J. Fontdecaba, G. Métris, and &. Exertier, An alternative représentation of relative motion : the local orbital éléments

J. Fontdecaba, M. Sanjurjo, G. Métris, J. Pelâez, and P. Exertier, Future geodesy missions: Tethered Systems and formation flying, Advances in Space Research, 2008.

G. Métris, J. Fontdecaba, F. Deleflie, and P. Exertier, Analytical theory of the motion of a point mass in the gravity field of a central body: the rôle of the initial conditions, 2008.

, Proceedings

J. Fontdecaba, G. Métris, P. Exertier, and F. Deleflie, Perturbations of the gravity field on a flight formation for an eccentric reference frame, Proceedings of the AAS/AIAA 2007 summer meeting, 2007.

J. Fontdecaba, G. Métris, and P. Exertier, Topology of the relative motion : circular and eccentric reference orbit cases, Proceedings of the 20th ISSFD, 2007.

J. Fontdecaba, G. Métris, P. Gamet, and P. Exertier, Solar radiation pressure effects on very higheccentric formation flying, Proceedings of 3rd Symposium on Formation Flying, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00416588

J. Fontdecaba and P. Exertier, Review of analytical studies of relative motions in flight formation, Proceedings of SF2A 2006, 2006.

J. Fontdecaba, G. Métris, and P. Exertier, The local orbital éléments ; an alternative représenta tion of relative motion, Proceedings of SF2A 2007, 2007.

M. Aguirre-martinez and N. Sneeuw, Needs and tools for future gravity measuring missions, Space Science Reviews, vol.108, pp.409-419, 2003.

A. Albertella, F. Migliaccio, F. Sans, and G. , The Earth Field by Space Gradiometry, vol.83, pp.1-15, 2002.

K. T. Alfriend, H. Schaub, and &. Gim, Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies, AAS Guidance and Control Conférence Breckenridge, 2000.

M. A. Martinez and &. N. Sneeuw, Needs and tools for future gravity measuring missions, Space Sciences reviews, vol.108, pp.409-416, 2003.

K. Aksnes, Short-period and long-period perturbations of a spherical satellite due to direct solar radiation, Celestial Mechanics, issue.13, pp.89-104, 1976.

G. Balmino and F. Perosanz, Comparison of geopotential recovery capabilities of some future satellite missions, Symp. of the I.G.C, 1994.

G. Balmino, Paramétrage mixte des orbites des deux satellites de Grâce, Note technique CNES, 2003.

J. D. Biggs, A search for invariant relative satellite motion, 2005.

A. Boutonnet, Déploiement optimal contraint et robuste de satellites volant en formations invariantes, 2003.

D. Brouwer, Solution of the problem of artificial satellite theory without drag, The Astronomical Journal, issue.1274, p.1959

D. M. Brouwer-&-g and . Clemence, Methods of Celestial Mechanics, 1961.

R. W. Bryant, The effect of solar radiation pressure on the motion of an artificial satellite, The astronomical journal, vol.66, issue.8, 1961.

T. Carter and &. Humi, Fuel-optimal rendezvous near a point in general keplerian orbit, Journal of Guidance, vol.10, pp.567-573, 1987.

T. E. Carter, New form for the optimal rendezvous équations near a keplerian orbit, J. of guidance, vol.13, issue.1, 1990.

. Bibliographe,

S. Casotto, Position and velocity perturbations in the orbital frame in terms of classical element perturbations, Celestial Mechanics and Dynamical Astronomy, vol.55, pp.209-221, 1991.

S. Casotto, The mapping of Kaula's solution into the orbital reference frame, Celestial Mechanics and Dynamical Astronomy, vol.55, pp.223-241, 1993.

G. Colombo, System noise analysis of the dumbbell tethered satellite for gravity gradient measurements, Final Technical Report, 1979.

O. L. Colombo, The global mapping of gravity with two satellites, Netherlands Geodetic commission, Publications on Geodesy, vol.3, 1984.

M. K. Cheng, Gravitational perturbation theory for intersatellite tracking, Journal of Geodesy, vol.76, pp.169-185, 2002.

W. H. Clohessy and R. S. Wiltshire, Terminal Guidance System for Satellite Rendezvous, Journal of the Aerospace Sciences, vol.27, pp.653-658, 1960.

