, work has received funding from the European Union, 7th Framework Programme, HEALTH-F2-2007-202224 European IPF Network, the Fonds Européen de Développement Économique et Régional, Agence Nationale de la Recherche

, Recherche en Santé Respiratoire", the Société de Pneumologie de Langue Française and the Fondation du Souffle. O. B. and P.B. are lauréat 2014 de la Fondation du Souffle et du Fonds de dotation Recherche en Santé Respiratoire. O.B., PS.B. and G.W. are supported by Fonds de Dotation « Recherche en Santé Respiratoire » et la Société de Pneumologie de Langue Française. O.B. is supported by La Ligue National Contre le Cancer. The team of C.G. has been awarded the « label d'excellence » by La Ligue National Contre le Cancer and L'Association pour la, ), and the Fonds de Dotation

G. Raghu, B. Rochwerg, Y. Zhang, C. A. Garcia, A. Azuma et al., An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline, Am J Respir Crit Care Med, vol.192, pp.3-19, 2015.

M. E. Mazzei, L. Richeldi, and H. R. Collard, Nintedanib in the treatment of idiopathic pulmonary fibrosis, Ther Adv Respir Dis, 2015.

P. W. Noble, C. Albera, W. Z. Bradford, U. Costabel, M. K. Glassberg et al., Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials, vol.377, pp.1760-1769, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00873255

P. S. Bellaye, O. Burgy, J. Colas, A. Fabre, J. Marchal-somme et al., Antifibrotic role of alphaB-crystallin inhibition in pleural and subpleural fibrosis, Am J Respir Cell Mol Biol, vol.52, pp.244-252, 2015.

N. Decologne, M. Kolb, P. J. Margetts, F. Menetrier, Y. Artur et al., TGF-beta1 induces progressive pleural scarring and subpleural fibrosis, J Immunol, vol.179, pp.6043-6051, 2007.
DOI : 10.4049/jimmunol.179.9.6043

URL : http://www.jimmunol.org/content/179/9/6043.full.pdf

N. Decologne, G. Wettstein, M. Kolb, P. Margetts, C. Garrido et al., Bleomycin induces pleural and subpleural fibrosis in the presence of carbon particles, Eur Respir J, vol.35, pp.176-185, 2010.

S. Karki, R. Surolia, T. D. Hock, P. Guroji, J. S. Zolak et al., Wilms' tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis, FASEB J, vol.28, pp.1122-1131, 2014.

K. K. Mubarak, A. Montes-worboys, D. Regev, N. Nasreen, K. A. Mohammed et al., Parenchymal trafficking of pleural mesothelial cells in idiopathic pulmonary fibrosis, Eur Respir J, vol.39, pp.133-140, 2012.

G. Wettstein, P. S. Bellaye, M. Kolb, A. Hammann, B. Crestani et al., Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation, FASEB J, vol.27, pp.1549-1560, 2013.

L. J. Chen, H. Ye, Q. Zhang, F. Z. Li, L. J. Song et al., Bleomycin induced epithelial-mesenchymal transition (EMT) in pleural mesothelial cells, Toxicol Appl Pharmacol, vol.283, pp.75-82, 2015.

T. A. Tucker, A. Jeffers, A. Alvarez, S. Owens, K. Koenig et al., Plasminogen activator inhibitor-1 deficiency augments visceral mesothelial organization, intrapleural coagulation, and lung restriction in mice with carbon black/bleomycin-induced pleural injury, Am J Respir Cell Mol Biol, vol.50, pp.316-327, 2014.

K. A. Boomars, R. C. Schweizer, P. Zanen, J. M. Van-den-bosch, J. W. Lammers et al., Eosinophil chemotactic activity in bronchoalveolar lavage from idiopathic pulmonary fibrosis is dependent on cytokine priming of eosinophils, Eur Respir J, vol.11, pp.1009-1014, 1998.

Z. Daniil, P. Kitsanta, G. Kapotsis, M. Mathioudaki, A. Kollintza et al., CD8+ T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis, vol.6, p.81, 2005.

M. Kolb, P. J. Margetts, D. C. Anthony, F. Pitossi, and J. Gauldie, Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis, J Clin Invest, vol.107, pp.1529-1536, 2001.

P. Bonniaud, P. J. Margetts, K. Ask, K. Flanders, J. Gauldie et al., TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis, J Immunol, vol.175, pp.5390-5395, 2005.
DOI : 10.4049/jimmunol.175.8.5390

P. Gasse, C. Mary, I. Guenon, N. Noulin, S. Charron et al., IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice, J Clin Invest, vol.117, pp.3786-3799, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00316819

P. Gasse, N. Riteau, S. Charron, S. Girre, L. Fick et al., Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis, Am J Respir Crit Care Med, vol.179, pp.903-913, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00404885

V. Aumiller, N. Balsara, J. Wilhelm, A. Gunther, and M. Konigshoff, WNT/beta-catenin signaling induces IL-1beta expression by alveolar epithelial cells in pulmonary fibrosis, Am J Respir Cell Mol Biol, vol.49, pp.96-104, 2013.

O. Burgy, G. Wettstein, P. S. Bellaye, N. Decologne, C. Racoeur et al., Deglycosylated bleomycin has the antitumor activity of bleomycin without pulmonary toxicity, Sci Transl Med, vol.8, pp.326-320, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435309

R. H. Hubner, W. Gitter, E. Mokhtari, N. E. Mathiak, M. Both et al., Standardized quantification of pulmonary fibrosis in histological samples, Biotechniques, vol.44, pp.514-507, 2008.

P. S. Bellaye, G. Wettstein, O. Burgy, V. Besnard, J. A. Colas et al., The small heat-shock protein alphaB-crystallin is essential for the nuclear localization of Smad4: impact on pulmonary fibrosis, J Pathol, vol.232, pp.458-472, 2014.

B. D. Bringardner, C. P. Baran, T. D. Eubank, and C. B. Marsh, The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis, Antioxid Redox Signal, vol.10, pp.287-301, 2008.

H. R. Collard, B. B. Moore, K. R. Flaherty, K. K. Brown, R. J. Kaner et al., Acute exacerbations of idiopathic pulmonary fibrosis, Am J Respir Crit Care Med, vol.176, pp.636-643, 2007.

N. Smoktunowicz, R. E. Alexander, L. Franklin, A. E. Williams, B. Holman et al., The anti-fibrotic effect of inhibition of TGFbeta-ALK5 signalling in experimental pulmonary fibrosis in mice is attenuated in the presence of concurrent gamma-herpesvirus infection, Dis Model Mech, vol.8, pp.1129-1139, 2015.

S. C. Wootton, D. S. Kim, Y. Kondoh, C. E. Lee, J. S. Song et al., Viral infection in acute exacerbation of idiopathic pulmonary fibrosis, Am J Respir Crit Care Med, vol.183, pp.1698-1702, 2011.
DOI : 10.1164/rccm.201010-1752oc

URL : http://europepmc.org/articles/pmc3136996?pdf=render

T. Isshiki, S. Sakamoto, A. Kinoshita, K. Sugino, A. Kurosaki et al., Recombinant human soluble thrombomodulin treatment for acute exacerbation of idiopathic pulmonary fibrosis: a retrospective study, Respiration, vol.89, pp.201-207, 2015.

K. Abeyama, D. M. Stern, Y. Ito, K. Kawahara, Y. Yoshimoto et al., The N-terminal domain of thrombomodulin sequesters highmobility group-B1 protein, a novel antiinflammatory mechanism, J Clin Invest, vol.115, pp.1267-1274, 2005.

M. M. Acencio, F. S. Vargas, E. Marchi, G. G. Carnevale, L. R. Teixeira et al., Pleural mesothelial cells mediate inflammatory and profibrotic responses in talcinduced pleurodesis, Lung, vol.185, pp.343-348, 2007.
DOI : 10.1007/s00408-007-9041-y

J. M. Hillegass, J. M. Miller, M. B. Macpherson, C. M. Westbom, M. Sayan et al., Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells, Part Fibre Toxicol, vol.10, p.39, 2013.
DOI : 10.1186/1743-8977-10-39

URL : https://particleandfibretoxicology.biomedcentral.com/track/pdf/10.1186/1743-8977-10-39

G. Raghu, S. Y. Chen, Q. Hou, W. S. Yeh, and C. Hr, Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18-64 years old. The European respiratory journal, vol.48, pp.179-86, 2016.

T. E. King, A. Pardo, and M. Selman, Idiopathic pulmonary fibrosis, Lancet, vol.378, issue.9807, pp.1949-61, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00873255

D. Latta, V. Cecchettini, A. , D. Ry, S. Morales et al., Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions, Pharmacological research, vol.97, pp.122-152, 2015.

P. Bonniaud, M. Georges, N. Favrolt, and C. P. ,

, La Revue du praticien, vol.64, issue.7, pp.951-957, 2014.

A. De, I. Guryev, A. Lariviere, R. Kato, C. P. Wee et al., Pulmonary function abnormalities in childhood cancer survivors treated with bleomycin, Pediatric blood & cancer, vol.61, issue.9, pp.1679-84, 2014.

M. J. Rimmer, A. K. Dixon, C. D. Flower, and K. Sikora, Bleomycin lung: computed tomographic observations. The British journal of radiology, vol.58, pp.1041-1046, 1985.

T. A. Wynn, Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases, The Journal of clinical investigation, vol.117, issue.3, pp.524-533, 2007.

J. Gauldie and . Pro, Inflammatory mechanisms are a minor component of the pathogenesis of idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine, vol.165, pp.1205-1211, 2002.

R. M. Strieter and . Con, Inflammatory mechanisms are not a minor component of the pathogenesis of idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine, vol.165, pp.7-8, 2002.

B. D. Bringardner, C. P. Baran, T. D. Eubank, and M. Cb, The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis, Antioxidants & redox signaling, vol.10, issue.2, pp.287-301, 2008.

P. Gasse, C. Mary, I. Guenon, N. Noulin, S. Charron et al., IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice, The Journal of clinical investigation, vol.117, issue.12, pp.3786-99, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00316819

V. Aumiller, N. Balsara, J. Wilhelm, A. Gunther, and M. Konigshoff, WNT/beta-catenin signaling induces IL-1beta expression by alveolar epithelial cells in pulmonary fibrosis, American journal of respiratory cell and molecular biology, vol.49, issue.1, pp.96-104, 2013.

Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-hartl, and H. Fu, Molecular chaperone functions in protein folding and proteostasis. Annual review of biochemistry, vol.82, pp.323-55, 2013.

G. Wettstein, P. S. Bellaye, O. Micheau, and P. Bonniaud, Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? The international journal of biochemistry & cell biology, vol.44, pp.1680-1686, 2012.

G. Jego, A. Hazoume, R. Seigneuric, and C. Garrido, Targeting heat shock proteins in cancer. Cancer letters, vol.332, pp.275-85, 2013.

P. S. Bellaye, O. Burgy, S. Causse, C. Garrido, and B. P. , Heat shock proteins in fibrosis and wound healing: good or evil?, Pharmacology & therapeutics, vol.143, issue.2, pp.119-151, 2014.

E. B. Meltzer and N. Pw, Idiopathic pulmonary fibrosis, Orphanet journal of rare diseases, vol.3, issue.8, 2008.

B. Ley, H. R. Collard, and T. E. King, Clinical course and prediction of survival in idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine, vol.183, pp.431-471, 2011.

J. Hutchinson, A. Fogarty, R. Hubbard, and T. Mckeever, Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. The European respiratory journal, vol.46, pp.795-806, 2015.

H. R. Collard, B. B. Moore, K. R. Flaherty, K. K. Brown, R. J. Kaner et al., Acute exacerbations of idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine, vol.176, pp.636-679, 2007.

M. R. Kolb and R. L. , Viruses and acute exacerbations of idiopathic pulmonary fibrosis: rest in peace? American journal of respiratory and critical care medicine, vol.183, pp.1583-1587, 2011.

S. C. Wootton, D. S. Kim, Y. Kondoh, C. E. Lee, J. S. Song et al., Viral infection in acute exacerbation of idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine, vol.183, pp.1698-702, 2011.

G. Raghu and M. Selman, Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. American journal of respiratory and critical care medicine, vol.191, pp.252-256, 2015.

I. E. Fernandez and O. Eickelberg, The impact of TGF-beta on lung fibrosis: from targeting to biomarkers, Proceedings of the American Thoracic Society, vol.9, issue.3, pp.111-117, 2012.

H. Corvol, F. Flamein, R. Epaud, A. Clement, and G. L. , Lung alveolar epithelium and interstitial lung disease. The international journal of biochemistry & cell biology, vol.41, pp.1643-51, 2009.

P. S. Bellaye and M. Kolb, Why do patients get idiopathic pulmonary fibrosis? Current concepts in the pathogenesis of pulmonary fibrosis, BMC medicine, vol.13, p.176, 2015.

O. Mungunsukh, A. J. Griffin, Y. H. Lee, and R. M. Day, Bleomycin induces the extrinsic apoptotic pathway in pulmonary endothelial cells. American journal of physiology Lung cellular and molecular physiology, vol.298, pp.696-703, 2010.

