, World Health Organization, 2014.

Z. Bozdech, he transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum, PLoS Biol, vol.1, p.5, 2003.

D. Silva and E. K. , Speciic DNA-binding by apicomplexan AP2 transcription factors, Proc. Natl. Acad. Sci. USA 105, pp.8393-8401, 2008.

L. H. Freitas-junior, Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites, Cell, vol.121, pp.25-36, 2005.

J. J. Lopez-rubio, L. Mancio-silva, and A. Scherf, Genome-wide Analysis of Heterochromatin Associates Clonally Variant Gene Regulation with Perinuclear Repressive Centers in Malaria Parasites, Cell Host Microbe, vol.5, pp.179-190, 2009.

A. M. Salcedo-amaya, Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum, Proc. Natl. Acad. Sci. USA, vol.106, pp.9655-60, 2009.
DOI : 10.1073/pnas.0902515106

URL : http://www.pnas.org/content/106/24/9655.full.pdf

J. L. Shock, K. F. Fischer, and J. L. Derisi, Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle, Genome Biol, vol.8, p.134, 2007.

A. M. Gunasekera, Widespread distribution of antisense transcripts in the Plasmodium falciparum genome, Mol. Biochem. Parasitol, vol.136, pp.35-42, 2004.

A. Cortés, Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion, PLoS Pathog, vol.3, p.107, 2007.

B. F. Kafsack, A transcriptional switch underlies commitment to sexual development in malaria parasites, Nature, vol.507, pp.248-52, 2014.

L. Jiang, PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum, Nature, vol.499, pp.223-230, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00842612

M. B. Trelle, A. M. Salcedo-amaya, A. M. Cohen, H. G. Stunnenberg, and O. N. Jensen, Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum, J. Proteome Res, vol.8, pp.3439-50, 2009.

E. G. Dastidar, Comprehensive Histone Phosphorylation Analysis and Identiication of Pf14-3-3 Protein as a Histone H3 Phosphorylation Reader in Malaria Parasites, PLoS One, vol.8, p.53179, 2013.

R. Hamamoto, V. Saloura, and Y. Nakamura, Critical roles of non-histone protein lysine methylation in human tumorigenesis, Nat. Rev. Cancer, vol.15, pp.110-134, 2015.

R. A. Copeland, M. E. Solomon, and V. M. Richon, Protein methyltransferases as a target class for drug discovery, Nat. Rev. Drug Discov, vol.8, pp.724-732, 2009.
DOI : 10.1038/nrd2974

, Scientific RepoRts |, vol.6

N. A. Malmquist, T. A. Moss, S. Mecheri, A. Scherf, and M. J. Fuchter, Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum, Proc. Natl. Acad. Sci, vol.109, pp.16708-16713, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01103641

S. Sundriyal, Development of Diaminoquinazoline Histone Lysine Methyltransferase Inhibitors as Potent Blood-Stage Antimalarial Compounds, Chem. Med. Chem, vol.9, pp.2360-2373, 2014.

N. A. Malmquist, Histone Methyltransferase Inhibitors Are Orally Bioavailable, Fast-Acting Molecules with Activity against Diferent Species Causing Malaria in Humans, Antimicrob. Agents Chemother, vol.59, pp.950-959, 2015.

T. Jenuwein, G. Laible, R. Dorn, and G. Reuter, SET domain proteins modulate chromatin domains in eu-and heterochromatin, Cell. Mol. Life Sci, vol.54, pp.80-93, 1998.
DOI : 10.1007/s000180050127

K. K. Biggar, S. S. Li, and .. , Non-histone protein methylation as a regulator of cellular signalling and function, Nat. Rev. Mol. Cell Biol, vol.16, pp.5-17, 2015.

L. L. Cui, Q. Fan, L. L. Cui, and J. Miao, Histone lysine methyltransferases and demethylases in Plasmodium falciparum, Int. J. Parasitol, vol.38, pp.1083-1097, 2008.
DOI : 10.1016/j.ijpara.2008.01.002

URL : http://europepmc.org/articles/pmc4566933?pdf=render

J. C. Volz, PfSET10, a Plasmodium falciparum Methyltransferase, Maintains the Active var Gene in a Poised State during Parasite Division, Cell Host Microbe, vol.11, pp.7-18, 2012.

H. G. Chin, Automethylation of G9a and its implication in wider substrate speciicity and HP1 binding, Nucleic Acids Res, vol.35, pp.7313-7323, 2007.

D. Patnaik, Substrate speciicity and kinetic mechanism of mammalian G9a histone H3 methyltransferase, J. Biol. Chem, vol.279, pp.53248-58, 2004.

P. Rathert, X. Cheng, and A. Jeltsch, Continuous enzymatic assay for histone lysine methyltransferases, Biotechniques, vol.43, pp.602-608, 2007.

B. Xiao, J. R. Wilson, and S. J. Gamblin, SET domains and histone methylation, Curr. Opin. Struct. Biol, vol.13, pp.699-705, 2003.

J. Fang, Puriication and functional characterization of SET8, a nucleosomal histone H4-lysine 20-speciic methyltransferase, Curr. Biol, vol.12, pp.1086-1099, 2002.

J. Min, X. Zhang, X. Cheng, S. I. Grewal, and R. Xu, Structure of the SET domain histone lysine methyltransferase Clr4, Nat. Struct. Biol, vol.9, pp.828-832, 2002.

S. Rea, Regulation of chromatin structure by site-speciic histone H3 methyltransferases, Nature, vol.406, pp.593-599, 2000.

M. Lachner, D. O'carroll, S. Rea, K. Mechtler, and T. Jenuwein, Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins, Nature, vol.410, pp.116-120, 2001.
DOI : 10.1038/35065132

E. L. Gerace, M. Halic, and D. Moazed, he methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation, Mol. Cell, vol.39, pp.360-72, 2010.
DOI : 10.1016/j.molcel.2010.07.017

URL : https://doi.org/10.1016/j.molcel.2010.07.017

C. Flueck, Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors, PLoS Pathog, vol.5, p.1000569, 2009.
DOI : 10.1371/journal.ppat.1000569

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1000569&type=printable

J. Volz, Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum, Int. J. Parasitol, vol.40, pp.109-130, 2010.
DOI : 10.1016/j.ijpara.2009.09.002

C. Y. Botté, Atypical lipid composition in the puriied relict plastid (apicoplast) of malaria parasites, Proc. Natl. Acad. Sci. USA, vol.110, pp.7506-7517, 2013.

K. Kaiser, N. Camargo, and S. H. Kappe, Transformation of sporozoites into early exoerythrocytic malaria parasites does not require host cells, J. Exp. Med, vol.197, pp.1045-50, 2003.

C. Doerig, J. C. Rayner, A. Scherf, and A. B. Tobin, Post-translational protein modiications in malaria parasites, Nat. Rev. Microbiol, vol.13, pp.160-172, 2015.

R. C. Trievel, B. M. Beach, L. M. Dirk, R. L. Houtz, and J. H. Hurley, Structure and catalytic mechanism of a SET domain protein methyltransferase, Cell, vol.111, pp.91-103, 2002.

