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Abstract

We consider direct methods to solve sparse linear systems
AX = B;

whereA is a sparse matrix of size&  n with a symmetric structure andl andB are respec-

tively the solution and right-hand side matrices of size n,,s. A is usually factorized and
decomposed in the foriaDL T, or LU, whereL andU are respectively a lower and an upper
triangular matrix, and is diagonal. Then, theolvephase is applied through two triangular
resolutions named the forward and the backward substitutions. Solving sparse linear systems
arises in numerous elds of applications and for many years, the factorization has been the
subject of much attention compared to the solve. It has rightly been considered as the most
computationally intensive phase due to its higher complexity. Recent advances on the exploita-
tion of data sparsityby low-rank approximations of matrices reduced this complexity but also
increased the relative weight of the solve. In addition, for some applications, the very large
number of right-hand sides (RHS)B, nns 1, makes the solution phase the computational
bottleneck. However3 is often sparse and its structure exhibits speci ¢ characteristics that
may be ef ciently exploited to reduce this cost.

The exploitation of sparsity in matri®8 may be divided into two main featuresertical
sparsity to reduce the number of operations by avoiding computations on rows that are entirely
zero, andchorizontalsparsity to go further by performing each elementary solve operation only
on a subset of the RHS columns. We propose in this thesis to study the impact of the exploita-
tion of this structural sparsity during the solve phase going through its theoretical aspects down
to its actual implications on real-life applications. Although we mainly focus on the forward
substitution, all the results obtained also apply to the backward substitution, when only part of
the solution is required.

First, we investigate the asymptotic complexity, in the Giggense, of the forward substi-
tution when exploiting the RHS sparsity in order to assess its ef ciency when increasing the
problem size. In particular, we study on 2D and 3D regular problems the asymptotic complex-
ity of the forward substitution both for traditional full-rank unstructured solvers and for the case
when low-rank approximation is exploited. A signi cant asymptotic improvement is observed
in the latter case. These complexity results are indeed more general, since they also provide a
measure of the available parallelism of the solve phase in the dense RHS case.

Next, we extend state-of-the-art algorithms on the exploitation of RHS sparsity, and more
particularly the horizontal feature, and also propose an original approach converging toward
the optimal number of operations while preserving performance. For that, we propose a new

\
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algorithm to build a permutation of the RHS columns, and then propose an original approach
to split the RHS columns into a minimal number of blocks, while reducing the number of
operations down to a given threshold. Both algorithms are motivated by geometric intuitions
and designed using an algebraic approach, so that they can be applied to general systems.

Finally, we show the impact of the exploitation of sparsity in a real-life application.
Controlled-Source ElectroMagnetism (CSEM) is a method of choice for oil and gas explo-
ration that often requires the solution of sparse systems of linear equations with a large num-
ber of sparse right-hand sides. We explain why and how the algebraic properties described
previously relate to the CSEM physical and geometrical context. We also adapt the parallel
algorithms that were designed for the factorization to solve-oriented algorithms and describe
performance optimizations particularly relevant for the very large numbers of right-hand sides
of the CSEM application. The total CSEM simulation time can be divided by approximately a
factor of 3 on all the matrices from our set (from 3 to 30 million unknowns, and from 4 to 12
thousands RHS).

We validate and combine the previous improvements using the parallel solver MUMPS,
conclude on the contributions of this thesis and give some perspectives.
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French summary

Introduction

Nous considérons la résolution de systemes linéaires avec multiples seconds membres de la
forme

AX = B; (1)

OUA est une matrice carrée, creuse, non singuliére, de taille avec une structure symétrique

ou symetrisée, et oRl etB sont respectivement la matrice de solutions et la matrice de seconds
membres, toutes deux de taille n.s. La résolution de systemes linéaires creux se pose dans
de nombreux domaines d'application et est un domaine de recherche actif. Parmi les applica-
tions industrielles nécessitant la résolution ef cace de I'équatidofh peut citer la mécanique

des structures, la géophysique, I'électromagnétisme, I'analyse ou optimisation de données. Le
besoin de précision numérique et la complexité croissante des simulations numériques entrai-
nent des dif cultés pour résoudre de grands systemes linéaires avec des centaines de millions
d'inconnues et font de la résolution des systemes creux une véritable clé de volte du calcul
scienti que.

Du point de vue théorique et algorithmique, méme si la question de la résolution de tels
problémes est bien comprise, il s'agit toujours d'un domaine de recherche trés actif, comme
cela sera illustré dans cette these. En outre, les progrés constants et impressionnants de la
puissance informatique ainsi que I'évolution des architectures des supercalculateurs ont motivé
un travail d'adaptation également constant. En effet, les supercalculateurs modernes dotés
de milliers de nceuds de calcul constituent les nouveaux outils indispensables a la résolution
de problemes de plus en plus grands, mais au prix d'une dif culté accrue pour préserver la
précision et atteindre une certaine ef cacité dans I'utilisation de la mémoire et des processeurs.

Il existe deux classes principales de méthodes pour la résolution de systémes linéaires creux
de la forme de I'équationl). Avec lesméthodes directe$a matriceA est d'abord factorisée
comme un produit de matrices dont la structure permet une résolution aisée (matrices diag-
onales, a permutation, triangulaires, orthogonales, par exemple). Dans notre contexte, nous
considérerons la factorisation deen un produit de deux matrices triangulaite®t U re-
spectivement triangulaire inférieure et triangulaire supérieure. Méme si, pour une question de
stabilité numeérique, cette factorisatibd peut également impliquer des matrices diagonales
(pour la mise a I'échelle des lignes et des colonnes) et des matrices de permutation pour le
pivotage numérigue, nous supposerons, par souci de simplicitéh gud.U apres la phase
de factorisation. La prochaine étape, appglase de résolutiodans la suite de cette thése,

iX



X CONTENTS

effectue deux résolutions triangulairesdiescentequi consiste a résoudre

LY = B; 2)
pour obtenir la matric&' de taillen  nys, Suivie de lalemontée

UX = V: (3)

D'une autre maniére avec lesethodes itérativesine séquence ¢, qui converge, a une
précision donnée, vers la solutidh de notre systeme linéaire est construite. Les méthodes
directes sont connues pour étre numériquement plus stables mais plus exigeantes en termes de
mémoire et de calculs, alors que les méthodes itératives qui pourraient étre plus rapides, sont
en général moins exigeantes en terme de mémoire mais numeériquement moins robustes.

Dans cette thése, nous nous concentrons sur les méthodes directes et plus particulierement
dans la résolution des équatior® €t (3) soit lorsque la matrice de seconds memtiBesst
creuse, soit lorsque I'ensemble des solutions recherchées dans la Hagsteeduit. Ainsi,
nous commencgons par rappeler le contexte des méthodes directes en nous concentrant sur la
phase de résolutions triangulaires. Deux applications de modélisation sismique et électromag-
nétique pour lesquelles la phase de résolutions triangulaires domine les temps de calcul seront
utilisées pour illustrer nos discussions. Nous évaluons tout d'abord le comportement asympto-
tique de la phase de résolution dans le contexte de seconds membres creux et d'approximations
de rang faible. Une amélioration des algorithmes existants permettant I'exploitation du creux
dans les seconds membres est ensuite décrite et une approche originale permettant d'atteindre
le nombre minimal d'opérations est introduite. Ensuite, nous présentons a nouveau des mé-
canismes permettant I'exploitation du creux mais cette fois-ci en terme de propriétés physiques
liées a I'application. Des algorithmes pour améliorer les performances dans un environnement
parallele sur des applications réelles sont également proposés. En n, nous tentons de rassem-
bler les contributions apportées des études précédentes puis concluons sur le travail effectué.

Contributions

Comme dit précédemment, nous nous intéressons plus particulierement dans cette thése a
la phase de résolution soit lorsque les seconds membres (ou RHS pour Right-Hand Side)
sont creux, soit lorsque seulement un sous-ensemble des entrées de la solution est requis.
L'objectif de la premiere partie est de rappeler des travaux existants concernant I'exploitation
de RHS creux et d'introduire quelques concepts nécessaires dans les études suivantes. En par-
ticulier, cette premiére partie fournit un formalisme qui sera utilisé dans I'étude traitant de
I'amélioration de I'existant pour prouver de nouvelles propriétés. En plus des notions liées
aux méthodes directes, notamment I'arbre d'élimination, nous caractérisons leveréoal et
horizontal chacun associé a un outil permettant de I'exploiter. De plus, des notions telles que
nceuds actifs/colonnes actives sont introduites. Nous illustrons également dans cette premiere
partie I'importance de choisir une bonne permutation des colonnes de RHS.

Cette thése s'articule ensuite autour de trois contributions principales (trois chapitres du
manuscrit) brievement résumeées ci-apres.
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Calcul de complexité de la phase de résolution avec RHS creux multiple [ JS1].
Nous soulignons que, dans le contexte d'un trés grand nombre de RHS, la phase de résolution
peut devenir le goulot d'étranglement de la simulation numérique compléte. Dans ce chapitre
nous étudions la complexité asymptotique de la phase de résolution en tenant aussi compte
du fait que les matrices de facteurs peuvent étre représentés avec des approximations de rang
faible. Nous prouvons sur des problemes réguliers 2D et 3D que I'exploitation des RHS creux
dans le contexte des approximations de rang faible modi e signi cativement la complexité
asymptotique des résolutions triangulaires.

Tout d'abord, I'utilisation de techniques d'approximations de rang faible raméne la com-
plexité asymptotique de la phase de résolution, nG{@¢, a une complexité linéair®(n) (a
un coef cient logarithmique prés). Deuxiéemement, le creux dans la matrice de seconds mem-
bresB peut étre exploité pour réduire les colts de la phase de descente et ainsi sa complexité
asymptotique, noté€ES (n). En particulier, nous étudions sur des problémes réguliers 2D et
3D les complexités asymptotiques a la fois pour les solveurs traditionnels non structurés de
rang plein et pour le cas ou des approximations de rang faible sont exploitées. Nous étudions
particulierement le rapport suivant :

an) .
C=S(n)’

G>(n) =

Une importante amélioration asymptotique est observée dans le cas de |lutilisation
d'approximations de rang faible, pouvant aller jusquan®?)!. Nous conrmons ces
résultats théoriques d'abord sur des problemes réguliers et ensuite sur un ensemble de matrices
provenant d'applications réelles. Nous mentionnons que le résultat pourrait étre étendu a
I'ensemble de la phase de résolution lorsqu'une partie seulement de la solution est demandée.
De plus, cette étude de complexité fournit une mesure du parallélisme d'arbre disponible
lors de la phase de résolution dans le cas de seconds membres denses. Une comparaison avec la
complexité et le parallélisme de la factorisation montre des propriétés intéressantes de la phase
de résolution a prendre en compte lors de la conception des algorithmes.

Amélioration des algorithmes existants sur l'exploitation du creux dans les RHS

[W2, J1]. Dans ce chapitre, nous nous concentrons sur I'extension des algorithmes actuels
pour I'exploitation des seconds membres creux. En nous basant sur une intuition géométrique
en lien avec l'algorithme des dissections emboitées, nous proposons tout d'abord une approche
générique et plus ef cace permettant de permuter les seconds membres et de réduire le colt de
la phase de descente. Une deuxiéme contribution est la description d'un algorithme de blocage
qui diminue encore ce colt en choisissant inteligemment des groupes de seconds membres
pouvant étre traités ensemble. Bien que les deux algorithmes soient motivés par des observa-
tions géométriques, ils sont concus avec une approche algébrique, donnant une portée générale
a ce travail. Les notions d'optimalité de noeud et d'indépendance de seconds membres sont
introduites et formalisées, et des preuves théoriques justi ant I'ef cacité des algorithmes pro-
poseés sont fournies.

Par dé nition,f (n) = ( g(n)) ssi9Cy;Cs;np > 0; 8n > no;Cig(n) f(n) Cyg(n). La notation
devient nécessaire par la division da@ts’ .
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Les expériences con rment l'ef cacité de la démarche proposée, notre permutation nom-
mée “ at tree” réduit en moyenne de 13% de nombre d'opérations par rapport aux travaux
précédents. Lalgorithme de blocage réduit encore le nombre d'opérations. Basé sur une ap-
proche glouton, ce dernier tente de limiter le nombre de groupes nécessaires pour atteindre
un nombre d'opérations qui peut étre arbitrairement proche de la solution optimale. Dans un
environnement séquentiel et sur nos applications réelles, nous comparons les performances de
I'approche proposée avec des stratégies de blocage réguliéres et nous montrons la supériorité
de notre approche de blocage.

Etude d'une application réelle dans un contexte de résolution paralléle [ JS2,

W1]. L'électromagnétisme a source contrélée (“Controlled Source ElectroMagnetism” ou
CSEM) est une méthode de plus en plus utilisée pour I'exploration du gaz et du pétrole. Dans ce
contexte, l'inversion des données électromagnétiques (EM) pour des applications géophysiques
a grande échelle nécessite souvent la résolution de systemes d'équations linéairegeved un
nombre de seconds membupesux chacun correspondant a la position d'une source/d'un émet-
teur de I'application. Les solveurs creux directs sont tres attrayants pour ce type de problemes,
surtout lorsqu'ils sont combinés avec des approximations de rang faible qui réduisent la com-
plexité et le colt de la factorisation.

Nous montrons que I'exploitation des seconds membres creux et le calcul d'un sous-
ensemble de la solution peuvent avoir un impact important sur les performances de la phase
de résolutions triangulaires. Nous expliquons pourquoi et comment les propriétés algébriques
et les outils introduits précédemment peuvent étre utilisés pour accélérer le calcul dans le con-
texte CSEM.

Le premier objectif de ce chapitre est de proposer un autre point de vue sur les seconds
membres creux qui ne nécessite pas d'étre spécialiste des méthodes directes et/ou de la théorie
des graphes, et de comprendre le potentiel applicatif de I'exploitation de ces seconds membre
creux. Le deuxieme objectif est d'adapter les algorithmes paralléles congus pour la factori-
sation a la phase de résolution pour améliorer la performance de I'application, ce qui apparait
particulierement pertinent dans le cas d'un trés grand nombre de seconds membres comme dans
I'application CSEM. Alors que les précédents travaux ciblaient le nombre d'opérations, nous
traitons plus particulierement ici des problemes de performances et de mémoire dans un envi-
ronnement parallele. Ce contexte motive I'amélioration des algorithmes pour mieux préserver
le parallélisme de la phase de résolution. Nous montrons que le nombre d'opérations et le temps
écoulé pour les résolutions triangulaires peuvent étre considérablement réduits. La durée totale
de la simulation CSEM peut étre divisée par environ un facteur 3 sur tous les systémes linéaires
de notre ensemble (de 3 a 30 millions d'inconnues et de 4 000 a 12 000 RHS).

Conclusion et perspectives

Dans cette derniere section, nous résumons les contributions apportées puis dessinons quelques
perspectives ou extensions du travail présenté dans ce manuscrit.

Ce travail se divise en trois contributions principales qui tentent d'évaluer théoriquement
et d'améliorer techniquement les travaux existants exploitant les seconds membres creux. Le
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premier aspect du travail est lié a I'établissement d'un formalisme théorique pour I'exploitation
des seconds membres creux. Dans ce contexte, nous montrons théoriguement une réduction de
la complexité asymptotique de la phase de descente (avec une extension a la phase de remontée
lorsque la solution aussi est creuse), réduction d'autant plus importante que des approximations
de rang faible sont utilisées. Ce résultat permet dans un premier temps de justi er I'importance
de l'exploitation du creux dans les seconds membres, et dans un second temps de montrer
des caractéristiques intéressantes de parallélisme d'arbre dans les résolutions triangulaires. La
discussion se poursuit ensuite sur I'amélioration des algorithmes d'exploitation du creux ex-
istants. Nous concluons a la n de cette seconde étude, pour les applications fournies, que la
combinaison des deux algorithmes permet la réduction du nombre d'opérations jusqu'a une
solution presque optimale tout en conservant de bonnes propriétés nécessaires a une résolu-
tion haute performance. En n, nous poursuivons par une étude naissant de la collaboration
avec une entreprise travaillant sur une méthode numérique pour la recherche d'hydrocarbure.
Nous y décrivons sous un autre point de vue I'exploitation du creux et proposons de nouveaux
algorithmes adaptés a la phase de résolution.

En conclusion, nous avons essayé dans ce manuscrit de fournir une étude exhaustive de la
phase de résolution avec seconds membres ou solution creuse. Théoriquement, nous dé nis-
sons des notions utiles a la démonstration de propriétés mathématiques, nous continuons avec
I'amélioration des algorithmes existants et en n nous en étudions les effets sur une application
réelle. En n de manuscrit, nous rassemblons les résultats des différentes études, en combinant
approximations de rang faible, nouveaux algorithmes d'exploitation du creux et algorithmes
adaptés a la phase de résolution.

En perspective, tandis que cette thése porte principalement sur la phase de résolution avec
seconds membres multiples, dans de nombreuses applications, la phase de résolution s'effectue
sur un seul second membre mdesnombreuses foi€'est le cas par exemple des applications
en régime instables ou chaque second membre dépend de la solution du pas de temps précédent.
Dans ce cas, le temps de résolution peut également devenir critique ou prédominant. Les algo-
rithmes adaptés a la phase de résolution peuvent étre appliqués, cependant, de nombreux autres
travaux peuvent étre menés pour adapter les algorithmes actuels qui sont orientés factorisation
vers des algorithmes basés sur la phase de résolution. Par exemple, certains de nos résultats
théoriques ont montré que la résolution présente plus de parallélisme d'arbre que la factorisa-
tion; cette propriété peut étre utilisée pour piloter la conception de nouveaux algorithmes a n
de mieux exploiter ce potentiel. En n, l'utilisation d'approximations de rang faible a modi-

é radicalement le comportement des algorithmes actuels dans des environnements paralléles
(mémoire partagée et / ou distribuée). Des efforts algorithmiques ont été déployés pour ex-
ploiter ef cacement les structures de rang faible au cours de la phase de factorisation et il reste
beaucoup a faire pour améliorer les performances de la phase de résolution dans ce contexte.
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Chapter 1

General introduction

We consider the solution of linear systems with multiple right-hand sides of the form
AX =B (1.1)

whereA is a large square nonsingular sparse matrix of sizen with a symmetric or sym-
metrized structureX andB are respectively the solution matrix and the matrix of right-hand
sides of sizen  n;s. Solving sparse linear systems arises in numerous elds of applications
and is an active eld of research. Among the industrial applications that require the ef cient
resolution of Equationl(.1), we can cite structural mechanics, geophysics, electromagnetism,
data analysis or optimization. The need for numerical precision and the increasing complex-
ity of numerical simulations result in dif culties to solve large linear systems and makes the
resolution of sparse systems a keystone in scienti c computation.

From the theoretical and algorithmic point of view, even if the question of solving such
problems is well understood, it is still quite an active research area, as will be illustrated in
this thesis. Furthermore, the steady and impressive progress of computer power as well as the
evolution of computer architectures have also motivated both algorithmic and more nalized
work. Indeed modern supercomputers with thousands of computing nodes make the solution
of increasingly large problems possible, but at the cost of an increased dif culty to preserve
accuracy and to reach ef ciency in memory and processor use.

There exists two main classes of methods for the resolution of large sparse linear systems
of the form of Equation.1). With direct methodsmatrix A is rst factored as the product
of easy to solve matrices (e.g. diagonal, permutation, triangular, orthogonal matrices). In our
context we will consider the factorization éf into the product of two triangular matricés
and U respectively lower and upper triangular. Even if for numerical stability this so-called
LU factorization might also involve diagonal matrices (for scaling the rows and the columns)
and permutation matrices for numerical pivoting, we will assume, for the sake of simplicity,
thatA = LU after the factorization phase. The next step, referred to asalke phasén the
remainder of this thesis, performs two triangular resolutions, the so-daldrd substitution

LY = B; (1.2)
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obtaining then n.s matrixY, followed by the so-callebackward substitution
Ux =Y: (1.3)

With iterative methodsa sequence oy that converges, at a given precision, toward the
solution X of our linear system is built. Direct methods are known to be numerically more
stable but more demanding in terms of memory and computations, whereas iterative methods
might be faster, are in general less memory demanding but are numerically less robust.

In this thesis, we focus on direct methods which share with graph theory many algorithmic
aspects. This strong relation between graph and direct methods will be highlighted in this chap-
ter, with a special focus on the forward and backward substitutions. The chapter is organized
as follows. We rst consider dense matrices in Sectich 1and describe simpli ed algorithms
for the factorization and solve phases. In Sectia® we approach the main steps and main
notions involved in the processing of sparse matrices with direct methods. In Sé&jove
study in more details the resolution of Equatiofs?( and (L.3) and consider the case where
matrix B is sparse. In Sectioh.4, we provide operation counts of the solve phase on regular
problems and illustrate some properties that are different from the ones of the factorization.
Low-rank formats are brie y introduced in Sectidn5. Finally, we give some remarks on the
test cases and the computational environment in Sett®n

1.1 Solution of sparse linear systems

1.1.1 Dense matrices: LU factorization and solve phases

At each step of th& U factorization of a dense matrix, Gaussian elimination is applied on a
reduced matrix to build part of tHe andU matrices. Tha&.U factorization algorithm does not
impact the solution, giving an easy way to compute it. In the general case, depending on the
properties of matriA, Gaussian elimination can be used to factor the matrir the general

form LU if A is unsymmetricLDL T with D diagonal (possibly with 2x2 diagonal blocks) if

A is general symmetric arldl T if A is symmetric de nite positive.

Algorithm 1.1 DenselLU (Right-looking) factorization.
1: Input: a matrixA of ordern
: Output: A isreplaced by itd U factors
fork=1ton 1do
Factor: ax+1: nik A+1: nk =Sk
Update: ay+1: nk+1:n A+1:nk+lin Gk+1:nk Akk+1:n
end for

o g kR wbd

Algorithm 1.1is a simpli ed sketch of the denddJ factorization based on Gaussian elimi-
nation in which the lower part &k is replaced by the factor with implicit ones on the diagonal
and the upper part is replaced by thdactor.

At each stegk of the Gaussian elimination, the diagonal erdry is used as givot to
eliminate entries in columk of A and build columrk of L. For the sake of simplicity, we
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have assumed here that all pivots are large enough to preserve the numerical stability of the
factorization so that columns & can be processed in order without performing so-called
numerical pivoting. At each stelp of our proposed algorithm, rstly the columk of the L
factor is computed, denoted &sctor in Algorithm 1.1 Secondly the trailing submatrix is
modi ed through a rank-one update, denotedgslate in Algorithm 1.1. Please note that the
order in which the entries of the andU matrices are computed is not unique.

Following the steps in Algorithm..1, the operation count of the factorization is

K 1 x0 X
a+ 1);
k=1 i=k+1 j=k+1

and is proportional t® (n®) while the memory consumption is of the ord2¢n?) [3§]. Given

the two factor matricek andU, the solution of the linear system at Equatidnlf requires

two triangular resolutions: rst the forward substitution which solves a lower triangular system
usingL, second the backward substitution which solves an upper triangular systentusimg
Algorithm 1.2, theL factors are accessed by columns andUWhfactors are accessed by rows.
This leads to a right-looking algorithm for the forward substitution and a left-looking algorithm
for the backward substitution.

Algorithm 1.2 Dense triangular solution through forward and backward substitutions.

1: SolutionofLy = b 1: SolutionofUx =y
2: (forward substitution) 2: (backward substitution)
3 3
4y b 4: Xy
5. forj =1tondo 5.fori=ntolby 1do
6 fori=j+1tondo 6: forj =i+1ltondo
7 Yi Vi Loy 7: Xi  Xi  Uj X
8 end for 8: end for
9: end for 9: Xj Xi =U

10: end for

In Wilkinson's de nition, a matrix is considered sparse when it is worth taking advantage
of its nonzero structure. In physical applications, sparsity is often due to the fact that distant
points in the physical domain do not interact with each other. Strictly speaking, the interaction
between two nodes in the domain is represented by a nonzero entry (or a nonzero block) in the
matrix A. In modern numerical computing, can be extremely large (a few hundred millions
of equations). It is thus critical to adapt dense algorithms to sparse objects, with the underlying
objective to avoid storing the zero entries and thus spare useless operations and storage.

In the following sections we describe the main steps for the direct solution of sparse linear
systems. We limit our description to the so-called three phase methods for which the resolution
can be divided into three consecutive steps: the analysis, the factorization and the solve phases.
The rsttwo steps are brie y described in Secti@r2. The solution phase is described in more
details in Sectiori.3.
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1.2 Sparse direct methods: analysis and factorization
phases

1.2.1 The analysis phase

For the sake of simplicity, we assume tiahas a symmetric structure and is factored in the
form A = LU, as in Algorithm1.1 The extension of the analysis phase to matrices with an
unsymmetric structure is not straightforward and will be discussed at the end of this section.

In sparse direct methods, one key issue islthie phenomenon. From tHgpdate opera-
tion of Algorithm 1.1, Il-in appears when an entrg; in matrixA is initially zero and becomes
nonzero. Indeed, an elementdypdate operation can be written as

B>kl ay & ax a

If & = 0 butay 6 0 anda,; 6 O, thena; 6 O after the factorization phase if there is no
numerical cancellation.

One should note that the order in which pivots are selected can in uence the amount of
ll-in during factorization. Furthermore, for a given sequence of pivots, one may also want
to predict the [l-in that would occur during factorization. This will be referred to asttiee
symbolic factorizatiopphase. The symbolic factorization is an important step that provides es-
timates of the cost in terms of number of operations and memory footprint of the factorization
phase. The analysis phase most important steps are thus the preprocessing of the matrix to re-
duce the ll-in during factorization and the symbolic factorization to predict the main structures
involved during the numerical phases: factorization and solve. Remark that the analysis phase
may be performed only once when sequences of matrices with different numerical values but
identical structure need to be factored. We will illustrate how a modelization based on graphs

can be ef ciently used to design the algorithms involved in the analysis phase and to model the
factorization phase.