H. G. Leach, I. Chrobak, R. Han, and M. Trojanowska, Endothelial cells recruit macrophages and contribute to a fibrotic milieu in bleomycin lung injury. American journal of respiratory cell and molecular biology, vol.49, pp.1093-101, 2013.

F. Drakopanagiotakis, A. Xifteri, V. Polychronopoulos, and D. Bouros, Apoptosis in lung injury and fibrosis. The European respiratory journal, vol.32, pp.1631-1639, 2008.

J. V. Barbas-filho, M. A. Ferreira, A. Sesso, R. A. Kairalla, C. R. Carvalho et al., Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP), Journal of clinical pathology, vol.54, issue.2, pp.132-140, 2001.

N. Hagimoto, K. Kuwano, Y. Nomoto, R. Kunitake, and N. Hara, Apoptosis and expression of Fas/Fas ligand mRNA in bleomycin-induced pulmonary fibrosis in mice, American journal of respiratory cell and molecular biology, vol.16, issue.1, pp.91-101, 1997.

K. Kuwano, R. Kunitake, T. Maeyama, N. Hagimoto, M. Kawasaki et al., Attenuation of bleomycin-induced pneumopathy in mice by a caspase inhibitor, American journal of physiology Lung cellular and molecular physiology, vol.280, issue.2, pp.316-341, 2001.

G. R. Budinger, G. M. Mutlu, J. Eisenbart, A. C. Fuller, A. A. Bellmeyer et al., Proapoptotic Bid is required for pulmonary fibrosis, Proceedings of the National Academy of Sciences of the United States of America, vol.103, issue.12, pp.4604-4613, 2006.

S. Buckley, W. Shi, W. Xu, M. R. Frey, R. Moats et al., Increased alveolar soluble annexin V promotes lung inflammation and fibrosis. The European respiratory journal, vol.46, pp.1417-1446, 2015.

N. Hagimoto, K. Kuwano, H. Miyazaki, R. Kunitake, M. Fujita et al., Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen, American journal of respiratory cell and molecular biology, vol.17, issue.3, pp.272-280, 1997.

L. Wang, J. F. Scabilloni, J. M. Antonini, Y. Rojanasakul, V. Castranova et al., Induction of secondary apoptosis, inflammation, and lung fibrosis after intratracheal instillation of apoptotic cells in rats, American journal of physiology Lung cellular and molecular physiology, vol.290, issue.4, pp.695-702, 2006.

J. Im, K. Kim, P. Hergert, and R. S. Nho, Idiopathic pulmonary fibrosis fibroblasts become resistant to Fas ligand-dependent apoptosis via the alteration of decoy receptor 3. The Journal of pathology, 2016.

J. L. Larson-casey, J. S. Deshane, A. J. Ryan, V. J. Thannickal, and C. Ab, Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis, Immunity, vol.44, issue.3, pp.582-96, 2016.

L. Barron and W. Ta, Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages, American journal of physiology Gastrointestinal and liver physiology, vol.300, issue.5, pp.723-731, 2011.

Y. Obayashi, I. Yamadori, J. Fujita, T. Yoshinouchi, N. Ueda et al., The role of neutrophils in the pathogenesis of idiopathic pulmonary fibrosis, Chest, vol.112, issue.5, pp.1338-1381, 1997.

V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott et al., Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF, The Journal of clinical investigation, vol.101, issue.4, pp.890-898, 1998.

C. Fertin, J. F. Nicolas, P. Gillery, B. Kalis, J. Banchereau et al., Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents, Cellular and molecular biology, vol.37, issue.8, pp.823-832, 1991.

N. Hutchison, C. Fligny, and J. S. Duffield, Resident mesenchymal cells and fibrosis, Biochimica et biophysica acta, vol.1832, issue.7, pp.962-71, 2013.

S. Kolahian, I. E. Fernandez, and O. Eickelberg, Immune Mechanisms in Pulmonary Fibrosis. American journal of respiratory cell and molecular biology, 2016.

E. A. Ayaub, P. S. Kolb, Z. Mohammed-ali, V. Tat, J. Murphy et al., GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis. The Journal of pathology, 2016.

A. J. Byrne, T. M. Maher, and L. Cm, Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease? Trends in molecular medicine, vol.22, pp.303-319, 2016.

S. Z. Birjandi, V. Palchevskiy, Y. Y. Xue, S. Nunez, R. Kern et al., CD4+CD25hiFoxp3+ Cells Exacerbate BleomycinInduced Pulmonary Fibrosis. The American journal of pathology, 2016.

M. Helene, V. Lake-bullock, J. Zhu, H. Hao, D. A. Cohen et al., T cell independence of bleomycin-induced pulmonary fibrosis, Journal of leukocyte biology, vol.65, issue.2, pp.187-95, 1999.

N. Idiopathic-pulmonary-fibrosis-clinical-research, G. Raghu, K. J. Anstrom, T. E. King, J. Lasky et al., Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. The New England journal of medicine, vol.366, pp.1968-77, 2012.

J. Domagala-kulawik, T. Skirecki, M. Maskey-warzechowska, H. Grubek-jaworska, and C. R. , Bronchoalveolar lavage total cell count in interstitial lung diseases-does it matter?, Inflammation, vol.35, issue.3, pp.803-812, 2012.

K. A. Boomars, R. C. Schweizer, P. Zanen, J. M. Van-den-bosch, J. W. Lammers et al., Eosinophil chemotactic activity in bronchoalveolar lavage from idiopathic pulmonary fibrosis is dependent on cytokine priming of eosinophils. The European respiratory journal, vol.11, pp.1009-1023, 1998.

Z. Daniil, P. Kitsanta, G. Kapotsis, M. Mathioudaki, A. Kollintza et al., CD8+ T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis, Respiratory research, vol.6, p.81, 2005.

J. Marchal-somme, Y. Uzunhan, S. Marchand-adam, D. Valeyre, V. Soumelis et al., Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis, Journal of immunology, vol.176, issue.10, pp.5735-5744, 2006.

E. Balestro, F. Calabrese, G. Turato, F. Lunardi, E. Bazzan et al., Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis, PloS one, vol.11, issue.5, p.154516, 2016.

J. C. Schupp, H. Binder, B. Jager, G. Cillis, G. Zissel et al., Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis, PloS one, vol.10, issue.1, p.116775, 2015.

C. A. Feghali-bostwick, C. G. Tsai, V. G. Valentine, S. Kantrow, M. W. Stoner et al., Cellular and humoral autoreactivity in idiopathic pulmonary fibrosis, Journal of immunology, vol.179, issue.4, pp.2592-2601, 2007.
DOI : 10.4049/jimmunol.179.4.2592

URL : http://www.jimmunol.org/content/179/4/2592.full.pdf

R. A. Kahloon, J. Xue, A. Bhargava, E. Csizmadia, L. Otterbein et al., Patients with idiopathic pulmonary fibrosis with antibodies to heat shock protein 70 have poor prognoses. American journal of respiratory and critical care medicine, vol.187, pp.768-75, 2013.
DOI : 10.1164/rccm.201203-0506oc

URL : http://europepmc.org/articles/pmc3678112?pdf=render

A. Francois, A. Gombault, B. Villeret, G. Alsaleh, M. Fanny et al., B cell activating factor is central to bleomycin-and IL17-mediated experimental pulmonary fibrosis, Journal of autoimmunity, vol.56, pp.1-11, 2015.

V. J. Thannickal and J. C. Horowitz, Evolving concepts of apoptosis in idiopathic pulmonary fibrosis, Proceedings of the American Thoracic Society, vol.3, issue.4, pp.350-356, 2006.

S. Elmore, Apoptosis: a review of programmed cell death. Toxicologic pathology, vol.35, pp.495-516, 2007.

R. W. Vandivier, P. M. Henson, and D. Is, Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease, Chest, vol.129, issue.6, pp.1673-82, 2006.

K. Morimoto, W. J. Janssen, and M. Terada, Defective efferocytosis by alveolar macrophages in IPF patients. Respiratory medicine, vol.106, pp.1800-1803, 2012.

M. Kolb, P. J. Margetts, D. C. Anthony, F. Pitossi, and J. Gauldie, Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis, The Journal of clinical investigation, vol.107, issue.12, pp.1529-1565, 2001.

P. Bonniaud, P. J. Margetts, K. Ask, K. Flanders, J. Gauldie et al., TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis, Journal of immunology, vol.175, issue.8, pp.5390-5395, 2005.
DOI : 10.4049/jimmunol.175.8.5390

H. Takizawa, M. Satoh, H. Okazaki, G. Matsuzaki, N. Suzuki et al., Increased IL-6 and IL-8 in bronchoalveolar lavage fluids (BALF) from patients with sarcoidosis: correlation with the clinical parameters, Clinical and experimental immunology, vol.107, issue.1, pp.175-81, 1997.

T. T. Le, H. Karmouty-quintana, E. Melicoff, T. T. Le, T. Weng et al., Blockade of IL-6 Trans signaling attenuates pulmonary fibrosis, Journal of immunology, vol.193, issue.7, pp.3755-68, 2014.

D. E. Sullivan, M. Ferris, H. Nguyen, E. Abboud, and B. Ar, TNF-alpha induces TGFbeta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation, Journal of cellular and molecular medicine, vol.13, issue.8B, pp.1866-76, 2009.

J. Y. Liu, D. M. Brass, G. W. Hoyle, and B. Ar, TNF-alpha receptor knockout mice are protected from the fibroproliferative effects of inhaled asbestos fibers. The American journal of pathology, vol.153, pp.1839-1886, 1998.

E. F. Redente, R. C. Keith, W. Janssen, P. M. Henson, L. A. Ortiz et al., Tumor necrosis factor-alpha accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. American journal of respiratory cell and molecular biology, vol.50, pp.825-862, 2014.

C. A. Dinarello, Biologic basis for interleukin-1 in disease, Blood, vol.87, issue.6, pp.2095-147, 1996.

M. J. Kostura, M. J. Tocci, G. Limjuco, J. Chin, P. Cameron et al., Identification of a monocyte specific pre-interleukin 1 beta convertase activity, Proceedings of the National Academy of Sciences of the United States of America, vol.86, issue.14, pp.5227-5258, 1989.

J. E. Vince and S. J. , The intersection of cell death and inflammasome activation, vol.73, pp.2349-67, 2016.

N. A. Thornberry, H. G. Bull, J. R. Calaycay, K. T. Chapman, A. D. Howard et al., A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes, Nature, vol.356, issue.6372, pp.768-74, 1992.

G. Fantuzzi and C. A. Dinarello, Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1), Journal of clinical immunology, vol.19, issue.1, pp.1-11, 1999.

S. M. Man and K. Td, Converging roles of caspases in inflammasome activation, cell death and innate immunity, Nature reviews Immunology, vol.16, issue.1, pp.7-21, 2016.

M. Bruchard, G. Mignot, V. Derangere, F. Chalmin, A. Chevriaux et al., Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth, Nature medicine, vol.19, issue.1, pp.57-64, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00919371

B. S. Franklin, L. Bossaller, D. Nardo, D. Ratter, J. M. Stutz et al., The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation, Nature immunology, vol.15, issue.8, pp.727-764, 2014.

P. Gasse, N. Riteau, S. Charron, S. Girre, L. Fick et al., Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. American journal of respiratory and critical care medicine, vol.179, pp.903-916, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00404885

F. Martinon, K. Burns, and T. J. , The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta, Molecular cell, vol.10, issue.2, pp.417-443, 2002.

J. Y. Bae and P. Hh, Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly, The Journal of biological chemistry, vol.286, issue.45, pp.39528-39564, 2011.

M. Lamkanfi and D. Vm, Inflammasomes and their roles in health and disease. Annual review of cell and developmental biology, vol.28, pp.137-61, 2012.

S. A. Schattgen and F. Ka, The PYHIN protein family as mediators of host defenses, Immunological reviews, vol.243, issue.1, pp.109-127, 2011.

L. Franchi, A. Amer, M. Body-malapel, T. D. Kanneganti, N. Ozoren et al., Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages, Nature immunology, vol.7, issue.6, pp.576-82, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01936392

D. A. Muruve, V. Petrilli, A. K. Zaiss, L. R. White, S. A. Clark et al., The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response, Nature, vol.452, issue.7183, pp.103-110, 2008.

J. E. Wilson, A. S. Petrucelli, L. Chen, A. A. Koblansky, A. D. Truax et al., Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt, Nature medicine, vol.21, issue.8, pp.906-919, 2015.

H. Xu, J. Yang, W. Gao, L. Li, P. Li et al., Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome, Nature, vol.513, issue.7517, pp.237-278, 2014.

M. L. Kim, J. J. Chae, Y. H. Park, D. Nardo, D. Stirzaker et al., Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1beta, The Journal of experimental medicine, vol.212, issue.6, pp.927-965, 2015.

A. Gombault, L. Baron, and C. I. , ATP release and purinergic signaling in NLRP3 inflammasome activation, Frontiers in immunology, vol.3, p.414, 2012.