B. Xiao, Speciicity and mechanism of the histone methyltransferase Pr-Set7, Genes Dev, vol.19, pp.1444-54, 2005.

L. Dembélé, Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures, Nat. Med, vol.20, pp.307-312, 2014.

A. Loyola, he HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin, EMBO Rep, vol.10, pp.769-775, 2009.
DOI : 10.1038/embor.2009.90

URL : http://embor.embopress.org/content/10/7/769.full.pdf

F. Alvarez, Sequential establishment of marks on soluble histones H3 and H4, J. Biol. Chem, vol.286, pp.17714-17721, 2011.
DOI : 10.1074/jbc.m111.223453

URL : http://www.jbc.org/content/286/20/17714.full.pdf

A. Loyola, T. Bonaldi, D. Roche, A. Imhof, and G. Almouzni, PTMs on H3 Variants before Chromatin Assembly Potentiate heir Final Epigenetic State, Mol. Cell, vol.24, pp.309-316, 2006.
DOI : 10.1016/j.molcel.2006.08.019

URL : https://doi.org/10.1016/j.molcel.2006.08.019

J. Newman, Novel bufer systems for macromolecular crystallization, Acta Crystallogr. D. Biol. Crystallogr, vol.60, pp.610-612, 2004.
DOI : 10.1107/s0907444903029640

H. Stecher, Biocatalytic Friedel-Crats Alkylation Using Non-natural Cofactors, Angew. Chemie Int. Ed, vol.48, pp.9546-9548, 2009.

G. Leroy, A quantitative atlas of histone modiication signatures from human cancer cells, Epigenetics Chromatin, vol.6, p.20, 2013.

T. Bartke, J. Borgel, and P. Dimaggio, Proteomics in epigenetics: new perspectives for cancer research, Brief. Funct. Genomics, vol.12, pp.205-223, 2013.

M. Ghorbal, M. Gorman, C. R. Macpherson, R. M. Martins, and A. Scherf, Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system, Nat. Biotechnol, vol.2, 2014.

C. R. Macpherson and A. Scherf, Flexible guide-RNA design for CRISPR applications using Protospacer Workbench, Nat. Biotechnol, vol.33, pp.805-811, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01226493

K. W. Deitsch, Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes, Nucleic Acids Res, vol.29, pp.850-853, 2001.

M. Lanzer, D. De-bruin, and J. Ravetch, A sequence element associated with the Plasmodium falciparum KAHRP gene is the site of developmentally regulated protein-DNA interactions, Nucleic Acids Res, vol.20, pp.3051-3057, 1992.

J. Guizetti, R. M. Martins, S. Guadagnini, A. Claes, and A. Scherf, Nuclear pores and perinuclear expression sites of var and ribosomal DNA genes correspond to physically distinct regions in Plasmodium falciparum, Eukaryot. Cell, vol.12, pp.697-702, 2013.

V. Soulard, Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice, Nat. Commun, vol.6, p.7690, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01207321

, REFERENCE 1. WHO. World Malaria Report, 2015.

Z. Bozdech, M. Llinás, B. L. Pulliam, E. D. Wong, J. Zhu et al., The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum, PLoS Biol, vol.1, issue.1, pp.85-100, 2003.

B. J. Foth, N. Zhang, B. K. Chaal, S. K. Sze, P. R. Preiser et al., Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum, Mol Cell Proteomics, vol.10, issue.8, 2011.

C. Doerig, J. C. Rayner, A. Scherf, and A. B. Tobin, Post-translational protein modifications in malaria parasites, Nat Rev Microbiol, vol.13, issue.3, pp.160-172, 2015.

J. Guizetti and A. Scherf, Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum, Cell Microbiol, 2013.

A. Scherf, J. J. Lopez-rubio, and L. Riviere, Antigenic variation in Plasmodium falciparum, Annu Rev Microbiol, vol.62, issue.2, pp.445-470, 2008.

A. M. Salcedo-amaya, M. A. Van-driel, and B. T. Alako, Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum, Proc Natl Acad Sci U S A, vol.106, issue.24, pp.9655-9660, 2009.

M. B. Trelle, A. M. Salcedo-amaya, A. M. Cohen, H. G. Stunnenberg, and O. N. Jensen, Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum, J Proteome Res, vol.8, issue.7, pp.3439-3450, 2009.

A. Saraf, S. Cervantes, and E. M. Bunnik, Dynamic and combinatorial landscape of histone modifications during the intra-erythrocytic developmental cycle of the malaria parasite, J Proteome Res, 2016.

J. J. Lopez-rubio, A. M. Gontijo, M. C. Nunes, N. Issar, H. Rivas et al., 5??? Flanking Region of Var Genes Nucleate Histone Modification Patterns Linked To Phenotypic Inheritance of Virulence Traits in Malaria Parasites, Mol Microbiol, vol.66, issue.6, pp.1296-1305, 2007.

J. J. Lopez-rubio, L. Mancio-silva, and A. Scherf, Genome-wide Analysis of Heterochromatin Associates Clonally Variant Gene Regulation with Perinuclear Repressive Centers in Malaria Parasites, Cell Host Microbe, vol.5, issue.2, pp.179-190, 2009.

T. Chookajorn, R. Dzikowski, and M. Frank, Epigenetic memory at malaria virulence genes, Proc Natl Acad Sci, vol.104, issue.3, pp.899-902, 2007.

N. A. Malmquist, T. A. Moss, S. Mecheri, A. Scherf, and M. J. Fuchter, Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum, Proc Natl Acad Sci, vol.109, issue.41, pp.16708-16713, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01103641

S. Sundriyal and J. Caron, Development of Diaminoquinazoline Histone Lysine Methyltransferase Inhibitors as Potent Blood-Stage Antimalarial Compounds, ChemMedChem, vol.9, issue.10, pp.2360-2373, 2014.

N. A. Malmquist, S. Sundriyal, and J. Caron, Histone methyltransferase inhibitors are orally bioavailable, fast-Acting molecules with activity against different species causing malaria in humans, Antimicrob Agents Chemother, 2015.
DOI : 10.1128/aac.04419-14

URL : http://europepmc.org/articles/pmc4335868?pdf=render

L. Demb, . Franetich-ois, and A. Lorthiois, Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures, 2014.

L. L. Cui, Q. Fan, L. L. Cui, and J. Miao, Histone lysine methyltransferases and demethylases in Plasmodium falciparum, Int J Parasitol, vol.38, issue.10, pp.1083-1097, 2008.
DOI : 10.1016/j.ijpara.2008.01.002

URL : http://europepmc.org/articles/pmc4566933?pdf=render

L. Jiang, J. Mu, and Q. Zhang, PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum, Nature, p.499, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00842612

J. Volz, T. G. Carvalho, and S. A. Ralph, Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum, Int J Parasitol, 2010.
DOI : 10.1016/j.ijpara.2009.09.002

J. C. Volz, R. Bártfai, and M. Petter, Maintains the Active var Gene in a Poised State during Parasite Division. Cell Host Microbe, a Plasmodium falciparum Methyltransferase, 2012.
DOI : 10.1016/j.chom.2011.11.011

URL : https://doi.org/10.1016/j.chom.2011.11.011

P. B. Chen, S. Ding, and G. Zanghì, Plasmodium falciparum PfSET7: enzymatic characterization and cellular localization of a novel protein methyltransferase in sporozoite, liver and erythrocytic stage parasites, Sci Rep, vol.6, p.21802, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01282028

E. G. Dastidar, G. Dayer, and Z. M. Holland, Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway, BMC Biol, vol.10, issue.1, p.5, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00677275

S. S. Vembar, C. R. Macpherson, O. Sismeiro, J. Coppée, and A. Scherf, The PfAlba1 RNA-binding protein is an important regulator of translational timing in Plasmodium falciparum blood stages, Genome Biol, vol.16, issue.1, p.212, 2015.