Adjacency graph

Graph formalism is introduced to analyze the properties of a sparse matrike sparsity
pattern of any sparse matmx can be modeled by a so-called adjacency gi@{h).

De nition 1.1 (Adjacency graph)The adjacency grapf®(A) of a general matrixA of order
nis agraph(V;E) such that:

V is a set ofn vertices, where vertaxis associated with variable
There is a (directed) edggj) 2 Eiffa; 60 andi 6 j.

If A is structurally symmetricife. a; 6 O iff a; 6 0), then one can also consider an
undirected graph representation. When not explicitly stated, we will assume that the matrix
is structurally symmetric and that its adjacency graph has undirected edges. We discuss the
generalization to structurally unsymmetric matrices at the end of this section.

The example of Figurd.larepresents a simple undirected adjacency graph that will be
used to drive our discussion.
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(a) Adjacency graph. (b) Filled graph. (c) Sparsity pattern of the factors
(original nonzeros are in gray, ll-in
in red, zeros in white).

Figure 1.1: Symbolic factorization: predicting the sparsity pattern of the factors.

Symbolic factorization based on elimination graphs

We explain how a sequence of graphs, so-called elimination graphs, can be built to predict
the structure of th& matrix and thus perform a symbolic factorization. Although simple and
elegant, the elimination graphs are costly to build and to store and not used in practice to
compute the symbolic factorization of a symmetric matrix. For an ef cient way to compute the
row and column structures of thematrix we recommend the work of Gilbert, Ng and Peyton
[37].

Starting from the adjacency graph of the matrix, we describe in the following how this
graph can be updated to mimic the symbolic factorization of the matrix.

During symbolic factorization we want to simulate the effect of Gaussian elimination oper-
ations during the elementatypdate operation

ajij ajj Ak A,

to detect the position of the new entriags in the updated matrix. We assume no numerical
cancellation so that the new nonzero entries will remain nonzeros in the matrix of factors. In
terms of graph, this translates into the fact that when vektexeliminated from the current
adjacency graph, all its neighbors become interconnetcted, clique is formed. The updated
graph is referred to as theimination graph A clique is de ned as a set of vertices that are
pairwise connected. For example, in Figuréda if vertex 1 is eliminated, vertices 2 and 4
becomes interconnecteds. an edgg?2; 4) must be added (as done in red in Figairéh).

We de ne the lled graphG(F) as the adjacency graph where all edges that were created
during the symbolic factorization have been added (see illustration in Figlipe Since the
new edges correspond to lled entries, the lled graph is the adjacency graph of the factors
F =L+ U (orL + LT inour context). The sparsity pattern of the factor malrigresp.U) is
reported in the lower triangular part (resp. upper triangular part) of Fige

The lled graph and the elimination graphs fully describe the structures that will be pro-
cessed during factorization. As mentioned before, since they are costly to handle, we will
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introduce a simpler tree structure called the elimination tree that can be used to represent in a
compact way the mains steps and structures involved during the factorization.

Reordering and permutations

If a matrix can be factorized so that no Il-in occurs, then the elimination ordering on this
graph is said to beerfect the graph ofF is one such matrix49, 55]. However, it is usually

not the case for the graph Af G(A), so that the rst step of the analysis phase is to nd a good
ll-reducing permutation of the pivot variables.

We show that the order in which the variables are eliminated, referred to as the ordering,
can signi cantly in uence the Il-in. Obviously, we want to minimize the amount of ll-in,
since it increases the computational cost of the factorization and the storage of the matrix of
factors; thus, nding a good ordering is a crucial issue to make sparse direct methods effective.
For example,27] shows that ll-in is catastrophic for random matrices which cause the sparse
factorization to requir®(n?) memory andd(n®) operations.

However, nding the ordering that minimizes the Il-in is an NP-complete probled).[
Several heuristic strategies exist, whose effectiveness is matrix-dependent and whose objectives
may differ (operation count, parallel performance, memory consumption). We can distinguish:

Local heuristics, that successively eliminate vertices in an order depending on some local
criterion: for example, the vertex of minimum degree (such as AMD{ MMD [ 45]),
or the vertex that produces the minimum |l (such as AMF or MVEE)).

Global heuristics, such as nested dissection(N#3), that recursively partition the graph
into subgraphs, or the (Reverse) Cuthill-McKee algoritta®].[

Hybrid heuristics, which rst use a global heuristic to partition the graph, and then apply
local heuristics to each subgraph. This is the strategy implemented in several partitioning
libraries, such as METISAE] and SCOTCH $2].

We now brie y review the nested dissection ordering that will be illustrated on a 3D regular
mesh in Sectiori.3and analyzed in more details in Sectibd. It is a ll-reducing ordering
well-suited to matrices arising from the discretization of a problem with 2D or 3D geometry.

It divides the adjacency graph into a given number of domain subgraphs (or subdomains) sep-
arated by a set of vertices called separator. In this section, we consider that the number of
subgraphs/subdomains at each step is equal to two, but one can also consider 4 subdomains or
8 subdomains at each step for 2D and 3D regular problems, respectively, as we will do later in
this thesis. As a consequence, the vertices of a given subdomain are only connected to other
vertices in the same subdomain or in the separator, but not to other subdoa@iidhjs way,

the elimination of a vertex within a subdomain will not create any ll-in in the other subdo-
mains and the vertices in the separator can be eliminated after the subdomains. The process
is then recursively applied to the each subdomain created until the domain subgraphs become
too small to be subdivided again. This generates a separator tree. This process is illustrated in
Figure1.2aon our illustrative example where at each iteration, separators divide the domain

or subdomains in two subdomains of equal size. This generates an associated separator tree
reported in Figurd..2h
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(a) Ordering computed by the nested dissection on the (b) Associated separator tree.
adjacency graph.

Figure 1.2: Nested dissection on example mesh.
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(a) Filled graph. (b) Sparsity pattern of the factors (original nonzeros
are in gray, ll-inin red, zeros in white).

Figure 1.3: Symbolic factorization after nested dissection reordering.

In Figure 1.3aand 1.3 we describe the corresponding lled graph and factor sparsity
pattern obtained by performing the symbolic factorization on the reordered matrix. The com-
parison with Figurel.1 shows that the Il-in has decreased from 16 to 10 lled entries, which
is a considerable improvement compared to the number of nonzeros in the original matrix.

Dependencies between variables and elimination tree

As said previously, the sparse structure of the matrix of fadtodepends on the elimination
sequence of the pivot variables. Furthermore, the elimination of one variable does not impact
all other variables. The study of these dependencies is essential in sparse direct methods to
manage the numerical phases. We want to characterize the fagtdbpénds om if and only

if the elimination ofi modi es columnj . This will naturally lead to introducing thelimination

treea crucial structure in sparse matrix factorization. A detailed study on the role and properties
of the elimination tree can be found iAg].
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(a) Directed lled graph. (b) Transitive reduction. (c) Elimination tree.

Figure 1.4: Construction of the elimination tree.

De nition 1.2 (Vertex dependency)Leti;j be two vertices such thak j . Vertexj depends
oni (notedi ! j)ifandonlyifl; 60.

Therefore, the vertex dependencies are characterized by the sparsity pattern of the factors,
and thus by the lled grapls(F). However, the dependency is not a symmetric relation: a
vertexj can only depend on vertices eliminated beforeet,i ! | impliesi < . Therefore,
we introduce the directed version of the lled graph.

De nition 1.3 (Directed lled graph) Let the undirected lled graph b&(F) = ( V;E). Then,
the directed lled graphG(F) is the graph(V ;E) such that:

V = V,i.e, both graphs have the same vertices;

For all edges(i;j) 2 E,ifi<j then(i;j) 2 E else(j;i) 2 E, i.e, the edges dE have
been directed following the elimination order.

The directed lled graph thus characterizes the dependencies between vertices. By de -
nition, (I;j) 2 E ) i <] and therefore it cannot have any cycle. It is therefore a directed
acyclic graph (DAG) 2]. We can thus introduce the notionaéscendardindancestobetween
columns as followst descendant gf, j ancestorof, i! j. Thedirected lled graph on
our example is given on Figufeda

The directed lled graph contains however many redundant dependencies: in our example,
1! 7canbeobtained froh! 3and3! 7. We can thus obtain a more compact represen-
tation of the vertex dependencies by removing the redundant dependéeciey, computing
the transitive reduction. The transitive reduction thus consists in removing edges which can be
replaced by a path in the directed lled graph. Because the directed lled graph is a DAG, its
transitive reduction is uniquéd]. This is illustrated on Figuré.4h

The transitive reduction dB(F ) is obviously still a DAG. One key observation here is that
its undirected version is still acyclig.e. it is actually a spanning tree of the directed lled
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graph, as illustrated in Figure4c This tree is referred to as the elimination tré€][and we
note itT.
The advantage of the elimination tree is that it provides a more compact representation of
the directed lled graph and to some extent the structure of the factors 4BJuishows how to
obtain the structure df from the elimination tree and from the structurefafThe elimination
tree also provides a way to express the parallelism inherent to the direct solution of sparse linear
systems in the sense that two variables in different subtrees can be computed independently.
Before describing how it is used to schedule the computations done during the numerical
factorization, let us rst brie y comment on the case of structurally unsymmetric matrices.

The unsymmetric case

In the previous sections we have assumed that the matrix is symmetric, or structurally symmet-
ric. The extension to the unsymmetric case is not straightforward. It has been been studied by
Gilbert and Liu in B6] who generalized the elimination tree structure. In this context, instead
of a tree, the structures that can be used to characterize the dependencies between steps of the
factorization are directed acyclic graphs, referred telasination dagor edags in 36|. The
edags can be viewed as the transitive reduction of the directed graphs associatdd émthe
U matrices. Another possibility is to use the elimination tree structure introduced by Eisenstat
and Liu (the theory of elimination trees for sparse unsymmetric matriégp, [In this work,
the authors extend the notion of elimination tree to unsymmetric matrices. The existence of
paths in graphs associated to the L and U factors is used to generalize the elimination tree.

A much simpler approach is to symmetrize arti cially the original matrix using the structure
of A+ AT. Note that in 5], only a partial symmetrization is performed, that makes the use
of the elimination tree possible. In both cases, all previous results based on the symmetric
structure are applicable. In many applications, the structurésafdAT are similar and the
overhead introduced by the arti cial addition of nonzero entries can be limited. This approach
was suggested by Duff and Ref@ll] and is the one that we will consider in this thesis.

1.2.2 The factorization phase

To ef ciently process sparse matrices, we have shown that the original matrix needs to be
permuted to reduce the ll-in. The dependency between steps of the elimination process is
then captured by the elimination tree that also gives information about the dynamic structures
involve during factorization.

A rst simple view of the factorization of a sparse matrix is to consider Algorithrh
assume that the original matr has already been permuted and process the permuted matrix
in order. Fill-in obtained during the update operation will be limited but will have to be stored.

Let us recall that each node of the elimination tree corresponds to the elimination of one
pivot variable. Then exploiting the properties of the elimination tree, one can also view the
factorization of a sparse matrix as a bottom to top traversal of the elimination tree respecting son
to father dependencies. Each elimination of pivot, or equivalently, each elimination of a node
of the elimination tree, is then divided into two consecutive operatiéastor to eliminate
variablei, and Update to compute the contributions of this elimination, which are used to
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update all ancestor nodgsuch thai ! . In our example, when node 1 is eliminated, nodes
3 and 7 must be updated; when node 3 is eliminated, nodes 7, 8, and 9 are updated.

The independence described by the elimination tree gives a degree of freedom to schedule
the elimination of the pivot variables. Once thactor operations are scheduled following the
dependencies given by the elimination tree, there exists different ways to schedu[edtte
operations. This results in two different approaches: I#fielooking and theright-looking
algorithms. In the right-looking approach, the updates are performed as soon as possible:
after the elimination of, all ancestorg such thati ! | are updated. On the contrary, in
the left-looking approach, the updates are performed as late as possible: all the contributions
coming from descendanisuch thai ! | are applied just before the eliminationjofA nal
possibility that we describe in more detail is the multifrontal method which derives from the
right-looking method and make full use of the elimination tree structure to limit the number of
direct dependencies between elimination steps.

The multifrontal method was introduced by Duff and Reid][as a generalization of the
frontal method 42]. They present in this article the rst formal and detailed description of the
computations and data structures of all phases: analysis, factorization and solve phases. It is
directly based on the elimination tre€7 58] and relies on the following observation:iit |,
then nodg is an ancestor of nodein the elimination tree. As a consequence, a contribution
from the elimination of a nodeto a nodg can be carried through the path from ndde
nodej in the elimination tree. The local contribution, right term of the Update operation, is
computed during the processing of the node but will be passed on the tree, from child to parent
up to its destination. The multifrontal method can be described in terms of operations on dense
matrices. To each node of the elimination tree is associated a dense matrix, ficaitad
matrix or front. Each front is constituted of the variable to be eliminated and the variables that
are updated and that correspond to ancestors in the elimination tree.

In practice, the nodes of the elimination tree are grouped together when their associated
columns have the same sparsity structure in the reduced matrix. This is referred to as amalga-
mation and the resulting nodes are caldeghbernodesThis can be relaxed to enable grouping
nodes that have a similar structure leading to so-cadaked supernodesTlhe resulting tree
is then known as thassembly treeThis allows the fronts to have more than one pivot to elim-
inate at each node. Variables that can be eliminated at a node are referrddltp-sismmed
variablesbecause all contributions from descendants variables associated to descendant nodes
in the elimination tree have been summed. The elimination of the fully summed variables of a
front takes the form of a partial dense factorization that makes great use of dense linear algebra
kernels fi4]. The variables (ancestors in the elimination tree) that are only updated during the
process of node are called the non fully-summed variables of the corresponding frontal matrix.

1.3 The solve phase

OnceA is factorized, it follows the solve phase on which we give a special focus. The illustra-
tion will be based on a 3D example of Figuré&as it lend itself more easily to the description of

the exploitation of sparse right-hand sides (RHS) that comes later. Moreover, we now consider
the generah = LU decomposition.
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Firstly, we discuss the solution phase with a particular focus on the forward substitution
and in the general case of a dense RHS. Secondly, we give a detail study of available advances
in the litterature concerning the exploitation of sparse RHS.

1.3.1 General case: dense RHS

We introduce @ 3 3 domain in Figurel.5aon which we applied the nested dissection
algorithm introduced in Sectioh.2.1 The domain is rst divided by 8 3 constantx plane

6 26 15
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7 16 7
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4 2 13

(a3 3 3regular mesh.

1 & @ B oy {11} (13 {14}

(c) Separator tre€&.

Figure 1.5:(a) A 3D mesh with a 7-point stencil. Mesh nodes are numbered according to a
nested dissection orderingb) Corresponding matrix with initial nonzeros ) in the lower
triangular part of a symmetric matrix and ll-in (f) in theL factor. (c) Separator tree, also
showing the sets of variables to be eliminated at each node.

separatou, and each subdomain is then divided recursively. By ordering the separators af-
ter the subdomains, we obtain teeparator treeof Figure 1.5c when choosing supernodes
identical to separatots The order of the tree nodesa{1, Ui1o, U1, Uio1, Uiz, Uio, ..., Ug),
partially represented on the right of the matrix, is hepoatordering nodes in any subtree are
processed consecutively. This order, suitable for memory isg@gsalso de nes the order in
which the nodes will be processed during the forward substitution.

Considering a single RHBand the decompositioA = LU, the solution of the triangular
systemLy = b(andUx = y) relies on block operations at each node of the Trdellowing
respectively a bottom-up and a top-down traversal of the tree for the forward and the backward
substitutions. Figuré.6represents the andU factors restricted to a given nodeof T, where

1In this example, identifying supernodes with separators leads to relaxed supernodes: the sparsity in the inter-
action betweeni; andug (andu, andug) is not exploited to bene t from larger blocks.

U
®y I L 1 U1

Figure 1.6: Structure of the factors associated to a moofehe tree.



12 CHAPTER 1. GENERAL INTRODUCTION

the diagonal block is formed of the two lower and upper triangular mattigesndU,,, and
the updatematrices ard_,; andU,,. The  variables are the ones of node (or separator)
also called earlier the fully-summed variables, and theariables correspond to the nonzero
rows in the off-diagonal parts of thie factor restricted to node (Figure 1.5, that have
been gathered together, called the non fully-summed variables. For exampleynfsdm
Figure 1.5 corresponds to separatbr; 8; 9g, so thatL,; andU,; are of order ,, = 3 and

3 9). Starting withy b, the active components gfare gathered into two temporary dense
vectorsy; of size , andy, of size , at each node of T, where the triangular solve

Y1 L 111)/12 (1.4)

is performed, followed by the update operation

Y2 Y2 Layi (1.5)

y1 andy, can then be scattered back itcandy, will be used at higher levels at. When the

root is processed;, contains the solution dfy = b. The backward substitution is very similar

to the forward substitution except that the two operations are reversed. Starting frorg,

the backward update operation ateach noex; X3 U;oX; followed by a triangular solve

X1 Ulllxl. X1 andx; are partial dense solution vectors gathering the variables concerned by
u and that can be scattered back into a global solution vadtarlater use at lower levels of the

tree. It is important to note that the dependencies are reversed between forward and backward
phase. Although several variants of the solve algorithm may be de ned, depending on the way
parts ofy or x are passed up and down the tree, possibly in a parallel environg)&is} [those

will not impact the study of sparse RHS. Because the matrix blocks in FigGezxe considered
dense, there are,( , 1) arithmetic operations for the triangular solutidn4) and2 ,
operations for the update operatidng), leading to a total number of operations

X
= us (1.6)
u2T

where y, = | (4 1+2 ) isthe number of arithmetic operations at nade

1.3.2 Extension to sparse RHS

As said precedently, we focus our attention on the forward substitution for which we recall the
formula:
LY = B: a.7)

Structure prediction

In this section, we review two approaches to exploit sparsiy ihen solving the triangular
system (.2). The rst one exploits a formalism and properties established by GilBé}ftgnd

Gilbert and Liu 6], called tree pruning in€1], which consists in pruning the nodes at which
only computations on zeros are performed. The second approach goes further by working on
different sets of RHS columns at each node of the tiég [
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Figure 1.7: lllustration of Examplé.1 (a) Structure ofL bwith respect to matrix variables
(left) and to tree nodes (right). corresponds to original nonzeros andb ll-in. In the right
part, gray parts of *bcorrespond to the nodes involving computati¢in). Pruned tred ,(b):
pruned nodes and edges are represented with dotted lines and n¥gesanlled.

Tree pruning Consider a non-singulan  n matrix A with a nonzero diagonal, and

its directed graphG(A), with an edge from vertex to vertexj if a; 6 0, see De ni-

tion 1.1 Given a vector, let us de ne strud)) = fi;b; 6 0g as its nonzero structure,

and closurg(b) as the smallest subset of vertices3A\) including structb) without incoming

edges. Gilbert35, Theorem 5.1] characterizes the structure of the solutiolxof b by the
relation strucfA 'b)  closure (b), with equality in case there is no numerical cancellation.

In our context of triangular systems, ignoring such cancellation, truéb) = closurg (b) is

also the set of vertices reachable from stfbjcin G(L "), where edges have been reverses) |
Theorem 2.1]. Finding these reachable vertices can be done using the transitive reduction of
G(LT), which is a tree (the elimination tree) wherresults from the factorization of a matrix

with symmetric (or symmetrized) structure. Since we work with a Tregith possibly more

than one variable to eliminate at each node (supernode), let us 8 a® the set of nodes in

T including at least one element of str(l)t The structure of. 1bis obtained by following

paths from the nodes &4, up to the root. The tree consisting of these paths igptheed tree

of b, and we denote it b¥,(b). The number of operations from Equation {.6) now depends

onh: X
(b= u! (1.8)

u2Tp(b)

Example 1.1. Let b be a vector with nonzeros at positions 4, 13, and 21. The corresponding
tree nodes are given by, = fujoq; Usog; Ugg, See Figured.5and1.7. Following the paths in
T from nodes inv;, to the root results in the pruned tree of Figute’h Compared to = 288
in the case of a dense right-hand side,b) =228 ( 4, = up =65 up = up =125 4, =
u, = 60; y, =72).

We now consider the multiple RHS case of Equatibr2), where RHS columns have dif-
ferent structures and we denoteBythe columns oB,forl i nys. Rather than solving
Nihs SyStems eachswith a different pruned tig€B; ), we favor matrix-matrix computations by
consideringVs = ;1§ .. VB, the un'éon of all nodes i with at least one nonzero from
matrix B, and the pruned tre€,(B) = ; | ,,. Tp(B;) containing all nodes i reachable
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Figure 1.8: lllustration of multiple RHS and tree pruning.corresponds to an initial nonzero
in B andf to “ll-in” that appears inL !B, represented in terms of original variables and tree
nodes. Gray parts df B (resp. ofL !B;) are the ones involving computations when RHS
columns are processed in one shot (resp. one by one).

from nodes inVg. The triangular and update operations4f and (L.5) becomeY;  L,1Y;
andY, Y, LYy, leading to:

X
( B)= nNms u: (1.9)
u2Tp(B)
Example 1.2. Figure 1.8a shows a RHS matrixB = [fB11.10;fBe20;fB13:30;

fB1040;TB2sg] in terms of original variables (1 to 27) and in terms of tree nodes
(Ve = fua12; Ui2; Uzog; Upig; Ug120). In Figure 1.8a corresponds to an initial nonzero in
B andf corresponds to “Il-in” that appears inL !B during the forward substitution on
the nodes that are on the paths from nodes/into the root (see Figure.8h. We have

( B)=5 264=1320and ( B;)+ ( By)+ :::+ ( Bs)=744.

At this point, we exploit tree pruning, orertical sparsity but perform extra operations
by considering globallyT,(B) instead of each individual pruned tré&g(B;). Processind3
by smaller blocks of columns would further reduce the number of operations at the cost of
more traversals of tBe tree and a smaller arithmetic intensity, with a minimal number of op-
erations min (B) = 1., ( Bi) reached whefB is processed column by column, as in
Figurel.84right). We note that performing this minimal number of operations while traversing
the tree only once (and thus accessingltactor only once) may require performing complex
and costly data manipulations at each nadeith copies and indirections to work only on the
nonzero entries df B atu.

We now present a simpler approach which exploits the notion of intervals of columns at
each nodas 2 Ty(B). This approach to exploit what we cdlbrizontal sparsityin B was
introduced in another context].

Working with column intervals at each node Given a matrix8, we associate to a node
u 2 Tp(B) its set of active columns

Zy=f]2fL::;nmsgju 2 Tp(Bj)g: (1.10)



1.3. THE SOLVE PHASE 15

v

- Lifz U111 U112 :Ugp1::U122: Up11 U212 U221 U222
2

i[7] uo ; ,5,5f ; ,4,4f ,1,1f ,3,3f

15
16-18 | f
19-27 [ ]t

(a) Structure of. 'B. (b) Pruned tred,(B) with intervals.

13 £ U221
f
f
f

Figure 1.9: Column intervals for the RHS of FiguteB: in gray (a) and above/below each
node(b). Taking for instancel,;, there are nonzeros in columns 1 and 4, soZhat = f 1; 49.
Instead of performing the solve operationsmiR = 5 columns au,;, computation is limited
to the (Z,,,) = 4 columns of intervalll; 4K (and to a single column ag.g, nodeusyy;).
Overall, ( B) is reduced from320to 948(while min (B) = 744).

The intervaldmin(Z,); max(Z,)Kincludes all active columns, and its length is
(Zy) =max(Zy) min(Z,)+1:

Z, is sometimes de ned for an ordered or partially ordered suBseft the columns oBB,

in which case we will use the notatidh,jr and (Zyjr). Foru in Tp(B), Z, is non-empty
and (Z,) is different from 0. As illustrated in Figur&.9, the idea is then to perform the
operations 1.4) and (L.5 on the (Z,) contiguous columndmin(Z,); max(Z,)Kinstead of
then;,s columns ofB, leading to

X
(B)= v (Zu): (1.11)
u2Tp(B)

Example 1.3.In Examplel.2, there are nonzeros in columns 1 and 4 at nade so that

Z,, = f1,4q (see Figurel.9). Instead of performing the solve operations on&tolumns

at nodeu,;, we limit the computations to thgZ,,,) = 4 columns of intervall; 4K (and

to a single column ate.g, nodeuyy;). Overall, ( B) is reduced froml320to 948 (while
min (B) = 744).

It is clear from Examplel.3 that (Z,) and ( B) strongly depend on the order of the
columns inB.

In the next Section, we formalize the problem of permuting the columBsarid evaluate
the application of the postorder. Chap&will propose a new permutation and an adapted
blocking technique to further decrease the number of operations by identifying and extracting
“problematic” columns.
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Permuting RHS columns

We showed in Sectioh.3.2thathorizontal sparsitan be exploited thanks to column intervals.
The number of operations to solve ?) then depends on the permutation of the colummB of
We express the corresponding minimization problem as:

Find a permutation of f1;:::; n;,sg that minimizes( B; ) = P U2 Tp(B) U ( (Zu);
where (Z,)=1f (i)ji2 Z,9; and
( (Zy)) is the length of the permuted intendmhin( (Zy)); max( (Zy))K
(1.12)
If we assume that we work with a balanced tree in terms of computational cost, we reduce
the problem to the minimization of the sum of all interval length$j(B ) such that:
We rst de ne the notion of node optimality.

have node optimality at, or that isu optimal, if and only if ( (Z,)) =# Z,, where# Z,
is the cardinality oZ,,. Said differently, (Z,) is a set of contiguous elements.

( (Zy)) #Zy,the number of columns (or padded zeros) on which extra computation is
performed, iQif isu optimal.

Example 1.4. Consider the RHS structure of Figuie9a and the identity permutation. We
have node optimality atp because# Z,,, = # f1;2,3;4,59 = 5 = (Z,,). We do not have
node optimality au; and u, because the numbers of padded zeros &#,,) #Z,, = 2
and (Z,,) #Z,, =1, respectively. Our aim is thus to nd a permutatiorthat reduces the
difference ( (Zy)) #Z,.