N. Riteau, L. Baron, B. Villeret, N. Guillou, F. Savigny et al., ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation, Cell death & disease, vol.3, 2012.

J. Jabaut, J. L. Ather, A. Taracanova, M. E. Poynter, and C. K. , Mitochondria-targeted drugs enhance Nlrp3 inflammasome-dependent IL-1beta secretion in association with alterations in cellular redox and energy status. Free radical biology & medicine, vol.60, pp.233-278, 2013.

M. E. Heid, P. A. Keyel, C. Kamga, S. Shiva, S. C. Watkins et al., Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation, Journal of immunology, vol.191, issue.10, pp.5230-5238, 2013.
DOI : 10.4049/jimmunol.1301490

URL : http://www.jimmunol.org/content/191/10/5230.full.pdf

R. Zhou, A. S. Yazdi, P. Menu, and T. J. , A role for mitochondria in NLRP3 inflammasome activation, Nature, vol.469, issue.7329, pp.221-226, 2011.

K. Shimada, T. R. Crother, J. Karlin, J. Dagvadorj, N. Chiba et al., Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis, Immunity, vol.36, issue.3, pp.401-415, 2012.

R. Munoz-planillo, P. Kuffa, G. Martinez-colon, B. L. Smith, T. M. Rajendiran et al., K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter, Immunity, vol.38, issue.6, pp.1142-53, 2013.

J. L. Schmid-burgk, D. Chauhan, T. Schmidt, T. S. Ebert, J. Reinhardt et al., A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation, The Journal of biological chemistry, vol.291, issue.1, pp.103-112, 2016.

Y. He, M. Y. Zeng, D. Yang, B. Motro, and G. Nunez, NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux, Nature, vol.530, issue.7590, pp.354-361, 2016.

F. Van-hauwermeiren and M. Lamkanfi, The NEK-sus of the NLRP3 inflammasome, Nature immunology, vol.17, issue.3, pp.223-227, 2016.

M. Solle, J. Labasi, D. G. Perregaux, E. Stam, N. Petrushova et al., Altered cytokine production in mice lacking P2X(7) receptors, The Journal of biological chemistry, vol.276, issue.1, pp.125-157, 2001.

T. D. Kanneganti, M. Lamkanfi, Y. G. Kim, G. Chen, J. H. Park et al., Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling, Immunity, vol.26, issue.4, pp.433-476, 2007.

Z. Chen, J. N. Narasaraju, T. Chen, J. Mcfarland, L. R. Scott et al., Identification of two novel markers for alveolar epithelial type I and II cells, Biochemical and biophysical research communications, vol.319, issue.3, pp.774-80, 2004.

P. Pelegrin and A. Surprenant, The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release, Purinergic signalling, vol.5, issue.2, pp.129-166, 2009.

P. Broz and D. Vm, Inflammasomes: mechanism of assembly, regulation and signalling, Nature reviews Immunology, vol.16, issue.7, pp.407-427, 2016.

N. Kayagaki, S. Warming, M. Lamkanfi, L. Vande-walle, S. Louie et al., Non-canonical inflammasome activation targets caspase11, Nature, vol.479, issue.7371, pp.117-138, 2011.

S. Ruhl and P. Broz, Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux, European journal of immunology, vol.45, issue.10, pp.2927-2963, 2015.

L. Zhang, S. Chen, J. Ruan, J. Wu, A. B. Tong et al., Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization, Science, vol.350, issue.6259, pp.404-413, 2015.

A. Lu, Y. Li, Q. Yin, J. Ruan, X. Yu et al., Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2, Cell discovery, p.1, 2015.

A. Lu, V. G. Magupalli, J. Ruan, Q. Yin, M. K. Atianand et al., Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes, Cell, vol.156, issue.6, pp.1193-206, 2014.

T. J. Tzeng, S. Schattgen, B. Monks, D. Wang, A. Cerny et al., A Fluorescent Reporter Mouse for Inflammasome Assembly Demonstrates an Important Role for Cell-Bound and Free ASC Specks during, In Vivo Infection. Cell reports, 2016.

M. S. Dick, L. Sborgi, S. Ruhl, S. Hiller, and P. Broz, ASC filament formation serves as a signal amplification mechanism for inflammasomes, Nature communications, vol.7, 2016.

A. Baroja-mazo, F. Martin-sanchez, A. I. Gomez, C. M. Martinez, J. Amores-iniesta et al., The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response, Nature immunology, vol.15, issue.8, pp.738-786, 2014.

C. A. Dinarello, Interleukin-1 in the pathogenesis and treatment of inflammatory diseases, Blood, vol.117, issue.14, pp.3720-3752, 2011.

C. Eder, Mechanisms of interleukin-1beta release, Immunobiology, vol.214, issue.7, pp.543-53, 2009.

C. D. Ellson, R. Dunmore, C. M. Hogaboam, M. A. Sleeman, and L. A. Murray, Dangerassociated molecular patterns and danger signals in idiopathic pulmonary fibrosis. American journal of respiratory cell and molecular biology, vol.51, pp.163-171, 2014.

A. Rubartelli, F. Cozzolino, M. Talio, and R. Sitia, A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence, The EMBO journal, vol.9, issue.5, pp.1503-1513, 1990.

G. Lopez-castejon and D. Brough, Understanding the mechanism of IL-1beta secretion, Cytokine & growth factor reviews, vol.22, issue.4, pp.189-95, 2011.

Y. Qu, L. Ramachandra, S. Mohr, L. Franchi, C. V. Harding et al., P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1, Journal of immunology, vol.182, issue.8, pp.5052-62, 2009.

R. S. Welner, G. Amabile, D. Bararia, A. Czibere, H. Yang et al., Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells, Cancer cell, vol.27, issue.5, pp.671-81, 2015.

C. A. Dinarello and S. M. Wolff, The role of interleukin-1 in disease. The New England journal of medicine, vol.328, pp.106-119, 1993.

P. Rider, Y. Carmi, O. Guttman, A. Braiman, I. Cohen et al., IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation, Journal of immunology, vol.187, issue.9, pp.4835-4878, 2011.

S. Z. Ben-sasson, J. Hu-li, J. Quiel, S. Cauchetaux, M. Ratner et al., IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation, Proceedings of the National Academy of Sciences of the United States of America, vol.106, issue.17, pp.7119-7143, 2009.

S. Mi, Z. Li, H. Z. Yang, H. Liu, J. P. Wang et al., Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and-independent mechanisms, Journal of immunology, vol.187, issue.6, pp.3003-3017, 2011.

H. Hilbi, J. E. Moss, D. Hersh, Y. Chen, J. Arondel et al., Shigella-induced apoptosis is dependent on caspase1 which binds to IpaB, The Journal of biological chemistry, vol.273, issue.49, pp.32895-900, 1998.

Y. Jin, H. Li, G. Xie, S. Chen, S. Wu et al., Sevoflurane combined with ATP activates caspase-1 and triggers caspase-1-dependent pyroptosis in murine J774 macrophages, Inflammation, vol.36, issue.2, pp.330-336, 2013.

A. C. Reisetter, L. V. Stebounova, J. Baltrusaitis, L. Powers, A. Gupta et al., Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles, The Journal of biological chemistry, vol.286, issue.24, pp.21844-52, 2011.

H. Chen, Y. Lu, Z. Cao, Q. Ma, H. Pi et al., Cadmium induces NLRP3 inflammasome-dependent pyroptosis in vascular endothelial cells, Toxicology letters, vol.246, pp.7-16, 2016.

A. Wree, A. Eguchi, M. D. Mcgeough, C. A. Pena, C. D. Johnson et al., NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice, Hepatology, vol.59, issue.3, pp.898-910, 2014.

W. L. Yang, A. Sharma, Z. Wang, Z. Li, J. Fan et al., Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome, Scientific reports, vol.6, 2016.

T. Bergsbaken, S. L. Fink, and C. Bt, Pyroptosis: host cell death and inflammation, Nature reviews Microbiology, vol.7, issue.2, pp.99-109, 2009.

S. H. Chow, P. Deo, and T. Naderer, Macrophage cell death in microbial infections, Cellular microbiology, vol.18, issue.4, pp.466-74, 2016.

I. Jorgensen and E. A. Miao, Pyroptotic cell death defends against intracellular pathogens, Immunological reviews, vol.265, issue.1, pp.130-172, 2015.

S. L. Fink and C. Bt, Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages, Cellular microbiology, vol.8, issue.11, pp.1812-1837, 2006.

K. Labbe and M. Saleh, Cell death in the host response to infection. Cell death and differentiation, vol.15, pp.1339-1388, 2008.

Y. Geng, Q. Ma, Y. N. Liu, N. Peng, F. F. Yuan et al., Heatstroke induces liver injury via IL-1beta and HMGB1-induced pyroptosis, Journal of hepatology, vol.63, issue.3, pp.622-655, 2015.

A. De-gassart and F. Martinon, Pyroptosis: Caspase-11 Unlocks the Gates of Death, Immunity, vol.43, issue.5, pp.835-842, 2015.

D. Draganov, S. Gopalakrishna-pillai, Y. R. Chen, N. Zuckerman, S. Moeller et al., Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death, Scientific reports, vol.5, 2015.

D. Yang, Y. He, R. Munoz-planillo, Q. Liu, and G. Nunez, Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock, Immunity, vol.43, issue.5, pp.923-955, 2015.

N. M. De-vasconcelos, V. Opdenbosch, N. Lamkanfi, and M. , Inflammasomes as polyvalent cell death platforms. Cellular and molecular life sciences : CMLS, vol.73, pp.2335-2382, 2016.

S. L. Lage, G. P. Amarante-mendes, and K. R. Bortoluci, Evaluation of pyroptosis in macrophages using cytosolic delivery of purified flagellin, Methods, vol.61, issue.2, pp.110-116, 2013.

J. Abe and C. Morrell, Pyroptosis as a Regulated Form of Necrosis: PI+/Annexin V/High Caspase 1/Low Caspase 9 Activity in Cells = Pyroptosis? Circulation research, vol.118, pp.1457-60, 2016.

S. M. Man and K. Td, Gasdermin D: the long-awaited executioner of pyroptosis, Cell research, vol.25, issue.11, pp.1183-1187, 2015.

D. Wallach, T. B. Kang, C. P. Dillon, and D. R. Green, Programmed necrosis in inflammation: Toward identification of the effector molecules, Science, vol.352, issue.6281, p.2154, 2016.

N. Saeki, T. Usui, K. Aoyagi, D. H. Kim, M. Sato et al., Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium, Genes, chromosomes & cancer, vol.48, issue.3, pp.261-71, 2009.

N. Saeki, D. H. Kim, T. Usui, K. Aoyagi, T. Tatsuta et al., GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-beta-dependent apoptotic signalling, Oncogene, vol.26, issue.45, pp.6488-98, 2007.

J. Ding, K. Wang, W. Liu, Y. She, Q. Sun et al., Poreforming activity and structural autoinhibition of the gasdermin family, Nature, vol.535, issue.7610, pp.111-117, 2016.

W. T. He, H. Wan, L. Hu, P. Chen, X. Wang et al.,

, Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion, Cell research, vol.25, issue.12, pp.1285-98, 2015.

J. Shi, Y. Zhao, K. Wang, X. Shi, Y. Wang et al., Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death, Nature, vol.526, issue.7575, pp.660-665, 2015.

R. A. Aglietti, A. Estevez, A. Gupta, M. G. Ramirez, P. S. Liu et al., GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes, Proceedings of the National Academy of Sciences of the United States of America, vol.113, issue.28, pp.7858-63, 2016.

D. M. Cerqueira, M. S. Pereira, A. L. Silva, L. D. Cunha, and Z. Ds, Caspase-1 but Not Caspase-11 Is Required for NLRC4-Mediated Pyroptosis and Restriction of Infection by Flagellated Legionella Species in Mouse Macrophages and In Vivo, Journal of immunology, vol.195, issue.5, pp.2303-2314, 2015.

D. Brough and N. J. Rothwell, Caspase-1-dependent processing of pro-interleukin-1beta is cytosolic and precedes cell death, Journal of cell science, vol.120, pp.772-81, 2007.

I. Zanoni, Y. Tan, D. Gioia, M. Broggi, A. Ruan et al., An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells, Science, vol.352, issue.6290, pp.1232-1238, 2016.

W. Wang, X. Wang, J. Chun, A. Vilaysane, S. Clark et al., Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium, Journal of immunology, vol.190, issue.3, pp.1239-1288, 2013.

H. Wang, Y. Wang, Q. Du, P. Lu, H. Fan et al., Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells, Experimental cell research, vol.342, issue.2, pp.184-92, 2016.

N. A. Bracey, B. Gershkovich, J. Chun, A. Vilaysane, H. C. Meijndert et al., Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome, The Journal of biological chemistry, vol.289, issue.28, pp.19571-84, 2014.