A. R. Sannella, A. Olivieri, and L. Bertuccini, Specific tagging of the egress-related osmiophilic bodies in the gametocytes of Plasmodium falciparum, Malar J, vol.11, issue.1, p.88, 2012.

P. D. Gottlieb and R. J. Sims, Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis, Nat Genet, vol.31, pp.25-32, 2002.

R. Hamamoto, Y. Furukawa, and M. Morita, SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells, Nat Cell Biol, vol.6, issue.8, pp.731-740, 2004.

F. P. Silva, R. Hamamoto, M. Kunizaki, M. Tsuge, Y. Nakamura et al., Enhanced methyltransferase activity of SMYD3 by the cleavage of its N-terminal region in human cancer cells, Oncogene, vol.27, pp.2686-2692, 2008.

P. K. Mazur, O. Gozani, J. Sage, and N. Reynoird, Novel insights into the oncogenic function of the SMYD3 lysine methyltransferase, Transl Cancer Res, vol.5, issue.3, pp.330-333, 2016.

, Table 1 List of genes with PfSET6 occupancy as determined by MACS2 peak calling analysis, Gene ID

, PF3D7_0101100 Pf3D7_01_v3: 69, vol.417, pp.304-70

, PF3D7_0101200 Pf3D7_01_v3: 71, vol.426, pp.624-72

, PF3D7_0101400 Pf3D7_01_v3: 75, vol.809, pp.982-76

, PF3D7_0101500 Pf3D7_01_v3: 78, vol.891, pp.241-79

, 28S ribosomal RNA PF3D7_0113000 Pf3D7_01_v3: 487, vol.382, pp.892-490

, PF3D7_0213800 Pf3D7_02_v3: 558,585-560,594 (+) conserved Plasmodium protein, unknown function PF3D7_0217500 Pf3D7_02_v3: 720, vol.661, pp.437-722

, 054 (+) erythrocyte membrane protein 1 (PfEMP1, PF3D7_0223300 Pf3D7_02_v3: 909, pp.350-911

, PF3D7_0300300 Pf3D7_03_v3: 49, vol.152, pp.772-51

, Plasmodium exported protein, unknown function, fragment PF3D7_0310200 Pf3D7_03_v3: 427,290-440,942 (+) phd finger protein, putative PF3D7_0324000 Pf3D7_03_v3: 1,005, vol.58, pp.952-953

, PF3D7_0324200 Pf3D7_03_v3: 1,010, vol.011, pp.342-343

, Plasmodium protein, unknown function PF3D7_0413100 Pf3D7_04_v3: 591, vol.519, p.1

, PF3D7_0420700 Pf3D7_04_v3: 935, vol.875, p.1

, PF3D7_0420900 Pf3D7_04_v3: 946, vol.773, p.1

, PF3D7_0421000 Pf3D7_04_v3: 956,849-956,949 (+) unspecified product PF3D7_0421100 Pf3D7_04_v3: 958, vol.611, p.1

, PF3D7_0504700 Pf3D7_05_v3: 180, vol.470, pp.421-187

, 199 (+) 28S ribosomal RNA PF3D7_0600400 Pf3D7_06_v3, PF3D7_0532000 Pf3D7_05_v3: 1,292, vol.296, p.1

, PF3D7_0600500 Pf3D7_06_v3: 26, vol.830, pp.557-584

, Plasmodium protein, unknown function PF3D7_0631200 Pf3D7_06_v3: 1,313, vol.662, pp.708-709

, PF3D7_0631300 Pf3D7_06_v3: 1,316, vol.317, pp.873-874

, PF3D7_0631500 Pf3D7_06_v3: 1, vol.321, p.94

, 918 (+) rifin, pseudogene PF3D7_0701000 Pf3D7_07_v3: 52,086-53,636 (+) erythrocyte membrane protein 1 (PfEMP1), pseudogene PF3D7_0701300 Pf3D7_07_v3: 62, vol.327, pp.220-63

, PF3D7_0701400 Pf3D7_07_v3: 65, vol.854, pp.718-66

, PF3D7_0701700 Pf3D7_07_v3: 72, vol.325, pp.477-73

, 357 (+) 28S ribosomal RNA PF3D7_0732800 Pf3D7_07_v3: 1,410,435-1,412,231 (+) erythrocyte membrane protein 1 (PfEMP1, PF3D7_0726000 Pf3D7_07_v3: 1,086, vol.090, pp.570-571

, 086 (+) DNA/RNA-binding protein Alba 1 (ALBA1), PF3D7_0814200 Pf3D7_08_v3: 687, pp.340-688

, Plasmodium protein, unknown function PF3D7_0831800 Pf3D7_08_v3: 1, vol.888, pp.236-237

, Plasmodium membrane protein, unknown function PF3D7_1027000 Pf3D7_10_v3: 1, PF3D7_0924500 Pf3D7_09_v3: 993, vol.675, pp.523-524

, 804 (+) liver stage antigen 1 (LSA1), PF3D7_1036400 Pf3D7_10_v3: 1,436, vol.439, pp.316-317

, 825 (+) gametocyte-specific protein, PF3D7_1038400 Pf3D7_10_v3: 1,519, vol.547, pp.11-12

, Plasmodium exported protein, unknown function, pseudogene PF3D7_1039600 Pf3D7_10_v3: 1,590, vol.576, p.973

, PF3D7_1039800 Pf3D7_10_v3: 1, vol.594, pp.503-504

, PF3D7_1039900 Pf3D7_10_v3: 1,596, vol.597, p.605

, RESA-like protein, PF3D7_1100900 Pf3D7_11_v3: 60, vol.769, pp.928-61

, +) Plasmodium exported protein, unknown function, pseudogene PF3D7_1108100 Pf3D7_11_v3: 356,083-360,434 (+) conserved Plasmodium protein, unknown function PF3D7_1124000 Pf3D7_11_v3: 948,591-950,707 (+) endoplasmic reticulum oxidoreductin, vol.104, pp.300-104

, 150 (+) 18S ribosomal RNA PF3D7_1220900 Pf3D7_12_v3: 831, PF3D7_1148600 Pf3D7_11_v3: 1,925, vol.933, pp.252-832

, 541 (+) GTP cyclohydrolase I (GCH1), PF3D7_1224000 Pf3D7_12_v3: 974, pp.372-975

, (+) stevor PF3D7_1300400 Pf3D7_13_v3: 47, vol.212, pp.583-631

, EMP1-trafficking protein (PTP6), vol.112, pp.792-113

, PF3D7_1318300 Pf3D7_13_v3: 753,910-759,432 (+) conserved Plasmodium protein, unknown function PF3D7_1327000 Pf3D7_13_v3: 1, vol.134, pp.832-833

, 517 (+) DNA/RNA-binding protein Alba 2 (ALBA2), PF3D7_1346300 Pf3D7_13_v3: 1,849, vol.850, pp.528-529

, 154 (+) 18S ribosomal RNA PF3D7_1371300 Pf3D7_13_v3: 2,802, vol.802, p.159

J. Guizetti and A. Scherf, Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum, Cell Microbiol, vol.15, pp.718-726, 2013.

