F. Bray, A. Jemal, N. Grey, J. Ferlay, and D. Forman, Global cancer transitions according to the Human Development Index (2008-2030): a population-based study, Lancet Oncol, vol.13, issue.8, pp.790-801, 2012.

L. Gloria, N. Bossard, A. M. Bouvier, A. Mayer-da-silva, J. Faivre et al., Trends in net survival from stomach cancer in six European Latin countries: results from the SUDCAN population-based study
URL : https://hal.archives-ouvertes.fr/hal-01528978

, cancer net survival in six European Latin Countries: the SUDCAN study, vol.26, pp.32-41, 2017.

, liver flukes and Helicobacter pylori:Views and expert opinion of IARC Working Group on the evaluation of carcinogenic risks to humans, vol.61, pp.177-240, 1994.

M. Rugge, Gastric Cancer Risk in Patients with Helicobacter pylori Infection and Following Its Eradication, Gastroenterology clinics of North America, vol.44, issue.3, pp.609-633, 2015.

P. Correa and J. Houghton, Carcinogenesis of Helicobacter pylori, Gastroenterology, 2007.

C. A. Gonzalez, F. Megraud, A. Buissonniere, L. Barroso, L. Agudo et al., Helicobacter pylori infection assessed by ELISA and by immunoblot and noncardia gastric cancer risk in a prospective study: the Eurgast-EPIC project, Ann Oncol, vol.23, issue.5, pp.1320-1324, 2012.

F. Megraud, E. Bessede, and C. Varon, Helicobacter pylori infection and gastric carcinoma, Clin Microbiol Infect, vol.21, issue.11, pp.984-90, 2015.

S. Backert and M. Selbach, Role of type IV secretion in Helicobacter pylori pathogenesis. Cellular microbiology, vol.10, pp.1573-81, 2008.

H. Mimuro, T. Suzuki, S. Nagai, G. Rieder, M. Suzuki et al., Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell host & microbe, vol.2, pp.250-63, 2007.

C. Belair, J. Baud, S. Chabas, C. M. Sharma, J. Vogel et al., Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression, Silence, vol.2, issue.1, p.7, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00639316

J. Baud, C. Varon, S. Chabas, L. Chambonnier, F. Darfeuille et al., Helicobacter pylori initiates a mesenchymal transition through ZEB1 in gastric epithelial cells, PloS one, vol.8, issue.4, p.60315, 2013.

J. P. Thiery, H. Acloque, R. Y. Huang, and M. A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell, vol.139, issue.5, pp.871-90, 2009.

S. A. Mani, W. Guo, M. J. Liao, E. N. Eaton, A. Ayyanan et al., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, vol.133, issue.4, pp.704-719, 2008.

H. Clevers, The cancer stem cell: premises, promises and challenges. Nature medicine, vol.17, pp.313-322, 2011.

E. Bessede, C. Staedel, A. Amador, L. A. Nguyen, P. H. Chambonnier et al.,

, Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transitionlike changes, Oncogene, vol.33, issue.32, pp.4123-4154, 2014.

S. Takaishi, T. Okumura, S. Tu, S. S. Wang, W. Shibata et al., Identification of gastric cancer stem cells using the cell surface marker CD44, Stem cells, vol.27, issue.5, pp.1006-1026, 2009.

P. H. Nguyen, J. Giraud, L. Chambonnier, P. Dubus, L. Wittkop et al., Characterization of Biomarkers of Tumorigenic and Chemoresistant Cancer Stem Cells in Human Gastric Carcinoma, Clin Cancer Res, vol.23, issue.6, pp.1586-97, 2017.

E. Bessede, P. Dubus, F. Megraud, and C. Varon, Helicobacter pylori infection and stem cells at the origin of gastric cancer, Oncogene, vol.34, issue.20, pp.2547-55, 2015.

E. Bessede, S. Molina, L. A. Amador, P. Dubus, C. Staedel et al., Deletion of IQGAP1 promotes Helicobacter pylori-induced gastric dysplasia in mice and acquisition of cancer stem cell properties in vitro, Oncotarget, vol.7, issue.49, pp.80688-99, 2016.

S. Piccolo, S. Dupont, and M. Cordenonsi, The biology of YAP/TAZ: hippo signaling and beyond, Physiological reviews, vol.94, issue.4, pp.1287-312, 2014.

