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Abstract

Relative motion is a key technology for future missions using formation flying. In my thesis,

I hâve developed three different methods to study it, as function of its représentation.

Cartesian coordinates hâve been the main tool to study the relative motions, even if they

présent some drawbacks in terms of équations linéarisation and introduction of perturbations.

These limitations can be overcome using differential orbital éléments. A third représentation

of the relative motion is the local orbital éléments. They are very interesting to study relative

trajectories.

The use of differential orbital éléments enable the introduction of the main perturbations. For

low orbits, the dominant perturbation is the gravity field, and in particular, the oblateness of

the Earth. For very high orbits, solar radiation pressure plays a main rôle when satellites do
not hâve the same ratio surface to mass.

The study of relative motion is concluded with the analysis of two missions. First, I hâve

analyzed the interest of formation flying for gravity field détermination. In order to do so,

I hâve obtained the sensitivity équations of intersatelllite measurements to geophysical pa-

rameters. Second, I hâve worked on the characteristics of high eccentric orbits (HEO) for
formation flying. I hâve analyzed different aspects of Simbol-X mission.

Résumé

Le mouvement relatif est un élément clé pour le développement des futures missions spatiales

qui utiliseront les vols en formation. Dans cet ouvrage je développe trois méthodes différentes

pour son étude, utilisant différentes représentations.

Les coordonnées cartésiennes ont été pendant de nombreuses années l’outil principal pour

étudier le mouvement relatif, même si elles présentent des limitations en terme de linéarisation

des équations ou des perturbations. Ces limitations peuvent être dépassées grâce à. l’utilisation

d’une représentation alternative: les différences d’éléments orbitaux.

Une troisième représentation qui s’avère très intéressante pour l’étude des trajectoires utilise
les éléments orbitaux locaux.

L’utilisation des différences d’éléments orbitaux nous a permis d’étudier l’influence des per

turbations les plus importantes. Pour les orbites basses, la perturbation dominante est le

champ de gravité, et en particularier le second harmonique zonal lié l’aplatissement de la

Terre. Pour les orbites très hautes, la pression de radiation solaire joue un rie dominant

quand les satellites ne présentent pas le même rapport surface sur masse.

J’ai développé des études concrètes du mouvement relatif pour deux missions particulières.

D’abord je me suis intéressé à l’intérêt des vols en formation pour l’étude du champ de gravité.

Pour cela, j’ai obtenu les équations de sensibilité des mesures intersatellitaires aux paramètres

géophysiques. Je me suis également intéressé aux difficultés liées aux orbites très excentriques

(HEO) pour les vols en formation en étudiant une mission du type SIMBOL-X.
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Chapter 1

Introduction

1.1 History of relative motion and formation flying

The epicyclus of Apollonius of Perga Even if it seems to be a paradox, first pre-

Keplerian attempts on astronomy were not far from the right description of the relative

motion. Apollonius of Perga (262 BC - 190 BC) introduced the concepts of deferent and

epicycle that were used by Claudius Ptolemaeus (83-161 AD) later on to describe the motion
of the planets around the Earth. Ptolemaeus is well-known as one of the greatest astronomers

of the Antiquity because of his book ’Almagest’. In the ’Almagest’ he describes the geocentric

theory for the motion of the planets.

Geocentric theory describes the motion of the planets around the Earth as a perfect circle

(deferent) perturbed by smaller circles described at the same orbital frequency around the

deferent (epicycle). As we will see, this kind of motion matches well with the classical descrip
tion of the relative motion, the Hill équations. Geocentric theory had to add a huge number

of epicycles in order to match with the improving quality of astronomical observations. It

was finally abandoned for Copernicus model during 16th century.

The Hill’s Moon theory George William Hill (1838-1914) is one of the greatest American
mathematicians of 19th century. Since the beginning of his studies, he was especially inter-

ested in the work of Lacroix, Lagrange, Laplace and Legendre. His work treated basically on

astronomical mathematics. In 1878 he published Researches in Lunar Theory in American

Journal of Mathematics. This publication contains important new ideas on the three-body

problem. In particular, he presented the so famous ’Hill équations’ for the relative motion.

He spent the biggest part of his life in his family farm in West Nyack working in the theory

of the orbit of the Moon, but also of Jupiter and Saturn.

The first space rendezvous It was until the race to the Moon between USA and USSR

that the space rendezvous became a key technologies and théories of relative motion were

deeply developed. The space rendezvous was an intermediary step towards the big goal:
the Moon. But lunar missions included a lunar rendezvous between the lunar lander and

the orbiter. That’s the reason why Gemini missions in USA, and Vostok missions in USSR,

included tests of space rendezvous around Earth.

On August 12, 1962 two Vostok spacecrafts, Vostok 3 and Vostok 4, were placed into nearby

orbits, separated just by some kilometers. But spacecrafts had not the capability to do final

9



10 CHAPTER 1. INTRODUCTION

Figure 1.1: On the left side, Apollonius of Perga. On the right side Claudius Ptolemaeus

approach maneuvers. The first space rendezvous took place on December 15, 1965, when

Gemini 6A maneuvered within 30 cm of the passive Gemini 7. The first docking took place

on March 16, 1966 when Gemini 8, under the command of Neil Armstrong, docked with

uncrewed Agena 8 vehicle.

Lunar missions boosted the development of the équations of the relative motion. Probably

the most important development was obtained through Lawden’s équations. Good knowledge

of relative motion was also a key point to become an astronaut, as it is shown by the Ph. D.
degree of the astronaut Buzz Aldrin specialized in relative motions.

Since then, space rendezvous has been used largely in space missions. They are particularly

important for resupply functions in Mir and ISS stations. Recent achievements took place on

April 3, 2008 with the first ATV rendezvous with ISS.

The irruption of formation flying After the end of lunar missions, space rendezvous

was a well-known subject. But, new concepts including groups of spacecrafts flying in close

formation required a deeper knowledge of the relative motion. While in rendezvous the du

ration of the relative motion is short (just some hours), in formation flying the configuration

must be kept during ail the length of the mission (up to several years).
The first paper that I hâve found using a formation flying is the Labeyrie concept of a space

interferometer using several satellites published in 1982 [46]. This first concept, called Trio,
consisted in three satellites, two mirrors and a combiner, to do space interferometry. At the

same epoch, the European mission Cluster was proposed. It consisted in four satellites flying

in a tetrahedral formation to study the magnetosphere. This mission was finally launched
in 2000. This mission exemplifies the interest of multisatellite missions, even if it cannot be

considered as a formation flying mission because the satellites are controlled independently.

In recent years, main space agencies hâve developed important programs to acquire required
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Figure 1.2: On the left, George William Hill. On the right, Gemini 7 photographed from
Gemini 6

technologies for formation flying, as Spheres program at NASA, or Proba sérié at ESA. At

the same time, several formation flying missions hâve been launched, like A-Train or Grâce

mission dedicated to the study of the Earth.

For the future, a new génération of very challenging missions are currently being prepared.

Formation flying could help to develop many fields of astronomy, fundamental physics, or

Earth sciences. Darwin, Lisa or Simbol-X are just some examples of future missions.

These new missions présent new challenges in different engineering fields. They will need

autonomous navigation, very précisé knowledge of their relative positions (less than the mi-
crometer) and also autonomous relative control algorithms. Moreover, each mission présents

its own difficulties. At the sight of ail these new projects, there is still a lot of research to do
on relative motion.

Figure 1.3: Trio concept from Labeyrie on the left side. Artist view of Grâce mission on the

right side.
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1.2 Définition of formation flying

Space missions that use a certain number of satellites to accomplish the same goal are con

stellations of satellites (GPS, Galileo) and formation flying missions. Two criteria are usually

used to differentiate between them: (i) the GNC (Guidance, Navigation, Control) System of
the mission, and (ii) the relative dynamics between the satellites.

From a GNC point of view, a formation flying is controlled through the relative positions

and relative velocities between satellites, while in constellations each satellite is controlled

individually through its absolute position and velocity. In formation flying, relative position

is important for the success of the mission. For example, in interferometry missions, relative

position must be known with great accuracy in order to détermine the path of the light of

different télescopes.

From a dynamical point of view, in formation flying, satellites are near one from each

other, while in constellations they are far. Of course, near and far, are not précisé terms. We

try to define them in the following Unes.

First of ail, the relative distance (p) must not be considered in absolute, but with respect to

the semi-major axis of the orbit of the satellites (a). It is not the same a relative distance
between satellites of 1000 km when they are orbiting the Earth than when they are orbiting
the Sun.

Ail along the document, I consider that two satellites are near when: The dynamics of one

satellite with respect to another can be studied using the Taylor’s development of the dynamics

around the second one and this development is convergent. In most of cases, the linear term

is enough for a good accuracy. In these conditions, the précision is given by the parameter

(S)-

1.2.1 Classification of missions from a dynamical point of view

Formation flying can be classified with different criteria. In [9], they are classified following
three criteria: the dynamics, the guidance, and the geometry. For our purposes, we are

interested only in the dynamics criteria.

We adopt the same dynamical classification as in [9] adding a second division. It is, we separate
formation flying in (i) missions around Lagrange points, and (ii) missions around a central
body. The missions around a central body can be also separated in (ii.a) small intersatellite
distance, and (ii.b) large intersatellite distance. This classification is schematized in figure
1.4

The dynamics around the Lagrange points is a restricted three-body problem, where the

gravitational attractions of two attractive bodies are equal. The dynamics around these

points is completely different from a central body dynamics; that is why the two problems

must be studied separately. The study of Lagrange points is beyond the scoop of this thesis

and I focus only on the central body dynamics.

The différence of relative motions around a central body with a big intersatellite distance or

a small one, is not so relevant. It deals with the accuracy of the linear model and the interest

of introducing no linear effects.
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Simbol-X

Proba 3
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Calipso/Cloudsat
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New Worl Observer

Figure 1.4: Classification of formation flying from a dynamical point of view

1.3 Présent status of formation flying

1.3.1 Current missions

Thereafter, we give a short description of some of the most significant présent and planned for

mation flying missions. Each mission is followed by a link to the official website of the mission.

GRACE: It is a mission dedicated to the détection of the gravity field and the magnetic

held. It focuses on the temporal variations of the gravity field. It has been realised thanks to
the collaboration between JPL and DLR. The satellites were launched in March 2002 and it

has been providing data for six years.

Two twin satellites flying in a leader-follower configuration compose the mission. The in

tersatellite distance changes over time from 40 km to 200 km. The satellites are equipped

with a laser link that measures with a high frequency and high précision (10/zra) their rela
tive distance. Satellites are placed in a near polar orbit (i = 89°), with a very low altitude
(a = 6683 km), and very low eccentricity (e = 0.0022).

http://www.csr.utexas.edu/grace/

DARWIN: It is an ESA project scheduled for 2012. The project is made up by an

uncertain number of satellites, varying between three and six. One of them is placed on the

centre of the formation and combines the light coming from the other satellites. The centre

satellite is also in charge of télécommunications. Télescopes that collect the light coming

from stars are placed in a symmetric configuration around the central satellite. The central

satellite, using nulling interferometry detects the presence of exoplanets around studied stars

and their Chemical composition.

Satellites will be sent to a Lagrange point (L2), one and half million kilométrés from the Earth,
in order to avoid Earth pollution and perturbations. Once placed, there relative distances
will be of about some hundreds of métrés. The interelative distance must be controlled
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with a précision of the micrometer, and known with a précision of the nanometer. These

spécifications corne from the interferometer technology.

http://darwin.esa.int/science-e/www/area/index.cfm?fareaid=28

LISA: It is a future mission issued from a collaboration between NASA and ESA composed

of a three satellites interferometer. The orbits of the satellites will be similar to the Earth’s,

but will trail behind our planet at distances of around 50 million kilométrés, équivalent to 20

degrees. Launching date is about 2018 with a mission lifetime of 5 years. The three satellites

form an équilatéral triangle (5 million km. between satellites) facing the Sun, slanting at 60
degrees to the plane of the Earth’s orbit and revolving with the Earth around the Sun.

The main goal of the mission is the détection of gravitational waves. They are predicted

by Einstein theory but they hâve never been directly detected in spite of very performing
experiments. The tiny size of the waves, and the number of perturbations on Earth are the

two factors that hâve prevented their détection. Their détection would certainly open another

door for the exploration of the Universe. Nowadays, natural relative motion of the formation

is not adapted for the goal of the mission. For interferometer purposes, satellites should keep
constant interdistance and angle, but natural motion of the satellites introduces a kind of

‘breathing‘ of the configuration ail along the orbit.

http: //lisa.esa.int /science-e/www/area/index.cfm?fareaid=27

CALIPSO / CLOUDSAT: Calipso and Cloudsat are two Earth observation satellites
launched on April 28, 2006. Cloudsat is dedicated to the study of the clouds and Calipso is

dedicated to study the rôle of aérosols in climate changing. Each of the satellites has its own

vital Systems, but they are designed to hâve the same ground path with a small distance be

tween them (100 km). That is why they are considered as a formation flying. The formation
is completed with several others satellites dedicated to Earth observation, it is the so-called
‘A-train‘.

Satellites Calipso and Cloudsat hâve a length life of about three years, they hâve a heliosyn-

chronous rétrogradé orbit, with a semi-major axis of 705 km and an inclination of 98.2 degrees.

http: //www.nasa.gov/mission_pages/cloudsat/main/index,html

http://www.nasa.gov/mission_pages/calipso/main/index.html

SIMBOL-X: It is an Italian(ASI) - French(CNES) mission composed by two satellites
flying in very close formation (25 métrés). The two satellites compose a telescope that will

observe in the X band. So, it will observe the very energetic éléments as black holes. The

lifetime of the mission would be between three and five years.

Satellites will be placed in very eccentric (e — 0.75) high (a = lOOOOOfcm) orbits (HEO) around
the Earth. These orbits represent an alternative to Lagrange points in terms of perturbations.

Observations are taken beyond the Van Allen radiation belt. Simbol-X represents one of the

most challenging future projects because of the high eccentricity of the orbit and the major
rôle of the solar radiation pressure on the relative motion.

http://www.cnes.fr/web/5848-simbol-x.php

TERRESTRIAL PLANET FINDER: It is the NASA mission équivalent to the Euro-
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pean DARWIN mission. It will be composed of two observatories: a visible light coronagraph,

and an infrared interferometer. They would also flight to L2 points and the main goal of the

mission is exoplanet détection.

http://planetquest.jpl.nasa.gov/TPF/tpfJndex.cfm

TechSat 21: It is a mission conducted by the US Air Force Research Laboratory to

prove the capabilities of formation flying to operate in different tasks as radio frequency

sparse aperture imaging, précision geolocation or ground moving target indication. The mis

sion is a technological demonstrator composed by three satellites of about hundred kilos each
one. Mission should hâve been launched in June 2004.

PROBA 3: It is the third satellite of the European Technological Demonstrators PROBA.
There is still no date for its launch but this will not be before 2010. Two satellites will com

pose the formation with a varying séparation between 5 meters and 8 kilometers, and an

accuracy on the détermination of the relative motion of a few centimètres.

It will be used to verify the metrology, the actuation techniques and the GNC strategies for

future formation flying. Both satellites will fly in very eccentric orbits and will be controlled

only far from the perigee, where the fuel consumption is smaller.

http://www.esa.int/techresources/ESTEC-Article-fullArticle_par-28_l 153128123055.html

TANDEM-X/TERRASAR-X: It is a DLR mission consisting of two companion SAR

satellites flying in close formation with the main goal to provide operational, bi-static single

pass interferometry products of new quality with tunable interferometric baselines. The along

track distance between the satellites varies between thirty and fifty kilométrés, and there is
also a small across track variation to avoid collision risk.

http: //www.dlr.de/hr/desktopdefault.aspx/tabid-2317//3669_read-5488/

PRISMA: It is a Swedish-French technological demonstrator to préparé future missions

like Simbol-X. Prisma is scheduled to be launched in spring 2009. The estimated lifetime

for Prisma is around ten months. Prisma will be launched into a low, sun-synchronous,

dawn/dusk orbit at an altitude of 600A:m. The mission will be carried out as a long sériés of
experiments, including both manoeuvring and sensor/motor experiments. A certain number
of days will be allocated to each party.

http://www.prismasatellites.se/?id=9036

STELLAR IMAGER: It is a NASA mission to enable an understanding of solar/stellar
magnetic activity and its impact on the Universe. The mission would be composed by a large

number (20-30) of primary mirror éléments focusing on beam combining hub with a baseline

between 100 and 1000 métrés. The lifetime of the mission is about ten years. Satellites would

be launched in L2 point.

http://hires.gsfc.nasa.gov/si/
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XEUS: Selected for Cosmic Vision ESA program, with a possible launch in 2018. XEUS

is the potential successor to XMM-Newton, ESA’s current X-ray observatory. With 5m2
of collecting area at 1 keV and 2m? at 7 keV, an imaging resolution of 5” half-energy width
(HEW) and a goal of 2” HEW, XEUS will hâve a limiting sensitivity around 200 times deeper
than XMM-Newton. XEUS requires a focal length of around 35m to reach a collecting area

of 5m2 at 1 keV. Given this long focal length, a dual spacecraft configuration is favoured. A
Halo orbit around the second Lagrangian point of the Sun-Earth System (L2) provides optimal
conditions. The chosen orbit can be reached in about one month with an almost full-year
launch window. L2 provides the necessary low gravity-gradient environment for economical

formation flying, long observing Windows and optimal cooling for the instruments.

http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=42271

New Worlds Observer: The New Worlds Mission is a project funded by NASA Institute

for Advanced Concepts (NIAC), headed by Dr. Webster Cash of the University of Colorado
at Boulder in conjunction with Bail Aerospace & Technologies Corp., Northrop Grumman,

Southwest Research Institute and others. The project plans to build a large occulter in space

designed to block the light of nearby stars, in order to observe their orbiting planets. The

observations could be taken with an existing space telescope, possibly the James Webb Space

Telescope when it launches, or a dedicated visible light telescope optimally designed for the

task of finding exoplanets. New World Observer is one of the possible configurations for the

mission. New Worlds Observer would use two spacecraft and two starshades increase the

angular resolution and allow better analysis of the exoplanet’s composition.

http: //newworlds.colorado.edu/

1.3.2 Major areas of development

The domains for which we note the most intense activity are the followings:

• Modelling relative motions: Even if important progress hâve been recently done in this

direction, some aspects remain unresolved. Modellisation of non-conservative perturba

tions, or simplified expressions for non-linear effects are two of them. First part of this
thesis is dedicated to this modellisation.

• Control laws: The control of the formation can be done using different control laws.

They must be evaluated in terms of efficiency, précision, and propellant consumption.

This problem has two different approaches when we consider continuons thrust or iso-
lated maneuvers.

• Optimal reconfiguration: The problem consists in changing relative positions or deploy-

ing the formation after the insertion by consuming the minimum of energy. This is a

very complex optimization problem because of the number of parameters: time, number

of manoeuvres, initial and final positions. Particular techniques exist to deal with it.

In some cases, the problem can be simplified into a two maneuvers strategy.

• Non-drift orbits: When satellites are not in operation for a while, they remain in a low-

energy State. During this period, in a general configuration, natural forces could drift
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away satellites. This could be a problem for posterior recovery of the mission. That is

the reason why satellites are placed in non-drift orbits. The détermination of non-drift

orbits is a current problem for formation flying missions.

• Navigation techniques: Navigation in formation flying is spécifie because it is not always
easy to hâve measurements of the distance between satellites with précision. The two

main techniques are laser link between satellites and radar measurements. Problem of

both of them is that they are very directional. The challenge is to obtain a completely
on-board navigation System. Détermination of absolute and relative motions at the

same time could présent advantages for the accuracy of the détermination, but at the

same time, it could présent instabilities.

This different problems involve different scientific areas: orbital mechanics, automatics,
optimal control or filtering are just some of them.

1.4 Plan of the thesis

The origin of the interest for formation flying within the team Géodésie et Mécanique Céleste

of the Observatoire de la Côte d’Azur is linked with space geodesy. At the sight of the suc-
cess of GRACE mission, and considering future needs of space geodesy, it seems reasonable
to start preparing future GRACE ’follow-on’ missions. The first fundamental question about

this hypothetical missions is the configuration of the formation flying. GRACE configura

tion présents several technological advantages (same orientation of the satellites, same drag
effects,..), but, are there other configurations more sensitive to the gravity field?
In order to answer this question, we wanted to sweep ail the possible configurations. An-

alytical models seem to be the most suited for fast numerical sweeping. I realized that a

in-depth study of relative motion was necessary to get an accurate analytical model standing
for gravity field effects. So, I started doing an exhaustive research of analytical models for

relative motion. In some cases, when I considered that the model was not accurate enough,
I did necessary improvements. In a second time, I studied geodesy missions.

Thanks to my contacts with the French space agency (CNES) and Thaïes Alenia Space, I
discovered a very challenging formation flying: Simbol-X. I also collaborate with them in the

mission analysis.

The document is divided into three parts, the two first are devoted to the relative motion

(first part to the Keplerian motion, and second part to the perturbations), and the third part
is dedicated to formation flying missions.

In the first part, I présent three different représentations of the relative motion. The first one
is the cartesian coordinates. It is the most usual one. The second one is the differential orbital

éléments. This représentation is quite recent, and is very well adapted for the introduction

of the perturbations. The last représentation is local orbital éléments. Local orbital éléments

are interesting for circular référencé orbit case. They are particularly well suited to get a
good insight on the relative trajectory.

In the second part I study two perturbations: the central gravity field and the solar radiation

pressure. Gravity field is split in two chapters. The first one is dedicated to the J2 effects

while the second one is dedicated to the rest of the gravity field. The effects of the solar

radiation pressure are studied because they are the main perturbation of high eccentric orbits
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(HEO).
The last part is dedicated to space missions using formation flying technology. I study an

Earth observation mission for the détermination of the Earth gravity field, and a Universe

observation mission composed of a telescope distributed over two satellites in HEO orbit.



Part I

The relative motion
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Chapter 2

Generalities

2.1 The statement of the problem

We want to study the relative motion of a body b with respect to a body a, both a and b

being in orbit around the central body c. By convention, the orbit of a is designed as the

reference orbit and we suppose that b is close to a. The notion of proximity is given by the

convergence of the Taylor’s development around a reference orbit.

Moreover, we suppose these two conditions:

mc » ma, mb (2.1)

so as to neglect gravitational interaction between bodies a and b. The second condition is:

|Ta - ~Ÿb\ « |Ta - Td, [Ÿb - Td (2.2)

Second condition will be used to assume the convergence of a polynomial development.

We consider that bodies describe a keplerian motion around a central body. Later on, we

will introduce perturbations on the motion.

