ROMS simulation and (bottom) Aviso absolute dynamics
topography (ADT). ROMS SSH has been low-pass filtered at 30 km (Gaussian filter) to be comparable
to Aviso ADT (same technique is used in Capet et al., 2008a), and both field means have been set to
zero to exhibit the same range of variation. Currents in ROMS have also been filtered to compute EKE.

intrinsic (forcing are climatological) interannual variability probably due to an enhanced
mesoscale circulation (also noticed in Shi et al., 2000). In the remainder of the study we
focus on the upwelling season.

Surface circulation

Figure 5.3 shows the mean SSH during the upwelling season 〈η〉 and the mean geostrophic
current intensity derived from 〈η〉, (g/f)||∇〈η〉|| (g is the acceleration of gravity and f

is the local Coriolis frequency) for ROMS and Aviso’s absolute dynamics topography
gridded at a resolution of 1/4◦ (Rio et al., 2011). The mean geostrophic flow is directed
northeastward along the coast, in the direction of the wind stress. Similarly to EBUS,
the Ekman divergence at the coast drives an SSH low supporting a geostrophic coastal jet
(Figs. 5.3a,d). The path of this current reaches the peninsula’s easternmost cape (Ras al
Hadd, Fig. 5.1), detaches and generates the Ras al Hadd Jet (Böhm et al., 1999). ROMS
and Aviso 〈η〉 are comparable in the domain, with larger discrepancies nearshore where
Aviso has difficulties to capture the SSH properly as commonly found (Vignudelli et al.,
2005). Both fields display a persistent anticyclonic structure offshore Ras Madraka that
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reinforces the northeastward circulation.
Intensity of the circulation is comparable in ROMS and in Aviso (Figs. 5.3b,e), with

peak geostrophic velocity of 0.5 m s−1. Although maxima are not exactly colocated, they
are both located in the path of the upwelling jet where the circulation is intensified by
the standing anticyclone.

Seasonal EKE also compares well (Figs. 5.3c,f) although ROMS is slightly more ener-
getic even after filtering the currents (see caption of Fig. 5.3). Interestingly, both fields
display a local increase of EKE downstream Ras Madraka, where the circulation is max-
imum. Notice that the annual EKE over the whole domain (not shown here) is higher in
ROMS than in Aviso by ∼ 20% (Fig. 3 in Vic et al., 2015).

Vertical structure

The indented coastline and shelf break and the relatively small upwelling area (Fig. 5.1)
complicate the analysis compared to usual situations along EBUS with long and nearly
straight stretches of coastlines (California and Peru-Chile coasts for instance). In this
subsection, we focus on the central bay, located between Ras Madraka and Ras Sharbatat
(Fig. 5.1), where the shelf is relatively alongshore invariant. Alongshore (y) and cross-
shore (x) directions are defined in Fig. 5.1. For a variable X, X denotes an alongshore
average in the bay area (Fig. 5.1) and XH =

∫ η
H X dz, where H is the ocean depth. Recall

that 〈X〉 is a time mean during the upwelling season.

Figure 5.4: Alongshore and time averaged temperature 〈T 〉 during the upwelling season in (left) GDEM
(Teague et al., 1990) and (right) ROMS.

The temperature structure of the upwelling is shown in Fig. 5.4 and evaluated against
the Generalized Digital Environment Model observational dataset (GDEM, that has been
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shown to better represent seasonal frequencies compared to other hydrographic climatolo-
gies, Teague et al., 1990). Overall, there is a good agreement between both fields, albeit
with a global warm bias (all isotherms being shifted upward by 10 to 50 m compared to
GDEM) that may be linked with a too strong net heat flux3. Isotherms tilt upward when
approaching shore as expected in coastal upwellings. This tilt is present down to 300 m in
agreement with the synoptic measurements in Elliott and Savidge (1990). This is much
deeper than in EBUS, where the upward tilt is constrained to the upper 150 m in the
Peru-Chile current system (Colas et al., 2012) and to the upper 100 m in the California
current system (Capet et al., 2008b). This is consistent with the deepening of the main
pycnocline westward at a basin scale (e.g., Chelton et al., 1998) and with the increas-
ing depth of the wind’s influence from eastern to western boundaries due to a weaker
stratification (see section 14.8.1 in Vallis, 2006).
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Figure 5.5: Sections of time and alongshore averaged (a,b) alongshore velocity 〈v〉 and (c,d) cross-shore
velocity 〈u〉. Left panels are zoomed in on right panels. Black thin lines on panels (a,b) are the time and
alongshore averaged temperature 〈T 〉. Notice that colorbars are differents for 〈v〉 and 〈u〉.

Figure 5.5 shows mean alongshore 〈v〉 and across-shore 〈u〉 currents. Because of limited
averaging standing mesoscale patterns present in the region affect the offshore part of this

3Uncertainty in the net heat flux in this region is large. We compared short wave radiations from
ICOADS (Worley et al., 2005), the Common Ocean-Ice Reference Experiment dataset (CORE2, Large
and Yeager, 2009) and the Clouds and Earth’s Radiant Energy System dataset (CERES, Kato et al.,
2013) and found local discrepancies of up to 80 W m−2.
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cross-sections (e.g., circulation patterns 200 km offshore and more are influenced by the
standing eddy visible in Fig. 5.3a centered at 18◦N, 60◦E). They nevertheless provide
useful information on the vertical and cross-shore structure of the nearshore currents.
The nearshore structure (∼200 km from shore) of 〈v〉 is similar to EBUS with a surface
intensified current flowing in the downwind direction (geostrophically balanced by the
SSH low at the coast), and a weaker undercurrent in the opposite direction. Consistently
with the deep isotherms tilt, the upper ocean poleward current reaches ∼250 m, deeper
than in EBUS (50 m, Colas et al., 2012). Note that this flow is part of the regional
circulation. In summer, the upper ocean circulation rotates clockwise in the Arabian Sea,
as a consequence of the large scale wind patterns, with the Somali Current (Schott and
McCreary, 2001) (resp. Ras Al Hadd Jet, Böhm et al., 1999) begin located upstream
(resp. downstream) of our region of interest. The undercurrent is also part of the large-
scale circulation. It is present in the parent domain in the latitude range 5◦N–22◦N.
Notice that this undercurrent only exists during summer and that currents are much
more barotropic during winter (not shown). The depth of its core is ∼1000 m, i.e., much
deeper than found in EBUS (∼150–200 m). A similar structure, though not seasonal, is
found in the Brazil Current system, with a deep undercurrent core at 800 m (Da Silveira
et al., 2004), as well as in the Agulhas (Beal and Bryden, 1997; Beal, 2009) and East
Australian (Mata et al., 2000) current systems.

Cross-shore velocity 〈u〉 (Figs. 5.5c,d) consists of an offshore flow in the surface Ekman
layer (upper 50 m) and an underlying onshore flow with a core around 75 m. Although
currents are also stronger than in EBUS, the vertical structure of 〈u〉 shares more similari-
ties with EBUS than 〈v〉, with depth ranges being comparable. Indeed, Ekman dynamics
is supposedly independent of where the wind stress acts (interior, western or eastern
boundary). The onshore return flow feeding the upwelling is not visible in this figure.
Our interpretation supported by the description of bottom flow over the shelf offered in
conclusion is that onshore advection induced by the coastal upwelling mainly takes place
southwest of the section.

5.2.5 Eddy kinetic energy

In EBUS, upwelling dynamics coexists with its associated turbulent activity that is gen-
erated locally, mainly through baroclinic instability (Marchesiello et al., 2003). In partic-
ular, EKE in EBUS is strongly modulated by the seasonal cycle of upwelling winds (Kelly
et al., 1998). Once generated, surface intensified EKE propagates offshore at roughly
the speed of long baroclinic Rossby waves (Kelly et al., 1998; Marchesiello et al., 2003).
It is also redistributed vertically, energizing the subsurface ocean (Haney et al., 2001).
In contrast, western boundaries in the ocean are subjected to remotely forced mesoscale
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turbulence that has drifted westward due to the planetary β effect. This turbulence then
interacts with the coastal dynamics. To which extent the intense upwelling current system
present off Oman contributes to the turbulence it is subjected to is thus an open question.
Manghnani et al. (1998) hypothesized that upwelled water is passively advected offshore
by incoming mesoscale eddies. Our simulation analysed below reveals a more complex
situation.

Figure 5.6: Longitude-time diagrams of alongshore averaged variables : (a) η, (b) EKE and (c) depth
integrated EKEH . EKE is computed relatively to a running mean on 6 months (seasonal EKE). The
white dotted line is isobath 200 m.

Evolution of eddy kinetic energy

Figure 5.6 shows longitude-time diagrams of alongshore averaged SSH (η), surface and
depth integrated EKE (EKE and EKEH) during the 4 years of simulation. EKE is com-
puted relatively to a 6-month running mean. As such, it represents a seasonal EKE4.
Nearshore η (Fig. 5.6a, westward of 59◦E) has a strong seasonal cycle, with a marked
negative anomaly during the upwelling season and a positive anomaly during the rest of

4As western boundary currents in the Arabian Sea seasonally reverse, their annual mean is meaningless
and do not represent an observable state. Consequently, EKE needs to be computed in relation to a
seasonal basic state.
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the year. This alternating pattern, geostrophic footprint of a coastal jet, is consistent
with the seasonal reversing of the East Arabian Current (Schott and McCreary, 2001).
This seasonal signal dominates over the propagation of remotely forced structures emerg-
ing from the inner basin that are noticeable in the eastern part of the diagram. EKE
(Figs. 5.6b,c) displays random patterns, with local maxima emerging at every location
and at any time of the year.

A westward propagation is noticeable although it is less clear than in EBUS (Kelly
et al., 1998). Notice that not surprisingly, the level of turbulence is enhanced compared
to EBUS (surface EKE reaches 3000 cm2 s−2 vs. 800 cm2 s−2). Interestingly, contrary to
η, neither EKE (Fig. 5.6b) nor EKEH (Fig. 5.6c) display a seasonal cycle comparable to
the California current system (Fig. 12 in Marchesiello et al., 2003). This is a clue to
infer that the upwelling system is not the primary source of turbulence in this area.

Energy conversion

In order to investigate the mechanisms at play in the EKE generation, we compute the
energy conversion terms relative to EKE, in the same fashion as Marchesiello et al. (2003).
We recall that the brackets denote a time average during the upwelling season and we
define primed quantities as deviations from those means. The wind work input into the
oceanic perturbations FeKe is computed as :

FeKe = 1
ρ0

(
〈u′sτ ′sx〉+ 〈v′sτ ′sy〉

)
(5.1)

where (u′s, v′s) is the horizontal eddy velocity in the surface layer, (τ ′sx, τ ′sy) is the eddy
wind stress and ρ0 is a reference density. The conversion term from mean to eddy kinetic
energy KmKe is decomposed in two parts. The two contributions arise from instabilities
triggered by the horizontal (barotropic) and the vertical mean shears, commonly called
horizontal and vertical Reynolds stresses (HRS and VRS, following Gula et al., 2015a) :

KmKe = HRS + VRS (5.2)

with:
HRS = −〈u′u′〉∂x〈u〉 − 〈u′v′〉∂y〈u〉

−〈u′v′〉∂x〈v〉 − 〈v′v′〉∂y〈v〉
(5.3)

and
VRS = −〈u′w′〉∂z〈u〉 − 〈v′w′〉∂z〈v〉 (5.4)
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The baroclinic conversion term PeKe transfers eddy potential energy to eddy kinetic en-
ergy through a vertical buoyancy flux :

PeKe = 〈w′b′〉 (5.5)

where b′ = −gρ′/ρ0 is the local buoyancy anomaly. Finally, the eddy dissipation by
friction at the bottom De is computed as :

De = 1
ρ0

(
〈u′bτ ′bx〉+ 〈v′bτ ′by〉

)
(5.6)

where (u′b, v′b) is the horizontal eddy velocity in the bottom layer and (τ ′bx, τ ′by) is the eddy
bottom stress.
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Cross-shore variability Figure 5.7 shows a cross-shore profile of depth integrated and
along-shore averaged EKE and energy conversion terms defined in Eqs. (5.1-5.6), binned
over 20-km intervals (it is directly comparable to Fig. 15 in Marchesiello et al., 2003).
The dominant sign of oceanic conversion terms (KmKe and PeKe) allows to separate two
distinct regimes. First, in the inshore band (0-300 km), KmKe (dominated by HRS)
and PeKe are positive. This band coincides with the area where the upwelling jet sits
(Figs. 5.5a,b). Thus, conversion terms from mean potential energy and mean kinetic
energy to eddy kinetic energy reveal that the jet is prone to both baroclinic and barotropic
instabilities respectively (mixed instabilities are usually observed in oceanic jets, e.g., in
the Gulf Stream, Gula et al., 2015a). The ratio between EKE values and the conversion
terms provides a replenishment time scale τp for the mesoscale eddy activity, i.e., the time
is takes for baroclinic/barotropic instability processes to produce the observed level of
EKE. Using vertically integrated values we find τp ∼ 5 days over the continental slope.
Intense EKE production in this particular area has direct consequences on EKE levels
with large values being observed immediately to the north and east (Fig. 5.3c), i.e., along
advection pathways.

