. The-european-research and . Council, ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 647018-WATU). We thank Vincent Govart for his technical assistance. We thank Kronos Worldwide

R. Z. Sagdeev, The 1976 oppenheimer lectures: Critical problems in plasma astrophysics. i. turbulence and nonlinear waves, Rev. Mod. Phys, vol.51, p.1, 1979.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux et al., Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics, Phys. Rep, vol.542, pp.1-132, 2014.

G. During, C. Josserand, and S. Rica, Weak Turbulence for a Vibrating Plate: Can One Hear a Kolmogorov Spectrum?, Phys. Rev. Lett, vol.97, p.25503, 2006.

V. E. Zakharov and N. N. Filonenko, Weak turbulence of capillary waves, J. Appl. Mech. Tech. Phys, vol.4, p.506, 1967.

K. Hasselmann, On the non-linear energy transfer in gravity-wave spectrum. part 1. general theory, J. Fluid Mech, vol.12, pp.481-500, 1962.

S. Galtier, Weak inertial-wave turbulence theory, Phys. Rev. E, vol.68, p.15301, 2003.

S. Nazarenko, Wave turbulence, vol.825, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

A. C. Newell and B. Rumpf, Wave Turbulence, Ann. Rev. Fluid Mech, vol.43, pp.59-78, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

V. E. Zakharov, V. S. , and G. Falkovich, Kolmogorov Spectra of Turbulence, 1992.

Q. Aubourg and N. Mordant, Nonlocal resonances in weak turbulence of gravity-capillary waves, Phys. Rev. Lett, vol.114, p.144501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01647823

Q. Aubourg and N. Mordant, Investigation of resonances in gravity-capillary wave turbulence, Phys. Rev. Fluids, vol.1, p.23701, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01647810

E. Kartashova, Weakly nonlinear theory of finite size effects in resonators, Phys. Rev. Lett, vol.72, pp.2013-2016, 1994.

E. Kartashova, Discrete wave turbulence, EPL, vol.87, p.44001, 2009.

Y. Pan, K. Dick, and . Yue, Understanding discrete capillary-wave turbulence using a quasi-resonant kinetic equation, Journal Of Fluid Mechanics, vol.816, p.96, 2017.

V. S. and S. Nazarenko, Discrete and mesoscopic regimes of finite-size wave turbulence, Phys. Rev. E, vol.82, p.56322, 2010.

P. Denissenko, S. Lukaschuk, and S. Nazarenko, Gravity wave turbulence in a laboratory flume, Phys. Rev. Lett, vol.99, p.14501, 2007.

S. Nazarenko, S. Lukaschuk, S. Mclelland, and P. Denissenko, Statistics of surface gravity wave turbulence in the space and time domains, J. Fluid Mech, vol.642, pp.395-420, 2010.

S. Nazarenko, Sandpile behaviour in discrete water-wave turbulence, J. Stat. Mech, p.2002, 2006.

A. N. Pushkarev, On the kolmogorov and frozen turbulence in numerical simulation of capillary waves, Eur. J. Mech. B, vol.18, pp.345-351, 1999.

E. Falcon, C. Laroche, and S. Fauve, Observation of gravity-capillary wave turbulence, Phys. Rev. Lett, vol.98, p.94503, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00134723

Q. Aubourg, A. Campagne, C. Peureux, F. Ardhuin, J. Sommeria et al., Three-wave and four-wave interactions in gravity wave turbulence, Phys. Rev. Fluids, vol.2, p.114802, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01647790

F. Leckler, F. Ardhuin, C. Peureux, A. Benetazzo, F. Bergamasco et al., Analysis and Interpretation of Frequency-Wavenumber Spectra of Young Wind Waves, J. Phys. Ocean, vol.45, pp.2484-2496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01575265

L. Lenain and W. K. Melville, Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves, J. Phys. Ocean, vol.47, pp.2123-2138, 2017.

W. B. Wright, R. Budakian, D. J. Pine, and S. J. Putterman, Imaging of intermittency in ripple-wave turbulence, Science, vol.278, pp.1609-1612, 1997.

L. Deike, M. Berhanu, and E. Falcon, Decay of capillary wave turbulence, Phys. Rev. E, vol.85, p.66311, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717642

G. Kolmakov, A. Levchenko, L. Brazhnikov, . P-mezhov-deglin, P. Silchenko et al., Quasiadiabatic Decay of Capillary Turbulence on the Charged Surface of Liquid Hydrogen, Physical Review Letters, vol.93, p.74501, 2004.

H. Xia, H. Shats, and . Punzmann, Modulation instability and capillary wave turbulence, Epl, vol.91, p.14002, 2010.

H. Punzmann, H. Shats, and . Xia, Phase Randomization of Three-Wave Interactions in Capillary Waves, Physical Review Letters, vol.103, p.64502, 2009.

A. Campagne, R. Hassaini, I. Redor, J. Sommeria, T. Valran et al., Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves, Phys. Rev. Fluids, vol.3, p.44801, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875508

B. Miquel, A. Alexakis, and N. Mordant, Role of dissipation in flexural wave turbulence: from experimental spectrum to kolmogorov-zakharov spectrum, Phys. Rev. E, vol.89, p.62925, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01009490

T. Humbert, O. Cadot, G. Düring, C. Josserand, S. Rica et al., Wave turbulence in vibrating plates : the effect of damping, EPL, vol.102, p.30002, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01134801

A. Przadka, B. Cabane, V. Pagneux, A. Maurel, and P. Petitjeans, Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?, Experiments In Fluids, vol.52, pp.519-527, 2011.

P. J. Cobelli, A. Maurel, V. Pagneux, and P. Petitjeans, Global measurement of water waves by Fourier transform profilometry, Exp. Fluids, vol.46, pp.1037-1047, 2009.

A. Maurel, P. Cobelli, V. Pagneux, and P. Petitjeans, Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry, Applied Optics, vol.48, pp.380-392, 2009.

P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux et al., Different Regimes for Water Wave Turbulence, Phys. Rev. Lett, vol.107, p.214503, 2011.

M. Berhanu, E. Falcon, and L. Deike, Turbulence of capillary waves forced by steep gravity waves," submitted to, J. Fluid Mech, 2018.

R. Hassaini and N. Mordant, Transition from weak wave turbulence to soliton gas, Phys. Rev. Fluids, vol.2, p.94803, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01647804

M. Berhanu and E. Falcon, Space-time-resolved capillary wave turbulence, Phys. Rev. E, vol.89, p.33003, 2013.

L. Deike, B. Miquel, P. Gutierrez, T. Jamin, B. Semin et al., Role of the basin boundary conditions in gravity wave turbulence, J. Fluid Mech, vol.781, pp.196-225, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01096141

N. Mordant, Fourier analysis of wave turbulence in a thin elastic plate, Eur. Phys. J. B, vol.76, pp.537-545, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00712159

Q. Aubourg, Etudes expérimentales de la turbulence d'ondes à la surface d'un fluide. La théorie de la Turbulence Faible à l'épreuve de la réalité pour les ondes de capillarité et gravité, 2016.