C. M. Artlett, Inflammasomes in wound healing and fibrosis, The Journal of pathology, vol.229, issue.2, pp.157-67, 2013.

N. Hosseinian, Y. Cho, R. F. Lockey, and N. Kolliputi, The role of the NLRP3 inflammasome in pulmonary diseases. Therapeutic advances in respiratory disease, vol.9, pp.188-97, 2015.

N. P. Barlo, C. H. Van-moorsel, N. M. Korthagen, M. Heron, G. T. Rijkers et al., Genetic variability in the IL1RN gene and the balance between interleukin (IL)-1 receptor agonist and IL-1beta in idiopathic pulmonary fibrosis, Clinical and experimental immunology, vol.166, issue.3, pp.346-51, 2011.

N. M. Korthagen, C. H. Van-moorsel, K. M. Kazemier, H. J. Ruven, and J. C. Grutters, IL1RN genetic variations and risk of IPF: a meta-analysis and mRNA expression study, Immunogenetics, vol.64, issue.5, pp.371-378, 2012.

P. F. Piguet, C. Vesin, G. E. Grau, and R. C. Thompson, Interleukin 1 receptor antagonist (IL1ra) prevents or cures pulmonary fibrosis elicited in mice by bleomycin or silica, Cytokine, vol.5, issue.1, pp.57-61, 1993.

N. Riteau, P. Gasse, L. Fauconnier, A. Gombault, M. Couegnat et al., Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. American journal of respiratory and critical care medicine, vol.182, pp.774-83, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00591486

E. Doz, N. Noulin, E. Boichot, I. Guenon, L. Fick et al., Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent, Journal of immunology, vol.180, issue.2, pp.1169-78, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00318566

A. S. Yazdi, G. Guarda, N. Riteau, S. K. Drexler, A. Tardivel et al., Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta, Proceedings of the National Academy of Sciences of the United States of America, vol.107, issue.45, pp.19449-54, 2010.

D. Wu, P. Pan, X. Su, L. Zhang, Q. Qin et al., Interferon Regulatory Factor-1 Mediates Alveolar Macrophage Pyroptosis During LPS-Induced Acute Lung Injury in Mice, 2016.

A. Naji, B. A. Muzembo, K. Yagyu, N. Baba, F. Deschaseaux et al., Endocytosis of indium-tin-oxide nanoparticles by macrophages provokes pyroptosis requiring NLRP3-ASC-Caspase1 axis that can be prevented by mesenchymal stem cells, Scientific reports, vol.6, 2016.

A. J. Mikels and N. R. , Wnts as ligands: processing, secretion and reception, Oncogene, vol.25, issue.57, pp.7461-7469, 2006.

Y. Komiya and R. Habas, Wnt signal transduction pathways, Organogenesis, vol.4, issue.2, pp.68-75, 2008.

H. A. Baarsma, M. Konigshoff, and G. R. , The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets, Pharmacology & therapeutics, vol.138, issue.1, pp.66-83, 2013.

J. Liu, S. Pan, M. H. Hsieh, N. Ng, F. Sun et al., Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974, Proceedings of the National Academy of Sciences of the United States of America, vol.110, issue.50, pp.20224-20233, 2013.

P. Song, J. X. Zheng, J. Xu, J. Z. Liu, L. Y. Wu et al., beta-catenin induces A549 alveolar epithelial cell mesenchymal transition during pulmonary fibrosis, Molecular medicine reports, vol.11, issue.4, pp.2703-2713, 2015.

C. Wang, H. Zhu, Z. Sun, Z. Xiang, Y. Ge et al., Inhibition of Wnt/beta-catenin signaling promotes epithelial differentiation of mesenchymal stem cells and repairs bleomycin-induced lung injury, American journal of physiology Cell physiology, vol.307, issue.3, pp.234-278, 2014.

X. Wang, W. Dai, Y. Wang, Q. Gu, D. Yang et al., Blocking the Wnt/beta-Catenin Pathway by Lentivirus-Mediated Short Hairpin RNA Targeting beta-Catenin Gene Suppresses Silica-Induced Lung Fibrosis in Mice, International journal of environmental research and public health, vol.12, issue.9, pp.10739-54, 2015.

A. P. Lam, J. D. Herazo-maya, J. A. Sennello, A. S. Flozak, S. Russell et al., Wnt coreceptor Lrp5 is a driver of idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine, vol.190, pp.185-95, 2014.

M. Konigshoff and E. O. , WNT signaling in lung disease: a failure or a regeneration signal? American journal of respiratory cell and molecular biology, vol.42, pp.21-31, 2010.

K. Oda, K. Yatera, H. Izumi, H. Ishimoto, S. Yamada et al., Profibrotic role of WNT10A via TGF-beta signaling in idiopathic pulmonary fibrosis, Respiratory research, vol.17, p.39, 2016.

J. Gauldie, P. Bonniaud, P. Sime, K. Ask, and M. Kolb, TGF-beta, Smad3 and the process of progressive fibrosis, Biochemical Society transactions, vol.35, pp.661-665, 2007.

M. Kelly, M. Kolb, P. Bonniaud, and G. J. , Re-evaluation of fibrogenic cytokines in lung fibrosis, Current pharmaceutical design, vol.9, issue.1, pp.39-49, 2003.

D. A. Clark and R. Coker, Transforming growth factor-beta (TGF-beta). The international journal of biochemistry & cell biology, vol.30, pp.293-301, 1998.

L. P. Sanford, I. Ormsby, A. C. Gittenberger-de-groot, H. Sariola, R. Friedman et al., TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes, Development, vol.124, issue.13, pp.2659-70, 1997.

K. Ask, P. Bonniaud, K. Maass, O. Eickelberg, P. J. Margetts et al., Progressive pulmonary fibrosis is mediated by TGF-beta isoform 1 but not TGF-beta3. The international journal of biochemistry & cell biology, vol.40, pp.484-95, 2008.

C. M. Dubois, M. H. Laprise, F. Blanchette, L. E. Gentry, and R. Leduc, Processing of transforming growth factor beta 1 precursor by human furin convertase, The Journal of biological chemistry, vol.270, issue.18, pp.10618-10642, 1995.

J. S. Munger, J. G. Harpel, P. E. Gleizes, R. Mazzieri, I. Nunes et al., Latent transforming growth factor-beta: structural features and mechanisms of activation, Kidney international, vol.51, issue.5, pp.1376-82, 1997.

A. Biernacka, M. Dobaczewski, and F. Ng, TGF-beta signaling in fibrosis, Growth factors, vol.29, issue.5, pp.196-202, 2011.

M. Kreuter, M. S. Wijsenbeek, M. Vasakova, P. Spagnolo, M. Kolb et al., Unfavourable effects of medically indicated oral anticoagulants on survival in idiopathic pulmonary fibrosis. The European respiratory journal, vol.47, pp.1776-84, 2016.

N. O. Fortunel, A. Hatzfeld, and J. A. Hatzfeld, Transforming growth factor-beta: pleiotropic role in the regulation of hematopoiesis, Blood, vol.96, issue.6, pp.2022-2058, 2000.

R. M. Lyons, L. E. Gentry, A. F. Purchio, and M. Hl, Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin, The Journal of cell biology, vol.110, issue.4, pp.1361-1368, 1990.

A. Goodwin and G. Jenkins, Role of integrin-mediated TGFbeta activation in the pathogenesis of pulmonary fibrosis, Biochemical Society transactions, vol.37, pp.849-54, 2009.

J. P. Annes, Y. Chen, J. S. Munger, and R. Db, Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1, The Journal of cell biology, vol.165, issue.5, pp.723-757, 2004.

J. S. Munger, X. Huang, H. Kawakatsu, M. J. Griffiths, S. L. Dalton et al., The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis, Cell, vol.96, issue.3, pp.319-347, 1999.

D. Mu, S. Cambier, L. Fjellbirkeland, J. L. Baron, J. S. Munger et al., The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1, The Journal of cell biology, vol.157, issue.3, pp.493-507, 2002.

W. A. Border and N. A. Noble, Transforming growth factor beta in tissue fibrosis. The New England journal of medicine, vol.331, pp.1286-92, 1994.

N. Khalil, T. V. Parekh, R. O'connor, N. Antman, W. Kepron et al., Regulation of the effects of TGF-beta 1 by activation of latent TGF-beta 1 and differential expression of TGF-beta receptors (T beta R-I and T beta R-II) in idiopathic pulmonary fibrosis, Thorax, vol.56, issue.12, pp.907-922, 2001.

P. Bonniaud, P. J. Margetts, M. Kolb, J. A. Schroeder, A. M. Kapoun et al., Progressive transforming growth factor beta1induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. American journal of respiratory and critical care medicine, vol.171, pp.889-98, 2005.

A. Hata and C. Yg, TGF-beta Signaling from Receptors to Smads. Cold Spring Harbor perspectives in biology, 2016.

G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, The protein kinase complement of the human genome, Science, vol.298, issue.5600, pp.1912-1946, 2002.

Y. Shi and M. J. , Mechanisms of TGF-beta signaling from cell membrane to the nucleus, Cell, vol.113, issue.6, pp.685-700, 2003.

M. Schiller and D. Javelaud, TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing, Journal of dermatological science, vol.35, issue.2, pp.83-92, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00147401

A. B. Roberts, TGF-beta signaling from receptors to the nucleus. Microbes and infection / Institut Pasteur, vol.1, pp.1265-73, 1999.

T. Tsukazaki, T. A. Chiang, A. F. Davison, L. Attisano, and J. L. Wrana, SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor, Cell, vol.95, issue.6, pp.779-91, 1998.

A. Moustakas, Smad signalling network, Journal of cell science, vol.115, pp.3355-3361, 2002.

J. U. Wurthner, D. B. Frank, A. Felici, H. M. Green, Z. Cao et al., Transforming growth factor-beta receptor-associated protein 1 is a Smad4 chaperone, The Journal of biological chemistry, vol.276, issue.22, pp.19495-502, 2001.

J. L. Wrana, The secret life of Smad4, Cell, vol.136, issue.1, pp.13-17, 2009.

G. Thillainadesan, J. M. Chitilian, M. Isovic, J. N. Ablack, J. S. Mymryk et al., TGF-beta-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex, Molecular cell, vol.46, issue.5, pp.636-685, 2012.

X. Yan, Z. Liu, and C. Y. , Regulation of TGF-beta signaling by Smad7, Acta biochimica et biophysica Sinica, vol.41, issue.4, pp.263-72, 2009.

P. K. Datta and M. Hl, STRAP and Smad7 synergize in the inhibition of transforming growth factor beta signaling, Molecular and cellular biology, vol.20, issue.9, pp.3157-67, 2000.

H. Hayashi, S. Abdollah, Y. Qiu, J. Cai, Y. Y. Xu et al., The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling, Cell, vol.89, issue.7, pp.1165-73, 1997.

R. Quere, L. Saint-paul, V. Carmignac, R. Z. Martin, M. L. Chretien et al., Tif1gamma regulates the TGF-beta1 receptor and promotes physiological aging of hematopoietic stem cells, Proceedings of the National Academy of Sciences of the United States of America, vol.111, issue.29, pp.10592-10599, 2014.

X. M. Meng, X. R. Huang, J. Xiao, A. C. Chung, W. Qin et al., Disruption of Smad4 impairs TGF-beta/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro, Kidney international, vol.81, issue.3, pp.266-79, 2012.

F. J. Nicolas, D. Bosscher, K. Schmierer, B. Hill, and C. S. , Analysis of Smad nucleocytoplasmic shuttling in living cells, Journal of cell science, vol.117, pp.4113-4138, 2004.

C. E. Pierreux, F. J. Nicolas, and C. S. Hill, Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus, Molecular and cellular biology, vol.20, issue.23, pp.9041-54, 2000.

L. Izzi and A. L. , Ubiquitin-dependent regulation of TGFbeta signaling in cancer, Neoplasia, vol.8, issue.8, pp.677-88, 2006.

S. Dupont, A. Mamidi, M. Cordenonsi, M. Montagner, L. Zacchigna et al., FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination, Cell, vol.136, issue.1, pp.123-158, 2009.
DOI : 10.1016/j.cell.2008.10.051

URL : https://doi.org/10.1016/j.cell.2008.10.051

P. S. Bellaye, G. Wettstein, O. Burgy, V. Besnard, J. A. Colas et al., The small heat-shock protein alphaB-crystallin is essential for the nuclear localization of Smad4: impact on pulmonary fibrosis, The Journal of pathology, vol.232, issue.4, pp.458-72, 2014.

M. Fukuchi, T. Imamura, T. Chiba, T. Ebisawa, M. Kawabata et al., Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins, Molecular biology of the cell, vol.12, issue.5, pp.1431-1474, 2001.

X. Lin, M. Liang, and X. H. Feng, Smurf2 is a ubiquitin E3 ligase mediating proteasomedependent degradation of Smad2 in transforming growth factor-beta signaling, The Journal of biological chemistry, vol.275, issue.47, pp.36818-36840, 2000.

I. A. Darby, N. Zakuan, F. Billet, and A. Desmouliere, The myofibroblast, a key cell in normal and pathological tissue repair. Cellular and molecular life sciences : CMLS, vol.73, pp.1145-57, 2016.