Second, in the offshore band (300-500 km), oceanic conversion terms are negative,
meaning that energy transfer occurs from the eddy to the mean. Notice that the wind
input reinforces this transfer. This band is offshore the jet area, and although energy
conversion terms are negative (thus acting to restore energy to the mean state), EKE is
still important. As there is no local sources of EKE, we infer that EKE in this area has
been generated offshore the upwelling system and has drifted westward due to β. This
quantifies a distinguishing feature of western boundary upwellings that we suggested,
which is the interaction of locally and remotely generated turbulence.

The dissipation of EKE through frictional processes at the bottom is very low com-
pared to generation processes (De is one order of magnitude smaller than PeKe and KmKe,
Fig. 5.7b). As such, EKE does not reach an equilibrium state in the upwelling system at
a seasonal scale and must be radiated somewhere. The alongshore average is done on a
rather small distance (130 km) so we cannot neglect advection through boundaries. Thus,
we argue that EKE should leak alongshore.

Vertical structure The vertical structures of EKE and PeKe are shown in Fig. 5.8.
The superposition of the alongshore current and isotherms confirms that the vertical
buoyancy flux occurs in the core of the upwelling jet. This is also where the vertical
tilt of isotherms is maximum (the mean current is in thermal wind balance), thus where
baroclinic instability is the more likely to occur (restratification effect). Colas et al. (2013)
make similar plot in the California and Peru-Chile current systems (their Figs. 3 and 4).
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Figure 5.8: Time and alongshore averaged vertical sections of (a) 〈EKE〉 and (b) baroclinic conversion
term 〈PeKe〉. The black lines are the alongshore velocity 〈v〉 with CI=5 cm s−1. The white lines are
isotherms 15, 20 and 25◦C.

Consistently with the deeper extent of the upwelling jet off Oman than in EBUS, PeKe

significantly reaches larger depth (250 m vs. 100 m). It also has larger values by one
order of magnitude, revealing the enhanced frontality of the western boundary upwelling.
As previously noted, EKE is significantly larger, and reaches deeper levels.

Interestingly, PeKe is negative over a narrow band over the continental slope. This
pattern is also present in EBUS and is associated with a change of sign of the isotherm
slopes. Eddy fluxes here do not act to restratify the ocean.

5.2.6 Role of Rossby waves

Rossby wave dynamics plays an essential role in EBUS by radiating the upwelling signal
away from the coast. In this section, we show that Rossby wave dynamics is also essential
in western boundary upwelling systems, although reasons are fundamentally different. In
this section, to highlight the role of Rossby waves, we make use of a simplified shallow-
water model. This two-layer unidirectional (zonal) linear shallow-water model is forced by
a realistic wind stress curl. It captures the barotropic and first mode baroclinic Rossby
wave processes, that account for the dominant SSH variability (Wunsch, 1997). The
equations solved are given in appendix and the parameters are chosen to correspond to
the Oman situation (Table 5.1).
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Background

Fu and Qiu (2002) have shown that baroclinic Rossby waves in the inner Pacific (far
enough from the eastern boundary) are primarily excited by the wind stress curl. In the
northern Arabian Sea, this forcing mechanism has been clearly identified by analyzing
wind stress curl derived from scatterometer winds and SSH derived from altimetry in
longitude-time sections across the basin (see Fig. 7 in Beal et al., 2013). A positive wind
stress curl causes an upwelling Rossby wave thus a negative anomaly of SSH (for the first
mode, thermocline and SSH are mirrored, e.g., Killworth et al., 2004).

When a wave encounters a meridional boundary, reflection occurs. The reflected wave
must satisfy two conditions : (i) it conserves the temporal frequency of the incident wave
and (ii) propagates the zonal energy flux of the incident wave in the opposite direction.
The zonal energy flux Fx for a Rossby wave can be written as :

Fx = −A
2

2 (kω + β/2), (5.7)

where A is the wave amplitude (sections 3.21 and 3.23 in Pedlosky, 1987). When kω +
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β/2 > 0 (< 0), the energy goes westward (eastward). In Fig. 5.9, the line kω + β/2 = 0
separates the two regions of opposite propagation for the energy flux. The dispersion
relation for Rossby waves :

ω = − βk

(k2 + 1/R2
d)
, (5.8)

is also shown (recall that we do not consider meridional propagation). For a given incident
wave, the characteristics of the reflected wave can be retrieved in crossing the line kω +
β/2 = 0 at constant ω. The intersection of this line with the dispersion relation gives
the characteristics of the reflected (free) wave. A well-known particular case is the long
wave (thus westward propagating) reflection at a western boundary into a shorter mode,
propagating slowly eastward (Longuet-Higgins, 1966).

Analysis

Figures 5.10a,d show the model forcing (wind stress curl) and response (SSH) evolution
throughout the 4 years of integration. SSH is decomposed into baroclinic and barotropic
components, ηbc and ηbt. We only show ηbc as it clearly dominates the response (ηbt =
O(10−1)ηbc; a same order of magnitude of the ratio is found in Qiu, 2002). During the
northeast monsoon (roughly between November and March), the forcing is relatively weak
(|∇×τ | < 2×10−7 N m−3) and spatially smooth whereas it has a high amplitude (∇×τ
reaches 10−6 N m−3) and a locally intensified positive pattern with a maximum around 100
km from the coast during the southwest monsoon (embedding the upwelling season, from
May to September). The spectral analysis of the wind stress curl isolate two dominating
temporal scales, ωfrc1 = 2.020 × 10−7 s−1 and ωfrc2 = 4.040 × 10−7 s−1, corresponding
to annual (the most energetic) and semi-annual periods respectively (Fig. 5.10b), and
one spatial scale kfrc1 = 3.157 × 10−5 m−1. It corresponds to a wavelength of ∼200 km
(Fig. 5.10c), consistent with the dominant pattern scale of ∇ × τ (Fig. 5.10a). The
dominant signal in the response (ηbc, Fig. 5.10d) is the long-wave annually forced by
this seasonal burst of positive wind stress curl. This propagation is easily identified in
Fig. 5.11b showing the low-pass filtered ηbc.

The reflection of the long wave at the western boundary actually occurs in the model
and scales smaller than the incident wave emerge near the coast (Fig. 5.10d). Indeed, the
spectral analysis of ηbc reveals the emergence of a high wavenumber kres3 = 9.472×10−5 m
(Fig. 5.10e), corresponding to a wavelength of ∼66 km, consistent with the scale of coastal
patterns of ηbc (Fig. 5.11c). Notice that a shorter wavenumber emerges too, kres3 =
1.579 × 10−5 m corresponding to a wavelength of ∼398 km, almost equal to the size
of the domain. The spatial spectrum also contains some signal at the frequency of the
forcing (kres2 ≡ kfrc1 ), thus this signal must be associated with forced waves. The temporal
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Figure 5.10: Longitude-time diagrams (left) and spatial (middle) and temporal (right) spectra of the wind
stress curl ∇ × τ forcing the shallow-water model (top) and the baroclinic response in SSH anomaly,
ηbc (bottom). CI for ∇ × τ is 2 × 10−7N m−3 and CI for ηbc is 3 cm (dashed lines are for negative
values and superimposed gray shadows are used to emphasize the alternating ηbc). Spectra indicate the
spatiotemporal scales of the forcing kfrc1 , ωfrc1 , ωfrc2 and of the response kres1 , kres2 , kres3 , ωres1 , ωres2 . Notice
that spatiotemporal scales of the forcing are conserved in the response (ωfrc1 = ωres1 , ωfrc2 = ωres2 and
kres2 = kfrc1 ) and that some spatial scales emerge in the response (kres1 and kres3 ).

spectrum of the response keeps the same peaks as the spectrum of the forcing, ωres1 ≡ ωfrc1

and ωres2 ≡ ωfrc2 , although the semi-annual signal has been importantly damped (it was
originally weaker).
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In Fig. 5.9 we report in the ω–k space the dominating scales of the response. The two
forced waves (kres2 , ωres1 ) and (kres2 , ωres2 ) are not supposed to project onto the dispersion
relation (valid for free waves) and the fact that (kres2 , ωres2 ) satisfies the relation is fortu-
itous. As reviewed in section 1.2.15.2.6, incident waves conserve their temporal frequency
at the reflection and reverse their energy flux. Hence, we can identify their associated
reflected waves. One of them can be clearly projected onto the Rossby wave dispersion
relation (ωres1 ,kres3 ) and the other (ωres2 ,kres1 ) may also be projected. This is not surprising
since the reflected waves are freely propagating, thus correspond to Rossby waves.
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Figure 5.11: Baroclinic response in SSH anomaly for the shallow-water model, (a) ηbc (same as in
Fig. 5.10d), (b) low-pass filtered SSH ηlpbc and (c) high-pass component of SSH ηhpbc . Filtering is done
using a fast Fourier transform. Red dashed lines show the estimated propagation speed for long and
short waves.

Interpretation and discussion

In the following, we focus on the forced wave (kres2 , ωres1 ) and its reflected wave (kres3 , ωres1 )
as they dominate the response. The energy contained at ωres1 (annual period) is one order
of magnitude greater than the energy contained at ωres2 (semi-annual period, Fig. 5.10f).
The energy of the reflected mode propagates eastward very slowly with a group velocity
(at which energy travels) cg(kres3 ) = ∂ω/∂k|k=kres

3
∼ 2× 10−3 m s−1 ∼ 5 km mon−1 (com-

parable to rough estimates in Fig. 5.11c). Thus, energy is almost trapped at the coast at a
seasonal time scale. In a linear theory, the amplitude of the superposition of two waves is
the sum of the wave amplitudes. Here, as the reflected wave carries the same anomaly as
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the incident wave (negative SSH), their superposition in a coastal fringe (0–100 km) has
an increased amplitude. This is consistent with the idea that energy is coastally trapped.
Moreover, the minimum of ηbc is reached between 50 and 70 days after the maximum
of ∇ × τ . Interestingly, this range is similar to the lag between the maximum of the
upwelling favourable forcing and minimum of SST diagnosed in the realistic simulation
(∼1.5 month).

Assuming that SSH is a good proxy for the upwelling intensity, we argue that the
wave reflection mechanism put forward by the shallow-water model is insightful for the
understanding of the Oman western boundary upwelling. Overall, this illustrates the
fundamentally different role played by Rossby waves between EBUS and western boundary
upwellings. In the former, they act to propagate the coastally upwelled waters offshore
(Marchesiello et al., 2003) whereas in the latter, they concentrate at the coast and amplify
the wind stress curl-driven upwelling.

A limitation of the 1D shallow-water model is that the wave propagation can be only
zonal. Even if it is not very restrictive for Rossby waves whose propagation is mostly
zonal, we miss the propagation of coastal Kelvin waves and here discuss their potential
impact. Grimshaw and Allen (1988) show that high frequency forcing and high latitude
favor trapped motions (coastal Kelvin waves) whereas low frequency and low latitude
favor interior motions (mainly Rossby waves). More specifically, at a given latitude, a
critical frequency ωc exists such that for ω < ωc, energy leaks in the interior while it is
coastally trapped for ω > ωc. ωc also depends on the angle of the coast with the meridional
direction θ and Clarke and Shi (1991) derived an expression for ωc that takes into account
this angle : ωc = 1

2βRd cos θ. Using the realistic parameters mentioned in appendix, we
find ωc|θ=0◦ = 5.5 × 10−7 s−1. This is much larger than the characteristic frequencies
of ηbc so that motions are favourably reflected into the interior and the shallow-water
model probably captures the essence of the physics. In the case of a slanted coastline,
considering a mean shelf break line in the upwelling region (as advocated by Clarke
and Shi, 1991) that make an angle of θ ∼ 30◦ with the meridional direction, we find
ωc|θ=30◦ = 4.8× 10−7 s−1. In the world atlas of ωc derived by Clarke and Shi (1991), we
read 2π/ωatlasc = 167.6 days (their Table 1), which gives ωatlasc = 4.3 × 10−7 s−1. Both
values are higher than the dominating annual frequency of ηbc so we are confident with
the fact that coastal Kelvin waves certainly play a minor role in the reflection process.