J. F. Scott, Wave turbulence in a rotating channel, J. Fluid Mech, vol.741, pp.316-349, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01296828

S. Nazarenko, Wave turbulence, vol.825, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

A. C. Newell and B. Rumpf, Wave Turbulence, Annual Review of Fluid Mechanics, vol.43, pp.59-78, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

R. Z. Sagdeev, The 1976 oppenheimer lectures: Critical problems in plasma astrophysics. i. turbulence and nonlinear waves, Reviews of Modern Physics, vol.51, p.1, 1979.
DOI : 10.1103/revmodphys.51.1

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux et al., Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics, Physics Reports, vol.542, pp.1-132, 2014.

G. During, C. Josserand, and S. Rica, Weak Turbulence for a Vibrating Plate: Can One Hear a Kolmogorov Spectrum?, Physical Review Letters, vol.97, p.25503, 2006.

K. Hasselmann, On the non-linear energy transfer in gravity-wave spectrum. part 1. general theory, J. Fluid Mech, vol.12, pp.481-500, 1962.

S. Galtier, Weak inertial-wave turbulence theory, Physical Review E, vol.68, p.15301, 2003.
DOI : 10.1103/physreve.68.015301

V. E. Zakharov and N. N. Filonenko, Weak turbulence of capillary waves, J. Appl. Mech. Tech. Phys, vol.4, p.506, 1967.

S. Nazarenko, S. Lukaschuk, S. Mclelland, and P. Denissenko, Statistics of surface gravity wave turbulence in the space and time domains, J. Fluid Mech, vol.642, p.395, 2009.

P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux et al., Different Regimes for Water Wave Turbulence, Physical Review Letters, vol.107, p.214503, 2011.

E. Falcon, Laboratory experiments on wave turbulence, Discrete and Continuous Dynamical Systems-Series B, vol.13, pp.819-840, 2010.
DOI : 10.3934/dcdsb.2010.13.819

URL : https://hal.archives-ouvertes.fr/hal-00444151

Q. Aubourg and N. Mordant, Nonlocal resonances in weak turbulence of gravity-capillary waves, Physical review letters, vol.114, p.144501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01647823

M. Peyrard and T. Dauxois, , 2004.

J. S. Russell, Report on Waves: Made to the Meetings of the British Association, pp.1842-1885, 1845.

D. J. Korteweg and G. D. Vries, Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.39, pp.422-443, 1895.

A. Schwache and F. Mitschke, Properties of an optical soliton gas, Physical Review E, vol.55, p.7720, 1997.

F. Mitschke, I. Halama, and A. Schwache, Soliton gas, Chaos Solitons and Fractals, vol.10, pp.913-920, 1999.

A. Costa, A. R. Osborne, D. T. Resio, S. Alessio, E. Chrivi et al., Soliton turbulence in shallow water ocean surface waves, Physical review letters, vol.113, p.108501, 2014.
DOI : 10.1103/physrevlett.113.108501

URL : https://hal.archives-ouvertes.fr/hal-01208464

S. Perrard, L. Deike, C. Duchêne, and C. Pham, Capillary solitons on a levitated medium, Physical Review E, vol.92, p.11002, 2015.
DOI : 10.1103/physreve.92.011002

V. E. Zakharov, Turbulence in integrable systems, studies in applied mathematics, vol.122, pp.219-234, 2009.
DOI : 10.1111/j.1467-9590.2009.00430.x

Q. Aubourg and N. Mordant, Investigation of resonances in gravity-capillary wave turbulence, Physical Review Fluids, vol.1, p.23701, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01647810

P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux et al., Different Regimes for Water Wave Turbulence, Physical Review Letters, vol.107, p.214503, 2011.

M. Berhanu and E. Falcon, Space-time-resolved capillary wave turbulence, Physical Review E, vol.89, p.33003, 2013.

P. Clark-di-leoni, P. J. Cobelli, and P. D. Mininni, Wave turbulence in shallow water models, Physical Review E, vol.89, p.63025, 2014.

C. Falcon, S. Laroche, and . Fauve, Observation of Sommerfeld Precursors on a Fluid Surface, Physical Review Letters, vol.91, 2003.

A. Przadka, B. Cabane, V. Pagneux, A. Maurel, and P. Petitjeans, Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?, Experiments In Fluids, vol.52, pp.519-527, 2011.

P. J. Cobelli, A. Maurel, V. Pagneux, and P. Petitjeans, Global measurement of water waves by Fourier transform profilometry, Experiments in Fluids, vol.46, pp.1037-1047, 2009.

A. Maurel, P. Cobelli, V. Pagneux, and P. Petitjeans, Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry, Applied optics, vol.48, pp.380-392, 2009.

J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, One-dimensional optical wave turbulence: experiment and theory, Physics Reports, vol.514, pp.121-175, 2012.

R. Grimshaw, Solitary waves with oscillatory tails and exponential asymptotics, vol.34, p.292, 1993.

E. A. Kuznetsov and F. Dias, Bifurcations of solitons and their stability, Physics Reports, vol.507, pp.43-105, 2011.

S. Nazarenko, S. Lukaschuk, S. Mclelland, and P. Denissenko, Statistics of surface gravity wave turbulence in the space and time domains, Journal of Fluid Mechanics, vol.642, pp.395-420, 2010.

E. Falcon, C. Laroche, and S. Fauve, Observation of gravity-capillary wave turbulence, Physical review letters, vol.98, p.94503, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169538

W. B. Wright, R. Budakian, D. J. Pine, and S. J. Putterman, Imaging of intermittency in ripple-wave turbulence, Science, vol.278, pp.1609-1612, 1997.

L. Deike, M. Berhanu, and E. Falcon, Decay of capillary wave turbulence, Physical Review E, vol.85, p.66311, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717642

S. Trillo, G. Deng, G. Biondini, M. Klein, G. F. Clauss et al., Experimental observation and theoretical description of multisoliton fission in shallow water, Physical Review Letters, vol.117, p.144102, 2016.

S. Randoux, P. Walczak, M. Onorato, and P. Suret, Intermittency in integrable turbulence, Physical Review Letters, vol.113, p.113902, 2014.

V. Zakharov, F. Dias, and A. Pushkarev, One-dimensional wave turbulence, Physics Reports, vol.398, pp.1-65, 2004.

F. Leckler, F. Ardhuin, C. Peureux, A. Benetazzo, F. Bergamasco et al., Analysis and Interpretation of Frequency-Wavenumber Spectra of Young Wind Waves, J. Phys. Ocean, vol.45, pp.2484-2496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01575265

L. Lenain and W. K. Melville, Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves, J. Phys. Ocean, vol.47, pp.2123-2138, 2017.

K. Hasselmann, On the non-linear energy transfer in gravity-wave spectrum. part 1. general theory, J. Fluid Mech, vol.12, pp.481-500, 1962.

V. E. Zakharov, V. S. , and G. Falkovich, Kolmogorov Spectra of Turbulence, 1992.

S. Nazarenko, Wave turbulence, vol.825, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

A. C. Newell and B. Rumpf, Wave Turbulence, Ann. Rev. Fluid Mech, vol.43, pp.59-78, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

S. Galtier, Weak inertial-wave turbulence theory, Phys. Rev. E, vol.68, p.15301, 2003.

J. F. Scott, Wave turbulence in a rotating channel, J. Fluid Mech, vol.741, pp.316-349, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01296828

J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, One-dimensional optical wave turbulence: experiment and theory, Physics Reports, vol.514, pp.121-175, 2012.

L. Boué, R. Dasgupta, J. Laurie, V. L'vov, S. Nazarenko et al., Exact solution for the energy spectrum of kelvin-wave turbulence in superfluids, Phys. Rev. B, vol.84, p.64516, 2011.