, WHO. Fact Sheet: World Malaria Report, 2015.

M. Prudêncio, A. Rodriguez, and M. M. Mota, The silent path to thousands of merozoites: the Plasmodium liver stage, Nat Rev Microbiol, vol.4, pp.849-856, 2006.

J. D. Smith, The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research, Mol Biochem Parasitol, vol.195, pp.82-87, 2014.

J. J. Lopez-rubio, L. Mancio-silva, and A. Scherf, Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites, Cell Host Microbe, vol.5, pp.179-190, 2009.

N. Rovira-graells, Transcriptional variation in the malaria parasite Plasmodium falciparum, Genome Res, vol.22, pp.925-938, 2012.

A. Sinha, A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium, Nature, vol.507, pp.253-257, 2014.

B. F. Kafsack, A transcriptional switch underlies commitment to sexual development in malaria parasites, Nature, vol.507, pp.248-252, 2014.

N. M. Brancucci, Heterochromatin protein 1 secures survival and transmission of malaria parasites, Cell Host Microbe, vol.16, pp.165-176, 2014.

T. L. Richie, Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines, Vaccine, vol.33, pp.7452-7461, 2015.

T. Ponnudurai, Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes, Parasitology, vol.98, pp.165-173, 1989.

M. Kennedy, A rapid and scalable density gradient purification method for Plasmodium sporozoites, Malar J, vol.11, p.421, 2012.

P. B. Chen, Plasmodium falciparum PfSET7: enzymatic characterization and cellular localization of a novel protein methyltransferase in sporozoite, liver and erythrocytic stage parasites, Sci Rep, vol.6, p.21802, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01282028

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.
DOI : 10.1093/bioinformatics/btp324

URL : https://academic.oup.com/bioinformatics/article-pdf/25/14/1754/605544/btp324.pdf

Y. Zhang, Model-based analysis of ChIP-Seq (MACS)
DOI : 10.1186/gb-2008-9-9-r137

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2008-9-9-r137

, Genome Biol, vol.9, p.137, 2008.

Y. , B. &. , and H. , Controlling false discovery rate: A practical and powerful approach to multiple testing, Royal statistical society, vol.57, pp.289-300, 1995.

A. T. Jensen, Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes, J Exp Med, vol.199, pp.1179-1190, 2004.

A. Bengtsson, A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies, J Immunol, vol.190, pp.240-249, 2013.

S. Gangnard, Structure of the DBL3X-DBL4? region of the VAR2CSA placental malaria vaccine candidate: insight into DBL domain interactions, Sci Rep, vol.5, p.14868, 2015.

A. Nacer, Clag9 is not essential for PfEMP1 surface expression in non-cytoadherent Plasmodium falciparum parasites with a chromosome 9 deletion, PLoS One, vol.6, p.29039, 2011.

S. L. Okitsu, Structure-activity-based design of a synthetic malaria peptide eliciting sporozoite inhibitory antibodies in a virosomal formulation, Chem Biol, vol.14, pp.577-587, 2007.

A. Salanti, Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria, Mol Microbiol, vol.49, pp.179-191, 2003.

O. Silvie, A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites, J Biol Chem, vol.279, pp.9490-9496, 2004.

L. Rénia, A malaria heat-shock-like determinant expressed on the infected hepatocyte surface is the target of antibody-dependent cell-mediated cytotoxic mechanisms by nonparenchymal liver cells, Eur J Immunol, vol.20, pp.1445-1449, 1990.

G. S. Aller, N. Reynoird, O. Barbash, M. Huddleston, S. Liu et al., Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation, Epigenetics, vol.7, pp.340-343, 2012.

F. Alvarez, F. Muñoz, P. Schilcher, A. Imhof, G. Almouzni et al., Sequential establishment of marks on soluble histones H3 and H4, J. Biol. Chem, vol.286, pp.17714-17721, 2011.

R. Alvarez-venegas, A. , and Z. , SET-domain proteins of the Su(var)3-9, E(z) and Trithorax families, Gene, vol.285, pp.25-37, 2002.

T. Annoura, B. C. Van-schaijk, I. H. Ploemen, M. Sajid, J. W. Lin et al., Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development, FASEB J, vol.28, pp.2158-2170, 2014.

F. Ariey, B. Witkowski, C. Amaratunga, J. Beghain, A. Langlois et al., A molecular marker of artemisinin-resistant Plasmodium falciparum malaria, Nature, vol.505, pp.50-55, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00921203

E. Ashley, M. Dhorda, R. M. Fairhurst, C. Amaratunga, P. Lim et al., Spread of Artemisinin Resistance in Plasmodium falciparum Malaria, vol.371, pp.411-423, 2014.

K. Ayyanathan, K. Ayyanathan, M. S. Lechner, M. S. Lechner, P. Bell et al., Heterochromatin protein 1 (HP1) is a key component of constitutive heterochromatin in, Genes Dev, pp.1855-1869, 2003.

R. Bártfai, W. A. Hoeijmakers, A. M. Salcedo-amaya, A. H. Smits, E. Janssen-megens et al., H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3, vol.6, 2010.

S. Balaji, M. Madan-babu, L. M. Iyer, A. , and L. , Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains, Nucleic Acids Res, vol.33, pp.3994-4006, 2005.

A. E. Barry and A. Arnott, Strategies for designing and monitoring malaria vaccines targeting diverse antigens, Front. Immunol, vol.5, pp.1-16, 2014.

E. Birney, J. Stamatoyannopoulos, A. Dutta, R. Guigó, T. R. Gingeras et al., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project, Nature, vol.447, pp.799-816, 2007.

R. E. Blount, Management of chloroquine resistant falciparum malaria, Trans Am Clin Clim. Assoc, vol.78, pp.196-204, 1967.

Z. Bozdech, M. Lliná-s, B. L. Pulliam, E. D. Wong, J. Zhu et al., The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum, PLoS Biol, vol.1, pp.1-16, 2003.

Z. ;. Bozdech and P. Preiser, No Title, Malaria Parasites: Comparative Genomics, p.96, 2013.

N. M. Brancucci, N. L. Bertschi, L. Zhu, I. Niederwieser, W. H. Chin et al., Heterochromatin protein 1 secures survival and transmission of malaria parasites, Cell Host Microbe, vol.16, pp.165-176, 2014.

E. I. Campos, J. Fillingham, G. Li, H. Zheng, P. Voigt et al., The program for processing newly synthesized histones H3.1 and H4, Nat. Struct. Mol. Biol, vol.17, pp.1343-1351, 2010.

