, rait permettre en outre de mesurer les viscosités locales dans les 3 dimensions de l'espace, en implémentant la méthode d'imagerie SELFI (SELF-Interference) développée au sein du groupe basée sur l'auto-interférence du signal de luminescence, vol.115

L. Xie, H. Kang, Q. Xu, M. J. Chen, Y. Liao et al., ECS de cerveaux ou d'autres organes comme par exemple 1) durant la morphogénèse ou 2) au cours de l'évolution de certaines maladies dans lesquelles l'espace extra-cellulaire joue un rôle important ou 3) à la suite de l'administration de médicaments. Il pourrait particulièrement être utile pour étudier les modifications de l'ECS lors de la formation des tumeurs, L'ensemble des travaux présentés dans cette thèse et en particulier l'analyse de la diffusion "anormale" instantanée des nanotubes individuels luminescents pourrait être appliquée à différents systèmes pour détecter des changements structurels et/ou de compositions du fluide contenu dans l

, Sleep Drives Metabolite Clearance from the Adult Brain ». en, vol.342, pp.373-377, 2013.

V. Berezin, P. S. Walmod, M. Filippov, and A. Dityatev, « Chapter 15-Targeting of ECM molecules and their metabolizing enzymes and receptors for the treatment of CNS diseases, Progress in Brain Research. Sous la dir. d'Alexander Dityatev, Bernhard Wehrle-Haller et Asla Pitkänen. T. 214. Brain Extracellular Matrix in Health and Disease, pp.353-388, 2014.

A. Lehmenkühler, E. Syková, J. Svoboda, K. Zilles, and C. Nicholson, « Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis, Neuroscience, vol.55, pp.339-351, 1993.

R. Di-corato, F. Gazeau, C. L. Visage, D. Fayol, P. Levitz et al., High-Resolution Cellular MRI : Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs, ACS Nano, vol.7, issue.9, pp.7500-7512, 2013.

S. Surti, J. S. Karp, A. E. Perkins, C. A. Cardi, M. E. Daube-witherspoon et al., « Imaging performance of a-PET : a small animal PET camera, IEEE Transactions on Medical Imaging, vol.24, pp.844-852, 2005.

S. Tammas-williams, H. Zhao, F. Léonard, F. Derguti, I. Todd et al., Prangnell. « XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting, Materials Characterization, vol.102, pp.47-61, 2015.

S. R. Meikle, F. J. Beekman, and . Rose, Complementary molecular imaging technologies : High resolution SPECT, PET and MRI ». en. In : Drug Discovery Today : Technologies, vol.3, pp.187-194, 2006.

D. B. Williams and C. B. Carter, « The Transmission Electron Microscope ». en, Transmission Electron Microscopy, pp.3-17, 1996.

A. G. Godin, B. Lounis, and L. Cognet, « Super-resolution Microscopy Approaches for Live Cell Imaging, Biophysical Journal, vol.107, p.59, 2014.

Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao et al., « Electron ptychography of 2D materials to deep sub-ångström resolution ». en, Nature, vol.559, pp.343-349, 2018.

R. L. Schultz, E. A. Maynard, and D. C. Pease, « Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum ». en, American Journal of Anatomy, vol.100, issue.3, pp.369-407

N. Korogod, C. Petersen, and G. Knott, « Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation, vol.56, p.68

V. Levin, J. Fenstermacher, and C. Patlak, Sucrose and inulin space measurements of cerebral cortex in four mammalian species, American Journal of PhysiologyLegacy Content, vol.219, pp.1528-1533, 1970.

S. Hrab?tová, J. Hrabe, and C. Nicholson, « Dead-Space Microdomains Hinder Extracellular Diffusion in Rat Neocortex during Ischemia ». en, The Journal of Neuroscience, vol.23, pp.8351-8359, 2003.

S. Hrab?tová and C. Nicholson, « Contribution of dead-space microdomains to tortuosity of brain extracellular space, Neurochemistry International. Role of Non-synaptic Communication in Information Processing, vol.45, pp.467-477, 2004.

L. Tao and C. Nicholson, « Maximum geometrical hindrance to diffusion in brain extracellular space surrounding uniformly spaced convex cells, Journal of Theoretical Biology, vol.229, pp.59-68, 2004.

K. Zheng, T. P. Jensen, L. P. Savtchenko, J. A. Levitt, and K. Suhling,

A. Rusakov, « Nanoscale diffusion in the synaptic cleft and beyond measured with timeresolved fluorescence anisotropy imaging ». en, Scientific Reports, vol.7, 2017.

N. Fakhri, F. C. Mackintosh, B. Lounis, L. Cognet, and M. Pasquali, « Brownian Motion of Stiff Filaments in a, Crowded Environment ». en. In : Science, vol.330, pp.97-99, 2010.