A. C. Newell and P. J. Aucoin, Semidispersive wave systems, J. Fluid Mech, vol.49, pp.593-609, 1971.

V. S. Lvov, Y. Lvov, A. C. Newell, and V. Zakharov, Statistical description of acoustic turbulence, Phys. Rev. E, vol.56, pp.390-405, 1997.

R. Hassaini and N. Mordant, Transition from weak wave turbulence to soliton gas, Phys. Rev. Fluids, vol.2, p.94803, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01647804

S. Galtier and S. V. Nazarenko, Turbulence of Weak Gravitational Waves in the Early Universe, Physical Review Letters, vol.119, p.688, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01669587

G. During, C. Josserand, and S. Rica, Weak Turbulence for a Vibrating Plate: Can One Hear a Kolmogorov Spectrum?, Physical Review Letters, vol.97, p.25503, 2006.

A. Boudaoud, O. Cadot, B. Odille, and C. Touzé, Observation of wave turbulence in vibrating plates, Phys. Rev. Lett, vol.100, p.234504, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00326634

P. Cobelli, P. Petitjeans, A. Maurel, V. Pagneux, and N. Mordant, Space-time resolved wave turbulence in a vibrating plate, Phys. Rev. Lett, vol.103, p.204301, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00712163

N. Yokoyama and M. Takaoka, Weak and strong wave turbulence spectra for elastic thin plates, Phys. Rev. Lett, vol.110, p.105501, 2013.

N. Yokoyama and M. Takaoka, Identification of a separation wave number between weak and strong turbulence spectra for a vibrating plate, Phys. Rev. E, vol.89, p.12909, 2014.

T. Humbert, O. Cadot, G. Düring, C. Josserand, and S. Rica,

C. Touzé, Wave turbulence in vibrating plates : the effect of damping, EPL, vol.102, p.30002, 2013.

M. Ducceschi, O. Cadot, C. Touzé, and S. Bilbao, Dynamics of the wave turbulence spectrum in vibrating plates: A numerical investigation using a conservative finite difference scheme, Physica D, pp.73-85, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01135260

G. During, C. Josserand, and S. Rica, Wave turbulence theory of elastic plates, Physica D, vol.347, pp.42-73, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01444957

N. Mordant and B. Miquel, Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate, Physical Review E, vol.96, p.42204, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01647800

G. Düring and G. Krstulovic, , pp.1-5, 2018.

R. L. Mott, Radio sound effects, 1993.

K. Arcas, Physical modelling and measurements of plate reverberation, 19th International Congress on

. Acoustics, Proceedings of the International Congresses on Acoustics, 2007.

B. Miquel, A. Alexakis, and N. Mordant, Role of dissipation in flexural wave turbulence: From experimental spectrum to Kolmogorov-Zakharov spectrum, Physical Review E, vol.89, p.62925, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01009490

N. Mordant, Fourier analysis of wave turbulence in a thin elastic plate, Eur. Phys. J. B, vol.76, pp.537-545, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00712159

B. Miquel, A. Alexakis, C. Josserand, and N. Mordant, Transition from wave turbulence to dynamical crumpling in vibrated elastic plates, Physical review letters, vol.111, p.54302, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01009494

A. , VorlesungenüberVorlesungen¨Vorlesungenüber technische Mechanik, p.132, 1907.

T. Von-kármán, Festigkeitprobleme im maschinenbau, Ency. d. math. Wiss., Bd. IV, vol.27, p.311, 1910.

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 1959.

E. Guyon, J. P. Hulin, L. Petit, and C. D. Mitescu, Physical Hydrodynamics, 2015.

P. Cobelli, P. Petitjeans, A. Maurel, V. Pagneux, and N. Mordant, Space-Time Resolved Wave Turbulence in a Vibrating Plate, Physical Review Letters, vol.103, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00712163

P. J. Cobelli, A. Maurel, V. Pagneux, and P. Petitjeans, Global measurement of water waves by Fourier transform profilometry, Exp. Fluids, vol.46, p.1037, 2009.

A. Maurel, P. Cobelli, V. Pagneux, and P. Petitjeans, Experimental and theoretical inspection of the phase-toheight relation in Fourier transform profilometry, Appl. Optics, vol.48, pp.380-392, 2009.

B. Miquel and N. Mordant, Nonlinear dynamics of flexural wave turbulence, Physical Review E, vol.84, p.66607, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00712156

S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics, vol.176, pp.430-455, 2002.

D. Gottlieb, . Steven, and . Orszag, Numerical analysis of spectral methods: theory and applications, vol.26, 1977.

D. J. Benney and P. G. Saffman, Proc. Roy. Soc .London A, vol.289, p.301, 1966.

G. During, C. Josserand, and S. Rica, Self-similar formation of an inverse cascade in vibrating elastic plates, Physical Review E, vol.91, p.1292, 2015.

A. C. Newell, S. Nazarenko, and L. Biven, Wave turbulence and intermittency, Physica D, vol.520, pp.152-153, 2001.

V. Wismann, M. Gade, W. Alpers, and H. Huhnerfuss, Radar signatures of marine mineral oil spills measured by an airborne multi-frequency radar, International Journal of Remote Sensing, vol.19, pp.3607-3623, 1998.

W. Dorn, Boundary dissipation of oscillatory waves, Journal Of Fluid Mechanics, vol.24, p.769, 1966.

R. Cini and P. P. Lombardini, Experimental evidence of a maximum in the frequency domain of the ratio of ripple attenuation in monolayered water to that in pure water, Journal of Colloid and Interface Science, pp.125-131, 1981.

W. Alpers and H. Huhnerfuss, The Damping of Ocean Waves by Surface Films: A New Look at an Old Problem, Journal of Geophysical Research, vol.94, pp.6251-6265, 1989.

V. E. Zakharov, V. S. , and G. Falkovich, Kolmogorov Spectra of Turbulence, 1992.

S. Nazarenko, Wave Turbulence, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

A. C. Newell and B. Rumpf, Wave turbulence, Ann. Rev. Fluid Mech, p.43, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

S. Nazarenko, S. Lukaschuk, S. Mclelland, and P. Denissenko, Statistics of surface gravity wave turbulence in the space and time domains, J. Fluid Mech, vol.642, p.395, 2009.

L. Deike, B. Miquel, P. Gutierrez, T. Jamin, B. Semin et al., Role of the basin boundary conditions in gravity wave turbulence, J. Fluid Mech, vol.781, pp.196-225, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01096141

B. Miquel, A. Alexakis, and N. Mordant, Role of dissipation in flexural wave turbulence: from experimental spectrum to kolmogorov-zakharov spectrum, Phys. Rev. E, vol.89, p.62925, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01009490

T. Humbert, O. Cadot, G. Düring, C. Josserand, S. Rica et al., Wave turbulence in vibrating plates : the effect of damping, EPL, vol.102, p.30002, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01134801

L. Deike, M. Berhanu, and E. Falcon, Decay of capillary wave turbulence, Phys. Rev. E, vol.85, p.66311, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717642

L. Deike, M. Berhanu, and E. Falcon, Energy flux measurement from the dissipated energy in capillary wave turbulence, Phys. Rev. E, vol.89, p.23003, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00866389

J. W. Miles, Surface-wave damping in closed basins, Proc. Roy. Soc. A, vol.297, p.459, 1967.

D. Henderson and H. Segur, The role of dissipation in the evolution of ocean swell, Journal Of Geophysical Research-Oceans, vol.118, pp.5074-5091, 2013.