Notations In the whole text, we use the well-known keplerian éléments: the semi-major

axis a, the eccentricity e, the inclination i, the right ascension of ascending node fl, the

argument of perigee ca, and the mean anomaly M. We also use the true anomaly /, an

intermediary variable r) = V1 — e2, and the sum of the perigee and the anomaly: u — u + /.
EO stands for:

EO = (a, e, i, fl, a;, M)T (2.3)
>

For low or null eccentricities we will use the non-singular keplerian éléments, ENS =

(a, S, M)T, defined as function of keplerian éléments:

= e cos eu

= e sin u

= u + M

C

S

A
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(2.4)
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Figure 2.1: Local reference frame and local cartesian coordinates

We will also use in chapter[7] Delaunay variables (L, G, H, Z, /z) defined as follows:

h = fl — 6 9 = 0} l = M

L = y/JLâ G = y/fia( 1 — e2) H — G cos z

where 0 is the sidereal Greenwhich time. The motion, studied in an inertial reference

frame denoted IJK, is described through temporal sériés of keplerian éléments as well as of

positions ~t\ijk and velocities ~v\ijk- We use the following notations:

—>1 { r \ijk ^
X\IJK = ->|

\ V I IJK J

We will consider a reference orbit which will be described by its orbital éléments or by
its position and velocity. This reference orbit can be the orbit of one of the satellites of the

formation (~ra) or it can correspond to a fictitious point. For clarity, we will name it the

reference satellite indicated by the subscript ref. Inertial position and velocity can also be
projected in the orbital local frame (RTN) (Radial ~e h, Transverse ~ëV, Normal ~e n) defined

by a given reference orbit. Relations between the two projections are given by matrix 1Z(EO):

~r\ RTN = 'R'(EOref)~Ÿ\uK (2.5)

K(EO) =

cos fî cos u — sin Ll sin u cos i — cos flsinu — sin Ll cos u cos i sin Q sin i

sin fl cos u + cos S2 sin u cos i — sin fl sin u + cos fl cos u cos i — cos fl sin i

sin u sin i cos u sin i cos i

(2.6)
The relative motion between a satellite and the reference satellite can be described by

the différence of absolute position and velocity projected in the orbital frame of the reference
orbit:
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A1z\rtN = ~x\RTN ~ ref \ RTN =
A~t\rtn
AT| RTN

or by the différences of orbitals éléments between the two orbits:

(2.7)

AEÔ = EÔ- ËÔref (2.8)
We will also use the following notation:

A -Ÿ\RTN =( AR

AV|rjtÿ = (AVr, AVt,A

Relative motion can also be described by the position and the velocity relatives to the

reference orbit (~p ,~p) or their coordinates:

~P = (pr,Pt,Pn)T

~P = (Pr,Pt,Pn)T

2.1.1 Different cases of relative motion

Previous conditions can be accomplished in different cases in space missions:

• Formation Flying: two or more satellites flying together with the same mission around

a central body. As I explained in the introduction, formation flying can also be placed

on Lagrange points. This case is not treated in this thesis.

• Space rendezvous: one spacecraft maneuvering to dock into a second spacecraft. It was

at the origin of the interest in formation flying.

• Asteroids: In asteroid belts, there may be groups of bodies flying in close positions.

Their motions can be studied independently or as a relative motion.

• Space débris: After a collision or the explosion of an spacecraft, a certain number of

pièces may rest in similar orbits. Equations of relative motion may be interesting in

order to describe the évolution of the population.

2.2 The various représentations

I hâve divided our study as function of the different représentations of the relative motion.

Here, we describe the three possible représentations:

• cartesian coordinates: Their temporal évolution is driven by classical Hill équations and

Lawden équations, the classical one.

• Differential orbital éléments: It is very useful to introduce perturbations thanks to

precedent expérience on orbital mechanics.

• Local orbital éléments: It is useful only for circular or low eccentric orbits. It enables a

better understanding of the trajectory.
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Formation Flying Space Rendez-vous

Figure 2.2: Different cases of relative motion

2.3 Linearization of the équations

The use of exact expressions of the relative motion leads to very complicated analytical

expressions which are not well-adapted for analytical manipulations. In order to simplify

them, we linearize these équations with respect to the distance as follows:

The motion of two points around a central body is given by generic expressions:

~Xa(t) = f Çxa{to),t) (2.9)

~ÎCb(t) = 7 (~Xb(to),t)

where the subscript 0 stands for initial conditions. Here, the first body plays the rôle of

the reference orbit and the second is the satellite that we analyze. The relative position is:

~p (t) = le b(t) - le a{t) (2.10)

We can rewrite the motion of the second body as:

Moreover, assuming:

(2.11)
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Cartesian coordinates: Differential orbital éléments:

Local oibital éléments:

Figure 2.3: The three different représentations

We can do the Taylor expansion of the function supposed to be convergent:

7(t) = àfïb1 b„(fo) Cp («o))2 + 3) (2.13)
Usually, first terms of the development are sufficient to obtain a good précision. In table

2.1 we give the error of the linear approach for different missions. The parameter which

détermines the précision of the linear approach is where ar is the semi-major axis of the

reference orbit. In certain cases, second order might be interesting. Some efforts hâve been

done in this direction in [61].
Next chapters are devoted to different methods used to study the relative motions. We présent

a linear approach, but for ail représentations it would be possible to introduce second order
effects.

The approach in terms of a polynomial development is a very deep change in the structure of

the motion. The nature of the keplerian motion is periodical, and a polynomial development

is not well-adapted for periodical motions. It implies that polynomial developments cannot

take into account long-term secular drifts.

p (km) or(Km) error (%)
GRACE 200 6900 10

LISA 5 M 150 M 0,1

SIMBOL-X 0,02 106 K io~12

Table 2.1: Linéarisation errors for different formation flying missions
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2.3.1 The choice of the reference orbit

The choice of the reference orbit détermines the interest of the relative motion. The précision

of the reference orbit plays a rôle on the précision of obtained results. Hereafter, we présent
the most common reference orbits:

• The real orbit of one of the satellites: This orbit should be used in order to obtain the

exact relative motion. But this orbit is quite complicated to describe analytically and it

is usually given numerically, that is not well suited for analytical use. It is necessary to

obtain high précision variations of distance, but the effects of neglecting some variations

on the reference orbit are really small. We will not use it.

• The non-perturbed orbit of a satellite: It is the most current choice. This has the ad-

vantage of an easy analytical représentation and a level of précision usually high enough

for mission analysis. It can also be interesting to study the effects of perturbations on

a single satellite mission.

• The orbit of a fictitious point: It can be useful when the choice of a reference satellite

might be problematic. In general no gain in précision should be obtained by changing

the reference orbit since the gain in one side should be lost in the other side. An example

of such a reference orbit is [7]



Chapter 3

The classical approach

In this chapter we présent classical developments about relative motion. They are based on

the cartesian représentation of the formation flying. The most well-known are Hill équations

[35] for the circular reference orbit case (also known as Clohessy-Wilthsire équations [20]), and
Lawden équations [47] for the eccentric reference orbit case. In both cases, two simplifications
are done: équations are linearized, and the motion is purely keplerian.

In the first section, we présent the general équations of relative motion in the framework of

classical non-relativistic mechanics. Two following sections are dedicated to Hill and Lawden

équations respectively. We finish the chapter with some notes on further developments of

precedent équations in order to take into account perturbations or non-linear effects.

3.1 The équations of the relative motion

Classical mechanics gives the expression of the relative accélération with respect to a non-

inertial frame (see figure 3.1) with an angular velocity Tu and an accélération ~aref.
Using previous notions, the équations of the relative motion in a rotating reference frame

become:

~p — ~a sat — ~&ref ~ 2u? x ~p — To x ~p — To x {To x ~p) (3-1)

where ~asat is the absolute accélération of the body and the dot stands for the dérivatives

with respect to time. These équations use three variables: (i) the relative position and its

dérivatives, (ii) the différence of accélérations between the two satellites, and (iii) the rotation
of the reference frame, also with its dérivatives. Relative position is the unknown, and the

other two variables can be modeled in different ways. Both of them dépend on the reference

orbit. The easiest way for modeling them, is to take a non-perturbed circular reference orbit.

This choice leads to the well-known Hill or Clohessy-Wiltshire équations. They are described

as follows. The use of a non-perturbed elliptical reference orbit leads to Lawden équations.

At the end of the chapter we will introduce the effects of perturbations.

3.2 Hill équations

We particularise precedent équations to the case of two satellites orbiting around a central

body following non-perturbed keplerian motions. We place the non-inertial reference frame

27
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Figure 3.1: At the left side, general inertial and non-inertial reference frames. At the right

side, particularisation for a two-satellite formation flying

in the orbit of one satellite and we suppose the orbit to be circular. The non-inertial reference

frame is orientated as follows: first axe follows radial direction (~e r), the third one follows the
direction normal to the motion (~e n), and the second one complétés an orthogonal System
(fer)- In the circular case the second axis coincides with the direction of the velocity, but
this is not the general case.

In the non-perturbed circular motion the rotation of the reference frame reads:

Tj = n~e n (3.2)

with n = and p is the product between the gravitational constant and the mass
V aref

of the central body. The differential accélération has a simple expression:

—> —> P /—> —*\ P
n sat n ref = — —>-|3 ( T ref T P ) T r ref (3-3)

I T ref ' P \ | T ref|

Supposing that the distance between satellites is small, we can linearize precedent équa
tions to obtain:

n sat n ref —
P

ref

ZPR \
~PT I
~PN )

Introducing (3.2) and (3.4) in (3.1), we obtain the well-known Hill équations:

(3.4)

PR = 3n2pR + 2npT

PT = -ZriPR

Pn = —n2ÔN

(3.5)

The intégration of these équations is immédiate:
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pR(t) = —sinnt — (2^^^ +SÔR(to) \ cosnt
n \ n J

+ (2^)+4p^0))
Prit) = 2^^^ cos nt+( + QpR(to)\sin nt

n \ n0 J

+ |-2— + prit0)^ - (3pr(to) + 6npR(to)) t
pn if) — PNf0) cos nt + -N ^ sin nt

n

3.3 Lawden équations

In [47], Lawden introduced the solution for the relative motion with eccentric non-perturbed
reference orbit. Hereafter, we summarize and comment his results.

When working with eccentric reference orbits, the orbital rotation is no more constant:

“ =(1 _ g2)3/2 (1 + ecos/)2 (3.6)
^ „ 2 • /1 + e cos / \3 . .
u; = —2rresin/(—-——J e jv (3.7)

where ail the orbital éléments correspond to the reference orbit. It leads to a new set of

differential équations:

/i t 0

PR = 2 ^3 Ar + 2ajpt + iüpT + üJ Pr
•• 9

Pt — ^3 Pt — %topR - + u pT
P

PN =

These équations do not hâve an exact explicit solution, Lawden gives an implicit one ([47],
pag 85):

pR(t) — A cos / + Be sin / + CI2 (3.8)

pT{t) = -A sin / + B(1 + e cos /) + D ——f + CI2
1 + e cos /

piv(Q = (£cos/ + Fsin/)
1 4- e cos /

with:

/2

A

cot /

e(l + ecos/)

1 -f e cos / _
H :—7—Ji

esin /

df

sin2 /(I + ecos/)2

(3.9)
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Intégral I\ has been the object of a reference [14] where I\ is decomposed as a sum of
elementary functions. Lawden also gives a closed form of the solution, but does not give

parameters A, B,C, D, E, F as function of initial conditions. Lawden’s solution has been

used in some papers to study the control of formations [13], [36].
Lawden solution, to our point of view, has two weak points: first, the parameters of his

solution (A, H, C, D, E, F) are not expressed as function of initial conditions; second, his
solution is not convenient because of the intégral I\.

3.4 Relative velocity versus différences of velocity

A determining choice is the coordinates that we use for the motion. Since we use a local

reference frame, we can project the relative motion in this reference frame, or we can study

the relative motion with respect to the reference frame. The différence between projection

and dérivation has later effects on the relations between the cartesian représentation and the

other ones. Each possibility has some advantages and drawbacks:

• Relative position and velocity: represented by ~p or (pr, Pt, Pn)T Hill and Lawden
équations are written using these coordinates. For GNC purposes, these équations are

also well adapted because what we need for GNC is the expression of the dérivatives of

the variables: the velocity.

• Projection of différences of position and velocity: represented by A~t\rtn, ^^\rtn,
or also as:

AV|RrA, = (AR,AT,AN)t
AV|ft77\r = (A

The advantage of these coordinates is their physical meaning, which enables a direct use

for the observable, while the other coordinates must be transformed before. The main

disadvantage is that they cannot be used for GNC since the différence of the projection

of the velocity is not the dérivative of the projection of the différence of positions:

&~v\RTN 7^ ^ (^~^\rTn) (3.10)

The relations between both coordinates are quite easy to be derived:

A~ff\RTN = Ô (3-H)

Al? | RTN — Ô +Tü A S

3.4.1 Hill équations using différences of velocity

In the circular case, équations (3.11) become:
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Ar|#TAr = S (3.12)

A~v\rtn = S +n(—ôr,ÔR, O)7

Using these relations, we can rewrite the solution of Hill équations in ternis of différences
of velocities:

AR(t) =

AT(t) =

+

AN(t) =

AT0 +
AVr0\ .

si

n J
sin nt — 2

, AVto

n

+ ARq ) cos nt + ( 2
AVto

n

T- 2ARq

^2ATo + 2 ^ cos nt + ^4^^ + 2Ai?o^ sin nt
_ ATq \ _ (3AyT0 + StiARq) t

ANq cos nt H —^ sin nt
n

(3.13)

3.5 Further developments

Lawden’s équations présent a double drawback: (i) they ignore non-linear effects, and (ii)
they ignore perturbations of the keplerian motion. Several authors hâve worked in order to

improve the équations considering the effects that hâve been neglected.

3.5.1 Perturbations

Cartesian coordinates are not well suited for the introduction of perturbations because they

must be taken into account in two different ways. First, perturbations must be introduced in

the différence of accélérations, and second in the rotation of the reference frame. This double

action of perturbations leads to complex differential équations which usually do not hâve an

analytical solution. If we are interested in obtaining simplified expressions, we could think to

use a simplified non-perturbed reference orbit. To do so, we should neglect the effects of the

perturbation on uj , but the différence of accélération must always consider the perturbations.

J2 effects In [59], the author présents a method to introduce J2 perturbations on the
relative motion. He uses local spherical coordinates instead of cartesian coordinates in order

to improve the précision of his solution. He modelizes the force due to J2 in the local orbital
frame as follows:

J2 = -
3 J2^R

1 — 3 sin2 i sin2 u

2 sin2 i sin u cos u

2 sin i cos i sin u

(3.14)

The motion of the reference orbit perturbed with the mean J2 effects reads:

^ M —> 1 f27T —> —
^ ref — ^3 ^ ref T J T ref)d

ref

\U (3.15)
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This motion leads to a new mean rotational velocity which is computed as follows:

ref)du (3.16)

This first équation enables to introduce J2 perturbation on the rotation of the reference

frame. The second effect of the perturbation must be introduced in the differential accéléra
tion:

~üj A (Tj A ~r ref ) — ,3

ref
-et + 2i

2tr

J 2C

& sat & ref ^^3 T sat T ^3 T re/^ T J 2i'f' sat) J J 2^ T ref)dll (3.17)
The first two terms correspond to the keplerian motion. The third term corresponds to

the J2 effects on the satellite orbit, and the last terms are the mean J2 effects on the reference

orbit. As usual, the author linearizes previous équation:

y^sat)= y^ref) + + ()) (3.18)
He also averages the differential effects of J2 :

& sat & ref — l 3 ^ sat ' 2> ^ ref I ' ^ 2
sat ref

. 1 /2’a
re/)+27]. J g

*2?T

f=?CAe/) Sdu~J^ I J 2(7ref')d
(3.19)

The detailed solution of this équation can be found in [59]. Another interesting work that
has been with J2 is [78]

Gravity field effects Also a very interesting development to introduce perturbations is

presented in [50]. First, the author finds an analytical solution for Hill équations perturbed
with a general periodic perturbation:

PR = SrioPR + 2riQpT + Ar cos ft + Br sin ft (3.20)

pr — — 2nopiî + A? cos ft + Br sin ft

Pn = —n2pu + Art cos ft + Bn sin ft

where Ar, Br, At, Br, An, Bn are the coefficients describing the perturbative force. He

finds following solution:

Tl

PR{t) = n( 2 _ rn (^b + Ref cos ft + Rg/ sin ft + RCn cos nt + RSn sin nt) (3.21)
J\n J )

n2

Pt(t) = y2(n2 _ p) (T° + Ttt + TCf cos + TSf sin cos nt + Sin nt)

PN (t) = 2~—p2 cos + NSf sin ft + Ncn cos nt + -/V5n sin nt) (3.22)
n J
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where the coefficients are given as function of initial conditions and perturbing forces.

The second step consists in introducing differential gravitational perturbations as periodic

perturbations. For sake of brevity I do not reproduce the results that can be found in [50].
The author do not introduce perturbations on the reference frame. It means that the angular

velocity of the reference frame is the keplerian one. Certainly, this simplification does not

affect précision for short periods of time, but it might be an important source of error for

long extrapolations.

3.5.2 The non-linear effects

The most interesting work developing non-linear effects using cartesian coordinates are [31],
[52], and [39]. In [31], the authors présent a semi-analytical method to consider the whole
non-linear effects on Hill équations. This is the generalization of paper [52], where only second
and third order effects are considered.

The departure point in [31] are the non-linearized Hill équations:

PR -

Pt =

P

r + p

P 3

r + p

{PR + r) + 2npT + n2(pR + r)

pT - 2npR + n pt (3.23)

P 3
PN — ;— PN

r + p

Their technique consists in expanding the non-linear terms, which in their dimensionless
form can be written as the dérivatives of the function:

o/ \ (x +1)2 + y2 , 1
Q(x,y,z) = h

y/(x + l)2 + y2 + z2
(3.24)

This function is expanded as a sériés using Legendre polynoms and is solved using Lindstedt-
Poincaré Procedure.

In [39], the author obtain only the second order terms of circulai' problem using spherical
coordinates.

3.6 Conclusions

In this chapter we hâve presented the classical équations of the relative motion, their advan-

tages and their disadvantages. At the end of the chapter we can conclude that, even if they

are very useful, they are not well-adapted for the introduction of perturbations. The method

presented in the next chapter is very complementary because it is specially developed for the

introduction of perturbations.
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Chapter 4

An alternative approach

4.1 Introduction

In this chapter we présent an alternative method to study the dynamics of formation flying.

The principle of the method is simple. The représentation of the motion is done in a local or

bital frame, but the extrapolation is done using the équivalent différences of orbital éléments.

To use this method it is necessary to hâve transformations between the two représentations:

the différence of orbital éléments and the local orbital frame. Historically, the first article

that presented these transformations was [15], but the author did not use them for relative
motion. Other transformations were used by Garrison et al. [28] to obtain the équations of
the relative motion for an eccentric reference orbit. Alfriend proposed another way to obtain

the transformations and introduced another set of orbital éléments in [3]. Using Alfriend’s
method, also called ’geometric method’, Gim [29] introduced J2 perturbations and Sengupta

introduced second order efïects [61]. This solution has none of the drawbacks of Hill and
Lawden équations. It can take into account second order efïects, eccentric reference orbit,

and perturbations. This solution is very well-adapted for control and navigation.

Our method présents some différences with respect to previous work. First, we use classical

orbital éléments with mean anomaly. This set of orbital éléments keeps simple analytical

expressions, but has a double singularity for zéro eccentricity and zéro inclination. A sec
ond différence is the use of the différence of absolute velocities instead of relative velocities.

These variables are better adapted for mission analysis because Doppler effect measures this

différence of velocities, while relative velocities are well-adapted for control and navigation.

Third, we présent an analytical procedure to inverse the transformation matrix, when this

was done numerically in other articles. Moreover, in following chapters we use this method

to introduce not only the efïects of the gravity field, but also the perturbation produced by

the solar radiation pressure.

This chapter is organized with the following structure. In the second section, we présent our

general strategy to propagate relative motions by combining the différences of orbital éléments

and the rectangular coordinates. The third section is dedicated to linear transformations us

ing the Poisson brackets. In section four, we apply our method to the linear, keplerian case.

We finish by particularizing the équations for the circular case.

35
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4.2 Propagation method for relative motions

Principles of the method The principle of our approach consists in using the différences

of orbital éléments to study the dynamics of the motion, while rectangular coordinates are

used to give a better insight of the formation. Our goal is to obtain final expressions:

A~x (:t) = /(Air (t0), EOref{t),t) (4.1)

The method consists in a double transformation. The initial différence of orbital éléments

is deduced from the initial conditions given as a différence of position and velocity at the

epoch to:

Air (£o)|j?tjv —» AEO(to) (4.2)

This transformation does not imply the dynamics of the problem; consequently, the per

turbations do not change these relations. Once the initial conditions are known as différences

of orbital éléments, we propagate the reference orbit and the relative motion. The extrap

olation of reference orbit can be done with one of the various analytical théories available

in orbital éléments. Lagrange équations, Gauss équations or Kaula’s method are some tools
that can be used:

EOrefit) = f(EOref(to),t) (4.3)

The same analytical théories can be used to express the différence of orbital éléments :

AEO{t) = f(EOsat(to),t) - f(EOref(t0),t) (4.4)

In most of cases we can use the differentiated form:

AEO(t) = g (AEO(t0), EOref(t),t) (4.5)
Such an expression séparâtes the effects of a perturbation on the reference orbit and on

the relative motion. It is also possible to choose different perturbations for the reference orbit
and the formation.

Finally, once the temporal évolution of the différences of orbital éléments is known, these

différences can be reprojected in terms of différences of position and velocity:

AEO(t) —> Air |RTN(t) (4.6)

As a resuit, the évolution of the relative motion can be described in the local reference

frame defined by the reference orbit. The combination of these three steps gives the expression:

Air {t) = /(AT*(t0), EOref{t), t) (4.7)

These transformations hâve a general form and they can account for non linear effects,

even if in this study we présent only the linear case. Perturbations are included in two

different ways. Perturbations on the formation are introduced through the transformation

(4.5). Perturbations on the reference orbit are given through the temporal évolution of EOref
in équation (4.3).
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Linearization Because of the différences, the exact explicit form of the transformations

(4.2) and (4.6) seems unreachable. It is convenient to use simplified relations when différences

are small enough. The quality of the approximation détermines the précision and the range

of validity of resulting équations. In this document we use the linear transformations. This
writes:

AEO(to) = [M~1(EOref)\A~x(to)\RTN (4.8)

AËÔ(t) = [C(ËÔref(to))]AËÔ(to)
A~x(t)\RTN — [M(EOref)]AEO(t)

where the matrices Ai and Ai~1 are:

M(ËOref) = dx^N M-l(ËÔrcf) = JE° (4.9)
dEO dx\RTN

and the matrix £ gives the linearised temporal évolution of initial différences of orbital

éléments. For the linear case, the final resuit given by the combination of three matrices
reads:

A~x (t)\RTN [M(ËÔref(t)) C(ËOref(t)) • M-\ËOref(tü))\RTN A~x(to) (4.10)

The matrix C dépends on the perturbations, but not the matrices Ai and Ai~l. The

matrix Ai corresponding to the direct transformation can be found in the literature [15], but
not the matrix At~1 corresponding to the inverse transformation. Next section explains how
both matrices can be obtained. The only non-linear approach that we hâve found actually is

[61].

4.3 Transformations between représentations

The aim of this section is to find direct and inverse transformations between the two repré

sentations, A~x\rtn and AEO, through explicit expressions of matrices Ai and Ai~l.