F. Zanconato, M. Cordenonsi, and S. Piccolo, YAP/TAZ at the Roots of Cancer. Cancer Cell, vol.29, pp.783-803, 2016.

C. G. Hansen, T. Moroishi, and K. L. Guan, YAP and TAZ: a nexus for Hippo signaling and beyond. Trends in cell biology, vol.25, pp.499-513, 2015.

S. Jiao, C. Li, Q. Hao, H. Miao, L. Zhang et al., VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer, Nature communications, vol.8, p.14058, 2017.

M. Natsuizaka, S. Ohashi, G. S. Wong, A. Ahmadi, R. A. Kalman et al., Insulin-like growth factorbinding protein-3 promotes transforming growth factor-{beta}1-mediated epithelial-to-mesenchymal transition and motility in transformed human esophageal cells, Carcinogenesis, vol.31, issue.8, pp.1344-53, 2010.

F. Martin-belmonte and M. Perez-moreno, Epithelial cell polarity, stem cells and cancer. Nature reviews, vol.12, pp.23-38, 2011.

A. D. Szymaniak, J. E. Mahoney, W. V. Cardoso, and X. Varelas, Crumbs3-Mediated Polarity Directs Airway Epithelial Cell Fate through the Hippo Pathway Effector Yap. Developmental cell, vol.34, pp.283-96, 2015.

I. Tanaka, H. Osada, M. Fujii, A. Fukatsu, T. Hida et al., LIM-domain protein AJUBA suppresses malignant mesothelioma cell proliferation via Hippo signaling cascade, Oncogene, vol.34, issue.1, pp.73-83, 2015.

U. Burk, J. Schubert, U. Wellner, O. Schmalhofer, E. Vincan et al., A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells, EMBO reports, vol.9, issue.6, pp.582-591, 2008.

J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin et al., The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, vol.483, issue.7391, pp.603-610, 2012.

F. X. Yu, B. Zhao, and K. L. Guan, Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, vol.163, pp.811-839, 2015.

J. Zhang, Y. C. Yang, J. S. Zhu, Z. Zhou, and W. X. Chen, Clinicopathologic characteristics of YES-associated protein 1 overexpression and its relationship to tumor biomarkers in gastric cancer, International journal of immunopathology and pharmacology, vol.25, issue.4, pp.977-87, 2012.

Z. P. Xu, J. S. Zhu, Q. Zhang, and X. Y. Wang, A breakdown of the Hippo pathway in gastric cancer, Hepatogastroenterology, vol.58, pp.1611-1618, 2011.

J. Yi, L. Lu, K. Yanger, W. Wang, B. H. Sohn et al., Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ, Hepatology, vol.64, issue.5, pp.1757-72, 2016.

G. S. Park, H. Oh, M. Kim, T. Kim, R. L. Johnson et al., An evolutionarily conserved negative feedback mechanism in the Hippo pathway reflects functional difference between LATS1 and LATS2, Oncotarget, vol.7, issue.17, pp.24063-75, 2016.

E. R. Barry and F. D. Camargo, The Hippo superhighway: signaling crossroads converging on the

, Hippo/Yap pathway in stem cells and development. Current opinion in cell biology, vol.25, pp.247-53, 2013.

A. Ramos and F. D. Camargo, The Hippo signaling pathway and stem cell biology, Trends in cell biology

L. Azzolin, T. Panciera, S. Soligo, E. Enzo, S. Bicciato et al., YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response, Cell, vol.3, issue.1, pp.157-70, 2014.

L. Vermeulen, Keeping stem cells in check: a hippo balancing act. Cell stem cell, vol.12, pp.3-5, 2013.

T. Moroishi, H. W. Park, B. Qin, Q. Chen, Z. Meng et al., A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis, Genes & development, vol.29, issue.12, pp.1271-84, 2015.

Y. Aylon, N. Yabuta, H. Besserglick, Y. Buganim, V. Rotter et al., Silencing of the Lats2 tumor suppressor overrides a p53-dependent oncogenic stress checkpoint and enables mutant H-Rasdriven cell transformation, Oncogene, vol.28, issue.50, pp.4469-79, 2009.

W. Lehmann, D. Mossmann, J. Kleemann, K. Mock, C. Meisinger et al., ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types, Nature communications, vol.7, p.10498, 2016.

F. Yao, W. Zhou, C. Zhong, and W. Fang, LATS2 inhibits the activity of NF-kappa B signaling by disrupting the interaction between TAK1 and IKKbeta, Tumour Biol, vol.36, issue.10, pp.7873-7882, 2015.