I. Darby, O. Skalli, and G. Gabbiani, Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Laboratory investigation; a journal of technical methods and pathology, vol.63, pp.21-30, 1990.

K. Zhang, M. D. Rekhter, D. Gordon, and S. H. Phan, Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. The American journal of pathology, vol.145, pp.114-139, 1994.

C. D. Cool, S. D. Groshong, P. R. Rai, P. M. Henson, J. S. Stewart et al., Fibroblast foci are not discrete sites of lung injury or repair: the fibroblast reticulum. American journal of respiratory and critical care medicine, vol.174, pp.654-662, 2006.

T. Harada, K. Watanabe, K. Nabeshima, M. Hamasaki, and H. Iwasaki, Prognostic significance of fibroblastic foci in usual interstitial pneumonia and non-specific interstitial pneumonia, Respirology, vol.18, issue.2, pp.278-83, 2013.

B. Hinz, S. H. Phan, V. J. Thannickal, A. Galli, M. L. Bochaton-piallat et al., The myofibroblast: one function, multiple origins. The American journal of pathology, vol.170, pp.1807-1823, 2007.

R. M. Strieter, New mechanisms of pulmonary fibrosis, Chest, vol.136, issue.5, pp.1364-70, 2009.

I. E. Fernandez and O. Eickelberg, New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis, Lancet, vol.380, issue.9842, pp.680-688, 2012.

T. Kisseleva and D. A. Brenner, Mechanisms of fibrogenesis. Experimental biology and medicine, vol.233, pp.109-131, 2008.
DOI : 10.3181/0707-mr-190

S. H. Phan, The myofibroblast in pulmonary fibrosis, Chest, vol.122, issue.6, pp.286-295, 2002.

R. C. Chambers, P. Leoni, N. Kaminski, G. J. Laurent, and R. A. Heller, Global expression profiling of fibroblast responses to transforming growth factor-beta1 reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. The American journal of pathology, vol.162, pp.533-579, 2003.

E. H. Alhamad, Z. Shakoor, F. A. Al-kassimi, A. Almogren, G. Elrab et al., Rapid detection of circulating fibrocytes by flowcytometry in idiopathic pulmonary fibrosis, Annals of thoracic medicine, vol.10, issue.4, pp.279-83, 2015.

R. Bucala, L. A. Spiegel, J. Chesney, M. Hogan, and C. A. , Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Molecular medicine, vol.1, pp.71-81, 1994.
DOI : 10.1007/bf03403533

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.5868&rep=rep1&type=pdf

S. Maharaj, C. Shimbori, and M. Kolb, European respiratory review : an official journal of the, vol.22, pp.552-559, 2013.

R. Borie, C. Quesnel, S. Phin, M. P. Debray, J. Marchal-somme et al., Detection of alveolar fibrocytes in idiopathic pulmonary fibrosis and systemic sclerosis, PloS one, vol.8, issue.1, p.53736, 2013.
DOI : 10.1371/journal.pone.0053736

URL : https://hal.archives-ouvertes.fr/hal-01537978

R. M. Strieter, E. C. Keeley, and M. D. Burdick, The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis, Transactions of the American Clinical and Climatological Association, vol.120, pp.49-59, 2009.

B. B. Moore, L. Murray, A. Das, C. A. Wilke, A. B. Herrygers et al., The role of CCL12 in the recruitment of fibrocytes and lung fibrosis, American journal of respiratory cell and molecular biology, vol.35, issue.2, pp.175-81, 2006.

R. J. Phillips, M. D. Burdick, K. Hong, M. A. Lutz, L. A. Murray et al., Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis, The Journal of clinical investigation, vol.114, issue.3, pp.438-484, 2004.

M. W. Epperly, H. Guo, J. E. Gretton, and J. S. Greenberger, Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. American journal of respiratory cell and molecular biology, vol.29, pp.213-237, 2003.

R. Abe, S. C. Donnelly, T. Peng, R. Bucala, and C. N. Metz, Peripheral blood fibrocytes: differentiation pathway and migration to wound sites, Journal of immunology, vol.166, issue.12, pp.7556-62, 2001.

A. Andersson-sjoland, C. G. De-alba, K. Nihlberg, C. Becerril, R. Ramirez et al., Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. The international journal of biochemistry & cell biology, vol.40, pp.2129-2169, 2008.

A. Moeller, S. E. Gilpin, K. Ask, G. Cox, D. Cook et al., Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine, vol.179, pp.588-94, 2009.

R. Reddy, S. Buckley, M. Doerken, L. Barsky, K. Weinberg et al., Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. American journal of physiology Lung cellular and molecular physiology, vol.286, pp.658-67, 2004.

B. C. Willis, J. M. Liebler, K. Luby-phelps, A. G. Nicholson, E. D. Crandall et al., Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. The American journal of pathology, vol.166, pp.1321-1353, 2005.

R. Kalluri and E. G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis, The Journal of clinical investigation, vol.112, issue.12, pp.1776-84, 2003.

R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition, The Journal of clinical investigation, vol.119, issue.6, pp.1420-1428, 2009.

M. Zeisberg and E. G. Neilson, Biomarkers for epithelial-mesenchymal transitions, The Journal of clinical investigation, vol.119, issue.6, pp.1429-1466, 2009.

J. Zavadil, M. Bitzer, D. Liang, Y. C. Yang, A. Massimi et al., Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta, Proceedings of the National Academy of Sciences of the United States of America, vol.98, issue.12, pp.6686-91, 2001.

D. J. Schneider, M. Wu, T. T. Le, S. H. Cho, M. B. Brenner et al., Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-beta production and epithelial to mesenchymal transition, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.26, issue.2, pp.503-515, 2012.

Z. Wu, L. Yang, L. Cai, M. Zhang, X. Cheng et al., Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an alpha-smooth muscle actin-Cre transgenic mouse, Respiratory research, vol.8, issue.1, 2007.

A. Jayachandran, M. Konigshoff, H. Yu, E. Rupniewska, M. Hecker et al., SNAI transcription factors mediate epithelial-mesenchymal transition in lung fibrosis, Thorax, vol.64, issue.12, pp.1053-61, 2009.
DOI : 10.1136/thx.2009.121798

URL : https://thorax.bmj.com/content/64/12/1053.full.pdf

K. K. Kim, M. C. Kugler, P. J. Wolters, L. Robillard, M. G. Galvez et al., Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix, Proceedings of the National Academy of Sciences of the United States of America, vol.103, issue.35, pp.13180-13185, 2006.

D. Bartis, N. Mise, R. Y. Mahida, O. Eickelberg, and T. Dr, Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important?, Thorax, vol.69, issue.8, pp.760-765, 2014.

J. R. Rock, C. E. Barkauskas, M. J. Cronce, Y. Xue, J. R. Harris et al., Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition, Proceedings of the National Academy of Sciences of the United States of America, vol.108, issue.52, pp.1475-83, 2011.
DOI : 10.1073/pnas.1117988108

URL : http://www.pnas.org/content/108/52/E1475.full.pdf

S. Piera-velazquez, F. A. Mendoza, and J. Sa, Endothelial to Mesenchymal Transition (EndoMT) in the Pathogenesis of Human Fibrotic Diseases, Journal of clinical medicine, vol.5, issue.4, 2016.

N. Hashimoto, S. H. Phan, K. Imaizumi, M. Matsuo, H. Nakashima et al., Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. American journal of respiratory cell and molecular biology, vol.43, pp.161-72, 2010.

N. G. Yalcin, C. K. Choong, and N. Eizenberg, Anatomy and pathophysiology of the pleura and pleural space, Thoracic surgery clinics, vol.23, issue.1, pp.1-10, 2013.

J. C. English and L. Ko, Pathology of the pleura, Clinics in chest medicine, vol.27, issue.2, pp.157-80, 2006.

M. A. Jantz and A. Vb, Pathophysiology of the pleura. Respiration; international review of thoracic diseases, vol.75, pp.121-154, 2008.

S. E. Mutsaers, The mesothelial cell. The international journal of biochemistry & cell biology, vol.36, pp.9-16, 2004.

S. E. Mutsaers, D. Whitaker, and J. M. Papadimitriou, Stimulation of mesothelial cell proliferation by exudate macrophages enhances serosal wound healing in a murine model, The American journal of pathology, vol.160, issue.2, pp.681-92, 2002.

A. Simsir, P. Fetsch, D. Mehta, M. Zakowski, A. A. E-cadherin et al., Diagnostic cytopathology, vol.20, issue.3, pp.125-155, 1999.

E. C. Ko, N. C. Jhala, J. J. Shultz, and C. Dc, Use of a panel of markers in the differential diagnosis of adenocarcinoma and reactive mesothelial cells in fluid cytology, American journal of clinical pathology, vol.116, issue.5, pp.709-724, 2001.

K. K. Mubarak, A. Montes-worboys, D. Regev, N. Nasreen, K. A. Mohammed et al., Parenchymal trafficking of pleural mesothelial cells in idiopathic pulmonary fibrosis. The European respiratory journal, vol.39, pp.133-173, 2012.

K. Chang, Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers, Proceedings of the National Academy of Sciences of the United States of America, vol.93, issue.1, pp.136-176, 1996.

K. M. Call, T. Glaser, C. Y. Ito, A. J. Buckler, J. Pelletier et al., Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus, Cell, vol.60, issue.3, pp.509-529, 1990.

S. Karki, R. Surolia, T. D. Hock, P. Guroji, J. S. Zolak et al., Wilms' tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.28, issue.3, pp.1122-1153, 2014.

N. Decologne, M. Kolb, P. J. Margetts, F. Menetrier, Y. Artur et al., TGF-beta1 induces progressive pleural scarring and subpleural fibrosis, Journal of immunology, vol.179, issue.9, pp.6043-51, 2007.

M. M. Acencio, F. S. Vargas, E. Marchi, G. G. Carnevale, L. R. Teixeira et al., Pleural mesothelial cells mediate inflammatory and profibrotic responses in talc-induced pleurodesis, Lung, vol.185, issue.6, pp.343-351, 2007.

J. M. Hillegass, J. M. Miller, M. B. Macpherson, C. M. Westbom, M. Sayan et al., Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells, Particle and fibre toxicology, vol.10, p.39, 2013.

C. A. Souza, N. L. Muller, J. Flint, J. L. Wright, and C. A. , Idiopathic pulmonary fibrosis: spectrum of high-resolution CT findings, AJR American journal of roentgenology, vol.185, issue.6, pp.1531-1540, 2005.

J. T. Huggins and S. Sa, Causes and management of pleural fibrosis, Respirology, vol.9, issue.4, pp.441-448, 2004.

M. A. Jantz and A. Vb, Pleural fibrosis, Clinics in chest medicine, vol.27, issue.2, pp.181-91, 2006.

P. Pfitzenmeyer, P. Foucher, G. Dennewald, B. Chevalon, D. Debieuvre et al., Pleuropulmonary changes induced by ergoline drugs. The European respiratory journal, vol.9, pp.1013-1022, 1996.

K. Hamada, S. Nagai, M. Kitaichi, J. G. Shigematsu, M. Nagao et al., Cyclophosphamide-induced late-onset lung disease. Internal medicine, vol.42, pp.82-89, 2003.

A. Balbir-gurman, M. Yigla, A. M. Nahir, and Y. Braun-moscovici, Rheumatoid pleural effusion. Seminars in arthritis and rheumatism, vol.35, pp.368-78, 2006.

J. Jagirdar, T. C. Lee, J. Reibman, L. I. Gold, C. Aston et al., Immunohistochemical localization of transforming growth factor beta isoforms in asbestos-related diseases, Environmental health perspectives, vol.105, issue.5, pp.1197-203, 1997.

W. Harvey and A. Pl, Collagen production by human mesothelial cells in vitro, The Journal of pathology, vol.139, issue.3, pp.337-384, 1983.

C. Ma, R. W. Tarnuzzer, and N. Chegini, Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in mesothelial cells and their regulation by transforming growth factor-beta1. Wound repair and regeneration : official publication of the Wound Healing Society, European Tissue Repair Society, vol.7, issue.6, pp.477-85, 1999.

P. Falk, C. Ma, and N. Chegini, Differential regulation of mesothelial cell fibrinolysis by transforming growth factor beta 1. Scandinavian journal of clinical and laboratory investigation, vol.60, pp.439-486, 2000.

R. W. Light, D. S. Cheng, Y. C. Lee, J. Rogers, J. Davidson et al., A single intrapleural injection of transforming growth factor-beta(2) produces an excellent pleurodesis in rabbits, American journal of respiratory and critical care medicine, vol.162, issue.1, pp.98-104, 2000.

Y. C. Lee, K. B. Lane, R. E. Parker, D. S. Ayo, J. T. Rogers et al., Transforming growth factor beta(2) (TGF beta(2)) produces effective pleurodesis in sheep with no systemic complications, Thorax, vol.55, issue.12, pp.1058-62, 2000.