R. Carter, Transmission blocking malaria vaccines, Vaccine, vol.19, pp.2309-2314, 2001.

P. B. Chen, S. Ding, G. Zanghì, V. Soulard, P. A. Dimaggio et al., Plasmodium falciparum PfSET7: enzymatic characterization and cellular localization of a novel protein methyltransferase in sporozoite, liver and erythrocytic stage parasites, Sci. Rep, vol.6, p.21802, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01282028

T. Chookajorn, R. Dzikowski, M. Frank, F. Li, A. Z. Jiwani et al., Epigenetic memory at malaria virulence genes, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.899-902, 2007.
DOI : 10.1073/pnas.0609084103

URL : http://www.pnas.org/content/104/3/899.full.pdf

S. Chuikov, J. K. Kurash, J. R. Wilson, B. Xiao, N. Justin et al., Regulation of p53 activity through lysine methylation, Nature, vol.432, pp.353-360, 2004.
DOI : 10.1038/nature03117

T. Clouaire and I. Stancheva, Methyl-CpG binding proteins: Specialized transcriptional repressors or structural components of chromatin?, Cell. Mol. Life Sci, vol.65, pp.1509-1522, 2008.
DOI : 10.1007/s00018-008-7324-y

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873564

B. I. Coleman, K. M. Skillman, R. H. Jiang, L. M. Childs, L. M. Altenhofen et al., A Plasmodium falciparum Histone Deacetylase regulates antigenic variation and gametocyte conversion, Cell Host Microbe, vol.16, pp.177-186, 2014.
DOI : 10.1016/j.chom.2014.06.014

URL : https://doi.org/10.1016/j.chom.2014.06.014

C. R. Collins, S. Das, E. H. Wong, N. Andenmatten, R. Stallmach et al., , 2013.

L. Cui, J. Miao, C. , and L. , Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: Inhibition of histone acetylation and generation of reactive oxygen species, Antimicrob. Agents Chemother, vol.51, pp.488-494, 2007.

L. L. Cui, Q. Fan, L. L. Cui, and J. Miao, Histone lysine methyltransferases and demethylases in Plasmodium falciparum, Int. J. Parasitol, vol.38, pp.1083-1097, 2008.
DOI : 10.1016/j.ijpara.2008.01.002

URL : http://europepmc.org/articles/pmc4566933?pdf=render

E. G. Dastidar, G. Dayer, Z. M. Holland, D. Dorin-semblat, A. Claes et al., Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway, BMC Biol, vol.10, p.5, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00677275

E. G. Dastidar, K. Dzeyk, J. Krijgsveld, N. Malmquist, C. Doerig et al., Comprehensive Histone Phosphorylation Analysis and Identification of Pf14-3-3 Protein as a Histone H3 Phosphorylation Reader in Malaria Parasites, PLoS One, vol.8, p.53179, 2013.

C. Demarta-gatsi, L. Smith, S. Thiberge, R. Peronet, P. Commere et al., Protection against malaria in mice is induced by blood stage-arresting histamine-releasing factor ( HRF )-deficient parasites, J. Exp. Med. jem, 2016.
DOI : 10.1084/jem.20151976

URL : https://hal.archives-ouvertes.fr/hal-01431690

L. Dembele, A. Gego, A. M. Zeeman, J. F. Franetich, O. Silvie et al., Towards an in vitro model of plasmodium hypnozoites suitable for drug discovery, PLoS One, vol.6, pp.1-7, 2011.

L. Dembélé, J. Franetich, A. Lorthiois, A. Gego, A. Zeeman et al., , 2014.

, Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures, Nat. Med, vol.20, pp.307-312

C. Doerig, J. C. Rayner, A. Scherf, T. , and A. B. , Post-translational protein modifications in malaria parasites, Nat. Rev. Microbiol, vol.13, pp.160-172, 2015.

A. M. Dondorp, F. Nosten, P. Yi, D. Das, A. P. Phyo et al., Artemisinin Resistance in, Drug Ther. (NY), vol.361, pp.455-467, 2009.

P. Druilhe and J. L. Pérignon, A hypothesis about the chronicity of malaria infection, Parasitol. Today, vol.13, pp.353-357, 1997.

M. T. Duraisingh, T. S. Voss, A. J. Marty, M. F. Duffy, R. T. Good et al., Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum, Cell, vol.121, pp.13-24, 2005.

A. Eberharter, I. Vetter, R. Ferreira, and P. B. Becker, ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts, EMBO J, vol.23, pp.4029-4039, 2004.

E. H. Ekland and D. A. Fidock, In vitro evaluations of antimalarial drugs and their relevance to clinical outcomes, Int. J. Parasitol, vol.38, pp.743-747, 2008.

Q. Fan, L. An, C. , and L. , Plasmodium falciparum, Eukaryot. Cell, vol.3, pp.264-276, 2004.

Q. Fan, J. Miao, L. Cui, C. , and L. , Characterization of PRMT1 from Plasmodium falciparum, Biochem. J, vol.421, pp.107-118, 2009.

C. Flueck and D. A. Baker, Malaria parasite epigenetics: When virulence and romance collide, Cell Host Microbe, 2014.

C. Flueck, R. Bartfai, J. Volz, I. Niederwieser, A. M. Salcedo-amaya et al., Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors, PLoS Pathog, vol.5, p.1000569, 2009.

B. J. Foth, N. Zhang, B. K. Chaal, S. K. Sze, P. R. Preiser et al., Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum, Mol. Cell. Proteomics, vol.10, 2011.

S. A. Fraschka, R. W. Henderson, and R. Bártfai, H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum, Sci. Rep, vol.6, p.31965, 2016.

L. H. Freitas, R. Hernandez-rivas, S. A. Ralph, D. Montiel-condado, O. K. Ruvalcaba-salazar et al., Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites, Cell, vol.121, pp.25-36, 2005.

L. H. Freitas-junior, E. Bottius, L. A. Pirrit, K. W. Deitsch, C. Scheidig et al., Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum, Nature, vol.407, pp.1018-1022, 2000.

L. H. Freitas-junior, R. Hernandez-rivas, S. A. Ralph, D. Montiel-condado, O. K. Ruvalcabasalazar et al., Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites, Cell, vol.121, pp.25-36, 2005.

J. B. French, Y. Cen, and A. A. Sauve, Plasmodium falciparum Sir2 is an NAD+dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase, Biochemistry, vol.47, pp.10227-10239, 2008.
DOI : 10.1021/bi800767t

URL : http://europepmc.org/articles/pmc2732577?pdf=render

M. J. Gardner, N. Hall, E. Fung, O. White, M. Berriman et al., Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, vol.419, pp.498-511, 2002.

M. Ghorbal, M. Gorman, C. R. Macpherson, R. M. Martins, A. Scherf et al., Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system, Nat Biotechnol, vol.32, pp.819-821, 2014.

P. D. Gottlieb, . Pierce, R. J. Sims, H. Yamagishi, E. K. Weihe et al., Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis, Nat. Genet, vol.31, pp.25-32, 2002.
DOI : 10.1038/ng866

B. M. Greenwood, Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial, Lancet, vol.386, pp.31-45, 2015.

S. I. Grewal, J. , and S. , Heterochromatin revisited, Nat. Rev. Genet, vol.8, pp.35-46, 2007.
DOI : 10.1038/nrg2008

URL : https://zenodo.org/record/1233527/files/article.pdf

A. Groth, W. Rocha, A. Verreault, A. , and G. , Chromatin Challenges during DNA Replication and Repair, Cell, vol.128, pp.721-733, 2007.

J. Guizetti and A. Scherf, Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum, Cell. Microbiol, 2013.

J. Guizetti, A. Barcons-simon, and A. Scherf, Trans-acting GC-rich non-coding RNA at var expression site modulates gene counting in malaria parasite, Nucleic Acids Res. in press, pp.1-9, 2016.