F. Deleflie, G. Métris, and &. Exertier, Long period variations of the eccentricity vector valid also for near circular orbits around a non-spherical body, Celestial Mechanics and Dynamical Astronomy, vol.94, pp.83-104, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00419119

F. Deleflie, G. Métris, and &. Exertier, An analytical solution of the Lagrange équations valid also for very low eccentricities: influence of a central potential, Celestial Mechanics and Dynamical Astronomy, vol.94, pp.105-134, 2006.

N. V. Emeljanov and A. A. Kanter, A method to compute inclination functions and their dérivatives, Manuscripta Geodaetica, vol.14, pp.77-83, 1989.

J. Flury and R. Rummel, Future Satellite Gravimetry for Geodesy, vol.94, pp.13-29, 2005.

P. M. Fitzpatrick, Principles of Celestial Mechanics, 1970.

P. Gamet, R. Epenoy, and &. Salcedo, Simbol-X: A formation flying mission on HEO for exploring the Universe, 20th ISSFD, 2007.

E. M. Gaposchkin, Smiths. Astr. Obs. Spec. Rep, vol.353, 1973.

J. L. Garrison, J. L. Gardner, and &. Axelrad, Relative motion in Highly Elliptical Orbits, Paper No. AAS 95-194, Space Flight Mechanics Conférence, 1995.

D. T. Alfriend, Satellite relative motion using differential equinoctial élé ments, Celestial Mechanics and Dynamical Astronomy, vol.92, issue.4, pp.295-336, 2005.

H. Goldstein and M. Classique, , 1964.

G. Gômez, M. Marcote, J. J. Masdemont, and . Mondelo, Zéro relative radial accél ération cônes and controlled motions suitable for formation flying, J. of the Astronautical Sciences, vol.53, issue.4, pp.413-431, 2005.

G. E. Gullahorn, F. Fuligni, and M. D. Grossi, Gravity gradiometry from the tetherd satellite System, IEEE Transactions on geoscience and remote sensing, issue.4, 1985.

G. E. Gullahorn, Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite, Final Report, 1985.

J. F. Hamel and J. Lafontaine, Linearized dynamics of formation flying spacecraft on a J2 perturbed elliptical orbit, pp.7-301, 2007.

G. W. Hill, Researches on the Lunar theory, American Journal of Mathematics, vol.1, issue.3, pp.245-260, 1878.

G. Inalhan, M. &. Tillerson, and . How, Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits, Journal of Guidance, Control and Dynamics, vol.25, pp.48-59, 2002.

P. M. Kalaghan and G. Colombo, Gravity Gradient Détermination With Tethered Sys tems, pp.33-58, 2000.

C. D. Karlgaard, Second-order relative motion équations, 2001.

C. D. Karlgaard-&-f and . Lutze, Second order relative motion équations, Advances in the Astronautical Sciences, vol.109, pp.2429-2448, 2002.

W. M. Kaula, Theory of Satellite Geodesy, 1966.

J. Kim, Simulation study of a low-low satellite-to-satellite tracking mission, 2000.

W. S. Koon, J2 Dynamics and formation flight, AIAA, 2001.

R. Koop, Global gravity field modeling using satellite gravity gradiometry, Netherlands Geodetic Commision, vol.38, 1993.

J. Kosteleckÿ, Récurrence relations for the normalized inclination functions, Bull. Astron. Inst. Czecholsl, vol.36, pp.242-246, 1985.

Y. Kozai, Effects of solar-radiation pressure on the motion of an artificial satellite, Smithsonian Astrophys, Obs. Spec. Rep. No, vol.56, 1963.

A. Labeyrie, Cohérent arrays of separate optical télescopes in space: project TRIO, Proceedings Very Long Baseline Interferometry Techniques, 1982.

D. F. Lawden, Optimal trajectories for space navigation, 1963.

E. C. Lorenzini, G. E. Gullahorn, and F. Fuligni, Recent developments in gravity gradiometry from the space shuttle borne tethered satellite System, Journal of Applied Physics, vol.63

R. Mackenzie and &. P. Moore, A geopotential error analysis for a non planar satellite to satellite tracking mission, Journal of Gedesy, vol.71, pp.262-272, 1997.

G. Métris, Analyse des perturbations dues à la gravité, cours d'été GRGS, 2002.

D. Mishne, Formation control of satellites subject to drag variations and J2 perturbations, J. Guidance, Control, Dyn, vol.27, pp.685-692, 2004.

D. L. Richardson and J. W. Mitchell, A third order analytical solution for relative motion with a circular reference orbit, Journal of Astronautical Sciences, vol.51, pp.1-21, 2003.