G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, and R. S. Ruoff, « Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method, Chemistry of Materials, vol.10, issue.2, pp.260-267, 1998.

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy-de-la-chapelle et al., « Large-scale production of singlewalled carbon nanotubes by the electric-arc technique ». en, Nature, vol.388, p.41972, 1997.

A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit et al.,

R. E. Fischer and . Smalley, « Crystalline Ropes of Metallic Carbon Nanotubes, Science 273, vol.5274, pp.483-487, 1996.

P. Nikolaev, M. Bronikowski, R. K. Bradley, F. Rohmund, D. Colbert et al., « Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.2, pp.91-97, 1999.

J. Liu, S. Fan, and H. Dai, « Recent Advances in Methods of Forming Carbon Nanotubes, MRS Bulletin, vol.29, issue.2, pp.244-250, 2004.

M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit et al.,

, « Pore structure of raw and purified HiPco single-walled carbon nanotubes, Chemical Physics Letters, vol.365, issue.2, pp.69-74, 2002.

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera et al., « A Scalable Process for Production of Single-walled Carbon Nanotubes (SWNTs) by Catalytic Disproportionation of CO on a, Solid Catalyst ». en. In : Journal of Nanoparticle Research, vol.4, pp.131-136, 2002.

C. D. Scott, S. Arepalli, P. Nikolaev, and R. E. Smalley, « Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process ». en, Applied Physics A, vol.72, pp.573-580, 2001.

A. H. Castro-neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. ,

. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, p.4, 2009.

C. Thomsen, S. Reich, and J. Maultzsch, « Carbon Nanotubes-Basic Concepts and Physical Properties ». en, ChemPhysChem 5, vol.12, p.6, 2004.

J. W. Mintmire, B. I. Dunlap, and C. T. White, « Are fullerene tubules metallic ?, Physical Review Letters, vol.68, p.10, 1992.

J. W. Mintmire and C. T. White, « Universal Density of States for Carbon Nanotubes, Physical Review Letters, vol.81, p.10, 1998.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, « Trigonal warping effect of carbon nanotubes, Physical Review B, vol.61, p.12, 2000.

R. B. Weisman and S. M. Bachilo, « Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension : An Empirical Kataura Plot, Nano Letters, vol.3, p.12, 2003.

M. J. O'connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano et al.,

R. B. Hauge, R. E. Weisman, and . Smalley, « Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science, vol.297, p.12, 2002.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, and R. E. Smalley,

B. Weisman, « Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes ». en, Science, vol.298, p.12, 2002.

N. Hamada, S. Sawada, and A. Oshiyama, « New one-dimensional conductors : Graphitic microtubules, Physical Review Letters, vol.68, p.12, 1992.

R. Saito, M. Fujita, G. Dresselhaus, and M. Dresselhaus, « Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, p.12, 1992.

T. Ando, « Excitons in Carbon Nanotubes ». en. In : Journal of the Physical Society of Japan, vol.66, p.12, 1997.

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., « Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, p.12, 2005.

V. Perebeinos, J. Tersoff, and P. Avouris, « Scaling of Excitons in Carbon Nanotubes, Physical Review Letters, vol.92, p.12, 2004.

G. Bastard, « Superlattice band structure in the envelope-function approximation, Physical Review B, vol.24, p.13, 1981.

E. B. Barros, R. B. Capaz, A. Jorio, G. G. Samsonidze, A. G. Souza-filho et al., « Selection rules for one-and two-photon absorption by excitons in carbon nanotubes, Physical Review B, vol.73, p.14, 2006.

S. Berciaud, L. Cognet, and B. Lounis, « Luminescence Decay and the Absorption Cross Section of Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.101, issue.7, p.14, 2008.

O. N. Torrens, M. Zheng, and J. M. Kikkawa, « Energy of $K$-Momentum Dark Excitons in Carbon Nanotubes by Optical Spectroscopy, Physical Review Letters, vol.101, p.15, 2008.

R. B. Weisman, S. Ghosh, and S. M. Bachilo, « Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation, Nature Nanotechnology, vol.5, p.15, 2010.

J. Hwang, H. H. Gommans, A. Ugawa, H. Tashiro, R. Haggenmueller et al.,

J. E. Winey, D. B. Fischer, A. G. Tanner, and . Rinzler, « Polarized spectroscopy of aligned single-wall carbon nanotubes, Physical Review B, vol.62, p.15, 2000.

Y. Miyauchi, M. Oba, and S. Maruyama, « Cross-polarized optical absorption of singlewalled nanotubes by polarized photoluminescence excitation spectroscopy, Physical Review B, vol.74, p.15, 2006.

L. Oudjedi, A. N. Parra-vasquez, A. G. Godin, L. Cognet, and B. Lounis,

, 5) Carbon Nanotube Absorption Cross Section, « Metrological Investigation of the, vol.4, p.132, 2013.