The postorder permutation In Figurel1.5, the sequencplyiy, Uiio, Ugg, Ugog, Ugop, Ugo,
Ug, Uo11, Uo1, U1, Uoog, Usoo, Ugy, Uy, Ug] USed to order the matrix follows a postordering.

De nition 1.5. Consider a postordering of the tree nodes?2 T, and a RHS matriB =
[Bj]i=1::n Where each columB; is represented by one of its associated naag ) 2 Vg,
(see below)B is said to be postordered if and only i8j1;j2;1 j1<]2 nNms, We have
eitheru(B;,) = u(B;,), or u(Bj,) appears beforei(B;,) in the postordering. In other words,
the order of the columnB; is compatible with the order of their representative nodgs; ).

The postordering has been applié@,[61, 67] to build regular chunks of RHS columns with
“nearby” pruned trees, thereby limiting the accesses to the factors or the amount of computa-
tion. It was also experimented together with node interval$ fo RHS with a single nonzero
per column, although it was then combined with an interleaving mechanism for parallel issues.

In Figure1.93 B has a single nonzero per column. The initial natural order of the columns
(INI' ) induces computation on explicit zeros represented by gray empty cells and we had
(B)=( B; ) =948 and i, (B) = 744 (see Figurel.9). On the other hand, the
postorder permutation,po, reorders the columns & so that the order of their representative
nodesu; o, Uiz, Up11, Unio, Uxpg IS compatible with the postordering. In this case, there are
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Figure 1.10: lllustration of the postordering of two RHS with one or more nonzeros per column.

no gray empty cells (see Figutel0g and ( B; po) = min (B). More generally, it can be
shown that the postordering induces no extra computations for RHS with a single nonzero per
column [L1].

For applications with multiple nonzeros per RHS, each collBnmay correspond to a
setVg; with more than one node, among which a representative node should be chosen. We
describe two strategies.

The rst one, calledPO_1, chooses as representative node the one corresponding to the rst
nonzero found irB; (in the natural order associated to the physical problem). The second one,
calledPO_2, chooses as representative nod&gn the one that appears rst in the sequence
of postordered nodes of the tree. A comparison of the two postorders with the initial natural
order is provided in Tablg for a subset of four problems presented in Tdblef Sectionl.6.

Note that the initial order depends on the physical context of the application and has some
geometrical properties.

Table I: Comparison of the number of operationsl () between postorder strategie® 1
andPO_2

INI PO_1 PO_2 min

HO .086 .076 .070 .050
H3 248 169 147 .95
S5Hz 44 44 .36 22
7Hz 146 148 121 .69

Table | shows that the choice of the representative node has a signi cant impact. The
superiority ofPO_2overPO_1is clear and is larger when the number of nonzeros per RHS
column is large (problems 5Hz and 7Hz). IndeB@_1is even worse than the initial order on
problem 7Hz.

Example 1.5.LetB =[B1;B,;B3;B4; Bs;Bs] = [fB1.1;B10:1; B19:10; f B420; f B133; B15,30;
fB2.30,f Bs.4; B14.4; B2240; f B1g:s0] be the RHS represented in FigutelOh In terms of tree
nodes, we have/g, = fui11; Us11; UoQ, VB, = fU;1210, etc. Because the rowsBfhave already
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been permuted according to the postordering of the tree, the representative nodes for strategies
PO_l1landPO_2are in both cases the nodes;1, Uio1, Upp1, Ui, Ugop, Upig (Cells with a

bold contour), for column®1; B,; B3; B4; Bs; Bg, respectively. The postorder permutation
yields po(B) = [B1;By4;B3; Bs; Bg; B3], which reduces the number of gray cells and the
volume of computation with respect to the original column orderiigB) = 1368 becomes

( B; po) = 1242. Computations on padded zeros still occur, for example at naglgsand

Uz21 where ( PO(Zuzu)) = ( PO(Zuzl)) =5 whereas? ZU211 =# ZU21 =2.

The quality of po depends on the tree postordering.uii; andu;;, were exchanged in
the original postorderind3; andB, would be swapped, further reducing One drawback of
the postorder permutation is that, since the position of a column is based a single representative
node, some information is unused. Other permutations exist that further decrease the number
of operations with respect toro. This motivates a deeper study, that will be the object of
ChapterS.

1.4 Operation count for the solve phase on regular
problems with nested dissection

In this section, we provide an analytical formula of the operation count for the solve phase
on regular problems when nested dissection is applied. We consider a single right-hand side.
We will extend these results to the computation of the asymptotic complexity for sparse right-
hand sides and for low-rank representations in Chapt@ihis section relies a lot on the work

of George B4] who introduced the nested dissection ordering (see Settidd) for regular
meshes. In particular, we use the same formalism based on meshes and elements, although
notation slightly differs.

In [34], George proposed a new ordering strategy for which the number of operations for
the factorization of a sparse matrix of orderesulting from anN N 2D mesh requires
O(n) operations for the factorization a@{n log(n)) nonzeros in thé& factor. The number of
operations for the solve phase, directly related to the number of nonzeros in the factors, is thus
also of the order o®(n log(n)). ForanN N N 3D mesh, the number of operations for the
factorization isO(n?) and the number of nonzeros in thefactor (and number of operations
for the solve) iO(n*3).

To prove this result, the author draws an interesting parallel between the matrix and the so-
called nite element mesin the process of the elimination of variables during the factorization.
Using this model, it is possible to compute precisely the number of operations either for the
factorization or for the solve phase. We thus propose here to describe the method and then
extend it to the computation of formulas on the critical path of the separator tree, with the
objective to assess some intrinsic properties of the solve phase.

Considera2D mesh® N elements, with the strong assumption tRat 2!, forl 2.

Any nodal pointi corresponds to an unknows while any area delimited by edges of the mesh
corresponds to aalement This leads to a matrix of order = (N + 1)2. Furthermore, we
consider as34] a 9-point stencil to connect nodal points. This means that each nodal point in
an element is pairwise connected with all other nodal points of that element. In Hidure
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Figure 1.13: Numbering of variables using cross-shaped separators.

we have a mesh composedmf= 9 nodal points/unknowns and? = 4 elements. In this
mesh point of view, two variables are connected if and only if they belong to the same element.
In particular,x; belongs to all elements so that it is connected to all variakjes: : ; Xg in
Figure1l.11(dense rst column of matriXd). Note that the mesh is included in but different
from the graph(A) introduced in Sectiod.2.1which would, for example, include the edges
from x, to all other variables.

Instead of the graph view of Sectidn2.1where edges were added to the gr&gia) in
order to obtain the lled graph of the facto@&F ), the elimination process is now modeled in
terms of mesh operations: the elimination of one variable induces the removal of the associated
nodal pointand all its connected edges, forming a new element. For example, Figlige
shows the effect of the elimination of variabbeson the IlI-in. The elimination of variable
implies that all variables belong now to the same element and thus become pairwise connected,
resulting in the matrix structure of Figufiel2

The nested dissection process as presented4jyi§ a divide-and-conquer strategy, in
which separators take the form of crosses built with two “spokes” and one “hub”, so that there
are four subdomains per separator, as shown in FifjLiré The variables corresponding to
the subdomains created by the separator are numbered rst (corner vaKaples Xz, X4).
The numbering of the separator variables orders rst the variables of the spokes and then the
variables of the hub. When subdomains are large enough, the process is repeated recursively
within each separator.

We now mention and illustrate in Figurésl4and1.15two different sequences to eliminate
separator variables in corner elements. We note that a corner is compa®ed @ nodal
points @ < k <| , with k = 1; 2 treated as special cases), that the separator cannot divide the
corner in four exactly equal parts, and that it is better to I24e” 2 Y nodal points in the
bottom-left corner at the next level (and orfB* ) 1) (2 Y 1) on the opposite side).
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Figure 1.14: Elimination sequence of spokes3d][for a bottom left corner of a 2D mesh.
Extern spokes are eliminated rst.

Figure 1.15: Elimination sequence of spokes in a classical nested dissection algorithm.
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Figure 1.14 corresponds to the sequence presented4h [It numbers rst the two spokes

that are closest to the border. Figuré5corresponds to the classical sequence of elimination
usually implemented in nested dissection ordering packages and numbers horizontal spokes
before the vertical spoke, although this leads to slightly more operations. In the following, the
rst one will be referred to as the “George” sequence and the second one as the “classical”
sequence

Computation of the number of operations

With such a construction, George gives 8%] Lemma 2.3] the number of operations and the
factor storage associated to the elimination of a spoke or aQhulduring the elimination
process, such a spoke or hub forms part of an element and thus forms a clique, and it is fully
connected to the other variables of the elements it belongs too, &allEdcusing on storage,

the part of thel. factor associated to the correspondimgliminated variables and update of

r eliminated unknowns iss(q;r) = ‘““Lzrl) We note that this formula corresponds to the
number of entries in the factor represented in Figude6, withq= , andr = . Itleads

to a number of operations for the solve equaljo= , ( , 1+2 ), considering one
addition and one multiplication per non-diagonal factor entri jras discussed at the end of
Sectionl.3.1 (In a multifrontal context, , = qis also the number of fully summed variables,

and , the number of non-fully summed variables at a given node of the elimination tree.)
Remark that Lemma 2.3 oBf] is applied rst to the spokes and then to the hub. It is not
applied directly on the unknowns of an entire cross-shaped separator because those are not
fully connected.

Example 1.6.Consider the elimination of the cross-shaped separator of FigLir& Variables

X1; X2; X3 and X4 already eliminated. Then, the rst spokeg is connected tx-; Xxg and Xg.

As a consequence, the number of off-diagonal entries in the columras$ociated tocs is

s(1;3) = 3 and the number of operations ig(1;3) = 6. The same quantities are obtained

for the second spoke. The variables of the hub are connected to no other variables, leading to
u(3;0) =4.

The same approach can be used to compute the operation count on any separator. Thanks
to the strong assumption on the mesh sites 2!, one may determine exactly the operation
count on any separator. The regularity of the mesh and the recursivity of the nested dissection
create sets of separators with equal shapes for which the number of operation can be ef ciently
computed (after dealing with separators located on the borders of the domains), leading to an
analytical expression of the total number of operationas a function of the mesh si2¢.

All materials for a formal proof can be found i84] and we provide here only the formulas.
Because we identi ed two elimination sequences (“George” and “classical”), we provide in the
following two sets of equations:

2For elements not in a corner but on a border of the mesh, George eliminates rst the spoke closest to the
border, then the one on the other side and nally the one parallel to the border. We consider the same is true for
the “classical sequence”, as this leads to slightly less operations.
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Classi

Table II; Ratioﬁ:m; whenN tends tol .

— \ Facto Solve

C

N N 2D-mesh 13.74 2:98log, N
N N N 3D-mesh| 3.95 7.07

Theorem 1.1.LetN = 2! be the 2D-mesh size, with 2. Then, the number of operations
(multiplications and additions) to perform the solve phase is

31 146 176
George(N ) = glogz(N)NZ ?N2+48I092(N)N +6N +8log,(N) + S (1.13)

in the case of George's elimination sequence, and

Classical (N) = 321I092(N)N2 48N2+ 48N log,(N)+6N +8log,(N)+48  (1.14)

in the case of a classical elimination sequence.

The two formulas have been computed using the formal computation tool Maple. We note
that the correct elimination of the corners is useful to slightly decrease the total number of
operations, but this only affects the lower order terms. In the rest of this thesis, we used a
classical nested dissection ordering when dealing with regular problems.

Computation of the critical path

We are also interested in the number of operations on the critical path ngtefithe assem-
bly/separator tree and we have extended this work for its computation.

We identify the critical path as the path in the separator tree containing most of the oper-
ations. As said precedently, using nite element mesh representatid@ptlipe critical path
is composed of sets of spokes and hubs. To identify them, we chose the ones located on the
interior of the domain, for which their numberof connected variables iR is bigger than for
the spokes and hubs on the borders. Using this approach and Maple again, we olbtair2for

. 125 38
glassncal(N) — ﬂN2 10N +4|092(N)+ §: (1.15)

We now divide the total amount of work by the work on the critical path. Since we also
computed formulas for the 3D case (with a 27-point stencil instead of a 9-point stencil in this
case) and for the factorization, we provide in Tabl¢he result wherN tends to in nity for
the different cases, including the constants.

We distinguish two different ways to interpret the ratio reported in Téble

rst, as a theoretical speed-up and thus a metric for tree parallelism;

second, as a lower bound of the gain that one would obtain when exploiting RHS sparsity.
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With the rst interpretation, the ratio represents the speed-up of the solve phase when using
an in nite number of processors, when using tree parallelism only. It thus provides a simple
measure of the available tree parallelism. The second assertion will be discussed and pushed
further together with the use of low-rank approximations in Chaptés a brief introduction,

a sparse RHS, as described in SectloB.2 may be represented by a pruned tigethat is
suf ciently narrow to be considered as a branch of the Teat least asymptotically.

First, we see in Tabld that the ratio (theoretical speed-up and gain due to RHS sparsity)
is always higher for the solve than for the factorization phase, and may even be asymptotically
proportional tdog, N in the 2D case. Second, from 2D to 3D regular problems, we observed
a decrease of the ratio, in other words, a loss of tree parallelism. Indeed, 3D problems tend
to have larger top nodes (size proportionaNsd rather tharN in the 2D case) that become
predominant.

We now provide a short introduction to low-rank approximations, that we will use in Chap-
ter 2 to compute asymptotic complexities of the solve phase in both full-rank and low-rank
settings, for different models of sparse RHS.

1.5 Low-rank matrix formats

In many applications requiring the solution of a dense linear sy#t&m= b, such as the
solution of discretized PDEs, the matéxhas been shown to have a low-rank propefi$j:[

its off-diagonal blocks have low numerical rank, i.e., they can be well approximated by matrices
of small rankr.

Several formats have been proposed to exploit this property depending on how the block
partitioning of the matrix is computed. Let us consider a dense m&tokorderm. In our
context the dense matr will be related to the dense frontal matrix processed at each step
of the mulitfrontal factorization. The simplest format is the block low-rank (BLR) forr&ht [

It partitions the dense matri® with a at, 2D blocking and approximates its off-diagonal
blocks by low-rank submatrices, as illustrated in Figliré6a Compared with the quadratic
O(m?) cost of storingS as a full-rank (FR) matrix, storing its BLR representation only requires
O(m372r1?2) entries p]. One may nd in 49, 64] an exhaustive description of the method.

More advanced formats are based on a hierarchical partitioning of the matrix: 8asrix
partitioned with a2 2 blocking and the two diagonal blocks are recursively re ned, as il-
lustrated in Figuré..16¢ Different hierarchical formats can be de ned depending on whether
the off-diagonal blocks are directly approximated (so-called weakly-admissible formats) or
further re ned (so-called strongly-admissible formats). The most general of the hierarchi-
cal formats is the strongly-admissibte-matrix format B9]; the HODLR format [L7] is its
weakly-admissible counterpart. These hierarchical formats have a near-linear storage complex-
ity O(mr logm). The log factor can be removed by using a so-called nested-basis structure.
The strongly-admissiblél >-matrix format P2] and the weakly-admissible HS$€] format
exploit such nested basis structures to achieve linear complexity ).

More recently, a multilevel BLR (MBLR) formatle] has been proposed to bridge the gap
between at and hierarchical formats. As illustrated in Figlirg6h it aims at nding a com-
promise between the simplicity of the BLR format and the low complexity of the hierarchical
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|
(a) BLR partitioning. (b) MBLR partition- (c) H partitioning
ing.

Figure 1.16: lllustration of different low-rank formats of a dense ma#iaf orderm. Gray
blocks are stored in full-rank whereas white ones are approximated by low-rank matrices.

ones. By setting the number of levels used in the block hierarchy to a given constant parameter
2, its storage complexity can be easily controlled and is equal(ta( *2 =+ ¢ =(+1)),
In this thesis, we will show the impact of low-rank formats on the complexity of the solve
phase with sparse RHS in Chapg&rand present a few results using a block-low-rank solve
implementation in Chaptér.

1.6 Motivations and experimental environment

1.6.1 Experimental environment and computational systems

We rst describe computational systems on which we have run our experiments:

EOS CALMIP supercomputer EG'Swhich is a BULLx DLC system composed of 612
computing nodes, each composed of two Intel Ivybridge processors with 10 cores (total
12 240 cores) running at 2.8 GHz, with 64 GBytes of memory per node.

brunch : machine from the LIP laboratory which has 4 "Broadwell" CPUs (24 cores
each) running at 2.2GHz and 1.5TB of memory.

Moreover, all experiments are performed with the MUMRSIver P, 12]. The MUMPS
solver is a parallel direct solver that implement the multifrontal method. It relies on the elim-
ination tree of the matrix to be factored; in cadds unsymmetric, the pattern & + AT
is used. We refer the reader to the MUMPS User's Guide for more details on the available
functionalities.

Regarding parallelism, MUMPS was initially designed for distributed-memory systems but
also uses multithreaded BLAS and OpenMP in shared memory environments and on clusters
of shared-memory nodes. Then, it takes advantage of both tree and node parallelism: rst, it
uses the inherent parallelism coming from the properties of the elimination tree; second, it also

Shttps://www.calmip.univ-toulouse.fr/
Awww.http://mumps.enseeiht.fr
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Table Ill: Characteristics of the n matrixA andn  n,s matrix B for different test cases.
D(A) = nnz(A)=nandD(B) = nnz(B)=nys represent the average column densitiesXor
andB, respectively.

application matrix | n( 1) | D(A) | sym| nus | D(B)
seismic 5Hz 2.9 24| no| 2302 567
modeling 7Hz 7.2 25| no| 2302, 486
10Hz 17.2 26| no| 2302 486

HO 3 13| yes| 8000 9.8

H3 2.9 13| yes| 8000 7.5

electro- H17 17.4 13| yes| 8000 6

magnetiom H116| 1162 13| yes| 8000 6
modeling S3 3.3 13| yes| 12340| 19.7
S21 20.6 13| yes| 12340 9.5

S84 84.1 13| yes| 12340 8.6

D30 29.7 23| yes| 3914 7.6

distributes suf ciently large nodes following a 1D row-wise partitionning: the so-catladter

holds the fully-summed rows to be eliminated while the off-diagonal block is distributed among
slaveprocesses. The adaptation of distributed-memory parallelism to target the performance of
the solve phase (rather than the factorization phase) will be illustrated in CHapter

1.6.2 Applications

As said previously, the solve phase with a large number of RHS can be a bottleneck. It is even
more the case when low-rank approximation are used because the reduction of the operation
count is larger for the factorization than for the solve. In the following, we describe two types
of applications (geophysics and electromagnetism) which offer the characteristics discussed
previously: many RHS and sparse RHS. We rst give a description of these two applications
and then motivate our work.

The two applications we used were composed of systems of different sizes and different
numbers of RHS. The characteristics of these systems are gathered ilTable

The rst application corresponds 3D seismic modeling based on the Full-waveform Inver-
sion [63] and that is intensively used in the oil industry as part of a seismic imaging work-
ow. The matrices were provided by the the Geoscience Azur laboratory and are used in the
SEISCOPE Consortium. Each matrix corresponds to the nite-difference discretization of the
Helmholtz equation at a given frequency (5, 7, and 10 Hz). It has been shown, in a collabora-
tion between the MUMPS group and the SEISCOPE consortium, that low-rank approximation
can be ef ciently used in this context to speed up the factorizatipn Ve mention that the
exploitation of sparsity in4] is used to speed up the forward substitution.

The second application which will be the subject of an extensive study in Chéapteax
3D electromagnetic modeling applied to marine Controlled-Source Electromagnetism (CSEM)
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Table 1V: Resolution times (analysis has been ommitted) on one matrix from each model pre-
sented (EMGS and SEISCOPE). 90 MPILO OMP on theeOSupercomputer.

‘ Tt Ts Thot

10Hz | 267 (38%) 439 (62%) 706
S21 | 476 (6%) 7819 (94%) 8295

surveying, a widely used method for detecting hydrocarbon reservoirs and other resistive
structures embedded in conductive formations. Matrices were provided by the EMGS com-
pany (Norway). They are built through a nite-difference discretization of frequency-domain
Maxwell equations. During data acquisition from CSEM surveying, transmitters and receivers
are placed on a large surface above the sea oor and thus induce the resolution of large sparse
linear systems with multiple RHS, up to 1000@0[ showed the ef ciency of the application
of a BLR solver to reduce the factorization time but increased the importance of the solve time.

We now motivate the contributions of this thesis by showing in TdWldghe times for
factorization Tt ) and solve {s) and their proportion on the whole resolution. In Table
sparsity is not exploited during the solution phase, and the runs were done with a version of
MUMPS exploiting low-rank compression during the factorization phase but not during the
solve phase. For each application, the BLR accuracy was chosen to match the application
requirements.

We clearly see that the solve phase is the bottleneck in such applications since it takes up to
93% of the total resolution time.

1.6.3 Outline of the thesis

This thesis focuses on the reduction of the cost of the solve phase in the presence of sparse,
multiple, right-hand sides. In Chapt2rwe evaluate the theoretical implication of exploiting
RHS sparsity. Then we improve state-of-the-art algorithms to order and organize computations
on multiple sparse RHS in Chapterand nally concentrate on the practical impact of RHS
sparsity in parallel environments on the CSEM application mentioned above in Chapter
Chapter<, 3 and4 can be read independently from eachother.
We will also see that in these chapters, although the results obtained most often focus on
the exploitation of RHS sparsity in the forward substitution, they can all be transposed to the
backward substitution when only part of the solution is requested.



Chapter 2

On the complexity of the solution
phase with sparse right-hand sides

2.1 Introduction

In this chapter, we consider applications with single and multiple sparse right-hand sides (RHS)
on regular problems ofsiz¢= N N in2Dandn=N N N in 3D, whereN is the

mesh size. As originally presented B and discussed in the introduction of this thesis, RHS
sparsity can be exploited to reduce the cost of the forward substitution of sparse direct solvers.
We will also present new practical approaches to exploit sparsity of multiple RHS in Chapters
and4, but focus here on complexity issues.

Speci cally, the question we aim at answering is whether exploiting the RHS sparsity im-
proves the asymptotic complexity of the solution phase or leaves it unchanged. [Table
Sectionl.4provides a rst partial answer, in the case of a full-rank solver (for one RHS with a
single nonzero). However, we consider a more general setting in this chapter, and include the
case of compressed factor storage thanks to low-rank representations (see 58ction

If C(n) andCFS(n) are respectively the complexities of the solve phase with and without
the exploitation of RHS sparsity, then we examine in this chapter the asymptotic behavior of
the gain notedsFS (n) and expressed as:

C(n) . (2.1)

G>(n) = sy’

In this chapter, we sometimes express these quantities as a functibraafl also use the
notationG=S (N ) = CECS(“('&) with N = nz orN = n3 for 2D and 3D problems, respectively.
Because of the division, we need asymptotic expressions bounded by above and below, and use
for that the big- notation, rather than the bi@-notatiort. The exploitation of RHS sparsity

was presented in Sectidn3.2and is shortly discussed in Sectiar?.2for our purpose. In this
chapter, assuming a given storage complexity for dense matrices that depends on the full-rank

or low-rank format, we rst comput€®S (n) for oneRHS and extend the results to the case of

1By de nition, f (n) = ( g(n)) iff 9C1;Cy;ng > 0; 8n>ng;Cig(n) f(n) Cyg(n).

27
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Figure 2.1: Nested dissection with cross-shaped separators and its corresponding separator tree.

multiple RHS withmultiplenonzeros to give a realistic model of the complexity and properties
of the Equation1.2).

This chapter is organized as follows. In Sectibf, we present general complexity formu-
las of the solve phase, recall how RHS sparsity can be exploited and present model problems
that will be used to validate our theoretical results. We prove in Se2tibthatGES is constant
or nearly constant in the case of a full-rank unstructured solver, whereas it increasasmvith
the case of a low-rank solver. Speci cally, the gain due to the RHS sparsity is of giatgrn)
in 2D and (1) in 3D in the full-rank case, whereas in the low-rank case, it can be as high as
( n¥2) in 2D and ( n*®) in 3D. In Section2.4, we then illustrate these complexity results
with some practical experiments on two real-life applications. In Se&i6nwve consider the
interpretation of the results obtained (Equati@ri)) as a metric for tree parallelism so that all
demonstrated results also give insights on the inherent parallel properties of the solve phase.
Finally, we provide our concluding remarks in Sect@®; in particular, we discuss how our
theoretical results can also apply to the backward substitution when only part of the solution is
needed, i.e., when only a sparse subsét a$ required.

2.2 Preliminaries

2.2.1 Nested dissection and complexity formulas

As discussed in Sectioris2.1and1.4, a widely used approach to limit the size of the factors
(which is proportional to the number of operations in the solve phase), is the nested dissection
ordering B4]. In terms of graph, we recall that it divides the adjacency graph associated with

A into s domain subgraphs separated by a separator subgraph. The process is then recursively
applied to thes domain subgraphs until they become too small to be subdivided again. This
generates a separator tree, as illustrated in Figurevith s = 4 in the case of a 2D regular
domain.

Both the factorization and solution phases then consist in a traversal of the separator tree
where, at each node of the tree, dense operations are performed on the unknowns associated
with the corresponding separator. To be speci c, the forward and backward substitutions take
the form of a bottom-up and top-down traversals, respectively. Since at each node, the dense
operation that is performed is a triangular solve, the complexity of the solution phase will
be directly derived from the complexity m ) of storing a given separator ai unknowns.

If the separator is stored in full-rank (FR) format, its storage complexity i®?). If it is
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Table I: Complexity of the solution phase for a sparse systelh ofN (2D case)oN N N
(3D case) unknowns, assuming a storage complekity ).

Go (N) | Gp (N)
> 2 (N) > 3=2 (N?)
=2 ( N2logN)| =3=2 ( NZ3logN)
< 2 (N? < 322 (N3

approximated by a low-rank matrix format, its complexity depends on which format is used
and has been given in Sectiarb of Chapterl.