N. Furth, B. Ben-moshe, N. Pozniak, Y. Porat, Z. Geiger et al., Down-regulation of LATS kinases alters p53 to promote cell migration, Genes & development, vol.29, issue.22, pp.2325-2355, 2015.

A. T. Franco, D. A. Israel, M. K. Washington, K. U. Fox, J. G. Rogers et al., Activation of betacatenin by carcinogenic Helicobacter pylori, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.10646-51, 2005.

N. Murata-kamiya, Y. Kurashima, Y. Teishikata, Y. Yamahashi, Y. Saito et al., Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene, vol.26, pp.4617-4643, 2007.

M. Suzuki, H. Mimuro, K. Kiga, M. Fukumatsu, N. Ishijima et al., Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell host & microbe, vol.5, pp.23-34, 2009.

J. Li, X. Chen, X. Ding, Y. Cheng, B. Zhao et al., LATS2 suppresses oncogenic Wnt signaling by disrupting beta-catenin/BCL9 interaction, Cell reports, vol.5, issue.6, pp.1650-63, 2013.

L. Enderle and H. Mcneill, Hippo gains weight: added insights and complexity to pathway control. Science signaling, vol.6, p.7, 2013.

M. Hatakeyama, Helicobacter pylori and gastric carcinogenesis, Journal of gastroenterology, vol.44, issue.4, pp.239-287, 2009.

M. R. Amieva, R. Vogelmann, A. Covacci, L. S. Tompkins, W. J. Nelson et al., Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA, Science, vol.300, issue.5624, pp.1430-1434, 2003.

G. Coulombe and N. Rivard, New and Unexpected Biological Functions for the Src-Homology 2

, Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract. Cellular and molecular gastroenterology and hepatology, vol.2, pp.11-21, 2011.

R. Tsutsumi, M. Masoudi, A. Takahashi, Y. Fujii, T. Hayashi et al., YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Developmental cell, vol.26, pp.658-65, 2013.

S. Yamazaki, A. Yamakawa, Y. Ito, M. Ohtani, H. Higashi et al., The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa. The Journal of infectious diseases, Jan, vol.15, issue.2, pp.334-341, 2003.

W. Li, J. Cooper, L. Zhou, C. Yang, H. Erdjument-bromage et al., Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus, Cancer Cell, vol.26, issue.1, pp.48-60, 2014.

P. H. Nguyen, J. Giraud, C. Staedel, L. Chambonnier, P. Dubus et al., All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth, Oncogene, vol.35, issue.43, pp.5619-5647, 2016.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti et al., Role of YAP/TAZ in mechanotransduction, Nature, vol.474, issue.7350, pp.179-83, 2011.

D. Levy, Y. Adamovich, N. Reuven, and Y. Shaul, The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell death and differentiation, vol.14, pp.743-51, 2007.

B. Zhao, X. Wei, W. Li, R. S. Udan, Q. Yang et al., Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes & development, vol.21, pp.2747-61, 2007.

E. Bessede, C. Staedel, A. Amador, L. A. Nguyen, P. H. Chambonnier et al.,

, Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transitionlike changes, Oncogene, vol.33, issue.32, pp.4123-4154, 2014.

P. M. Voorhoeve, C. Le-sage, M. Schrier, A. J. Gillis, H. Stoop et al., A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors, Cell, vol.124, issue.6, pp.1169-81, 2006.

W. Zhang, Y. Gao, P. Li, Z. Shi, T. Guo et al., VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex, Cell research, vol.24, issue.3, pp.331-374, 2014.

J. Tao, D. F. Calvisi, S. Ranganathan, A. Cigliano, L. Zhou et al., Activation of beta-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice, Gastroenterology, vol.147, issue.3, pp.690-701, 2014.

J. J. Xie, L. Y. Xu, J. Y. Wu, Z. Y. Shen, Q. Zhao et al., Involvement of CYR61 and CTGF in the fascinmediated proliferation and invasiveness of esophageal squamous cell carcinomas cells. The American journal of pathology, vol.176, pp.939-51, 2010.

Z. Wang, S. Banerjee, D. Kong, Y. Li, and F. H. Sarkar, Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer research, vol.67, pp.8293-300, 2007.

P. J. Moos, K. Edes, J. E. Mullally, and F. A. Fitzpatrick, Curcumin impairs tumor suppressor p53 function in colon cancer cells, Carcinogenesis, vol.25, issue.9, pp.1611-1618, 2004.