N. Decologne, G. Wettstein, M. Kolb, P. Margetts, C. Garrido et al., Bleomycin induces pleural and subpleural fibrosis in the presence of carbon particles. The European respiratory journal, vol.35, pp.176-85, 2010.

L. J. Chen, H. Ye, Q. Zhang, F. Z. Li, L. J. Song et al., Bleomycin induced epithelial-mesenchymal transition (EMT) in pleural mesothelial cells, Toxicology and applied pharmacology, vol.283, issue.2, pp.75-82, 2015.

N. Nasreen, K. A. Mohammed, K. K. Mubarak, M. A. Baz, O. A. Akindipe et al., Pleural mesothelial cell transformation into myofibroblasts and haptotactic migration in response to TGF-beta1 in vitro, American journal of physiology Lung cellular and molecular physiology, vol.297, issue.1, pp.115-139, 2009.

H. Umezawa, Y. Suhara, T. Takita, and K. Maeda, Purification of bleomycins, The Journal of antibiotics, vol.19, issue.5, pp.210-215, 1966.

J. Chen and S. J. , Bleomycins: towards better therapeutics, Nature reviews Cancer, vol.5, issue.2, pp.102-114, 2005.

T. Lehmann and T. E. , Contributions of NMR to the understanding of the coordination chemistry and DNA interactions of metallo-bleomycins, Molecules, vol.18, issue.8, pp.9253-77, 2013.

J. Hay, S. Shahzeidi, and L. G. , Mechanisms of bleomycin-induced lung damage, Archives of toxicology, vol.65, issue.2, pp.81-94, 1991.

D. Bromme, A. B. Rossi, S. P. Smeekens, D. C. Anderson, and P. Dg, Human bleomycin hydrolase: molecular cloning, sequencing, functional expression, and enzymatic characterization, Biochemistry, vol.35, issue.21, pp.6706-6720, 1996.

S. M. Sebti, J. C. Deleon, and J. S. Lazo, Purification, characterization, and amino acid composition of rabbit pulmonary bleomycin hydrolase, Biochemistry, vol.26, issue.14, pp.4213-4222, 1987.

J. S. Lazo and C. J. Humphreys, Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity, Proceedings of the National Academy of Sciences of the United States of America, vol.80, issue.10, pp.3064-3072, 1983.

G. Pron, J. Belehradek, J. Mir, and L. M. , Identification of a plasma membrane protein that specifically binds bleomycin. Biochemical and biophysical research communications, vol.194, pp.333-340, 1993.

G. Pron, N. Mahrour, S. Orlowski, O. Tounekti, B. Poddevin et al., Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated

M. Aouida, O. Tounekti, A. Leduc, O. Belhadj, and L. Mir, Isolation and characterization of Saccharomyces cerevisiae mutants with enhanced resistance to the anticancer drug bleomycin, Current genetics, vol.45, issue.5, pp.265-72, 2004.

M. Aouida, A. Leduc, and H. Wang, Characterization of a transport and detoxification pathway for the antitumour drug bleomycin in Saccharomyces cerevisiae, The Biochemical journal, vol.384, pp.47-58, 2004.

M. Aouida, N. Page, A. Leduc, and M. Peter, A genome-wide screen in Saccharomyces cerevisiae reveals altered transport as a mechanism of resistance to the anticancer drug bleomycin, Cancer research, vol.64, issue.3, pp.1102-1111, 2004.

R. M. Burger, J. Peisach, and S. B. Horwitz, Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA, The Journal of biological chemistry, vol.256, issue.22, pp.11636-11680, 1981.

H. Ekimoto, K. Takahashi, A. Matsuda, T. Takita, and H. Umezawa, Lipid peroxidation by bleomycin-iron complexes in vitro, The Journal of antibiotics, vol.38, issue.8, pp.1077-82, 1985.

T. M. Rana and C. F. Meares, Transfer of oxygen from an artificial protease to peptide carbon during proteolysis, Proceedings of the National Academy of Sciences of the United States of America, vol.88, issue.23, pp.10578-82, 1991.

S. M. Hecht, RNA degradation by bleomycin, a naturally occurring bioconjugate, Bioconjugate chemistry, vol.5, issue.6, pp.513-539, 1994.

M. T. Kuo, Preferential damage of active chromatin by bleomycin. Cancer research, vol.41, pp.2439-2482, 1981.

S. S. Brar, J. N. Meyer, C. D. Bortner, B. Van-houten, and M. , Mitochondrial DNA-depleted A549 cells are resistant to bleomycin. American journal of physiology Lung cellular and molecular physiology, vol.303, pp.413-437, 2012.

O. Tounekti, A. Kenani, N. Foray, S. Orlowski, and L. M. Mir, The ratio of single-to doublestrand DNA breaks and their absolute values determine cell death pathway, British journal of cancer, vol.84, issue.9, pp.1272-1281, 2001.

R. A. Bayer, E. R. Gaynor, and R. I. Fisher, Bleomycin in non-Hodgkin's lymphoma, Seminars in oncology, vol.19, issue.2, pp.46-52, 1992.

L. H. Einhorn, Curing metastatic testicular cancer, Proceedings of the National Academy of Sciences of the United States of America, vol.99, issue.7, pp.4592-4597, 2002.

D. E. Lehane, E. Hurd, and L. M. , The effects of bleomycin on immunocompetence in man, Cancer research, vol.35, issue.10, pp.2724-2732, 1975.

P. H. Camus, P. Foucher, P. H. Bonniaud, and K. Ask, Drug-induced infiltrative lung disease. The European respiratory journal Supplement, vol.32, pp.93-100, 2001.

I. Y. Adamson, Environmental health perspectives, vol.55, pp.25-36, 1984.

W. G. Martin, K. M. Ristow, T. M. Habermann, J. P. Colgan, T. E. Witzig et al., Bleomycin pulmonary toxicity has a negative impact on the outcome of patients with Hodgkin's lymphoma, Journal of clinical oncology : official journal of the American Society of Clinical Oncology, vol.23, issue.30, pp.7614-7634, 2005.

J. P. Balikian, M. S. Jochelson, K. A. Bauer, A. T. Skarkin, M. B. Garnick et al., Pulmonary complications of chemotherapy regimens containing bleomycin, AJR American journal of roentgenology, vol.139, issue.3, pp.455-61, 1982.

E. Azambuja, J. F. Fleck, R. G. Batista, M. Barreto, and S. S. , Bleomycin lung toxicity: who are the patients with increased risk?, Pulmonary pharmacology & therapeutics, vol.18, issue.5, pp.363-369, 2005.

A. Hirsch, N. Vander-els, D. J. Straus, E. G. Gomez, D. Leung et al., Effect of ABVD chemotherapy with and without mantle or mediastinal irradiation on pulmonary function and symptoms in early-stage Hodgkin's disease, Journal of clinical oncology : official journal of the American Society of Clinical Oncology, vol.14, issue.4, pp.1297-305, 1996.

R. Gerson, T. Bernal, E. , L. Leon, M. et al., Low toxicity with continuous infusion of high-dose bleomycin in poor prognostic testicular cancer, American journal of clinical oncology, vol.16, issue.4, pp.323-329, 1993.

E. Azoulay, S. Herigault, M. Levame, L. Brochard, B. Schlemmer et al., Effect of granulocyte colony-stimulating factor on bleomycin-induced acute lung injury and pulmonary fibrosis, Critical care medicine, vol.31, issue.5, pp.1442-1450, 2003.

E. Bendstrup, C. Hyldgaard, M. Agerbaek, C. U. Andersen, and O. Hilberg, No effect of pirfenidone treatment in fulminant bleomycin-induced pneumonitis. Respiratory medicine case reports, vol.12, pp.47-56, 2014.

B. B. Moore and C. M. Hogaboam, Murine models of pulmonary fibrosis. American journal of physiology Lung cellular and molecular physiology, vol.294, pp.152-60, 2008.

A. Moeller, K. Ask, D. Warburton, J. Gauldie, and M. Kolb, The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? The international journal of biochemistry & cell biology, vol.40, pp.362-82, 2008.

F. Chua, J. Gauldie, and L. Gj, Pulmonary fibrosis: searching for model answers. American journal of respiratory cell and molecular biology, vol.33, pp.9-13, 2005.

A. L. Degryse, H. Tanjore, X. C. Xu, V. V. Polosukhin, B. R. Jones et al., Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis, American journal of physiology Lung cellular and molecular physiology, vol.299, issue.4, pp.442-52, 2010.

J. H. Harrison and J. S. Lazo, High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis, The Journal of pharmacology and experimental therapeutics, vol.243, issue.3, pp.1185-94, 1987.

P. J. Sime, Z. Xing, F. L. Graham, K. G. Csaky, and J. Gauldie, Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung, The Journal of clinical investigation, vol.100, issue.4, pp.768-76, 1997.

P. J. Margetts, P. Bonniaud, L. Liu, C. M. Hoff, C. J. Holmes et al., Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum, Journal of the American Society of Nephrology : JASN, vol.16, issue.2, pp.425-461, 2005.

J. Kelley, S. Shull, J. J. Walsh, K. R. Cutroneo, and M. Absher, Auto-induction of transforming growth factor-beta in human lung fibroblasts. American journal of respiratory cell and molecular biology, vol.8, pp.417-441, 1993.

J. Behr, B. Degenkolb, F. Krombach, and C. Vogelmeier, Intracellular glutathione and bronchoalveolar cells in fibrosing alveolitis: effects of N-acetylcysteine. The European respiratory journal, vol.19, pp.906-917, 2002.

M. Waghray, Z. Cui, J. C. Horowitz, I. M. Subramanian, F. J. Martinez et al., Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.19, issue.7, pp.854-860, 2005.

J. Behr, K. Maier, B. Degenkolb, F. Krombach, and C. Vogelmeier, Antioxidative and clinical effects of high-dose N-acetylcysteine in fibrosing alveolitis. Adjunctive therapy to maintenance immunosuppression. American journal of respiratory and critical care medicine, vol.156, pp.1897-901, 1997.

M. Demedts, J. Behr, R. Buhl, U. Costabel, R. Dekhuijzen et al., High-dose acetylcysteine in idiopathic pulmonary fibrosis. The New England journal of medicine, vol.353, pp.2229-2271, 2005.

N. Idiopathic-pulmonary-fibrosis-clinical-research, F. J. Martinez, J. A. De-andrade, K. J. Anstrom, T. E. King et al., Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. The New England journal of medicine, vol.370, pp.2093-101, 2014.

D. Sario, A. Bendia, E. , S. Baroni, G. Ridolfi et al., Effect of pirfenidone on rat hepatic stellate cell proliferation and collagen production, Journal of hepatology, vol.37, issue.5, pp.584-91, 2002.

T. D. Hewitson, K. J. Kelynack, M. G. Tait, M. Martic, C. L. Jones et al., Pirfenidone reduces in vitro rat renal fibroblast activation and mitogenesis, Journal of nephrology, vol.14, issue.6, pp.453-60, 2001.

T. Kakugawa, H. Mukae, T. Hayashi, H. Ishii, K. Abe et al., Pirfenidone attenuates expression of HSP47 in murine bleomycininduced pulmonary fibrosis. The European respiratory journal, vol.24, pp.57-65, 2004.

H. Oku, H. Nakazato, T. Horikawa, Y. Tsuruta, and R. Suzuki, Pirfenidone suppresses tumor necrosis factor-alpha, enhances interleukin-10 and protects mice from endotoxic shock, European journal of pharmacology, vol.446, issue.1-3, pp.167-76, 2002.

Y. Takeda, K. Tsujino, T. Kijima, and A. Kumanogoh, Efficacy and safety of pirfenidone for idiopathic pulmonary fibrosis. Patient preference and adherence, vol.8, pp.361-70, 2014.

K. Choi, K. Lee, S. W. Ryu, M. Im, K. H. Kook et al., Pirfenidone inhibits transforming growth factor-beta1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19. Molecular vision, vol.18, pp.1010-1030, 2012.

P. W. Noble, C. Albera, W. Z. Bradford, U. Costabel, M. K. Glassberg et al., Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials, Lancet, vol.377, issue.9779, pp.1760-1769, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00873255

T. E. King, W. Z. Bradford, S. Castro-bernardini, E. A. Fagan, I. Glaspole et al., A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. The New England journal of medicine, vol.370, pp.2083-92, 2014.

L. Wollin, E. Wex, A. Pautsch, G. Schnapp, K. E. Hostettler et al., Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. The European respiratory journal, vol.45, pp.1434-1479, 2015.

L. Wollin, I. Maillet, V. Quesniaux, and A. Holweg, Antifibrotic and antiinflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis, The Journal of pharmacology and experimental therapeutics, vol.349, issue.2, pp.209-229, 2014.

L. Richeldi, U. Costabel, M. Selman, D. S. Kim, D. M. Hansell et al., Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. The New England journal of medicine, vol.365, pp.1079-87, 2011.

L. Richeldi, R. M. Bois, G. Raghu, A. Azuma, K. K. Brown et al., Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. The New England journal of medicine, vol.370, pp.2071-82, 2014.