5.2.7 Mixed layer heat budget

We now investigate the mechanisms by which the oceanic mixed layer temperature cools
during the seasonal upwelling. To that end, we compute a heat budget on the mixed layer
(in the same fashion as Vialard and Delecluse, 1998; Vialard et al., 2001) averaged over
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an area covering the upwelling system. We start from the pointwise heat balance in which
we introduce the 3D averaged mixed layer temperature TML for the domain of interest :

∂tT = −∂x [u(T − TML)]− ∂y [v(T − TML)]− ∂z [w(T − TML)] + ∂z (κ∂zT ) + Qatm

ρ0Cp
∂zf(z)

(5.9)
where κ is the vertical diffusivity coefficient determined by the KPP scheme, Qatm is the
net solar surface heat flux and f(z) is the the attenuation factor that determines the
fraction of solar radiation that reaches depth z (Jullien et al., 2012). We do not explicit
the horizontal diffusion here (done implicitely by the upstream biased advective scheme,
without the need for an explicit diffusion operator, Shchepetkin and McWilliams, 1998).
We computed it and found that it is at least one order of magnitude smaller than other
terms, thus we neglect it in the following. Equation (5.9) holds because TML does not
depend on spatial coordinates and the flow is 3D non divergent. This formulation with T
being replaced by T−TML allows to better quantify the cooling/heating done by advection
terms, relatively to a reference temperature. Then we integrate Eq. (5.9) horizontally over
the domain of interest and vertically over the mixed layer depth hML diagnosed by KPP :

∂tTML︸ ︷︷ ︸
RATE

= − 1
hML

{[u(T − TML)]dA + [v(T − TML)]dA}︸ ︷︷ ︸
HADV

+ 1
hML

[w(T − TML)]z=hML︸ ︷︷ ︸
VADV

− 1
hML

[κ∂zT ]z=hML︸ ︷︷ ︸
VMIX

+ Qatm

ρ0CphML︸ ︷︷ ︸
FORC

− 1
hML

∂thML (TML − Tz=hML
)︸ ︷︷ ︸

ED
(5.10)

where the first two terms on rhs are evaluated on the lateral boundaries dA of the domain
A. The different terms are labeled as : RATE for the temporal tendency of the mixed
layer temperature, HADV for the horizontal advection of heat through lateral boundaries
of A, VADV for the vertical advection of heat at the bottom of the mixed layer, VMIX
for the mixing occuring at the base of the mixed layer, FORC for the atmospheric heating
and ED for entrainment/detrainment at the base of the mixed layer (due to temporal
variations in hML). The time series of these terms averaged on two years of simulation
are shown in Fig. 5.12. We do not represent ED since it is found to be two orders of
magnitude smaller than RATE, thus it can be neglected in the heat balance.

The annual cycle of TML is consistent with the larger scale variation of SST in the
western Arabian Sea. Using a global model, de Boyer Montégut et al. (2007) show that
SST averaged in the western Arabian Sea (in a box whose southern and eastern boundaries
are latitude 6◦N and longitude 65◦E respectively) experiences two seasons of warming
during intermonsoon phases and two seasons of cooling during both monsoons. In the
following, we analyse which processes are responsible for the temperature evolution during
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the different phases.

From the end of February to May (spring intermonsoon), TML increases under the
influence of several processes. The mixed layer strongly shallows from 60 m at the end of
February to 10–20 m in May as the wind stress fades out (end of the winter monsoon) and
the spring restratification occurs. During this time, vertical mixing instigates heating.
From April onward, the atmosphere starts to heat the mixed layer. It progressively
overcomes the vertical mixing, which changes sign at mid-May, under the influence of the
raising summer monsoon winds (deepening the mixed layer).

At the beginning of June, the upwelling favorable winds blow, triggering a decrease
of TML. During all the upwelling season (shadow areas in Figs. 5.12a-c), the atmosphere
keeps on heating the mixed layer and the vertical mixing at the base of the mixed layer
is opposed to it with the same magnitude. In fact, because the mixed layer is shallow
(< 30 m), solar heating penetrates to its base and the vertical mixing acts to redistribute
the heat (this is not the case in winter when the mixed layer is deep). Thus, there is
almost a balance between these two terms. The vertical advection plays an important
role during the upwelling period. It brings cold waters at the base of the mixed layer
through Ekman pumping. The horizontal advection does not counterbalance the cooling
by vertical advection (Fig. 5.12b). Thus, vertical advection seemingly explains the cooling
of the mixed layer during the upwelling season (in Fig. 5.12c, HADV+VADV and RATE
follow the same evolution with similar magnitudes).

At the end of the upwelling season, the mixed layer shallows when the summer mon-
soon winds fade out. As soon as the upwelling shuts down, TML increases, mainly driven
by the atmospheric heating and horizontal advection that brings warm waters (outside
from the upwelling area). From the end of October onward, the winter conditions evoked
earlier are retrieved with a domination of atmospheric cooling.

Notice that the standard deviation of the terms in Figs 5.12a,b,c is related to year
to year variability of the system. We are tempted to associate it with the mesoscale
circulation (eddies entering and exiting the computational area) that strongly modulates
the heat transport : using arrays of moorings deployed off the Oman coast (500 km
offshore) during one year, Fischer et al. (2002) and Weller et al. (2002) find that advection
of heat by mesoscale eddies is responsible for strong variability in the surface layer heat
budget.

The contribution of each term to the cooling tendency during the upwelling season is
represented in Fig. 5.12d. The near-equilibrium between vertical mixing and atmosphering
forcing is confirmed (VERT'115% FORC). This local balance is known to occur when
the mixed layer is shallow and one-dimensional processes dominate (e.g., Spall et al.,
2000; Jullien et al., 2012). The important contribution of the vertical advection was also
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highlighted in a broader area of the Arabian Sea embedding both upwellings off Somalia
and Oman (Shenoi et al., 2002). However, it contrasts with other mixed layer heat budgets
in EBUS (coastal or offshore regions) where the vertical mixing is often found to be the
major cooling contributor (Takahashi, 2005; Colbo and Weller, 2007; Renault et al., 2012).
Vertical velocity at the base of the mixed layed is triggered by both Ekman pumping and
Rossby waves, hence these mechanisms are important to explain mixed layer temperature
variability during the upwelling. Consequently, we state that the wind stress curl is of
paramount importance in the sustainment of the cooling tendency of the northwestern
Arabian Sea in summer.
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Figure 5.12: (a),(b) and (c) Time series of variables averaged over the mixed layer and over the domain
A shown in inset map : (a) temperature (black) and mixed layer depth (gray), (b) HADV (light blue),
VADV (steel blue) and HADV+VADV (dark blue), (c) HADV+VADV (dark blue), VMIX (yellow),
FORC (red) and RATE (gray). Gray area on panels (a),(b) and (c) is the upwelling season. Bold
lines and shaded areas are means and standard deviations computed on two years of simulation. (d) time
averaged variables (same color code) during the upwelling season. Error bars are the standard deviations.
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5.2.8 Conclusions and perspectives

Dynamics of the seasonal upwelling off Oman is analyzed using a realistic regional numer-
ical simulation. The vertical structure of the upwelling is found to contrast with EBUS :
isotherm upward tilt goes deeper (300 m vs. 100-150 m) and the surface jet associated
(thermal wind balance) is therefore deeper. The core of the undercurrent, flowing in the
opposite direction, is also much deeper (1000 m vs 150-200 m). The upwelling system is
found to release EKE in a nearshore band, mainly through baroclinic instability of the jet
(like in EBUS, Marchesiello et al., 2003). The level of EKE produced by the upwelling is
significantly larger than in EBUS. However, the level of EKE offshore the jet area, where
conversion terms do not act to increase EKE, is still very high and comparable to mean
values in the nearshore band. We argue that mesoscale turbulence remotely forced enters
the upwelling area and interacts with the system. It is consistent with previous obser-
vations made that mesoscale eddies peel off upwelled waters from the shore (Manghnani
et al., 1998).

Figure 5.13: Map of 〈ub〉 · ∇h in the upwelling area. ub is the horizontal velocity in the bottom layer
and h is the bathymetry. Areas where h > 500 m are masked.

The use of a linear shallow-water model highlighted the role of Rossby waves in the
upwelling system. Upwelling long waves triggered by a strong positive wind stress curl
travel westward and reflect into short modes propagating eastward. Their propagation
speed is so slow that waves are almost trapped in a coastal area at a seasonal time scale.
Consequently, they increase the upwelling and are even responsible for a lag in the SST
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response to seasonal wind forcing. More generally, unlike in EBUS where they act to leak
upwelling perturbations in the open ocean, Rossby waves in western boundary systems
trap anomalies nearshore.

A mixed layer heat budget reveals that the cooling contribution in the upwelling area is
dominated by vertical mixing and vertical advection of cold waters. This result contrasts
with EBUS where vertical mixing is the overwhelming contributor. This result underpins
the importance of the wind stress curl in sustaining the cooling of the northwestern
Arabian Sea in summer.

Finally, notice that this study shows principally integrated quantities (area averaged)
and proposes mechanisms with rather large space scales, comparable to the area of the
upwelling. However, the complex geomorphology (indented coastline and wide shelf) of
the system involves small atmospheric and oceanic scales, and the system is heterogeneous.
Figure 5.13 shows 〈ub〉 · ∇h in the upwelling area, where bathymetry h is shallower than
500 m. This quantity roughly measures where water climbs on the shelf (〈ub〉 · ∇h > 0)
and where it sinks (〈ub〉 ·∇h < 0). Patterns are rather complex and alternating but there
is seemingly a tendency for water to be preferentially upwelled on the upstream side of
Ras Sharbatat where the shelf is steeper. On the contrary, on the downstream side where
the shelf is wider, water is found to sink. Release of synthetic particles in the model
confirm this tendency (not shown). Therefore, the upwelling off Oman requires further
investigation to elucidate its fine scale structure.
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Appendix : shallow-water framework

We use the same framework as Qiu (2002) without the long-wave approximation, solving
separately the baroclinic mode :

∂

∂t

(
∇2ηbc −

f 2
0

g′He

ηbc

)
+ β

∂ηbc
∂x

= f0He∇× τ
ρ0gH2

1
, (5.11)

and the barotropic mode :

∂

∂t

(
∇2ηbt

)
+ β

∂ηbt
∂x

= f0∇× τ
ρ0g(H1 +H2) , (5.12)
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where the SSH anomaly is ηbc + ηbt and all parameters designation and values are given
in Table 5.1. The domain has an extent of 400 km and no normal-flow conditions are set
at both boundaries. As we are interested in the reflection of Rossby wave, we only solve
these equations in the zonal direction (x-axis). Therefore, we impede the propagation
of waves in the meridional direction. This effect is discussed in section 1.2.15.2.6. The
wind stress curl is exactly derived from the forcing of the realistic simulation, alongshore
averaged in the bay area of Fig. 5.1. We integrate equations (5.11) and (5.12) during 4
years, using a periodic forcing. Parameters are chosen to represent the mode 1 in the
western Arabian Sea at the mean latitude of the upwelling region. Given a mean profile
of the Brunt-Vaisala frequency, we solve the eigenvalue problem for vertical modes.

Table 5.1: Parameters used in the shallow-water model.

Parameter Description Value
H1 Thickness of the upper layer 444 m
H2 Thickness of the bottom layer 3056 m
He = H1H2/(H1 +H2) Equivalent depth 387 m
ρ0 Reference density 1025 kg m−3

g Gravity 9.81 m s−2

g′ = (ρ2 − ρ1)g/ρ0 Reduced gravity 1.6× 10−2 m s−2

f0 Reference Coriolis frequency 5.0× 10−5 s−1

β Meridional derivative of f 2.2× 10−11 m−1s−1

Rd =
√
g′He/f0 First Rossby radius of deformation 50 km
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Chapter 6. Conclusions and Perspectives

6.1 Conclusions

This chapter recalls the specific issues tackled in this dissertation and the results asso-
ciated. Each chapter is self consistent and is summarized individually. Then, we give
overall conclusions of this dissertation before presenting some perspectives that could be
adressed in future work.

6.1.1 Summary of Chapter 3

In Chapter 3, we investigated the life cycle of the Great Whirl, a mesoscale anticyclone
that remains at a quasi-steady place during the summer monsoon. Among the unresolved
issues, the questions of generation and demise remained debated. In particular, the impact
of local (wind stress and wind stress curl) vs. remote (waves remotely generated) forcing
were still lacking a quantification. We found that the onset of the Great Whirl is highly
infuenced by an annual downwelling Rossby wave. Indeed, the wave sets its location
and timing of initiation as revealed by sensitivity tests. Nonetheless, the strong wind
stress and wind stress curl remain of crucial importance to explain the maintenance and
barotropization of the Great Whirl all along the summer monsoon. At the end of the
monsoon, it shrinks and progressively vanishes, sitting in a very turbulent environment
at a western boundary. The arrival of a Rossby wave of opposed polarity seemingly
causes the shut down of the eddy. Sensitivity experiments highlighted the importance
of Rossby waves to pace the life cycle of the Great Whirl. The role of these waves has
been underestimated compared to local high winds and this study helped to clarify their
respective influence.