J. G. Duque, M. Pasquali, L. Cognet, and B. Lounis, « Environmental and SynthesisDependent Luminescence Properties of Individual Single-Walled Carbon Nanotubes, ACS Nano, vol.3, p.17, 2009.

L. Cognet, D. A. Tsyboulski, J. R. Rocha, C. D. Doyle, J. M. Tour et al., « Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions ». en, Science, vol.316, p.17, 2007.

J. G. Duque, L. Cognet, A. Nicholas, G. Parra-vasquez, N. Nicholas et al., « Stable Luminescence from Individual Carbon Nanotubes in Acidic, Basic, and Biological Environments, Journal of the American Chemical Society, vol.130, p.17, 2008.

L. Cognet, D. A. Tsyboulski, and R. B. Weisman, « Subdiffraction Far-Field Imaging of Luminescent Single-Walled Carbon Nanotubes, Nano Letters, vol.8, p.17, 2008.

T. Gokus, L. Cognet, J. G. Duque, M. Pasquali, and A. , Hartschuh et B. Lounis. « Mono-and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.114, p.17, 2010.

S. M. Santos, B. Yuma, S. Berciaud, J. Shaver, M. Gallart et al., « All-Optical Trion Generation in Single-Walled Carbon Nanotubes, Physical Review Letters, vol.107, p.17, 2011.

J. J. Crochet, J. G. Duque, J. H. Werner, B. Lounis, L. Cognet et al.,

. Doorn, Disorder Limited Exciton Transport in Colloidal Single-Wall Carbon Nanotubes, Nano Letters, vol.12, p.17, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735016

B. Yuma, S. Berciaud, J. Besbas, J. Shaver, S. Santos et al., Lounis et P. Gilliot. « Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes, Physical Review B, vol.87, p.17, 2013.

S. Cambré, S. M. Santos, W. Wenseleers, A. R. Nugraha, R. Saito et al., « Luminescence Properties of Individual Empty and Water-Filled Single-Walled Carbon Nanotubes, ACS Nano, vol.6, p.17, 2012.

J. G. Duque, L. Oudjedi, J. J. Crochet, S. Tretiak, B. Lounis et al., « Mechanism of Electrolyte-Induced Brightening in Single-Wall Carbon Nanotubes, Journal of the American Chemical Society, vol.135, p.17, 2013.

Y. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming,

«. Femtosecond, Spectroscopy of Optical Excitations in Single-Walled Carbon Nanotubes : Evidence for Exciton-Exciton Annihilation, Physical Review Letters, vol.94, p.17, 2005.

V. Perebeinos and P. Avouris, « Phonon and Electronic Nonradiative Decay Mechanisms of Excitons in Carbon Nanotubes, Physical Review Letters, vol.101, issue.5, p.17, 2008.

J. Crochet, M. Clemens, and T. Hertel, « Quantum Yield Heterogeneities of Aqueous Single-Wall Carbon Nanotube Suspensions, Journal of the American Chemical Society, vol.129, p.18, 2007.

L. J. Carlson, S. E. Maccagnano, M. Zheng, J. Silcox, and T. D. Krauss, « Fluorescence Efficiency of Individual Carbon Nanotubes, Nano Letters 7, vol.12, p.18, 2007.

N. Fakhri, D. A. Tsyboulski, L. Cognet, R. Bruce-weisman, and . Pasquali,

, « Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids ». en, vol.106, p.18, 2009.

M. S. Strano, C. B. Huffman, V. C. Moore, M. J. O'connell, E. H. Haroz et al., Band-Gap-Selective Protonation of Single-Walled Carbon Nanotubes in Solution, The Journal of Physical Chemistry B, vol.107, p.6979, 2003.

G. Dukovic, B. E. White, Z. Zhou, F. Wang, S. Jockusch et al., « Reversible Surface Oxidation and Efficient Luminescence Quenching in Semiconductor Single-Wall Carbon Nanotubes, Journal of the American Chemical Society, vol.126, pp.15269-15276, 2004.

A. J. Siitonen, D. A. Tsyboulski, and M. Sergei, Bachilo et R. Bruce Weisman. « Surfactant-Dependent Exciton Mobility in Single-Walled Carbon Nanotubes Studied by Single-Molecule Reactions, Nano Letters, vol.10, p.18, 2010.

T. Hertel, S. Himmelein, T. Ackermann, D. Stich, and J. Crochet, « Diffusion Limited Photoluminescence Quantum Yields in 1-D Semiconductors : Single-Wall Carbon Nanotubes, ACS Nano 4, vol.12, p.18, 2010.