L. Richeldi, V. Cottin, R. M. Bois, M. Selman, T. Kimura et al., Nintedanib in patients with idiopathic pulmonary fibrosis: Combined evidence from the TOMORROW and INPULSIS((R)) trials. Respiratory medicine, vol.113, pp.74-83, 2016.

H. V. Woodcock and T. M. Maher, The treatment of idiopathic pulmonary fibrosis, F1000prime reports, vol.6, p.16, 2014.

P. F. Mercer, H. V. Woodcock, J. D. Eley, M. Plate, M. G. Sulikowski et al., Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF, Thorax, vol.71, issue.8, pp.701-712, 2016.

G. S. Horan, S. Wood, V. Ona, D. J. Li, M. E. Lukashev et al., Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. American journal of respiratory and critical care medicine, vol.177, pp.56-65, 2008.

F. M. Ritossa, Experimental Activation of Specific Loci in Polytene Chromosomes of Drosophila, Experimental cell research, vol.35, pp.601-608, 1964.

F. M. Ritossa and R. C. Vonborstel, Chromosome Puffs in Drosophila Induced by Ribonuclease, Science, vol.145, issue.3631, pp.513-517, 1964.

Y. Tamura, T. Torigoe, G. Kutomi, K. Hirata, and N. Sato, New paradigm for intrinsic function of heat shock proteins as endogenous ligands in inflammation and innate immunity. Current molecular medicine, vol.12, pp.1198-206, 2012.

H. H. Kampinga, J. Hageman, M. J. Vos, H. Kubota, R. M. Tanguay et al., Guidelines for the nomenclature of the human heat shock proteins, Cell stress & chaperones, vol.14, issue.1, pp.105-116, 2009.

M. Akerfelt, R. I. Morimoto, and L. Sistonen, Heat shock factors: integrators of cell stress, development and lifespan, Nature reviews Molecular cell biology, vol.11, issue.8, pp.545-55, 2010.

P. Ostling, J. K. Bjork, P. Roos-mattjus, V. Mezger, and L. Sistonen, Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. The Journal of biological chemistry, vol.282, pp.7077-86, 2007.

Y. Zhang, L. Huang, J. Zhang, D. Moskophidis, and M. Nf, Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stressinducible Hsp molecular chaperones, Journal of cellular biochemistry, vol.86, issue.2, pp.376-93, 2002.

R. Conde, Z. R. Belak, M. Nair, O. Carroll, R. F. Ovsenek et al., Modulation of Hsf1 activity by novobiocin and geldanamycin, Biochemistry and cell biology = Biochimie et biologie cellulaire, vol.87, issue.6, pp.845-51, 2009.

S. S. Mambula, M. A. Stevenson, K. Ogawa, and C. Sk, Mechanisms for Hsp70 secretion: crossing membranes without a leader, Methods, vol.43, issue.3, pp.168-75, 2007.

S. Basu, R. J. Binder, R. Suto, K. M. Anderson, and P. K. Srivastava, Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway, International immunology, vol.12, issue.11, pp.1539-1585, 2000.

A. Beach, H. G. Zhang, M. Z. Ratajczak, and K. Ss, Exosomes: an overview of biogenesis, composition and role in ovarian cancer, Journal of ovarian research, vol.7, issue.14, 2014.

A. Murshid, T. J. Borges, and C. Sk, Emerging roles for scavenger receptor SREC-I in immunity, Cytokine, vol.75, issue.2, pp.256-60, 2015.

D. Thuringer, G. Jego, G. Wettstein, O. Terrier, L. Cronier et al., Extracellular HSP27 mediates angiogenesis through Tolllike receptor 3, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.27, issue.10, pp.4169-83, 2013.

F. U. Hartl, A. Bracher, H. , and M. , Molecular chaperones in protein folding and proteostasis, Nature, vol.475, issue.7356, pp.324-356, 2011.

D. Lanneau, G. Wettstein, P. Bonniaud, and C. Garrido, Heat shock proteins: cell protection through protein triage, TheScientificWorldJournal, vol.10, pp.1543-52, 2010.

X. Zhu, X. Zhao, W. F. Burkholder, A. Gragerov, C. M. Ogata et al., Structural analysis of substrate binding by the molecular chaperone DnaK, Science, vol.272, issue.5268, pp.1606-1620, 1996.

K. Liberek, J. Marszalek, D. Ang, C. Georgopoulos, and M. Zylicz, Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK, Proceedings of the National Academy of Sciences of the United States of America, vol.88, issue.7, pp.2874-2882, 1991.

C. Andreasson, J. Fiaux, H. Rampelt, M. P. Mayer, and B. Bukau, Hsp110 is a nucleotideactivated exchange factor for Hsp70, The Journal of biological chemistry, vol.283, issue.14, pp.8877-84, 2008.

M. P. Mayer and B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism, vol.62, pp.670-84, 2005.

P. A. Tsaytler, J. Krijgsveld, S. S. Goerdayal, S. Rudiger, and E. Mr, Novel Hsp90 partners discovered using complementary proteomic approaches, Cell stress & chaperones, vol.14, issue.6, pp.629-667, 2009.

L. H. Pearl and C. Prodromou, Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual review of biochemistry, vol.75, pp.271-94, 2006.

S. Chen and D. F. Smith, Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery, The Journal of biological chemistry, vol.273, issue.52, pp.35194-200, 1998.

M. Taipale, D. F. Jarosz, and S. Lindquist, HSP90 at the hub of protein homeostasis: emerging mechanistic insights, Nature reviews Molecular cell biology, vol.11, issue.7, pp.515-543, 2010.

A. L. Horwich, W. A. Fenton, E. Chapman, and G. W. Farr, Two families of chaperonin: physiology and mechanism. Annual review of cell and developmental biology, vol.23, pp.115-160, 2007.

A. P. Arrigo, J. P. Suhan, and W. Wj, Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein, Molecular and cellular biology, vol.8, issue.12, pp.5059-71, 1988.

A. P. Arrigo, S. Simon, B. Gibert, C. Kretz-remy, M. Nivon et al., Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets, FEBS letters, vol.581, pp.3665-74, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00193391

M. Ehrnsperger, S. Graber, M. Gaestel, and J. Buchner, Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation, The EMBO journal, vol.16, issue.2, pp.221-230, 1997.

D. Stokoe, K. Engel, D. G. Campbell, and P. Cohen, Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins, FEBS letters, vol.313, issue.3, pp.307-320, 1992.

S. Kostenko, M. Johannessen, and U. Moens, PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cellular signalling, vol.21, pp.712-720, 2009.

A. Parcellier, E. Schmitt, S. Gurbuxani, D. Seigneurin-berny, A. Pance et al., HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation, Molecular and cellular biology, vol.23, issue.16, pp.5790-802, 2003.

A. Parcellier, E. Schmitt, M. Brunet, A. Hammann, E. Solary et al., Small heat shock proteins HSP27 and alphaB-crystallin: cytoprotective and oncogenic functions, Antioxidants & redox signaling, vol.7, issue.3-4, pp.404-417, 2005.
DOI : 10.1089/ars.2005.7.404

C. Garrido, A. Fromentin, B. Bonnotte, N. Favre, M. Moutet et al., Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer research, vol.58, pp.5495-5504, 1998.

M. Hino, K. Kurogi, M. A. Okubo, M. Murata-hori, and H. Hosoya, Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells, Biochemical and biophysical research communications, vol.271, issue.1, pp.164-173, 2000.
DOI : 10.1006/bbrc.2000.2553

M. Katoh, J. Koninkx, and U. Schumacher, Heat shock protein expression in human tumours grown in severe combined immunodeficient mice, Cancer letters, vol.161, issue.1, pp.113-133, 2000.
DOI : 10.1016/s0304-3835(00)00601-7

G. P. Li, H. Wang, Y. K. Lai, S. C. Chen, M. C. Lin et al., Proteomic profiling between CNE-2 and its strongly metastatic subclone S18 and functional characterization of HSP27 in metastasis of nasopharyngeal carcinoma, Proteomics, vol.11, issue.14, pp.2911-2931, 2011.

A. P. Arrigo, sHsp as novel regulators of programmed cell death and tumorigenicity, Pathologie-biologie, vol.48, issue.3, pp.280-288, 2000.

D. H. Choi, J. S. Ha, W. H. Lee, J. K. Song, G. Y. Kim et al., Heat shock protein 27 is associated with irinotecan resistance in human colorectal cancer cells, FEBS letters, vol.581, issue.8, pp.1649-56, 2007.
DOI : 10.1016/j.febslet.2007.02.075

H. Zhuang, W. Jiang, W. Cheng, K. Qian, W. Dong et al., Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAILinduced apoptosis, Lung cancer, vol.68, issue.1, pp.27-38, 2010.
DOI : 10.1016/j.lungcan.2009.05.014

S. P. Bhat and N. Cn, alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochemical and biophysical research communications, vol.158, pp.319-344, 1989.
DOI : 10.1016/s0006-291x(89)80215-3

D. I. Markov, A. V. Pivovarova, I. S. Chernik, N. B. Gusev, and L. Di, Small heat shock protein Hsp27 protects myosin S1 from heat-induced aggregation, but not from thermal denaturation and ATPase inactivation, FEBS letters, vol.582, issue.10, pp.1407-1419, 2008.
DOI : 10.1016/j.febslet.2008.03.035

D. A. Macintyre, E. K. Tyson, M. Read, R. Smith, G. Yeo et al., Contraction in human myometrium is associated with changes in small heat shock proteins, Endocrinology, vol.149, issue.1, pp.245-52, 2008.

J. P. Brady, D. L. Garland, D. E. Green, E. R. Tamm, F. J. Giblin et al., AlphaBcrystallin in lens development and muscle integrity: a gene knockout approach, Investigative ophthalmology & visual science, vol.42, issue.12, pp.2924-2958, 2001.

M. C. Kamradt, F. Chen, and C. Vl, The small heat shock protein alpha B-crystallin negatively regulates cytochrome c-and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation, The Journal of biological chemistry, vol.276, pp.16059-63, 2001.

M. C. Kamradt, M. Lu, M. E. Werner, T. Kwan, F. Chen et al., The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. The Journal of biological chemistry, vol.280, pp.11059-66, 2005.

M. C. Kamradt, F. Chen, S. Sam, and C. Vl, The small heat shock protein alpha Bcrystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation, The Journal of biological chemistry, vol.277, issue.41, pp.38731-38737, 2002.
DOI : 10.1074/jbc.m201770200

URL : http://www.jbc.org/content/277/41/38731.full.pdf

Y. W. Mao, H. Xiang, J. Wang, S. Korsmeyer, J. Reddan et al., Human bcl-2 gene attenuates the ability of rabbit lens epithelial cells against H2O2-induced apoptosis through down-regulation of the alpha B-crystallin gene, The Journal of biological chemistry, vol.276, issue.46, pp.43435-43480, 2001.

L. E. Morrison, H. E. Hoover, D. J. Thuerauf, and G. Cc, Mimicking phosphorylation of alphaB-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis, Circulation research, vol.92, issue.2, pp.203-214, 2003.

Y. W. Mao, J. P. Liu, H. Xiang, and L. Dw, Human alphaA-and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis, Cell death and differentiation, vol.11, issue.5, pp.512-538, 2004.
DOI : 10.1038/sj.cdd.4401384

URL : https://www.nature.com/articles/4401384.pdf

S. Liu, J. Li, Y. Tao, and X. X. , Small heat shock protein alphaB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochemical and biophysical research communications, vol.354, pp.109-123, 2007.
DOI : 10.1016/j.bbrc.2006.12.152

P. Verschuure, Y. Croes, I. Van-den, R. A. Quinlan, W. W. De-jong et al., Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition, Journal of molecular and cellular cardiology, vol.34, issue.2, pp.117-145, 2002.

C. Garrido, Size matters: of the small HSP27 and its large oligomers, Cell death and differentiation, vol.9, issue.5, pp.483-488, 2002.

A. Ciechanover, The ubiquitin-proteasome pathway: on protein death and cell life, The EMBO journal, vol.17, issue.24, pp.7151-60, 1998.

W. C. Boelens, Y. Croes, D. Jong, and W. W. , Interaction between alphaB-crystallin and the human 20S proteasomal subunit C8/alpha7, Biochimica et biophysica acta, vol.1544, issue.1-2, pp.311-320, 2001.

J. Den-engelsman, V. Keijsers, W. W. De-jong, and W. C. Boelens, The small heat-shock protein alpha B-crystallin promotes FBX4-dependent ubiquitination, The Journal of biological chemistry, vol.278, issue.7, pp.4699-704, 2003.

K. Tanaka, Y. Tanaka, T. Namba, A. Azuma, and T. Mizushima, Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice, Biochemical pharmacology, vol.80, issue.6, pp.920-951, 2010.

T. Namba, K. Tanaka, T. Hoshino, A. Azuma, and T. Mizushima, Suppression of expression of heat shock protein 70 by gefitinib and its contribution to pulmonary fibrosis, PloS one, vol.6, issue.11, p.27296, 2011.