Far from being exclusive to this eddy, this study underscores the importance of wave-
eddy interactions. It also quantifies the role of the wind stress curl in energizing eddies,
a subject about which L’Hégaret et al. (2015) further elaborate on the northern Arabian
Sea.

6.1.2 Summary of Chapter 4

In Chapter 4, we tackled the general question of the spreading of Persian Gulf Water
(PGW) in the Gulf of Oman. A realistic simulation evidences the important role of
mesoscale eddies in spreading PGW at seasonal time scales, similarly to the fate of the
Red Sea outflow in the Gulf of Aden (Bower and Furey, 2012). Unlike for many other
outflows taking place at greater depth in more quiescent environments, the slope current
is very weak and intermittent and not instrumental in generating turbulence. Idealized
simulations isolated the interaction of mesoscale eddies with topography. They revealed
an important source of enstrophy at depths where the eddies drag on the continental slope.
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High vorticity strips, generated by friction, detach from the boundary and roll up into
submesoscale coherent vortices (SCVs). These SCVs are then advected along the edges of
their parent mesoscale eddies. In the realistic simulation, these SCVs are found to trap
PGW. They are thus a mean to transport PGW seaward. This result complements the
observations of L’Hégaret et al. (2013) that allowed to infer an important role of eddies
in spreading PGW.

These processes ultimately lead to mixing of salt and produce a large-scale smooth
gradient of salinity in the northern Arabian Sea. A release of virtual particles in the
realistic simulation allowed to infer a diffusive regime with an estimated eddy diffusivity
typical of highly turbulent and dispersive regimes.

More generally, the frictional interaction of eddies with topography leading to the
formation of intense submesoscale structures may often occur on continental slopes. Thus,
it would be an important process for offshore advection, dispersion and mixing of slope
current waters. We further argue that this process is intensified at western boundaries
because of the westward drift of mesoscale eddies.

6.1.3 Summary of Chapter 5

In Chapter 5, we studied the structure and variability of the seasonal upwelling off Oman.
We were interested in comparing this western boundary upwelling with more deeply stud-
ied eastern boundary upwelling systems (EBUS). More specifically, the impact of Rossby
waves, propagating offshore in EBUS vs. onshore in western boundary upwellings was of
particular interest as suggested by Marchesiello et al. (2000).

The structure of the Oman upwelling is found to strongly contrast with EBUS, with
isotherm tilting and the surface intensified upwelling jet reaching deeper. An undercurrent
flowing in the opposite direction is also found to reach deeper, similarly to the baroclinic
structure of the western boundary Brazil current system (Da Silveira et al., 2004). The
forcing of this undercurrent remains unexplained as Sverdrup transport (that explains
the structure of the undercurrent in EBUS) can not be invoked in this western boundary
system.

The energetics of the system is more complex than in EBUS. The surface intensified
jet produces more eddy kinetic energy (EKE), mainly through baroclinic instability (en-
hanced frontality). However, EKE produced by the upwelling itself is comparable to EKE
remotely generated that drifts onshore. This qualitatively explains the general observa-
tions of former studies (e.g., Manghnani et al., 1998) reporting a passive advection of
upwelled waters by mesoscale eddies entering the upwelling area.

The use of a linear shallow-water model revealed the role of Rossby waves in the up-
welling system. Upwelling long waves triggered by a strong positive wind stress curl travel
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westward and reflect into short modes propagating eastward. Their offshore propagation
is so slow that waves are almost trapped in the coastal area on a seasonal time scale.
Consequently, they enhance the upwelling and contribute to a lag in the sea surface tem-
perature response to seasonal wind forcing. More generally, unlike in EBUS where they
act to leak upwelling perturbations in the open ocean, Rossby waves in western boundary
systems are unable to evacuate nearshore anomalies.

A mixed layer heat budget is performed, revealing that the cooling contribution in
the upwelling area is dominated by vertical mixing and vertical advection of cold waters.
This result contrasts with EBUS where vertical mixing is the overwhelming contributor.
It also underpins the importance of the wind stress curl in sustaining the cooling of the
northwestern Arabian Sea in summer.

6.1.4 Overall conclusions

In this dissertation, we studied the dynamics of three different phenomena occuring in
the western Arabian Sea; namely, the life cycle of a remarkable eddy, the spreading of
marginal sea outflowing waters and a seasonal upwelling. Each phenomenon deserves its
own chapter but some dynamical ingredients are common to these chapters. As presented
in Chapter 1, the similarity of the Great Whirl, the Persian Gulf outflow and the upwelling
off Oman is that they all occur at a western boundary. The low-latitude of the Arabian
Sea implies a fast propagation of Rossby waves and mesoscale eddies. As such, dynamics
at the western boundary is strongly impacted by these remote forcing. Consequently,
there is a competition between local and remote forcing as summarized in Table 6.1.

Table 6.1: Overview of local and remote forcing involved in the different phenomena studied in this
dissertation.

local forcing remote influence
Chapter 3 wind stress curl Rossby waves
Life cycle of the GW topography
Chapter 4 slope current incoming mesoscale eddies
Spreading of PGW
Chapter 5 wind stress Rossby waves
Upwelling wind stress curl (incident & reflected)

In this context, regarding the Great Whirl life cycle, Rossby waves and wind stress curl
are the dominant players driving its dynamics. The spreading of PGW is almost entirely
explained by the stirring done by remotely formed eddies; the slope current is indeed very
weak and intermittent unlike in other major outflows. In the upwelling system, although
the main contributor is the wind stress, Rossby waves modulate the response of sea surface
temperature to the wind forcing.
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Despite the similarity of the remote influence on these processes, the regimes of oceanic
turbulence are different. In Chapter 3, turbulence is at mesoscales and is highly in-
fluenced by seasonal waves and also sustained by the wind stress curl. In Chapter 4,
eddy-topography frictional interactions act as a source of enstrophy at depth and create
turbulence at submesoscales. In Chapter 5, we have shown that the mesoscale turbulence
locally forced by the upwelling surface jet has a comparable intensity to the remotely
forced turbulence that interacts with the upwelling site.

Overall, these results contrast with the general functioning of large-scale subtropical
and subpolar oceanic gyres. These gyres are forced by basin-scale winds and earth’s
rotation setting western boundary currents, themselves generating turbulence through
instability processes (e.g., Smith, 2007). Waves and winds are not known to impact
significantly on the mesoscale variability in these gyres. The short zonal extent and the
low-latitude of the Arabian Sea, as well as the seasonally reversing wind forcing, make it
being particular. Fast waves and drifting eddies significantly shape the western boundary
turbulent regimes.

6.2 Perspectives

Many mechanisms in this dissertation were investigated in the context of issues inherent
to the Arabian Sea. However, they would deserve further investigation. Here is a non
exhaustive list of points I would like to examinate more closely :

• Eddy-topography interactions. The promising results on the eddy-topography in-
teractions presented in Chapter 4 would require further investigation. In fact, we
designed the idealized experiment to match with the reality of Gulf of Oman eddies
and bathymetry. But some results were not discussed : in particular, what sets the
depth of enstrophy creation (Figure 12 in Chapter 4) ? Is there a vertical decay scale
of the mesoscale eddies associated with the creation of enstrophy ? How sensitive is
this vertical scale to the slope of topography and to the eddy’s vertical structure ?
How sensitive is the size of SCVs to the grid size of the model ? Furthermore, the
formation process of SCVs differs for cyclones and anticyclones (Molemaker et al.,
2015; Gula et al., 2015b). It seems that in our simulations, submesoscale cyclones
are more robust than submesoscale anticyclones. What explains this characteristic ?

• Energy budget in upwellings. The interesting comparison of western vs. eastern
boundary upwelling systems is seemingly the first of this kind. However, we did not
fully close the budget because we did not investigate the energy sinks. These must
be associated with energy radiation out of the domain that would need a specific
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analysis. The use of idealized experiments with a simplified setup (strait coastline,
alongshore invariant shelf and wind forcing, . . . ) and upwellings occuring either at
western or eastern boundary would allow to derive closed EKE budgets.

Other issues relative to the Arabian Sea would also require further investigation :

• Sensitivity to bursts in PGW. Observations suggest that the Persian Gulf outflow is
very intermittent at intraseasonal time scales (e.g., Banse, 1997; Pous et al., 2004a).
This mechanism involves rapid mixing and adjustment and may be responsible for
the formation of SCVs (McWilliams, 1988). Designing an idealized experiment with
a sudden intrusion of a homogeneous fluid into a stratified environment could be
effective to describe closely this mechanism. In the context of the Persian Gulf
outflow, adding temporal variability to the boundary prescription of the outflow
could also lead to a richer variability of the spreading.

• Small scale dynamics in the upwelling off Oman. As acknowledged at the end of
Chapter 5, we described only the large scale functioning of the upwelling. The
indented coastline and the complex shelf geometry certainly lead to local forcing
of vertical velocities (as compared to vertical velocities forced by wind stress curl).
A proper description of the system would require to account for its alongshore
heterogeneities. In particular, the description of upwelling water pathways provide
a natural follow-up study.

• Air-sea interactions during the summer monsoon. The monsoon is a typical phe-
nomenon involving air-sea interactions (e.g., Vecchi et al., 2004). The use of a
forced model thus severly limits our understanding of the monsoonal processes. Us-
ing general circulation models, Izumo et al. (2008) showed that upwellings in the
Arabian Sea impact the rainfall variability on the Asian Continent. The details of
these interactions are parameterized in global models and would require a fine scale
investigation. For instance, turbulent air-sea fluxes at mesoscales were investigated
recently in the southern Atlantic Ocean (Villas Bôas et al., 2015). Furthermore,
at interannual time scales, retroactions of the ocean on the atmosphere also play
an important role and oceanic interannual variability is fundamentally triggered by
these interactions (Beal et al., 2013). Our climatological forcing impedes this vari-
ability and studying year-to-year covariability of ocean and atmosphere could be
interesting.

130



Appendix A

Meanwhile, in the Gulf of Guinea

Contents
A.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1.1 An Outflow Problem . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1.2 . . .With a Different Dynamical Framework . . . . . . . . . . . 132

A.2 Article published in Journal of Physical Oceanography . . . . 133

131



Appendix A. Meanwhile, in the Gulf of Guinea

A.1 Foreword

I did my Master II’s internship at the Laboratoire de Physique des Océans, under the
supervision of Anne-Marie Tréguier and one of her PhD student, Henrick Berger. The
topic of research was the study of the Congo River plume in the Gulf of Guinea1. I
carried on working on this subject during the first year of my PhD and this is the main
reason why I wished to enclose the final product (i.e., the article, Vic et al., 2014a) in
the dissertation. Now that this work has been digested and that I have switched to other
topics in other regions, I have found another reasons to enclose it. Indeed, this study
shares a similar objective with Chapter 4 that is the spreading of an outflow, but a with
conceptually different dynamical framework.

A.1.1 An Outflow Problem . . .

The Congo River has the second largest rate of flow on Earth (∼ 40 000 m3 s−1, behind
the Amazon River, ∼ 200 000 m3 s−1). This freshwater discharge spreads in the Gulf of
Guinea and stays at the surface, being lighter than background waters. It clearly impacts
the salinity budget of the surface layer in the Gulf of Guinea and more widely in the
Tropical Atlantic (Berger et al., 2014). However, the spreading of the outflow had not
been thoroughly examined yet. Similarly to Chapter 4, the objective of this study is
understand the mechanisms at play in the spreading of the outflow.

A.1.2 . . .With a Different Dynamical Framework

The two main differences between the Persian Gulf outflow and the Congo River outflow
are the equilibrium depth and the location of spreading. The Persian Gulf outflow spreads
at a western boundary and equilibrates around 200 m whereas the Congo River outflow
spreads at an eastern boundary and equilibrates at the surface. A major consequence
of the location is the background eddy kinetic energy (EKE). Figure A.1 shows EKE in
the regions where both outflows spread. It highlights the important difference between
both regions, the Gulf of Oman being 3 to 4 times more energetic than the southern Gulf
of Guinea. Thus, frameworks used to study both outflows are fundamentally different.
In the Persian Gulf outflow case, we considered the dispersion caused by background
eddies whereas for the Congo River, we could consider the background flow to be at
rest. Indeed, inviscid theories focused on the spreading of outflows (always considered to
spread in quiescent environments) were found to apply well to the Congo River outflow

1Henrick’s thesis dealt with salinity budgets in the surface layers in the Tropical Atlantic, highly
influenced by the Congo River freshwater discharge.
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A.2. Article published in Journal of Physical Oceanography

(e.g., Yankovsky and Chapman, 1997; Garvine, 1999; Nof and Pichevin, 2001; Nof et al.,
2002).
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Figure A.1: Eddy kinetic energy (EKE) computed with Aviso’s absolute dynamic topography derived
geostrophic currents for the period 2000-2012. Maps are (a) the Gulf of Oman where the Persian Gulf
outflow spreads and (b) the southern Gulf of Guinea where the Congo River spreads.