D. M. Harrah and A. K. Swan, « The Role of Length and Defects on Optical Quantum Efficiency and Exciton Decay Dynamics in Single-Walled Carbon Nanotubes, ACS Nano, vol.5, p.18, 2011.

A. Ishii, M. Yoshida, and Y. K. Kato, « Exciton diffusion, end quenching, and excitonexciton annihilation in individual air-suspended carbon nanotubes, Physical Review B, vol.91, p.18, 2015.

B. S. Reddy, T. Narasawa, J. H. Weisburger, and E. L. Wynder, « Promoting Effect of Sodium Deoxycholate on Colon Adenocarcinomas in Germfree Rats ». en, JNCI : Journal of the National Cancer Institute, vol.56, p.19, 1976.

L. Dong, K. L. Joseph, C. M. Witkowski, and M. M. Craig, « Cytotoxicity of singlewalled carbon nanotubes suspended in various surfactants, Nanotechnology, vol.19, p.19, 2008.

S. M. Moghimi, A. J. Andersen, S. H. Hashemi, B. Lettiero, D. Ahmadvand et al., « Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes : The challenges ahead, Journal of Controlled Release. Nanomedicine and Drug Delivery (NanoDDS'09), vol.146, p.22, 2010.

G. Hong, S. Diao, A. L. Antaris, and H. Dai, « Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy, Chemical Reviews, vol.115, p.22, 2015.

D. W. Schaefer, J. Zhao, J. M. Brown, D. P. Anderson, and D. W. Tomlin,

, Morphology of dispersed carbon single-walled nanotubes, Chemical Physics Letters, vol.375, p.22, 2003.

A. Huczko, H. Lange, E. Ca?ko, H. Grubek-jaworska, and P. Droszcz, « Physiological Testing of Carbon Nanotubes : Are They Asbestos-Like ?, Fullerene Science and Technology, vol.9, p.23, 2001.

P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, « Near-Infrared Fluorescence Microscopy of Single-Walled Carbon Nanotubes in Phagocytic Cells, Journal of the American Chemical Society, vol.126, p.23, 2004.

K. Welsher, Z. Liu, S. P. Sherlock, J. Tucker-robinson, Z. Chen et al., « A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nature nanotechnology, vol.4, p.23, 2009.

J. Pauwels, J. Hoogmartens, and A. Van-schepdael, « Application of carbon nanotubes for in-capillary incubations with cytochrome P450 enzymes ». en, p.23, 2010.

B. D. Holt, P. A. Short, A. D. Rape, Y. Wang, M. F. Islam et al.,

, « Carbon Nanotubes Reorganize Actin Structures in Cells and ex Vivo, ACS Nano, vol.4, p.24, 2010.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie et al., Multifunctional in vivo vascular imaging using near-infrared II fluorescence

. En, Nature Medicine, vol.18, p.24, 2012.

M. L. Schipper, N. Nakayama-ratchford, C. R. Davis, N. Wong-shi-kam, and P. ,

Z. Chu, X. Liu, H. Sun, S. S. Dai, and . Gambhir, « A pilot toxicology study of singlewalled carbon nanotubes in a small sample of mice, Nature Nanotechnology, vol.3, p.24, 2008.

U. Ziegler and P. Groscurth, « Morphological Features of Cell Death, Physiology, vol.19, p.26, 2004.

P. Cherukuri, C. J. Gannon, T. K. Leeuw, H. K. Schmidt, R. E. Smalley et al., « Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence ». en, Proceedings of the National Academy of Sciences 103, p.32, 2006.

Z. Gao, *. , N. Danné, *. , A. G. Godin et al., Evaluation of Different Single-Walled Carbon Nanotube Surface Coatings for Single-Particle Tracking Applications in Biological Environments ». en. In : Nanomaterials, vol.7, p.34, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01727286

S. L. Jacques, « Optical properties of biological tissues : a review ». en, Physics in Medicine & Biology, vol.58, p.35, 2013.

L. Shi, L. A. Sordillo, A. Rodríguez-contreras, and R. Alfano, « Transmission in Near-Infrared Optical Windows for Deep Brain Imaging, Journal of biophotonics, vol.9, issue.1-2, p.35, 2016.

N. Akizuki, S. Aota, S. Mouri, K. Matsuda, and Y. Miyauchi, « Efficient near-infrared up-conversion photoluminescence in carbon nanotubes ». en, Nature Communications, vol.6, p.40, 2015.

G. Soavi, A. Grupp, A. Budweg, F. Scotognella, T. Hefner et al.,

A. Lanzani, G. Leitenstorfer, D. Cerullo, and . Brida, « Below-gap excitation of semiconducting single-wall carbon nanotubes ». en, p.36, 2015.

S. Aota, N. Akizuki, S. Mouri, K. Matsuda, and Y. Miyauchi, « Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes ». en, Applied Physics Express, vol.9, pp.36-38, 2016.