4.3.1 Direct transformation

The différences of position and velocity in terms of différences of orbital éléments is detailed

by Casotto in [15]. Here, we just quote it to link his approach with ours. To compute Ai,
Casotto follows a schéma made up in two steps. First, he differentiates explicit relations

between the position-velocity and the orbital éléments ~x\ijk = f(EO) to obtain:

A~x\ijk — J/(EO)AEO (4.11)

where Jt is the iacobian matrix associated to A^df Secondly, he projects the
J dEO dEO K J

resulting relations in the orbital frame (RTN):

A~x\rtn — 77 1JfAEO (4.12)
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where 7Z is defïned in (2.6). So, he finds:

A~x\rtn — [Ad(EO)]A.EO (4.13)

with the matrix M(EO) — 7Z~lJf.

( r_

a
—a cos f 0 0 0 — sin /

?7 J

0 a(1 + lka)Sinf 0 rcosi r
a2rj
r

0 0 r sin u —r sin i cos u 0 0

na sin f e

ri 2a

na sin f a

77 r
0

na2v „•
L COSl

r

na2r]
r

na3
r*

na nE
r/ 2r

na e+cos f

V V2
0 —e cos i sin f

77 ^ yfesin/ 0

\ 0 0 ^ (cos u + ecosijj) — sin i (sin u + e sin ui) 0 0

(4.14)

4.3.2 The inverse transformation using Poisson brackets

Different possibilities can be investigated to obtain the inverse transformation. The first idea

is the direct inversion of the matrix A4. Even if possible, this method leads to complex

results, very difficult to simplify. Another method could be a direct différentiation of expres

sions EO — f~lÇx) with later projection in orbital frame, using the same schéma as Casotto.
But, since équations EO — are not explicit, this is very complex to achieve. There,

we propose to take advantage of the properties of canonical variables, using Poisson brackets.

The Poisson bracket of two functions /, g is defined by:

{fi9}q,p — 53
3=i

where qj,Pj (j — 1 ...s) are canonical conjugated variables. Using the theorem that proves that
a transformation, (pj,qj) —* (Pj,Qj), is canonical, if, and only if it keeps the Poisson bracket
[30], it is well-known that for two sets of canonical variables (q; p) = (qi, q<i,...., qs ; p\, p2,...., ps ),
and (Q; P) = (Qi, Q2, ••••, Qs; Pi, P2, •••, Ps)-

df dg _ df dg
dqj dpj dpj dq-j

dQi dpj —dPi dpj
Ym = (1, ,s)

dqj dPi dqj dQi

dQi _ -dqj dPi _ dqj
dpj dPi dpj dQi

With such a property, and a function V defined as a function of (p, q) and seen as a
function of (P, Q) it is possible to deduce:

A dV dQj

“ dQi dqj

dV dPj

dPi dqj

E
dV dpj
dQi dPi

dV dpj
dPi dQi

{V,Pj}

dV

dqj
(4.17)
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If we suppose moreover that the canonical variables pa: qa, a — 1..3 , are functions of orbital

éléments EO = {EO\,...., EOq)t:

dV_
dqj

E
i— 1

3

E
i— 1

6

E
k= 1

/ dV_dpj_ _ dV dpj \
\dQidPi dPidQi)

dpj dEOk

dEOk dPi
K= 1

dEOk
{V,EOk}

dV

dPt

6

E
fc=i

dpj dEOk

dEOk dQi

Applying this relation to an orbital element EO*, we get:

dEOi

dqj
E

dEOk
{EOi, EOh}

With a completely équivalent proof we can also deduce:

(4.18)

(4.19)

dEOi

dpj
E

dEOk
{EOi,EOk} (4.20)

The interest of these équations lies in the possibility to compute the dérivatives of each orbital

element with respect to canonical variables using the dérivatives of these canonical variables

with respect to orbital éléments. Poisson brackets of orbital éléments are well-known [25]:

Ail other brackets are equal to zéro. Since the position and the velocity in the inertial

frame form a set of canonical variables [30] we can use them in équations (7.12), (7.27) and
we obtain:

E ^E&t<421>

k

As we are interested in the dérivatives with respect to inertial position and velocity,

projected in the orbital frame, we can keep the previous expressions just projected in the

orbital frame (the canonicity is preserved under a rotation):

dEOi

d~r\uK

dEOj

d~v\uK

dEOi

d~r\RTN

dEOi

dv

E^—^EO,}
dEOk

-E
k

d r RTN

{EOi,EOk}

(4.22)

RTN dEOk



40 CHAPTER 4. AN ALTERNATIVE APPROACH

Previous formula does not apply to relative position p and velocity ~p because they do
not form a set of canonical variables.

The dérivatives of position and velocity computed in section 4.3.1 (4.14) can be used in
équation (4.22) to obtain following results:

M~l =

2(-)2
aî (a _ i)
re \r J

o

o

0

e+cos /
rpae

\ ( e+cos / _ rp A
rj y ea r J

0

0

sin u+e sin u> y
rj2 a

_ cos u+e cos io
rpa sin i

cos tt+e cosci>

rpa tan i

0

2 —
nrj

; shi/

JL
na

sin /

0

0

cos fri

nae

1 f rp cos / _ 2 + \
na Ve a J

2 — —
n r

(4.23)

0 >

0

r cos u

Tina2
r sin u

na2 t? sin z
r sin u

r]na2 tan i

0 J

4.4 Application to the keplerian case

First, we apply our method to the description of relative motion in the case of the non-

perturbed linear keplerian motion described by équation (4.10). Since matrices M. and A4-1

are known, only the temporal évolution of orbital éléments and the matrix Ckep remain to be
expressed. For the keplerian case, ail éléments keep constant values except the mean anomaly
which is linear with time.

EOiit) = EOi(t0) i = 1....5 (4.24)

M(t) = M(t0) + no(t- t0)

Initial orbital éléments at initial time (to) are referenced by the subscript o- Differential

orbital éléments (AEO) evolve exactly in the same way: ail différences keep constant values
except the différence of mean anomalies which evolves linearly:

AEOi(t) = AEOi(t0) i = 1....5 (4.25)

AM(t) = AM(to) + Ano(t — to)

with:

Ano-n(to) " vV-e/ +'A«)3(<o) ^a^f(t0) (4'26)
The variation of the differential mean anomaly AM is linear with respect to the différences

of orbital frequencies Ano, but not with respect to the initial différence of semi-major axis

(Aao). In the framework of a linear approach, it is consistent to use:

a 3n
An = Aa

2 a
(4.27)

Finally, the matrix Ckep reads:
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f-'kep —

V —§ — *o)

0 0 0 0 0 \
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 /

Inserting M (4.14), C (4.28), and M 1 (4.23) in équation (4.10), we get:

(4.28)

T 3 r? p

AR(t) = K\ K2 cos / + A3 sin / — -—K\ sin fit — to) (4.29)

AT(t) = A2sin/-FA2-sin/+ — A3~ --n7?Ai~(£ - t0) + A4-
rj* a e r 2 r a

AN(t) = K§ — cos f + Kq~ sin f
a a

with the coefficients:

Kl

K2

Ks

Ka

k5

k6

ARo + 2—sin/oAVflo + 2——AVto
nr] n r0

(4.30)

— fAR0 + sin /0AT0 + - sin /oAVro
roe \ro / n

1 / ??2 cos /o

ne

T]

H
na

a sin /g

r0e

sin/o / r]

V r0e
H— I ARq T

V

e + cos

ea

- 2ra 1 Av,» - sin/o /R)

ARq —
e + cos /o

7]2e
ATq-

nae

COS f0T]

1- 77 ) AVto
a

en V ro

n_\
AT0ro)

ne

AVro + 1 + —
ï)z a

1 Tn
~ô (cos /o + e) AA0 - sin f0 AVjvo
tjz atjn

1 ro
~^AN0 sin /o H A Vivo cos /0
r rjna

/o
(2

1 r0\ sin /qT]

ne

AVto

These équations are équivalent to Lawden’s équations [47] that we hâve presented in
the precedent chapter. We can see the advantage of this second method because we hâve
obtained the constants as function of initial conditions and we hâve avoid the introduction of

the intégrais as in Lawden [47].

4.5 The circular reference orbit

The matrix A4-1 is singular in case of circular orbit. Since the perigee is not defined in
the circular case, it is necessary to use the non-singular éléments defined in (2.4). Linear
relations between the différences of non-singular and orbital éléments can be obtained by
différentiation:



42 CHAPTER 4. AN ALTERNATIVE APPROACH

Ae = AC cos ur + AS sin ujr

erAu; = AS'cosoy — ACsinoy (4-31)

Aa; + AM = AA

With these éléments, in circular case, linear approach leads to:

AENS{t0) =

AENS(t) =

A~x (t)\nTN =

[AT l(ENSref)]A~x (to)\RTN

[jC(ËNSref(t))]AËNS(t0)

[Af(ENSref)]AENS(t)

with matrices Af and Af 1

(4.32)
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The matrix C is not modified. Applying the same composition of matrices as in the

eccentric case (4.10) we obtain the linear non-perturbed équations for the circular reference
orbit:

AR(t) — ( ATo +
AVr0\

n0

AVro
sin no {t — to) — 2 + ARq cos no (t — to) + 2

AT(t) = 2 ( AT0 +
J

n0

AVro

, AVtq

n0
+ 2ARq

cos no (t — to) + ( 4 + 2AI?o ) sin no (t — to)
n0

- 2 + ATq ) — 3 (AVro + noARo) (t — £q)
, AVrq

n0

AN(t) — ANo cosno(t — to) + sinno(t — to)
n0

(4.33)

These équations are équivalent to Hill solution introduced in chapter 3 but expressed in

terms of différences of velocity (3.13).
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4.6 Conclusions

In this chapter we hâve presented a new method to obtain analytical expressions of rela

tive motion expressed in cartesian coordinates as function of initial conditions and time,

A~x(t) — f (to), EOref(t), t). This method can be applied to different kind of pertur
bations, for eccentric reference orbit. In order to apply this method, we hâve first used the

properties of Poisson brackets to dérivé linear relations between two représentations of rela

tive motion, différences of position and velocity (Aà?|rtn) and différences of orbital éléments
(AËÔ).

This work follows the direction marked by precedent works of Casotto, Garrison, and

Alfriend. It is, the use of différences of orbital éléments for orbit extrapolation, and transfor

mations between different représentations to project the results in the local orbital frame.

The orbital éléments hâve been chosen because they are well suited for the introduction of

the gravity field, and to keep simple analytical expressions. The use of différences of velocities

{A~v\rtn) instead of relative velocities is determined by the further utilisation of équations,
since these variables are better adapted for mission analysis.

In the second part of the thesis, differential orbital éléments will be used extensively in

order to obtain the effects of different perturbations. It will be applied to the gravity field

and to the solar radiation pressure. This method can be applied to ail kind of perturbations

with the only condition that perturbative force must be conservative.
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Chapter 5

The local orbital éléments

5.1 Introduction

Two precedent chapters were devoted to the dérivation of the équations of the relative motion.

But, the resulting équations do not enable an insight of the relative trajectories. That is why

we hâve worked in obtaining an alternative représentation with a better physical meaning.
Inspired by the two-body problem, we propose an alternative représentation of the relative

motion. Under certain conditions, it is possible to define an adapted set of orbital éléments

with respect to the local reference frame that we name local orbital éléments. The local

orbital éléments are well suited when the relative motion describes a trajectory close to an

ellipse. In this chapter we présent the necessary conditions for having elliptical motions and

the relations between other représentations and local orbital éléments for the unperturbed
case.

Section two is devoted to the relative motion in the case of circular reference orbit and to the

définition of the local orbital éléments. In section three, we study the case of the non-circular
reference orbit.

5.1.1 The équations of the relative motion

As we explained in precedent chapter, we can obtain the équations of motion combining
matrices [.M][£][.M]“1. When we combine only two of them [Ad][T], in the keplerian case, we
get the following équations:

rr arer 3 nrer
AR(t) = —Aao — ar cos/rAeo H sin/rAMo sin/r(£ — £o)Aao

ar r\r 2 T]r

(1 r \ a2n1 H—ô— sin frAeo + rr cosirAS2o + rrAu;o H——AMo
VrarJ rr (5.1)

3 CL'pTX'pTl'p . \
_ J_LH(t-t0)Aao

2 T*j*

AN(t) = rr sin urAio — ry sin ir cos urAQo

For clarity’s sake, the subscript for the reference orbit is r instead of ref. These équations
give temporal évolution of relative position projected in the local orbital frame as function

of six parameters: AEO(tç>). Thereafter, we will describe resulting motion in two cases: (i)
when the reference orbit is circular, (ii) when the reference orbit is eccentric.

45



46 CHAPTER 5. THE LOCAL ORBITAL ELEMENTS

5.2 The circular reference orbit case

Direct particularization of équations (5.1) is not correct because of the singularity of orbital

éléments in circular case. It is necessary to introduce non-singular éléments (defined in 2.4)
in équations (5.1) to particularize to the circular case. We finally obtain:

AR(t) = Aao — ar (cosàACq + sinAASo)

AT(t) — ar sin AACo — 2 cos AASo + AAo + cos ir ADq — ^n(£ _ to) Aao^ (5.2)
AN(t) — ar (sin AAio — sin ir cos AADo)

Thereafter, we analyze the resulting motion described by équations (5.2). We note that

they correspond to the standard parametrical équation of an ellipse centered on the origin of
the local frame except for two kind of terms:

• terms providing from a différence of semi-major axis: a différence of semi-major axis

leads to different orbital frequencies which produce a secular growth of the AT term.

As this effect destroys the formation in a short period of time, we impose: Aao — 0.

This hypothesis may not be true for docking or rendezvous operations, but it is always

fulfilled in Keplerian formation flying.

• constant term on the T axis: this term, (AAo + cosirADo)> can be removed just by a
shift on the origin of the axis. That is why we ignore it.

Disgarding foregoing terms, équations (5.2) rewrite:

AR = —arACo cos A — ar ASo sin A

AT — — 2ar ASo cos A + 2ar ACo sin A (5.3)

AN = — ar AQq cos A -1- arAio sin A

which correspond to the elliptical trajectory. As it is usually done in the two-body prob-

lem, the elliptical motion will be parametrized through a set of orbital éléments called local

orbital éléments (ëo/): semi-major axis (a/), eccentricity (ej), inclination (ii), longitude of
ascending node (Qi), longitude of perigee (cj[) and anomaly (Mj).

There are two main différences with respect to classical keplerian elliptical motion (i) the
origin of the axis does not correspond to a focus of the ellipse, but to the center. This leads

to an ambiguity on the définition of the longitude of the perigee which is solved by imposing

that u> G [0,7r] (ii) the angular velocity is not dépendent on the distance to the origin, but is
constant and equal to the angular velocity of the reference frame. That is, the period of any

local orbit corresponds to the period of the reference frame.

Thereafter, we dérivé the analytical relations between the initial conditions expressed in
terms of AENS and the local orbital éléments.
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Local orbital éléments

a, : semi -major axis

e, = 1 - (b,/a,)2 : eccentrici ty

i, : inclination

Q, : longitude of ascending
node

co, : longi tude of perigee

M, : anomaly

Figure 5.1: définition of local orbital éléments

5.2.1 The local orbital éléments as function of initial conditions

In a first stage, we will fmd the relations between a generic ellipse defined by its constants

P = (A, B, C, D, E, F)t such as:

AR = A cos À + B sin À

AT = C cos À + D sin A (5.4)

AN = E cos À + F sin À

and the local orbital éléments. The second stage will consist in replacing the constants P

by the différences of non-singular éléments AENS.

The elliptical motion expressed in the frame defined by the principal axis of the ellipse in
terms of local orbital éléments writes:

xPA = ai cos

ypa = airji sin (5.5)

zpa = 0

The transformation between the axis defined by the principal axis of the ellipse and the

RTN frame is done through the matrix 1Z:

(AR, AT,AN)t — [R] (xpai ypA: zpa)t (5.6)
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with:

(cos Q/ cos loi ~ sin Q/ sin loi cos k ~ cos ^l sin loi ~ sin cos ^l cos z/sin Qi cos loi + cos H/ sin loi cos i/ — sin f2/ sin loi + cos fl/ cos loi cos i/

sin loi sin k cos loi sin z/

As temporal évolution of the motion is described by the angle A in équations (5.4) and by
the angle M/ in équations (5.5), both angles must be equal up to a constant phase: M/ = À—cp/.

In order to obtain the relations between P and ëo/, we do the following operations. First, we

identify the vector h = (hx, hy, hz)T normal to the plan of the ellipse, expressed as function
of local orbital éléments on the one hand, and expressed as function of P on the other hand:

sin Qi sin

- cos sin ii

cos ii

hx = h sin ii sin fl/ — CF — DE

hy = —h sin ii cos fl/ = BE — AF (5-7)

hz = h cos ii = AD — BC

with:

h = + h\ + h\ (5.8)

This leads to:

sin fl/ —

COS fil =
hy

cos ii =

(5.9)

Second, we write the expressions of the distance to the center of an ellipse expressed

through its parametric form, and through its local orbital éléments. According to (5.4), the

distance expressed in terms of P is:

d2 - (A2 + C2 + E2) cos2 A + {B2 + D2 + F2) sin2 A+
+ (AB F CD + EF) sin 2A

The distance, using équation (5.5) is:

(5.10)

d2 — (a2 cos2 ip + a2rj2 sin2 tp) cos2 A + (a2 sin2 p + a2r]2 cos2 cp) sin2 A+
+ (a2rj2 — a2) sin <pcos <p sin 2A

(5.11)

The identification of the coefficients of cos2 A, sin2 A and sin2A in équations (5.10) and
(5.11) yields:
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af sin 2ipi (l - rfî) = K3

a2 ( 1 T = + K2 (5.12)

a2 cos 2(fil (l - rjf) = Kl - K2

where:

Ki = A2 + C2 + E2 K2 = B2 + D2 + F2 Ks = 2(AB + CD + EF) (5.13)

The resolution of the System (5.13) gives:

2af = K1 + K2 + ^J(K1- K2Y + K% (5.14)

1 - = A = 2 - -A- (5.15)

• o ^3 ATi - K2 . .
sin2w| = -k-s- cos 2y?/ — ^— (5.16)

alei aiei

To compute the longitude of the local perigee, we identify the expression of AN given by

équation (5.4) and by équation (5.6)

E cos À + F sin A = ai cos À — (pi sin lüi sin ii + a/77/ sin À — <pi cos a;/ sin 2/ (5-17)

which leads to:

E — a sin i cos lü cos ipi (tan lü — 77 tan tpi)

F — a sin i cos lü cos </?/ (tan lü tan ÇIq + 77)

The solution for lüi writes:

(5.18)

coscüi = ; (F cos (pi — E sin (pi) sin lüi — (F sin </?/ + F cos cpA (5.19)
arT]r sin ir ar sm ir

Once we hâve obtained the relations between F and ëo/, we express F as function of

AENS using équations (5.3) and (5.4):

A = —arACo

C = —2arASo

E = —ar sinirAflo

> ^
We summarize final relations between AENS and eof.

B — —arASo

D = 2arAC0

F = ar Aîq
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h = (2(AC0Afl0 - AS'oAio), ACoAio + AS0Afl0, -2(ACg + AS%))T
hx ^ hqi

sin fli =

cos II

\jhl + hl
h?.

cos Q[ =

yjti^ + h*

yjh2x + hl + hl
Ki = a2r(&Cl + 4ASi + sin2 irAn§)

K.>, — 2af( -3AC'oA.S'o — sin

2af = Ki + K2 + J(Ki - K2y + Kf

K2 = a?r(AS%+ 4A + Aig)

e? =2-^

• 0 k3
sin 2<p = -7T-K

afef
cos 2Lp =

Ki-K2

aiel

cos coi — - (Ai cos <pi + Afl sin ir sin cpi )
aim sin ti

sin lui = — (Ai sin ipi — Aflsmircosipi)
ai sin î[

(5.20)

5.2.2 Topology of the relative motion

Only four différences of non-singular éléments contribute to the détermination of the six local

orbital éléments defined above. Indeed, Aao has been fixed to zéro in order not to spread the

formation and AÀo only contributes to shift the center of the local ellipse along the T axis.

Conséquently, only four local orbital éléments are independent.

The size (a/) and the constant phase (<£>/) can always be chosen to our convenience. The
other four parameters may be separated in two groups: the éléments which give the form of

the local orbit (ei,cui), and the éléments which give the orientation of the plan of the local orbit
(il, fil). One group détermines the other. We hâve decided to express the local eccentricity
and the local perigee as function of other variables (ii,fli). Tedious, but simple, algebraic
manipulations yield:

ef [9 + 6 tan2 i/(4 cos2 fli — sin2 fli) + tan4 i/(4 cos2 fli + sin2 fli)2]

(2 — ef)2 (5 4- tan2 i/(4cos2 fli + sin2 fli))2
and:

9 3(cos2 fli — sin2 flA + sin iAcos2 fli +
tan ui : a- r v

3 cos ii cos i li sm i li

jC 01JL JL

tan ail — 1 = 0 (5.22)

Equation (5.21) is plotted in figure 5.2 while équation (5.22) is plotted in figure 5.3.

5.2.3 Particular local orbits

Figure (5.2) présents two particular motions: (i) null local eccentricity (invariant plans), and
(ii) local eccentricity equal to one (non-elliptical motion)
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Figure 5.2: Local eccentricity as function of the local inclination and the local longitude of the

ascending node

Invariant plans

There are two points in figure (5.2) where local eccentricity is zéro. Using équation (5.21), it
is possible to détermine their local plan:

in = 60° Qn = 90°

il2 = -60° = 90°
(5.23)

And, using équations (5.20), we can find their corresponding initial conditions:

AENSi = (0, AC, - 73AS, V^AC, AS, AÀ)T
(5.24)

AENS2 = (0, AC, VSAS, - 3AC, AS, A\f
smr

According to (5.20), AC and AS détermine the size (a/) and the constant phase of the
ellipse ((pi).

These two particular local plans where the local motion is circular, hâve a very interesting
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Figure 5.3: Local perigee as function of the local inclination and the local longitude of the
ascending node

property: due to the fact that the local orbital frequency is independent of the distance to

the origin, ail the satellites rotate at the same angular velocity around the center of the

ellipse and their relative distances do not change. As a conséquence, ail initial configurations

remain invariant ail along the trajectory. These plans represent very interesting possibilities

for formation flying where it is necessary to keep inter-relative distances constant, as in

interferometry missions or future LISA. Residual variations of the distance will be produced

by perturbations and non-linear effects that hâve been neglected.

Non-elliptical motions

Second particular case corresponds to the eccentricity equal to one. If we impose e = 1

in équation (5.15), we find the following conditions for the initial différences of non-singular

éléments: AC* = 0, AS = 0, corresponding to h = 0 . As a conséquence, the local inclination

and the longitude of the local ascending node are no more defined. In fact, using third équation
of (5.9), we can compute:

lim
AC,AS—+0

COS

h
0 (5.25)
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So, the value of the local inclination is %i = 90° as can be checked in figure (5.2). Setting
AC = AS = 0 in the équations of motion (5.3) gives:

AR(t) = 0

AT(t) = 0 (5.26)

AN(t) = ar (sin ÀAîq — sin ir cos AAffo)

This particular case is not a parabolic motion as expected in the two-body problem when

e = 1, but a periodic motion in the N axis. The combination of this motion with a constant

term in the T axis (AAo—coszrAf2o) gives very interesting configurations for flight formations:
the second satellite follows the first one with a constant offset on the T axis and a variable

term on the N axis. Thus, choosing the adéquate values for the N axis term, it is possible

to obtain formations with the same ground track for ail the satellites. This characteristic

is fundamental for Earth observation missions. Some examples are A-TRAIN and TOPEX-
JASON satellites.