A.2 Article published in Journal of Physical Oceanog-
raphy
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ABSTRACT

The Congo River has the second largest rate of flow in the world and is mainly responsible for the broad

tongue of low-salinity water that is observed in the Gulf of Guinea. Despite their importance, near-equatorial

river plumes have not been studied as thoroughly as midlatitude plumes and their dynamics remain unclear.

Using both theory and idealized numerical experiments that reproduce themajor characteristics of the region,

the authors have investigated the dynamics of the Congo River plume and examine its sensitivity to different

forcing mechanisms. It is found that near-equatorial plumes are more likely to be surface trapped than

midlatitude plumes, and the importance of the b effect in describing the strong offshore extent of the low-

salinity tongue duringmost of the year is demonstrated. It is shown that the buoyant plume constrained by the

geomorphology is subject to the b pulling of nonlinear structures and wavelike equatorial dynamics. The wind

is found to strengthen the intrinsic buoyancy-driven dynamics and impede the development of the coastal

southward current, in coherence with observations.

1. Introduction

The outflow of the Congo River is the second largest in

the world with a mean rate of flow of about 40000m3 s21

(Dai and Trenberth 2002). As such, it is a major contrib-

utor to the mean state and the variability of the surface

salinity in the Gulf of Guinea (Signorini et al. 1999), and it

has been recently shown that it may have a strong impact

on climate variability in the region (Materia et al. 2012).

Moreover, rivers are important sources of carbon in the

ocean (Schl€unz and Schneider 2000), and the CongoRiver

is one of the greatest contributors (Coynel et al. 2005).

Its signature can be seen very far offshore of the river

mouth (Hopkins et al. 2013) as highlighted by Fig. 1, which

presents the sea surface salinity (SSS) and the colored,

dissolved, and detrital organic matter (CDM) absorption

length in the Gulf of Guinea. CDM, which is well corre-

lated with SSS, has been demonstrated to be a useful in-

dicator of the trophic chain and has been successfully used

to track the Amazon River plume (Salisbury et al. 2011).

Despite its importance, the Congo River plume dy-

namics has not been much studied. Even if the role of

environmental factors such as the geomorphology, the

wind, and the ambient currents have been recently

assessed in a realistic model (Denamiel et al. 2013,

hereafter D13), the strong northwestward offshore ex-

tent of the low-salinity waters during most of the year

remains misunderstood. Indeed, it is not a common

feature as it opposes the predicted extent of the coastal

current in the direction of the coastal Kelvin wave prop-

agation (Chao 1988a) and is abnormally large [reaching

850km according to Hopkins et al. (2013)]. Many theo-

retical (Yankovsky and Chapman 1997; Nof and Pichevin

2001) and numerical studies (Chao and Boicourt 1986;

Chao 1988a; Kourafalou et al. 1996; Garvine 1999; Schiller
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and Kourafalou 2010) have described the dynamics of

midlatitude river plumes and the associated mecha-

nisms of advection and diffusion of freshwater in the

unforced case. They have also evaluated the impact of

external forcing such as the wind or the bottom topog-

raphy on plumes. Nonetheless, no study is dedicated to

low-latitude river plumes, and the Congo River mouth

position, where f is very low and its gradient b is at its

maximum, could play a role in the self-induced buoy-

ancy dynamics of the outflow.

Parallel to D13, we have carried out research on the

Congo plumewith a different strategy.We have situated

the Congo River in a theoretical framework in order to

predict what could be the dynamics of a near-equatorial

plume in an unforced case and explore its fate at longer

time scales. Then, we have used idealized numerical

experiments to verify our theoretical assumptions and

clarify the near-equatorial specific characteristic. Making

the study more complex step by step, some sensitivity

experiments have been carried out to estimate the impact

of the geomorphology (bottom topography and coast-

line) and the wind on the plume.

In this paper, we aim to provide a new physical ex-

planation for the northwestward extent of the Congo

plume. We first describe what is the expected dynamics

and morphology of the Congo plume by interpreting

some nondimensional numbers associated with the

problem in a physical parameter space. After a de-

scription of the model and the configuration used, we

then discuss the impact of Earth’s rotation on the

plume as well as other forcings. Finally, we draw the

main conclusions on the dynamics of near-equatorial

plumes and discuss our results within the context of the

realistic study of D13.

2. Theoretical framework

In this section, we review some theoretical and nu-

merical studies that are relevant to near-equatorial river

plumes. We also develop a theory of the Congo plume

based on the dichotomous distinction of surface-trapped

and bottom-influenced plumes made by Yankovsky and

Chapman (1997), and then incorporate the major results

of Garvine (1999) that reveal the importance of the

physical and geometrical parameter range in the near-

field dynamics of river plumes. As the Congo River in-

flow is very important in comparison with standard

values of midlatitudes rivers (basically two orders of

magnitude of difference), we expect the inflow to reach

a significant extent off the river mouth (this is supported

by observations; Fig. 1). As such, the fate of the inflow in

its far field is also evaluated by considering the theory of

Nof and Pichevin (2001) and adapting the quantitative

results of Nof et al. (2002b) as their study framework is

close to ours.

a. General background

Observations of river inflows into the ocean commonly

reveal two types of structures (Chao 1988a; Kourafalou

et al. 1996; Yankovsky and Chapman 1997): an anticy-

clonic circulation at the river mouth and a coastal current

that propagates in the direction of coastal Kelvin waves.

The anticyclonic circulation is induced by the input of

river water that perturbs the vorticity balance. To help

describe this, we consider a shallow layer of rotating fluid

of a mean depth H, bounded by a flat, rigid surface at

either the top or bottom and on the other side by a fluid of

different density, forming an interface that deviates from

themean state byh (positive if increasing the layer depth).

FIG. 1. Satellite visualizations of the Congo plume at the same date (mean over April 2010) during the period of the largest spread of the

plume. The Congo mouth is at 68S. (a) The SSS from Soil Moisture Ocean Salinity (SMOS); the black line represents the section along

which the BIOZAIRE section is drawn in Fig. 2. (b) The CDM absorption length scale from GlobColour data.
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We cross differentiate the linear, shallow water momen-

tum equations, which leads to

›

›t

�
z2

fh

H

�
5 2

fQ

H
, (1)

where f and z are, respectively, the planetary and relative

vorticity;h is the interface displacement; andQ is the rate

of flow that enters the conservation equation (positive for

a source and negative for a sink). Considering that the

layer depth is nearly constant and neglecting variations of

the interface, we can deduce that a riverine source will

induce a negative relative vorticity at a river mouth. In

the case of the Congo River, whose mouth is at 68S, ob-
servations reveal an anticlockwise circulation with a disk

shape and a coastal current propagating to the south,

leaving the coast to its left, as expected in the Southern

Hemisphere (D13, their Fig. 10.1). We will verify this in

idealized numerical simulations as described later.

Beyond this theory, model-based works on the river

inflows initiated in the 1970s (Garvine 1974; Kao et al.

1977, 1978) pointed out the dependency of the plume on

numerous physical and numerical parameters such as the

estuarine slope or the estuary width, influencing its shape,

size, and stability. Many studies build up a plume classi-

fication based on these parameters, according to various

criteria such as the relative offshore extension of the bulge

compared to the coastal current (Chao 1988a) or the

meanders and instabilities developed by the coastal cur-

rent (Schiller and Kourafalou 2010). Garvine (1999) ap-

pears to be the first to provide the quasi-exhaustive list of

physical parameters that influence the plume shape.

b. The Congo River parameters

Table 1 presents the real geometrical and physical pa-

rameters of the Congo River used to set up the reference

experiment (REF) described later. Here, we comment on

howwe choose these parameters. The Coriolis parameter

is calculated at the river mouth (68S). The width and

depth of the estuary are approximated asmean values out

of the canyon area because of their spatial high variabil-

ity. Based on the observation of Eisma et al. (1978) and

Vangriesheim et al. (2009), we estimate the depth h1 of

the freshwater surface layer (Fig. 2) and the salinity dif-

ference DS between the inflow and the ambient shelf

water. Depending on the location and naturally de-

creasing when going downstream, DS is about 15psu

[in a range that is consistent with the usual values for

coastal plumes, as Kao et al. (1977) notice a salinity dif-

ference of 16 psu, for instance]. The inlet velocity yi is

computed as the ratio of the freshwater flux to the section

of the estuary, as Lh1yi is the rate of flow. To compute

a reduced gravity g0 representative of the plume, we use

a linear model of density calculation varying with the

salinity: Dr 5 rb 3 DS, with rb 5 0.824kgm23 psu21. In

fact, in its first approximation, the temperature would not

influence density much, as the thermocline is not very

marked and lies under a sharp halocline due to the

freshwater discharge (Jourdin et al. 2006; Vangriesheim

et al. 2009). The propagation speed of the gravity internal

waves in a two-layer model is formally ci 5 [g0h1h2/(h1 1
h2)]

1/2, which is frequently approximated to (g0h1)
1/2 if the

upper layer is much thinner than the bottom layer, as is

the case for the Congo plume (see Fig. 2). The shelf

bottom slope a is neglected at first. Later on we carry out

sensitivity experiments to determine the impact of the

slope on the dynamics.

c. Nondimensionalized parameters

Defining seven geometrical and physical parameters

(f, L, h1, Sa 2 Si, Ti, and A; see Table 1) holding two

TABLE 1. Observed and computed parameters of the Congo

River. They are also used in the model in the REF experiment. List

based on the Garvine (1999) study.

Parameter Name Value

f Coriolis frequency 21.52 3 1025 s21

L River width 27 km

h0 River mouth depth 30m

h1 Inlet depth 10m

Sa 2 Si Salinity difference 15

yi Inlet velocity 0.148m s21

Ti Rate of flow 40 000m3 s21

A Tidal height amplitude 0m (1.1m observed)

g0 Reduced gravity 0.113m s22

ci Internal wave speed 1.063m s21

ri Rossby radius of

deformation

70.0 km

a Shelf bottom slope 0

FIG. 2. Vertical salinity section (BIOZAIREdata, stations 22–38),

along the path drawn in Fig. 1a. The white line is isohaline 35.4 psu,

which can be approximated as the limit of the desalinated waters, as

the max of salinity in the region is about 35.5 psu.
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independent dimensions (time and length), one can

determine five nondimensional, independent parame-

ters (t, Ki, a, �, and L/h1; see Table 2) driving the dy-

namics. We can interpret them separately, deducing

some expected theoretical characteristics of the Congo

plume (the role of the shelf slope a is discussed later):

(i) The scaled inlet transport t satisfies t � 1. This

implies that the river transport is far less important

than the geostrophic flow induced by the gravity

current. The river dynamics can therefore be ne-

glected in the setup of the intrinsic buoyancy-driven

dynamics of the plume. Independently, this param-

eter is also used byYankovsky andChapman (1997),

who associate t � 1 with surface plumes, leading to

consistency with what we found.

(ii) The inlet Kelvin number verifies Ki , 1, which

shows that Earth’s rotation does not play an impor-

tant role in the dynamics. This is due to the near-

equatorial position of the river mouth and implies

that the coastal current does not transport much

freshwater in comparison with the lens.

(iii) The scaled tidal amplitude is very weak as suggested

by the parameter � � 1 (from Eisma et al. 1978),

which means that the tidal effect has a negligible

importance over the near-field plume dynamics.

As such, we do not take the tide into account in our

experiments.

(iv) The aspect ratio L/h1 � 1 shows that the outflow is

mainly horizontal and that we can use the hydro-

static approximation in further simulations [this

aspect ratio has an importance for laboratory tank

experiments (Sutherland and Cenedese 2009)].

The first two nondimensional parameters t and Ki

are both linked with other parameters: the inlet Froude

number Fi 5 yi/ci 5 t/(2Ki) and the inlet Rossby number

Roi 5 yi/(fL)5 t/(2K2
i ). The inlet Froude number Fi, 1

can be interpreted as a prevailing input of potential en-

ergy rather than kinetic energy (Garvine 1999). The inlet

Rossby number Roi 5O(1) indicates that the flow is not

completely geostrophic at the river mouth and presents

nonlinearities in the near-field plume development as we

expect advection to play a role in the salt transport.