R. Rummel, Geoid and Gravity in Earth Sciences-An overview, vol.94, pp.3-11, 2005.

M. Sabatini, R. Bevilacqua, M. Pantaleoni, and &. Izzo, Periodic relative motion of forma tion flying satellites, AAS-AIAA Proceedings, 2006.

C. Sabol, C. A. Mclaughlin-&-k, and . Luu, Meet the cluster orbits with perturbations of keplerian éléments (COWPOKE) équations, 13th AAS/AIAA Space Flight Mechanics Meeting, 2003.

H. T. Schaub-&-k and . Alfriend, J2 Invariant Relative Orbits for Spacecraft Formations, Celestial Mechanics, vol.79, issue.2, pp.77-95, 2001.

H. T. Schaub-&-k and . Alfriend, Hybrid cartesian and orbit element feedback law for forma tion flying spacecraft, Journal of Guidance, Navigation and Control, vol.25, pp.387-393, 2002.

H. Schaub, Incorporating secular drifts into the orbit element différence description of relative orbits, 13th AAS/AIAA Space Flight Mechanics Meeting, 2003.

S. Schweighart and &. Sedwick, A perturbative analysis of geopotential disturbances for satellite cluster formation flying, IEEE Aerospace Conférence Proceedings, pp.10-17, 2001.

S. Schweighart and M. I. , Development and analysis of a high fidelity J2 model for satellite forma tion flying

P. Sengupta, S. R. Vadali-&-k, and . Alfriend, Second-order State transition for relative motion near perturbed, elliptic orbits, Celestial Mechanics and Dynamical Astronomy, vol.97, pp.101-129, 2006.
DOI : 10.1007/s10569-006-9054-5

N. Sneeuw, Représentation coefficients and their use in satellite geodesy, Manuscr. Geod, vol.17, pp.117-123, 1992.

N. Sneeuw, ;. Geodesy, . Rummel, G. Schintzer, and . Postdam, Report 1994 of the STEP Geodesy working group, 1994.

N. Sneeuw, A semi-analytical approach to gravity field analysis from satellite observations, 2000.

N. Sneeuw, J. Flury, and &. Rummel, Science requirements on future mission and simulated mission scénarios, on Future Satellite Gravimetry and Earth Dynamics, 2004.
DOI : 10.1007/0-387-33185-9_10

N. Sneeuw and &. Schaub, Satellite clusters for future gravity field missions, IAG Sympo sium 129, pp.12-17, 2005.
DOI : 10.1007/3-540-26932-0_3

B. D. , The gravity recovery and climate experiment: mission overview and early results, Geophysical research letters, vol.31, 2004.

B. ,

, GGM02-An improved Earth gravity field model from GRACE, J. of Geodesy, vol.79, 2005.

M. &. Tillerson and . How, Formation flying control in eccentric orbits, Proceedings of the AIAA Guidance, Navigation, and Control Conférence, 2001.
DOI : 10.2514/6.2001-4092

P. N. Visser, Low-low satellite-to-satellite tracking: a comparison between analytical linear orbit perturbation theory and numerical intégration, Journal of Geodesy, vol.79, pp.160-166, 2005.

. Yamanaka and . Ankersen, New State transition matrix for relative motion on an arbitrary elliptical orbit, Journal of Guidance, Control and Dynamics, vol.25, issue.1, 2002.

C. A. Wagner, Improved gravitational recovery from a geopotential research mission satellite pair flying en échelon, Journal of Geophysical research, vol.92, 1987.

E. Wnuk, Tesseral harmonies perturbations for high order and degree harmonies, Celestial Mechanics, vol.44, pp.179-191, 1988.

E. Wnuk and I. Wytrzyszczak, The inclination function in terms of nonsingular éléments, Celestial Mechanics, vol.42, pp.251-261, 1988.

E. Wnuk, The inclination functions for the high value of indices, Acta Astronomica, vol.38, pp.127-140, 1988.

E. Wyuk and J. Golebiewska, The relative motion of Earth orbiting satellites, Celestial Mechanics, vol.91, pp.373-389, 2005.

E. Wnuk and J. Golebienska, Relative satellite motion in a formation, Advances in space research, vol.40, pp.35-42, 2007.

C. Xu, R. Tsoi, and &. Sneeuw, IAG Proceedings, vol.129, pp.36-41, 2005.

O. Zarrouati, Trajectoires spatiales, Editions Cepadues, 1987.