A. G. Godin, J. A. Varela, Z. Gao, N. Danné, J. P. Dupuis et al., Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain, vol.12, pp.238-243, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01630795

J. A. Varela, J. P. Dupuis, L. Etchepare, A. Espana, L. Cognet et al.,

, « Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices, Nature Communications, vol.7, p.46, 2016.

J. Frangioni, « In vivo near-infrared fluorescence imaging, Current Opinion in Chemical Biology, vol.7, issue.5, p.47, 2003.

S. Ghosh, S. M. Bachilo, R. A. Simonette, K. M. Beckingham, and R. , Weisman. « Oxygen Doping Modifies Near-Infrared Band Gaps in Fluorescent Single-Walled Carbon Nanotubes ». en, Science, vol.330, p.48, 2010.

Z. Srebro and A. Maci?ska, « Cytochemical demonstration of ferric iron and fluorescence microscopy observations on 'Gomori positive' glia grownin vitro, Brain Research, vol.42, p.48, 1972.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, « In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications, Photochemistry and Photobiology, vol.68, p.48, 1998.

J. S. O'brien and E. L. Sampson, « Lipid composition of the normal human brain : gray matter, white matter, and myelin ». en, Journal of Lipid Research, vol.6, p.48, 1965.

H. Mcilwain and H. S. Bachelard, « Biochemistry and the central nervous system, p.48, 1972.

G. H. Beaven and E. R. Holiday, « Ultraviolet Absorption Spectra of Proteins and Amino Acids, Advances in Protein Chemistry. Sous la dir, p.48, 1952.

T. E. Cooper and G. J. Trezek, « Correlation of thermal properties of some human tissue with water content, Aerospace Medicine, vol.42, p.51, 1971.

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc et al., « Comparative Analysis of Photoluminescence and Upconversion Emission from Individual Carbon Nanotubes for Bioimaging Applications, ACS Photonics, vol.5, p.52, 2018.

E. Syková and C. Nicholson, « Diffusion in Brain Extracellular Space, Physiological Reviews, vol.88, p.55, 2008.

R. K. Margolis and R. U. Margolis, « Nervous tissue proteoglycans ». en, Experientia, vol.49, p.55, 1993.

E. Ruoslahti, Brain extracellular matrix ». en. In : Glycobiology, vol.6, p.55, 1996.

G. Brückner, W. Härtig, J. Kacza, J. Seeger, K. Welt et al., « Extracellular matrix organization in various regions of rat brain grey matter ». en, Journal of Neurocytology, vol.25, p.55, 1996.

D. C. Pease and R. F. Baker, « Sectioning Techniques for Electron Microscopy Using a Conventional Microtome, Proceedings of the Society for Experimental Biology and Medicine, vol.67, p.56, 1948.

R. W. Wyckoff and J. Z. Young, « The Motorneuron Surface, Proceedings of the Royal Society of London. Series B, vol.144, p.56, 1956.

J. Dubochet, M. Adrian, J. J. Chang, J. C. Homo, J. Lepault et al., « Cryo-electron microscopy of vitrified specimens, Quarterly Reviews of Biophysics, vol.21, p.56, 1988.

J. Frank, P. Penczek, R. Grassucci, and S. Srivastava, « Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice : the distribution of ribosomal RNA. » en, The Journal of Cell Biology, vol.115, p.56, 1991.

C. Nicholson and J. M. Phillips, « Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum, The Journal of Physiology, vol.321, p.57, 1981.

C. Nicholson and L. Tao, « Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging, Biophysical Journal, vol.65, p.57, 1993.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al., « Imaging Intracellular Fluorescent Proteins at Nanometer Resolution ». en, Science, vol.313, p.58, 2006.

M. Fernández-suárez and A. Y. Ting, « Fluorescent probes for super-resolution imaging in living cells, Nature Reviews Molecular Cell Biology, vol.9, p.58, 2008.

B. O. Leung and K. C. Chou, « Review of Super-Resolution Fluorescence Microscopy for Biology , Review of Super-Resolution Fluorescence Microscopy for Biology, Applied Spectroscopy, vol.65, p.58, 2011.

N. T. Urban, K. I. Willig, and S. W. , Hell et U. V. Nägerl. « STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices, Biophysical Journal, vol.101, issue.5, p.59, 2011.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller et al., « Strategic and practical guidelines for successful structured illumination microscopy ». en, Nature Protocols, vol.12, p.59, 2017.

P. Bon, J. Linarès-loyez, M. Feyeux, K. Alessandri, B. Lounis et al., « Self-interference 3D super-resolution microscopy for deep tissue investigations ». en, Nature Methods, vol.15, p.59, 2018.