Z. Lin, H. Yang, C. Tan, J. Li, Z. Liu et al., USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation, Cell reports, vol.5, issue.6, pp.1639-1688, 2013.
DOI : 10.1016/j.celrep.2013.11.029

URL : https://doi.org/10.1016/j.celrep.2013.11.029

C. Varon, I. Mocan, B. Mihi, C. Pere-vedrenne, A. Aboubacar et al., Helicobacter pullorum cytolethal distending toxin targets vinculin and cortactin and triggers formation of lamellipodia in intestinal epithelial cells. The Journal of infectious diseases, vol.209, pp.588-99, 2014.

K. Harvey and N. Tapon, The Salvador-Warts-Hippo pathway-an emerging tumour-suppressor network, Nat Rev Cancer, vol.7, issue.3, pp.182-191, 2007.

K. F. Harvey and I. K. Hariharan, The hippo pathway, Cold Spring Harb Perspect Biol, vol.4, issue.8, p.11288, 2012.

, International Agency for Research on Cancer, 2016.

M. Rugge, M. Fassan, and D. Y. Graham, Gastric Cancer. Principles and practice, vol.2015, pp.23-34
URL : https://hal.archives-ouvertes.fr/hal-00552536

H. B. Keshava, J. E. Rosen, M. R. Deluzio, A. W. Kim, F. C. Detterbeck et al., What if I do nothing?" The natural history of operable cancer of the alimentary tract, Eur J Surg Oncol, 2017.

Z. P. Xu, J. S. Zhu, Q. Zhang, and X. Y. Wang, A breakdown of the Hippo pathway in gastric cancer, Hepatogastroenterology, vol.58, pp.1611-1617, 2011.

F. Zanconato, M. Cordenonsi, and S. Piccolo, YAP/TAZ at the Roots of Cancer, Cancer Cell, vol.29, issue.6, pp.783-803, 2016.

S. Jiao, H. Wang, and Z. Shi, A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer, Cancer Cell, vol.25, issue.2, pp.166-180, 2014.

B. Lim, J. L. Park, and H. J. Kim, Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer, Carcinogenesis, vol.35, issue.5, pp.1020-1027, 2014.

F. Ziemssen and H. Heimann, Evaluation of verteporfin pharmakokinetics-redefining the need of photosensitizers in ophthalmology, Expert Opin Drug Metab Toxicol, vol.8, issue.8, pp.1023-1041, 2012.

M. K. Akens, M. R. Hardisty, and B. C. Wilson, Defining the therapeutic window of vertebral photodynamic therapy in a murine pre-clinical model of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin), Breast Cancer Res Treat, vol.119, issue.2, pp.325-333, 2010.

M. T. Huggett, M. Jermyn, and A. Gillams, Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer, Br J Cancer, vol.110, issue.7, pp.1698-1704, 2014.

Y. Liu-chittenden, B. Huang, and J. S. Shim, Genetic and pharmacological disruption of the TEADYAP complex suppresses the oncogenic activity of YAP, Genes Dev, vol.26, issue.12, pp.1300-1305, 2012.

S. Song, J. A. Ajani, and S. Honjo, Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties, Cancer Res, vol.74, issue.15, pp.4170-4182, 2014.

S. Song, S. Honjo, and J. Jin, The Hippo Coactivator YAP1 Mediates EGFR Overexpression and Confers Chemoresistance in Esophageal Cancer, Clin Cancer Res, vol.21, issue.11, pp.2580-2590, 2015.

H. Zhang, S. K. Ramakrishnan, and D. Triner, Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1, Sci Signal, vol.8, issue.397, p.98, 2015.

Y. Aylon, Y. Ofir-rosenfeld, and N. Yabuta, The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1, Genes Dev, vol.24, issue.21, pp.2420-2429, 2010.

Y. Aylon, D. Michael, A. Shmueli, N. Yabuta, H. Nojima et al., A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization, Genes Dev, vol.20, pp.2687-2700, 2006.

Y. Aylon, N. Yabuta, and H. Besserglick, Silencing of the Lats2 tumor suppressor overrides a p53dependent oncogenic stress checkpoint and enables mutant H-Ras-driven cell transformation, Oncogene, vol.28, issue.50, pp.4469-4479, 2009.

K. F. Harvey, X. Zhang, and D. M. Thomas, The Hippo pathway and human cancer, Nat Rev Cancer, vol.13, issue.4, pp.246-257, 2013.
DOI : 10.1038/nrc3458

Y. Zhou, T. Huang, A. S. Cheng, J. Yu, W. Kang et al., The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis, Int J Mol Sci, vol.17, issue.1, 2016.
DOI : 10.3390/ijms17010138

URL : https://www.mdpi.com/1422-0067/17/1/138/pdf

I. Krupska, E. A. Bruford, and B. Chaqour, Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities, Hum Genomics, vol.9, p.24, 2015.