Then, the overall complexity of the solution phase is the sum of the storage complexities
over all separators. This in turn depends on the shape and size of the physical domain.

For a two-dimensional (2D) problemof= N N unknowns, the separators are crosses
whose size begins &N at the root of the tree and is then divided by two at each level.
Separators at levéd of the tree are therefore of size N=2¢). Moreover, each separator
subdivides the domain in®= 4 subdomains and thus there dfenodes at levek.

Similarly, for a three-dimensional (3D) problem of sike= N N N unknowns,
there are8< hypercross separators of sizeN 2=4%) at levelk of the separator tree.

When eliminating a cross-shaped separator, spokes are eliminated rst and the hub is eliminated
last (see description of George's algorithm in Sectiof), exploiting some sparsity in the sep-
arator. Since we are interested here in the asymptotic complexity (without the constants), it is
suf cient to consider for each separator the factorization of a dense matrix of size proportional
to that of the entire cross separator. Therefore, the complexity of the solution phase is given by

Ko

Go(N; )= 4 N=2¢ (2.2)
k=0
IXSD k 2_pk

Go(N; )= 8° N°=4" (2.3)
k=0

whereK,p, = (log ,N) = (log ,N?) = Ksp denote the total number of levels in the
separator tree in 2D and 3D, and wherde nes the storage complexity of the format used to
represent the separator®.3) and @.3) are geometric series of common ratjc- 22 and
q=23% 2 , respectively. Using

8 .
X 2 (K)ifqE1;

qk:> lqK+1 - (1) |fq<l,
ko0 td (dH)=(d)ifa>1

we can easily compute the 2D and 3D solution complexities depending on the valu&\eaf
report the result in Table

Note that when considering low-rank matrix formats, the value dépends on the asymp-
totic dependence of the ramkwith respect tan. For example, consider a given format with



CHAPTER 2. ON THE COMPLEXITY OF THE SOLUTION PHASE WITH SPARSE
30 RIGHT-HAND SIDES

Table II: Complexity of the solution phase of a sparse systelh oN (2D case)oN N N
(3D case) unknowns, depending on which of the FR, BLR, MBLR, and hierarchical formats is
used and depending on the rank bound

r=(1) r=( mt?)
Gp (N) Gp (N) Gp (N) Gp (N)
FR 2 ( N2logN) ( N% 2 ( N2logN) ( N%
BLR | 3=2 ( N2) ( N3logN) | 7=4 ( N2) ( N7=2)
MBLR | ((+2)=("+1) ( N?) ( N3 (3'=2+2)=("+1) ( N?) ( NG+ =C+1))
Hier. 1 ( N?) ( N3 3=2 ( N? ( N3logN)

storage complexity( m r ). If r = (1) does not depend om (e.g., a Poisson problem),
then = . However, ifr = ( m'¥™¥) (e.g., a Helmholtz problem), then= + =2

The complexity of the solution phase is given for two types of rank bounds and for the FR,
BLR [5], MBLR [16], and hierarchical formats in Table. Note that throughout this chapter,
we do not need to distinguish between the different types of hierarchical low-rank fothats (
H2, HSS, etc.) since the logarithmic termsrmin the storage complexity do not impact the
complexity of the sparse solution phase.

2.2.2 Exploiting the RHS sparsity

Along with the multiplication of RHS, electromagnetic or seismic applications often feature
RHS characterized by their locality, in other words, their nonzero structure could be very sparse
(tens or few hundreds of nonzero per RHS column). We recall from Chéatew to exploit

this sparsity and how this translates into the computation of a single branch of the separator
tree.

For Ax = bwherebis a sparse vector, it is shown i85 that the nonzero structure bf
after the forward substitution can be predicted a priori, and demonstrat&d]ithat we can
reduce the computation to the set of meaningful variables that are on paths of the separator
tree from the nodes corresponding to initial nonzero variables to the root node. This was also
referred to asree pruningin [61], or vertical sparsityin Chapterl. Therefore, if the number
of nonzero variables is limited, the exploitation of RHS sparsity amounts to the traversal of a
suf ciently small ((1) ) number of branches of the separator tree.

ForAX = B, whereB is a sparse matrix, the computationG@# in the previous context is
not straightforward. Indeed, the optimality that we had in the case of a single RHS may vanish
in the case of multiple RHS. This is due to the de nition of tree pruning, see Chaptbr
other words, the complexit@©S (N; n,,s) may not be equal to,,s times the complexity of one
branchC=S (N ). Indeed, the worst case scenario would be to solve a problem where the pruned
tree would be equal to the initial tree. Then, we would h&7&(N;ns) = C(N;Nys). To
overcome this problem, one optimal approach is the so-cadigdentiabpproach, in which we
sequentially process the RHS one by one. Only then, we may conclude th@i; ns) =
nms C ES(N). Because we also hav®N;n;s) = npms C (N), we may conclude the
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following:

C(N;nrhs) _  DNihs C(N) — C(N)
CES(N;Nms)  Nims C ES(N)  CES(N)

This approach however does not exploit BLAS-3 operations, which are typically an order of
magnitude faster than their BLAS-2 counterpart. We thus wish to process multiple RHS by
groups of enough columns (say, 256 or 512), although this introduces operations on zeros. To
limit the number of operations on zeros and stay close to the minimal number of operations,
one should exploit horizontal sparsity, permutations (e.g. postorder) or blocking techniques, as
discussed in Chaptédr In Chapter 3, new RHS permutations and blocking techniques will be
shown to lead to a number of operations that can be arbitrarily close to that of the sequential
approach, so that EquatioB.4) will hold for multiple right-hand sides. We will develop our
complexity study for increasingly general models of sparse RHS in Seztion

GES(N: Nips) = = GF5(N) (2.4)

2.2.3 Model problems and experimental setting

For the complexity experiments described in the next section, we have used standard Poisson
and Helmholtz operators. The resulting matrices exhibit low-rank properties and will be used
to give an experimental validation of the complexity results obtained.

The Poisson problem generates the symmetric positive de nite matfbom a 7-point
nite-difference discretization of equation

u=f

on a cubic domain with Dirichlet boundary conditions. We perform the computations in double-
precision arithmetic. In case of BLR representation, it may be shown that the rahthe
approximated blocks resulting from the partition is asymptotically equakto(1) [5].

The Helmholtz problem builds matrix A as the complex-valued unsymmetric impedance
matrix resulting from the nite-difference discretization of the heterogeneous Helmholtz equa-

tion, that is the second-order visco-acoustic time-harmonic wave equation

!
1 2

v(x)2

where! is the angular frequency(x) is the seismic velocity eld, andi(x;! ) is the time-
harmonic wave eld solution to the forcing ters{x;! ). The matrixA is built for an in nite
medium. This implies that the input grid is augmented with PML absorbing layers. Frequency
is xed and equal to 4 Hz. The grid intervalis computed such that it corresponds to 4 grid
points per wavelength. Computations are done in single-precision arithmetic. In case of BLR
representation, it may be shown that the rardf the approximated blocks resulting from the
partition is asymptotically equal to= ( m*™).

In our experiments, we use the multifrontal solver MUMPS, in which the BLR format has
been integratedd]. We compute the low-rank approximations to the off-diagonal blocks by
computing theiQR factorization with column pivoting and truncating it after a given threshold
" has been reached (i.e., we stop the factorization after the diagonal elgeiR falls below
"). We refer to" as the low-rank threshold.

ux;!) = s(x;!)
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Figure 2.2: Example of construction of a RHS with 3 nonzeros for strategies®#s and
MINOPs The 3 nonzeros are placed in the 3 lled nodes.

2.3 Complexity analysis

In this section, we provide our complexity analysis of the forward substitution phase when RHS
sparsity is exploited. Since the RHS structure can be arbitrary, one must rely on a particular
structure in order to compute complexity models. We rst present in Seéti®ri some real-

istic models of sparse RHS structures, then provide in Secidh&to 2.3.4our complexity
analysis for these increasingly realistic models.

2.3.1 Models for sparse RHS

Let us rst model one sparse RHS with only one nonzero. As studied earlier, the associated
computations in the pruned tree will be represented as a branch of the separator tree, starting
from the active node, or equivalently the node containing the nonzero variable, up to the root.
We have chosen the position of this nonzero to be located on the leaf that belongs to the critical
path of the separator tree. This corresponds to the worst case scenario. As a consequence,
any RHS structure with a single nonzero will have a complexity bounded by this worst case
scenario. This corresponding theoretical complexity is discussed in S@clich

As a second more general model we consider RHS structures with multiple nonzeros per
column. We notennz the number of nonzeros and consider that it can either be constant, or
growing withN . To do so, we make the following assumptions on the structure of such RHS:

only one nonzero per active node (this is indeed enough because multiple nonzeros per
node would not change the operation count);

the active node is a leaf or is at depthlog(N)); in other terms we do not assume
any speci c property that would imply that the nonzeros are associated to the top-level
separators;

the dependence ovdr of nnz may not be superior tq N).

Based on these assumptions and in order to cover a wide range of cases one may model two
types of right-hand sides:
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MAXOPSs it corresponds to a RHS structure that maximizes the number of operations
during the solve phase. For that, we identify the rst layer, callectdéinget layerof the

tree containing at leasinz nodes in the tree. We piaknz nodes in this layer and pick

a leaf in thennz associated subtrees that we de ne as active, that is, on which we place
a nonzero, as shown in Figuee2a Geometrically, this would translate as a RHS whose
set of nonzeros is almost uniformly spread in a large part of the domain.

MINOPSs. it corresponds to a RHS structure that would be gathered inside a smaller sub-
tree, thus limiting the number of operations. We still pick the nonzeros in the leaves,
but choose the smallest subtree containing at leastleaves, see Figurg.2h Geo-
metrically, this would translate in nonzeros that are all localized in a small part of the
domain.

We will see later that in the context of typical real-life applications, RHS are sometimes assim-
ilated tosourcesgeometrically localized in the domain. This is why we thought thei®IPs
strategy could provide a reasonable model.

2.3.2 ldeal setting: one RHS with one nonzero

In this ideal setting, the forward substitution only requires the traversal of a single branch in the
separator tree. Thus, exploiting the RHS sparsity amounts to dropping the term corresponding
to the number of nodes at levein the complexity formulasa.2) and @.3):

SN )= N = (N ). (2.5)
k=0

CS(N; )= NP = (N2 (2.6)
k=0

We now measure the asymptotic gain obtained by exploiting the RHS sparsity, de ned as

Esng. y— CN; )
G™(N; )= SN ). (2.7)

For the FR unstructured format, we obt&5(N) = ( N2logN)=( N2) = (log N) and
GS(N) = ( N®H=( N4 = (1) . Without the use of low-rank approximations, the gain
due to the exploitation of the RHS sparsity is thus constant or nearly constant (see also the last
column of Tabldl, for 9-point/27-point stencils in 2D/3D, respectively).

Interestingly, this changes when considering low-rank formats. For example, with the BLR
format and assuming = (1) (i.e., = 3=2), we obtainG5(N) = ( N2)=( N33?) =
( N¥2). The asymptotic gais5$ is thus rapidly increasing with the number of unknowns.
Similar results hold for the other formats and for other values tifey are reported in Tabld .
The asymptotic gain can be as high @3\ ) for hierarchical formats.

In Figure2.3, we validate these theoretical results with numerical experiments performed
with 2D and 3D Poisson and Helmholtz problems, and use the same tting methodbhs\We|
compare the asymptotic complexity t of the forward substitution ops depending on whether
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Table Ill: Asymptotic gain due to the exploitation of the RHS sparsity obtained for the forward
substitution phase of a sparse systerlof N (2D case)oN N N (3D case) unknowns,
depending on which of the FR, BLR, MBLR, and hierarchical formats is used and depending
on the rank bound.

r= (1) (Poisson) r = ( m¥2) (Helmholtz)
GS(N)  Gp(N) G5 (N) G55 (N)
FR (log N) (1) (log N) 1)
BLR ( N¥2) (log N) ( N Q)
MBLR | ( N=(*D) ( NC D=C+D) | ( N=@+2) (1)
Hierar. | ( N) ( N) ( N¥2) (log N)

we use a FR unstructured or BLR matrix format, and on whether the RHS sparsity is exploited
or not. For the results with BLR, we use a low-rank thresHold 10 ° for Poisson and

" =10 2 for Helmholtz. Finally, we mention that we have chosen the branch (or the RHS) to
be the critical path of the solve phase.

These experimental results are in relative good agreement with the theoretical gains re-
ported in Tabldll. In fact, the experimental values of the asymptotic gaig(N) obtained
with these problems and the tting method used are always better and, sometimes, even much
better than their theoretical bounds. Although it would be interesting to be able to use larger
problems, possibly avoiding the smallest problems, in order to see the impact on the tting, the
experimental results go in the expected direction.

For the 2D Poisson problem, we obtain(aN %3 logN) asymptotic gain in the case of
the FR format, whereas in the BLR case we obtain a much larger ga{nf?), thereby
con rming our theoretical nding that RHS sparsity bene ts much more from the low-rank
solver. In the 3D case, almost no asymptotic gain is achieved by the FR format, as predicted by
theory; the BLR gain is however much larger than its theoretical predidtmm N ), reaching
( N%€logN).

For the Helmholtz problem, we obtain only a const@gg gain in the 3D case, as expected,
whereas in the 2D case, both the FR and BLR formats bene t from a small asymptotic gain.
Interestingly, when the RHS sparsity is not exploited, the BLR format does not succeed in sig-
ni cantly reducing the global number of ops (triangle and circle curves are indistinguishable
in Figure2.3b), which is dominated by the processing of nodes at the bottom of the separator
tree, whereas a signi cant BLR reduction is achieved (diamond curve is well below square one)
when RHS sparsity is exploited.

2.3.3 Generalization to one RHS with multiple nonzeros

In real-life applications, the RHS typically have more than one nonzero. Let us now consider
the case of RHS withnz nonzeros. Ihnz = (1) , then the theoretical results of the previous
section obviously still hold, since exploiting the RHS sparsity then amounts to trayg)yse
branches of the separator tremz will now be considered as a parameter dependinfylon
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Figure 2.3: Experimental t of the forward substitution complexity for the FR and BLR matrix

formats, depending on whether RHS sparsity is exploited or not.
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Table IV: Complexity of the solution phase with a non-constant number of nonzeros per RHS
of asparse systemdf N (2Dcase)oN N N (3D case) unknowns, assuming a storage
complexity ( m ), when using the Mx Opsmodel.

G5 (N) | G5 (N)
>2 (N) > 32 (N?)
=2 ( NZ?lognnz) =3=2 ( N3lognnz)

<2 (N nnz® J)y| < 32 (N2 nnz@ 2))

In fact, in most applications, RHS do have(d) number of nonzeros. Nonetheless, it is
interesting to evaluate the behavior@® when the number of nonzeros is not constant as it
gives insights on the limits of the application of this complexity study.

Using the M AXOPs model

The rst modelisation represents the worst case scenario where the RHS structure induces a
rapid increase in terms of operations since the pruned tree contains the upper and largest nodes
of the separator tree. The application of tree pruning may thus not be enough to preserve the
results of Sectio2.3.2

We express here the complexity of the forward substitution for the 2D case with the
sparse structure built with the Ak OPs strategy as a function of thenz nonzeros. Let
K1 = log,(nnz) be the depth of the target layer, see Secidhl In the rst K, levels of
the tree, the computation &5 remains unchanged compareddg , and below layeK ; we
compute omnz branches so th&Ss becomes

X1 Keeo
CS(N; ; nnz) = 4 N=2¢ + nnz N=2¢ (2.8)
k=0 k=K 1+1
P :
The rst term can be expressed Ms ki 2@ )k gothat it depends on:
1. Case> 22A=N
2. Case =2:A = NZ?log,nnz

3. Case< 2A=N (2 @ )Xiy= N nnzt =2 sinceK; = log,nnz.

P :
The second term may be expressetNas nnz E§$<1+1 (1=2 )k . Using the fact that

PKZD
k=K1

k — gf1 gfap
q - ]_q

= ( ¢*), we obtain:
N nnz 2 K1 = N nnzt =2

We can conclude that the order @5 corresponds to the order of the rst term. The results
are gathered in Tablk .
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The consequence of the results of Tablas that, using the Mx Opsmodel, the complex-
ity directly depends onnz and we might thus lose part of the asymptotic gain observed in the
previous section. For example, we may choose a model of nonzero snoh as( N ) with
0 1. Then, we see that for = 2 (full-rank case)CS(N) = ( N2logN) = Gp(N)
so that the gain is lost. However, the low-rank approximation witk 3=2 limits the loss
in the sense that as long ax 1, we still have an asymptotic gain. It also proves that, in
this scenario corresponding to RHS nonzeros spread in the domain, having a non-corstant
induces a direct loss ofFS.

Using the M INOPS model

In typical applications from geosciences, the RHS nonzeros represent physical locations sur-
rounding a given point referred to asurce in other words, these nonzeros are geometrically
clustered. First, if the number of nonzeros does not depend ¢nnz = (1) , as in some
applications), the asymptotic complexity results are identical to the ones with a single nonzero
from Sectior2.3.2 Then, with such a con guration of nonzero structureynt is not constant,

our objective is to understand under which condition the theoretical results from S2@&ién

may still hold.

This locality of RHS matches the construction of thez nonzeros using the MOPS
strategy. The forward substitution consists in processing the entire subtree and then traversing
the branch from the root of the subtree to the root of the global separator tree. We mention
that considering the entire subtree whereas there may be slightly less nonzeros than the number
of leaves in that subtree (see the Example of Figu&®) does not change the asymptotic
complexity.

We rst focus on the 2D case. L&t ; be the number of levels of the subtree, d&g =
Ko,p K1 be the number of levels in the remaining branch. We can contputgsing

X1
nnz=  42¢t X) K;= (log ,nnz):
k=0
The root of the subtree is thus of sifeN=2%2) = (2 K1) = ( nnz'¥2). We can therefore
compute the complexity of the forward substitution with sparse RHS mvithnonzeros as
X2 X1
CS(N; ; nnz) = N=2¢  + 4 nnzZ¥=2k (2.9)
k=0 k=0
The rstterm is equal taC5S(N; ) = (N ), while the second term is of ordgr nnz) if
< 2. Thus,aslongasnz ( N ), having multiple nonzeros does not increase the overall
asymptotic complexity of the forward substitutiom)z can thus potentially be nonconstant.
We can prove a similar result in the 3D case:

Iogx nnz
CS(N; ; nnz) = CGS(N; )+ 8¢ nnz=4¢ (2.10)
k=0
from which we conclude that, for< 3=2, GG (N; ) remains of the same asymptotic order
aslongasinz ( N2).
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(a) 2D Poisson problem. (b) 3D Poisson problem.

Figure 2.4: Experimental t of the forward substitution complexity using the BLR matrix for-
mat and exploiting the RHS sparsity, depending on the number of nonzeros of the RHS.

We illustrate this fact in Figur@.4for the 2D and 3D Poisson problems. We mention that
the RHS were built upon the MOPgm)odel with the additionnal characteristic that one of the
nonzeros is located on the critical path. Regardless of the valuezpthe experimental com-
plexity of the BLR forward substitution remains very close (taN ®8) in 2D and ( N%%) in
3D, although some instability is observed forz = N in 2D in our experimental environment.

2.3.4 Generalization to multiple RHS (with multiple nonzeros)

As mentioned in the introduction, we are interested in the case where we have a multiple
number of RHS 5.

If the RHS are processed sequentially then the complexity of the forward substitution is
straightforward to compute and equal to

C=5(N; ; nnz;nims) = Nips C E5(N; ; nnz); (2.11)

which is the best result we can expect since it is linear with respetitdo

However, as explained in Secti@m®.2 this approach does not allow us to exploit BLAS-3
operations. We therefore wish to process the RHS by groups, of &gaize 1.

In Figure2.5, we compare the impact of tree pruning, of the postorder and of the sequential
(RHS processed one-by-one) strategies on 2D and 3D Poisson problems with a RHS structure
following the MINOPs model, where we chose a random subtree for each RHS. We mention
that RHS have a different nonzero structure, that is, for each RHS is associated a different
subtree containing thenz chosen nonzeros, see Sectib.1 We plot the cost of the BLR
forward substitution normalized by the number of RHS, which is here sg{de= bns = 256.
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(a) 2D Poisson problem. (b) 3D Poisson problem.

Figure 2.5: Experimental t of the forward substitution complexity using the BLR matrix for-
mat and exploiting the RHS sparsity, depending on the strategy to process multiple RHS (here,
Nihs = bns = 256 andnnz = 64).

In Figure2.5, the cost is divided by almost 50 (in 2D) and 15 (in 3D) when using the improved
strategy, and we even observe that the application of the Postorder strategy on the RHS built
with the MiNOPsmodel gives the optimal solution, that is the Sequential and Postorder curves
of Figure2.5 overlap. This con rms the effectiveness of the Postorder permutation on such
models (.e., MINOPS).

Thus, in our setting and with our MOPs model to de ne the nonzero structure of each
RHS, the number of operations with the Postorder permutation is optimal even when using
blocks of RHS columns and the asymptotic complexity g&fi is preserved. However, we
may argue that the different models from SectibB.1do not suf ce to describe real-life ap-
plications that do not always reach the optimality of the Postorder showed in RAdire

2.4 Experimental validation on real-life applications

In the following, we observe and discuss the behavior the gain on real-life applications con-
sidering both the number of operations and the time of the forward substitution. To do so, we
took a restricted set of matrices from Tableof Sectionl.6, namely matrices 5Hz, 10Hz from

the seismic application and H3, H17 and S3, S21 from the electromagnetic application. The
results are depicted in Tabl&sandVI. Each couple of matrices derives from the same model
problem so that their matrices differ only by their size (e.g, H17 is larger than H3). We are thus
able to assess the evolution of the gain as the problem size increases.

We used for these results a geometric nested dissection ordering, and a recent version of
the MUMPS solver that includes a Block-Low Rank feature for both the factorization and the
solve stages. We used a 2D block cyclic factorization on the root node (from ScaLAPACK),
so that we do not include ops and timings for that node for the purpose of the comparison.
Furthermore, these results bene t from the work of Chapter 4 (e.g., concerning the organization
of the RHS by blocks and within each block).
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Table V: Number of operationsTable VI: Time (s) and associated gains of
(OPS 10*?) and associated gains dhe forward substitution phase in FR and
the forward substitution phase in FBLR for matrices from the SEISCOPE and
and BLR from SEISCOPE and EMGSEMGS sets. 90 MPI1 OMP onEQOS

OPS do not include the root node whef@mes do not include the root node where

ScalLAPACK is used. ScaLAPACK is used.
ops |FR BLR GR |FR BLR GBWR 1ime |FR  BLR GER | FR BLR GBRR
5Hz 10Hz 5Hz 10Hz

ESOff | 169 126 1.3 |201.6 1149 1.8 ES Off | 50 42 12 | 458 250 1.8
ESOn | 3.3 1.2 28 394 9.0 4.3 ESOn | 26 18 14 | 201 92 2.2
G 5.1 10.5 51 11.7 G 19 23 23 27

| H3 | H17 | H3 | H17

ESOff | 69.7 345 2.0 |777.0 4049 1.9 ESOff | 377 273 1.4 |5449 3097 1.8
ESOn | 10.7 4.2 2.6 | 1019 10.2 10.0 ESOn| 166 119 14 | 1339 630 21
G 6.5 8.2 7.6 40.0 Gs 23 23 41 4.9

| s3 | s21 | S3 | s21

ESOff | 131.4 37.7 3.5 |1521.3432.3 35 ESOff | 641 443 1.4 |6719 3104 22
ESOn | 212 83 25 | 2089 350 6.0 ESOn | 404 255 16 |3748 1386 2.7
G 6.2 4.5 73 124 Gs 16 1.7 18 22

We mention that, for each matrix, the comparison of the values from colsftth gives
insights on the performance of the low-rank compression when exploiting sparsity or not. Sim-
ilarly, values of rowG=S assesses the performance of the exploitation of sparsity when using
low-rank approximations or not.

We recall that the conclusions from Sectipr3 were rst that the acceleration of the for-
ward substitution increases wibh when exploiting sparsity (at least in regular 3D problems)
and second that this acceleration was more signi cant with the use of BLR approximations.
Indeed, we are here interested in the evolutioGot andGPLR as the problem size increases,
that is their evolution on each set of couple matrices. Considé®fitgin FR, the increase
exists but seems moderate (going from 6.5 to 7.6 for matrices H3 and H17 in\Tabt®w-
ever, it is noticeably improved in the BLR case (going from 8.2 to 40.0) and the result remains
true for any other set of matrices. As a conseque@tg,increases more rapidly with BLR
approximations. This is coherent with the theoretical results of Se2tibn

Concerning the timings, we observe a similar tendency in Talealthough less pro-
nounced: the gain due to exploiting sparsity increases more a BLR setting than a FR setting.

2.5 Extension to tree parallelism

We now consider the solve phase in the general case of dense RHS on which we propose to
interpret the previous asymptotic study in this context.

As indicated in Chaptet, tree parallelism arises from the fact that two nodes from different
subtrees can be computed in parallel. A qualitative measure of tree parallelism is the compu-
tation of the so-calletheoretical speed upssociated with the solution of sparse systems. The
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Table VII: Theoretical speed up obtained for the factorization phase of a sparse systenNof
(2D case)oN N N (3D case) unknowns, depending on which of the FR, BLR, MBLR,
and hierarchical formats is used and depending on the rank bound

r= (1) r=( m¥?
Soo(N)  Ssp(N) [ Sio(N)  Sep(N)
FR (1) (1) (1) (1)
BLR (log N) (1) (1) (1)
Hierar.| ( N) ( N) ( N¥2)  (log N)

former metric, noted® supposes an in nite number of processors and it is de ned as the ratio
between the workload on the whole separator tree and on its critical path, that was already in-
troduced in Sectioi.4 and that was noted-. On an in nite number of processors, the solve

time corresponds to the time to compute the critical paghS is thus the maximal quantity of

tree parallelism present in the tree. As a consequence, the larger (resp. thinner) is the tree, the
better (resp. worse) the tree parallelism.