Even if the theoretical results of Yankovsky and

Chapman (1997) place the Congo plume as surface

trapped, D13 notice that the geomorphology of the es-

tuary (partly represented through the shelf slope a)

plays an important role in the plumemorphology. This is

why we further dedicate sensitivity experiments to the

influence of the bottom slope, taking into account pre-

vious idealized studies such as the ones of Kourafalou

et al. (1996) and Chao (1988a) that reveal that the slope

has a trapping effect on the bulge at the coast, slowing

down its offshore extension.

In summary, the major theories of unforced plumes

indicate that the Congo River parameters are in a range

that induces a surface-trapped plume without any in-

fluence of the bottom slope and a large-scale, horizontal,

anticlockwise geostrophic circulation with an offshore

spreading bulge largely dominating a small coastal cur-

rent going southward. Furthermore, the dynamics should

be dominated by the gravity current rather than by the

transport generated by the river inflow. Concerning the

tidal impact, observations show that it is negligible

(Eisma et al. 1978).

d. Near-field plume morphology

Here, we concentrate on the Yankovsky and Chapman

(1997) study that appeared to be themost relevant for the

near-equatorial case to describe the near-field plume

morphology. Their theory classifies the plume in two

distinct categories. On the one hand, the plume can be

surface trapped, which means that the freshwater thin

surface layer does not have any interaction with the

bottom and the anticyclonic bulge extends offshore with

a disk shape. On the other hand, it can be bottom influ-

enced, which means that in this parameter range, the

plume feels the bottom friction and its offshore extent is

compromised by its vertical and coastal spread. This

theory is based on simple hypotheses such as the cyclo-

geostrophic equilibrium on an f plane in the bulge that

involves a balance between the pressure force, the Cori-

olis force, and the centrifugal force:

2y2/r2 f y52g0
›h1
›r

, (2)

where y is the azimuthal velocity, r is the bulge radius, f

is the planetary vorticity, and g0 is the reduced gravity

TABLE 2. Nondimensional parameters computed from Table 1.

List based on the Garvine (1999) study.

Name Value

Nondimensional parameters

t5
2Tif

g0h21
Scaled inlet

transport

0.108

Ki 5
L

ri
Kelvin number 0.38

a Shelf bottom slope 0

�5
A

h1
Scaled tidal

amplitude

0 (0.11

observed)
L

h1
Aspect ratio 2700

Alternative parameters

Fi 5
yi
ci
5

t

2Ki
Froude number 0.139

Roi 5
yi
fL

5
t

2K2
i

Rossby number 0.289
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between the upper thin layer of freshwater of depth h1
and the bottom layer of ambient shelf water (values are

found in Table 1). Considering a constant vertical shear

of the horizontal velocities, Yankovsky and Chapman

(1997) calculate the depth at which the plume should be

trapped:

hb5 (2Lyih1f /g
0)1/2 . (3)

Within the real Congo River parameters that are also

used in the model (Table 1), we have hb5 3m, h1. The

predicted equilibrium depth for the bottom-influenced

plume is shallower than the real depth of the buoyant

inflow so the plume is surface trapped. In Eq. (3), the

Coriolis frequency acts in favor of trapping by the sur-

face for a near-equatorial plume. This feature is ob-

served in the BIOZAIRE cruises (see salinity section of

Fig. 2) carried out by L’Institut Français de Recherche

pour l’Exploitation de la Mer (IFREMER) between

2000 and 2005 (Vangriesheim et al. 2009) and OPTIC–

CONGO carried out by the Service Hydrographique et

Oc�eanographique de la Marine (SHOM) in March 2005

(Jourdin et al. 2006), where the Congo plume is surface

trapped with no evidence of coastal current (it would

have been necessarily noticeable if the plume was bot-

tom influenced). The shape of the surface bulge is also

observed to spread like a lens in the satellite observa-

tions of CDM absorption length of GlobColour data

(Maritorena et al. 2010) and sea surface salinity of SMOS

data (Boutin et al. 2012) (see Fig. 1). The realistic simu-

lations of D13 confirm these aspects of the observations.

However, the strongest hypothesis of Yankovsky and

Chapman (1997) is that the flow is in dynamical balance

with no growth of the bulge radius at the equilibrium

state. This implicitly hides the fact that a balance is reached

between advection and diffusion of buoyancy after a cer-

tain period (Garvine 1999). Dynamics of inviscid outflow

leads to different results.

e. High rate of flow plume dynamics at long time
scales

Studies of Pichevin and Nof (1997), Nof and Pichevin

(2001), Nof et al. (2002a,b), and Nof (2005) focus on

inviscid outflows, inflows, and throughflows spreading in

a b-plane ocean through straits or archipelagos. The first

paper of this list highlights the fact that the outflowing

bulge cannot be in momentum balance (under the as-

sumption of no momentum viscosity nor diffusivity) as

nothing can counterbalance the force exerted by the

alongshore current. Consequently, the plume is shedding

eddies that are moving contrary or at a right angle to the

coastal current, depending on the coast orientation.

These theory- and attendant-derived cases (depending

on the geometry of the configuration) give general fea-

tures of some real outflows (Indonesian Throughflow,

Red Sea outflow, and Loop Current, for instance). Al-

though this framework is useful for studying outflows

with high rates of flow [greater than 0.1 Sverdrups (Sv;

1 Sv [ 106m3 s21), as the ones cited], it has never been

referred to when dealing with river inflows, as their rates

of flow are generally much lower (order of magnitude of

0.001Sv). In fact, the bulge has to reach a certain size

defined by the theory before being sheared by the plan-

etary vorticity gradient and relaxing eddies that drift

westward due to b. Basically, if the rate of flow is not

important enough, diffusion processes of buoyancy due

to the wind or tidal mixing effects impede a sufficient

development of the lens.

TheCongoRiver presents amean outflowof 0.04Sv and

is seemingly not topographically controlled (Yankovsky

and Chapman 1997), which is a necessary assumption to

use this theory, so we could expect its associated bulge in

a nonforced case (without wind and tide) to grow suffi-

ciently to shed eddies. To describe the expected behavior,

we use the framework of Nof et al. (2002b) applied to the

Indonesian Throughflow that has the same configuration

as theAfricanwest coast at theCongoRiver latitude with

its meridional coastline oriented westward.

The detachment condition of the eddy is that its west-

ward drift just exceeds its growth rate (Nof et al. 2002b),

and then the vortex detaches from the coast and migrates

westward. Equating the growth rate of the eddy dR/dt,

where R is the eddy radius, with the drifting velocity of

nonlinear eddies (2/3)bRd2 (Nof 1981) gives the final

eddy radius. Adding an assumption on the vorticity pro-

file of the growing lens, Nof et al. (2002b) find an ana-

lytical solution for the eddy radius and their frequency of

ejection. For a linear orbital speed of yu 5 (2a/2)fR

(meaning that the relative vorticity is z 5 2af, a being

a nonlinearity parameter), the final radius of the eddy at

detachment is

Rf 5
2

ffiffiffi
2

p

[(22a)a]1/2

"
3a1/2(22a)3/2

8
ffiffiffi
2

p
p

g0Ti

bf 2

#1/5
, (4)

and the period of ejection is

T5
48 (12a/2)

(22a)a
(bRf )

21 . (5)

Figure 3 shows that the radius and period of ejection of

eddies are very sensitive to the vorticity profile. The

smallest period is reached for highly nonlinear eddies

(a 5 1) and is greater than 100 days at the Congo lati-

tude (bold lines). The ‘‘Baseline’’ run performed byD13

984 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 44

Appendix A. Meanwhile, in the Gulf of Guinea

138



(i.e., with no forcing but a realistic coastline and ba-

thymetry) was only run for 40 days to avoid spurious

interactions between currents in the plume and bound-

aries of the domain, so they were not able to observe b

pulling of nonlinear structures offshore.

In conclusion, this theory applied to our case study

reveals that the high rate of flow of the Congo River

combined with its equatorial position imposing small f

(thus large radius of deformation) and high b acts in

favor of an important westward b pulling of nonlinear

vortical structures according to Eq. (5) derived fromNof

et al. (2002b).

3. Model description

To verify our theoretical results concerning the Congo

plume classification, we carry out numerical experi-

ments. We use idealized configurations, starting from

a simplified unforced problem with different assump-

tions on the Coriolis parameter, and then evaluate the

role of wind and topography through sensitivity exper-

iments. Here, we describe the reference experiment

(hereafter REF). In contrary to the Baseline unforced

simulation of D13 performed for 40 days to see the near-

field extent, we ran the simulations for 1500 days to see

the fate of the plume at long time scales, testing the

validity of the Nof et al. (2002b) theory.

We use theRegional OceanModeling System [ROMS;

see Shchepetkin and McWilliams (2005) for a complete

description] in its version 3.0. ROMS solves the primitive

equations on an orthogonal curvilinear coordinate sys-

tem. The latter is terrain following to better represent the

effect of topography on the fluid. The advection scheme is

third-order upstream biased, has low numerical dissipa-

tion, and is assessed to be strong enough not to add

physical explicit eddy viscosity nor tracer diffusivity in the

interior of the domain. The diffusive part of the advection

scheme is rotated along the iso-geopotential surfaces

to avoid spurious diapycnal mixing as explained in

Marchesiello et al. (2009). Subgrid-scale vertical mixing

processes are parameterized using the K-profile plane-

tary (KPP) boundary formulation (Large et al. 1994).

Our configuration is based on a 1/128 grid with idealized

meridional coastline and a waterway at the Congo River

mouth latitude at 68S. Bathymetry is constant in the

basin (1000m) and the waterway (30m). Between the

basin and the waterway, topography follows a slope of

approximately 1%. The grid has 40 vertical levels

with refinement only at the surface using stretching

parameters us 5 6.5 and ub 5 0 (Haidvogel and

Beckmann 1999) with geometrical transformation pa-

rameter Vtransform5 2. The minimum depth at which

stretching occurs is defined in the parameter hc 5
300m, and the minimum depth represented is 15m.

The western, southern, and northern boundaries are

open with viscosity coefficient of 300m s22 on a sponge

layer of width 100 km. The river runoff is prescribed at

the end of the waterway, and steady stratification on

the column is effective on the waterway. Temperature

is taken uniform on the domain as well as salinity of

35.5 psu, which is the maximum reached in the sub-

surface in this region according to the Levitus clima-

tology (Levitus 1982). Temperature and salinity are

taken as constant to isolate the influence of the river

inflow on the buoyancy in the basin.

The topography used for the TOPO and WIND sen-

sitivity experiments (deeply described later) is from the

2-Minute Gridded Global Relief Data (ETOPO2)

(Smith and Sandwell 1997). It has been smoothed under

the constraintDh/2h, 0.2. The wind stress of theWIND

experiment is an annual mean computed from the

Scatterometer Climatology of Ocean Winds (SCOW)

monthly climatological dataset (Risien and Chelton 2008)

computed for 122 months (September 1999–October

2009) of Quick Scatterometer (QuikSCAT) data (da-

taset is available at a 1/48 resolution at http://cioss.coas.

oregonstate.edu/scow/) (Fig. 4).

4. Buoyancy-driven dynamics of the REF
experiment

During the first 150 days of the simulation, we observe

the growth of the surface lens with its anticyclonic cir-

culation (Fig. 5) and the spreading of a coastal current in

the direction of the coastal Kelvin wave propagation, in

FIG. 3. Max radiusRf (plain) and period of ejectionT (dashed) of

the eddies at the Congo lat (bold) and at 468S (thin), depending on

the nonlinearity parameter a. See Eqs. (4) and (5).
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coherence with the theory. Compared to the low Kelvin

number experiments of Garvine (1999) (cf. his Figs. 7

and 8 with our Fig. 5a), the plume develops in a pre-

dicted way, with a huge anticyclonic bulge (see map of

surface relative vorticity in Fig. 6a at 100 days of simu-

lation) containing most of the desalinated waters and

a narrow coastal current. This is due to the weak impact

of the Coriolis force on the dynamics near the equator,

as deduced from the low Kelvin number Ki. The non-

dimensionalized, surface relative vorticity z/j f j scales as
the Rossby number and is a good indicator of the degree

of geostrophy of the flow. Figure 6a displays relatively

high vorticity patterns (z/j f j. 0.7) that indicate that the

flow departs from geostrophy just at the waterway

mouth. The Rossby number found in the theory (Table

2) reveals an important part of the advection in the

plume dynamics that is verified in simulations.

Figure 7a presents a vertical section of salinity in the

axis of the waterway at 500 days of simulation for the

REF experiment.We verify that the layer of low-salinity

water is contained at the surface and does not reach the

bottom in the waterway, as anticipated by the theory.