R. Urtasun, M. U. Latasa, and M. I. Demartis, Connective tissue growth factor autocriny in human hepatocellular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation, Hepatology, vol.54, issue.6, pp.2149-2158, 2011.
DOI : 10.1002/hep.24587

URL : https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.24587

S. E. Hiemer and X. Varelas, Stem cell regulation by the Hippo pathway, Biochim Biophys Acta, vol.1830, issue.2, pp.2323-2334, 2013.
DOI : 10.1016/j.bbagen.2012.07.005

N. Li, N. Yu, and J. Wang, miR-222/VGLL4/YAP-TEAD1 regulatory loop promotes proliferation and invasion of gastric cancer cells, Am J Cancer Res, vol.5, issue.3, pp.1158-1168, 2015.

J. Y. Leung, H. L. Wilson, and K. J. Voltzke, Sav1 Loss Induces Senescence and Stat3 Activation Coinciding with Tubulointerstitial Fibrosis, Mol Cell Biol, 2017.
DOI : 10.1128/mcb.00565-16

URL : http://mcb.asm.org/content/37/12/e00565-16.full.pdf

E. K. Konstantinou, S. Notomi, and C. Kosmidou, Verteporfin-induced formation of protein crosslinked oligomers and high molecular weight complexes is mediated by light and leads to cell toxicity, Sci Rep, vol.7, p.46581, 2017.
DOI : 10.1038/srep46581

URL : https://www.nature.com/articles/srep46581.pdf

E. Bessède, C. Staedel, A. Amador, and L. A. , Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes, Oncogene, vol.33, issue.32, pp.4123-4131, 2014.

P. H. Nguyen, J. Giraud, and L. Chambonnier, Characterization of Biomarkers of Tumorigenic and Chemoresistant Cancer Stem Cells in Human Gastric Carcinoma, Clin Cancer Res, 2016.

P. H. Nguyen, J. Giraud, and C. Staedel, All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth, Oncogene, vol.35, issue.43, pp.5619-5628, 2016.
DOI : 10.1038/onc.2016.87

S. Dupont, L. Morsut, and M. Aragona, Role of YAP/TAZ in mechanotransduction, Nature, vol.474, issue.7350, pp.179-183, 2011.
DOI : 10.1038/nature10137

, International Agency for Research on Cancer, 2016.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-tieulent et al., Global cancer statistics, CA Cancer J Clin, vol.65, issue.2, pp.87-108, 2012.

M. Rugge, M. Fassan, and D. Y. Graham, Gastric Cancer. Principles and practice, vol.2015, pp.23-34
URL : https://hal.archives-ouvertes.fr/hal-00552536

L. A. Torre, R. L. Siegel, E. M. Ward, and A. Jemal, Global Cancer Incidence and Mortality Rates and TrendsAn Update, Cancer Epidemiol Biomarkers Prev, vol.25, issue.1, pp.16-27, 2016.

M. S. Sierra, P. Cueva, L. E. Bravo, and D. Forman, Stomach cancer burden in Central and South America, Cancer Epidemiol, vol.44, issue.1, pp.62-73, 2016.

X. Wu, V. W. Chen, P. A. Andrews, B. Ruiz, and P. Correa, Incidence of esophageal and gastric cancers among Hispanics, non-Hispanic whites and non-Hispanic blacks in the United States: subsite and histology differences, Cancer Causes Control, vol.18, issue.6, pp.585-593, 2007.

H. Jin, P. S. Pinheiro, J. Xu, and A. Amei, Cancer incidence among Asian American populations in the United States, Int J Cancer, vol.138, issue.9, pp.2136-2145, 2009.

M. C. Stern, L. Fejerman, and R. Das, Variability in Cancer Risk and Outcomes Within US Latinos by National Origin and Genetic Ancestry, Curr Epidemiol Rep, vol.3, pp.181-190, 2016.

H. B. Keshava, J. E. Rosen, M. R. Deluzio, A. W. Kim, F. C. Detterbeck et al., What if I do nothing?" The natural history of operable cancer of the alimentary tract, Eur J Surg Oncol, 2017.