C. H. Yun, S. Y. Yoon, T. T. Nguyen, H. Y. Cho, T. H. Kim et al., Geldanamycin inhibits TGF-beta signaling through induction of Hsp70. Archives of biochemistry and biophysics, vol.495, pp.8-13, 2010.

Y. Zhou, H. Mao, S. Li, S. Cao, Z. Li et al., HSP72 inhibits Smad3 activation and nuclear translocation in renal epithelial-tomesenchymal transition, Journal of the American Society of Nephrology : JASN, vol.21, issue.4, pp.598-609, 2010.

W. F. Cai, X. W. Zhang, H. M. Yan, Y. G. Ma, X. X. Wang et al., Intracellular or extracellular heat shock protein 70 differentially regulates cardiac remodelling in pressure overload mice, Cardiovascular research, vol.88, issue.1, pp.140-149, 2010.

H. Noh, H. J. Kim, M. R. Yu, W. Y. Kim, J. Kim et al., Heat shock protein 90 inhibitor attenuates renal fibrosis through degradation of transforming growth factor-beta type II receptor. Laboratory investigation; a journal of technical methods and pathology, vol.92, pp.1583-96, 2012.

M. Korfei, S. Schmitt, C. Ruppert, I. Henneke, P. Markart et al., Comparative proteomic analysis of lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and lung transplant donor lungs, Journal of proteome research, vol.10, issue.5, pp.2185-205, 2011.

T. Kakugawa, S. Yokota, Y. Ishimatsu, T. Hayashi, S. Nakashima et al., Serum heat shock protein 47 levels are elevated in acute exacerbation of idiopathic pulmonary fibrosis, Cell stress & chaperones, vol.18, issue.5, pp.581-90, 2013.

T. Kakugawa, H. Mukae, Y. Hishikawa, H. Ishii, N. Sakamoto et al., Localization of HSP47 mRNA in murine bleomycin-induced pulmonary fibrosis, Virchows Arch, vol.456, issue.3, pp.309-324, 2010.

M. Amenomori, H. Mukae, N. Sakamoto, T. Kakugawa, T. Hayashi et al., HSP47 in lung fibroblasts is a predictor of survival in fibrotic nonspecific interstitial pneumonia. Respiratory medicine, vol.104, pp.895-901, 2010.

S. Hagiwara, H. Iwasaka, S. Matsumoto, and T. Noguchi, Antisense oligonucleotide inhibition of heat shock protein (HSP) 47 improves bleomycin-induced pulmonary fibrosis in rats, Respiratory research, vol.8, p.37, 2007.

S. Nakayama, H. Mukae, N. Sakamoto, T. Kakugawa, S. Yoshioka et al., Pirfenidone inhibits the expression of HSP47 in TGFbeta1-stimulated human lung fibroblasts. Life sciences, vol.82, pp.210-217, 2008.

R. Vargha, T. O. Bender, A. Riesenhuber, M. Endemann, K. Kratochwill et al., Effects of epithelial-to-mesenchymal transition on acute stress response in human peritoneal mesothelial cells, Nephrol Dial Transplant, vol.23, issue.11, pp.3494-500, 2008.

A. Vidyasagar, S. Reese, Z. Acun, D. Hullett, and A. Djamali, HSP27 is involved in the pathogenesis of kidney tubulointerstitial fibrosis, American journal of physiology, vol.295, issue.3, pp.707-723, 2008.

G. Wettstein, P. S. Bellaye, M. Kolb, A. Hammann, B. Crestani et al., Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.27, issue.4, pp.1549-60, 2013.

R. Cherneva, D. Petrov, O. Georgiev, Y. Slavova, D. Toncheva et al., Expression profile of the small heat-shock protein alpha-B-crystallin in operated-on non-small-cell lung cancer patients: clinical implication. European journal of cardio-thoracic surgery : official journal of the European Association for Cardiothoracic Surgery, vol.37, pp.44-50, 2010.

R. V. Cherneva, O. B. Georgiev, D. S. Petrova, N. L. Trifonova, M. Stamenova et al., The role of small heat-shock protein alphaB-crystalline (HspB5) in COPD pathogenesis, International journal of chronic obstructive pulmonary disease, vol.7, pp.633-673, 2012.

A. Lang, L. W. Schrum, R. Schoonhoven, S. Tuvia, J. A. Solis-herruzo et al., Expression of small heat shock protein alphaB-crystallin is induced after hepatic stellate cell activation, American journal of physiology Gastrointestinal and liver physiology, vol.279, issue.6, pp.1333-1375, 2000.
DOI : 10.1152/ajpgi.2000.279.6.g1333

M. Van-de-bovenkamp, G. M. Groothuis, D. K. Meijer, and P. Olinga, Liver slices as a model to study fibrogenesis and test the effects of anti-fibrotic drugs on fibrogenic cells in human liver, Toxicology in vitro : an international journal published in association with BIBRA, vol.22, issue.3, pp.771-779, 2008.

A. L. Yu, R. Fuchshofer, M. Birke, S. G. Priglinger, K. H. Eibl et al., Hypoxia/reoxygenation and TGF-beta increase alphaB-crystallin expression in human optic nerve head astrocytes, Experimental eye research, vol.84, issue.4, pp.694-706, 2007.
DOI : 10.1016/j.exer.2006.12.008

U. Welge-lussen, C. A. May, M. Eichhorn, H. Bloemendal, L. et al., AlphaBcrystallin in the trabecular meshwork is inducible by transforming growth factor-beta. Investigative ophthalmology & visual science, vol.40, pp.2235-2276, 1999.

X. Y. Huang, A. W. Ke, G. M. Shi, X. Zhang, C. Zhang et al., alphaB-crystallin complexes with 14-3-3zeta to induce epithelialmesenchymal transition and resistance to sorafenib in hepatocellular carcinoma, Hepatology, 2013.
DOI : 10.1002/hep.26255

URL : https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.26255

I. Y. Adamson, J. Bakowska, and D. H. Bowden, Mesothelial cell proliferation: a nonspecific response to lung injury associated with fibrosis. American journal of respiratory cell and molecular biology, vol.10, pp.253-261, 1994.
DOI : 10.1165/ajrcmb.10.3.7509611

I. Lua, Y. Li, L. S. Pappoe, and K. Asahina, Myofibroblastic Conversion and Regeneration of Mesothelial Cells in Peritoneal and Liver Fibrosis. The American journal of pathology, vol.185, pp.3258-73, 2015.

A. Kenani, G. Lamblin, and J. P. Henichart, A convenient method for the cleavage of the D-mannosyl-L-gulose disaccharide from bleomycin-A2. Carbohydrate research, vol.177, pp.81-90, 1988.

S. Brahim, A. Bettaieb, and K. A. , Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, vol.37, pp.352-359, 2008.

A. Kenani, C. Bailly, R. Houssin, and J. P. Henichart, Comparative subcellular distribution of the copper complexes of bleomycin-A2 and deglycobleomycin-A2. Anti-cancer drugs, vol.5, pp.199-201, 1994.

G. Raghu, H. R. Collard, J. J. Egan, F. J. Martinez, J. Behr et al., An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American journal of respiratory and critical care medicine, vol.183, pp.788-824, 2011.

B. R. Schroeder, M. I. Ghare, C. Bhattacharya, R. Paul, Z. Yu et al., The disaccharide moiety of bleomycin facilitates uptake by cancer cells, Journal of the American Chemical Society, vol.136, issue.39, pp.13641-56, 2014.
DOI : 10.1021/ja507255g

URL : https://doi.org/10.1021/ja507255g

Z. Yu, R. M. Schmaltz, T. C. Bozeman, R. Paul, M. J. Rishel et al., Selective tumor cell targeting by the disaccharide moiety of bleomycin, Journal of the American Chemical Society, vol.135, issue.8, pp.2883-2889, 2013.

, Online supplemental methods Human tissue samples for histology Lung tissue samples were obtained by open lung biopsy (INSERM U700, Paris). IPF were diagnosed according to the

, Paraformaldehyde-fixed, paraffin-embedded sections of human lung tissue were pretreated in citrate buffer pH6 for 40 minutes for antigen retrieval. Sections were then incubated with 1B6.1-3G4 anti-?B-crystallin monoclonal antibody (Enzo Life Sciences AG, ), and with anti-calretinin antibody

, Positive cells were revealed using the Vectastain ABC-alkaline phosphatase kit system (Vector Laboratories

, The TGF-?1 cDNA has cysteine to serine mutations at position 223 and 225, rendering the expressed TGF-?1 biologically active. The control vector (AdDL) with no insert in the E1 region was produced in the same way (26) Animal procedures SV129 Wild-Type (WT) mice (Charles River, Saint Germainsur-l'Arbresle, France) and SV129 Knock-Out (KO) mice for the ?B-crystallin gene were housed in pathogen-free conditions. The adjacent gene HSPB2, which islocated in the 5' flanking region of the ?Bcrystallin gene in a head-to-head manner with an intergenic sequence of less than 1 kb,was also knocked-out in those mice (28). Mouse food and water were provided ad libitum. The animals were treated according to the guidelines of the Ministère de la Recherche et de la Technologie, The construction of adenoviral vectors has been described previously (26, 27). Briefly, TGF-?1 cDNA was cloned into a shuttle vector downstream a human CMV promoter and cotransfected with a shuttle plasmid in 293 cells

. Bourgogne, To induce pleural/subpleural fibrosis, adenovectors and bleomycin/carbon particles administrations were performed by intrapleural injection of 100 µl of sterile NaCl 0

. Addl, Adenovectors were administered, without any surgery, by intrapleural injection on the right side (6th intercostal space) with a 20-gauge needle, with animals in a left lateral decubitus position. Pleural lavage fluid (PLF) was collected as previously described (29) and stored at-20°C after cell count. ?-galactosidase staining ?-galactosidase staining was performed as previously described (7). Cytochemical staining for ?-galactosidase was performed on samples obtainedfrom animals after intrapleural injection of AdLacZ/AdTGF-?1 or AdLacZ/AdDL. After 1 h in fixative (2% ferrous cyanide,potassium ferric cyanide, magnesium chloride

. Sigma-aldrich, . St, M. O. Louis, and U. ). , Samples were stored in 70% ethanol and then paraffin-processed and-embedded

, Five-micrometer sections were counterstained with nuclearfast red. Collagen quantification (sircol and histomorphometry)

, Histomorphometric assay-The amount of collagen in paraffin-embedded tissue sections was quantified by staining with Picrosirius Red. The percentage of emission (reflecting the percentage of collagen) of the pleural, subpleural and parenchymal areas were quantified (morphometry software from Histolab/Microvision Instruments, Evry, France) as previously described(8). Briefly, collagen intensity in the pleura was measured within a rectangle (constant length of100 mm

, Cells were then transfected with ?B-crystallin siRNA or a Scramble SiRNA and treated rTGF-?1 for 48h or left untreated. Pictures were taken immediately after the scratch and 48h after rTGF-?1 treatment (Zeiss,Oberkochen, Germany), Undergraduate vocational diploma. Institute of Technology, 2007.

, MRes-UMR INSERM U866-« Lipids, 2012.

O. Burgy, P. S. Bellaye, S. Causse, G. Beltramo, G. Wettstein et al., France Role of HSP27 in pulmonary fibrosis and in epithelial-to-mesenchymal transition-Language : French: mother tongue, English: fluent, German: basic knowledge-Certificate for animal experimentation (FELASA C level equivalent), Softwares : office, flow cytometry software (Cellquest, Diva, FlowJo) Publications, 2011.

O. Burgy, G. Wettstein, P. S. Bellaye, N. Decologne, C. Racoeur et al., Deglycosylated bleomycin has the antitumor activity of bleomycin without pulmonary toxicity, Science Translational Medicine, vol.8, issue.326, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512940

O. Burgy, P. Bellaye, J. Colas, A. Fabre, J. Marchal-somme et al., The small Heat Shock Protein ?B-crystallin is a key player for Smad4's nuclear localisation: impact on pulmonary fibrosis, Lung Science Conference). March, 10-13 th 2016. Estoril, Portugal-MPLC (Munich Pittsburgh Lung Conference, vol.52, p.500, 2012.

G. Wettstein, O. Burgy, V. Besnard, J. A. Colas, J. Causse et al., Novel insights into alveolar and bronchial epithelial cell injury and repair" and "Common mechanisms in lung development and fibrosis".-Student supervision : 1 PhD student, 2 master students, Since 2013 : Organization of student presentations at the INSERM UMR866. Autres publications issues des travaux de thèse-Bellaye PS, vol.232, pp.458-72, 2013.

P. S. Bellaye, O. Burgy, S. Causse, C. Garrido, and P. Bonniaud, Heat shock proteins in fibrosis and wound healing: good or evil? Pharmacol Ther, vol.143, pp.119-151, 2014.

P. S. Bellaye, O. Burgy, J. Colas, S. Causse, C. Garrido et al., Small Heat Shock Proteins and Fibrosis. The Big Book on Small Heat Shock Proteins (Part III), of the series Heat Shock Proteins pp, vol.8, pp.315-334, 2015.