5.3 The eccentric reference orbit case

5.3.1 Low eccentric reference orbit case

When the reference orbit is sligthly eccentric, we simplify équations (5.1) by means of an
expansion of cos/r, sin/r in powers of the eccentricity up to first order:

AR

Chy*

AT

CLy*

AN

CLy*

= — cos A (ACo + Sr AAo) — sin A (AS'o — CrAAo) + Oie2)

= sin A [2ACo + Sr (AAo — AQo coszr)] + cos A [—2ASo + Cr (AAo — AQo coszr)]

g

+ (AAo — AQocosir) — Aeo(sin 2A cos 2tur — cos2Asin2cur) -f 0(e2)

A A

— sinAAio — cosAsinzrAQo + (coseu sinirAI2o — sinayAio)

g

+ — cos 2A (cos ujr sin irAQq + sin cor Aio) + — sin 2A (sin ur sin irAQq — cos ujrAio)
& £

+ d(e2)
(5.27)

In these équations we identify different terms:

• constant terms: There are constant terms not only along the T axis (as in the circular
case) but also along the N axis. Once again, they can be cancelled by changing the
origin of the axis.

• elliptical terms cos A and sin A: Their coefficients differ from the coefficients of the

circular reference orbit case. The local orbital éléments can be computed using équations

(5.7-5.19) already used in the circular reference orbit case, but setting parameters P:
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A — —cir (ACo T SV AAo)

B = —ar (ASo - CrAAo)

C = ar (—2ASb + Cr (AAo — Aflo coszr))

D = ar (2ACo — Sr (AAo — AUq cosir)) ^ ^
E — —arsinirArîo

F = arAio

• double orbital frequency terras: due to these terms, the trajectory is no longer an ellipse.

Mean and osculating local orbital éléments

As non-elliptic terms are proportional to the eccentricity, they are small compared to the

elliptical terms. Consequently, the motion is near-elliptical and we can still use the local

orbital éléments. We define the mean local orbital éléments and the instantaneous osculating
local orbital éléments.

Mean orbital éléments are defined as the local éléments corresponding to the relative mo

tion without double orbital frequency terms. They can be computed using équations (5.20).
Instantaneous osculating local orbital éléments are defined as the local orbital éléments cor

responding to an ellipse that would hâve the same position and velocity at the same moment.

Mean orbital éléments do not correspond with the mean value of the osculating orbital élé
ments.

To compute the osculating local orbital éléments, it is necessary to use the relative position

and velocity following the steps:

1. compute the relative position using équations (5.27) and the relative velocity using the
dérivatives of équations (5.27).

2. compute the parameters P corresponding to the instantaneous ellipse using following

équations:

A — x( 1 ) cos A — sin A
n

C — x{2) cos A — ^ sin A
n

E = x(3) cos A — sin A
n

B — x(l) sin A + ^ cos A
n

D = x{2) sin A + cos A
n

F — x{2>) sin A + cos A
n

3. use équations (5.9), (5.14), (5.15), (5.16), and (5.19) to find corresponding ëoi

Figure (5.4) shows the variation along the orbit of the osculating local eccentricity and

its mean value, for different eccentricities of the reference orbit. We hâve used the following
reference orbit: ar = 7.106,ir = 45°, Ür = 0°,cor — 45°,Mr(^o) = 0° and the following
différences of non-singular éléments: Aa = 0, AC = 10~3 * 5, AS = 2.10~5, Ai = —\/3A5, AQ —
\/3ACy sinir, AA = 0 (which corresponds to an invariant plan when the reference orbit is
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Figure 5.4: Osculating local eccentricity for different values of the eccentricity of the reference
orbit

circular). The figure shows that the variations of the local eccentricity stay very moderate

(Sei <$C 1) for values of the eccentricity orbit lower than 10~4.

The main modification with respect to the circular reference orbit case is the new rôle of

AA. While in the circular case AA détermines only a constant, in the low eccentricity refer

ence orbit case it has an impact on the mean local orbital éléments and on the perturbations

(double orbital frequency terms). But, as ail these effects are proportional to the eccentricity
of the reference orbit, they are only corrections of main contributions. So, the topology of

the motion will be only slightly modified with respect to the circular reference orbit case.

5.3.2 The high eccentric reference orbit case

When the reference orbit is highly eccentric, relative motion is far from being an ellipse. In

order to analyze it, we hâve rearranged the équations of the relative motion. We hâve mini-

mized the number of the parameters of the motion, and we hâve decomposed their effect on

inplane and out-of-plane motion.

Our departure point is équations (5.1). For the same precedent reasons, we impose Aa = 0,

obtaining équations:
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AR(t) — — ar cos/rAeo + sin/rAMo (5.29)
Vr

AT(t) = ar ( 1 + ^ sin/rAeo + rr cosirA£2o + rrA<jüo + °r^r AMq
V lrar J rr

AN(t) = ry sinwrAzo — ry sinir cosurAf2o

The in-plane and out-of-plane motions can be decoupled doing the following change of
variables:

Au/ = Atu + AQcosir (5.30)

AQ,' = AQsinir

After, we break down the variable u = uj + / into its components:

Ai' — sinuyAi — cosuyAQ7 (5.31)

AQ" = cosoyAi + sinuyAf/

Finally, we obtain:

x

y

z

AR

arAe

AT

arAe

AN

arAe

— cos fr + eKi sin fr

2 + ecos fr . .
— — sin fr + Kl (1 + e cos fr) +
1 + e COS Jr

T-;- 7 (AT3 COS fr + ÜQ Sin /r)
1 + e COS fr

k2

1 + e cos fr

with the coefficients:

(5.32)

#2

Ks

K4

AM

Tir

= rj2 (Au; + cos irAil)

= T]2 (sin uyAi — cos uy sin irAfi)

= rj2 (cos uyAi + sin uy sin irAil)

(5.33)

These équations express ail the possible relative trajectories as function of four parameters.

K\,K2 parameterize the in-plane motion and Ks,K4 the out-of-plane motion. The out-of-

plane motion is given by the sum of a sinus and a cosinus functions divided by (1 + ecos/r).
The in-plane motion is more complicated. K\ produces a circular motion:

x =

y - Ki =

— cos fr + eK\ sin f1

eK\ cos fr + sin fr

(5.34)



5.3. THE ECCENTRIC REFERENCE ORBIT CASE 57

and K2 produces a motion only on the y axis:

-eK2 cos fr
y- K2 = — j-

1 + e COS Jr

The values of these constants détermine the form of the in-plane motion. In figure (5.5)
we plot the form of the in-plane motion for different values of K\,K2, when the reference

orbit eccentricity is 0.6. We verify that for high values of K1 the motion is circular while K2

gives linear motions on the T axis.

Figure 5.5: In-plane motion as function of K\ and K2

5.3.3 Looking for circular motions

When the reference orbit is slightly eccentric

When the reference orbit is not circular, the set of équations (5.27) reveals that it is not
possible to find perfect circular local motions. But, our analysis of these équations enables

to establish the necessary conditions to provide local motions as close as possible to a circle.

When changing the parameterization (5.27) by using differential orbital éléments we obtain:

AR

dj*

AT

CLy*

AN

ar

— cos frAe + er sin frAM

2 sin frAe — er cos fr sin frAe + (AM + Au/) + er cos fr (AM — AM)

(Ai! cos fr + AI}" sin fr) — er cos fr (Ai' cos fr + AI}" sin /r)

(5.35)
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Considering only elliptical terms, the following initial conditions enable to obtain the same

circular motion as in the circular reference orbit case (same local inclination and ascending
node):

• SET 1

Aa = 0 Ae = Ae Az = Voisin oyAe
. _ rz COS Ur . /— COS iür
Afl = — V3— Ae Au = v3 Ae AM = 0

sm zr tan ir

• SET 2

Aa = 0 Ae = 0 Az — \/3er cosuy AM

r~ sin cür ( /— sin lût \
AQ = VSer -AM Au = - ( 1 + VSer - AM AM = AM

sm ir \ tan ir J

The first set of initial conditions is parameterized by a différence of eccentricity, while the

second set is parameterized by a différence of anomaly. Thereafter, we refer to the set 1 as

"différence of eccentricity” and to set 1 as "différence of anomaly". Resulting motion is not

circular because of double orbital frequency terms. In figure (5.6) we compare the variation of
the distance from the origin for each set of initial conditions. Both sets of conditions produce

double orbital frequency terms in the N axis, but, Ae produces also these terms in the T axis.

That is why the variations are more important in the left part of the figure (5.6).

Figure 5.6: Distance to the origin for different initial conditions (left: différence of eccentric
ity, right: différence of anomaly)

When the reference orbit is highly eccentric

It is possible to arrange équations (5.29) to obtain the following form:



5.4. CONCLUSIONS 59

AR e .
= — cos /Ae H— sin /AM

ar r]

AT (AM
= 2 sin /Ae + e cos / (

r]2Au'

dj*

AN V

T) 1 + e cos /

(A/ cos / + ASM sin /)

+ ( r)2 Au' +
AM

T]

(5.36)

cos/sin/
— e r Ae

1 + e cos /

ar 1 + e cos /

This arrangement allows the comparison with the low eccentric form of the équations

(5.35). Comparing the two sets, we identify the transformation of elliptical terms when the
eccentricity of the reference orbit grows. We identify the following terms:

— cos / + e sin /

2 sin /Ae + e cos / (AM — Au/)

— cos / H— sin /
S

n . ,A (AM
2 sin /Ae + (

V V
r]2 Au/'j ecos /

(Af' cos / + ASM sin /) —> rj2 (Ai' cos / + ASM sin /)

We impose the same previous conditions to new terms. Resulting motions are not circular

because of double orbital frequency terms and non linear terms in eccentricity, that become

very important. Anyway, these initial conditions produce a class of relative motions that is

as close as possible to a circle.

• SET 1 v/3
Aa — 0 Ae — Ae Ai = —r- sintuAe

r]z

AS2 = -
y/3 cos u

rj2 sin i
Ae Au; =

y/3 COS Lü

ri2 tani
Ae AM = 0

• SET 2

Aa = 0 Ae — 0

A ^ r-er sinu;r A ,, 1 / r- sinu; \ A . ,
ATI — Vj-t AM Au; = , ( 1 + v3er ) AM

rf sinzr rf \ taniry

Ai = cosuyAM
T}6

AM = AM

In the following figures (5.7) and (5.8) we hâve drawn the évolution of the circular motion
when the eccentricity of the reference orbit grows. The other parameters of the reference

orbit play no rôle on the form of the trajectory (for the keplerian case). Figures (5.7) and
(5.8) show how, for very big reference orbit eccentricities, motion is far from being circular.

5.4 Conclusions

This chapter présents an alternative représentation of the relative motion for the circular

and the low eccentric reference cases. A parallelism between the two body problem and

the relative motion can be done since the relative trajectory is, under certain conditions, an

ellipse. This argumentation has lead us to the définition of the local orbital éléments. They

enable a better understanding of the motion because we are familiar with orbital éléments.

We also hâve found conditions for obtaining local circular motions for circular reference orbit.

In the eccentric reference orbit case, local circular orbits do not exist, and we hâve found the

conditions leading to local near circular motions.
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Local Relative Motion

e = 0

e = 0.1

e = 0.3

Figure 5.7: Evolution of the local circular motion produced by a différence of eccentricity when

the eccentricity of the reference orbit grows

Local Relative Motion

e = 0

e = 0.1

e = 0.3

.. e = 0.5
N axis e = 0.7

Figure 5.8: Evolution of the local circular motion produced by a différence of anomaly when

the eccentricity of the reference orbit grows
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Chapter 6

The Jo effects

6.1 Introduction

The most important perturbation acting on a satellite in orbit around the Earth is the oblate-

ness of the Earth represented by the corresponding coefficient in spherical harmonies, J2. The

effects of this perturbation on the absolute orbit are well-known and they are given by several

théories [10], [40]. These effects are usually divided in secular, short period and long period
effects. In this chapter we focus only on secular effects because they can be particularly

harmful for formation flying. If ail the satellites do not undergo the same secular effects,

they tend naturally to scatter. Large amounts of propellant are necessary to avoid this effect.

That is why formations are usually designed to avoid this differential effect. Periodic effects

are studied in following chapter with the rest of the gravity field.

The effects of J2 on formation flying hâve been largely studied in the literature. A particu-

lar interest is given to the research of invariant configurations. In order to do so, different

methods are used. Some authors use the differential orbital éléments [34], [51], [56],[78], other
authors use a hamiltonian approach [42], [8], while others use the cartesian coordinates [60].
Here, we use the differential orbital éléments. We focus on circular reference orbits and local

circular orbits. We also use the local orbital éléments in order to enlarge the compréhension

of the trajectory.

In the first section of the chapter, we compute the secular effects of J2 in terms of differential
orbital éléments. Dérivation of differential effects in terms of differential orbital éléments was

done before in [56]. We hâve enlarged its solution by including the effects on circular reference
orbits. As we explain, J2 effects on circular orbits are particular because of the non-definition

of the perigee.

In second section, we dérivé necessary conditions for avoiding drift between satellites. Ob-

tained general conditions agréé with precedent results in [56]. We particularize this conditions
to the circular relative motions. We prove that there is a particular local circular motion for
which the drift is minimized.

Third section is devoted to the computation of the effects of J2 in terms of local orbital élé

ments. As we show, J2 effects always increase the local semi-major axis and the perigee.

63
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6.2 The transition matrix

6.2.1 The eccentric case

In this section, we apply the methodology described in chapter 4 to obtain the transition

matrix of the J2 secular effects noted £j2. Methods consists in (i) writing the potential of the
force, (ii) using Lagrange planetary équations to obtain the differential équations of the effects
on the orbital éléments, (iii) integrating the precedent équations, (iv) deriving the obtained
équations with respect to the orbital éléments.

The potential of the secular part of J2 is obtained by averaging on the orbit the angular
variables. It writes:

Uj2 = ~
1 /f
4 a

(R\2 (1 — 3cos2 i)
W (1 — e2)3/2 J2 (6.1)

where /i is the product between the gravitational constant (G) and the mass of the central
body (M) R stands for the radius of the central body. Using Lagrange planetary équations

we get the differential effects (keplerian effects non included) on the orbital éléments:

da

dt

de

dt

di

dt

dQ

dt

du

dt

dM

dt

= 0

= 0

- 0

3

2

3

4

3

4

2

2

2

nJ2

nJ2

nJ2

cosi

(1 — e2)2

1 — 5 cos2 i

(1 — e2)2

1 — 3 cos2 i

(1 — e2)2
+ n

(6.2)

Supposing constant a, e, i, the intégration of this set of differential équations is immédiate

and gives the secular perturbation of J2:

8a{t)

ôe(t)

6i(t)

ôü(t)

ÔLü(t)

ÔM(t)

a(t0)

e(*o)

*(^o)

tt(to) —

Lü(t0) -

M(to) -

I (f) *
t (~ ) nh

COSÎ

U-) nJ2

(1 — e2)2

1 — 5 cos2 i

(1 — e2)2

1 — 3 cos2 i

(1 — e2)s

(t ~ to)

(t - to)

('t ~ t0)

(6.3)

(6.4)
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Linearization of precedent équations give final Cj2 matrix:

Cj2 = Kj2

with the constant:

0 0 0 0 0 0 \
0 0 0 0 0 0

0 0 0 0 0 0

— - cos i
a

8e

rp
cosi —2 sin i 0 0 0

-^(l-5C°s2i) 4e

Vf (1- 5 cos2 i) 10 cos i sin i 0 0 0

“++ -3cos2i) oe

V
(i- 3 cos2 i) 677 cos i sin i 0 0 0 /

(6.5)

nJï—j
»74

(6.6)

Combination of J2 effects matrix Cj2 with keplerian effects matrix Ckep, with the matrix
M. gives the temporal évolution of relative motion as function of initial reference orbit and
initial différences of orbital éléments:

(t) = [M] [Ckep + £j2] = / (^EOref, AEOfo),^
The development of these équations reads:

(6.7)

T de

AR(t) = -Aao — a cos /Aeo H sin /AMq
a T]

+ 3aAio sin 2iKj2 + ^^Aeo(l — 3 cos2 ï)Kj2 — f— + 7(1 — 3 cos2 i)Kj2 e sin f{t - to)

(6.8)

AT(t) = a ( 1 H—— 1 sin /Aeo + r (coszAQo + Au;o) + —AMo
\ r/za J r

+ r
-7 Aao

. 2 a
(l — 7cos2 i) + (l — 3 cos2 i)^ + Aeo sin 2i ^4 + 3 )

+ 2Ai0— (l - 3cos2 i) ^1 + ^ Kj2(t - t0)
r J

(6.9)

AN{t) = r sin uAio — r sin i cos uAQo

+ r sin i cos u
7 _ . . . 8e ...

— cos 1 Aao — 2 sm 1 Aeo H—0 cos l^lo Kj2(t - to)
(6.10)

These équations give a closed form of the temporal évolution of the relative position with

the true anomaly and the time as independent variables. Parametrization of the motion is

done through initial différences of orbital éléments.

Neglected periodic terms hâve also an effect on secular terms through the initial conditions.

Computed secular effects are not exact because we use the osculating initial conditions instead
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of using mean initial conditions. In the relative motion these effects are small. They can be

taken into account but resulting équations become cumbersome. We prefer to keep a simple
model.

6.2.2 Circular reference orbit

As we do ail along the document, the circular reference orbit case is studied through the

non-singular éléments defined in équations (2.4). We transform équations (6.2) in terms of
non-singular éléments:

da

dt

dC

dt

di

dt

dQ

dt

dS_
dt

dX

dt

0

f »7,
0

a 7

1 — 5 cos2 i

T/4

3

2

3

4

3

4

(6.11)

C and S éléments do not hâve anymore secular perturbations in circular (or near-circular)
orbits. They are excited in an équivalent way to the harmonie oscillator.

Since perturbations in C and S are linear, and C and S are very small or null, J2 perturbations

on C and S become neglectable with respect to J3. The phenomenology of the perigee for

very low eccentricities is completely detailed in [21], and [22]. We do not consider these effects
because they are not secular.

C matrix As indicated in 6.2.1, we must calculate the dérivatives of ^ and ^ with respect
to a,C,i,S in order to obtain the Cje matrix. First dérivatives of the secular effects with
respect to C and S are zéro in circular orbits since their relations are of second order. A

possible solution is to use Delaunay variable 77 as it is done in [56]. Mapping between ôrj and
ÔC, ôS shows how the first terms in C and S are second order ones:

«57, = - (C(<5C) + S{SS)) - - + (<5S)2)

So, for circular orbits:

AV0 = -- (AC02 + AS02) (6.12)

We can no more use matrix formulation because we hâve introduced second order terms.

If we want to keep this formulation, we should use tensors. Instead of doing so, we prefer to
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obtain general expressions of the perturbed motion. We write the dérivatives of the secular

terms with respect to the metric variables:

d_ fdn\
da \dt )
d /dA\

da \dt J

d_ f<m\
drj \ dt )
d_ fdX\
dr] \ dt J

d_
di \ dt J
d_ }d\\
di \dt J

= -7KJ2
COS Z

-\-Kj2 [(l - 5cos2 z) + 77 (2 -6cos2 z)] - --
z a z cl

~aJ2
V

Kj2
[4 (l — 5cos2 z) + 377 (2 — 6cos2 z)]

= —2sinziFj2

= 2Kj2 cos i sin i (677 + 5)

(6.13)

Thanks to these dérivatives, we obtain temporal évolution of motion as function of refer-

ence orbits, initial differential orbital éléments, and time:

AR(t) = Aao — acosAACo — asinÀAS'o

AT(t) = 2a sin AACo — 2acosAAS'o + a (coszAQo + AAo)

21 _ o Aao

a

AN(t) = a sin A Azq — a sin i cos AAQq

+ aKj2 ^ (l — 3cos2z) (5 — 18 cos2 i) (ACq + ASq) + 9sin2zAzo — t) —
3 n 1

+ a sin i cos AKj2 (t — to) 7 cos i—— — 4 cos z (ACq + ASq) + 2sinzAzo

2 a Kj2

(6.14)

6.3 Looking for no drift configurations

6.3.1 The eccentric case

This section is devoted to the research of no drift orbits. This research has been done before

in [56]. Here, we take up again his results and we particularize for the circular case. We also
focus on the combination of no drifts and local circular orbits. As it is proved, no drift orbits

exist only for the circular case.

Secular drift is given by secular terms in équations (6.8), (6.9) and (6.10). The no drift

condition implies cancelling drift on the three angular variables (£2,u;,M):

0 =

0 =

0 =

.Aao # • a • 8e
— 7 cos z 2smzAzo H—9 coszAeo

— -(1 — 5 cos2 z)^^- + 5sin2zAzo + -^(1 — 5 cos2 z)Aeo
7,. „ 9 .. Aao „ . _.A. 6e/A „ 9 ,A 3n 1 A

—-(1 — 3 cos^ i)r] 1- 377sm2zAzo 4 (1 — 3cos^z)Aeo ——Aao
2 a 77 2 a Kj2

Aa0 (t ~ to)

(6.15)
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Ail the terms in these expressions, except the Keplerian term — |^-^-Aao, are linear with
J2. Since J2 is very small for the Earth (J2 = 1,083. 10~3), Keplerian term is dominant in N
axis. As a conséquence, we can neglect the term —1(1 — 3cos2 and, as a conséquence
Aao <$C (Aeo, Azo). So, we can also neglect the terms —7 cosz—2- and |(1 — 5 cos2 i)^a. We
obtain simplified équations:

0 = —2sinzAzoH—^-cosiAeo (6.16)
rjz

4e
0 = 5sin2zAzoH—^-(1 — 5 cos2 z)Aeo

rjz

„ . ^. A . 6e „ 9.3nlA
0 = 3nsm2zAzoH (1 — 3cos z)Aeo —- ———Aao

j) 2 a Kj2

The last équation proves that the effects of the différence of semi-major axis are on the

anomaly, and they corne from the Keplerian effects. It can be chosen in order to null the

other effects on the anomaly.

These équations do not hâve any solution for arbitrary inclination (the circular case must be
treated separately). A possibility to obtain a solution consists in null the sum of the argument

of the perigee with the mean anomaly, instead of null them separately.