R. Hamamoto, Y. Furukawa, M. Morita, Y. Iimura, F. P. Silva et al., SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells, Nat. Cell Biol, vol.6, pp.731-740, 2004.

R. Hamamoto, V. Saloura, and Y. Nakamura, Critical roles of non-histone protein lysine methylation in human tumorigenesis, Nat. Publ. Gr, vol.15, 2015.

A. T. Heaslip, M. Nishi, B. Stein, and K. Hu, The motility of a human parasite, toxoplasma gondii, is regulated by a novel lysine methyltransferase, PLoS Pathog, 2011.

P. Horrocks, R. Pinches, Z. Christodoulou, S. A. Kyes, and C. I. Newbold, Variable var transition rates underlie antigenic variation in malaria, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.11129-11134, 2004.

M. J. Hossain, R. Korde, S. Singh, A. Mohmmed, P. V. Dasaradhi et al., Tudor domain proteins in protozoan parasites and characterization of Plasmodium falciparum tudor staphylococcal nuclease, Int. J. Parasitol, vol.38, pp.513-526, 2008.

B. P. Howden, G. Vaddadi, J. Manitta, and M. L. Grayson, Chronic falciparum malaria causing massive splenomegaly 9 years after leaving an endemic area, Med. J. Aust, vol.182, pp.186-188, 2005.

D. J. Huebert, P. Kuan, S. Kele?, and A. P. Gasch, Mol. Cell. Biol, vol.32, pp.1645-1653, 2012.

L. Hviid, The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development, Hum. Vaccin, vol.6, pp.84-89, 2010.

T. Jenuwein, A. , and C. D. , Translating the histone code. Science (80-. ), vol.293, pp.1074-1080, 2001.

L. Jiang, J. Mu, Q. Zhang, T. Ni, P. Srinivasan et al., PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum, Nature, vol.499, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00842612

S. G. Jin, S. Kadam, and G. P. Pfeifer, Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine, Nucleic Acids Res, vol.38, pp.1-7, 2010.

D. O. Jones, I. G. Cowell, and P. B. Singh, Mammalian chromodomain proteins: Their role in genome organisation and expression, BioEssays, vol.22, pp.124-137, 2000.

M. L. Jones, S. Das, H. Belda, C. R. Collins, M. J. Blackman et al., A versatile strategy for rapid conditional genome engineering using loxP sites in a small synthetic intron in Plasmodium falciparum, Nat. Sci. Reports, vol.6, p.21800, 2016.

M. B. Joshi, D. T. Lin, P. H. Chiang, N. D. Goldman, H. Fujioka et al., Molecular cloning and nuclear localization of a histone deacetylase homologue in Plasmodium falciparum, Mol. Biochem. Parasitol, vol.99, pp.11-19, 1999.

G. Josling, L. , and M. , Sexual development in Plasmodium parasites: knowing when it's time to commit, Nat. Rev. Microbiol, vol.13, pp.573-587, 2015.

G. A. Josling, M. Petter, S. C. Oehring, A. P. Gupta, O. Dietz et al., A Plasmodium Falciparum Bromodomain Protein Regulates Invasion Gene Expression, Cell Host Microbe, vol.17, pp.741-751, 2015.

B. F. Kafsack, N. Rovira-graells, T. G. Clark, C. Bancells, V. M. Crowley et al., A transcriptional switch underlies commitment to sexual development in malaria parasites, Nature, vol.507, pp.248-252, 2014.

P. R. Kensche, W. A. Hoeijmakers, C. G. Toenhake, M. Bras, L. Chappell et al., The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences, Nucleic Acids Res, vol.44, pp.2110-2124, 2015.

S. P. Kishore, J. W. Stiller, and K. W. Deitsch, Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans, BMC Evol. Biol, vol.13, p.37, 2013.

S. M. Kraemer, S. Kyes, G. Aggarwal, A. L. Springer, S. O. Nelson et al., Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates, BMC Genomics, vol.8, p.45, 2007.

S. Kyes, Z. Christodoulou, R. Pinches, N. Kriek, P. Horrocks et al., , 2007.

, Plasmodium falciparum var gene expression is developmentally controlled at the level of RNA polymerase II-mediated transcription initiation, Mol. Microbiol, vol.63, pp.1237-1247

S. A. Kyes, Z. Christodoulou, A. Raza, P. Horrocks, R. Pinches et al., A well-conserved Plasmodium falciparum var gene shows an unusual stagespecific transcript pattern, Mol. Microbiol, vol.48, pp.1339-1348, 2003.
DOI : 10.1046/j.1365-2958.2003.03505.x

URL : https://www.pure.ed.ac.uk/ws/files/7616311/EPMCFG_2003_2_Rowe.pdf

M. Lachner, D. O'carroll, S. Rea, K. Mechtler, J. et al., Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins, Nature, vol.410, pp.116-120, 2001.

S. Lanouette, V. Mongeon, D. Figeys, and J. F. Couture, The functional diversity of protein lysine methylation, Mol. Syst. Biol, vol.10, pp.1-26, 2014.

T. Lavstsen, A. Salanti, A. T. Jensen, D. E. Arnot, and T. G. Theander, Subgrouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions, Malar. J, vol.2, p.27, 2003.

K. K. Lee and J. L. Workman, Histone acetyltransferase complexes: one size doesn't fit all, Nat. Rev. Mol. Cell Biol, vol.8, pp.284-295, 2007.

J. J. Lopez-rubio, A. M. Gontijo, M. C. Nunes, N. Issar, R. Hernandez-rivas et al., 5' Flanking Region of Var Genes Nucleate Histone Modification Patterns Linked To Phenotypic Inheritance of Virulence Traits in Malaria Parasites, Mol. Microbiol, vol.66, pp.1296-1305, 2007.

J. J. Lopez-rubio, L. Mancio-silva, and A. Scherf, Genome-wide Analysis of Heterochromatin Associates Clonally Variant Gene Regulation with Perinuclear Repressive Centers in Malaria Parasites, Cell Host Microbe, vol.5, pp.179-190, 2009.

A. Loyola, T. Bonaldi, D. Roche, A. Imhof, A. et al., PTMs on H3 Variants before Chromatin Assembly Potentiate Their Final Epigenetic State, Mol. Cell, vol.24, pp.309-316, 2006.

C. R. Macpherson and A. Scherf, Flexible guide-RNA design for CRISPR applications using protospacer workbench, Nat. Biotechnol, vol.33, pp.1-2, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01226493

N. A. Malmquist, T. A. Moss, S. Mecheri, A. Scherf, and M. J. Fuchter, Smallmolecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum, Proc. Natl. Acad. Sci, vol.109, pp.16708-16713, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01103641

N. A. Malmquist, S. Sundriyal, J. Caron, P. Chen, B. Witkowski et al., Histone methyltransferase inhibitors are orally bioavailable, fast-Acting molecules with activity against different species causing malaria in humans, Antimicrob. Agents Chemother, 2015.

L. Mancio-silva, A. P. Rojas-meza, M. Vargas, A. Scherf, and R. Hernandez-rivas, , 2008.

, Differential association of Orc1 and Sir2 proteins to telomeric domains in Plasmodium falciparum, J Cell Sci, vol.121, pp.2046-2053

L. Mancio-silva, J. J. Lopez-rubio, A. Claes, and A. Scherf, , 2013.

P. K. Mazur, N. Reynoird, P. Khatri, P. W. Jansen, A. W. Wilkinson et al., SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer, Nature, vol.510, pp.283-287, 2014.