J. Tønnesen and V. V. , Krishna Inavalli et U. Valentin Nägerl. « SuperResolution Imaging of the Extracellular Space in Living Brain Tissue, Cell, vol.172, pp.1108-1121, 2018.

Z. Liu, X. Sun, N. Nakayama-ratchford, and H. Dai, « Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery, ACS Nano, vol.1, issue.1, p.66, 2007.

I. G. Bloomfield, I. H. Johnston, and L. E. Bilston, Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid ». Anglais, vol.28, p.73, 1998.

H. L. Brydon, R. Hayward, W. Harkness, and R. Bayston, « Physical properties of cerebrospinal fluid of relevance to shunt function. 1 : The effect of protein upon CSF viscosity, British Journal of Neurosurgery, vol.9, p.73, 1995.

L. Lap?ík, L. Lap?ík, S. De, J. Smedt, P. Demeester et al., Hyaluronan : Preparation, Structure, Properties, and Applications ». en, vol.98, p.73, 1998.

R. Brown and . Xxvii, A brief account of microscopical observations made in the months of

, on the particles contained in the pollen of plants ; and on the general existence of active molecules in organic and inorganic bodies, The Philosophical Magazine, vol.4, p.82, 1827.

A. Einstein, « On the Motion of Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of Heat, p.82, 1905.

R. Duggal and M. Pasquali, « Dynamics of Individual Single-Walled Carbon Nanotubes in Water by Real-Time Visualization, Physical Review Letters, vol.96, p.84, 2006.

S. Broersma, « Viscous force and torque constants for a cylinder, The Journal of Chemical Physics, vol.74, p.84, 1981.

H. Brenner, « Rheology of a dilute suspension of axisymmetric Brownian particles, International Journal of Multiphase Flow, vol.1, issue.2, p.84, 1974.

M. M. Tirado, C. L. Martínez, J. García-de-la, and T. , « Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short DNA fragments, The Journal of Chemical Physics, vol.81, p.84, 1984.

F. Perrin, « Mouvement brownien d'un ellipsoide-I. Dispersion diélectrique pour des molécules ellipsoidales ». fr, Journal de Physique et le Radium, vol.5, p.85, 1934.

Y. Han, A. Alsayed, M. Nobili, and A. G. Yodh, « Quasi-two-dimensional diffusion of single ellipsoids : Aspect ratio and confinement effects, Physical Review E, vol.80, p.85, 2009.

Y. Han, A. M. Alsayed, M. Nobili, L. Zhang, and A. G. Yodh, « Brownian Motion of an Ellipsoid ». en, Science, vol.314, pp.626-630, 2006.

M. M. Tirado, J. García-de-la, and T. , « Translational friction coefficients of rigid, symmetric top macromolecules. Application to circular cylinders ». en, The Journal of Chemical Physics, vol.71, p.88, 1979.

M. M. Tirado, J. García-de-la, and T. , « Rotational dynamics of rigid, symmetric top macromolecules. Application to circular cylinders ». en, The Journal of Chemical Physics, vol.73, p.88, 1980.

A. Ortega, J. Garc?a-de-la, and T. , « Hydrodynamic properties of rodlike and disklike particles in dilute solution, The Journal of Chemical Physics, vol.119, p.88, 2003.

J. Happel and H. Brenner, Low Reynolds number hydrodynamics. Sous la dir

J. Moreau, T. 1. Mechanics of fluids and transport processes, p.89, 1981.
URL : https://hal.archives-ouvertes.fr/in2p3-00609764

X. Masaro and . Zhu, « Physical models of diffusion for polymer solutions, gels and solids, Progress in Polymer Science, vol.24, p.90, 1999.

D. S. Hu and K. J. Chou, « Kinetics of water swelling and development of porous structure in ionic poly(acrylonitrile-acrylamide-acrylic acid) hydrogels, Polymer, vol.37, p.91, 1996.

B. A. Smith and M. V. Sefton, « Permeability of a heparin-polyvinyl alcohol hydrogel to thrombin and antithrombin III ». en, Journal of Biomedical Materials Research, vol.22, p.91, 1988.

M. B. Wisnudel and J. M. Torkelson, « Small-Molecule Probe Diffusion in Polymer Solutions : Studies by Taylor Dispersion and Phosphorescence Quenching, Macromolecules, vol.29, p.91, 1996.

A. C. Van-asten, W. T. Kok, R. Tijssen, and H. Poppe, « Characterization of thermal diffusion of polystyrene in binary mixtures of THF/dioxane and THF/cyclohexane ». en, Journal of Polymer Science Part B : Polymer Physics, vol.34, p.91, 1996.

N. Pernodet, M. Maaloum, and B. Tinland, « Pore size of agarose gels by atomic force microscopy, ELECTROPHORESIS 18.1 (, p.91

M. Maaloum, N. Pernodet, and B. Tinland, « Agarose gel structure using atomic force microscopy : Gel concentration and ionic strength effects ». en, ELECTROPHORESIS 19, vol.10, p.91, 1998.