Yet, the speed-up is similar to the de nition 6F° when de ningCES as the complexity to
process one branch of the separator tree (assuming a balanced tree, which is the case on regular
problems). As a consequence, the results previously obtained for the case of a single nonzero
and a single RHS apply to the met&cbut are now to be interpreted differently. Indeed, we
may now conclude from Tablgl that tree parallelism increases asymptotically vthand
that this is even more true when low-rank approximation are used.

The comparison with the factorization stresses one other main difference between the two
algorithms. Indeed, a close comparison of Tablesand VIl shows that the solve algorithm
exhibits more tree parallelism than the factorization. This result gives a valuable insight to drive
the design of algorithms to ef ciently take into account the inherent properties (tree parallelism)
of the solve phase. We will discuss again the different intrinsic properties of the factorization
and the solve phase to drive parallel algorithms dedicated to the solve phase in @hapter

2.6 Conclusion

In this chapter we have investigated the asymptotic complexity of the solution phase of sparse
linear system&X = B with multiple right-hand sides, focusing on the forward substitution
LY = B.

In the case of traditional full-rank solvers, exploiting the sparsityBobnly leads to a
constant or nearly constant gain for 3D problems, thus leaving the asymptotic complexity of
the forward substitution unchanged. However, this is no longer true for solvers based on low-
rank formats, such as BLR or hierarchical formats, for which a signi cant asymptotic gain
is obtained. Speci cally, our theoretical computations prove that exploiting the RHS sparsity
improves the complexity of the BLR forward substitution by a factor of orfler=*) in 2D
(signi cantly larger than the(log n) obtained using traditional solvers) ar{tbg n) in 3D.
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The factor of improvement is even larger for multilevel or hierarchical formats. Our numerical
experiments support these bounds and show that in practice even higher gains are obtained.

Due to this result, the forward substitution becomes dominated by the backward substitution
and thus of negligible cost for large enough problems. Therefore, exploiting the RHS sparsity
divides the cost of the solution phase by a factor of two. Importantly, in some applications, only
part of the solution is needed; thef,is also a sparse matrix and the analysis performed in this
chapter also applies to the backward substitution. In that case, the asymptotic complexity of
the overall solution phase could itself be improved by exploiting the sparsity inBaitnd X .

With the RHS model NNOpPsdescribed in Sectio.3.1, we observed that in the presence
of multiple right-hand sides, the number of operations is optimal, that is, equal to those one
would obtain when treating the RHS columns sequentially, one-by-one. This is indeed due
to the fact that RHS nonzeros were localized within a subtree. However, geometrical locality
could lead to some RHS that are not fully part of low-level subtrees (e.qg. if they are cut by high-
level separators) and we will see why in such cases, the postorder is no longer optimal. One
may also have more general RHS structures that may question the optimality of the Postorder
permutation obtained with the model used in Secfidh4 and the validity of Equation2(4).
In the next chapter, we will propose techniques to limit this number of operations down to an
arbitrarily threshold above the optimum, while keeping large-enough blocks. This will allow
the theoretical complexity results of this chapter can effectively hold in the case of general
multiple RHS.



Chapter 3

On the exploitation of right-hand side
sparsity

We still consider the direct solution of sparse systems of linear equations
AX = B; (3.1)

whereA is ann  n sparse matrix with a symmetric structure dds ann  n,,s matrix of
right-hand sides (RHS). We consider the decomposition LU or A = LDL T with a sparse
direct method 28], and we focus on the ef cient solution of the forward system

LY = B; (3.2)

where the unknowry and the right-hand sidB aren n.s matrices. We will see in this
study that the ideas developed for Equati8r( are indeed more general and can be applied
in a broader context. In particular, they can be applied to the backward substitution phase, in
situations where the systethX = Y must be solved for a subset of the entrieXirf10, 61,
69, 70]. The work presented in this chapter was motivated by electromagnetism, geophysics or
imaging applications that can lead to systems with sparse multiple right-hand sides for which
the solution phase is signi cantly more costly than the factorization phg<].
This chapter assumes familiarity with the notions presented in Chapterelies a lot on

the separator tree (notdd and on the pruned treg,(B), which allows to exclude RHS rows
for which computation can be fully avoideggftical sparsity). We refer the reader to Sec-
tion 1.3.2for an introduction of how RHS sparsity can be exploited and for the other concepts
and notation used in this chapter. We recall that the ef cienchiarfzontal sparsitystrongly
depends on the way the columnsBare ordered, as this impacts the sizes of the inteXals
(de ned in Equation {.10) of RHS columns on which computations are performed for a given
nodeu 2 T. There are , operations per RHS column processed at nodéthe tree, and our
minimization problem (already presented in12) is:

Find a permutation of f1;:::; npsg that minimizes( B; )= P wte) u  ( (Zu);

where (Z,)=f (i)ji2 Z,9; and

( (Zy)) is the length of the permuted intendthin( (Zy)); max( (Zy))K
(3.3)

43
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Figure 3.1: An RHS matriB with multiple nonzeros per column (left), its postorder permuta-
tion ( g1, middle), and a more ef cient permutationds, right).

Restarting from Examplé.5 of Section1.3.2 we present in Figur8.1(left) the structure
of a RHS composed of 6 columns and leading to an amount of computation represented by
the gray cells (see also FigutelOand the details on the operation count in the corresponding
text). With the postorder permutatios o from De nition 1.5, the number of gray cells, and
the number of operations, is reduced. One of the contributions of this chapter is to introduce
a new permutation, represented on the right of Figuiéright), that further reduces the num-
ber of operations with respect to the postorder. The algorithm will rst be introduced for a
nested dissection ordering and for a regular mesh using geometric intuitions, then generalized
to arbitrary elimination trees.

Computation can then be further reduced by dividing the RHS into blocks. However, in-
stead of enforcing a constant number of columns per block, our objective is to minimize the
number of blocks created. If i, (B) represents the number of operations to soB:8)(when
processing the RHS columns one by one, we show on real applications that our blocking algo-
rithm can approach ni, (B) within a tolerance of 1% while creating a small number of blocks.
Please note that RHS sparsity limits the amount of tree parallelism because only a few branches
are traversed in the elimination tree. Therefore, whenever possible, our heuristics also aim at
choosing the approach that maximizes tree parallelism.

This Chapter is organized as follows. In Sectl®d, we introduce a new permutation to
reduce the size of such intervals and thus limit the number of operations, rst using geometrical
considerations for a regular nested dissection ordering, then with a pure algebraic approach that
can then be applied in a general case and for arbitrary right-hand sides. We cafildattiiece
algorithm (hence the name-1 in Figure 3.1) because of the analogy with the ordering that
one would obtain when “ attening” the tree. In Secti8r2, an original blocking algorithm is
then introduced to further improve the at tree ordering. It aims at de ning a limited number of
blocks of right-hand sides to minimize the number of operations while preserving parallelism.
Section3.3 gives experimental results on a set of systems coming from two geophysics appli-
cations relying on Helmholtz or Maxwell equations. Sectb#discusses adaptations of the
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nested dissection algorithm to further decrease computation and S8diehows why this
work has a broader scope than solving Equatig) (@nd presents possible applications.

3.1 The attree permutation

With the aim of satisfying node optimality (see De nitidn4), we present another algorithm
to compute the permutationby rst illustrating its geometric properties and then extending it
to rely only on algebraic properties.

3.1.1 Geometrical intuition

As said previously, the variables of a separat@re the ones of the corresponding nad&
the treeT. We use the same approach to represent a domain: Zof , the domain associated
with u is de ned by the subtree rooted atand is notedr [u]. The set of variables il [u]
corresponds to a subdomain created during the nested dissection algorithm. As an example, the
initial 2D domain in Figure3.2a(left) is T[ug] and its subdomains created by dividing it with
Up areT[u;] andT[u,]. In the following, T [u] will equally refer to a subdomain or a subtree.

We do the strong assumption here that the nonzeros in an RHS column correspond to geo-
metrically contiguous nodes in a regular domain on which a perfect nested dissection has been
performed. For instance, all separators are in the same direction at each level of the tree.
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(a) Flat tree step 1. (b) Flat tree step 2.

Figure 3.2: Flat tree geometrical illustration. In (a) and (b), the gure on the left represents
different types of RHS, and the one on the right the permuted RHS matioxf in a rectangle
indicate the presence of nonzeros in the corresponding submatrix, parts of the matrix lled in
gray are fully dense and blank parts only contain zeros.

The at tree algorithm relies on the evaluation of the position of each RHS column com-
pared to separators. The name at tree comes from the fact that, given a parent node with two
child subtrees, the algorithm orders rst RHS columns included in the left subtree, then RHS
columns associated to the parent (because they intersect both subtrees), and nally, as in an
inorder, RHS columns included in the right subtree.

Figure3.2ashows the rst step of the algorithm: it starts with the root separmagoxrhich
dividesT = T[up] into T[u;] andT[u,]. The initial RHS columns may bieenti ed by three
different types note@, b andc according to their positions and nonzero structures. An RHS
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column is of typea when its nonzero structure is includediu,], c when it is included in
T[u,], andbwhen it isdividedby ug. First, we group the RHS according to their typelg, or
c) with respect taip which leads to the creation of submatrices/subsets of RHS columns noted
a, b andc. Second, we make sure to plasdetweena andc. We thus achieve operation
reduction by guaranteeing node optimalityuatandus,: since all RHS ira andb have at least
one nonzero i [uy], u; belongs to the pruned tree of all of them, hence the dense area lled
in gray in the RHS structure. The same is trued@ndc andu,. By permutingB as[a; b; c]
([c; b; a] would also be possibleg andb, andb andc, are contiguous. Thus(Z,,) =# Z,,,

(Zy,) =# Z,, and we have;; andu, optimality.

The algorithm proceeds recursively on each submatrix created to dbtahnode opti-
mality. First,d;e;f (resp.j, k, |) form subsets of the RHS @ (resp. c) based on their
position/type with respect ta; (resp. u,), see Figure3.2h Second, thanks to the perfect
nested dissection assumptian,andu, can be combined to form a single separator that sub-
divides the RHS ob into three subsetg, h andi. During this second stej® is permuted as
[d;e;f;qg;h;i;j;k;I]. The algorithm stops when the tree is fully processed or the RHS sets
contain a single RHS.

This draws the outline of the algorithm introduced with geometrical considerations. The
permutation fully results from the position of each RHS with respect to separators. However,
the algorithm relies on strong assumptions regarding the ordering algorithm and the RHS struc-
ture. Without them, it is dif cult or impossible to discriminate RHS columns in many cases
(for example, when they are separated by several separators).

In order to overcome these limitations and enlarge the application eld, we now extend
these geometrical considerations with a more general approach.

3.1.2 Algebraic approach

Let us consider the columns Bf as an initially unorderedetof RHS columns that we denote
Rg = fB1;By;:::;Bn,.0. R Rg is a subset of the columns 8f andr 2 R is a generic
element ofR (one of the column®;). A permuted submatrix oB can be expressed as an
orderedsequenc®f RHS columns. For two subsets of colunfRsandR? [R, RY denotes a
sequence of RHS columns in which the RHS from the suRsate ordered before those from
RY without the order withirR andR°to be necessarily de ned. We found this framework of
RHS sets and subsets better adapted to formalize our algebraic algorithm than matrix notation
with complex index permutations.

We now characterize the geometrical position of a RHS using the notipruaed layer
for a given depthd in the tree, and for a given RHS 2 Rg, we de ne thepruned layer
Lq(r) as the set of nodes at demttin the pruned tred,(r). In the example of Figur8.2g
L.(r) = fuigforallr 2 a,Lq(r) = fupgforallr 2 c;andL(r) = fug;u,gforallr 2 b.
The notion of pruned layer formally identi es sets of RHS with common characteristics in the
tree, without geometric information. This is formalized and generalized by De ngi@n

De nition 3.1. LetR Rg be a set of RHS, and l&t be a set of nodes at depdof the tree
T.WedeneR[U]= fr 2 Rj Ly4(r) = Ug as the subset of RHS with pruned layer
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We have for example, see FigBe2 R[fu,g] = a;R[fu,g] = c andR[fuy;u,g] = b at
depthd = 1.

The algebraic recursive algorithm is depicted in AlgoritBri. Its arguments arR, a set
of RHS andd, the current depth. Initiallyd = 0 andR = Rg = R[ug]. At each recursion step,
the algorithm builds the distinct pruned Ia¥,du‘is: Lg+1 (r) forthe RHSr in R. Then, instead
of looking for a permutation to minimize ;1 (rg) u ( (Zy)), it orders theR[U;] by
considering theestrictionof (1.12 to R and to nodes at depth+ 1 of T,(R). Furthermore,
with the assumption that is balanced, all nodes at a given levelfa{R) are of comparable
size. , may thus be assumeambnstantper level and needs not be taken into account. The
algorithm is a greedy top-down algorithm, where at each step a local optimization problem
is solved. This way, priority is given to the top of the tree, which is in general more critical
because factor matrices are larger.

Algorithm 3.1 Flat Tree
procedure FLATTREE(R, d)
1) Build the set of children C(R)
1.1) Identify the distinct pruned layers (pruned layer =
set of nodes)

u ;
forall r 2 Rdo

U U[f Lga(r)g
end for

1.2) C(R)=fR[U]jU2Ug

2) Order children C(R) as[R[U4]; :: s R[Ug c(myll:

return [FLATTREE(R[U]; d+ 1),::;,FLATTREE(R[Uy c(ry]; d + 1)]
end procedure

The recursive structure of the algorithm can be represented by a recursidn.¢rde ned
as follows: each nod® of T, represents a set of RHE,(R) denotes the set of children
of R gnd the root iRg. By construction of Algorithm3.1, C(R) is a partition ofR, i.e,
R = “rocr)R(disjoint union). Note that alt 2 R such that_q4.; (r) = ; belong toR([; ],
which is also included i€ (R). In this special casdy[; ] can be added at either extremity of
the current sequence without introducing extra computation and the recursion stops for those
RHS, as will be illustrated in Figures.3 and3.4a With this construction, each leaf Gfec
contains RHS with indistinguishable nonzero structures, and keeping them contiguous in the
nal permutation avoids introducing extra computations. Assuming that for Ba2hT,e. the
childrenC(R) are ordered, this induces an ordering of all the leaves of the tree, which de nes
the nal RHS sequence. We now explain how the set of childe¢R) is built and ordered at
each step:

1) Building the set of children The set of children oR 2 T, is built by rstidentifying
the pruned layerd) of all RHSr 2 R. The different pruned layers are storedunand we
have for example (Figurd.2, rst step of the algorithm)U = ff u;g;fu,g;fu;;u.gg. We
dene C(R) = fR[U]j U 2 Ug (De nition 3.1), which forms a partition oR. One important
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d A0
 Rug Rluwu] Rlusl
[ui] [uiug] [uz] d L
R R R R R R
} [u11] } [U11U12]} [u12] % o % [u21] % [U21U22]% [uz2] C d

Figure 3.3: A layered sequence built by the at tree algorithm on a binary tree. R§gls

(not represented) could be added at either extremity of the concerned sequence (e.g., right after
R[u;] for a RHS included irnug). With the strong assumptions of FiguBe2, * = R[u11U51],
R[u11U1oU21U05], R[ugoU2,]. Otherwise, * is more complex.

property is that alt 2 R[U] have the same nonzero structure at the corresponding layer so that
numbering them contiguously prevents the introduction of extra computation.

2) Ordering the children The children sequend®[U,];:::; R[Us ¢ (r)]] at depthd + 1
should minimize the size of the intervals for nodeat depthd + 1 of T,(R). The order inside
eachR[U;] does not impact the size of these intervals (it will only impact lower levels). For any
nodeu at depthd + 1 in Ty(R), we have

g (U)
(Zujr) = max(Zyjr) mMin(Zujr) +1= #R[U];

i=imin (u)

whereZ,jr is the set of permuted indices representing the active columns restridiedatal

the index of the rst (resp. last) column iR[U
R[U; . ]JtoR[U

i1 (resp.R[U;,., ). Since all columns from
] are numbered consecutively, we have the desired result. O

I'min Imax

Finally, we minimize the local cost function (sum of the interval sizes for each node at depth
d+1):
X Imag (1)
CoS([R[U1]; :: 5 R[Ug cryll) = # R[U;] (3.4)

u2Tp(R)  i=imin (u)
depth(u)=d+1

randomly inC(R) at the position that minimizes3(4) on the current sequence. To do so,
we simply start from one extremity of the sequence of &ze 1 and compute 3.4) for the
new sequence of sidefor each possible positiod: : : k; if several positions lead to the same
minimal cost, the rst one encountered is chosen. In aaseptimality is obtained for each
nodeu considered, then the permutation is said tgbgectand the cost function is minimal,
locally inducing no extra operations on those nodes.
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1234567 2361754 (Uo)
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ug |f|f|EE [f|f|f flEf|f|f|f|E @@@@ B3 Bg By B7
(a) RHS structure. (b) Separator tre€. (c) Recursion tre@ ¢ .

Figure 3.4: lllustration of the algebraic Flat Tree algorithm on a set of 7 RHS. Small example
with (a) a RHS structure(b) the corresponding tree ar{d) the recursion tree built by the
application of the Flat Tree algorithm on a set of 7 right-hand sides.

Figure3.3 shows the recursive structure of the RHS sequence after applying the algorithm
on a binary tree. We refer to this representation addiiered sequenceFor simplicity, the
notation for pruned layers has been reduced from, fugg to u;, and fromf u;; u,g to u;u,.

From the recursion tree point of vieR[u,]; R[u;u,]; R[u,] are the children oR[up] in Tiec,
R[u11]; R[ui1us2]; R[ugz] the ones oR[u,], etc.

Example 3.1.LetB = [B1;B,;B3; B4;Bs; Be; B7] be a RHS matrix with the structure pre-
sented in Figure3.4a Although we still use a binary tree, we make no assumption on
the RHS structure, the domain, or the ordering in the example of Figuie We have
Rg = R[ug] = fB1;B,;B3s;By4;Bs; Be; B7g. The set of pruned layers corresponding to
Ruo] is U = fuiuz;uy;;iuzg, so thatC(R[uo]) = fR[uiuz]; R[ua]; R[; I R[uiuz]g.  As
can be seen in the non-permuted RHS structRie] = B, at depth 1 induces extra oper-
ations at nodes descendantsugf which disappear when placifg[; ] at one extremity of the
sequence. We choose to place it last and obtain the seqiiBfed; R[uiu,]; R[us]; R[; ]].

A recursive call is done on the identi ed sets, as illustrated in FigBréc SinceR[u4],
R[u,] and R[; ] contain a single RHS, we focus & = R[uju,], whose set of pruned lay-
ers isU = fuzlzp; Uiz; UsoUza; UisUz2g. The sequencfR[Ui]; R[Uz]; R[Us]; R[Us]], where
U; = U, Uz = UgoUag, Us = UpiUsp, andU, = UgiUy; IS a perfect sequence which gives local
optimality. However, taking the problem globally, we see tha,,,) 6 # Z,,, in the nal
sequencégB,; Bs; Bg; B1; B7; Bs; Byl

Although not relying on geometric assumptions, particular RHS structures or binary trees,
computations on explicit zeros (for example zero rows in coldmand subdomair [uy4]
in Figure 3.2b), may still occur with the at tree algorithm. This will also be illustrated in
Section3.3, where ( B; gr1) is 39% larger than ., (B), in the worst case. A blocking
algorithm is now introduced to further redu¢eB; ).
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3.2 Towards a minimal number of operations using
blocks

In this section, we identify the causes of the remaining extra operations and provide an ef cient
blocking algorithm to reduce them ef ciently while creating a small number of blocks. The
algorithm relies on a property of independence of right-hand sides that is rst illustrated, and
then formalized.

3.2.1 Geometrical intuition

The use of blocking techniques may ful Il different objectives. In terms of operation count,
optimality ( min (B)) is obtained when processing the column8adne by one, which implies
the creation ofn,s blocks. However, this requires processing the mgg times and will
typically lead to a poor arithmetic intensity (and likely a poor performance). On the other hand,
the algorithms of SectioB.1only use one block, which allows a higher arithmetic intensity but
leads to extra operations. In the dense case, blocks are also often used to improve the arithmetic
intensity. In the sparse RHS case, blocking techniques with regular blocks of columns have
been associated to tree pruning to either limit the access to the fattrerlimit the number
of operations§7]. They were either based on a preordering of the columns or on hypergraph
models. In this section, to give as much exibility as possible to the underlying algorithms and
avoid unnecessary constraints, our objective is to create a minimal number of (possibly large)
blocks while reducing the number of extra operations by a given amount. In particular, we
allow blocks to be irregular and assume node intervals are exploited within each block.

On the one hand, two RHS or sets of RHS included in two different domains exhibit inter-
esting properties, as can be observed for ae?sT[u,] andc 2 T[u,] from Figure3.2a No
extra operations are introduced between thdma;c]) = ( a)+ ( c¢). We say thaa and
c areindependent setand they can be associated together. On the other hand, a set of RHS
intersecting a separator (such askgehas zeros and nonzeros in rows common to their adja-
cent RHS setsa(andc) which will likely introduce extra computation. In FiguB2h we have
for example ([ a;b]) = ([ d;e;f;g;h;i]) > ([ d;e;f )+ ([ grhii) = ( a)+ ( b)
and ([ a;b;c]) > (a)+ ( b)+ ( c). We say thab is a set ofproblematicRHS. Fig-
ure 1.10(right) gives another example where extracting the problematic RH&dBs from
[B4; Bo; B1; Bs; Bg; B3] suppresses all extra operation$: B4; Bo; Be; B3]) + ([ B1;Bs]) =

min = 1056.

To give further intuition on the Blocking algorithm, consider the RHS structure of Fig-
ure 3.2h Problematic RHS® andk in [d;e;f ;j;k;l] can be extracted to form two blocks,
or groups [e; k] and[d;f ;] ;1]. The situation is slightly more complicated flgy; h;i], where
h indeed intersects two separatang,andu,. In this caseh should be extracted to form the
groups|g;i] and[h]. We note that the amount of extra operations will likely be much larger
when the separator intersected is high in the tree.

Situations where no assumption on the RHS structure is made are more complicated and
require a general approach. For this, we formalize the notiond&#pendencewvhich will be
the basis for our blocking algorithm.
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3.2.2 Algebraic formalization

In this section, we give a rst version of the Blocking algorithm. It is based on a suf cient
condition allowing to group together sets of RHS without introducing extra computation. We
assume the matriB to be at tree ordered and the recursion tigg. to be built and ordered.
Using the notations of De nitior3.1, we give an algebraic de nition of the independence

property:

De nition 3.2. LetU;; U, be two sets of nodes at a given depth of areand letR[U,]; R[U,]
be the corresponding sets of RHHU, ]; R[U;] are said to bandependenif and only ifU; \
U, = ;.

With De nition 3.2, we are able to formally identify independent sets that can be as-
sociated together. Take for exam@e= R][u;] andc = R[u,] (Figure 3.29, R[u;] and
R[u,] are independent an] R[ui]; R[uz]]) = ( R[ui]) + ( RJ[uz]). On the contrary, when

and only ifU; \ U; 6 ;. Several heuristics exist for this problem, and each color will corre-
spond to one group. The blocking algorithm as depicted in Figus¢éraversesl,e. from top

Algorithm 3.2 Blocking algorithm

for d =0 to dmax doO | Rluo]
i O/*#groups at deptl + 1 */ ‘ ]
for all groupsg? at detphd do Rt 91};[52]* ******** o
(o't gl BUILD- | - S —
GRroupgg; d+1) o ot s o a2
/* k new groups have been created */' * * * X * | ——H
i j+k a2 & # v
end for
end for

Figure 3.5: A rstversion of the blocking algorithm (left). It is illustrated (right) on the layered
sequence of Figurg.3. With the geometric assumptions of Figu8®, ! = R[upiuy]; 2 =
R[U12Uz], and 3 = R[U11U12Uz1U52).

to bottom. At each depttl, each intermediate growgd veri es the following properties: (i

order ofT,ec. Then, BJILD GRouPqg?, d+1) rst builds the sets of RHS at depth+ 1, which
are exactly the children of tHe[U;] 2 g in T,ec. Second, BILD GRourPHg, d+1) solves the
aforementioned coloring problem on these RHS sets and buiId<sgmwps(gj‘:’:l1 pil djlk .
In Figure 3.5(right), there is initially a single groug? = [R[uo]] with one set of RHS,
which may be expressed as the ordered sequgice]R[u;U,]R[u.]]. ¢f does not satisfy the

independence property at depth 1 becayseu;u, 6 ; oru,\ u;u, 6 ;. BuiLD GRouPYg?,
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1) yieldsgi = [R[us1]; R[uz]] andg} = [R[uiuz]]. The algorithm proceeds until a maximal
depthdmax: (g3;95) = BuILDGROUPY:;2), (93;93) = BuiLDGRouPqg;;2), etc. To il-
lustrate the interest of property (i), let us take s#ts R[uyi];f = R[uiz];j = R[uz,] and

| = R[uyz] from Figure3.2h Onecanseethg{ d;f;j;I)=( d)+( f)+( j)+( )<

([ d;j;f;1]). Comparedtdd;f ;j ;1] which respects the global attree ordering and ensures
u;- andu,-optimality, [d; j ; f ;1] does not and would thus incread€,,) and (Z,,). Further-

more, Algorithm3.2 ensures the property, that the independent sets of RHS grouped together
do not introduce extra operations:

Property 3.1. For any groupg® = [%Ul]; .1 R[U,]] created through Algorithm3.2 at depth

d, we have( [R[U];::5;RUD = L ( R[UD).