C. J. Merrick, C. Huttenhower, C. Buckee, A. Amambua-ngwa, N. Gomez-escobar et al., Epigenetic dysregulation of virulence gene expression in severe plasmodium falciparum malaria, J. Infect. Dis, vol.205, pp.1593-1600, 2012.

J. Miao, Q. Fan, L. Cui, J. Li, J. Li et al., The malaria parasite Plasmodium falciparum histones: Organization, expression, and acetylation, Gene, vol.369, pp.53-65, 2006.

J. Miao, Q. Fan, L. Cui, X. Li, W. et al., The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum, Mol. Microbiol, vol.78, pp.883-902, 2010.

S. Munro, N. Khaire, A. Inche, S. Carr, L. Thangue et al., Lysine methylation regulates the pRb tumour suppressor protein, Oncogene, vol.29, pp.2357-2367, 2010.

K. Nganou-makamdop and R. W. Sauerwein, Liver or blood-stage arrest during malaria sporozoite immunization: The later the better?, Trends Parasitol, vol.29, pp.304-310, 2013.

A. T. Nguyen and Y. Zhang, The diverse functions of Dot1 and H3K79 methylation, Genes Dev, vol.3, pp.1345-1358, 2011.

W. H. Organization, , 2006.

D. J. Owen, P. Ornaghi, J. C. Yang, N. Lowe, P. R. Evans et al., The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p, EMBO J, vol.19, pp.6141-6149, 2000.

S. C. Partnership, S. T. Agnandji, B. Lell, J. F. Fernandes, B. P. Abossolo et al., A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants, N. Engl. J. Med, vol.367, pp.2284-2295, 2012.

K. Pérez-toledo, A. P. Rojas-meza, L. Mancio-silva, N. A. Hernández-cuevas, D. M. Delgadillo et al., , 2009.

, Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes, Nucleic Acids Res, vol.37, pp.2596-2606

A. Peserico, A. Germani, P. Sanese, A. J. Barbosa, V. Di et al., A SMYD3 Small-Molecule Inhibitor Impairing Cancer Cell Growth, vol.230, pp.2447-2460, 2016.
DOI : 10.1002/jcp.24975

URL : http://europepmc.org/articles/pmc4988495?pdf=render

M. Petter, C. C. Lee, T. J. Byrne, K. E. Boysen, J. Volz et al., Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter, PLoS Pathog, 2011.

M. Petter, S. A. Selvarajah, C. C. Lee, W. H. Chin, A. P. Gupta et al., H2A.Z and H2B.Z double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum, Mol. Microbiol, vol.87, pp.1167-1182, 2013.

F. Pontivianne, T. Blevins, and C. S. Pikaard, Arabidopsis Histone Lysine Methyltransferases, Adv. Bot. Res, vol.2296, pp.1-18, 2010.

N. Ponts, E. Harris, P. , and J. , Nucleosome landscape and control of transcription in the human malaria parasite, Genome Res, vol.20, pp.228-238, 2010.

N. Ponts, L. Fu, E. Y. Harris, J. Zhang, D. D. Chung et al., Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum, Cell Host Microbe, vol.14, pp.696-706, 2013.

N. Ponts, E. Y. Harris, S. Lonardi, and L. R. , Nucleosome occupancy at transcription start sites in the human malaria parasite: a hard-wired evolution of virulence?, Infect Genet Evol, pp.716-724, 2011.

P. Prommana, C. Uthaipibull, C. Wongsombat, S. Kamchonwongpaisan, Y. Yuthavong et al., Inducible Knockdown of Plasmodium Gene Expression Using the glmS Ribozyme, PLoS One, vol.8, 2013.

C. Qian and M. M. Zhou, SET domain protein lysine methyltransferases: Structure, specificity and catalysis, Cell. Mol. Life Sci, vol.63, pp.2755-2763, 2006.

S. A. Ralph, C. Scheidig-benatar, and A. Scherf, Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.5414-5419, 2005.

S. Rea, F. Eisenhaber, D. O'carroll, B. D. Strahl, Z. W. Sun et al., Regulation of chromatin structure by site-specific histone H3 methyltransferases, Nature, vol.406, pp.593-599, 2000.

L. Roch, K. G. Zhou, Y. Blair, P. L. Grainger, M. Moch et al., Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle

M. Luo, Bioorthogonal Profiling of Protein Methylation Using Azido Derivative of SAdenosyl-L-methionine, J. Am. Chem. Soc, vol.134, pp.5909-5915, 2011.

S. Rea, F. Eisenhaber, D. O'carroll, B. D. Strahl, Z. W. Sun et al., Regulation of chromatin structure by site-specific histone H3 methyltransferases, Nature, vol.406, pp.593-599, 2000.

A. J. Ruthenburg, H. Li, D. J. Patel, A. , and C. D. , Multivalent engagement of chromatin modifications by linked binding modules, Nat. Rev. Mol. Cell Biol, vol.8, pp.983-994, 2007.

N. Saksouk, M. M. Bhatti, S. Kieffer, T. Aaron, K. Musset et al., Histone-Modifying Complexes Regulate Gene Expression Pertinent to the Differentiation of the Protozoan Parasite Toxoplasma gondii HistoneModifying Complexes Regulate Gene Expression Pertinent to the Differentiation of the Protozoan Parasite Toxoplasma go, Mol. Cell. Biol, vol.25, pp.10301-10314, 2005.

A. M. Salcedo-amaya, M. A. Van-driel, B. T. Alako, M. B. Trelle, A. M. Van-den-elzen et al., Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.9655-9660, 2009.

H. Santos-rosa, R. Schneider, A. J. Bannister, J. Sherriff, B. E. Bernstein et al., Active genes are tri-methylated at K4 of histone H3, Nature, vol.419, pp.407-411, 2002.

A. Saraf, S. Cervantes, E. M. Bunnik, N. P. Ponts, M. E. Sardiu et al., Dynamic and combinatorial landscape of histone modifications during the intra-erythrocytic developmental cycle of the malaria parasite, J. Proteome Res. acs.jproteome.6b00366, vol.3, pp.1-18, 2014.

A. Scherf, J. J. Lopez-rubio, R. , and L. , Antigenic variation in Plasmodium falciparum, Annu. Rev. Microbiol, vol.62, pp.445-470, 2008.

A. Scherf, L. Rivière, and J. J. Lopez-rubio, SnapShot: var Gene Expression in the Malaria Parasite, Cell, vol.134, pp.10-11, 2008.

R. Schneider, G. , and R. , Dynamics and interplay of nuclear architecture, genome organization, and gene expression, Genes Dev, vol.21, pp.3027-3043, 2007.

X. Shi, I. Kachirskaia, K. L. Walter, J. H. Kuo, A. Lake et al., Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36, J. Biol. Chem, vol.282, pp.2450-2455, 2007.

Y. Shinkai and M. Tachibana, H3K9 methyltransferase G9a and the related molecule GLP, Genes Dev, 2011.
DOI : 10.1101/gad.2027411

URL : http://genesdev.cshlp.org/content/25/8/781.full.pdf

D. Silva, E. K. Gehrke, A. R. Olszewski, K. León, I. Chahal et al., Specific DNA-binding by apicomplexan AP2 transcription factors, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.8393-8398, 2008.