P. Nath, R. Mangal, F. Kohle, S. Choudhury, S. Narayanan et al.,

A. Archer, « Dynamics of Nanoparticles in Entangled Polymer Solutions, Langmuir, vol.34, p.91, 2018.

A. G. Ogston, « The spaces in a uniform random suspension of fibres ». en, Transactions of the Faraday Society, vol.54, p.91, 1958.

P. De-gennes, Scaling Concepts in Polymer Physics. en. Google-Books-ID : ApzfJ2LYwGUC, p.91, 1979.

T. K. Attwood, B. J. Nelmes, and D. B. Sellen, Electron microscopy of beaded agarose gels ». en. In : Biopolymers, vol.27, p.91, 1988.

N. Fatin-rouge, K. Starchev, and J. Buffle, « Size Effects on Diffusion Processes within Agarose Gels, Biophysical Journal, vol.86, p.96, 2004.

H. Fricke, « A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids, Physical Review, vol.24, p.92, 1924.

J. S. Mackie and P. Meares, « The diffusion of electrolytes in a cation-exchange resin membrane I. Theoretical ». en, Proc. R. Soc. Lond. A, vol.232, p.92, 1955.

A. G. Ogston, B. N. Preston, and J. D. Wells, « On the transport of compact particles through solutions of chain-polymers ». en, Proc. R. Soc. Lond. A, vol.333, p.93, 1973.

L. Johansson and J. Löfroth, « Diffusion and interaction in gels and solutions. 4. Hard sphere Brownian dynamics simulations, The Journal of Chemical Physics, vol.98, p.93, 1993.

L. Johansson, C. Elvingson, and J. E. Loefroth, « Diffusion and interaction in gels and solutions. 3. Theoretical results on the obstruction effect, Macromolecules 24, vol.22, p.93, 1993.

A. Pluen, P. A. Netti, R. K. Jain, and D. A. Berk, « Diffusion of Macromolecules in Agarose Gels : Comparison of Linear and Globular Configurations, Biophysical Journal, vol.77, p.93, 1999.

M. Djabourov, A. H. Clark, D. W. Rowlands, and S. B. Ross-murphy, Smallangle x-ray scattering characterization of agarose sols and gels ». en. In : Macromolecules, vol.22, p.93, 1989.

R. I. Cukier, « Diffusion of Brownian spheres in semidilute polymer solutions, Macromolecules 17, vol.2, p.93, 1984.

A. R. Altenberger, M. Tirrell, and J. S. Dahler, « Hydrodynamic screening and particle dynamics in porous media, semidilute polymer solutions and polymer gels ». en, The Journal of Chemical Physics, vol.84, p.93, 1986.

G. D. Phillies, « Universal scaling equation for self-diffusion by macromolecules in solution, Macromolecules, vol.19, p.93, 1986.

P. Gao and P. E. Fagerness, « Diffusion in HPMC Gels. I. Determination of Drug and Water Diffusivity by Pulsed-Field-Gradient Spin-Echo NMR ». en, Pharmaceutical Research, vol.12, p.93, 1995.

R. E. Cameron, M. A. Jalil, and A. M. Donald, Diffusion of Bovine Serum Albumin in Amylopectin Gels Measured Using Fourier Transform Infrared Microspectroscopy ». en. In : Macromolecules, vol.27, p.94, 1994.

E. M. Johnson, D. A. Berk, R. K. Jain, and W. M. Deen, « Hindered diffusion in agarose gels : test of effective medium model, Biophysical Journal, vol.70, p.110, 1996.

H. C. Brinkman, « A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles ». en, Flow, Turbulence and Combustion, vol.1, issue.1, p.95, 1949.

R. Metzler and J. Klafter, « The random walk's guide to anomalous diffusion : a fractional dynamics approach, Physics Reports, vol.339, issue.1, p.96, 2000.

P. A. Netz and T. Dorfmüller, « Computer simulation studies of anomalous diffusion in gels : Structural properties and probe-size dependence, The Journal of Chemical Physics, vol.103, p.96, 1995.

D. S. Banks and C. Fradin, « Anomalous Diffusion of Proteins Due to Molecular Crowding, Biophysical Journal, vol.89, p.96, 2005.

E. Özarslan, P. J. Basser, T. M. Shepherd, P. E. Thelwall, B. C. Vemuri et al., « Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal, Journal of Magnetic Resonance, vol.183, issue.2, p.96, 2006.

F. Xiao, J. Hrabe, and S. Hrabetova, « Anomalous Extracellular Diffusion in Rat Cerebellum, Biophysical Journal, vol.108, p.96, 2015.