We obtain following condition for the ascending node:

4e
tanzAzo = -^-Aeo

r]z
(6.17)

And the condition for the sum of the argument of the perigee and the anomaly reads:

Azq tan z (1 -|- -T]) + cos2 z
3 n 1

2 a Kj2
Aao (6.18)

6.3.2 The circular case

When the reference orbit is circular, we impose no drift conditions using équations (6.11).
After some computations, conditions become:

Arjo — —-tanzAzo (6.19)

Tb

3—Aao = Kj2 tan i (63 cos2 z — 5) Azo

Local circular orbits with no drift In chapter 5, we hâve obtained the following condi

tions for local circular orbits (5.24):

AËNSi = (0, AC, -V3AS, V^AC', AS, A\)T
smz

AËNS2= (0, AC, V3AS,-.AC, AS, AA)r
smz

(6.20)

When we mix them with no drift conditions we finally obtain:
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ACo

Aio

Af^o

AÀo

Aao

^—ASq - taniAS'o
— VSASo

VZACp
sin i

—AQo cos i

-—Kj2 ((10 — 38 cos2 i) Ar]o + 22 cos i sin iAio)
O Th

(6.21)

/ô
The square root demands — ^tani < ASo < 0, where AS'o is a free parameter.

If we desire to place more satellites describing a circle around a central point (as it is the case
for LISA mission with three satellites), the other satellites cannot hâve a null drift. We can
impose just one condition: — 0.

Numerical simulations In order to prove the interest of precedent conditions, we hâve

tested three different local circular orbits with the same reference orbit. Only the first amongst

them accomplishes the non-drift condition for J2 secular perturbations. Simulations hâve been

done with a simplified analytical model disregarding periodic perturbations.

The parameters of the reference orbit are: a = 7000 /cm, i — 50°, e = 0, and the length of

simulation is 10 days. The differential orbital parameters of the three satellites are given in

table 6.1. Only the first satellite respects the relations (6.21), while the two others respect
only local circular orbit conditions (6.20).

AENS SAT 1 SAT 2 SAT 3

Aa —6,8304.10~2 5, 9544 -5,9729
AC 1,0159.10~3 1,0108.103 1,0108.103
Ai 1,7320.10“6 — 1, 7493.10-4 — 1,7493.10~4
An 2,2970.10~3 2, 2856.10-3 2,2856.10-3
AS -1.1(T6 1,01.1er4 -1,01.10"4
AA 1,4764.10-3 1,4691.10~4 1,4691.10-4

Table 6.1: Initial differential orbital éléments of satellites

The advantages of the first configuration with respect the two others are clear in figure

6.1. On the left side, there is the relative motion in the local axis RTN. SAT 1 is the only
one where there is no significant drift. On the right side, the évolution of the distance to the

origin proves that in SATI the variations are very small (even if it is not perfectly circular)
while in SAT2 and SAT3 there is a linear growth of the size of the variations.

The effects of the perturbation on the osculating local orbital éléments are plotted in figure

6.2. SAT2 and SAT3 undergo large variations while the local semi-major axis and local

eccentricity of SAT 1 do not change.
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SAT 3

SAT 2
SAT 1

§5000

34500

^4000

time (days)

Figure 6.1: Effects of J2 on the relative motion.

Figure 6.2: Effects of J2 on the local orbital éléments.

6.4 Effects on local orbital éléments

In chapter 5, we hâve given the définition of local orbital éléments, as function of the dif-

ferential orbital éléments, through équations (5.20). In these équations, we hâve supposed
>

that the values of AENS are constant. When we introduce perturbations, they are no more

constant, but relations (5.20) keep their meaning in terms of osculating variables. It means
that the coordinates are no more constant, but variable in time.

The form of the local orbit is given by its local semi-major axis ai and its local eccentricity
ep We focus our study on these two éléments. We rewrite the définition of both:

Ki = a2r(AC$ + 4A5'q + sin2 irAf^)

K$ = 2a2 (—3ACoA5o — sinîrAü2oAio)

2 af = Kl + K2 + + Kf

K2 = af(ASo + 4ACo + Ai\)

K!+K2
(6.22)
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We remember that in the circular case (where the local orbital éléments are defined), only
two local orbital éléments undergo J2 secular effects: AU and AA. AA does not take part in

the définition of local orbital éléments. Only AU plays a rôle.

The introduction of the analytical expression of temporal perturbations of AU(£) leads to very
complicated équations which do not give more insight in the compréhension of the problem.

We compute the dérivatives of the local orbital éléments with respect to the différence of

ascending node. These dérivatives give the évolution of the variables.

= a2 (2 sin2 irAUq)

dK2

dÇl

dK3

dU

= 0

= —2a2sinirAio

d{a?i)
dU

dKi . (kl-K2)^
dU

+

dK3
d£l

d(eï)
dU

VWi- KÏŸ- + Kg

Ki + K2 d(af)
dU

dKi

dU

We can distinguish two temporal horizons on the évolution of the variables:

(6.23)

(6.24)

(6.25)

• short period: In the short term, the value of the différences which suffers from the

secular effects keep values similar to static ones. The analysis of the effects during this

period présents big difhculty, since ail the parameters play a rôle. Anyway, there is a
first différence that we can establish in this relative motions. The motions that tend to

collapse, and the motions than tend to spread.

• long period: In the long term, ail the formations spread. There are two different ways

of spread due to J2: (i) It can be through a secular effect on the ascending node, or
(ii) through a secular effect on the anomaly. In the first case, the dominant motion is a
periodic motion on the N axis. In the second case, the motion is a secular drift on the
T axis.

6.5 Conclusions

In this chapter we hâve analyzed the effects of J2 on formation flying. We hâve used two

représentations: differential orbital éléments, and local orbital éléments. First représentation

enables the description of the motion through simple analytical expressions, while second one,

gives more compréhension of the resulting motion.

First conclusion is that, after long periods without thrust, J2 always spreads the formation,

except for particular case: the no drift configurations. For short periods, J2 effects can also

group the formation.

No drift configurations exist only when the reference orbit is circular. We hâve also detected

local circular orbits with no drift. When reference orbit is not circular, there is an approxi-

mated solution to the no drift configuration, but it goes worst for high reference eccentricities.
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Chapter 7

The gravity field

7.1 Introduction

This chapter is devoted to the effects induced on a formation flying by the whole gravity

field. In a general point of view, perturbations produced by the gravity field are the main

perturbation in low orbit satellites, but most important effects are J2 effects. Other terms

of the gravity field are as relevant as J2 in a first approach. But, they are necessary when

we prétend to analyze geodesy space missions. It is our first motivation when we study these
effects.

Effects of the gravity field on the absolute motion of a single satellite hâve been largely studied

in literature. There are several papers obtaining analytical expressions for temporal pertur

bations. Two of them, among many others, are Kaula theory and Brouwer theory. Brouwer

theory is not well adapted because it considers only J2 effects. Kaula theory has several

mismodellisations that diminish the accuracy of the results. An interesting work improving

previous work is [73]. In order to obtain a better accuracy, we hâve developed another solu
tion based on the use of canonical Lie transformations.

The effects of gravity field perturbations on a formation flying mission hâve also been an-

alyzed. Precedent studies were done in the frame of GRACE mission. In [18] a method
based on Hill équations is presented for the intégration of gravitational perturbations in a

two-satellites coplanar flight formation. Cheng [19] uses Casotto relations to introduce the
gravitational effects in RTN reference frame and deduces observable functions. In [70], there
is an improvement of Cheng solution. More recently, in [76] there is a numerical approach to
the problem. Our approach consists in combining our alternative intégration of gravity field
effects with the differential orbital methods.

Second section is devoted to the different expressions of the gravity field potential that we

find in the literature. In third section, we hâve analyzed the behavior of Kaula solution. We

hâve detected its main weakness. In the fourth section we propose another solution based

on the use of canonical Lie transformations. In fifth section we apply the differential orbital

methods to obtain the associated matrix Cgf-

73
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7.2 Expression of the gravitational potential

7.2.1 The gravitational potential in spherical coordinates

We use as departure point the generic expression of a potential created by a mass distribution

in a point of the space (x,y,z):

U = k
p(x,y,z)

r(x,y,z)
dx dy dz (7.1)

where p(x,y,z) is the density at the point (x,y,z) and r(x,y,z) the distance to the
satellite. This potential vérifiés Laplace équation outside the body:

d2U d2U d2U
+ +

dx2 dy2 dz2
= 0 (7.2)

Classical solution of Laplace équation in terms of spherical coordinates, developed as a

sériés of spherical harmonies is:

C/ = TE 7 E (Cira cos m\ + Sim sin mX) Pim(sm 9) (7.3)
1= 1 ' ' m=0

where (r, 9, A) are the spherical coordinates distance, latitude, and longitude. P/m are

associated Legendre polynomials. Each spherical harmonie is characterised by its coefficients

Cim and Sim which hâve been normalized to avoid tiny values. Consequently, also Legendre
polynomials are normalized. Normalization factor is:

+ (7.4)

and:

Pim = NlmPlm Cim = Clm/Nim

Working with unnormalized coefficients may lead to serious numerical problems. Since

gravity field are usually given in their normalised form, computing their unnormalized form

needs to compute coefficients Nim. They can give overflow problems for high degrees. It is
seems advisable to work with normalised coefficients.

Complex form

A classical alternative of this représentation of gravitational potential is the complex form,

as defined for example in [64]:

nr E (-)11+1 É *SÂ(sin (7.6)
1=1 ^ ' m=—l

where c superscript stands for complex variables. Even if coefficients Kfm are complex
numbers, the total imaginary part of the potential is always zéro. The advantage of this

formulation is its compactness, and its inconvénient is to double the number of coefficients.
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The coefficients and the polynomials hâve been normalized with a different normalization
factor:

Nfm = (-irJ(2i + i)
(l — m)\

(l + m)\

Relation between complex and real normalization is:

(-i)’
Nlm '-Nlm

- <5mü)

Relation between normalized and non-normalized coefficients is rather different:

(7.7)

(7.8)

pc = / NfmPim m > 0
im j (-1)»^ m <0

Complex coefficients can also be written as function of normalised real ones:

i \m (Ç jSim)
L) _ V2

Cim_
rn

V2

m > 0

m — 0

m < 0

(7.9)

(7.10)

7.2.2 Introduction of the orbital éléments

The previous expressions of the potential are in terms of spherical coordinates whereas clas-

sical orbital éléments are better suited for Lagrange équations.

Transformation between the two sets of coordinates Systems consists in a rotation of spherical

harmonies as described in [64] and [62] for the introduction of the inclination, and a second
transformation for the introduction of the eccentricities. An alternative less élégant method

can be found in [40]. It is beyond the scope of this thesis to deep on the details of these
transformations and we will use just resulting relations.

Once again, real and complex inclination functions are not identical because of different

normalizations and the complex component. We study both représentations in different para

graphe.

Real formulation

In order to introduce the inclination, we use normalised real inclination functions:

âmp = Nlmd,mkplk(0) (-Îf+Sl^l (7.11)

dimk is issued of the rotation of the spherical harmonies:

dlmk (/ + m)\ y, (l + k\ ( l-k \
(/ + /c)! ^ V 1 )v-m-t) (—l)4cos2Z a^/?sina-/?

Details of this formula are given in [62].
The introduction of the eccentricity is done through Hansen functions:

(7.12)
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/ I 1 OO

(-) ej(l-2p)f= J2 GiM(e)ej(,-2p+?)M
q——oo

and Gipq functions are:

Gln(e) = X-^
where X are Hansen functions.

Composing these two transformations, we obtain real potential in terms of orbital élé

ments. Different représentations are used. Here, we give just some of them:

(7.13)

(7.14)

U =
GM^(R\l+l 1 1 00
~ls E- EEE FlmpGIpq (c) jA/rn COS (f) T Pim sin 0] (7.15)

£=1 ' ' m=0 p=0 o=-oo

with:

and:

faim i Pim] —
V-Sim.J J ’ V VW

l — m even\

l — m odd J
(7.16)

(f) = (l — 2p)u + (l — 2p + q)M + m(Q — 6)

In [75] we find following one:

(7.17)

GM y, + ‘ 1 1 00
Z=1 ' ^ ' m=0 p=0 q=—ooR

with:

u=—E - EEE FlmpGIpq

Jim = (-l)£l('-m'fl)/2]

Another possible formulation, used in [50] is:

- TT -

Cim cos (p + (/ - m) -) + Sim sin (</>+(/- m)

(7.18)

(7.19)

U =
GM ^ fR\ Z+l l l oo

FE- EEE
Z= 1 X 7 777—0 p—0 Ç—— OO

Function e/.m is defined as follows:

^Im ~

7r, 7T,

FlmpGlpq{&) Cim COS (0 -f- ) + Sim sin (</> + €im 0 )

0 if l — m even

1 if l — m odd

2 J

(7.20)

(7.21)

And a last that we will use in the following is:

U = ^ j S S S FlmpGiPq(e) cos (V - mA;771 7
i=l ^ ^ m=0 p=0 Q——00

(7.22)

to|̂
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with:

Clm — Jim COS Xim &lm — sin (7.23)

In these four cases, inclination functions are defined and normalized in the same way.

Complex formulation

In a parallel way the complex potential is developed:

l+1 i i

Uc = ^Ë(f) È E E
1=1 ^ ' m=—l k=—l,2q—-oo

KlmFimk Glpke,jm<p (7.24)

with:

0 = kuj + (k + q)M + m(Q — 9) (7-25)

Two comments are relevant in this formulation. First, last summation index has been

changed, instead of p, we use k. Relations between both is p = — k). Both indexes are
équivalent, some authors prefer k because angular argument dépends only on two indices

when working with k. Second, inclination functions are defined in a different way:

FLk = jk-mdïmkPîk(0)(7.26)

with:

dc

Imk

' (l + k)\(l — k)\ '

(/ + m)\(l — m)!

è

E
t~t\

l + m

t

l — m \

l-k-t) (-l)*cos2Z a^(3sina-p (7.27)

In [62], the author does not give the normalization of this function dfmk. To obtain it,
we consider the normalization of Legendre polynomials and of the coefficients Kim, and we

suppose that the normalization of d function must match with them. We finally obtain:

dlmk -^Imk^lmk (7.28)

with:

atc _
^Imk

Nlm
( -i \k—m l(l~k)l(l + m)\
{ j Y (l + k)\(l - m)\ (7.29)

7.3 Kaula’s intégration of the effects of the gravity field

Classical Kaula’s intégration is detailed in [40]. The author proceeds, first, to the development
of the potental of the gravity field in terms of orbital éléments (as rewritten in precedent
section), and, second, he proposes an analytical intégration of resulting Lagrange planetary

équations. This solution has been used for many years, inspite of its drawbacks. We give here

its solution and we analyze its main drawbacks. They justify the obtention of an improved
solution as it is done in the next section.
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7.3.1 The method

The effects of a potential force in the orbit of a satellite can be computed using well-known

Lagrange équations:

da 2 dU

dt na dM

de y/l — e2 dU 1 — e2 dU

dt na2e du na2e dM

di —1 dU cos i dU

dt na2 y/l — e2 sin i dQ na2 \/l — e2 sin i du

dÜ _ 1 dU
dt na2 \/l — e2 sin i di

du y/l — e2 dU cos i dU

dt na2e de na2V 1 - e2 sin i di

dM _ 2 dU 1 - e2 dU
dt na da na2e de

(7.30)

Exact analytical intégration of resulting équations is not possible. In [40], the author does
an approximate intégration. It consists in introducing 1) the secular terms, supposing that
the variables do not hâve short period variations, and 2) short and long period variations
inserting only secular variations.

This method leads to the following secular effects:

Ôü(t)\sec
n

r] sin i

du(t) \sec II S

SM\,ec = «Ei

?y

?)

rj G cos i F

e G ï] sin i F

f§

FG{—Ji)(t —10)

FG(-J,)(t -10)

(7.31)

(7.32)

where Ji = —Cifi. The periodical variations write:
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3almpq |per

ô^-lmpq |per

iï'î'lmpq | per

iï^lmpq |per

Ô^lmpq | per

àMlrnpq \per

2[I

na2

JL
na2

JL
na2

na'

na'

JL
noi

?) (/ — 2p + q)GiVQFirnp^^-
Simpq

Re

a

l r

?)'
Re

a

?)‘
?)'

(* - 2p + <?)-—— - (/ - 2p)~
e e

(l - 2p) cos i - m ^ r
^Ipq^lmp •

r jp Slmpq
'-Jlpq-T lmp •

Lmpq

T] sim Simpq

Si
r< x?' ^Irnpq

.^Ipq^lmp
p sim Simpq

C-^GF - -GFi
p sin i e

mp

S'
Impq

. Lmpq

1 — e"

Glpq — 2(1 + 1 )Glpq + 3
(/ - 2p + q)n

Si
G

(7.33)

Ipq F,
Si.

lmp
Impq

mpq Simpq

7.3.2 Main drawbacks of Kaula’s intégration

In this subsection, we analyze the behavior of the analytical Kaula’s solution with respect to

a numerical intégration of the potential. We aim at to detect the main drawbacks of Kaula’s

intégration. We hâve used a LEO orbit for numerical applications defined by its orbital
éléments:

a0 = 7. 106 m e0 = 0,02 i0 = 40°

ü0 = 50° cüq = 60° M0 = 0

Initial date is 20th february 1996 at midnight and the model of the gravity field that we

use is EGM96-95. By the following, we enumerate some of the main mismodelling.

The rôle of the inital conditions

Instantaneous value of orbital éléments, also known as osculating value

artificially in two terms: the mean value (EO), and a periodic oscillation

ËÔ = EO + ÔEOper

Mean value evolves with secular perturbations of the gravity field:

ÉO(t) = ÉO(to) + SEOsec (7.35)

while periodic perturbations are given by short and long term perturbations. Secular

perturbations are null at initial time (to), but it is not the case for periodic effects. So, at to,
we can write:

(EO) can be split

(ÔEOper). R is:

(7.34)

EO(to) = EO(to) + ÔEOper (to) (7.36)

In Kaula’s intégration, initial periodic perturbations are disregard:
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ËÔ(t0) = ÉO(t0) (7.37)

Disrega.rding this terms has two conséquences:

• It produces a constant shift on ail the orbital éléments. In figure 7.1, we hâve plotted

osculating values of the semi-major axis and the eccentricity ail over a day. In both

éléments, there is a the constant shift.

• Since initial mean orbital éléments are not exact, secular terms (7.31) are neither. At
the left side of figure 7.2 we hâve plotted the error (différence between the numerical
and Kaula intégration) on the osculating value of the ascending node over one hundred
years. The main error is the secular term due to the différence of initial conditions.

Second order effects on J2

Ail the effects that Kaula considers are linear with respect to the perturbation. Second order

effects due to J2 are the main remaining error. To prove so, we hâve done the following

expérience: at the right side of figure 7.2, we hâve plotted the error considering actual value

of Earth J2 (1, 083.10~3), and the a fictitious value, the double (2,166.10-3). The figure
proves that the error is quadratic with J2 as expected.

Figure 7.1: At the left side, order 2 perturbations on semi-major axis. At the right side,
perturbations on the eccentricity

7.4 An alternative intégration of the gravity field

7.4.1 The Hamiltonian formulation

In order to solve Kaula’s intégration drawback’s, we hâve developed a theory based on canoni-

cal Lie transformations in order to obtain a better extrapolation of gravity field perturbations.

The main advantage of the theory is that it takes into account secular effects proportional

to J| and that also considers initial conditions. Furthermore, the main effects are in closed
form, i.e., they are not expanded as power sériés of the eccentricity. The main limitation is
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Figure 7.2: At the left side, order 2 perturbations on ascending node over 100 days. At the

right side, errors on semi-major axis considering a jïetitious J2

that the method do not introduce the non-linear effects of J2 in the short periods.

By the following, we use Delaunay variables defined in (2.1) instead of orbital éléments

because they form a set of canonical variables (necessary to use Hamiltonian formulation).
We use the Hamiltonian (JC) given by the gravity field potential written as in équation (7.22).
Moreover, to take into account that this potential is expressed in the Earth’s frame rotating

with an angular velocity ue (supposed to be constant):

JC = U- ujeH (7.38)

The Hamiltonian is split in three parts, by decreasing magnitude of the perturbations:

AC = ACo + ACi + -AC2 (7.39)

AC0 =

K\= [(1 — 3cos2 i) — 3sin2 i cos (2/+ 2</)]
oo n n cc

JC2 = -2 E E E E KîmFfmkGlpke™*
n=2 771—0 p=0 <7=—oo

Zéro order includes Keplerian effects, the first order includes the J2 effects, and the second

order the rest of the gravity field. This division enables to consider J2 effects separately from

the rest of the gravity field.

7.4.2 Canonical transformations

We use the Deprit-Lie algorithm to obtain canonical transformations. The goal of the method

is to obtain a hamiltonian that does not dépend on angular variables. In order to do so, we
do two transformations. First one transforms the variables:
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(H, G, L, h, g, l) -> (77', G', L\ h', g\ /') (7.40)

and the hamiltonian:

/C^ £' = /(£', G',#',</)(7.41)

The first transformation removes the short period terms of the hamiltonian by averaging

over the variables l and g. And the second transformation:

(H\ G', L',h',g', l') - (H", G", L", h", g", l") (7.42)

K' K" = (7.43)

The second transformation deals with the long periods. It is important to mention that

when we construct the transformations, we respect only the lower order terms, but we may

do some changes in higher terms.

Once this last hamiltonian obtained, its intégration is really simple. Using classical hamil

tonian theory we know that:

dPj _ _5/C dQj _ dJC
dt dQi dt dPi

(7.44)

where P, Q are a couple of action-angle variables. Application of precedent équations leads
to:

dH"

dt
= 0

dG"

dt
= 0

dL"

dt
= 0 (7.45)

dh"

dt
7 dhsec

àgT_
dt

= àgsec
dl"

dt
= dlsec (7.46)

This method uses an exact intégration of the équations but the errors corne from the

canonical transformations which neglect high order terms.

Use of the method For simplicity sake, we transform our Delaunay variables in orbital

éléments for its use. We use three sets of orbital éléments EO, EO', EO" corresponding to
the three sets of Delaunay variables. The method is composed by three steps:

• Transformation of initial conditions:

EO'(to) = EO(to) + ôEO\Sp(to) (7.47)

ËO"(to) = ËÔ'fo) + 6ËO'\ip(t0) (7.48)

(7.49)

• Extrapolation of the motion including secular terms:
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• Récupération of initial variables:

ËÔ'(t) = ËO"(t) - ÔËO"\ip{t) (7.50)

ËÔ{t) = ËÔ\t) - ôÊO'\sp(t) (7.51)

The exact expressions of perturbations are detailed in annex A.

7.4.3 Numerical simulations

Numerical simualtions confirm that our new solutions works better than Kaula solution, and

it also points the non-considered ternis. In order to improve our theory, these terms should
be included.

Figure 7.3: Comparison of J2 errors between two analytical intégrations

time (days)
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Figure 7.4: Comparison of order 3 errors between two analytical intégrations

In figure 7.3, I hâve plotted the errors on semi-major axis and ascending node considering

only J2 effects for both analytical théories. I hâve disregard constant shift in Kaula’s inté

gration for clarity’s sake. The figure proves the improvement of our method. In figure 7.4,
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I hâve plotted the same errors, for the same orbital éléments, considering the effects of the

third degree of the gravity field. Once again, the results are improved. Similar results are

found for higher orders of the gravity field.