Proof. Ford 1, letg? = [R[U%];-;.....a] be a group at deptthcreated through Algorithr.2
(we use superscriptsin this proof to indicate the depth without ambiguity). Let us split nodes
above (A) and below (B) layetin the pruned tre&,(g"). The number of operations to process
gl is:

X Ze 3 { 2 3 {
( gd) = u (Zujga) = u (Zujga) + u (Zujge); (3.5)

u2Tp(gd) u2A u2B

whereA = fu 2 Ty(g%) j depth(u) <dgandB = fu 2 T,(g?) j depth(u) dg.
(i) We rst consider the term . LetB; = fu 2 T,(R[UY]) j depth(u)  dg. Thanks to
the independence property of tR§U?] forming g%, the pruned layersl® in T are disjoint and

. . . S S
sinceT is atree, we havB;\ B; = ; foralli 6 j. HenceB = _|-n:dlBi, where _denotes the
disjoint union. Therefore,

b S ¢

B = u (ZUj[R[Ujd]j =1 ;un d]) = u (ZUj[R[UJd]

Shnd i=1 u2B;

Ik

j=1=

We recall that a RHS is said to be active at nodeif u 2 Ty(r). In the inner sum, the only
possible active RHS iB; are the ones that belongRjU¢] (independence oLtrﬁ[ngjd]), so that

for allu 2 B, we have (Zuj[R[Uid]i=1 a) = (ZujR[Uid]). Therefore, g = i”fl 2B U

(ZujR[Uid])-

(i) We now consider the termSA. Similarly to (i), we deneA; = fu 2 T,(R[UT)) j
depth(u) < dg. We haveA = ~ 9 A; but the union is no longer disjoint. Lat..(g%) be
the restriction tay of the recursion tre&,.. associated to the at-tree algorithm appliedRg
(see Sectior8.1.2for the de nition of T,ec). Trec(g?) is obtained by excluding at each node
of T,ec the right-hand sides that are not partgdf then by pruning all empty nodes. We also
restrict De nition 3.1to g¢ and thus not®[U] = fr 2 g% j Ly(r) = Ug. In particular, the root
of Trec(g) is R[uo] = g

By construction of Algorithn8.2 (Figure3.5), we know that any layer at depti< d of the
groupg® consists of independent seR$Ujd°] of RHS. Therefore8u 2 A; 9IR[U] 2 Tec(g?)
such thatu 2 U. This means that the only active columns at nad&re those in this unique
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R[U] and, since the RHS iR[U] are all contiguous ig® thanks to the global at tree ordering,
we have (Zujru) = (Zujge) = # R[UL.
Furthermore, by construction of the recursion tree (children nodes form a partition of each
parent node), the RHS iR[U] are the ones in the disjoint union B{UY]  R[U], the sets
Bf right-hand sides at layet that are descendants B[U] in T,ec(g%). Therefore# R[U] =
ruey ruy# RIUT. Furthermore, since thR[US] such thaR[U]  R[U] are contiguous
sets ing® and are all active at node we also have (Zujrey) = # R[U]. It follows:

. X .
(Zulgd) = (ZuJR[Uid]):
R[Uf] R[U]

We de ne ;(u) = 1 if R[UY]  R[U] (with R[U] derived fromu as explained above),
and ;(u) = 0 otherwise. The conditioR[U%]  R[U] means thati is an ancestor ot}
Eodes inT. Thus, {(u) =1 foru 2 A; and ;(u) = 0 foru 2 A;. We can thus write

rut) rul Zuire) = 1 1(W) (Zujrw)) @nd rede ne , as:

d

X _ X X :
A~ u (Zujgd) = u i(U) (ZuJR[Uid])

u2A u2A i=1
x¢ X _
= u i) (ZUJR[Uid])
i=1 u2A
x4 X _
= o (Zulrue:
i=1 u2A;
Joining the terms 5 and g, we nally have:
§ x4 X _ x4 X _ X
(9)= A+ 8= v (Zurup + v (Zulru) = ( RIUD
i=1 u2B; i=1 U2A; i=1

]

Interestingly, Property.1 can be used to prove, in the case of a single nonzero per RHS,
the optimality of the at tree permutation.

Corollary 3.1. Let Rg be a set of RHS such th&8 2 Rg;#V, = 1. Then the at tree
permutation is optimal:( Rg) = min (Rg).

Proof. Since8r 2 Rg;#V; = 1, Ty(r) is a branch ofl . As a consequence, any set of RHS
R[U] built through the at tree algorithm is represented by a pruned lalyeontaining a single
nodeu. At each step of the at tree algorithm (Algorithf11), the RHS sets identi ed are thus
all independent from each other. When applying Algorithu) a unique groufRg is then kept
until the bottom of the tree. Blocking is thus not needed and Progettgpplies at each level
of the recursion. ( Rg) is thus equal to the sum of thé R[U]) for all leavesR[U] of the
recursion tred .. Since ( R[U]) = nin (R[U]) on those leaves (all RHS R[U] involve
the exact same nodes and operations), we concludgtli&t) =  in (Rg). H
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! R[u111] % R[u112] { \ R[u111] 1 R[u112] J
d=1 ¢ o d=1 o«

\ Rlu221] % R[u222] % Rlu21] % Rlu22] { }R[uznuzzzl R[ququ]{ \ Rluz21] % Rlu222] %R[unuzz]{ \ Rlu21] % Rlu2z] T[uzzluzzz{]
d=2 o % d=2 o %
Figure 3.6: Two strategies to build groupsCritPathBuildGroups (left) and

RegBuildGroups  (right).

This proof is independent of the ordering of the children at step 2 of Algorg8dmCorol-
lary 3.1is thus more general: any top-down recursive ordering keeping together RHS with
identical pruned layer at each step is optimal, as long as the pruned layers identi ed at each
step are independent.

Back to the ByILD GRouPsfunction, the solution of the coloring problem may not be
unique. Even on the simple example of Fig@rB, there are several ways to de ne groups, as
shown in Figure3.6for gi: both strategies satisfy the independence property and minimize the
number of groups. The @TPATHBUILD GROUPSstrategy tends to create a large gragand
a smaller onegz. In each group the computations on the tree nodes are expected to be well
balanced because all branches of the tree rootaglmight be covered by the RHS (assuming
thus a reasonably balanced RHS distribution over the tree). The choiceloPAAHBUILD -
GRouPscan be driven by tree parallelism considerations, namely, the limitation of the sum of
the operation counts on thetical pathsof all groups. The RGBuUILD GROUPSstrategy tends
to balance the sizes of the groups but may create more unbalance regarding the distribution of
work over the tree.

We note that for a given depth, applyingyBb GRouPson all groups may not always be
necessary, and that for a given group, enforcing the independence property may create more
than two groups. In the next section we minimize the number of groups created using greedy
heuristics.

3.2.3 A greedy approach to minimize the number of groups

Compared to AlgorithnB.2, Algorithm 3.3 adds the group selection, limits the number of
groups created from a given group to two, and stops depending on a given tolerance on the
amount of operations.

First, instead of stepping into each group as in Algorithi?) we select among the current
groups the one responsible for most extra computation, that is, the one maxingizig

min (@). This implies that groups that are candidate for splitting might have been created at

different depths and we use a superscript to indicate the degthvhich a group was split, as
in the notatiorgy.

Second, instead of a coloring problem which creates as many groups as colors obtained,
we look (procedure BILD MAXINDEPSET) inside the RHS sets aff for a maximal group of
independent sets at depth+ 1, denotedg®., . The other sets are left in another grogh
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whose depth remains equaldogd may thus consist of dependent sets that may be subdivided
later if neededl Rather than an exact algorithm to determifig, , we use a greedy heuristic.
Finally, we de ne ¢ as the tolerance of extra operations authorized. With a typical value
o = 1:01, the algorithm stops when the number of extra operations is within 1% of the minimal
number of operations n,, , returningG as the nal set of groups.

Algorithm 3.3 Blocking algorithm
G f RBQ, min min(RB), (RB)
while = i, > odo
Selectgd such that( gg) min (98) = Mmax g6 (( @) min (9)) . Group selection
(g*l .gd) BuILDMAXINDEPSET(gS, d+1)
G GIf gha:Hgnfgg

d+1

( gg)"'( Oimax +( gg)

end while

3.3 Experimental results

In this section, we report on the impact of the proposed permutation and blocking algorithms on
the forward substitution (Equatio.Q)), using a set of 3D regular nite difference problems
coming from seismic and electromagnetism modelihgd0], for which the solve phase is
costly. The characteristics of the corresponding matrices and RHS are presented ihl Table

In both applications, the nonzeros of each RHS correspond to a small set of close points, near
the top of the 3D grid corresponding to the physical domain, with some overlap between RHS.
Except in SectiorB8.3.3 a geometric nested dissection (ND) algorithm is used to reorder the
matrix.

3.3.1 Impact of the at tree algorithm

We rst introduce the terminology used to denote the different strategies developed in this
study and that impact the number of operationsDENrepresents the dense case, where no
optimization is used to reduce, and TP means tree pruning. When column intervals are
exploited at each tree node, we denoteRAN INI , POandFT the random, initial ( = id),
postorder (pg) and at tree ( rr) permutations, respectively.

The improvements brought by the different strategies are presented inlT&wdenpared
to the dense cas@P divides by at least a factor 2. When column intervals are exploited
at each node, the large gap betw&skNandINI shows that the original column order holds
geometrical properties:T behaves better thdhll andPOand gets reasonably close tg,i, -
Overall, FT provides a 13% gain on average o¥®n However, the gain on decreases from
25% on the 10Hz problem to 1% on the H116 problem. This can be explained by the f&t that
is denser for the seismic applications than for the electromagnetism applications (sdé Yable

In caseg? consists of independent sets and is seleggd, = g¢ will only be subdivided at deptt + 2.
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Table I: Number of operations (10%)
during the forward substitution
(Ly = B) according to the strat-

egy used (ND ordering).

‘ DEN‘ TP ‘ RAN‘ INI ‘ PO‘ FT ‘ min

5Hz 1.73 74 74 44 .36 .28 .22
THz 5.94 2.54 2.52 1.46 1.21 .92 .69
10Hz | 20.62 9.01 8.92 4.78 3.85 2.87 2.26
HO .39 A1 11 .086 .070 .057 .050

H3 7.19 3.33 3.31 2.48 1.47 1.26 .95

H17| 81.34| 37.15| 36.97| 27.52| 10.41| 10.21| 10.12
H116 | 990.02| 448.31| 445.91| 327.89| 123.79| 121.76| 120.68
S3| 13.36 4.98 491 3.73 2.65 2.17 1.71

S21| 156.20| 49.04| 48.07| 35.42| 25.73| 22.53| 19.43
S84 | 983.48| 286.57| 282.70| 222.59| 161.87| 138.56| 118.51
D30| 71.60| 39.78| 39.38| 19.49| 10.93| 10.21 7.31

Table II: Theoretical tree parallelism accord- Table Ill: Impact of the number of groups

ing to the strategy used (ND ordering). NG on the normalized operation count, until
NG= min Decomes smaller than the toler-

ance o = 1:01(ND ordering).

S|DEN| TP|RAN|INI | PO| FT

5Hz | 8.60| 3.91| 3.88| 3.11| 2.39| 2.54 NG= min ‘ FT ‘ NG=2 ‘ NG=3 ‘ NG=4 ‘ NG=5
7Hz | 8.92| 3.97| 3.94| 3.02| 2.25| 2.48 5Hz | 1.283] 1.111] 1.001 N N
10Hz | 9.10| 4.04| 4.02| 2.96| 2.30| 2.30 7Hz 1:321 1:116 1:002 X X
HO | 5.88| 2.11| 2.11| 1.75| 1.51| 1.45 10Hz | 1.269| 1.029| 1.002 X X
H3 | 5.99| 3.22| 3.21| 2.47| 2.02| 2.11 HO | 1.148| 1.029! 1.010| 1.002 X
H17 | 6.32| 3.34| 3.32| 2.54| 2.00| 1.97 H3 | 1.329| 1.068| 1.027| 1.005 X
H116 | 7.92| 3.63| 3.61| 2.75| 2.05| 2.02 H17 | 1.009 X X X X
S3|6.12| 2.84| 2.83| 2.18| 1.73| 1.61 H116 | 1.009 X X X X
S21|6.30| 2.56| 2.46| 1.85| 1.49| 1.47 S3|1.275| 1.120| 1.045| 1.012| 1.003
S84|8.01| 2.41| 2.38| 1.90| 1.53| 1.52 S21|1.160| 1.037| 1.015| 1.003 X
D30 | 8.50| 4.73| 4.70| 2.86| 2.05| 2.56 s84] 1.169| 1.041| 1.015! 1.002 X
D30 | 1.397| 1.082| 1.058| 1.024| 1.004

Indeed, the sparsé&, the closer we are to a single nonzero per RHS in which caseHiosmd
POare optimal.

Second, we evaluate the impact of exploiting RHS sparsity on tree parallelism. ITable
gives the maximal theoretical speed-&iphat can be reached using tree parallelism only (node
parallelism is also needed, for example on the root). It is de ne& as — where ¢,
is the number of operations on the critical path of the tree. We observe that, when sparsity
is exploited, tree parallelism is signi cantly smaller than in the dense case. This is because
the depth of the pruned trég,(B) is similar to that of the original tree (some nonzeros of
B generally appear in the leaves), while the tree effectively processed is pruned and thus the
overall amount of operations is reduced. For the same re&ssrsmaller for test cases where
D(B) is small. For the 5Hz, 7Hz, and 10Hz problems which have more nonzeros per column of
B, besides decreasing the operation count more than the other stratdgeasibits equivalent
or even better tree parallelism thB@ For such matrices, whei2(B) is large,FT balances
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the work on the tree better thd&#Oand reduces the work on the critical path more than the
total work. Overall FT reduces the operation count better than any other strategy and has good
parallel properties.

3.3.2 Impact of the blocking algorithm

First, we show that the blocking algorithm decreases the operation cowttile creating a

small number of groups. Second, we discuss parallel properties of the clustering strategies

illustrated in Figure3.6. In Tablelll, we report the value of!e- as a function of the num-

ber of groups created. x means that the blocking algorlthm stopped because the condition
NG= min o was reached, with for Algorithm 3.3 set to 1.01. Computing from Ta-

blelll the ratio of extra operations reductidn 7mm'” for NG groups created, we observe

an average reduction of 74% of the extra operations vih@&n= 2, i.e., when only two groups

are created. Tablél also shows that yg reaches a value close tOnin Very quickly.

Table IV: Sum of critical paths' operations (0*®) for two grouping strategies when three
groups are created.

"o o(0) || 5Hz | 7Hz | 10Hz| HO | H3
CRITPATHBUILD GROUP .092‘ .30‘ 1.00‘ .037‘ 50

REGBUILDGROUP | .12| .43 | 1.58|.044| .72

In TablelV, we report the sum of operation counts on the critical pathsover all groups
created using € TPATHBUILD GRoUuPand REGBUILD GROUPstrategies, when the number of
groups created is three, leading to a valuelose to i, , see column “NG=3" of Tabldll .

In this case, the total number of operationgluring the forward solution phase on all groups
is equal whether we useRCTPATHBUILD GROUP or REGBUILD GROUP. Tree parallelism is
thus a crucial discriminant between both strategies, and we indeed observe in\Tabb
CRrRITPATHBUILD GROUP effectively limits the length of critical paths over the three groups
created, justifying its use.

3.3.3 Experiments with other orderings

As mentioned earlier, several orderings may be used to order the unknowns of the original
matrix, thanks to the algebraic nature of our at tree and blocking algorithms. Although local
ordering methods (AMD, AMF as provided by the MUMPS pacKagee known not to be
competitive with respect to algebraic nested dissection-based approaches such as $6OTCH
METIS* on large 3D problems, we include them in Tablén order to study how the at tree
and blocking algorithms behave in general situations.

First, an important aspect of using other orderings is that they often produce much more
irregular trees, leading to a large number of pruned layers to sequencd:TTermutation

2http://mumps.enseeiht.fr/
Shttp://www.labri.fr/perso/pelegrin/scotch/
“http://glaros.dtc.umn.edu/gkhome/metis/metis/overview



58 CHAPTER 3. ON THE EXPLOITATION OF RIGHT-HAND SIDE SPARSITY

Table V: Operation count(  10*®) for permutation strategieBO and FT, and number of
groups NG required to reachc- 1:01 for blocking strategielREGand BLK. Different
orderings (AMD, AMF, SCOTCH, METIS) are used.

AMD \ AMF \ SCOTCH \ METIS

PO[REG| FT |BLK] [ PO[REG| FT|BLK] [ PO[REG| FT|BLK] [ PO[REG| FT|BLK]
min min min min

NG NG NG NG NG NG NG NG
SHz| 1.44] 53] 1.36] 4| 125 75| 51| 87| 7| .68] 47| 328] 32| 3| .25] 43| 230] 30| 3| .24
7Hz| 503 38| 444 4| 435 153| 18| 17.8| 12| 14.9|1.60| 287|114 3| .86| 1.42| 230|1.08| 3| .82
10Hz| 19.3| 154| 19.8| 3| 153| 96.9| 253| 99.1| 11| 82.1|586| 288|4.21| 3| 3.05 4.67| 281|344 3| 2.53
HO| 54| 533| 53| 4| 47| .12[333| .12| 5| .091|.073| 499|.063| 3| .055| .077| 615|.067| 3| .057
H3| 135 380 106| 5| 9.07| 101| 63| 134| 17| 9.26|2.19| 615/ 1.76| 5| 1.18| 1.95  533|153| 5| 1.2
H17| 183| 266| 226| 7| 136| 467| 173| 558| 50| 396|22.8| 380|19.0| 5| 12.6/21.49| 242|168 4| 123
H116| 2244| 12244 1| 2244|39383| 139384 1|39383| 201| 109| 224| 4| 153| 264| 78| 215| 4| 157
S3| 20.9| 725| 17.9| 6| 15.1| 20.7| 184| 24.8| 10| 17.8| 45| 771|341| 5| 2.72| 324 771|264| 5| 2.09
S21| 393| 685| 349| 5| 311| 1141| 493| 1352| 77| 831|50.9| 492|39.6| 4| 317 34.3| 223|285 5| 24.9
S84|3025| 352|2848| 5| 2501| 38664| 725| 45346| 213|30977| 289 286| 228| 4| 193| 207| 171| 174| 4| 151
D30| 115| 111] 121| 8| 945| 1015| 139| 1280 75| 825|16.7| 156|12.8| 5| 877 155| 144|130 5| 861

reduces the operation count signi cantly with SCOTCH and METIS, for which we observe an
average 31% and 26% reduction compared tdP®permutation. Gains are also obtained with
AMD for most test cases. HowevéT does not perform well with AMF. This can be explained
by the fact that AMF produces too irregular trees which do not t well with our design of the
FT strategy.

Second, we evaluate the blocking algorithBlK) and compare it with a regular blocking
algorithm REQ based on th®Opermutation, that divides the initial set of columns into regular
chunks of columns. Tabl shows that the number of groups required to reach  1:01is
much smaller foBLK than forREGin all cases. Our blocking algorithm is verFlyn/ ef cient with
most orderings except AMF, where the number of groups created is high (but still lower than
REG.

3.3.4 Sequential performance

We analyze in this section the time for the forward substitution and for the at tree and blocking
algorithms on a single Intel Xeon core @2.2GHz. A performance analysis in multithreaded or
distributed environment for the largest problems is out of the scope of this study. InViigble

we report the time of the forward substitution of the MUMPS solhaard the percentage of
time spent in BLAS operations, excluding the time for data manipulation and copies. Timings
with the regular blockindREGto reach our target number of operationg'{-  1:01), at the

cost of a larger number of grougsG 1, are also indicated.

Table VI shows that the time reduction is in agreement with the operations reduction re-
ported in Tablel. One can also notice that when exploiting sparsity, the proportion of time
spent in BLAS operations increases. This is due to the fact that the relative weight of the top
of the tree (with larger fronts for which time is dominated by BLAS operations) is larger when
sparsity is exploited. When targeting a reduction of the number of operations with a regular
blocking REG, the large number of blocks (last column of Table makes the granularity
of the BLAS operations too small to reach the performance oBlhi€ strategy. On the other

Shttp://mumps-solver.org
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Table VI: Time (seconds) of the forward substitution according to the strategy used and number
of groups NG created witBLK andREG(ND ordering). The percentage of actual computation
time (BLAS) is indicated in parentheses.

| DEN TP INI PO REG FT BLK || NGgik NGreo
5Hz| 3132(34) 561(80) 305(88) 246(89) 429(95) 190(89) 148 (91) 3 328
7Hz | 9101 (40) 1727(89) 951(93) 784(94) 1137 (97) 594 (94) 460 (95)3 255
HO | 862(58) 161(82) 125(85) 97(89) 88(96) 79(89) 67 (42) 4 328
H3 | 12419 (72) 4478(92) 3274 (94) 1901 (96) 1709 (98) 1624 (96) 1234(97)4 306
S3 | 26328 (64) 6839 (89) 5005 (92) 3429 (95) 3450 (99) 2804 (96) 2195((97)5 536

(a) Matrix H3 from EMGS. (b) Matrix 5Hz from SEISCOPE.

Figure 3.7: Number of operations for the forward substitution as a function of the number of
groups created with theEGstrategy.MIN andTOL are respectively i, and1:01 min -
ND ordering is used.

hand, Table/1l shows that larger regular blocks improve the G op rate but are not competitive
with respect tBLK because of the increase in the number of operations. We also observe that
the best block size fdREGIs problem-dependent.

In Figure 3.7, we represented for the two matrices H3 and 5Hz the number of operations
when increasing the number of regular groups created. This gure con rms the dif culty of
theREGstrategy to decrease ef ciently the number of operations down to a low threshold, here
1:.01 min - Figures3.7aand3.7bboth show a decrease for the rst 50 groups but then the
REGstrategy experiences a plateau before reaching the requested threshold. We also mention
the irregularity of the decreasing and expect the same behavior for other matrices. Overall, it is
dif cult to determine the number of groups that should be chosen foR#@strategy.

TableVIll relates the execution time of the at tree and blocking algorithms. The execution
times are reasonable compared to the corresponding execution time of the forward substitution.
Moreover, we observe that the time of the at tree algorithm only slowly increases with the
problem size. The time of the blocking algorithm, due to its limited number of iterations, is not
critical.
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Table VII: Operation count (10'%) and time Table VIII: Time (seconds) of the at tree

(seconds) oREGfor different block sizes. and blocking algorithms for different order-
ings.
REG 64 128 256 512 1024
T | T | T | T | Ts
ND AMD AMF SCOTCH METIS
5Hz | .24 188 .25 179| .27 188 .27 188 .31 209 ET BLK‘ ET BLK‘ ET BLK‘ ET BLK‘ FT BLK
7Hz | .74 558| .78 538 .86 575 .93 611| .98 643
5Hz| .77 .11 .64 .19/135 .34 .79 .20|1.02 .13
HO | .051 77| .051 74| .052 72| .054 74| .058 79 7Hz | 1.30 .30/ 156 .62/ 568 39/185 .56/248 .34
H3 .98 1447| 1.02 1405| 1.04 1369 1.09 1407 1.16 1499
HO .09 .04/ 172 .04 .13 .04 .09 .02| .12 .04
S3 | 1.75 2533| 1.78 2448 1.80 2358 1.86 2379 1.91 2424 Ha3 52 26156 29115 30| 55 24| 115 54
S3 .88 .33] 220 .41|251 13] .84 .36|1.75 .49

3.4 Guided nested dissection

Given an ordering and a tree, one may think of moving the unknowns corresponding to RHS
nonzeros to supernodes higher in the tree with on the one hand, a smaller pruned tree, but
on the other hand, an increase in the factor size due to larger supernodes. Better, one may
guide the ordering to include as many nonzeroB ads possible within separators during the
top-down nested dissection and prune larger subtrees. This will however involve a signi cant
extra cost for applications where each RHS contains several contiguous nodes in teeygrid,

form a small parallelepiped. For such applications, the geometry of the RHS nonzeros could
however be exploited. A rst idea avoids problematic RHS by choosing separatoicotina
intersect RHS nonzeros. Although this idea could be tested by adding edges between RHS
nonzeros before applying SCOTCH or METIS, this does not appear to be so useful in our
applications, where we observed signi cant overlap between successive RHS. Another idea,
when all RHS are localized in a speci ¢ area of the domain, is to shift the separators from the
nested dissection to insulate the RHS in a small part of the domain. Such a modi cation of
the ordering yields an unbalanced tree in which the RHS nonzeros appear at the smaller side
of the tree, improving the ef ciency of tree pruning and resulting in a reductiongf , and

thus . This so calledyuidednested dissection was implemented and tested on the set of test
cases shown in Tabl, where we observe that the number of operatiops, is decreased,

as expected. Since the factor size has also increased signi cantly, a trade-off may be needed to
avoid increasing too much the cost of the factorization.

Table IX: Number of operations ., and factor size for original (ND) and guided (GND)
nested dissection orderings.

Matrices | 5Hz | 7Hz | 10Hz | Ho | H3
Strategy | ND | GND | ND | GND | ND | GND | ND | GND | ND | GND
mn( 109 | 22| 19| 69| .62|2.26| 1.99|.050| .025| .95| .81

factor size (10°) [ 3.72| 5.18|12.8] 19.7] 44.8| 73.4| 24| .37|4.50| 5.57
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3.5 Applications and related problems

We describe applications where our contributions can be applied. When only part of the so-
lution is needed, one can show that the approaches described in Seétidoan be applied

to the backward substitutio®J(X = Y'), which involves similar mechanisms as the forward
substitution 1, 69. The backward substitution traverses the tree nodes from top to bottom
so that the interval mechanism is reverses, the interval from a parent includes the intervals
from its children and the properties of local optimality are preserved. If the structure of the
partial solution requested differs from the RHS structure, another call to the at tree algorithm
must then be performed to optimize the number of operations. Exploiting sparsity also in the
backward step can for instance be useful in some augmented appro&dghesipal with small
matrix updates without complete refactoring, and in some 3D EM geophysics applicétihns [
Another application of this work is the computation of Schur complements, where instead of
truncating a factorization of the whole systégh§ ), one exploits the factorization &f to use
triangular solves with sparse RHS. Taking the symmetric case vthereB ', the Schur com-
plementScanbewritterS§=D BA BT"=D B(LLT) B"=D (L B")T(L BT),

as in the PDSLin solverd[7]. SinceB is sparseB°= L BT can be computed thanks to the
algorithms developed in this chapter before computing the sparse pB&R:?