A. Sinha, K. R. Hughes, K. K. Modrzynska, T. D. Otto, C. Pfander et al., A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium, Nature, vol.507, pp.253-257, 2014.

S. Sivagurunathan, A. Heaslip, J. Liu, and K. Hu, Identification of functional modules of AKMT, a novel lysine methyltransferase regulating the motility of Toxoplasma gondii, Mol. Biochem. Parasitol, 2013.

J. D. Smith, C. E. Chitnis, A. G. Craig, D. J. Roberts, D. E. Hudson-taylor et al., Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes, Cell, vol.82, pp.101-110, 1995.

R. Spadaccini, H. Perrin, M. J. Bottomley, S. Ansieau, and M. Sattler, Retraction notice to "Structure and functional analysis of the MYND domain, J. Mol. Biol, vol.358, p.1523, 2006.

N. Spellmon, J. Holcomb, L. Trescott, N. Sirinupong, Y. et al., Structure and Function of SET and MYND Domain-Containing Proteins, Int. J. Mol. Sci. Int. J. Mol. Sci, vol.16, pp.1406-1428, 2015.
DOI : 10.3390/ijms16011406

URL : https://www.mdpi.com/1422-0067/16/1/1406/pdf

R. Sprangers, M. R. Groves, I. Sinning, and M. Sattler, High-resolution X-ray and NMR structures of the SMN Tudor domain: Conformational variation in the binding site for symmetrically dimethylated arginine residues, J. Mol. Biol, vol.327, pp.507-520, 2003.

J. Straimer, N. F. Gnädig, B. Witkowski, C. Amaratunga, V. Duru et al., K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates, Science, vol.2624, pp.428-431, 2014.
DOI : 10.1126/science.1260867

URL : https://hal.archives-ouvertes.fr/hal-01925134

X. Z. Su, V. M. Heatwole, S. P. Wertheimer, F. Guinet, J. Herrfeldt et al., The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes, Cell, vol.82, pp.89-100, 1995.

K. Subramanian, D. Jia, P. Kapoor-vazirani, D. R. Powell, R. E. Collins et al., Regulation of Estrogen Receptor ?? by the SET7, 2008.
DOI : 10.1016/j.molcel.2008.03.022

URL : https://doi.org/10.1016/j.molcel.2008.03.022

, Lysine Methyltransferase. Mol. Cell, vol.30, pp.336-347

M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala et al., Conversion of 5-methylcytosine to 5hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, vol.324, pp.930-935, 2009.

P. B. Talbert and S. Henikoff, Histone variants-ancient wrap artists of the epigenome, Nat Rev Mol Cell Biol, vol.11, pp.264-275, 2010.

H. M. Taylor, S. A. Kyes, and C. I. Newbold, Var gene diversity in Plasmodium falciparum is generated by frequent recombination events, Mol. Biochem. Parasitol, vol.110, pp.391-397, 2000.
DOI : 10.1016/s0166-6851(00)00286-3

J. R. Terman and A. Kashina, Post-translational modification and Regulation of Actin, vol.25, pp.30-38, 2014.

C. J. Tonkin, C. K. Carret, M. T. Duraisingh, T. S. Voss, S. A. Ralph et al., Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum, PLoS Biol, vol.7, pp.771-0788, 2009.
DOI : 10.1371/journal.pbio.1000084

URL : https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1000084&type=printable

M. Treeck, J. L. Sanders, J. E. Elias, and J. C. Boothroyd, The phosphoproteomes of plasmodium falciparum and toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries, Cell Host Microbe, vol.10, pp.410-419, 2011.

M. B. Trelle, A. M. Salcedo-amaya, A. M. Cohen, H. G. Stunnenberg, and O. N. Jensen, Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum, J. Proteome Res, vol.8, pp.3439-3450, 2009.

U. E. Ukaegbu, S. P. Kishore, D. L. Kwiatkowski, C. Pandarinath, N. Dahan-pasternak et al., Recruitment of PfSET2 by RNA Polymerase II to Variant Antigen Encoding Loci Contributes to Antigenic Variation in P. falciparum, PLoS Pathog, 2014.

S. S. Vembar, D. Droll, and A. Scherf, Translational regulation in blood stages of the malaria parasite Plasmodium spp. : systems-wide studies pave the way, Wiley Interdiscip. Rev. RNA, 2016.

J. C. Volz and A. F. Cowman, Unveiling malaria's "cloak of invisibility, Virulence, vol.3, pp.449-451, 2012.

J. Volz, T. G. Carvalho, S. A. Ralph, P. Gilson, J. Thompson et al., Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum, Int. J. Parasitol, 2010.

J. C. Volz, R. Bártfai, M. Petter, C. Langer, G. A. Josling et al., PfSET10, a Plasmodium falciparum Methyltransferase, Maintains the Active var Gene in a Poised State during Parasite Division, Cell Host Microbe, vol.11, pp.7-18, 2012.

J. C. Volz, R. Bártfai, M. Petter, C. Langer, G. A. Josling et al., PfSET10, a Plasmodium falciparum Methyltransferase, Maintains the Active var Gene in a Poised State during Parasite Division, Cell Host Microbe, 2012.

Z. Wang, C. Zang, K. Cui, D. E. Schones, A. Barski et al., , 2009.

, Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes, Cell, vol.138, pp.1019-1031

D. Wang, J. Zhou, X. Liu, D. Lu, C. Shen et al., Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.5516-5521, 2013.

R. L. Weller and S. R. Rajski, LETTERS DNA Methyltransferase-Moderated Click Chemistry, 2003.
DOI : 10.1021/ol0504749

S. J. Westenberger, L. Cui, N. Dharia, E. Winzeler, C. et al., , 2009.

, Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes, BMC Genomics, vol.10, 2015.

, World Health Organization, 2014.

M. B. Yaffe, How do 14-3-3 proteins work?-Gatekeeper phosphorylation and the molecular anvil hypothesis, FEBS Lett, vol.513, pp.53-57, 2002.
DOI : 10.1016/s0014-5793(01)03288-4

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/S0014-5793%2801%2903288-4

F. Yildirim, K. Gertz, G. Kronenberg, C. Harms, K. B. Fink et al., Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury, Exp. Neurol, vol.210, pp.531-542, 2008.

L. Zeng and M. M. Zhou, Bromodomain: An acetyl-lysine binding domain, FEBS Lett, vol.513, pp.124-128, 2002.

Y. Zhang, R. , and D. , Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails, Genes Dev, vol.15, pp.2343-2360, 2001.

Q. Zhang, Y. Huang, Y. Zhang, X. Fang, A. Claes et al., A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites, Cell Host Microbe, vol.10, pp.451-463, 2011.

X. Zhang, H. Wen, and X. Shi, Lysine methylation : beyond histones Modifying Enzymes for Lysine Methylation, Acta Biochim Biophys Sin, vol.44, pp.14-27, 2012.

X. Zhang, Y. Huang, and X. Shi, Emerging roles of lysine methylation on nonhistone proteins, Cell. Mol. Life Sci, vol.72, pp.4257-4272, 2015.