The plume classification as surface trapped is validated

by both the section and the morphology of the surface

bulge [see schematics of Figs. 1 and 2 of the Yankovsky

and Chapman (1997) study]. This is seemingly a robust

result of equatorial plumes as we show that a weak

Coriolis frequency acts in surface trapping the bulge

[Eq. (3)]. The depth of the surface layer is between 10m

at the river mouth and 40m in the core of the plume

according to the white line representative of isohaline

35.4 psu (background salinity is 35.5 psu). It is difficult to

determine its depth precisely because the bottom limit

of the plume is not as marked as in the observations.

Nonetheless, we notice that this depth range includes

the one of the BIOZAIRE section (Fig. 2), which is

around 20m.

As demonstrated by Pichevin and Nof (1997) and Nof

and Pichevin (2001), and noticed by Fong and Geyer

(2002), the lens cannot reach a stationary state and its

offshore-oriented growth is the result of a balance be-

tween three alongshore forces: the ‘‘jet’’ force (Nof et al.

2002b) resulting from the downstream current, the in-

tegrated Coriolis force resulting from the offshore dis-

placement of the eddy center, and the b-induced force

pulling it equatorward. The bulge reaches a critical size

FIG. 4. Bathymetry and wind stress fields used in TOPO and WIND experiments (see text

for details). Topography contour interval is 1000m. Wind stress is an annual mean (SCOW

climatology).
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as discussed in the previous section, and mesoscale an-

ticyclonic eddies are ejected, transporting low-salinity

waters offshore (Fig. 5d). Figure 8 is a time–latitude

diagram of sea surface height (SSH) at longitude 108E.
This representation allows one to visualize separately

the eddies’ shed, thus assessing their averaged size and

period of shedding. The size of eddies is about 200 km

(we exclude the first structure displaying high SSH that

is formed by aggregation of eddies), and their averaged

period of ejection is 42 days. High values of z/jfj in
vortex cores (Fig. 6b) are representative of nonlinear

eddies, and according to Fig. 3, we should observe

shedding periods of about 110 days. However, Nof et al.

(2002b) find a similar discrepancy of a factor of 2 be-

tween their theoretical and experimental periods of

ejection. Nevertheless, the size of eddies is in good

agreement with the theory as their radius is estimated

to 110 km (Fig. 3).

FIG. 5. SSS and surface velocity field at 100 and 920 days of simulation for the REF experiment with no assumption on the (a),(d) Coriolis

frequency, for the (b),(e) f-plane experiment, and the (c),(f) midlatitude experiment 468S.

FIG. 6. Surface relative vorticity z nondimensionalized by the Coriolis frequency j f j for the REF experiment at

(a) 100 and (b) 920 days of simulation.
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As vortical structures shed are anticyclonic, they are

expected to move equatorward (Sutyrin and Flierl 1994;

Morrow et al. 2004). Surprisingly, this behavior does not

occur and seems to be overwhelmed by another process

very active in our experiments, that is, the interaction

between like-sign vortices (Carton 2001). Indeed, the

distance separating the eddies of the REF simulation

(identified in surface relative vorticity; Fig. 6b) is less

than the critical merger distance that is approximately

3.3 times the vortex radius (Carton 2001), and this is why

merging occurs. This phenomenon is often preceded by

a rotation of the eddy centers around each other in a di-

rection depending on their polarity. Two anticyclonic

vortices move around each other in an anticyclonic

FIG. 7. Vertical zonal sections in the axis of the middle of the waterway at 500 days of simulation. (a) REF

experiment, (b) f PLANE, (c) 468S, (d) TOPO, and (e)WIND. The white (black) line is the isohaline 35.4 psu (33psu),

which determines the limit of the plume, as the salinity in the basin is taken constant of 35.5psu.

FIG. 8. Time–lat diagram of the SSH for the REF experiment at 108E.
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motion, and this is what we observe before merging

the structures. The closeness of the eddies is therefore

a prevailing condition that makes them interact strongly

and impedes their westward drift to be deflected equa-

torward. The large-scale bulge (Fig. 5) of low-salinity

water is the result of merging smaller anticyclones. The

downstream coastal current also becomes unstable and

develops meandering patterns and recirculation cells

close to the coast, but we do not focus on these in-

stabilities.

The REF experiment verifies the main characteristics

of the plume developed in the theoretical part, in its near

field as well as in its fate at long time scales. In terms of

near-field plume morphology, theory and experiment

confirm that it is surface trapped and that the large anti-

cyclonic circulation overwhelms theweak coastal current.

The Congo River high rate of flow associated with its

near-equatorial position seem to be a sufficient condition

for the shedding of eddies transporting low-salinity wa-

ters far offshore of the river mouth, as commonly ob-

served in the real case (Fig. 1). To test the robustness of

this explanation for the large offshore extent of the

plume, we carry out sensitivity experiments on Earth’s

rotation effect and on wind and topographic forcing on

the plume.

5. Sensitivity of the plume

We use two sensitivity experiments to evaluate the

role of the near-equatorial position on the dynamics.

The 468S experiment is derived from the REF experi-

ment by shifting every grid point by 408 poleward. As

a consequence, the river mouth that is normally situated

at 68S is now at 468S. The f-plane experiment differs

from the REF experiment by the f-plane approximation

made on the domain. The Coriolis frequency is taken as

constant everywhere at the value it has at the river

mouth (Table 1).

According to D13 findings, the geomorphology of the

Congo River plume environment plays an important role

in its development in the upstream direction. In addition,

many studies [see Kourafalou et al. (1996) and Chao

(1988a), for instance] reveal that the estuarine slope and

the continental shelf have an impact on midlatitude

plumes, which is why we measure the sensitivity of the

plume on a real bathymetry in the TOPO experiment.

The Congo River enters the ocean at a latitude where

steady trade winds blow during the majority of the year

and develop coastal upwellings (Verstraete 1992). To

assess the effect of the wind on the plume, we use a real

forcing by wind stress in the WIND simulation. Winds

are parallel to the coast and upwelling favorable in the

Congo mouth vicinity.

a. Effect of Earth rotation

The 468S experiment confirms that some of the dis-

tinguishing features of the near-equatorial plume cannot

be reproduced at midlatitudes. In Figs. 5c and 5f, we see

that the extent of the bulge is far less important than in

the REF experiment, and the coastal current is much

better developed, containing more low-salinity water, in

coherence with the high Kelvin number experiment of

Garvine (1999) (cf. his Fig. 7 with the current Fig. 5f). As

the Coriolis force is about 7 times stronger in mid-

latitudes (at 468S; f 5 1.05 3 1024 s21), the flow is more

tilted to the left directly at the river mouth, and the

anticyclonic circulation cannot spin up as smoothly as

it does in the near-equatorial case. We also notice in

Fig. 7c that the depth of the plume is greater than in the

REF case, as suggested by the theory of Yankovsky and

Chapman (1997) that implies a larger influence of the

bottom at higher latitudes. The freshwater layer in the

waterway is also deeper because the Coriolis force cre-

ates a meridional slope of the low-salinity layer depth,

thinning it northerly and deepening it southerly.

At midlatitudes, the minimal period required to shed

eddies is more than 300 days (Fig. 3, thin lines) for the

highest nonlinear eddies (a5 1). This time scale is much

higher than the characteristic time of baroclinic and

frontal instabilities developing in the bulge. For in-

stance, Fong and Geyer (2002) and Kourafalou et al.

(1996) found the order of magnitude of destabilization

times of about 10 days. Small anticyclonic eddies

sometimes detach from the lens, but they are drifting

westward too slowly and merge with other anticyclonic

structures of the plume. In fact, with an equivalent

stratification (that is the case of our simulations), their

drifting velocity }b(g0h1/f 2) is reduced by nearly two

orders of magnitude.1 As a consequence, even with an

important rate of flow, b pulling of nonlinear structures

is not an active mechanism for transporting low-salinity

waters off the river mouth at midlatitudes, and this may

be a reason why, to the authors’ knowledge, no study

dedicated to the midlatitudes’ river plume describes the

ejection of eddies.

On the f-plane experiment, we confirm that the near-

field plume has the same shape as in the REF simulation

(Figs. 5a,b). The growth of the bulge does not show any

difference with the REF until about 150 days when it

reaches a sufficient diameter that makes it feel the gra-

dient of f. On the sphere, the lens detaches from the

coast due to the b effect, whereas on the f plane, its

growth is unlimited as an outflow can never be steady

1Divided by 1.4 3 72 as f468S ’ 7 3 fREF and b468S ’ bREF/1.4.
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(Nof et al. 2002b). The impact of b on the transport of

low-salinity waters is clearly seen on the sections of Fig.

7 where the offshore extent of the bulge nearly doubles

between REF and f plane.

Those experiments clearly underline the importance

of the b effect to reproduce the offshore drift of low-

salinity waters observed in satellite measurements

(Fig. 1) and modeled in the realistic numerical simula-

tions of D13. In fact, because of the huge rate of flow and

the near-equatorial position of the river mouth, the

meridional length scale of the plume is larger than in

previously published experiments carried out at mid-

latitudes with weaker rates of flow. This allows the de-

velopment of westwardb pulling of nonlinear structures.

b. Impact of the geomorphology

The estuarine and the shelf slopes tend to trap the

plume at the coast and limit its offshore extension

(Kourafalou et al. 1996; Chao 1988a). Shallow waters are

also more inclined to be bottom influenced (Yankovsky

and Chapman 1997). Nevertheless, these results apply

mainly to midlatitude plumes, which are more likely to

feel the influence of the topography and the bottom

Ekman layer as reviewed before. This can be seen in

the computation of hb [Eq. (3)] that varies as f
1/2, which

means that the greater f, the more likely the plume to

be bottom influenced. The TOPO experiment is set up

to assess the impact of the real geomorphology and

topography of the Congo River environment on its

plume.

The scenario of the plume spreading is threefold. From

the onset of the plume until about 130 days, its growth

does not show any major difference with the REF ex-

periment (Figs. 9a,b), developing an anticyclonic circu-

lation and a downstream coastal current. The only small

difference can be seen in the vertical structure of the

plume whose isohaline 35.4 psu intersects the bottom

(Fig. 7; although the figure is at 500 days and stratifi-

cation in the waterway does not vary after 40 days of

simulation), which is a distinguishing feature of bottom-

influenced plumes. This trapping is certainly due to the

shallower estuarine bathymetry and the smoother shelf

slope, divided by almost three compared to the REF

configuration.

As such, from 130 to about 300 days, the plume de-

velops an upstream, coastally trapped current (Chapman

and Lentz 1994) that has been shown to be a robust

feature of bottom-influenced plumes (Matano and Palma

2010). The excursion of this current reaches a critical

latitude at which dynamics can be interpreted in terms of

wave propagations in a more linear regime than the

geostrophic turbulence of midlatitudes (Theiss 2004).

FIG. 9. SSS and surface velocity field at 80 and 300 days of simulation for the (a),(d) REF experiment, for the (b),(e) TOPO experiment,

and the (c),(f) WIND experiment.
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This critical latitude has been noticed to be around 38 in
regional primitive equation simulations (Penven et al.

2005). An important part of low-salinity waters seem to

be pulled by the upstream current forming a large tongue

northwestward of the river mouth.

Onward, two mechanisms modulate the transport of

low-salinity waters. Examining Fig. 10 (SSH Hovm€oller

diagram at 28S) leads to the distinction of two phe-

nomena that seem to be trapped in the equatorial band.

First, the propagation of the front of the tongue is no-

ticeable by themost important SSH gradient that crosses

the basin at a nearly constant speed of 3 cm s21. This

advective speed is associated with themovement induced

by the baroclinic pressure of the constantly refilled upper

layer (Nof et al. 2002b). Second, westward-propagating

waves behind the front are generated near the coast and

travel at a speed of about 12 cm s21. These waves stop

propagating at the front, whichmeans that they need the

plume-like stratification to exist (Nash andMoum 2005)

and cannot be projected on classical equatorial wave

modes that propagate on the background stratification

of the model. Many crests of these waves can be ob-

served in the signal and allows a dominating period of

32 days to be distinguished. Figure 11 can be compared

to Fig. 8, as it shows the same eddy propagation field

for the TOPO experiment at a latitude shifted by 18
northward. This northward shift between both simula-

tions is certainly due to the northward-oriented estuary

that deflects the flow in this direction. The same eddies

are observed as in the REF experiment, but the signal is

a bit noisier and attenuated (note the different color

scales). The detaching period of eddies is found to be

approximately 40 days, and even if they are not apparent

in the surface tracer maps (Fig. 9), they are the footprint

of a characteristic free mode of the dynamical system

[Eq. (5)]. This period is close to the one of the wave

generation occurring a few degrees of latitude equator-

ward, and the Congo River inflow could be seen as a

wavemaker, exciting signals that modulate the spreading

of low-salinity water. The geomorphology thus plays an

important role in driving the near-field plume northward,

then reaching the equatorial band where wave signals are

dominating.

c. Impact of other forcing

Many studies have focused on the role of the wind on

buoyant coastal currents and river plumes. The first

numerical experimentswere carried out byChao (1988b),

who concluded that the most important response was the

wind-induced surface Ekman drift. Upwelling favorable

winds cause the seaward excursion of the plume and tend

to increase the vertical mixing and reduce stratification.