7.5 Differential effects

In this section, we explain how to obtain the matrix Cqf used in differential orbital éléments

method in order to integrate gravity field effects on formation flying. We write extrapolation

process on orbital éléments as follows (where we neglect vector sign in order to simplifiy
expressions):

EO'(t0) = f(EO(to))

EO"{t0) = g(EO\t0))

EO"(t) = h(EO"{t0))

EO'{t) = g-\EO"{t

EO{t) = f~1(EO'(t))

AEO\t0)=

AEO"(t0) =

A EO"(t)=

AEO'(t) =

A EO(t)=

dj_ ,
dEO'EO(t°\

dg

dEO' 'EO'do)

dh j
dEO" 'EO"(to)

dg~l ,
dEO"'E°"{t)

df-1
dEO' 'EO'd)

AEO(to)

AEO'{tQ)

AEO"(t0)

AEO"(t)

AEO\t)

(7.52)

(7.53)

Matrix Cqf is given by the compilation of ail the dérivatives:

Ogf —
df-1 ,
dEOf'E°'{t)

dg*

dEO"
I EO"(t)

dh

dEO"
\EO"(t0)

dg ,
dEO' 'EO'do)

df ,
dEO'EO{to)

(7.54)

7.6 Conclusions

First part of the chapter is devoted to clarify the different représentations of the gravity

field potential. We hâve proved that they are équivalent but normalization and inclination

functions are different. Once the potential settled, we présent two methods to compute its

effects on the gravity field.

First method is Kaula’s intégration. It is a very useful method but its précision is not very

high. That’s why we hâve developed an alternative method. The alternative method uses Lie

canonical transformation to obtain a new hamiltonian that can be integrated in a trivial way.

Précision of this method is improved with respect to Kaula’s method.

At last we use the differential orbital éléments in order to obtain the perturbative effects of

the gravity field in the relative motion.



Chapter 8

The solar radiation pressure

8.1 Introduction

For high orbits, the effects of the Earth’s gravity field are much reduced and the main per

turbations are solar radiation pressure and lunisolar effects. As I will prove, solar radiation

pressure may be prédominant in formation flying when satellites do not hâve the same area to

mass ratio (—). That’s the reason why we dedicate a chapter to obtain analytical expressions
for the effects of solar radiation pressure on orbital éléments.

First section is devoted to the modellization of the solar radiation pressure. Different models

are used in literature. We use the simplest one.

Under some simplifications, solar radiation pressure is a conservative force and dérivés from

a potential. The effects of the potential on orbital éléments and the intégration of resulting

équations is done in second section. A similar procedure is followed in [45], [5], and [12], but
we use mean anomaly instead of true anomaly as independent variable.

Last section is devoted to the differential effects. We prove that the effects induced by différ

ence of — are usually much bigger than the effects induced by the différence of position.

8.2 Solar radiation pressure

Solar radiation pressure is the force exerted by solar radiation on objects within its reach.

The force can be expressed as:

ï = -(l + fflP,-(^] Usât (8.1)
7ïi \rs J

where:

• /3 : index of reflection of the satellite. Its value is usually around 0.3

• Ps : it is a pressure, with a value: Ps = 4,6510~6 Pa

• — : area to mass ratio of the satellite

• ratio distance to the Sun from satellite and from Earth
rs

• ~Usat'- unit vector of the position of the satellite in the used reference frame
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In order to take into account perturbations induced by this force, two ways are possible.

(1) using the Gauss équations directly with the force, (2) computing the potential associated
to the force, and use Lagrange planetary équations. Both methods are équivalent.

The main difficulty for both of them is the modellization of shadow régions, the régions
where due to the cône of shadow projected by the Eartli over the satellite, there is no solar

radiation pressure. In low orbits, shadow régions are computed numerically and considered

apart. But, since we are interested in very high eccentric orbits, with high semi-major axis,

shadow régions are negligible (for Simbol-X mission shadow régions are never bigger than a
4 % of total orbit).

By the following, we evaluate the perturbations of the SRP on the orbital éléments using its
associated potential.

8.2.1 Intégration of the potential

If we neglect the shadow régions, precedent force is conservative, and its associated potential
is:

with:

Usrp =
S

G Tsat U sun • ^ sat
m

(8.2)

a = (1 + /3 (8-3)

and uSUn is the unit vector of the the position of the Sun with respect to the used reference

frame. We work in a Earth-centered inertial équatorial frame. In this reference frame, the
unit vector of the satellite is:

:\Tu sat = (cos fl cos u — sin fl sin u cos i, sin fl cos u + cos fl sin u cos z, sin u sin ï)

To compute the unit vector of the Sun, we use the following simplified model:

In an Earth-centered ecliptic frame, the unit vector of the Sun is:

(8.4)

with the angle:

U sun\ecliptic — (cOS CH, sin CH, 0)

„ day number ^
a = 27r————: 0,44527T

365

(8.5)

(8-6)

where day number is the number of the day of the year. Transformation into Earth-

centered inertial équatorial frame can be easily done using matrix:

1 0 0

V — I 0 cos e — sin e

0 sin e sin e

(8.7)

where the obliquity e = 23,4364° is the angle between the équatorial and the ecliptic
planes of the Earth. We get:
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Jéquatorial \J^} • ^ sun\ecliptic — Cs) (8.8)

Introducing previous expressions for Sun and satellite position, we get following expression

for the potential:

U =-ct
S a(l — e2) '
m 1 + e cos / .

As (cos fl cos u — sin fl sin u cos i)

+ Bs (sin fl cos u + cos fl sin u cos i) + Cs sin u sin i

We rewrite the potential introducing auxiliary functions:

(8.9)

T = As (cos fl cos u> — sin fl sin u> cos i) + Bs (sin D cos lu + cos fl sin u cos i) + Cs sin co sin i

G = — As (cos fl sin u + sin fl cos u cos i) + Bs (— sin fl sin uj + cos fl cos co cos i) + Cs cos uj sin i

to get:

U = —cr—{cosfT{i, fl, u) + sin fÇ (i, fl, co)) (8.10)
ml + e cos j

We will also need the dérivatives of T and G with respect to the angles:

Ti — (sin D sin i sin a;) — (cos D sin i sin a;) + cos 2 sin a; (8-11)

To = A5 (—sin D cos a; — cos D cos i sin a;) + (cos D cos a; — sin II cos i sin a;)

Tu = As (— cos fl sin lu — sin fl cos 2 cos a;) + Bs (— sin fl sin lü + cos fl cos 2 cos a;) + Cs sin 2 cos a;

Gi = As (sin fl sin 2 cosu;) — Bs (cos fl sin 2 cos a;) + Cs cos 2 cos uj (8.12)

Gn — A5 (sin O sin a; — cos D cos 2 cos a;) — R5 (cos Usina; + sin D cos 2 cos a;)

Gu = —As (cos fl cos eu — sin fl cos 2 sin a;) — Bs (sin fl cos a; + cos fl cos i sin co) — Cs sin 2 sin a;

The last step consists in substituting the mean anomaly to the true anomaly in eq. (8.10)
in order to use Lagrange planetary équations. We use the well-known classical development

with Bessel functions, as can be found, for example, in [16]:

r cos / — T

r sin / =

\

2ar) y

e 2

3 V"'' 2 T/

2e+ÇUs'
00 -,

(8.13)

where Js(se) is the Bessel function of order s and argument se, and J's(se) are the dériva
tives of Bessel functions with respect to the argument. We also compute the dérivatives of

équations (8.13) with respect to the argument, se, because it is required thereafter:
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— (r cos/) = a — - + 2J" (se) cos sM (8.14)

de

OO / 1. X
(rsin/) — 2a( -J(.(se) Js(se) ) sinsM

\ e 77^ s y

Once the mean anomaly introduced, the potential has the right form to use Lagrange

équations:

da

dt

de

dt

di

dt

dÇl

dt

duj

dt

dM

dt

— —— ~ V (—2J'(se) sin sMJ7+—Js(se) cos sMç]
n m ' \ e /

S=1 /

l&Fc + ^ ( - sinsM ^277</'(se):F + ~Js(se)Çu \ +
S=1 ' '

rycr 5 f 3
nae m i

cos sM ( ~-Js(se)Ç — -Jj(se)Pw ) )

5 r 3̂ ^ / 2

- ye (cos - JPq) + ^ ^-J'(se) cos sM (cosLTU, - Jh) +
S=1

narj sin 2 m

277

es
J5(se) sin sM (cos 2</w - Qn)

narj sin 7 m

a S

na m

3 ^ 2^ \

— ^ ( ~J's(se) cossMTi H Js(se) sin sM^ )
5=1 x 7 .

A) + E (2 cos sM (^J’j(se)F—-J'(se)^i) +
' S=1 ' V $ /

3/77^. ecotz
2 V e

2 sin sM ( - (-J'(se) \^-Js(se) ) G —
' e \e r)ez s 1

cot i 77

77 es
J$ (se)Gi

o_S_ r 3
na m . -T (2e + —) + E (2cossM:F (Ui(se) + y7"(se)) +
2sin sMÇ/ ( ^J'(se) — -j^J3(se)

e°s

Exact intégration of these équations is not possible, but a first approach, considering just
secular keplerian évolution of orbital éléments is done. This approach is similar to Kaula’s

approach for intégration of the gravity field.

In order to improve the précision, we should consider secular effects when computing short

periods. It may also be possible to consider coupling between J2 effects and SRP introducing

J2 effects as secular ones on the intégration. But, the obtained précision (relative error lower
than 10%) using the Keplerian model for secular terms seems reasonable for our purposes.
We hnally obtain:
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ôa(t)

ôe(t)

— '—Z— T (’—J'Jse) cossMT + -Js(se) sinsMç\
nz m z—' V s es J

s=1 x 7

r](j S r3

nae m L2

3 ^ /CossM / .. x _ 2t7 t
-e^7— to) + ( ( 2r]Js(se)J- H Js{se)Qœ 1 +
2 1 sn \ es J

S= 1 x 7

sin sM (2r)2 r ( 2 ,
sn

e Js(se)Ç--J,s(se)Tu}))

ôi(t)
a 5 r 3

- -e(cosifw - Th) (i - *o) + Y] (~J's(se)
nar)sinmL 2 “ \s

-.7 _ . . cos sM . . \i
—«/s(se)——— (coszbU -9n) J

sin sM

s= 1
sn

(cosiTL, - Th) -

es

<5D(£)

Suj(t)

G

sn

S

nar) sm z m
— ^eTi(* — to) + ( —2 T' (se) sin sMTi - Js (se) cos sMGi )

Z \ 715 GTZS J
s— 1 x 7 ,

a 5 r 3 / 77 ^ e cot i ^ \ , x v-^ / ^
--l1? (i - io) + 2Z 2

na m 2 Ve V
s= 1

sinSM(p„(se)^_coUlJ,(se)^
sn T] s

cos sM ( 77 / 77 ,
sn

1 1

- -Js(se)- --Js(se) g -
e Ve 77^ s '

cot Z T)

77 es

um = ^[-H2e+ï)(t-to)+u(2—^(^(Se)+^v))-
cos sM / 277

Js (se)Gi

s=1

sn
G —-Js(se) + —J's(se) - Js(se)

es eJs

Our method has the same inconvénient that Kaula’s method. It is, there is a différence

between the osculating (EO) and the mean (EO) variables. This différence can be mitigated
by taking into account the initial phase of the perturbation. It is:

EO(t0) = EO(t0) - SEO(t0) (8.15)

When considering mean éléments, we must include a second term on the évolution of the

mean anomaly:

ôM^2\t) = ---Aa(to) (t - t0)
2 a

(8.16)

And temporal évolution of osculating orbital éléments is given by keplerian terms plus

SRP perturbations:

EO(t) = EO(t)\kep + ÔEO(t) - 5EO(t0) (8.17)

8.2.2 Numerical tests

In order to verify precedent équations, we hâve tested them using as bench mark numerical

intégration of the forces. We use as test orbit a typical HEO orbit, for which the SRP effects

are the most important in comparaison to other perturbations. Parameters of the orbit are:
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ao = 1. 108 m eo = 0, 7 îq — 10°

D0 = 10° a>0 = 10° Mo = 0

Initial date is 20th february 1996, the duration of the simulation is 4 days and A— is
3. 10~3 m2/kg. Figure (8.1) shows obtained results using the analytical extrapolation and
numerical intégration.

Some conclusions can be drawn from these simulations. First, we detect residual secular

variations in the inclination and the ascending node. In fact, longer simulations show that in

numerical intégrations we find not only secular effects, but also long periods which are not

modeled in our analytical expressions. We hâve verified that these long periods are not linked

with changing position of Sun with respect to the Earth.

In spite of these mismodellizations, results are accurate enough to provide necessary informa
tion for mission analysis.

8.2.3 Differential effects

Differential effects hâve two origins (i) a différence on the ratio —-, and (ii) a différence of
position. Figures 8.2 show the importance of each of them. Figures prove that, even for

very large configurations, the effects due to the différence of — are dominant over the others.

That’s the reason why in this section we hâve considered the effects providing from a différ

ence of — and we disregard the effects providing from a différence of position.

Terms providing from a ^ are not linear with the orbital éléments, but with A^. In
order to keep the matricial formulation we introduce following enlarged vectors:

AËÔ+ = (AËO,A—)T (8.18)
m

A~x+ = (A1c1A—)t (8.19)
m

Matrices will also be enlarged in following way:

(M'l)+ =
M~l 0

0 1
M + _

M 0

0 1

r+ —
SRP —

Csrp matrix for solar radiation pressure reads:

/ 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

\ 0 0 0 0 0 0

c+ =

Sa(t) \
S/m
6e(t)
S/m
ôi(t)
S/m

S/m
8u>(t)
S/m

SM(t)
S/m

1 /

c 0

0 1
(8.20)

(8.21)
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Figure 8.1: Numerical tests for solar radiation pressure effects
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Figure 8.2: Differential force for different configurations

8.3 Conclusions

In this chapter we hâve presented an analytical method to take into account the solar radiation

pressure. Even if the accuracy of the method is not very high, it is well suited for our purposes

of mission analysis. Simplifications are done in two ways: (i) in the modellization of the
solar radiation pressure, and (ii) in the intégration of the potential. The model that we

use neglects perpendicular forces, and shadow régions. The intégration is done considering

Keplerian secular effect as the only variation.

In last section we présent differential effects on formation flying. Main effects are due to the

différence of —. For big values of these variable, we join solar sails concept. It might be an

interesting alternative to formation flying control.



Part III

Future missions for Earth and

Universe observation
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Chapter 9

Space missions to measure the

gravity fîeld

9.1 Introduction

One of the first scientific formation flying missions was GRACE. This mission is devoted

to the study of the Earth gravity field. As it was described in chapter 1, the formation is

composed of two satellites with the same orbit and separated by a différence of anomaly.

Data from GRACE missions hâve been analysed during the last six years producing new

models of gravity field [67], [68]. Future gradiometry mission GOCE [2] will help to improve
the accuracy of the gravity field. Data from these two missions will improve our knowledge

of the gravity field, but some authors claim that the précision should be still improved. [53],

[24], [1], [65],
We hâve explored the possibilities of two different technologies for future space geodesy mis

sions: (i) formation flying missions, and (ii) tethered Systems. In order to do so, I hâve
analyzed the possibilities of the Systems through the study of its covariance matrix as ex-

plained in [43] and [64].
The interest of formation flying for space geodesy has been studied before in [66], [49]. We can
find several studies in the literature about the sensitivity of the configuration to the gravity

field [18], [41], [63], [6]. The originality of our method is the use of a completely analytical
model of the perturbations of the gravity field. Tethers for gravity field détermination hâve

been studied in [32], but we do not hâve found any papers analyzing the covariance matrix.
In the first part of the chapter, we introduce the covariance matrix. In the second section, we

analyze the future needs for gravity field détermination as well as the different available tech

nologies. Section three and four deal with tethered Systems and formation flying respectively.

In the last section, we présent the sensitivity analysis.

9.1.1 The covariance matrix

The principle of the détermination of the gravity field is as follows. Gravity field perturbs

the trajectories of the satellites around the central body. Hence, measuring the perturbations

of the trajectories, we can go back to the coefficients characterizing the gravity field. The

measurement linked to effects of the gravity field can be performed directly on the absolute

trajectory, or on the relative trajectory. The gradiometric technics is slightly different because
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it is not based on the deformation of the trajectory but, in any case, the procedure to obtain

the coefficients of the gravity field from the observations, is the following.

First, a model of the observable is done. The model includes the parameters characterising
the gravity field and many others, as the initial position of the satellite, the Earth atmosphère,

or other perturbations that can affect the motion of the satellite. In a general way, we write
the model as:

obs — f (coef) (9.1)

We assign a priori values to ail the unknown coefficients of the model (coe/o) . With these

values we compute the a priori values of the observation (obso), which are certainly different

of the real observed values (obsc). Supposing that a priori values of the unknown coefficients

are close enough to the real ones, we linearize the observables in order to obtain following
matricial System:

^ ^ ^ p ^ ^
obsc - obs0 = \—t (coefc - coef0) (9.2)

dcoef J

The dérivatives are computed with a priori values of the coefficients. The détermination

of the coefficients can be obtained through the inversion of the matrix d l. J ——> . The System
dcoef'coef0 J

can iterate until the convergence. If the matrix is overdetermined, one seeks those unknowns

coef that minimize the weighted discrepancies in quadratic sense. Even if the principle of

the resolution of a least squares method is simple, its practical application is a highly compli-

cated technique on itself where several parameters play an important rôle (length of the arcs,
combination of observations, considérer perturbations,...) and we do not deep on it. By the
following, we summarize its main aspects.

Least squares method We write precedent matricial form as follows:

y — Ax (9.3)

Since measurements contain noise by nature, the vector of observations is a stochastic

variable, with an expectation:

E{y) = Ax (9.4)

and a dispersion:

D{y} = Qy (9.5)

where Qy is the covariance matrix of the vector of observations. Least squares estimator
gives the dispersion of the unknowns vector, also known as the posterior covariance matrix:

D{x} = (ATPyA)~1 = N-1 = Qx (9.6)

where Py = Qyl The posterior covariance matrix is the inverse of the normal matrix.
Analysis of the covariance matrix gives a lot of information about the observation System. In
particular, it gives the error spectrum of the coefficients:
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• Two-Dimensional Error Spectrum: Inverting thet total normal matrix N yields the

covariance matrix Qx of estimated parameters. Tins is the basic output of least square

method error simulation. In particular the square root of the diagonal represents the

standard déviations cqm of single coefficients. The full set of cr/m represents the error

spectrum of the coefficients (in our case, Kim).

diag(Q2) -> var(Â)m) = afm (9.7)

• One-Dimensional Error Spectrum: For représentation reasons we might be more inter-

ested in obtaining a one-dimensional parameter which is defined as follows:

i

O1 = °lm
m——l

(9.8)

RMS‘-^2i + i°r (9.9)

9.2 New challenges

With the data received from GRACE mission, and expected data from GOCE mission, the

knowledge of the Earth gravity field will be significantly improved. In [53], following table is
given for the remaining uncertainties:

Geoid (mm) Gravity (mGal) Spatial Scale (km)
1 0.03 200

10 0.2 100

45 2.0 65

Table 9.1: Static field: geoid and gravity uncertainties after GRACE and GOCE missions

In the same paper, the author points out three areas which would benefit from an im-

provement of the knowledge of the global gravity field:

• Geoid and Gravity anomalies: They reflect primarily mass anomalies of the inner config

uration of the Earth, in particular, the lithosphère and the upper mantle. The précision

of 1 cm for the geoid with a spatial resolution of 100 km expected with GOCE should

be increased to a lower space resolution, 50-60 km.

• Dynamic Océan Topography: Dynamic océan topography is given by the différence

between actual océan surface (measured by satellite altimetry) and the geoid. An im-
provement of the geoid has direct repercussions on the dynamic océan topography. In

this area, an ultimate goal could be the détermination of the geoid with a précision of

1 cm with a spatial resolution shorter than 50 km.

• Temporal Variations of the Gravitational Field: This item is the most complex because

of the temporal dimension of the problem. A new variable appears: the time scale.

Mass re-distribution of our planet can give information about global change phenomena
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as climate changing. GRACE is the first space mission specifically designed to mon-
itor the temporal dimension of the gravity field, but its information is not sufficient.

Future missions should focus on: monitoring, appropriate sampling in space and time,

complémentarity of data sets.

Until présent, space geodesy has used absolute satellite trajectories tracking and inter
satellite distance ranging (GRACE). GOCE mission will introduce gradiometry. Different

possibilities are considered for next génération of gravity field missions [65]. Different im-
provements (temporal scale, space scale, accuracy) should require different technologies.
By the following, we présent two of them. We do not claim to be exhaustive in our research,

but we focus only on the sensitivity of the observables to the gravity field.

9.3 Tethered Systems

In collaboration with Ph. D. candidate Manuel Sanjurjo from ’Universidad Politécnica de

Madrid’ , we hâve worked in order to analyze the interest of using a tethered System for the
study of the gravity field.

9.3.1 Introduction

Tethers hâve been studied since 1960’s. It consists in a thin cable connecting two satellites.

This concept can hâve different uses: orbiting antennas, shuttle-borne tethered satellites,

electrodynamic-powered tethers, space station tether Systems, or formation flying tethers.
Several missions has been launched (TSS-1, TiPS, MAST,...) in order to test the feasibility
of the technology and detect its main technological difficulties. In this subsection, we focus

on the interest of tethers for space geodesy.

They can be advantageous in two ways: (i) tethers can be used as a propulsion System in
order to null drag effects and enable lower (so more sensitive) orbits. This direction is not

explored in this report, even if there are previous work in this direction [32], [48]; and (ii)
tethers can be seen as very large base gradiometers [37], [17], [33].
We suppose a satellite composed by two masses, nn\ and m2, joined by a thin cable, the tether

with a length L and a negligible mass. Each mass undergoes the force of the gravity field, so

they act as a gradiometer, but the distance between proof masses can be larger than in a one-

satellite gradiometers. Since the differential effects are almost linear with the distance, the

further are accelerometers from each other, the stronger are the effects that we look for. The

tether is the paradigm of the gradiometer, for which the distance between detectors can reach

several kilometers. But this method présents a.lso several drawbacks: from a dynamical point

of view, tether is highly perturbed, and these effects must be perfectly modellized. From a

technological point of view, tethers are not still operational, and technological missions should

be scheduled before scientific applications.

9.3.2 Dynamical model

First, we will use an Earth-fixed coordinate System. The tethered System will be represented

by a simple model with the aim of clarity. Furthermore, we consider a massless dumbbell
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Figure 9.1: At the left side, an artistic view of a tether. At the right side, its modellization

model, i.e., a rigid massless cable attaching two point masses. Tethers présent a unique

equilibrium position: when the tether points to the radial direction. We suppose that the

tether has the equilibrium configuration. In this particular case, equilibrium équations for
each mass write:

Fa(fi) (-ur)- T = miQon

Fa{r2) (-fir) + T= m2fîg
(9.10)

(9.11)

where Fq is the gravitational force, T is the tension on the tether, f^o is the angular

velocity of the System and fq, f2 the positions of the masses. Gravitational force, in spherical

coordinates can be computed as:

Fq = —m
dU{r,6,\)_ 1 dU(r,9,\)_ 1 dU(r,0,\) _

5 Ur 7TT ^ ue H UX
or r cos(A) 06 r o\

(9.12)

For the sake of compactness, the full gravitational model will be considered in its repré

sentation on a sphere by means of spherical harmonies with complex-valued factors 7.6:

U(r,0, A)
GM

OO l

l—0 m=—l x

R
1+1

Kimyim{0, A) (9.13)

in this expression, Yim{9, A) is the normalized spherical harmonie of degree l and order m:
Ÿlm = PlmejmX.