A. Przadka, B. Cabane, V. Pagneux, A. Maurel, and P. Petitjeans, Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?, Exp. Fluids, vol.52, pp.519-527, 2011.

M. Strickland, S. L. Shearer, and K. E. Daniels, Spatiotemporal measurement of surfactant distribution on gravity-capillary waves, Journal Of Fluid Mechanics, vol.777, pp.523-543, 2015.

D. Henderson and J. Miles, Single-mode Faraday waves in small cylinders, Journal Of Fluid Mechanics, vol.213, p.95, 1990.

K. Hasselmann, On the non-linear energy transfer in gravity-wave spectrum. part 1. general theory, J. Fluid Mech, vol.12, pp.481-500, 1962.

B. Miquel and N. Mordant, Non linear dynamics of flexural wave turbulence, Phys. Rev. E, vol.84, p.66607, 2011.

F. Leckler, F. Ardhuin, C. Peureux, A. Benetazzo, F. Bergamasco et al., Analysis and Interpretation of Frequency-Wavenumber Spectra of Young Wind Waves, J. Phys. Ocean, vol.45, pp.2484-2496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01575265

P. A. Hwang, D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, Airborne Measurements of the Wavenumber Spectra of Ocean Surface Waves

, Spectral Slope and Dimensionless Spectral Coefficient, J. Phys. Ocean, vol.30, pp.2753-2767, 2000.

L. Romero and W. Melville, Airborne Observations of Fetch-Limited Waves in the Gulf of Tehuantepec, Journal Of Physical Oceanography, vol.40, pp.441-465, 2010.

W. K. Melville, L. Lenain, D. R. Cayan, M. Kahru, J. P. Kleissl et al., The modular aerial sensing system. journal of atmospheric and oceanic technology, Journal of Atmospheric and Oceanic Technology, vol.33, pp.1169-1184, 2016.

L. Lenain and W. K. Melville, Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves, Journal of Physical Oceanography, vol.47, pp.2123-2138, 2017.

P. Denissenko, S. Lukaschuk, and S. Nazarenko, Gravity wave turbulence in a laboratory flume, Phys. Rev. Lett, vol.99, p.14501, 2007.

S. and S. Lukaschuk, Wave Turbulence on Water Surface, Annual Review of Condensed Matter Physics, vol.7, pp.61-88, 2016.

Q. Aubourg, C. A. , C. Peureux, F. Ardhuin, J. Sommeria et al., 3-wave and 4-wave interactions in gravity wave turbulence, Phys. Rev. Fluids, vol.2, p.114802, 2017.

M. Onorato, L. Cavaleri, S. Fouques, O. Gramstad, P. A. Janssen et al., Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin, J. Fluid Mech, vol.627, p.235, 2009.

Q. Aubourg, Etude expérimentale de la turbulence d'ondesàondesà la surface d'un fluide. La théorie de la Turbulence Faiblè a l'´ epreuve de la réalité pour les ondes de capillarité et gravité, 2016.

O. M. Phillips, The equilibrium range in the spectrum of wind generated waves, Journal Of Fluid Mechanics, vol.4, pp.426-434, 1958.

E. A. Kuznetsov, Turbulence spectra generated by singularities, JETP Lett, vol.80, pp.83-89, 2004.

A. C. Newell, S. V. Nazarenko, and L. Biven, Wave turbulence and intermittency, Physica D-Nonlinear Phenomena, vol.152, pp.520-550, 2001.

Q. Aubourg and N. Mordant, Nonlocal resonances in weak turbulence of gravity-capillary waves, Phys. Rev. Lett, vol.114, pp.1-5, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01647823

S. Nazarenko, Sandpile behaviour in discrete water-wave turbulence

, J. Stat. Mech.: Theory and Experiment, vol.02002, p.510054, 2013.

Q. Aubourg, J. Sommeria, S. Viboud, and N. Mordant, Combined stereoscopic wave mapping and particle image velocimetry, 2017.

U. Bortolozzo, J. Laurie, S. Nazarenko, and S. Residori, Optical wave turbulence and the condensation of light, Journal of the Optical Society of America B, vol.26, issue.12, p.2280, 2009.

A. Campagne, R. Hassaini, I. Redor, J. Sommeria, T. Valran et al., Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves, Physical Review Fluids, vol.3, issue.4, p.44801, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875508

L. Deike, B. Miquel, P. Gutirrez, T. Jamin, B. Semin et al., Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics, vol.781, pp.196-225, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01096141

P. Denissenko, S. Lukaschuk, and S. Nazarenko, Gravity Wave Turbulence in a Laboratory Flume, Physical Review Letters, vol.99, issue.1, p.14501, 2007.

G. Dring, C. Josserand, and S. Rica, Weak Turbulence for a Vibrating Plate: Can One Hear a Kolmogorov Spectrum?, Physical Review Letters, vol.97, issue.2, p.25503, 2006.

S. Galtier, Weak inertial-wave turbulence theory, Physical Review E, vol.68, issue.1, p.15301, 2003.

K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory, Journal of Fluid Mechanics, vol.12, issue.4, pp.481-500, 1962.

H. Diane, M. , and S. Harvey, The role of dissipation in the evolution of ocean swell, Journal of Geophysical Research: Oceans, vol.118, issue.10, pp.5074-5091, 2013.

P. A. Hwang, D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, Airborne Measurements of the Wavenumber Spectra of Ocean Surface Waves. Part I: Spectral Slope and Dimensionless Spectral Coefficient, Journal of Physical Oceanography, vol.30, issue.11, pp.2753-2767, 2000.

V. P. Krasitskii, On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves, Journal of Fluid Mechanics, vol.272, pp.1-20, 1994.

F. Leckler, F. Ardhuin, C. Peureux, A. Benetazzo, F. Bergamasco et al., Analysis and Interpretation of FrequencyWavenumber Spectra of Young Wind Waves, Journal of Physical Oceanography, vol.45, issue.10, pp.2484-2496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01575265

S. Lukaschuk, S. Nazarenko, S. Mclelland, and P. Denissenko, Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics, Physical Review Letters, vol.103, issue.4, p.44501, 2009.

V. S. Lvov, V. Nazarenko, and G. E. Volovik, Energy spectra of developed superfluid turbulence, Journal of Experimental and Theoretical Physics Letters, vol.80, issue.7, pp.479-483, 2004.

J. W. Miles, Surface-wave damping in closed basins, Proc. R. Soc. Lond. A, vol.297, pp.459-475, 1451.

B. Miquel and N. Mordant, Nonlinear dynamics of flexural wave turbulence, Physical Review E, vol.84, issue.6, p.66607, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00712156

S. Nazarenko, Wave Turbulence. Lecture Notes in Physics, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

S. Nazarenko and M. Onorato, Wave turbulence and vortices in BoseEinstein condensation, Physica D: Nonlinear Phenomena, vol.219, issue.1, pp.1-12, 2006.

A. C. Newell, S. Nazarenko, and L. Biven, Wave turbulence and intermittency, Physica D: Nonlinear Phenomena, pp.520-550, 2001.

C. Peureux, Observation et modlisation des proprits directionnelles des ondes de gravit courtes. phdthesis, 2017.

L. Romero and W. Kendall-melville, Airborne Observations of Fetch-Limited Waves in the Gulf of Tehuantepec, Journal of Physical Oceanography, vol.40, issue.3, pp.441-465, 2010.