M. Baum, F. Erdel, M. Wachsmuth, and K. Rippe, « Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells, Nature Communications, vol.5, p.96, 2014.

K. N. Kudin and G. E. , Scuseria et B. I. Yakobson. « C2F, BN, and C nanoshell elasticity from ab initio computations, Physical Review B, vol.64, p.97, 2001.

T. Odijk, The statistics and dynamics of confined or entangled stiff polymers, Macromolecules, vol.16, p.99, 1983.

M. Doi, « Rotational relaxation time of rigid rod-like macromolecule in concentrated solution ». en, Journal de Physique, vol.36, issue.7-8, p.99, 1975.

F. Chien, P. Lin, W. Chien, C. Hung, M. Yu et al.,

. Chen, Crowding-facilitated macromolecular transport in attractive micropost arrays, Scientific Reports, vol.7, p.109, 2017.

L. Cai, S. Panyukov, and M. Rubinstein, Mobility of Nonsticky Nanoparticles in Polymer Liquids ». en. In : Macromolecules, vol.44, p.109, 2011.

A. Recasens, B. Dehay, J. Bové, I. Carballo-carbajal, S. Dovero et al.,

E. Obeso, M. Bezard, and . Vila, « Lewy body extracts from Parkinson disease brains trigger-synuclein pathology and neurodegeneration in mice and monkeys ». en, Annals of Neurology, vol.75, p.122, 2014.

A. Recasens and B. Dehay, « Alpha-synuclein spreading in Parkinson's disease, Frontiers in Neuroanatomy, vol.8, p.122, 2014.

T. K. Cherukuri, D. A. Tsyboulski, and R. B. Weisman, « Length-and DefectDependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes, ACS Nano, vol.6, issue.1, p.132, 2012.

N. F. Hartmann, S. Ebru-yalcin, L. Adamska, E. H. Hároz, X. Ma et al., « Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes, vol.144, p.133, 2015.

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu et al.,

, « Brightening of excitons in carbon nanotubes on dimensionality modification ». En, vol.7, p.133, 2013.

Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon et al.,

. Wang, Brightening of carbon nanotube photoluminescence through the incorporation of sp 3 defects ». en, Nature Chemistry, vol.5, p.133, 2013.

N. F. Hartmann, K. A. Velizhanin, E. H. Haroz, M. Kim, X. Ma et al., « Photoluminescence Dynamics of Aryl sp3 Defect States in Single-Walled Carbon Nanotubes, ACS Nano, vol.10, p.133, 2016.

M. Kim, L. Adamska, N. F. Hartmann, H. Kwon, J. Liu et al., « Fluorescent Carbon Nanotube Defects Manifest Substantial Vibrational Reorganization, The Journal of Physical Chemistry C, vol.120, p.134, 2016.

H. Kwon, M. Furmanchuk, B. Kim, Y. Meany, G. C. Guo et al.,

. Wang, Molecularly Tunable Fluorescent Quantum Defects, vol.138, p.133, 2016.

Z. Gao, L. Oudjedi, R. Faes, F. Moroté, C. Jaillet et al.,

. Cognet, Optical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 nm ». en, In : Scientific Reports, vol.5, p.134, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01254740

M. Iwamura, N. Akizuki, Y. Miyauchi, S. Mouri, J. Shaver et al., Lounis et K. Matsuda. « Nonlinear Photoluminescence Spectroscopy of Carbon Nanotubes with Localized Exciton States, ACS Nano, vol.8, p.142, 2014.

X. Ma, L. Adamska, H. Yamaguchi, S. E. Yalcin, S. Tretiak et al.,

. Htoon, Electronic Structure and Chemical Nature of Oxygen Dopant States in Carbon Nanotubes, ACS Nano, vol.8, p.143, 2014.

K. I. Mortensen, L. Stirling-churchman, J. A. Spudich, and H. Flyvbjerg, « Optimized localization analysis for single-molecule tracking and super-resolution microscopy, Nature Methods, vol.7, issue.5, p.146, 2010.

Y. Zhang, N. Valley, A. H. Brozena, Y. Piao, X. Song et al., « Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry Letters, vol.4, p.149, 2013.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao et al., « Ultrashort Carbon Nanotubes That Fluoresce Brightly in the Near-Infrared, ACS Nano, vol.12, p.149, 2018.

X. He, N. F. Hartmann, X. Ma, Y. Kim, R. Ihly et al.,

K. Doorn, « Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes, Nature Photonics, vol.11, issue.9, p.149, 2017.

I. Jakobsen, H. Lyng, O. Kaalhus, and E. K. Rofstad, « MRI of human tumor xenografts in vivo : Proton relaxation times and extracellular tumor volume, Magnetic Resonance Imaging, vol.13, p.154, 1995.