Introducing expressions (9.12) and (9.13) in the equilibrium équations, we obtain the
angular velocity of the whole System:

00 1

n—C0S Slw + n T— Wüm(l + 1) (—(9.14)
a-esinW^2 (l + ecos2(î))!+2 \rG/

where two parameters hâve been introduced: the total mass of the System m, and the

distance of the center of mass tq:
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m = mi + m2 mro — m\ r\ + V2 (9.15)

In order to describe the mass distribution of the tether we introduce the massic angle, G
which is defined as follows:

cos2(£) = — sin2(£) = — (9.16)
nn m v '

Setting e = — , these relations lead to:

ri = (l - esin2 £) r\ = (l + ecos2 £) (9-17)

Using the expressions (9.10)-(9.11) and (9.14), and after some computations we can obtain
the tension T as a function of the spherical coordinates of the center of mass, and the System
parameters:

°o i / t? \l

r(rGAA;£,£) = 4rX(e,Ç)E E ffi(£,0(i + l)( —) ) (9.18)
rG !=0m=-( VrG/

where the following auxiliary dimensionless functions are introduced:

X(e,0

91&Ç)

fi{£iO

cos2(£) sin2(£)

(1 — e sin2(£))2(l + e cos2(£))2

(1 + e cos2(0)/+3 — (1 — e sin2(£)y+3
cos2 £ sin2 £

(l — esin2 £z+2) (1 + e cos2 £z+2)

(9.19)

(9.20)

(9.21)

These auxiliary functions dépend only on the mass configuration of the tethered System,
therefore they are fixed once the tether parameters are established.

We will perforai the spectral analysis of this observable T in terms of the orbital éléments, so

we introduce these éléments on the former relationship (9.18). In order to achieve that, we
perforai a rotation of the spherical harmonies. After some computations the expression for
the tension takes the form:

T(a, e, /, fl, u, M ; e, £) =
xfe£)

“2 /02/3(e,f) U
D(+1)

9i{e,0
fl/3
JO (*,0

l l

E E*<mFimp(I) expj(ku-\rmA)
m=—l k——l

(9.22)
The argument of latitude is u — eu + M and A = fl — 6q is the longitude of the ascending

node in an Earth-fixed System {9q , Greenwich sidéral time).

9.4 Formation flying missions

9.4.1 Introduction

Dynamical model of formation flying has been described in detail in the two first parts of

the thesis. In order to introduce the effects of the gravity field, we use the differential orbital
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éléments approach described in chapter 4. Initial conditions can be expressed in terms of

differential orbital éléments, and the linear approach reads:

AX(t) = [M][jC\AËÔ(t0) (9.23)

The introduction of the gravity field is detailed in chapter 7 where we obtained perturba-

tive matrix Cqf- We obtained final expressions of relative motion:

AX = f(EOref,AEO(to),Cim,Sim,t) (9.24)

This model is not well adapted for least square method because relations are not linear

with coefficients. Linearized relations can be obtained by linearizing precedent équations or

obtaining a simplified perturbative matrix Cqf• We hâve used the second method. Finally,
we obtain the following matricial form:

AX = Q[Cim, Sim] (9.25)

where:

Q = f(ËÔref,AËÔ(t0),t) (9.26)

In these équations we see that the sensitivity of the observable dépends on the reference

orbit as well as on the formation. The influence of the reference orbit in space geodesy is well-

known: usually, very low, near circular, and near polar orbits are used. But the influence of

the formation has not been yet explored. Technological reasons encourage the leader-follower

configuration, but, other configurations could be more sensitive to gravity field perturbations.

That is why we obtain an analytical expression for a general configuration, and we test it

numerically.

First, we obtain a linear model of the effect of gravity field on the differential orbital éléments,

and second, we transform it in terms of relative position.

9.4.2 Simplified perturbations model

Our departure point is the expression of the gravity field potential, in terms of orbital éléments,

where we keep the first term of the development in eccentricity (we suppose low eccentricity
of the orbit). It reads:

°° ^ ^ EM / R\

U = Y, E E -R- ( - ) KlmFi,m,pGltm,0ej* = ]T Uimk (9.27)
1=1 m=~l k=—l ' ' Imk

0 = k(co + M) -1- m(Ü — 6q) (9.28)

Application of planetary Lagrange équations, and a posteriori simplified intégration leads
to:
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ôa(t) II IM
Se(t) II IM
ôi(t) II IM

sn(t) II IM
Suj(t) = E

Imk

6M(t) = n(t

2 Ulmk

na <j)

V Uimk

na2e <j)
k(l-rt)

—m + kcosi Uimk

na2r] sin i ÿ

j F Uimk

na2r] sin i F ÿ

jUimk / cos i F _ vG\
na2(f) yrjs'mi F eGJ

(j) can be computed considering secular J2 effects.

In these équations, we disregard secular effects on differential orbital éléments because they

tend to destroy the formation and they are periodically removed using maneuvers. Observa

tions deal basically with the periodic perturbations. Moreover, the frequencial method that
we use cannot stand for secular terms.

Cgf is obtained by the dérivation of precedent équations:

£gf

d(Sa(t)) d(Sa(t)) d(Sa(t))
da

d(ôa(t))
da

de dM
d(5e(t))

dM

d(5M(t)) d(SM(t))
da dM

(9.29)

The exact expressions of the terms are given in annex. Introducing the potential, we can
write this matrix as:

G-gf = E°Rlm^ (9.30)
l m k

Taking into account initial conditions we obtain final perturbations on the orbital éléments:

AËÔ{t) = EEE (9.31)
l m k

where:

= HE°f° AËO(t0) (9.32)
These expressions are valid for any initial configuration, with the exception of secular

drifts that are not taken into account. Since main secular drifts are given by keplerian motion

when there is a différence of semi-major axis, we suppose Aa(to) = 0. We do not consider
the secular effects produced by J2 described in chapter 6.
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9.4.3 Conversion to relative positions and velocities

Conversion to relative position and velocity can be done using matrix A4, but the introduction

of new frequencies makes it more difficult if we want to keep precedent formulation. That is

why we explain in detail the procedure that we use.

First, we write the matrix A4 simplified for small eccentricities:

AR(t) = —acosMAe + aesinMAM
CLG

AT(t) = — — sin2MAe + a(l — ecos M) coszAfl + a(l — ecosM)Acj + a( 1 + ecos M)AM

AN(t) = a( 1 — e cos M) sin uAi — a(l + e cos M) sin i cos uAQ

(9.33)

We introduce in these équations, équations (9.31) in order to obtain expressions:

AX(t) = E EE^ôk**-»** (9-34)
l m k

We now dérivé the coefficients Hf^k; to do this, we must décomposé ail the frequencies
that appear in the relative motion in order to obtain exclusively terms In order to do so,

we use following trigonométrie relations:

cos (u — eu) = cos u cos uj + sin u sin uj

sin (u — uj) — sin u cos uj — cos u sin uj

eju + e-ju
cos u =

2

eju - e~iu
sin u —

2j

(9.35)

With these relations and a little bit of algebra, we obtain following expressions final

expressions for three axis.

R axis

AR(*) = Y (— e.0(t>+ [H^k(-acosu + jasinu) + (-aesmuj - jaecosu)] +
l™k (9.36)

+ —^-e^ [H^k(—acoscü — jasinuj) + H^k {—ae sin a; + jae cos uj)] ^
with:

ej<p+ = e3<t>e3u e3<t> — e3<i>e-3u

We introduce intermediary variables:

A*m,l= 2 [Hfâk(-acosuj + jasinu) + (-aesinuj - jaecosLü)]

A*ml = \ [H^k(-acosuj - jasinuj) + (-aesimj + jaecosw)]
(9.37)
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Rearranging summatories we obtain the expression of final coefficients:

O-Ai? /J-R(+) I
nl,m,k—l ' /±l,m,k+1

T axis

AT = — [ej2u (j cos a; + sin 2u) + e“j2u (—j cos a; — sin 2a;)] Ae

T a (cos iAf2 T Au T AM)
CLC-

—2 [eJU i.COSÜJ ~ J sin a;) + e~JU (cos a; + j sin a;)] (cosiAQ + Aa; — AM)
and the coefficients are:

Aïlk’+) = °T Ü cos2w + sin 2uJ) HfrImk

AïlV = -y (cosu; - 3 sinu;) (cosiH^k + Hfmk - H^k)
Aïmk — a (cos^/mfc + Hhnk + HImk)

Atok = -Y (cosw + i sin“) (cosiffimAr + ~ Hlmk)
AlM) = "T (“J cos 2üJ - sin 2w) Hf,Imk

and:

= 4^+,+) , 4r(+) i 4T , An~) , An-,

N axis

ae ae

AN — — sin uAi —— sin i cos wAfi

+ e?2u-

+ eju

+ e~ju

CL& CL&

— (Ai sinu; — sini cosu;A£2) + e“j2n— (Ai sin a; — sini costuAfi)

ja 1 . aej
—-Ai — -a simAi 2 H — (Aï cos a; + smiAS] sin a;)
2 2 4

—Ai — -asinzAfl
2 2

aej
(Ai cos u + sin iAfl sin a;)

The coefficients are:

A

A

A

A

A

Imk = -J [ô (Hlmk cos u + sin iHf^k sin u) + (H}mk sin u - sin i cosuH^)]

= -\ ÜHLk + siniCfc)
N ae . z ae . q

Imk ~ 2" Slïl üjHlmk + Y Sin Z COS

Zmfc ‘) = \ 0Hîmk - sin iHfrnk)
= “Y [HHimk cosu + sin sin u) - (Hllmk sinu; - sim cosuH^)]

(9.38)

(9.39)

(9.40)

(9.41)

(9.42)

(9.43)
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9.5 Analysis of sensitivity

9.5.1 The lumped coefficients approach

In [64] we hâve an original method to obtain the covariance matrix for different observables.
By the following we summarize the method and we apply it in following sections to formation

flying and tethered Systems.

The method is developed specially for circular orbits which are the most used for geodesy

purposes. For eccentric orbits, the method could be adapted.

At the sight of the complex form of the gravity field:

U* = irÊ (“)''+1 É É KlmFlmke^^ (9.44)
e 1=0 ' m=—l k=—l

The author develops the different observables in order to obtain the following form:

i l

f= E E Arnke>(ku+mX'> (9.45)

with:

oo

Amk — ^ ^ (9.46)
1=1

The détermination of Amk can be done using the Fourier transformation of the temporal

sériés of observables. Moreover, this method enables to separate the different coefficient of

each degree m in different matricial Systems, enabling a very easy inversion of the System.

By the following, we use this methodology.

9.5.2 Normal matrices of tethered Systems and formation flying

In this section we compare the results obtained for precedent missions, with the results of

tethered Systems and formation flying. In order to do so, we must do some hypothesis. The

most difficult part is the estimation of the errors of the instruments. That is why our results

are strongly dépendent on the technologies.

Tethered Systems Then, the lumped coefficients could be written as:

oo

Ârnk ~ Xy HÏmkKlm (9.47)
Z=max(|m|,|fc|)

with

nT _ m/ix(g,0)ffl(g,0)
lmk «2 •^Zmfc(f)

With this expressions, the tension expression reduces to:

(9.48)
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m=oo k=oo

T(u,A;e,<j>) = (9.49)
m= —oo k=—oo

ipmk — ku + mA

Formation Flying Matrices for formation flying are given in équations (9.36), (9.39), and
(9.42).

9.5.3 Numerical results

We will test different configurations to compare:

• classical gradiometry : It is used as a benchmark and also for comparison purposes with
tethered Systems.

• tethered System: in a low Earth orbit.

• Leader-follower configuration: the same configuration as GRACE mission.

• Normal axis différence: It is complementary with previous one.

• LISA configuration: where ail the satellites keep initial configuration.

9.6 Conclusions

In this chapter we hâve applied the ’lumped coefficients’ approach to the analysis of new
technologies for the gravity field. Tethered Systems hâve been studied for a particular con
figuration: with the tether aligned with the radial direction because the other directions are

unstable. We hâve obtained analytical results doing a certain number of hypothesis. The
results show that this observable may be very interesting, but there is a number of techno-

logical difficultés that hâve not been solved.

Analytical model for formation flying is more simplified than model developed in chapter 7.
In particular, we hâve neglected secular terms because they tend to destroy the formation.

Figure 9.2: Different tested configurations for formation flying. On the left, leader-follower
configuration, at center a différence on N axis, and on the right, the LISA configuration
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Figure 9.3: Proposition of space mission for détection of gravity field combining tethered

Systems and formation flying

We hâve analyzed the different configurations except the différence on semi-major axis.

Numerical simulations will prove the interest of these new technologies. We propose a com

bination of both of them: formation flying in T-N plane, and tethered Systems in R axis as

it is plot in figure (9.3).



108 CHAPTER 9. SPACE MISSIONS TO MEASURE THE GRAVITY FIELD



Chapter 10

HEO for Universe observation

10.1 Introduction

Formation flying présents some advantages also for space observation missions. Multiple satel

lites Systems enable large base interferometry and télescopes with high focal length. As these

Systems need a very high précision on control orbit and détermination, Lagrange point orbits

are very well-suited because they are weakly perturbed. A real alternative to Lagrange points

are high eccentric orbits (HEO) around the Earth with very large semi-major axis. This kind
of orbits has a short very perturbed passage around the perigee, which is not well-adapted for

observations, and a very long weakly perturbed passage around the apogee, where the con

ditions for observation are particulary good. Observations are possible since the formation is

above Van Allen radiation belt. In some cases, more than 85% of the orbit can be used for

observation. The dynamics of formations on HEO is quite particular. First, because of the so

high eccentricity (larger than 0.7), and second because main perturbations are not the same

as in low Earth orbits (LEO). While in LEO orbits drag and J2 perturbations hâve important
effects, in HEO orbits main perturbations are solar radiation pressure (SRP) and lunisolar
effects. Lunisolar differential perturbation on the formation remains small because of the

small distance between satellites. Differential SRP remains the main perturbation when the

satellites do not hâve the same area to mass ratio ( —) as can be seen in table 10.1. This
is the case in many formations. In this chapter, we study the effects of SRP perturbations

in formations on HEO orbits. We focus on three récurrent problems concerning formation

flying: satellite formation keeping, risk collision and collision avoidance maneuvers (CAM).

The control System computes and applies continuously the necessary accélérations to force

satellites to keep the desired relative trajectory for observations. As control method, I hâve

Kepler 6.10 9 m/s2
h 7.10-14 m/s2

Lunisolar 2.10~12 m/s2
SRP (due to the relative distance) 4.10-18 m/s2

SRP (due to the A—) 2.10-8 m/s2

Table 10.1: Differential effects on HEO orbits for Simbol-X mission

109
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used an open loop without errors. I hâve analyzed the influence of different factors on the

maneuvers. In order to do so, it is necessary i) to model natural and desired accélérations,
and ii) to do numerical simulations.

Modeling relative motion has been done through classical cartesian coordinates, with Lawden
équations (3.8).

For numerical simulations, we use the parameters of the Italian-French formation flying
Simbol-X. These simulations characterize the influence of the solar radiation pressure.

The second problem deals with the collision risk. It appears in case of failure of the

propulsion System. In case of failure, relative trajectory is no more the necessary trajectory
for observation, but natural non-propelled trajectory. The natural trajectory can lead to a
collision between satellites. It is necessary to evaluate the risk associated to each observation

depending on its direction and the epoch. This allows to classify observations and to avoid the

most dangerous ones. Thus, for each of these numerous configurations, we hâve to extrapolate
resulting natural motions since failure occurrence.

In order to do very fast extrapolations of natural motions, we hâve used the analytical model
of the relative motion developed in chapter 4 based on the differential orbital éléments.

Collision avoidance maneuvers are the last studied problem. In case of failure of propulsion

System, satellites must be placed in a safe and stable orbit called parking orbit. In parking
orbit, natural relative motion between satellites do not drift away and respects a safety dis

tance. We hâve worked on the définition of the parking orbit as well as in the computation
of the maneuvers to reach it.

This chapter is structured as follows. Second section is devoted to the présentation of

Universe observation mission. The third section is dedicated to the satellite formation keeping.
Section four deals with collision risk, and last section describes collision avoidance maneuvers.

10.2 Universe observation missions

In this section we présent the relative trajectories for a Universe observation mission, placed

in a HEO orbit, using a single telescope with a large focal length. The mirrors of the téle

scope would be distributed on two satellites. One satellite would be in free flight while the
position of the second satellite would be forced to relative distance and observation direction.

The orbit of the first satellite will be used as reference orbit, and we will compute necessary
maneuvers on the second satellite. For our simulations, we use the orbital parameters of the

Italian-French mission Simbol-X [26]. It is:

aref — 106247 km eref = 0, 752 iref = 6°

Href = 90° &ref — 0°

Observations are done while the satellite is above the Van Allen radiation belt, and different

sources should be observed during a single orbit. When satellites are not observing, i.e. when

they are below the Van Allen belt, observation relative trajectory has not to be kept, but for
operability reasons it seems easier to keep it ail along the orbit.

The most determining variable of the formation is the distance between satellites d, which
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must be fixed during observations. Observation relative trajectory is defined by this distance,

and by the position of the observed source on the sky, which is given through its longitude

(a) and latitude (fl) with respect to an inertial équatorial Earth-centered reference frame. In
this inertial reference frame, observation relative position ("à? |0bs) reads:

~x\ijk = d(cos a cos/?, sina cos/3, sin/df (10-1)

Transforming this motion in the local orbital frame, we get:

~x\rtn —{Ki cosuref + K2 sinuref,

K3 cos uref + K4 sin ure/, Kfl)T
(10.2)

with the coefficients:

K1 = d ( cos f2ref cos et cos (3 + sin £lref sin et cos fl)

K2 = d ( — sin üref cos iref cos a cos (3

+ cos £î,ref cos iref sin a cos /3 + sin iref sin (3)

K^3 = d ( — sin ùref cos iref cos a cos (3

+ COS Qref cos iref sin & cos fl + sîn Ve/ sin fl)

K4 = d ( — cos üref cos a cos fl — sin üref sin a cos fl)

K5 = d ( sin £ïref sin iref cos a cos (3

— cos Çlref sin iref sin a cos fl + cos iref sin fl)

10.3 Satellite Formation keeping

10.3.1 Differential accélération

As we did in chapter 3, we can get the natural accélération relative to a rotating reference

frame linked to an eccentric orbit which corresponds to the orbit of the free satellite. We

rewrite équations (3.8) including the SRP differential force.

& nat = ~P = + -y(/h?,0,0)T + û(pT,-pR,0)T

- u2(pr, pt, of + 2o>(—pR, pr, 0f + A / srp\rtn
(10.3)

SRP differential perturbation We use the same model that we used in chapter 8 for the

solar radiation pressure:

—> S _
/ SRP = -CT—Il Sun (10.4)

m

Since the Earth-satellite distance is very small with respect to the Sun-Earth distance,

we neglect it, so ^ = 1 and a = cte. For our simulations we use a = 7.10-6. SRP force
does not act when Earth shadows the Sun. As we work in eccentric orbits with very high
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semi-major axis, shadow régions are not considered. Indeed, for Simbol-X mission, the pas

sage through shadow région never lasts more than 4% of the orbital period (This maximum is
reached when the direction of the Sun is in the orbital plane and shadow région in the apogee).

A f srp\rtn is only induced by a différence of — (A^):

_ s _
A f SRpIrTN = -VA— ~iïSun (10.5)

10.3.2 Computing keeping thrust

Positions corresponding to observation trajectories (10.2) do not correspond in any case to the

natural relative motion of the satellite ~xnat which is determined by équations (10.3). They
are forced through a certain number of maneuvers. The frequency of the maneuvers dépends

on the necessary précision of the observation trajectory. In order to simplify, we suppose

continuous thrust (Aa), which is not far from the reality. The thrust can be estimated as the
différence between the natural accélération and observation accélération:

ACl — | CL nai CL 0^s| (10.6)

Natural accélération is computed using équations (10.3) and observation accélération is
obtained by double dérivation of équation (10.2).

The magnitude of impulsions dépends on a certain number of variables: position of observed

source, epoch of observation, position along the orbit, and the différence of Thereafter we

analyze them.

Thrust along the orbit For ail simulations, we use the expected values of Simbol-X mis
sion:

c

d = 20 m A— = 3,522.KT3m2/£:a
m

Mean anomaly (degrees)

Figure 10.1: Thrust along orbit for Keplerian motion
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Mean anomaty (degrees)

Figure 10.2: Thrust along orbit for SRP perturbed motion

Figures (10.1) and (10.2) show the variation of the thrust along the orbit. Different curves
correspond to different observation directions. Simulations hâve been done with initial time

20th february 2012 at midnight. Figure (10.1) corresponds to Aa for keplerian motion, while
figure (10.2) corresponds to motion perturbed with SRP. Both figures show that main thrust
is concentrated around the perigee, while around the apogee thrust remains small and nearly

constant. In both cases, observation direction does not play a major rôle. The mean value

of thrust in unperturbed motion is 3.10“9m/s2, while it is 2, 5.10_8m/s2 in case of SRP
perturbed motion. As we will see later, this différence is function of the parameter A-j-.

Influence of the epoch of the year Figures (10.3) and (10.4) show the mean thrust along
an orbit for the different directions of observations on the sky, and for two different dates: in

summer (21st june) and winter (21st december).

Mean a SUMMER (m/s2)

0 100 200 300

longitude (degrees)

Figure 10.3: Thrust as function of observation position in summer

Figures (10.3) and (10.4) show how there are privileged régions where observations are less
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Mean a SUMMER (m/s2)

0 100 200 300

longitude (degrees)

Figure 10.4: Thrust as function of observation position in winter

fuel consumers than others. These régions change along the year. Constraints on observations

(observation direction must be perpendicular to the direction of the Sun) prevents to take
advantage of these privileged régions. In both dates, mean thrust varies between 2.10~8V
and 3.10~8iV, which correspond with the mean value of figure 10.2.

Influence of the différence of SRP Figure (10.5), shows the effect of changing the value
of on the mean thrust Aa. Mean value of thrust has been computed along the orbit and
for the different observation directions. Different curves correspond to different epochs of
observation.
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Figure 10.5: Influence of A — on the thrust

The figure présents three régions: i) keplerian zone (A— < 10~4m2/kg), ii) transition
zone (10~4m2/kg < A~ < 2.10-3m2/%), iii) SRP zone (A— > 2.10~3m2/%). In the first
zone SRP effects are negligible with respect to the keplerian effects: changes in the value of
A;— hâve little impact on the total thrust which remains almost constant. In the third zone,
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SRP effects dominate keplerian ones. Since the perturbation is linear with A-^-, so it is the
thrust. The second zone is the transition between the two régimes. It may be interesting to

design spacecraft in order to operate in first zone.