Finally, we comment on related problems and algorithms. We indicated that the blocking
algorithm is closely related to graph algorithms like coloring and maximum independent set.
Concerning the minimization problem.(l2 which we addressed with the at tree algorithm,
it can also be regarded globally: using the structurk of8, the objective is to nd a permu-
tation of the columns that minimizes the sum of the intervals weighted it his interval
minimization problem is similar to a sparse matrix pro le reduction problém $4] (and we
thus suspect it to be NP-complete). As mentioned in the introduction, hypergraph models have
been used in the context of blocking algorithms, with different constraints and objectives com-
pared to ours]0, 67]. ModelingL B as an hypergraph might lead to other heuristics than
the at tree algorithm using some variants of hypergraph partitioning, although dense parts in
L !B might need special treatment. One advantage of our permutation and blocking algo-
rithms is that, instead of tackling the problem globally, they decompose the problem into easier
subproblems with low complexity by making use of the separatorTtrekereby exploiting the
fact thatL B has a very special structure closely related to the tree. In the context of general
unsymmetric matrices, the structure of the solution of the forward step is given by the set of
reachable vertices in the elimination dagLdf [36]. To make the elimination dag a tree to be
used in our context, one could consider adding a limited number of entrles $imilarly to
the case of matrices with a symmetric or quasi-symmetric pattern for which the elimination tree
of the matrixA + AT is used, one could add entrieslirhaving a symmetric counterpart ih
Another possibility is to use the work presented 3@][that extends the notion of elimination
tree to unsymmetric matrices by considering paths in the factor matrices to characterize the
elimination tree. How useful this generalization of the elimination tree can be in our context
would deserve to be further studied.
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3.6 Conclusion

We introduced permutation and blocking algorithms to improve the tree pruéihi@ihd the

node interval 1] algorithms. A rst contribution is the “ at tree” algorithm which permutes

RHS to reduce the cost of the forward substitution. A second contribution is a blocking al-
gorithm that further decreases this cost by adequately choosing groups of RHS that can be
processed together. Although both algorithms are based on geometrical observations, they are
designed with an algebraic approach, giving a general scope to this work. Notions of node
optimality and RHS independence were introduced and formalized, together with theoretical
properties to provide insight and to support the proposed algorithms. Experimental results
on real test cases showed the effectiveness of both the at tree and the blocking algorithms.
Compared to a postorder-based permutation, the at tree permutation showed an average (resp.
maximum) gain of 13% (resp. 25%) on the total operation count with a nested dissection order-
ing, and interesting parallel properties. Moreover, results with the blocking algorithm validated
our approach since only a handful of groups is created compared to several hundreds when
using a regular blocking technique. Furthermore, sequential performance results con rmed the
good potential of the proposed approaches. Finally, we have discussed possible variants of the
nested dissection ordering to exploit RHS sparsity, and discussed possible applications of these
contributions regarding for example the backward substitution and the computation of Schur
complements.



Chapter 4

On the parallel ef ciency of the solve
phase with multiple sparse right-hand
sides

In this chapter we consider an approach to solve marine controlled-source electromagnetic
(CSEM) for which the solution of sparse linear equations with a large number of sparse right-
hand sides (few thousands RHS) is required. In this context, the solution phase becomes the
most critical step of the complete simulation. This observation has motivated a very fruitful
collaboration with a research group at EMGS ASA

In this application, each RHS corresponds to a CSEM source or receiver and one of the
objectives of this chapter is to carefully explain the relations between the application and the
sparsity structure of both the right-hand sides and requested entries of the solution at each itera-
tion of a Gauss-Newton method. To explain how sparsity can be exploited to reduce operations
and to exploit parallelism, we relate the sparsity and the ordering of the columns of the RHS to
geometric properties of the sources/receivers of the CSEM application. Doing so it is possible
to give a geometric intuition of the proposed algorithms without using all the graph formalism
introduced in the previous chapter. We also describe performance improvement of the solve
phase for applications with many RHS.

Note that this work has been done in parallel of Chafteo that results do not take into
account the at tree and blocking algorithms introduced in Chaptdihis will be the object of
Chapter5. This chapter is intended to be self-contained and thus may brie y rede ne notions
that were previously introduced in Sectibrs.2

4.1 Introduction

It was demonstrated in 2002 that marine controlled-source electromagnetic (CSEM) method
could be used to detect offshore hydrocarbon resen®iis Qver years the CSEM method has
become an established tool for oil and gas exploratiaf, fand the technology development

lwww.emgs.com
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keeps going at a high pac&(. Successful interpretation of the growing volume of geophysical
CSEM data, including also land EM dat], requires ef cient large-scale 3D electromagnetic
(EM) modeling algorithms.

Among various approaches to handle 3D EM problems, the most popular is to solve a
sparse linear system of frequency-domain Maxwell equations built using nite-difference or
nite-element methods]8, 23]. Recent applications of the Gauss-Newton inversion algorithm
to large-scale marine CSEM problems indicates that it is very ef cient and will likely become
the standard inversion approach in the nearest futilile The Gauss-Newton method requires
that the linear system is solved for all transmitter positions in a given survey often resulting in
several thousands of RHSs. The system of linear equations may then take tihéXorm S,
whereM is a sparse symmetric matrix of sime n, while RHS matrixS and solutionX
are of sizen m. Such systems can be solved with iterative methods which in general are
relatively cheap in terms of memory and computational requirements, but may have conver-
gence issues in some cases. In this case the cost is proportional to the number of right-hand
sides, i.e. the number of EM sources. Direct methods are numerically robust and well suited to
multi-source simulations since once the matrix factorization is performed, only the solve phase
needs be applied on all the right-hand side vectors. The complexity of the factorization phase
can be a bottleneck for large 3D problems since the number of oating-point operations scales
asO(n?) and the number of nonzero entries in the facto@(8*=3) which is also proportional
to the complexity of the solve phase. However, in the context of CSEM applications, it has
been shownq(] that using Block Low-Rank (so-calleBLR) format and related approxima-
tions signi cantly improves the performance of the direct approach, making it competitive with
respect to iterative approaches. Indeed, the complexity of the factorization can be reduced to
O(n*3) for a simple block low-rank (BLR) formag] or O(n) for fully structured hierarchical
formats p5]. Thanks to the improvements of the factorization phase due to low rank com-
pression (further improved irb[ 6] with respect to §0]), and since CSEM modeling involves
thousands of right-hand sides, the time needed to perform the complete CSEM simulation be-
comes largely dominated by the solve phase of the direct solver. Furthermore, the complexity
of the solve ste®(n*?) (multiplied by the number of columns &) becomes comparable to
that of a low-rank factorization, so that the cost of the solve phase will become more critical as
the sizes of the problems grow.

To improve the performance of the solve phase in the context of many right-hand side vec-
tors, we rst explain how to exploit both the structure of CSEM sources and the fact that only a
partial solution might be needed. Indeed, the positions of the sources in the 3D domain de ne
the sparsity structure of the right-hand sides and the locations where the solution is required. It
was showed in35] that the nonzero structure ¥f, after the forward substitution, could be pre-
dicted beforehand so that one could only target the nonzero variables and thus limit the number
of operations, see Chapter This was also referred to age pruningin [61]. In the context
of computing selected entries of the inverse of a matti§,[the notion of intervals combined
to an appropriate column permutation of the right-hand sides was introduced. We will explain
why such techniques can be applied or adapted in the context of the CSEM application.

In the chapter we also introduce several new algorithms and techniques to improve the
performance of the solution phase for CSEM applications on modern parallel architectures.
In a distributed memory parallel environment, how computational tasks are mapped onto the
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computer nodes is critical for performance. Mapping controls the equilibration of the work
between processors and is driven by factorization phase metrics. We show that using workloads
metrics from the solution phase can improve the overall performance of the CSEM simulation.
Finally to bene t from good arithmetic intensity and parallelism, large blocks of right-hand
sides must be processed simultaneously. For this approach to be ef cient, we show that locality
of computations should be improved during the solve phase, especially when several threads
are used within each distributed memory process (MPI process). This corresponds to an hybrid
distributed-multithreaded setting, well adapted to the clusters of multicore processors that we
target in this type of applications.

This chapter is organized as follows. In Sect, we describe our frequency-domain
nite-difference EM modeling approach in the context of nested dissection, and emphasize on
the structure of the right-hand sides. We also describe the test problems and show how much
the cost of the solve phase of a direct solver can be critical for CSEM applications, compared to
the other phases of a direct solver. We consider direct methods based on a multifrontal approach
[28, 30] even if the proposed algorithms are more general and could also be applied to other
sparse direct methods. A brief background on direct solvers, with a focus on the solve phase
is then provided. In SectioA.3, we explain how the sparse structure of the right-hand sides
(RHS) may in uence the solve phase and can be used to reduce the amount of computations.
In Sectiord.4, we discuss parallel aspects of the solution phase. First, we propose strategies to
balance the workload for the solution phase, which differ from the ones typically used for the
factorization. Then, we show that RHS sparsity and parallelism are contradictory objectives and
present ways to group RHS columns together to recover some parallelism. While RHS sparsity
can only be exploited during the forward substitution, we show in Seetibhat the same
ideas can be transposed to the backward substitution, leading to further computational gains.
This is due to the particularity of the CSEM application where only part of the solution may be
needed. Sectiod.6then studies and illustrates the effects of each of the proposed algorithms
on the performance of the solve phase. The global results are summarized in Se&ton
showing that thanks to this work, a direct approach becomes very competitive with the iterative
approach previously used. Concluding remarks are provided in Secfion

4.2 Background and motivations

4.2.1 Finite difference electromagnetic modeling

The frequency-domain Maxwell equations in the conductive earth in a presence of a current
sourcel can be approximated as follows:

rr E it E =i J; 4.1)

whereE is the electric eld, isthe conductivity tensor, is the magnetic permeability, ahd
is the frequency. Using nite differences on a grid of side= Ny, Ny N, corresponding to
the discretization of the physical domain, the electric eld has three compokgnks;; E; at
each grid point and can be approximated by solving linear systems of thé/faxns s, where
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Figure 4.1:(a) Schematic example of a CSEM survey with locations of receivers (blue circles)
and transmitter positions (brown circlegh) Entries of the nal solution are those inside the
“box” centered around the corresponding sousce (c) Entries of the nal solution corre-
spond to a subset of nodal points uniformly distributed in the domain.

M is a sparse matrix of order = 3N ands is a source vector resulting from the right hand-
side in Equation4.1). M can easily be made symmetric. Let us now discuss the properties
of RHSs and the solution that follow from the geometry of marine CSEM surveys as well as
inversion approaches used to analyze CSEM data.

The CSEM receivers are typically placed at the sea oor in a regular grid with 1-3 km
spacing, while the transmitter is towed above the receiver lines. To achieve illumination of
subsurface with different transmitter orientations, two orthogonal directions of towlines are
often chosen. A schematic picture of such a CSEM survey outline is presented in &iare
where receiver locations are indicated with blue circles. Yellow circles along the towlines
indicate transmitter locations: itis usually assumed that distinct transmitter positions are spaced
by 100 m. Since the transmitter is moving, while seabed receivers are xed, the number of
transmitters, is much larger (by 1-2 orders of magnitude) than the number of receivers

The number of right-hand sides is determined by the inversion algorithm used to analyze
CSEM data. The gradient-based (BFGS) schenigif relatively cheap: at each iteration one
needs to solve a linear system of equations for source terms placed only at the receiver positions
(due to reciprocity). In this chapter we will however focus on the more powerful Gauss-Newton
scheme that is expected to soon become the prevailing inversion métijodr the Gauss-
Newton method, the sources should also be placed at each transmitter pasitidhe total
number of RHSs is becoming much larger simge n,. Note also that the transmitter is
usually towed within 30—100 m above the sea oor therefore all RHSs (due to both transmitters
and receivers) belong to a narrow depth interval near the sea oor — the property we shall utilize
later in the chapter.

The right hand sides are usually very sparse since they describe a source term that is local-
ized in space. A point transmitter is usually represented by placing source t&€mg2 al = 8
nearest nodes in 3D problem®,., a RHS will have only 8 nonzero elements. In marine CSEM
a horizontal electric-dipole transmitter is often an extended antenna3®0m length, rather
than a point. In that case, the number of nonzero elements will be slightly larger (e.g. 16 or 24),
but this complication will have only minor effect on our results, thus for the sake of simplicity
we shall stick to considering point sources with 8 nonzero elements in RHSs.
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Figure 4.2: Illustration of the acquisition of data in a CSEM study.
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The initial ordering of RHSs de ning order of the columnsXn usually re ects the trans-
mitter trajectory. In our context, the ordering of transmitter positions obeys the following
simple rule, see Figuré.1la We start with towline Tx01x, and there go over all transmitter
positions in thex direction, see Figurd.1la Then we switch to towline Tx02x and follow
the same ordering, and so on until we reach thesxadirected towline. Then we switch tg
directed towlines, starting with Tx01y, and for each of them go over all transmitter positions in
the direction ofy axis. As we shall see below, this continuous ordering of RHSs is not optimal
for the solver performance, and considerable gains can be achieved by appropriate reorderings.
Strictly speaking, in the Gauss-Newton scheme, one also has to handle right-hand sides related
to receiver positions. However their number is much smaller sipce n,, and therefore we
have not included them in the analysis below for the sake of simplicity.

Only a subset of entries in the solutidh needs to be computed when inverting marine
CSEM data. For each columand source vectds i, only the entries in a box with a square
section and centered arouB8d; are needed, see Figudelh The box excludes the top of the
domain: the air since its resistivity is known, and also the water layer since water conductivity
is usually measured during the CSEM survey. The CSEM data decay with increasing offset
between transmitter and receiver and eventually drop below the noise level. We shall assume
that the maximum offset for CSEM data is 12.5 km and therefore the lateral extent of the box
will be 25 km 25 km. All the regions beyond this box, in particular, the perfectly matched
layers at the edges, are excluded from the solve phase. Depending on the problem, the box may
represent around one half of the whole computational domain.

Reducing the number of inversion parameters can make the Gauss-Newton inversion faster.
Since the CSEM method resolution decreases with depth, it is common to use fewer inversion
parameters in deeper formation layers. As a result, the soldtian some regions may be
required for a coarser sampling than the grid used to build the system matrix. In Skétihn
we assume that the solution could be required on a uniformly distributed subset of nodal points,
see Fig4.1q where only every 20th or every 100th point is included into the subset.

In the next paragraphs we give some preliminary hints on how sparsity described above can
be used to reduce the solver complexity.

4.2.2 Impact of the source structure

In this section we focus on the forward substitution,and on the sparsity in the source $ctors
The discussion on exploiting sparsity in the backward substitution relies on similar ideas but is
postponed to Sectioh5.

Application of direct solvers to linear EM systems built on nite-difference methods is
often illustrated by a hierarchical domain decomposition based on nested diss@d}liseg
Sectionl.2.1for more details. A separator can be de ned as a set of nodal points the removal
of which divides the domain (or subdomains) into two balanceddisjdint subdomains. In a
regular 3D grid such as the one represented in FiguBethe separator shapes are planes with
normals in thex; y or 2 directions. In Figurel.33 we represented with (red, yellow, green, ...)
colors the successivep separatorshat led to the subdomain corresponding to the red subcube
in the top right corner of the domain.
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Figure 4.3: A 3D domain with sources 6r ) and a connecting line representing the trans-
mitter trajectory. A hierarchical domain decomposition with 2D plane-shaped separators is
applied. (a) shows the separators leading to the red subcube containing the rst solirce (
The red crosses show indicates where the transmitter trajectory crosses the main separator.
(b) shows a source ordering that minimizes the crossings of top separators.

Since the source term is geometrically localized, all nonzero elements of a source vector
usually belong to the same subdomain. The nested dissection creates independence between
disjoint subdomains, hence the source contribution during the forward substitution will not
affect any other subdomains. In other words, for the computation,oive have to consider
only the given subdomain andp separatorsin Figure4.33 the contribution of the rst source
is represented by its subdomain (red cube), top separators (colored planes), while all other parts
of the domain will stay out of its area of in uence. Sectidi8is dedicated to the exploitation
of this feature.

Furthermore, we will show that the initial ordering of sources is not optimal with respect
to the operation counts, especially if one aims at processing simultaneously many sources. A
simpli ed example of initial ordering is depicted in Figufe3ashowing the source locations
(symbols) and their connecting line, “transmitter trajectory”. The important message here is
that the transmitter trajectory crosses the top separator multiple times. We will show that the
optimal ordering will be such that the transmitter trajectory has the smallest possible number of
crossings of top separators. The transmitter trajectory displayed in Fglvevill be shown
in Section4.3to possess most of the properties of the theoretically optimal solution.

4.2.3 Characteristics of the models and computing environment

Our study is based on realistic anisotropic earth resistivity models characteristic for marine
CSEM applications. The models are discretized using nite-difference Yee grids with a uniform
core and growing cell sizes at the model edges and an air layer on top. Properties of system
matrices and right-hand sides resulting from these discretizations are summarized ih Table
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Table I: Characteristics of the systems of equatibhs = S. n=3N, Ny N;isthe

order ofM , m is the number of columns of the right-hand side ma8ixD(M ) andD(S)

are the average numbers of nonzeros per columiifoandS, respectively. The resolution

times for the different phases of a sparse direct solver using 90 MPI processes and 10 threads
per MPI process are also reportdd:for analysis,T; for factorization,Ts for solve andlig, =

T, + T + T for the entire resolution.

Grid shape MatriM (n n)  RHSS(m n) || Timings in seconds (percentage of total time)
Model System
Y Ne Ny N, n DM) m DES)| T Ty Ts T
Shallow  H3 114 114 74 2,885,112 129 8000 75| 10(1%) 34 (4%) 80695%) 850
water H17 214 214 127 17,448,276 129 8000 6 || 56 (1%) 378(8%) 4133a1%) 4567

SEAM  S21 181 160 237 20,590,560 12,9 12340  9.5|| 68 (1%) 476(6%) 781993%) 8363
DayBreak DB30 230 422 102 29,700,360 12.9 3914  7.6] 106 (2%) 765 (15%) 424@88%) 5117

The matrices H3, H17 and S21 are described in detaibth [The two H-matrices are based

on a half-space 1 m model with a 100 m water layer and a pizza-box resistor of 1100 The

H3 matrix is based on a coarser grid, with cell sizes (in the central part) double of those used
for the H17 matrix. The S21 matrix is obtained from the SEAM (SEG Advanced Modeling
Corporation) Phase 1 resistivity model representative of the Gulf of Mexico: it has a rough
bathymetry, hydrocarbon reservoirs and salt bodies. The DB30 matrix is built from a resistivity
model corresponding to a CSEM survey “Daybreak” acquired in Alaminos Canyon, Gulf of
Mexico [41].

The RHSs are generated by listing all transmitter positions using the ordering indicated in
Figure4.3a For example, for the SEAM S21 matrix, the survey layout suggested 36 towlines,
40 km long, in one direction, and 29 towlines, 35 km long in the orthogonal direction. The
distance between towlines was 1 km. We downsampled the transmitter positions to 200 m
spacing, which resulted in iB6 201 +29 176 = 12340RHSs. RHSs for the Daybreak
matrix were given by the real survey that included 12 towlines of 60 km length and 2 km
apart, and 2 orthogonal towlines of 30 km length, 4 km apart. For each system, the number of
right-hand sidesn reaches several thousands and their delis{ty) is below 10 nonzeros per
column.

We also report in Table the analysis, factorization and solve times of the sparse di-
rect solver MUMPS using BLR compressio] [on the CALMIP supercomputer EOS
(https:/lwww.calmip.univ-toulouse.fr/), which is a BULLx DLC system composed of 612 com-
puting nodes, each composed of two Intel lvybridge processors with 10 cores (total 12 240
cores) running at 2.8 GHz, with 64 GBytes of memory per node. As mentioned earlier, the
introduction of low-rank approximations has signi cantly reduced the factorization titie [
and the initial solve timdj (not using the work presented in this chapter) has become predom-
inant. Note that the solve phase was performed by blocks ofgsizé = 1024 for H3 and
BLK =512 for H17, S21 and DB30. This was mandatory as the memory required to process
all right-hand sides in one shot otherwise exceeded the available memory.

In the following subsection, we give some background on the solve phase of sparse direct
solvers, before explaining in Sectidm3 how to take advantage of the right-hand side sparsity
resulting from the geometrical structure of CSEM applications.
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Figure 4.4:(a) A 3D regular mesh based on a 7-point stencil; each node is numbered according
to the nested dissection algorithm following a postorder. Each double circles are elementary
sources modeling two stacked sources from the CSEM applicdtipbResulting separators or
assembly tree; also showing the sets of variables to be eliminated at eaclija)@t#respond-

ing matrix with initial nonzeros () in A and Il-in (f)inL.

4.2.4 Solve phase algorithms

We rst describe the algorithms used to solve the linear systeis "X = S, whereM =
LDL T, from an algebraic point of view. We also explain how they can be interpreted and
correlated to the structural and geometrical properties of CSEM applications.

L is a unit lower triangular sparse matrix of oradewhereasS is ann m matrix of right-
hand sides. As mentioned earlier, the rst part of the solve algorithm consists in performing
the forward substitution, which can be writtenlaé = S.

We assume that y S k for each columrk so that all our algorithms can be expressed
only in terms of modi cations ofY . The rst version of our forward algorithm is a scalar
two-loop algorithm limited to nonzero entrieslin

#
Y« L Yy (Scalartwo-loop algorithm)
forj =1;:::;n 1
4.2
fori j+1 suchthatl; 60 (4.2)
Yik Yk i Yik

The algorithm described ir(2) exploits the fact that the diagonal bfis the identity, and
thatL is sparsej.e, many of thel; entries are zero. We explain why and how sparsity can
be exploited in an ef cient way based on the example of Figureand will reformulate the
algorithm to illustrate it.

Figure4.4aprovides a simpli ed version of the CSEM application, where we reduced the
number of degrees of freedom from 3 to 1 on each nodal point and used a 7-point stencil to
represent the mesh. The corresponding matrix is represented in Bigardloreover, for the
right-hand side matri$s, we consider only eight sources with a single nonzero per source. The
sources are placed at nodal points 2, 5, 14 and 17 which belong to thezeqaare to illustrate
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Figure 4.5: Structure of the factor associated to a node from the separator tree.

the fact that the transmitter trajectory along the sea oor is usually quite horizontal. The initial
ordering of the sources is assumed to be 2-17-5-14 and then 2-5-17-14, which is similar to the
ordering shown in Figurd.laand convenient for illustrative purposes. The ma8ikas the
structure depicted in Figure6a We will reuse this matrix of sources in Sectidrs.

We focus now on the independence created through the nested dissection process. Initially,
the process builds a separator that divides the domain into two disjoinhdagendensub-
domains, see Figuré.4a It numbers the variables of each subdomain contiguously and the
variables of the separator last. This can also be expressed as a roat;pdgeparator) and
two subtrees (subdomains) in the separator tree of Figie The two subtrees characterize
the aforementioned independence between the variables of both subdomains which is re ected
by the empty square in the structurelofcorresponding to rowfLG; 18] and columngl; 9] in
Figure4.4c From the algorithm corresponding to Equatidr?, the computation of the com-
ponents ofY inside each subdomain will then be independent from each other.2-{iC; 18]
andj 2 [1,9] we havel; = 0 so that, for anyk, and for anyi; 2 [1;9] andi, 2 [10; 18]
component;,, does not depend on compongnk. The separator tree also characterizes the
parallelism of the solve phase. The nested dissection process is reproduced recursively on both
subdomains, preserving the mentioned properties.

In the context of the multifrontal method, each node of the separator tree may be represented
by a dense matrix called front which is used to compute a part of tifector, as illustrated
in Figure4.5. Each front is associated with two sets of variables:¢hariables of the sepa-
rator (also called fully-summed variables), which are used to compute entries 6f tieX
solutions; and the off-diagonal variables (or non fully-summed variables), which are used to
compute contributions. Data computed at each node will be used by the parent (resp. children)
fronts in case of forward (resp. backward) substitution. More precisely, the forward substitution
is a bottom-up process which performs, for each front, the two block operatigns L ;Y ;
andY, Y, LY 1, whereas the backward substitution is a top-down process which per-
forms, for each front, the block operatioXs; X1 LLX >andX 1 L 11TX 1. Here,

Y 1;Y 2; X 1; X 5 are partial matrices of andX containing only the variables corresponding
to theg+ r rows of the front. As follows from the properties of the separator tree, if two fronts
belong to different subtrees, the computations at those fronts can be done in parallel.

We will use the notatioru(j) to denote the node of the separator tree containing vari-
ablej. We have, for examplaj(14) = ujp, oru(25) = uzs. Thanks to the compact repre-
sentation of the structure of the factors at each node (see Hgbreoperations reported in
Equation ¢.2) can be performed on dense matrices and the conditipré“0” is replaced
by “i in the structure of the factors at nod§ )”, as will be indicated in Equation4(3). Fur-
thermore, in the context of sparse RHSg might remain equal to zero so that Equatidr?)
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should perform the update gf; only for nonzero entrieg , Equation 4.2) becomes:
#

Y L Y (Nodal algorithm)
forj =1;:::;n 1
for i in the structure of the factors at nod§ );1> j
if (yk 60) vk Y lijVix

(4.3)

following postorderingrule: all nodes in any subtree are numbered consecutively and precede
the number for the root of the subtree. Moreover, any subtréle mioted at nodei (which

we denote ag [u]), corresponds to a subdomain created through the nested dissection. For
example, T[u;] corresponds to the subdomain on the right of the rst separaig) and is
composed of the variables {1,2,3,4,5,6,4,7,8,9}. Note also that the resolution of the diagonal
systemDZ =Y can be performed in-between the forward and the backward substitutions or
can be combined with one of these phases by computing each compoagnt ag, =d; .