G. George and . Stokes, On the theory of oscillatory waves, Transactions of the Cambridge Philosophical Society, p.1880

. Hl-tolman, H. Accensi, . Alves, . Ardhuin, . Bidlot et al., User manual and system documentation of wavewatch iii version 4, vol.18, 2014.

D. J. Webb, Non-linear transfers between sea waves, Deep Sea Research, vol.25, issue.3, pp.279-298, 1978.
DOI : 10.1016/0146-6291(78)90593-3

V. Zakharov, Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid, European Journal of Mechanics-B/Fluids, vol.18, issue.3, pp.327-344, 1999.

V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, Hamiltonian approach to the description of non-linear plasma phenomena, Physics Reports, vol.129, issue.5, pp.285-366, 1985.

V. E. Zakharov, V. S. L'vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer Series in Nonlinear Dynamics, 1992.

L. Rayleigh, Theory of Sound f 109 ». In : Ed 1 (1877), p.93

H. Lamb and .. Lamb, Proc. R. Soc. London Scr. A, vol.34, p.551, 1910.

, James Hopwood Jeans. Science & music. Courier Corporation, 1968.

D. «. Vries and . Xli, On the change of form of long waves advancing in a rectangular canal, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.39, pp.422-443, 1895.

. Hermann-a-haus, Optical fiber solitons, their properties and uses, Proceedings of the IEEE 81, vol.7, pp.970-983, 1993.

A. Lichnerowicz, Ondes Des Choc, Ondes Infinitesimales et Rayons. En Hydrodynamique et Magnetohydrodynamique Relativistes ». In : Relativistic fluid dynamics, pp.87-203, 2011.
DOI : 10.1007/978-3-642-11099-3_2

S. Nazarenko, Wave turbulence. T. 825, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00302012

A. C. Newell, ». Benno-rumpf.-«-wave-turbulence, and . En, Annual Review of Fluid Mechanics, vol.43, pp.66-4189, 2011.

C. Huang and F. Qiao, « Wave-turbulence interaction and its induced mixing in the upper ocean, Journal of Geophysical Research : Oceans, vol.115, 2010.

A. Picozzi, Optical wave turbulence : Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics, Physics Reports, vol.542, issue.1, pp.1-132

G. D. , « Non-equilibrium dynamics of nonlinear wave systems : Turbulent regime, breakdown and wave condensation, 2010.

Z. Roald, . Sagdeev, and . The, Oppenheimer lectures : Critical problems in plasma astrophysics. I. Turbulence and nonlinear waves, Reviews of Modern Physics, vol.51, p.1, 1976.

B. Miquel, « Etudes expérimentales et numériques de la turbulence d'ondes de flexion, vol.6, 2013.

C. Touzé, O. Thomas, and M. Amabili, « Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates, International Journal of non-linear Mechanics, vol.46, pp.234-246, 2011.

S. Nazarenko, Sandpile behaviour in discrete water-wave turbulence, p.2002, 2006.

B. Miquel, Alexandros Alexakis et Nicolas Mordant. « Role of dissipation in flexural wave turbulence : From experimental spectrum to kolmogorov-zakharov spectrum, Physical Review E, vol.89, p.62925, 2014.

B. Miquel, « Transition from wave turbulence to dynamical crumpling in vibrated elastic plates, Physical review letters, vol.111, p.54302, 2013.

E. Falcon, C. Laroche, and . Stéphan-fauve, « Observation of gravitycapillary wave turbulence, Physical review letters, vol.98, p.94503, 2007.

E. Falcon, S. Fauve, and C. Laroche, « Observation of intermittency in wave turbulence, Physical review letters, vol.98, p.154501, 2007.

B. Issenmann, C. Laroche, and E. Falcon, « Wave turbulence in a two-layer fluid : coupling between free surface and interface waves, Europhysics Letters), vol.116, p.64005, 2017.

T. Dauxois and M. Peyrard, Physics of solitons, 2006.

J. Scott and R. , Report on Waves : Made to the Meetings of the British Association

R. Hassaini and N. Mordant, « Transition from weak wave turbulence to soliton gas, Physical Review Fluids, vol.2, issue.9, p.94803, 2017.

Q. Aubourg, « Etudes expérimentales de la turbulence d'ondes à la surface d'un fluide. La théorie de la Turbulence Faible à l'épreuve de la réalité pour les ondes de capillarité et gravité, 2016.

. David-j-acheson, Elementary fluid dynamics, 1990.

. Pg-drazin, Introduction to Hydrodynamic Stability, Cambridge Uni, 2002.

E. S. Benilov, . Grimshaw, and . Kuznetsova, « The generation of radiating waves in a singularly-perturbed Korteweg-de Vries equation, Physica D : Nonlinear Phenomena, vol.69, pp.270-278, 1993.

. Paul-a-milewski, Three-dimensional localized solitary gravitycapillary waves, Communications in Mathematical Sciences, vol.3, issue.1, pp.89-99, 2005.

T. Benjamin, « The solitary wave with surface tension, Quarterly of Applied Mathematics, vol.40, pp.231-234, 1982.

A. Jeffrey and T. Kakutani, « Weak nonlinear dispersive waves : a discussion centered around the Korteweg-de Vries equation, Siam Review, vol.14, pp.582-643, 1972.

G. A. Holger-r-dullin, . Gottwald, . Holm, and . Camassaholm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynamics Research, vol.33, pp.73-95, 2003.

É. Falcon, C. Laroche, and . Stéphan-fauve, « Observation of Depression Solitary Surface Waves on a, Thin Fluid Layer ». en. In : Physical Review Letters, vol.89, 2002.

B. Kim and . Akylas, « On gravity-capillary lumps, Journal of Fluid Mechanics, vol.540, pp.337-351, 2005.

V. E. Zakharov, Nonlinear waves and weak turbulence. T. 182, 1998.

C. Alan and . Newell, Sergey Nazarenko et Laura Biven. « Wave turbulence and intermittency, Physica D : Nonlinear Phenomena, vol.152, pp.520-550, 2001.

N. Mordant, « Are there waves in elastic wave turbulence ?, In : Physical review letters, vol.100, p.234505, 2008.

V. E. Zakharov, V. S. L'vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I : wave turbulence, Springer Series in Nonlinear Dynamics. Berlin

. Springer, , pp.978-981, 1992.

A. A. Vedenov, « Theory of a weakly turbulent plasma, Reviews of plasma physics, pp.229-276, 1967.

Q. Aubourg and N. Mordant, « Investigation of resonances in gravity-capillary wave turbulence, Physical Review Fluids, vol.1, issue.2, p.23701, 2016.

S. Dyachenko, « Optical turbulence : weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Physica D : Nonlinear Phenomena, vol.57, pp.96-160, 1992.

. Ve-zakharov and . Sl-musher, « Hamiltonian approach to the description of non-linear plasma phenomena, Physics reports, vol.129, pp.285-366, 1985.

A. I. Dyachenko, . Lvov, and . Ve-zakharov, « Five-wave interaction on the surface of deep fluid, Physica D : Nonlinear Phenomena, vol.87, pp.233-261, 1995.

Y. V. Lvov, « Effective five-wave Hamiltonian for surface water waves, Physics Letters A, vol.230, issue.1-2, pp.38-44, 1997.