10.4 Collision risk

10.4.1 Extrapolation of relative motion

The extrapolation of the relative motion is done using the differential orbital éléments (chap-

ter 4) including solar radiation pressure perturbations (chapter 8). The équations of the
extrapolation in a matricial form reads:

Air (t) — [A4] [Ckep + £srp\ • [A4]-1 Air (to) (10-7)

where matrices [A4] and [A4]-1 are given in (4.14) and (4.23), matrix Ckep in (4.28),
and matrix Csrp in (8.21).

10.4.2 Numerical simulations and results

Collision risk appears in case of propulsion System failure. Supposing that the failure may be

recoverable after a while, it is necessary to verify that during this time satellites do not collide.

In order to do so, we hâve analyzed different observation trajectories and the influence of the

parameter A^.
We hâve used differential orbital éléments including differential SRP effects for orbit extrap

olation. It enables very fast computation and computation time is shorter than numerical

intégration of the relative accélération.

For each observation trajectory we hâve defined two parameters:

• minimum distance: for different instants distributed along an observation orbit associ-

ated to an observation direction, we suppose a failure of the System and we propagate

resulting non-propulsed motion during a security time. We détermine the smallest dis

tance between satellites during this security time corresponding to the different instants
of failure. Minimum distance is defined as the minimum of ail the smallest distances.

If minimum distance is larger than a safety radius, observation direction is safe. If not,

the direction présents a risk. The second parameter évaluâtes this risk.

• percentage of orbit with collision risk: in the case where observation direction is not

safe, this parameter is used to evaluate how risky it is. It measures the percentage of

the observation trajectory associated to the observation direction for which a failure of

the System leads to a no-propulsed trajectory violating the safety radius.

Safety radius (Rs) and security time (Ts) must be specified in mission requirements. In
our simulations we use: Rs = 5 m, Ts = 1 orbit (4 days).

Figures (10.6), (10.7) hâve been obtained for Simbol-X mission, on 21th June 2012. Figure
(10.6) shows the minimum distance as function of the direction of observation. A large part
of observations présents no risk, while risky régions are concentrated around the pôles. Figure

(10.7) represents the percentage of orbit with collision risk in the same precedent case. We

remark that the observation régions for which the minimum distance computed in figure (10.6)
approaches zéro, the collision risk is not restricted to a small part of the observation orbit,

but exists ail along the orbit. (i. e. percentage of orbit with collision risk 100 %).
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Figure 10.6: Minimum distance in case of propulsion failure

Figure 10.7: Percentage of orbit without collision risk

Rôle of A— The last figure (10.8) shows the influence of the parameter on the collision risk.
We hâve computed the mean percentage of orbit with collision risk over ail the observation

directions as function of the A—;. Figure (10.8) shows that larger values of A— are less
risky than smaller ones. This was expected since the différence of SRP tends to separate the
satellites. At the sight of the figure, parameter should be, at least, 4.10~4. We hâve
obtained the same curve for different epochs proving that the epoch has minor influence on
the resuit.

10.5 Collision avoidance maneuvers

In case of failure of propulsion System, it is necessary to place satellites in a stable relative

orbit called parking orbit. Satellite keeps on the parking orbit while trying to recover the

failure. In parking orbit no maneuvers are allowed. The problem can be split in two parts
(i) the choice of the parking orbit , and (ii) the computation of optimal transfer between
observation orbit and parking orbit. Both aspects of the problem are studied in this section.
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Figure 10.8: Influence of A— in the collision risk
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10.5.1 Définition of parking orbit

Parking orbit must respect two constraints: (i) satellites must hâve a small drift, and (ii)
satellite must not violate a safety sphere. These two conditions are necessary to avoid collision

risk during the no-maneuvers period, and to ensure an easy récupération of the observation

configuration.

In this section we analyze different natural motions in order to detect the most suitable ones.

As we show in table 10.1, in HEO orbits, Keplerian effects and SRP effects hâve the same

order of magnitude. But, for compréhension sake, we start with keplerian effects and in a

second time we add SRP effects considered as perturbations. A global strategy is proposed

after the analysis of these two effects.

Keplerian motion

Relative non-perturbed natural motion is given by équations (5.1). We rewrite them:

V CL G 3 Tl (5-
AR(t) — —Aao — ar cos frAeo H—r—^~ sin frAMo sin fr(t — to)Aao

ar rjr 2 T]r

(1 r \ cxftj1 H—x— ) sin frAeo + rr coszrAf2o + rrAuJo H——AMo
VrarJ T'r (10.8)

3 arnrTir / v .

Z T*!*

AN{t) = ry sin urAio — rr sin ir cos urAQç>

These équations show the relative motion induced by each différence of orbital element.

We plot different relative motions in figure 10.5.1. At the sight of the figure we analyze the

most interesting ones.

A différence on the semi-major axis produces a secular drift on the R and T axis. It should

be introduced only to null the other secular effects produced by SRP perturbations.

In order to obtain a safe orbit, most interesting initial conditions are: AMo, AQo; Acjo, be-

cause they introduce a constant term on T axis that guarantees no collision with the reference
orbit.
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Figure 10.9: Possible relative motions

SRP effects

Differential effects of SRP perturbation are given by matrix (8.21). In table (10.2) we give
an estimation of the secular terms and of the amplitude of the periodic terms. Secular terms

play an important rôle on the stability of the orbit while periodic terms are involved on the

security of the trajectory. Exact value of the terms dépends on the reference orbit and on the

epoch of the year, but is independent of the relative position and velocity.

Strategy for the définition of the parking orbit Relative motion in parking orbit is
determined by the addition of Keplerian motion and SRP effects. We analyze this motion in
order to find safe and stable orbits.

Completely stable orbits do not exist because of the SRP secular drift. The drift on the T

axis can be controlled changing the différence of semi-major axis, but the other axis cannot
be controlled.

Different strategies can be used to define the parking orbit. We propose the following one:

(i) ensure the security of the satellites through a minimal distance on the T axis (ii) neglect
the motion on the other two axis, (iii) secular effects on the T axis should tend to move away
the two satellites.

The orbit can be computed by the following steps:
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orbital element secular term periodic term

Aa 0 150m

Ae 9.10~12(£ — to) 4,5.10-7
Ai 3,5.10~1U(£ — to) 2.10~5

Aü 3, 5.10“iU(t —10) 2.10"5

Au 2.l0~n(t -t0) 10“6

AM 2.lO-n(t-t0) 10"6

Table 10.2: SRP effects on Simbol-X mission

• Computation of SRP secular effects: Particularization of the SRP effects for the epoch

of the year and the reference orbit. Compute the secular effects on the T axis using

équations (10.8) and (8.21).

• Choice of the région where settle the satellite: Région must be chosen in order to an-

ticipate natural drift of the formation and avoid null distance along the T axis. It is,

if natural drift is positive, satellite should be placed in the positive side of T axis, and
vice-versa.

• Computation of SRP periodic effects: Particularization of the SRP effects for the epoch

of the year and the reference orbit. Compute the periodic effects on the T axis using

équations 10.8 and 8.21.

• Choice of Aa: In order to minimize the effects over the T axis.

• Choice of the initial values of the other AEO: Initial values of AEO must keep a

minimal distance on the T axis (including SRP periodic effects). The values of the
variables concerning the other two axis are irrelevant.

• Vérification of the orbit: A numerical simulation in order to verify that ail constraints

are respected.

10.5.2 Transfer orbit

Transition between observation orbit and parking orbit uses an intermediary orbit called

’transfer orbit’. The transfer orbit is computed in order to minimize transition maneuvers.

The optimization of the maneuvers can be done in a global way; it is, considering that the

number of maneuvers and their instants of applications are not defined. The resolution of an

optimal control problem is very complex and far beyond the scoop of this thesis.

Here, we présent two different strategies: a 1 AP strategy, and a 2 AP strategy. Even if

these strategies are not optimal in a global way, they can also be optimized.

1AP strategy

A 1AP strategy may be interesting to minimize the number of maneuvers. The main incon

vénient of the strategy is that only a limited number of parking orbits is reachable.

In this strategy, there is no transfer orbit and the observation orbit becomes the parking orbit
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just with one maneuver. In order to compute this maneuver we use the équations that link

the changes on the differential orbital éléments with the AV:

/ ôa \
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o
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cos u+e cos oj

rp cl tan i

0

AVr

AVt

avn

(10.9)

At the sight of these équations, we can conclude that only three éléments of the vector

AEO can be chosen. The variations of the remaining three are fixed. We propose the three

following constraints:

1. Choose the value of Aa (null or very small in order to null secular SRP effects on the
T axis).

2. choose Ae = 0.

3. Choose the value of Au; in order to guarantee the safety of the formation.

2AV strategy

The main advantage of a 2 AV strategy is that ail parking orbits are achievable with a

minimum number of maneuvers. Moreover, previous expérience shows that in other optimal

transfer problems, the 2AV optimum is not far from the global optimum.

Statement of the problem We suppose a formation flying composed by two satellites.
First spacecraft is following a reference orbit which corresponds to its natural motion. At

initial time to the second spacecraft is placed in a collision trajectory with a known relative

position AT*o and a relative velocity AT*o. The natural trajectory of the second spacecraft

which will be changed through two maneuvers AV*, and A Vf performed at instants ti and

tf. The aim of the problem is to compute AV^ and AVf in order to reach a final State

AEOf(tf) at final instant tf.

Solution of the problem Initial relative motion at instant to is known through its rel
ative position and velocity: A7VATV Natural extrapolation of the motion can be easily
done using équations 4.10 in order to obtain conditions at instant i before the maneuver:

A~r*~, Alï~. So, collision trajectory is perfectly known.
Parking orbit is also perfectly defined through its differential orbital éléments. At the instant

/, AEOf(tf) can be transformed in AT*AT*/ using équations 10.8.
As maneuvers change only the velocity but not the position, the position at the beginning
and at the end of the transfer trajectory are also known:
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AEÔt

Collision trajectory Transfer trajectory Parking orbit

Figure 10.10: Statement of the problem

A = A'ïA (10.10)

A^7 = AT7

The problem consists in finding the maneuvers necessary to get a natural motion that

passes through points Ar $ at instant U and AT*y at instant tj. In order to do so, first,
we compute the differential orbital éléments of the transfer orbit at instant t{ (AEOt), and,

second, we transform them in différences of velocities at instants ti and tf.

Since we know the position at instant i A"r"*, we hâve three équations relating this

position and AEOt{U):

AËÔtiti) = [M\M>i (10.11)

Another équivalent set of three équations can be obtained for instant tf

AËÔt(tf) = [M]A!*f (10.12)

Relations between AEOt(U) and AEOt(tf) can be easily obtained thanks to the matrix C.

Finally we obtained a matricial System that writes:

û'jï
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ARf — ARgriP
AT/ - ATsrp
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(10.13)
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The effects of SRP on the relative position are linked to the SRP effects on differential

orbital éléments by the équations:

( &Rsrp
atsrp

\ ANSRP

* -£ — § sin fj (tf — ti) —acosff 0

a (x + sin// 0
0 Orsin uf

0 0

rj cos i rf

sin i cos uf 0

sin ff \
a^ Tj
rf
0 )

/ àasRP \
5eSRP
àiSRP
S&SRP
àwSRP

\ ôMgRP J

The effects of the SRP on the differential orbital éléments are given by matrix Csrp-

If transfer time is short enough, équations (10.13) can be simplified to keplerian motion:
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(10.14)

Numerical algorithm In order to optimize final AV, we can scan the values of U and tf.

Hereafter, we présent an algorithm to implement optimization process.

1. Détection of the collision trajectory at to

2. Double loop to scan initial and final maneuvers instant of realization.

U = to + Ati (10.15)

tf = t{ + Atf

3. Compute initial and final transfer positions:

Aï((,) = [M(U) C(ti) 7W-1(io)] AV(t0)

A x(tf) = [M(tf)]AË

4. Compute transfer differential orbital éléments at instant U (AEOt{U)) with keplerian
équations (10.14) or including SRP effects (10.13)

5. Compute initial and final transfer differential velocities:

AVf = M(U)AËÔt(ti)

A~v~j = M(tf)AEOt(U)

6. Compute total maneuvers AV:

SV = SVi + ôVi = Il AVf - AV.UI + Il AVf - AVjll (10.16)

This algorithm has been implemented and tested using FORTRAN language.
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10.5.3 Example

In order to prove the interest of our algorithm we hâve tested it on the following example for
Simbol-X mission.

Collision orbit We hâve chosen the following observation orbit to test our algorithm:

• date: 21 June

• a = 2.792 rad

• (3 = -0.87266 rad

• Mref = 6.09468 rad

In these conditions, natural motion leads to a collision after 1,54.105 s (1, 79 days) when
the distance between satellites would be 2.5 m. In this situation, a collision avoidance ma-

neuver should be trigged off.

Kepleripn prbit
DISTANCE IN PLANE OUT-OF-PIANE

Keplerian + SRP orbit

DISTANCE IN PLANE OUT-OF-PLANE

Figure 10.11: Parking orbit

Parking orbit We hâve chosen a very simple parking orbit: AEOf(tf) = 0 except AMf(tf) =
10~5 rad. In figure (10.11) we hâve plotted parking orbit for a period of 4 days considering
only Keplerian effects (up), and including SRP effects (bottom). Figure proves that the
solution is safe and that the drift over four days is acceptable.

Transfer orbit We hâve computed transfer orbit using keplerian équations (10.14). The

choice of possible values of U and tf corresponds to a certain number of technical criteria.
In this example, we do not prétend to take into account these criteria. We hâve chosen a

small région just in order to show the good behavior of the developed method. Results are

summarized in figure (10.11). In this figure we show the influence of ti and tf on the total
amount of propellant necessary for the maneuvers.

At the sight of these results, we propose following maneuvers as preliminary solution:
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Figure 10.12: AV as function of U andtf

• AV* = 2,079.10~2ra/s, T{ = 10000s.

• AVf = 1,288.10-2m/s, Tf = 50000s.

10.6 Conclusions

This chapter présents the advantage of using cartesian coordinates or differential orbital

éléments to study different problems. Cartesian coordinates are well-adapted for control

problems, but, they do not enable easy analytical intégration. On the other hand, for fast

extrapolation of orbits, differential orbital éléments are better suited.

We hâve studied the effects of the SRP perturbation on HEO orbits for Universe observation.

We hâve focused on the rôle of the parameter A—•. We hâve showed how it plays an important
rôle on the size of the maneuvers and how it can also be used to minimize the collision risk.

For Simbol-X, figures (10.5) and (10.8) suggest an optimal value of A— near 5.10~4. Bigger
values (> 6.10-4) lead to more fuel consumer configurations, while smaller values (< 4.10-4)
increase collision risk.

We also hâve presented a method to compute collision avoidance maneuvers. The method

is based on the analytical model of the relative motion that we hâve developed taking into

account solar radiation pressure perturbations. The method has the advantage to hâve a very
simple formulation and to produce interesting results.
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Conclusions

11.1 Actual knowledge of formation flying

Formation flying is one of the most promising technologies for future space missions. It reduces

risks, costs, and enables better performances. But this technology is difficult to master. Each

mission has its own particularities. Quite often, the reader has the impression that each

mission requires particular solutions.

Fortunately, ail of them hâve a common point: satellites are not far from each other. This

characteristic enables to treat them in a similar way. Different théories are used in formation

flying papers. Only Hill équations (also known as Clohessy-Wilthsire) and Lawden équations
(also known as Yamanaka-Ankersen) are used recurrently. But, when these équations are not
well-adapted, several techniques appear. There is not a homogeneous basis about the relative

motion. A first part of my work consisted in compiling and classifying precedent work.

The goal of these studies would be to settle a certain number of common basis about the

dynamical aspects of the relative motion that could be used in future applications. In several

aspects, where I considered that precedent work was not sufficient, I go deeply in to the

problem. In particular, I hâve worked on differential orbital éléments, in the topology of the

relative motion, and in the search of invariant configurations.

I hope my work complétés precedent research on dynamical aspects of formation flying, even if

there are still several topics to investigate. It gives a basis for posterior applications larger than

classical Lawden’s or HilPs équations. For completeness sake, my work should be completed

with an équivalent research about control techniques on formation flying.

Analytical models présent several advantages with respect to numerical simulations. First,

they enable a better compréhension of the problem. Second, they enable fast computations.

Low computational time is interesting for onboard applications (anti-collision maneuvers for
Simbol-X). Third, they give direct relations between certain parameters and the observables,

which is necessary, for example, for analysis of space geodesy missions. I’ve proved it analysing
two future missions.

11.2 Relative motions

The équations of non-perturbed motion can be obtained using classical developments (Hill and
Lawden équations) or using differential orbital éléments. In circular reference case, obtained

results are similar. In eccentric reference case, the advantage of using differential orbital is

125
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double: (i) we avoid the intégrais that appear in Lawden’s solution, and (ii) we obtain the
relations between the parameters of the motion and the initial conditions.

At the sight of the resulting équations, we can get some conclusions. First, a différence of

semi-major axis splits the formation, as well as any kind of secular effect. When we consider

a Keplerian motion, ail the satellites of the formation must hâve the same semi-major axis.

When there is no différence of semi-major axis and the référencé orbit is circular, the relative

trajectory is an ellipse. This ellipse can be centered or not on the origin of the référencé frame.

We propose a new représentation to describe this ellipse: the local orbital éléments. The local

orbital éléments enable to find relations between the parameters of the ellipse and the initial

conditions. Among ail the possible ellipses, there are particularly interesting configurations.
The local circular motions are one of them. They exist in two particular plans: the invariant

plans, where ail the initial configurations are constants on time.

When the reference orbit is not circular, relative motions are more complicated. We hâve

done an effort to minimize the number of parameters describing the relative trajectories and

we hâve reduced it to four. We also hâve explored the possibility to obtain local circular

motions, unluckily, they do no exist.

We can conclude that when we consider non-perturbed linearized motion with circular ref

erence orbit, we can find natural motions well-adapted for space missions. But, when we

introduce eccentricity, second order effects, or perturbations, formations must be always con-
trolled. Relative motions describe trajectory that présent secular effects and collision risk.

That’s the reason why, when possible, formation flying uses a very simple leader-follower

configuration where the satellites are separated only by a différence of semi-major axis.

11.3 Perturbations on formation flying

Even if some methods hâve been proposed to introduce perturbations in Hill or Lawden

équations, the best représentation to introduce them are the differential orbital éléments.

The method has shown its interest for the introduction of the perturbations, in spite of the

complexity of resulting analytical expressions.

When we consider perturbations, there are other secular effects in addition to the Keplerian
secular effect produced by a différence of semi-major axis. Ail secular effects must be treated

as a whole in order to null them and avoid the splitting of the formation. Existing studies

shows that natural stable relative motions do not exist (with the exception of trivial cases).
Our expérience proves that formations inherit the characteristics of absolute motions. It

means that main perturbations on absolute motion are also main perturbations on relative

motion. The exceptions are the perturbations which dépend on the physical characteristics

of the satellites instead of the relative distance; i. e., the atmospheric drag and the solar
radiation pressure.

When considering perturbations, we must treat separately low and high orbits. Low orbits

are dominated by the gravity field perturbations, mainly J2 effects. Secular effects of J2

should always be considered, because they can be very important. Trying to null them
is not simple. It is possible for circular reference orbit, but not in the eccentric reference

orbit. Instead to focus on the secular effect, it seems more reasonable to find a compromise

between different criteria (global fuel consumption, collision risk, injection trajectory,...).
In this sense, numerical simulations are necessary. Things are different for HEO orbits.

First, high eccentricity leads to uncomfortable relative motions. Second, the effects of solar
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radiation pressure can be very important when the two satellites do not hâve the same ratio

surface/mass. Our expérience on HEO orbits shows the interest to use the différence of
as a kind of solar sail to do corrections of relative trajectories. The différence of pressure

tends to spread the formation. It may be interesting in order to avoid collisions, but it can be

expensive in terms of fuel because the formation is completely unstable. A second problem

is the non-existence of stable orbits as we hâve proved using analytical developments.

11.4 Mission analysis

The last part of the thesis is dedicated to the application of precedent developments to mis

sion analysis.

We hâve used classical analysis techniques to compare the theoretical performances of dif

ferent configurations. Once again, the use of analytical developments enable to obtain the

spectra of the gravity field perturbation as function of the configuration.

Moreover, we hâve introduced another technique which is very similar to formation flying:

the space tether. A tether can be seen as a formation flying with an additional constraint

on the relative distance. For geodesy purposes, tethers are complementary with formation

flying because they do not suffer from differential drift due in particular to the différence of

semi-major axis.

The second analysed mission is Simbol-X. The use of differential orbital éléments combined

with cartesian coordiantes has shown its interest. We hâve obtained a completely analytical

model of natural motion including solar radiation pressure perturbation. This model has been

very useful to do the extrapolation of the orbit, compute the collision risk, the effects of the

coefficient A—, and propose a method to compute collision avoidance manoeuvres.

We hâve proved that actual configuration is not optimal from a dynamical point of view: the

A— is too high and the formation is highly unstable. Main problem is not fuel consumption
m C

but the instability of the formation. The réduction of the différence of the coefficient —;
would be the solution to this problem. We hâve also obtained an analytical method to

compute transfer maneuvers. The advantage of the method is its low computational effort

and the possibility of onboard the algorithm. The drawback of the method is that it does not

optimize the consumption in a global way because it is limited to two maneuvers.

11.5 Perspectives

There are still several dynamical problems with open questions:

• Second order effects: Introduction of second order effects in differential orbital éléments,

and in local orbital éléments. This would be very interesting for missions with a large

inter-satellite distance. For example, in LISA mission, second order effects introduce a

sort of ’breathing’ that must be canceled through control maneuvers.

• Drag perturbation: This perturbation may be especially complicated because it is not a
conservative force. The method of differential orbital éléments is not useful since there

is no satisfactory model of effects of drag perturbation on orbital éléments.
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• Lagrange points: This problem represents a different challenge because the dynamics
near these points is different from the dynamics around the Earth studied in this thesis.

In spite of this difficulty, this remains a very interesting study because of ail the future

missions planed to flight near Lagrange points.

A good knowledge of the dynamics is also very interesting to treat other problems:

• Navigation problems: The inclusion of relative measurements in the navigation filters
might improve précision but this could also generate instabilities.

• Control of the formation: In this category we can include the development of control

laws but also optimal control problems. In both cases it is necessary to hâve a set of

differential équations describing the System. Our studies plays a second rôle because

the classical Hill and Lawden équations are the best suited for this problem. But, the

compréhension of the dynamics enables the interprétation of the results.
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Perturbations of the gravity field

Secular variations For the keplerian and first order contributions
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where R(I) stands for the dérivative of J~{I) with respect to I and Q(e) stands for the
dérivative of Q(e) with respect to e.

Short periods short period variations proportional to J2 are
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Long periods We get for long period variation proportional to J2:
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Long period variations due to the remaining part of the potential are
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Perturbations matrix used for

sensitivity analysis

Here the coefficients of the obtained perturbation matrix Cqf-

£gf = [Lij] Uimk

And the éléments are:
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