4.3 Exploiting RHS sparsity to reduce the amount of
computations

In the previous section, we have shown that thanks to the knowledge of the frontal matrix struc-
ture at each node of the separator tree, testing nonzero entries in theabedumnL ; was

not needed and the two-loop algorithm (Equatio®) could be simpli ed. Furthermore, since

S is sparse, some elementg in Equation ¢.3) may remain equal to zero. Similarly one
would like to avoid systematic testing fgi 6 O at each update of the nodal algorithm (Equa-
tion 4.3). For ef ciency, we also want to perform operations on a block of columns and thus
to a priori identify blocks of columns sharing the same structure and allowing simultaneous
operations.

We describe the graph structure that needs to be introduced and exploited to avoid system-
atic testing and relate this structure to the geometric properties of the CSEM application.

We focus in this section on the forward substitutitwY ( = S), but the same ideas can be
applied to the backward substitution (X = Z) when a partial solution is needed, as will be
discussed in Sectiofh.5.

Making ef cient use of the sparsity in the RHS matrix is a three-step process:

rstly, exploit sparsity within the columns of the sourcesd., detecting empty rows),
referred to avertical sparsity

secondly, exploit sparsity within the rowse(, detecting nonzero blocks within non-
empty rows) ofY , referred to akiorizontalsparsity

nally nd a suitable columnorderingto improve the performance of horizontal sparsity.

We describe in the following each step and also relate it to geometric/applicative interpre-
tations. We refer the reader to Sectibr3.2to get of more “technical” point of view of the
exploitation of sparsity.
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Figure 4.6:(a) Structure of right-hand side matr& (associated to sources described in Fig-
ure4.4) and its node representation, nonzero are represented with) Structure ofY after
the forward substitution, Ilin are represented with{left and right).(c) Corresponding pruned
tree, pruned nodes are dotted, active nodes are plain.

Vertical sparsity

Exploiting vertical sparsity in the forward substitution makes use of the properties proved
in [35] and was also formulated in terms of paths using the tree structurggjn We ex-

plain in this section how it relates to our application and to the position of the sources in the
CSEM application.

In Figure4.3aof Sectiord.2.], we illustrated the fact that the contribution of each source is
limited to its local subdomain (the red subcube) and to the top separators. For a given source, or
equivalently a columis ¢ of the RHS matrixS, the aforementioned contribution corresponds
to nonzero components of . This gives the intuition of the importance of the separator
tree. In the following, we explain how the separator tree can be used to ef ciently characterize
nonzero entries ity so that the loop on index can be set u@ priori without need for any
checks to restrict the subset of indices.

Figure4.6arepresents a matri® composed of 8 right-hand sides associated with 8 sources
(Figure4.4) placed at nodes 2, 17, 5, 14, 2, 5, 17, 14, in this precise order. In our simpli ed
model and for the sake of clarity, we considered a single nonzero element per source. To
simplify the gure, we also provide a compact representation of m&riwhere each row
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corresponds to the set of variables from a node of the tree. Finally, each node whose set of
variables includes at least one nonzero from ma®ijx.e., each nodeu(i) for which there
exists a column indek such thais, 6 0, will be called amactive nodé. Active nodes have
been lled in the separator tree represented in Figlu@c corresponding to our simpli ed
model.

As the solve algorithm proceeds, new nonzero entries (so called Il-in) with respect to the
original entries ofs appear inY . Given the initial nonzero structure 8f, [35] and [36] showed
that it is possible to predict the nonzero structuré ofin our context, B6, Theorem 2.1] can
be translated into:

Theorem 4.1.When solvind- Y = S g, the structure of the vectof  is given by the union
of the variables in nodes on paths in the tfedrom the set ofactive node®f S  up to the
root.

As a consequence, a compongptwill be different from zero if and only i 6 0 or
there exists arsjx 6 0 such that eitheu(j) = u(i) or u(j) is a descendant af(i) in T.
Equation .3) is only computed for variablgsbelonging to such nodes. This was referred to
astree pruningin Sectionl1.3.2 As an example, tak8 ; from Figure4.6awith s,.; 6 0 and
u(2) = u,. Then every nonzero componentYf, belongs to nodes that are on the path from
U, to uss. This algebraic perspective translates into the geometrical interpretation illustrated in
Figure4.3a

Furthermore, to enhance the performance of the solve phase, computation should be done
on multiple columns at the same time. In doing so, one can benet from the use of BLAS
3 operations 6] that can often reach the peak performance of a processor. Thebiam
then performed for the union of the setaiftive node®f each column, see Sectid2.3 The
tree resulting from the pruning process is called the pruned tree and, if we consider the whole
matrix S as one block, it is noted,(S) and shown in Figurd.6c Therefore, Equation4(3)
becomes:

#

Y L 'Y (Pruned tree nodal algorithm)
forY, 60;1 |j n 1 (i.e., variablg belongs to the pruned tree)
. L (4.4)
for i in the structure of the factors at nod§ );i > |
Yo Yo Y

whereY; is thej -throw ofY andY; 6 0 means thaat least onef its component is different
from O. In Figure4.6¢ each pruned node if,(S) corresponds to an empty row ¥, this is
why sparsity is exploitedertically.

Horizontal sparsity and column ordering

Equation ¢.4) assumes that all columns are processed at each node of the pruned tree. How-
ever, sources do not all have the same structure and thus it is possible to further exploit sparsity
by reducing the number of columns on which Equatibd)is applied. This will be referred to

2This would have beende ned & = [ 1 k mVs . in Section1.3.2
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Figure 4.7: (a) A 2D section from Figured.4alocated on the plane containing the source
positions. The numbering of nodal points has been omitted for clafhy.lllustration of
horizontal sparsity with node intervals and in uence of the ordering of columns on sparsity.

ashorizontal sparsity To do so, we explain how and why the notion of node intervals combined
with column ordering introduced for computing selective entries of the inverse of a nigt}ix |

can be effective in our context to reduce the number of operations. We illustrate these aspects
in Figure4.7 on the same simpli ed example with 8 sources as in the previous section.

The subset of columns @ that possesses at least one nonzero element at a given node
u 2 T is called the set octive columnsat nodeu, see Sectiori.3.2for more details on
the de nition. For example for nodas, corresponding to rows in Figure4.7b (left), there
are only two active columns: 3 and 6. Ideally, one would like to operate only on these two
columns which would require complex data reorganizations or the computation of the columns
one after the other. This would not be ef cient since processing simultaneously a block of
columns is faster that processing them one by one. What can be done at no extra reorganization
cost is to consider aubinterval of columnsicluding the rst and the last indices of the active
columns at that node. The intervals are thus de ned for each node of the separator tree. In
Equation 4.4) and for the computation of componeit, is replaced by the interval de ned
for nodeu(i). For example, the active columns for nogleare 3 and 6, thus the interval at
nodeus includes only four columns: 3, 4, 5 and 6, rather than all 8 columns. With intervals,
we reduce computation on columns and thus exploitzontalsparsity.

Clearly, the size of the intervals is in uenced by the ordering of the columns. The idea is
to order successively columns with close initial nonzero structure or, equivalently, to limit the
crossing of top separators as was mentioned in relation to Fig8ke The permutation used
in this study is called @ostorderand is built as follows: let the tree be numbered following a
postordering, as in Sectich2.4 For a columrk of S, we de ne u,y(k) as the node among
the active nodes for colum® ¢ (fu(i); sk 6 0g) that appears rst in the postordering of the
tree. We have for exampléep(1) = U, anduep(2) = U14 in Figure4.6a(and4.7h left), and
call uep(k) therepresentativenode of columrk.
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Now S is said to bepostorderedf and only if: 8ki; ko; 1 ki <k,  m, Uep(Ki) appears
before (or is identical todiep(k2) in the postordering. In other words, the order of the columns
S « and the postordering of their representative nagggk) are compatible.

In Sectiord.2.], we said that the postorder trajectory should minimize the number of cross-
ing of top separators. We see in Figdr&bthat the postorder trajectory can also be interpreted
in terms of nonzero structure & andY . Namely, it corresponds to order the columnsSof
such that two successive columns have a close nonzero structlyé.(iindeed, the initial
transmitter trajectory, see Figudera rstimplies a “superposition” of non-successive sources
in S. Thus, columns with close positions were not initially close in the column ordering. This
resulted in large interval sizes, see rawsandus in Figure4.7b(left). The postorder heuristic
addresses this problem, see Figdréb (right) and is optimal in this case since the gray ar-
eas do not include zero entries anymore. Note that for the purpose of our illustration we have
considered sources with only one nonzero entry and that in this case the postorder heuristic has
been shown to be optimal {]. On our CSEM application, each source has more than one entry
per column, thus possibly more than one active node, hence the de nitiag,of

Tree pruning, node intervals and a suitable column ordering exploit the sparsity of the
application to reduce the amount of computations in the solve phase. However, this is done
at the expense of reduced parallelism. The next section shows how to still exploit parallelism
ef ciently in the solve phase, even when dealing with sparse right-hand sides.

4.4 Improving the parallel aspects of the solve algo-
rithms

In this section, we rst explain the differences between the factorization and the solve phase in
terms of parallel algorithms. We then show how the blocks of sparse RHS can be de ned and
how the solve phase can be adapted to improve the available parallelism.

4.4.1 Differences between the factorization and the solve algo-
rithms

The factorization and the solve algorithms have different properties in terms of parallelism and
load balancing. Although in pratice we apply a BLR factorization, we consider in this sec-
tion Full-Rank metrics because they are the basis for the mapping and scheduling algorithms
we use [2]. We recall that, on the one haniee parallelismis represented by the separator

tree (two nodes from different subtrees can be processed independently, as explained in Sec-
tion 4.2.4). On the other hand, large nodes of the separator tree offer an additional potential
for parallelism. This will be referred to asde parallelism Moreover, on a dense matrix of
ordern, the complexity in terms of number of operations of the factorization and solve phases,
respectivelyO(n®) andO(n?), is quite different. With nested dissection, the size of the sepa-
rators and thus the size of the frontal matrices increases as we get closer to the top of the tree.
Computation is thus concentrated near the top of the tree and this is more true for the factoriza-
tion than for the solve. This effect is illustrated in Figdr®, which compares the distribution
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(a) Front during factorizagb) Front during solve (fac-
tion (triangular frontal mators).
trix).
Figure 4.8: Normalized operation count _
of the solve and factorization phases as a Figure 4.9: Mapping of the rows of a front
function of the depth in the separator tree, t0 balance the workload of the factorization
with depth(root) = 0. The nested dissec- between processors.

tion ordering has been used.

of computations in the separator tree for both phases. At a depth where 50% of the computation
is completed for the solve phase, only 20% is completed for the factorization. This indicates
that the solve phase will bene t more from tree parallelism than the factorization phase.

Tree pruning limits the number of branches of the separator tree that can be computed
independently, so that tree parallelism and tree pruning introduced to exploit RHS sparsity
are thus con icting objectives. A classical approach to balance the workload between the
processors during the factorization is to uspraportional mapping53]. Starting from the
root node to which all processors are allocated and going down the tree, at each level of the tree
the list of processors of the current node is partitioned between its sons according to the load of
each of the subtrees rooted at each son. This is referred to as strict proportional mapping and is
illustrated in Figuret.10a It can be adapted or relaxed in order to allow for dynamic mapping
and scheduling decisions, or to reduce memory usage [f the whole setS is considered,
and if the set of sources is separated by the top level separators, then the width of the pruned
tree T,(S) may be large enough to cover most of the tree and almost fully bene t from tree
parallelism. However, because of the memory constraints mentioned in Sé&igrthe solve
phase is generally processed by blocks of limited d&del{ ), potentially reducing the width
and parallelism of the pruned tree. In this context, it is important to decide how these blocks
can be created to minimize the loss of tree parallelism introduced by the use of RHS sparsity.

Furthermore, at each node of the separator tree, a symmetric frontal matrix is partially
factored. For frontal matrices associated with large separators near the top of the tree, the pro-
portional mapping assigns several processors and the workload of the factorization is divided
between a master and several workers. This is illustrated in FgArehereq is the size of
the separator andis the number of rows to be updated. At each node ther n&triables are
factorized so that the number of operations is

Wi (@)= Wh(@+ Wi(an= @ +3¢ 59+ ar(a+r+1);  (45)
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(a) T with 4 processors. (b) To(S1) withS1 =(S 1;S 5). (€) Tp(S2) with S, = (S 1;S 4).

Figure 4.10: Proportional mapping and comparison of tree coverage between three blocks of
right-hand sides based on the example from Figude(a) Dense RHS (all the tree is covered);
(b) set of two close source&;) set of two distant sources.

whereW, (q) = %(Zq3 +30¢¢ 50) corresponds to the operation count on the master processor
andW/ (g;r) = qr(q+ r + 1) to the operation count on the workers. As shown in Figuga
more rows must then be associated to the processors that appear rst in the front. Note that we
also want to adjust relative size @andr to balance the workload between the master and each
worker by splitting nodes of the separator trégl[4].

In CSEM applications, where the solve phase becomes predominant, we need to drive our
algorithms with metrics related to the solution phase, as described in the following subsection.

4.4.2 Improving algorithms for the solve phase

Because of memory constraints, we have seen that the colunmBshetd be processed by
blocks. In the scheme presented in Sectldh3 the columns of matris are processed using

the initial ordering and by blocks of siZ2LK . In that case, only a subpart of the domain is
covered by the partial transmitter trajectory within each block. Large subdomains, or subtrees,
will be pruned from the separator tree, limiting the number of operations but also leading to a
signi cant loss of tree parallelism. FigurdslOband4.10cillustrate this property with two sets

S; andS,, containing close and distant sources, respectively. To improve the tree coverage,
one can select non-contiguous columns from m&®ix They will better cover the physical
domain because the transmitter follows a regular trajectory. Furthermore, since we also want
the ef ciency of BLAS-3 kernels, we propose to select each blocRbbK columns such that

it is composed of a set of sub-blocks of constant size equally distributed onto the transmitter
trajectory. To do so for a given sub-block size whose size is related to the BLAS-3 performance
kernel, one can compute a constant gap to provide a good trajectory coverage and thus a good
separator tree coverage. We mention that within each block, we still apply a postordering
permutation to maximize the effect of horizontal sparsity.
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Moreover, node parallelism has an important role in the performance of the solve phase. As
shown before, Figuré.Obillustrates the distribution of data among processors when the work
is balanced for the factorization. Considering the solve, the number of operations performed
during the forward substitution (or the backward substitution) at each node is:

W™ (q;r) = Wi (g) + W (g;r) = o(q 1) +2rg; (4.6)

whereW/"d (q) = g(q 1) andW["@ = 2rg. As a consequence, to balanég"® among
workers, data need to be reorganized so that all workers possess the same number of rows. For
that, we also switched off the dynamic schedulers from the factorization that lead to irregular
partitions with a dynamic choice of the workers at each node and, as a consequence, used a
strict static proportional mapping of the processors in the tree. This strategy will be referred to
as S-PPWDISTRIB().

Furthermore, to balance the work between the master and each worker, we aim at splitting
nodes in the separator tree so tgt*@ (q) W/ (q;r,), wherer;, the number of rows of
each worker is equal to divided by the number of workers. This strategy is referred to as
S-SPLIT().

In summary, the optimizations above aim at favoring tree and node parallelism during the
solve phase when dealing with either sparse or dense RHSs. Concerning the optimizations
speci ¢ to sparse RHSs, we focused on the forward substitution but they also apply to the
backward substitution, as discussed in Sectidn In Section4.6, we also experiment with
another optimization of the solve phase regarding locality of data access and multithreading,
which was motivated by the need to process large blocks of columns to improve tree coverage
and tree parallelism.

4.5 Exploiting sparsity during the backward substitu-
tion

During the backward phask { X = Z), the nonzero structure &f results from the operations
performed during the forward substitution sifleg = Y with D diagonal. When the matrix

M is irreducible, which is the case in the CSEM application, the variablé&s bélonging to

the root node of the separator tree will be nonzero, independently of the position of the sources.
The backward substitution processes thenatrix in a backward way which translates into

a top-down traversal of the separator tree. As a result, all the nodes in the tree are reached
and need to be processed during the backward phase. This translates back into theZact that
is dense and that sparsity in the sourBedoes not result in any reduction of the number of
backward-phase operations.

However, the sparsity of the solution can result from the properties of the physical problem,
typically when only part of the solution has value and needs to be computed. As explained
in Section4.2.1and illustrated in Figurd.1, boxing and/or regular sampling can be used to
select a subset of valuable entries. Why and how sparsity can be exploited during the backward
substitution is explained below.

Given a valuable entryjc in the solution, the computations that contribute to updatipg
can be characterized, similarly to the forward phase, by ThedrénOnly nodes in the path
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from the root node to node(i) need be considered to compuig. In other words and from

a geometric perspective, if one assumes thalongs to the lled subdomain of Figure3a

then the variables involved in the computatiorx@f will correspond to the colored separators

and part of the lled-subdomain. As a consequence, the process of tree pruning introduced in
Section4.3 can be applied to the backward substitutiéi, [Lemma 2.2]. The exploitation of
horizontal sparsity also remains unchanged and the computation of a suitable column ordering
inside each block follows the same rule, namely, “columns with similar structure of valuable
entries should be kept close in the column ordering”.

First, sources close to each other have high overlapping boxes of valuable entries and also
have close to each other representative nodes in the separator tree. Second, in the case of regular
sampling of the entries in the solution, we have no locality property to preserve since all the
space is regularly covered by the solution. Thus, the representative nodes of the sources can
also be used for the boxes and therefore, the column ordering chosen during the forward phase
can be used during the backward phase and the choice of the blocks from Settiwan be
identical.

The valuable entries in each columnXf are thus de ned as a sampled set of variables
in a box around the corresponding source location. It should be noted that this numerical
sparsi cation of X is quite moderate compared to extreme sparsi cation of the souBces
Thus,X is a much denser matrix with less geometrically localized nonzero variableSthan
As illustrated in the next section, one should thus expect less impact of exploiting sparsity
during the backward step than during the forward step.

4.6 Performance analysis in a parallel context

We analyze the impact exploiting RHS sparsity and of using parallel solve-aware strategies on
the performance of the solve phase in a parallel environment. We also present global resolu-
tion times showing that the relative weight of the solution phase has signi cantly decreased
compared to the initial results from Talle

A perfect nested dissection ordering has been chosen for all the following results, which
were obtained using tidUMPSolver P, 12]. We list T¢, Ts, Tiwd » Troots Towd — the times to
perform the factorization, solve, forward substitution, solve on the root node (through ScalLA-
PACK [21]) and backward substitution, respectively.

4.6.1 Exploiting sparsity

We rst study vertical and horizontal sparsity, and show the impact of the choice of the columns
and of their order on parallelism. We consider the forward substitution in Settiohand the
backward substitution in Sectigh6.1

The forward substitution

We rst report in Tablell the performance in terms of number of operations and time for
solution of the proposed algorithms (vertical, horizontal sparsity and postorder reordering of
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Table II: Number of operations (OP20'%)  Table Ill: Times (seconds) for the forward
for the forward elimination for 1024 contigu- elimination for 1024 contiguous RHSs of sys-

ous RHSs of system H3. tem H3, with 32 MPI and 1 thread per MPI.
OPS De Vertical Horiz.  Horiz. sparsity Tiwa (S) Dense Vertical Horiz. Horiz. sparsity
( 109 sparsity sparsity and Postorder sparsity sparsity and Postorder
Contiguous rst 1024 (S;) 951 270 225 149 Contiguous rst 1024 (S;) 170 112 85 60

9 last 1024 8%) 951 232 190 151 9 last 1024 8%) 170 114 87 69

Table V: Times (seconds) for the forward
elimination for 1024 non-contiguous RHSs of
system H3, with 32 MPI and 1 thread per

Table IV: Number of operations (OP2.0)
for the forward elimination for 1024 non-
contiguous RHSs of system H3.

OPS Dense Vertical Horiz.  Horiz. sparsity

(109 sparsity sparsity and Postorder Tiwa (S) Dense Vertical Horiz.  Horiz. sparsity

Non- 16 cols, gap 108,) 951 428 306 125 sparsity sparsity _and Postorder

Contiguous 32 cols, gap 218%,) 951 427 302 132 Non- 16 cols, gap 105,) 170 111 98 30
Contiguous 32 cols, gap 218%) 169 107 96 31

RHS columns) on the system H3 on 1024 contiguous columns of RHS. As expected from the
theory (compare columns 3 and 4 of Tablgusing vertical sparsity signi cantly reduces the
number of operations with respect to processing dense RHS. Adding horizontal sparsity and
postordering of the columns further reduces the number of operations. However, as shown in
Tablelll, this operation reduction is not fully converted into time reduction and most notably
for the operations reduction due to vertical sparsity.

Let us illustrate with Figuré.11the con icting objectives of vertical sparsity and perfor-
mance and explain how to address this issue. With the initial order of the colunghstlire
1024 rst ones (sefS;) are located at the low part of the horizontal plane containing the
sources, see Figurkl1lg and appear in the order described in Figli@a From an algebraic
point of view, the effect of tree pruning (see Figdr& 1h is thatT,(S,) is quite narrow (many
branches have no active columns). On the contrary, choosing 1024 non-contiguous columns
spreads the RHS in the domain, as illustrated in Figutécwith the setS, consisting of sets
of 16 columns inS separated by 109 columns. The rst consequence of such a distribution is
a wider pruned tree. Indeed, comparinggS;) andT,(S,) from Figures4.11band4.11d we
see that the top subdomains are not lled with sources f8nso that the pruned treg,(S,)
contains less nodes thady(S,).

As a consequence, when only vertical sparsity is used, one can expect a larger number of
operations withS, than withS; (compare columns “Vertical sparsity” of TablédsandIV).
However it is also interesting to observe that the exploitation of horizontal spasitpined
with a postordering of the columns of RHS recovers this increase in the number of operations
(compare last columns of TabldsandIV). We discuss/explain it in the following.

In Sectiond.3 we explained that sources closely located in the geometrical domain needed
to be close in the column ordering to reduce the operation count. The color gradient from Fig-
ure 4.11cillustrates the effect of postordering the columns: sources that belong to the same
subdomain become close with respect to the column ordering. This property explains why the
ef ciency of horizontal sparsity is increased even more when a postordering of the columns is
applied. Indeed, for s&;, we have a 17% reduction in the number of operations with horizon-
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(a) Separators and set of 1024 con- (b) To(S1) with active columns.
tiguous sourcesy).

(c) Separators and set of 1024 non (d) To(S2) with active columns.
contiguous source$t).

Figure 4.11: Geometrical and algebraic RHS distribution for two subsets of 1024 columns for
systemH 3. (a) and(c) represent top views of the geometrical domain for, respectively, 1024
contiguous RHS in natural order and 1024 non-contiguous RHS sets of 16 columns with a
gap of 109 columns permuted using a postorder. The color gradient indicates the index of the
column (source) in the (possibly reordered) set of RHS colurfimisand (d) are respectively

the corresponding top 6 layers of the separator tree with, for each node, the number of active
columns, as de ned in Sectich3.
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. Table VII: Estimated times (seconds) for
. 0
Table VI: Number of operations (OPS.0°) the backward substitution for 1024 non-

for the backward substitution for 1024 nonContiguous RHS of system H3, with 32 MP|
contiguous RHS of system H3. Except for
B N and 1 thread per MPI. Except for column
column “Dense”, only a subset of the soly: " o
o : . Dense”, only a subset of the solution is com-
tion is computed with coarse solution vector ; : )
. : puted with coarse solution vector sampling
sampling applied.

applied.

OPS Sam Dense Vertical Horiz.  Horiz. sparsity - - - -
(10 P- sparsity sparsity and Postorder Towa (S) Samp. Dense Vertical  Horiz.  Horiz. sparsity
16 cols, gap 109 20 951 876 702 636 sparsity sparsity and Postorder
(S2) 100 951 876 701 635 16 cols, gap 109 20 169 160 141 127

S 100 170 160 140 131
32 cols, gap 218 20 951 876 703 626 (S2)
(sg) 100 951 876 702 625 32 cols, gap 218 20 169 160 137 127

(S9) 100 170 160 141 127

tal sparsity, reaching 45% when postordering is applied. With non-contiguous columns, the op-
eration reduction due to horizontal sparsity and postordering reaches 71% (sel/)aliies,

even in the case of non-contiguous columns, the number of operations is comparable (even
slightly smaller) than with contiguous columns (compare last columns of Tébksd V).
Non-contiguous columns also expose the forward step to more parallelism and thus the time
for the forward step with contiguous columns (already divided by a factor of three with respect
to dense RHS processing, compare last and third columns of apis further divided by a

factor of two (see last column in Tab\g).

The backward substitution

We analyze in Table¥l and VIl the impact of computing only a subset of the solution on

the operation count and on the execution time, respectively. In these tables, the postorder
used is identical to the one from the forward substitution, avoiding any RHS permutation be-
tween the forward and the backward phases. We only show results with non-contiguous sets of
columns which enable, as in the forward phase, to better exploit parallelism. To measure the
time and the number of operations, we exploit the fact that performing the backward substitu-
tion (LT X = Z) while computing only a subset of the entries of the solu¥oris equivalent

in terms of operations, computation kernels used and parallelism, to performing the forward
substitutionLY = X exploiting the sparsity of the right-hand sidke. All options to ex-

ploit sparsity developed for the forward phase could then be used to analyze the potential of
exploiting sparsity during the backward step.

The density of the solution is such that one should expect much more moderate gains due
to sparsity compared to the forward phase. Indeed, the model of Hglubeand the RHS
distribution of Figuret.11cshow that most of the domain is concerned by the solve phase and
thus most of the nonzero structure will be concerned. Hence, the ratio of operations between
the dense and the vertical strategies is close to one. We also observe that the performance
using coarse solution vector sampling is not affected when the number of degrees of freedom
on which the solution is computed decreases from 1 over 20 to 1 over 100 (from sampling
20 to 100). Although coarse solution vector sampling can be useful to reduce the volume of
data corresponding to the solution, it indeed only affects vertical and horizontal sparsity in the
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