S. V. Victor-s-lvov, O. Nazarenko, and . Rudenko, « Bottleneck crossover between classical and quantum superfluid turbulence, Physical Review B, vol.76, p.24520, 2007.

E. Kozik and B. Svistunov, « Kelvin-wave cascade and decay of superfluid turbulence, Physical review letters, vol.92, p.35301, 2004.

C. Connaughton, S. Nazarenko, and A. C. Newell, « Dimensional analysis and weak turbulence, Physica D : Nonlinear Phenomena, vol.184, pp.86-97, 2003.

G. Düring, C. Josserand, and S. Rica, « Weak Turbulence for a Vibrating Plate : Can One Hear a Kolmogorov Spectrum ?, Physical Review Letters, vol.97, 2006.

. Vladimir-e-zakharov, G. Victor-s-l'vov, and . Falkovich, Kolmogorov spectra of turbulence I : Wave turbulence, 2012.

T. Humbert, Turbulence d'ondes dans les plaques minces en vibration : étude expérimentale et numérique de l'effet de l'amortissement, 2014.

C. Zener, « Internal friction in solids II. General theory of thermoelastic internal friction, Physical Review, vol.53, p.90, 1938.

. Andrew-n-norris, M. Douglas, and . Photiadis, Thermoelastic relaxation in elastic structures, with applications to thin plates, vol.58, pp.143-163, 2005.

E. Serra and M. Bonaldi, « A finite element formulation for thermoelastic damping analysis, International Journal for Numerical Methods in Engineering, vol.78, pp.671-691, 2009.

A. Chaigne and C. Lambourg, « Time-domain simulation of damped impacted plates. I. Theory and experiments, The Journal of the Acoustical Society of America, vol.109, pp.1422-1432, 2001.

L. Deike, « Etudes expérimentales et numériques de la turbulence d'ondes de surface, vol.7, 2013.

W. Alpers and H. Hühnerfuss, « The damping of ocean waves by surface films : A new look at an old problem, Journal of Geophysical Research : Oceans, vol.94, pp.6251-6265, 1989.

T. Humbert, Wave turbulence in vibrating plates : the effect of damping, EPL, vol.102, p.30002, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01134801

A. Campagne, Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875508

K. Hasselmann, « Weak-interaction theory of ocean waves, 1967.

. Vladimir-e-zakharov, « Weak turbulence in media with a decay spectrum, Journal of Applied Mechanics and Technical Physics, vol.6, pp.22-24, 1965.

. Ve-zakharov and . Filonenko, « Energy spectrum for stochastic oscillations of the surface of a liquid, Soviet Physics Doklady. T. 11, p.881, 1967.

. Mark-a-donelan, On the dependence of sea surface roughness on wave development, Journal of physical Oceanography, vol.23, pp.2143-2149, 1993.

. Paul-a-hwang, Airborne measurements of the wavenumber spectra of ocean surface waves. Part I : Spectral slope and dimensionless spectral coefficient, Journal of Physical Oceanography, vol.30, pp.2753-2767, 2000.

L. Romero, « Airborne observations of fetchlimited waves in the Gulf of Tehuantepec, Journal of Physical Oceanography, vol.40, pp.441-465, 2010.

O. M. Phillips, « On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions, Journal of Fluid Mechanics, vol.9, pp.193-217, 1960.

F. Leckler, Analysis and Interpretation of Frequency-Wavenumber Spectra of Young Wind Waves, J. Phys. Ocean, vol.45, pp.2484-2496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01575265

W. John and . Miles, On the generation of surface waves by shear flows, Journal of Fluid Mechanics, vol.4, pp.433-448, 1962.

Y. Toba and M. Koga, « A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress, Oceanic whitecaps, pp.37-47, 1986.

S. Nazarenko and S. Lukaschuk, « Wave turbulence on water surface, Annual Review of Condensed Matter Physics, vol.7, pp.61-88, 2016.

. Bibliographie,

L. Deike, Role of the basin boundary conditions in gravity wave turbulence, J. Fluid Mech, vol.781, pp.196-225, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01096141

Q. Aubourg, « Three-wave and four-wave interactions in gravity wave turbulence, Phys. Rev. Fluids, vol.2, issue.11, p.114802, 2017.

M. Onorato, « Freely decaying weak turbulence for sea surface gravity waves, Physical review letters, vol.89, p.144501, 2002.

M. Onorato, . Osborne, and . Serio, On the relation between two numerical methods for the computation of random surface gravity waves, European Journal of Mechanics/B Fluids, vol.26, pp.43-48, 2007.

M. Tanaka, « A method of studying nonlinear random field of surface gravity waves by direct numerical simulation, Fluid Dynamics Research, vol.28, p.41, 2001.

. Sergei-i-badulin, Weakly turbulent laws of wind-wave growth, Journal of Fluid Mechanics, vol.591, pp.339-378, 2007.

R. Holt, H. Eugene, and . Trinh, « Faraday wave turbulence on a spherical liquid shell, Physical review letters, vol.77, p.1274, 1996.

E. Falcon, « Laboratory experiments on wave turbulence, 2010.

C. Falcon, « Capillary wave turbulence on a spherical fluid surface in low gravity, EPL (Europhysics Letters), vol.86, p.14002, 2009.

L. Deike, M. Berhanu, and E. Falcon, « Decay of capillary wave turbulence, Physical Review E, vol.85, p.66311, 2012.

G. Valentinovich-kolmakov, « Capillary turbulence on the surfaces of quantum fluids, Progress in Low Temperature Physics. T. 16, pp.305-349, 2009.

G. V. Kolmakov, Quasiadiabatic decay of capillary turbulence on the charged surface of liquid hydrogen, Physical review letters, vol.93, p.74501, 2004.

A. N. Ganshin, « Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium, Physical review letters, vol.101, issue.6, p.65303, 2008.

M. Berhanu and E. Falcon, « Space-time-resolved capillary wave turbulence, Physical Review E, vol.89, p.33003, 2013.

M. Berhanu, E. Falcon, and L. Deike, « Turbulence of capillary waves forced by steep gravity waves, Journal of Fluid Mechanics, vol.850, p.803843, 2018.

S. Trillo, Observation of dispersive shock waves developing from initial depressions in shallow water, Physica D : Nonlinear Phenomena, vol.333, pp.276-284, 2016.

D. Resio and . Perrie, « A numerical study of nonlinear energy fluxes due to wave-wave interactions Part 1. Methodology and basic results, Journal of Fluid Mechanics, vol.223, pp.603-629, 1991.

A. N. Pushkarev and . Zakharov, « Turbulence of capillary wavestheory and numerical simulation, Physica D : Nonlinear Phenomena, vol.135, pp.98-116, 2000.

Y. Pan, K. P. Dick, and . Yue, « Decaying capillary wave turbulence under broad-scale dissipation ». en, Journal of Fluid Mechanics, vol.780, 2015.

L. Deike, Direct numerical simulations of capillary wave turbulence, Physical review letters, vol.112, p.234501, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00999653

E. Herbert, N. Mordant, and E. Falcon, « Observation of the nonlinear dispersion relation and spatial statistics of wave turbulence on the surface of a fluid, Physical review letters 105, vol.14, p.144502, 2010.

P. Cobelli, Space-Time Resolved Wave Turbulence in a Vibrating Plate ». en, vol.103, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00712163

A. Przadka, « Mesures spatio-temporelles d'ondes à la surface de l'eau : retournement temporel et turbulence d'onde. » Thèse de doct, 2012.