Lentz (2004) developed a two-dimensional theory to

quantify the effect of the wind on an existing plume by

calculating the entrainment rate and the offshore drift of

the coastal current.

Figures 9c and 9f show the response of the plume to

the steady wind field at 100 and 920 days of simulation.

The wind-driven surface Ekman current at about 458
to the left of the wind direction (Fig. 4) largely domi-

nates the dynamics outside the plume. The plume core is

FIG. 10. Time–lon diagram of the SSH for the TOPO experiment

at 28S.
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transported northwestward under the influence of this

Ekman drift (Chao 1988b). The salinity section of Fig. 7e

does not represent the core of low-salinity water that is

situated more northward, but we can notice the effect of

containment of the plume height on the Ekman depth

(Fong andGeyer 2001) hEk5 (2A/j f j)1/2, whereA is the

vertical eddy diffusivity.WithA’ 53 1023m2 s21 in the

surface layers of the model in the plume area, we have

hEk’ 26m, not far from theWIND plume depth (Fig. 7).

This constraint on the plume depth is mainly due to en-

hanced vertical mixing in the surface layer caused by the

important horizontal velocity shear in the Ekman layer

(Lentz 2004). This leads to a more homogeneous and

shallow mixed layer than in the REF simulation.

The southward coastal current does not develop at all.

This is brought to the fore in simulations of Chao

(1988b) where the wind inhibits the development of the

downstream coastal current that opposes the coastal

northward geostrophic jet developed in response to the

pressure gradient induced by the offshore Ekman drift.

This is a plausible explanation for the weakness or ab-

sence of the southward coastal current (Fig. 1), even if

seasonality is not explored in our study and is marked in

this current extension (D13).

Although plume stratification changes betweenWIND

and TOPO experiments, surface velocity fields are not

much different in terms of direction (Fig. 9) in a strip

containing most of the low-salinity waters (between 58
and 18S). Indeed, even if thewinds increase the velocity in
this band by nearly 60%, the mean current direction is

deflected northward by only 138. As such, we conclude on

a reinforcement of the naturally buoyancy-driven circu-

lation by the annually averaged winds.

An important seasonality of the plume axis and extent

has been highlighted in remote sensing data (Hopkins

et al. 2013) and is reproduced in simulations of D13,

shown on their seasonally averaged salinity maps. This

may be associated with the complex regional current

variability in the plume vicinity (Stramma and Schott

1999; Lumpkin and Garzoli 2005) mainly presented

through the South Equatorial Current, the Angola Cur-

rent, and the Benguela Coastal Current. This issue is

beyond the scope of our study, as we aim to simplify the

framework to explore mechanisms.

6. Discussion and concluding remarks

The impact of the Congo River on the salinity field in

the Gulf of Guinea has been described from observa-

tional datasets (Eisma et al. 1978; Signorini et al. 1999).

Mechanisms that govern the low-salinity water transport

were recently studied by D13, who concluded on a high

impact of environmental factors such as the wind, the

geomorphology of the coast, and the bottom topography

on the plume dynamics. However, the buoyancy-driven

dynamics of near-equatorial plumes at long time scales

had never been explored for huge rates of flow.

In this article, we have situated the Congo River in a

theoretical framework examining what kind of dynamics

and plume morphology we could expect from the river

parameters. We have confirmed that near-equatorial

plumes are more likely to be surface trapped than

midlatitude plumes (Yankovsky and Chapman 1997)

and that the amount of freshwater would be mostly

contained in the offshore bulge rather than in the narrow

coastal current, in coherence with observations. The

nonlinear outflow at long time scale is expected to shed

eddies whose size and shedding period are almost de-

termined by the river parameters (Nof et al. 2002b).

Our idealized numerical experiments agree with the

theory regarding the near-field plume morphology. They

reveal an unusual behavior of the plume at a long time

scale that had not been explored before, that is, the

shedding of eddies due to b. These eddies strongly in-

teract with each other leading to the extent of a low-

salinity tongue far offshore of the river mouth. We

FIG. 11. Time–lat diagram of the SSH for the TOPO experiment at 108E.
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believe that this is a characteristic feature of low-latitude

outflow and is seemingly not observed in the midlatitude

as the shedding period is longer and the drifting speed of

eventually formed eddies is lower (Fig. 3).

The joint effect of b (Nof et al. 2002b) and topography

(Matano and Palma 2010) deflects the plume equator-

ward, roughly reproducing the observed (SMOS and

GlobColour) tongue of low-salinity water during its

most important extent. This extent can only be repro-

duced by taking into account the b effect and could not

have been observed with the f-plane assumption of most

of the idealized simulations carried out before [even

with the low Kelvin number near-equatorial experi-

ments of Garvine (1999)]. The mechanisms governing

this extent are twofold, developed through b pulling of

nonlinear structures (Nof and Pichevin 2001) and exci-

tation of waves that propagate on the plume stratification

(Nash and Moum 2005). This gives a new physical ex-

planation of the equatorward extent of the Congo River

plume that could be relevant to other near-equatorial

rivers.

The impact of the wind is qualitatively comparable in

our idealized simulations and in realistic simulations of

D13 as the Ekman northwestward drift strengthens the

buoyancy-driven circulation. The upwelling favorable

winds act by impeding the southward development of the

coastal current by setting a geostrophic current settled in

the Ekman-induced low SSH at the coast. We have not

evaluated the role of the ambient circulation on the

plume or the seasonality of the winds, which can only be

tested in realistic simulations to be compared with ob-

servations (D13). Because of the large scale of the plume

and the complex circulation in the region (Stramma and

Schott 1999), the basin-scale circulation is likely to in-

fluence the far field as commonly suggested. These issues

could be explored in future high-resolution regional ex-

periments to assess the mechanisms that drive the plume

seasonality. For instance, Chang and Oey (2010) found

a decrease in the eddy shedding of the Loop Current due

to the winds.

In conclusion, we argue that the b-induced self-

advection of the plume is one of the mechanisms that

could explain, in part, the nonintuitive development of

the low-salinity Congo plume in theGulf of Guinea. Our

idealized model experiments complement the more re-

alistic ones of D13 and provide a new theoretical ex-

planation for the behavior observed in their complex

simulations.
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Dynamique de bord ouest
en Mer d’Arabie

Le but de cette thèse est d’analyser plusieurs
phénomènes de bord ouest de la Mer d’Arabie : (i) le cycle
de vie d’un tourbillon de mésoéchelle persistant, le Great
Whirl; (ii) la dynamique d’un écoulement d’eau dense (out-
flow) formée dans une mer adjacente, l’outflow du Golfe
Persique; et (iii) une remontée d’eau profonde (upwelling)
saisonnière dans la zone côtière d’Oman. Le point commun
entre ces phénomènes est leur localisation sur un bord ouest
océanique. Ils sont donc influencés par des forçages locaux
(notamment les vents de mousson) et des forçages à dis-
tance (ondes de Rossby et tourbillons dérivant vers l’ouest).
En particulier, ces derniers vont jouer un rôle particulier
car la Mer d’Arabie est située à basses latitudes, ce qui
implique une propagation rapide des ondes longues et tour-
billons. De plus, des ondes sont continuellement excitées
par le régime saisonnier des moussons. Nous avons mis au
point des expériences numériques de différentes complex-
ités en utilisant un modèle aux équations primitives. Ces
expériences permettent soit de simuler de manière réaliste
la dynamique complexe de la Mer d’Arabie, soit d’isoler un
processus en particulier.

Les résultats principaux peuvent se résumer comme
suit : (i) le cycle de vie du Great Whirl est significativement
impacté par les ondes de Rossby annuelles. Le rotationnel
de la tension de vent joue un role important dans le main-
tien, le renforcement et la barotropisation du tourbillon.
(ii) La dispersion de l’Eau du Golfe Persique (Persian Gulf
Water, PGW) est determinée par le mélange induit par
les tourbillons de mésoéchelle. Précisément, ces tourbil-
lons entrent dans le Golfe d’Oman (où se deverse la PGW),
et interagissent avec la topographie. Ces interactions fric-
tionnelles produisent des bandes de vorticité très intenses
dans la couche limite du fond. Celles-ci sont arrachées et
forment des tourbillons de sous-mésoéchelle. Ces tourbil-
lons capturent de la PGW initialement située sur la pente
continentale et la redistribuent dans le Golfe d’Oman. Ce
mécanisme donne finalement lieu à du mélange, permettant
d’expliquer le gradient de salinité climatologique observé en
profondeur. (iii) La dynamique de l’upwelling saisonnier au
large d’Oman contraste fortement avec la dynamique des
upwellings de bord est (Eastern Boundary Upwelling Sys-
tems, EBUS). En effet, les ondes de Rossby se propagent
vers le large dans les EBUS et vers la côte dans l’upwelling
de bord ouest d’Oman. Ces ondes modulent la réponse en
température de l’upwelling forcé par le vent.

Dans l’ensemble, ces résultats sont relativement spéci-
fiques à la Mer d’Arabie. La faible extension zonale et la
basse latitude de la Mer d’Arabie, ainsi que le régime de
mousson des vents saisonniers en font une région partic-
ulière. La propagation rapide des ondes et tourbillons, et
leurs interactions avec le bord ouest façonnent les régimes
de turbulence de la Mer d’Arabie.

Mots-clés : Mer d’Arabie, Great Whirl, outflow, Golfe
d’Oman, Golfe Persique, ondes de Rossby, upwelling, dynamique
de mésoéchelle et sous-mésoéchelle, modélisation réaliste, inter-
actions tourbillon-topographie

Western boundary dynamics
in the Arabian Sea

This PhD aims to investigate some western boundary
processes in the Arabian Sea : (i) the life cycle of the so-
called Great Whirl, a persistent mesoscale eddy; (ii) the
dynamics of the Persian Gulf outflow, a marginal sea dense
outflow; and (iii) the seasonal Oman upwelling, a coastal
upwelling forced by summer monsoonal winds. The corner-
stone of all these phenomena is their location at a western
boundary, which makes them being influenced by both local
forcing (e.g., monsoonal winds) and remote forcing (Rossby
waves and westward drifting eddies). Specifically, the lat-
ter are expected to impact the western boundary dynamics
since the low latitude of the Arabian Sea implies a fast
westward propagation of long Rossby waves and eddies.
Moreover, waves are continously excited by the reversing
monsoonal winds. Based on a primitive equation model,
we designed numerical experiments of different complexity
that allowed to either realistically simulate the dynamics in
the Arabian Sea or to isolate some processes.

Major findings can be summarized as follows : (i) The
Great Whirl life cycle is found to be significantly paced by
annual Rossby waves, although the strong monsoonal wind
stress curl is of major importance to sustain the structure.
(ii) The Persian Gulf Water (PGW) spreading in the Gulf
of Oman and the northern Arabian Sea can be explained
by the stirring done by eddies entering the Gulf. These
remotely formed surface intensified mesoscale eddies prop-
agate into the Gulf and interact with the topography. Fric-
tional interactions produce intense vorticity strips at the
boundary that detach and roll up in the interior, form-
ing submesoscale coherent vortices (SCV). These SCV trap
PGW initially located on the slope and redistribute it in the
interior. This mechanism of transport ultimately produces
mixing that explains the large-scale gradient of salinity in
the Gulf. (iii) We find that the dynamics of the seasonal
upwelling off Oman contrasts with the more deeply stud-
ied Eastern Boundary Upwelling Systems (EBUS). In par-
ticular, Rossby waves, propagating offshore in EBUS vs.
onshore in this western boundary upwelling, are found to
modulate the wind driven upwelling and its sea surface tem-
perature response.

Overall, these results appear to be rather specific to the
Arabian Sea. The short zonal extent and the low-latitude
of the Arabian Sea, as well as the seasonally reversing wind
forcing are the distinguishing features of this region. Fast
waves and drifting eddies and their interactions with the
western boundary significantly shape the turbulent regimes
of the western Arabian Sea.

Key words : Arabian Sea, Great Whirl, outflow, Gulf of
Oman, Persian Gulf, Rossby waves, upwelling, mesoscale and
submesoscale dynamics, ocean modelling, eddy-topography in-
teractions
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