P. Cobelli, « Different Regimes for Water Wave Turbulence, Physical Review Letters, vol.107, p.214503, 2011.

P. Denissenko, S. Lukaschuk, and S. Nazarenko, « Gravity wave turbulence in a laboratory flume, Physical review letters, vol.99, p.14501, 2007.

, Quentin Aubourg et Nicolas Mordant. « Nonlocal resonances in weak turbulence of gravity-capillary waves, vol.114, p.144501, 2015.

H. Earl and . Dowell, « Nonlinear oscillations of a fluttering plate, » In : AIAA journal 4, vol.7, pp.1267-1275, 1966.

R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, vol.100, pp.32-74, 1928.

. Bibliographie,

M. Amabili, « Nonlinear vibrations of rectangular plates with different boundary conditions : theory and experiments, Computers & structures 82, pp.2587-2605, 2004.

H. Jerry and . Ginsberg, Mechanical and structural vibrations : theory and applications. Sirsi) i9780471370840, 2001.

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration : structure-preserving algorithms for ordinary differential equations, 2006.

G. Anlas and . Ozer-elbeyli, « Nonlinear vibrations of a simply supported rectangular metallic plate subjected to transverse harmonic excitation in the presence of a one-to-one internal resonance, Nonlinear Dynamics, vol.30, pp.1-28, 2002.

J. Yang, . Hui-shen, and . Shen, « Dynamic response of initially stressed functionally graded rectangular thin plates, Composite Structures, vol.54, pp.497-508, 2001.

M. Ducceschi, C. Touzé, and S. Bilbao, « Nonlinear plate vibrations : A modal approach with application to cymbals and gongs, Acoustics 2012, 2012.

T. E. Carmichael, « The vibration of a rectangular plate with edges elastically restrained against rotation, The Quarterly Journal of Mechanics and Applied Mathematics, vol.12, pp.29-42, 1959.

X. L. Yang and . Sethna, « Local and global bifurcations in parametrically excited vibrations of nearly square plates, International journal of Non-linear Mechanics, vol.26, pp.199-220, 1991.

P. Ribeiro, « Nonlinear vibrations of simply-supported plates by the pversion finite element method, Finite Elements in Analysis and Design 41, vol.9, pp.911-924, 2005.

S. Bilbao, « A family of conservative finite difference schemes for the dynamical von Karman plate equations, Numerical Methods for Partial Differential Equations, vol.24, pp.193-216, 2008.

C. Touzé, S. Bilbao, and O. Cadot, « Transition scenario to turbulence in thin vibrating plates, Journal of Sound and Vibration, vol.331, pp.412-433, 2012.

S. Bilbao, « Percussion synthesis based on models of nonlinear shell vibration, IEEE transactions on audio, speech, and language processing, vol.18, pp.872-880, 2010.

C. Touzé, S. Bilbao, and O. Cadot, « Transition scenario to turbulence in thin vibrating plates, Journal of Sound and Vibration, vol.331, pp.412-433, 2012.

B. Miquel and N. Mordant, « Nonstationary wave turbulence in an elastic plate, Physical review letters, vol.107, p.34501, 2011.

A. Campagne, « Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves ». In : submitted to, Phys. Rev. Fluids, 2018.

J. Alves, Wave modelling-The state of the art, pp.603-674, 2007.

N. Yokoyama and M. Takaoka, « Weak and strong wave turbulence spectra for elastic thin plate, Physical review letters, vol.110, p.105501, 2013.
DOI : 10.1103/physrevlett.110.105501

URL : http://arxiv.org/pdf/1302.3688

N. Yokoyama and M. Takaoka, « Identification of Separation Wavenumber between Weak and Strong Turbulence Spectra for Vibrating Plate, Physical Review E, vol.89, issue.1, pp.1550-2376, 2014.
DOI : 10.1103/physreve.89.012909

URL : http://arxiv.org/pdf/1312.7211

P. J. Cobelli, Global measurement of water waves by Fourier transform profilometry ». en, vol.46, pp.723-4864, 2009.
DOI : 10.1007/s00348-009-0611-z

A. Maurel, Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry, Applied optics, vol.48, pp.380-392, 2009.

B. Miquel and N. Mordant, Nonlinear dynamics of flexural wave turbulence, vol.84, p.66607, 2011.
DOI : 10.1103/physreve.84.066607

URL : https://hal.archives-ouvertes.fr/hal-00712156

. Steven-m-cox, C. Paul, and . Matthews, « Exponential time differencing for stiff systems, Journal of Computational Physics, vol.176, pp.430-455, 2002.

A. Przadka, Fourier transform profilometry for water waves : how to achieve clean water attenuation with diffusive reflection at the water surface ?, Experiments in Fluids, vol.52, pp.1432-1114
DOI : 10.1007/s00348-011-1240-x

H. Zhou, « A facile microfluidic strategy for measuring interfacial tension, Applied Physics Letters, vol.103, p.234102, 2013.
DOI : 10.1063/1.4838616

G. Düring and C. Falcón, « Symmetry induced four-wave capillary wave turbulence, Physical review letters, vol.103, p.174503, 2009.

F. Peters and D. Arabali, « Interfacial tension between oil and water measured with a modified contour method ». en, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.426, pp.1-5
DOI : 10.1016/j.colsurfa.2013.03.010

E. Ricci, R. Sangiorgi, and A. Passerone, « Density and surface tension of dioctylphthalate, silicone oil and their solutions, Surface and Coatings Technology, vol.28, pp.215-223, 1986.
DOI : 10.1016/0257-8972(86)90060-5

H. Punzmann, « Generation and reversal of surface flows by propagating waves, Nature Physics, vol.10, p.658, 2014.
DOI : 10.1038/nphys3041

URL : https://www.nature.com/articles/nphys3041.pdf

F. Leckler, Analysis and interpretation of frequency-wavenumber spectra of young wind waves, Journal of Physical Oceanography, vol.45, pp.2484-2496, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01575265

Q. Aubourg, « Etudes expérimentales de la turbulence d'ondes à la surface d'un fluide. La théorie de la Turbulence Faible à l'épreuve de la réalité pour les ondes de capillarité et gravité, 2016.

C. Alan and . Newell, Sergey Nazarenko et Laura Biven. « Wave turbulence and intermittency, Physica D : Nonlinear Phenomena, vol.152, pp.520-550, 2001.

V. Zakharov, . Dias, and . Pushkarev, One-dimensional wave turbulence ». en, vol.398, pp.1-65, 2004.

E. A. Kartashova and . Li-piterbarg, « Weakly nonlinear interactions between Rossby waves on a sphere, Oceanology, vol.29, pp.405-411, 1990.

E. Kartashova, « Wave resonances in systems with discrete spectra, AMERICAN MATHEMATICAL SOCIETY TRANSLATIONS, pp.95-130, 1998.
DOI : 10.1090/trans2/182/04

Y. Pan, K. P. Dick, and . Yue, « Understanding discrete capillary-wave turbulence using a quasi-resonant kinetic equation, Journal of Fluid Mechanics, vol.816, 2017.
DOI : 10.1017/jfm.2017.106

A. N. Pushkarev, « On the Kolmogorov and frozen turbulence in numerical simulation of capillary waves, European Journal of MechanicsB/Fluids, vol.18, pp.345-351, 1999.

M. Tanaka and N. Yokoyama, « Effects of discretization of the spectrum in water-wave turbulence, Fluid Dynamics Research, vol.34, issue.3, pp.199-216, 2004.

V. S. Lvov and S. Nazarenko, Discrete and mesoscopic regimes of finite-size wave turbulence, Physical Review E, vol.82, p.56322, 2010.

V. Evgen'evich-zakharov, Mesoscopic wave turbulence, Journal of Experimental and Theoretical Physics Letters, vol.82, pp.487-491, 2005.

S. Nazarenko, Statistics of surface gravity wave turbulence in the space and time domains, J. Fluid Mech, vol.642, p.395, 2009.

A. J. Majda, . Mclaughlin, and . Tabak, « A one-dimensional model for dispersive wave turbulence, Journal of Nonlinear Science, vol.7, issue.1, pp.9-44, 1997.

L. Biven and . Sv-nazarenko, « Breakdown of wave turbulence and the onset of intermittency, Physics Letters A, vol.280, pp.28-32, 2001.

A. , Symposium. 57. International Astronomical Union by D. Reidel. 1953, p.365

S. Clifford and . Gardner, Method for solving the Korteweg-deVries equation, Physical review letters, vol.19, p.1095, 1967.

. Ve-zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. ¿. í ¿ ksper, Teoret. Fiz, vol.61, pp.118-134, 1971.

A. Newell, Nonlinear optics, 2018.

J. Taylor, Supercontinuum generation in optical fibers, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00476072

. Nj-zabusky and . Galvin, « Shallow-water waves, the Korteweg-deVries equation and solitons, Journal of Fluid Mechanics, vol.47, pp.811-824, 1971.

. Vladan-d-djordjevié and . Larry-g-redekopp, On the development of packets of surface gravity waves moving over an uneven bottom, Zeitschrift für angewandte Mathematik und Physik ZAMP, vol.29, pp.950-962, 1978.

. Enguiu-fan and . Hon, « A series of travelling wave solutions for two variant Boussinesq equations in shallow water waves, Chaos, Solitons & Fractals, vol.15, pp.559-566, 2003.

R. Camassa, . Holm, M. James, and . Hyman, « A new integrable shallow water equation, Advances in Applied Mechanics. T. 31, pp.1-33, 1994.

H. B. Per-a-madsen, H. Bingham, and . Liu, « A new Boussinesq method for fully nonlinear waves from shallow to deep water, Journal of Fluid Mechanics, vol.462, pp.1-30, 2002.

. Bibliographie,

. De-xin-meng, « N-fold Darboux transformation and solitonic interactions of a variable-coefficient generalized Boussinesq system in shallow water, Applied Mathematics and Computation, vol.218, pp.4049-4055, 2011.

S. Perrard, Capillary solitons on a levitated medium ». en. In : Physical Review E, vol.92, issue.1, pp.1550-2376, 2015.

J. K. Hunter and J. Vanden-broeck, « Solitary and periodic gravitycapillary waves of finite amplitude, Journal of Fluid Mechanics, vol.134, pp.205-219, 1983.

F. Dias, « Numerical study of capillary-gravity solitary waves, Eur. J. Mech. B/Fluids, vol.15, pp.17-36, 1996.

J. Beale, « Exact solitary water waves with capillary ripples at infinity, Communications on Pure and Applied Mathematics, vol.44, pp.211-257, 1991.

R. Grimshaw, « Solitary waves with oscillatory tails and exponential asymptotics, Geophysical fluid dynamics : WHOI, vol.34, p.292, 1993.

J. Charles, K. Amick, and . Kirchgässner, « A theory of solitary waterwaves in the presence of surface tension, Archive for Rational Mechanics and Analysis, vol.105, pp.1-49, 1989.

G. Iooss and K. Kirchgässner, « Water waves for small surface tension : an approach via normal form, Proceedings of the Royal Society of Edinburgh Section A : Mathematics, vol.122, pp.267-299, 1992.

F. Dias and G. Iooss, « Capillary-gravity solitary waves with damped oscillations, Physica D : Nonlinear Phenomena, vol.65, pp.399-423, 1993.

A. R. Champneys, J. Vanden-broeck, and . Lord, « Do true elevation gravity-capillary solitary waves exist ? A numerical investigation, Journal of Fluid Mechanics, vol.454, pp.403-417, 2002.

S. Michael and . Longuet-higgins, « Capillarygravity waves of solitary type and envelope solitons on deep water, Journal of Fluid Mechanics 252.-1 (juil. 1993)

/. S0022112093003945,

M. Longuet-higgins and X. Zhang, « Experiments on capillarygravity waves of solitary type on deep water, Physics of Fluids, vol.9, pp.1963-1968, 1994.

J. Laurie, One-dimensional optical wave turbulence : Experiment and theory ». en, vol.514, pp.121-175, 2012.

A. Schwache and . Mitschke, « Properties of an optical soliton gas, Physical Review E, vol.55, p.7720, 1997.

F. Mitschke, . Halama, and . Schwache, Soliton gas, vol.10, pp.913-920, 1999.

A. Costa, « Soliton turbulence in shallow water ocean surface waves, Physical review letters, vol.113, p.108501, 2014.

G. A. El, R. H. Grimshaw, and M. V. Pavlov, « Integrable ShallowWater Equations and Undular Bores ». en, Studies in Applied Mathematics 106.2 (fév. 2001), p.222526

A. Gennady and . El, « Critical density of a soliton gas, Chaos : An Interdisciplinary Journal of Nonlinear Science, vol.26, p.23105, 2016.

S. Randoux, Nonlinear random optical waves : integrable turbulence, rogue waves and intermittency, Physica D : Nonlinear Phenomena, vol.333, pp.323-335, 2016.

A. N. Kolmogorov, « The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR. T, vol.30, issue.4, pp.299-303, 1941.

S. Chibbaro and C. Josserand, Elastic wave turbulence and intermittency, vol.94, p.11101, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398126

G. Düring and G. Krstulovic, « Exact result in strong wave turbulence of thin elastic plates, Physical Review E, vol.97, p.20201, 2018.

G. Düring and G. Krstulovic, « An exact result in strong wave turbulence of thin elastic plates, 2017.

G. Düring, C. Josserand, and S. Rica, « Wave turbulence theory of elastic plates ». en, Physica D : Nonlinear Phenomena, vol.347, pp.42-73, 2017.

. Bibliographie,

H. Vandeparre, Wrinkling Hierarchy in Constrained Thin Sheets from Suspended Graphene to Curtains ». en, Physical Review Letters, vol.106, 2011.
DOI : 10.1103/physrevlett.106.224301

URL : https://hal.archives-ouvertes.fr/hal-00549423

G. Düring, A Kolmogorov spectrum for strongly vibrating plates, ArXiv e-prints (août 2018)

M. Wilczek and Y. Narita, « Wave-numberfrequency spectrum for turbulence from a random sweeping hypothesis with mean flow ». en, Physical Review E, vol.86, issue.6, pp.1550-2376

P. K. Yeung and B. L. Sawford, « Random-sweeping hypothesis for passive scalars in isotropic turbulence ». en, Journal of Fluid Mechanics, vol.459, 2002.

S. Perrard, « Capillary solitons on a levitated medium, Physical Review E, vol.92, p.11002, 2015.
DOI : 10.1103/physreve.92.011002

E. A. Kuznetsov and F. Dias, Bifurcations of solitons and their stability, vol.507, pp.43-105, 2011.