L. Glória, N. Bossard, and A. M. Bouvier, Trends in net survival from stomach cancer in six European Latin countries: results from the SUDCAN population-based study, 26 Trends in cancer net survival in six European Latin Countries: the SUDCAN study, pp.32-39, 2017.

Y. Veisani and A. Delpisheh, Survival rate of gastric cancer in Iran; a systematic review and metaanalysis, Gastroenterol Hepatol Bed Bench, vol.9, issue.2, pp.78-86, 2016.

C. A. González, F. Megraud, and A. Buissonniere, Helicobacter pylori infection assessed by ELISA and by immunoblot and noncardia gastric cancer risk in a prospective study: the Eurgast-EPIC project, Ann Oncol, vol.23, issue.5, pp.1320-1324, 2012.

M. Plummer, C. De-martel, J. Vignat, J. Ferlay, F. Bray et al., Global burden of cancers attributable to infections in 2012: a synthetic analysis, Lancet Glob Health, vol.4, issue.9, pp.609-616, 2016.

P. Correa, Gastric cancer: overview, Gastroenterol Clin North Am, vol.42, issue.2, pp.211-217, 2013.

M. B. Piazuelo and P. Correa, Gastric cáncer: Overview, Colomb Med (Cali), vol.44, issue.3, pp.192-201, 2013.

D. E. Henson, C. Dittus, M. Younes, H. Nguyen, and J. Albores-saavedra, Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type, Arch Pathol Lab Med, vol.128, issue.7, pp.765-770, 2004.

M. Barber, A. Murrell, and Y. Ito, Mechanisms and sequelae of E-cadherin silencing in hereditary diffuse gastric cancer, J Pathol, vol.216, issue.3, pp.295-306, 2008.

A. Colquhoun, M. Arnold, J. Ferlay, K. J. Goodman, D. Forman et al., Global patterns of cardia and non-cardia gastric cancer incidence in 2012, Gut, vol.64, issue.12, pp.1881-1888, 2015.

A. Kyburz and A. Müller, Helicobacter pylori and Extragastric Diseases, Curr Top Microbiol Immunol, vol.400, pp.325-347, 2017.

L. H. Tang and L. V. Selby, Pathology of Gastric Cancer, Gastric Cancer: Principles and Practice, vol.2015, pp.57-76

B. Hu, E. Hajj, N. Sittler, S. Lammert, N. Barnes et al., Gastric cancer: Classification, histology and application of molecular pathology, J Gastrointest Oncol, vol.3, issue.3, pp.251-261, 2012.

L. P. The, . Main, . Of, and . Carcinoma, DIFFUSE AND SOCALLED INTESTINAL-TYPE CARCINOMA. AN ATTEMPT AT A HISTO-CLINICAL CLASSIFICATION, Acta Pathol Microbiol Scand, vol.64, pp.31-49, 1965.

F. T. Bosman, F. Carneiro, R. H. Hruban, and N. D. Theise, WHO Classification of Tumours of the Digestive System, vol.3, 2010.

D. B. Polk and R. M. Peek, Helicobacter pylori: gastric cancer and beyond, Nat Rev Cancer, vol.10, issue.6, pp.403-414, 2010.

C. Liu, J. M. Crawford, and . Tracto, Patología estructural y funcional, p.1517, 2005.

M. B. Piazuelo, M. Epplein, and P. Correa, Gastric cancer: an infectious disease, Infect Dis Clin North Am, vol.24, issue.4, pp.853-869, 2010.
DOI : 10.1016/j.idc.2010.07.010

URL : http://europepmc.org/articles/pmc2954127?pdf=render

P. Correa, W. Haenszel, C. Cuello, S. Tannenbaum, and M. Archer, A model for gastric cancer epidemiology, Lancet, vol.2, issue.7924, pp.58-60, 1975.

P. Correa and M. B. Piazuelo, The gastric precancerous cascade, J Dig Dis, vol.13, issue.1, pp.2-9, 2012.

C. Network, Comprehensive molecular characterization of gastric adenocarcinoma, Nature, vol.513, issue.7517, pp.202-209, 2014.

, Cancer AJCo. www.cancerstaging.org. Accessed, 2017.

K. Washington, 7th Edition of the AJCC Cancer Staging Manual: Stomach, Annals of Surgical Oncology, vol.17, issue.12, pp.3077-3079, 2010.

N. Setia, J. W. Clark, and D. G. Duda, Familial Gastric Cancers. Oncologist, vol.20, issue.12, pp.1365-1377, 2015.

H. Yoon and N. Kim, Diagnosis and management of high risk group for gastric cancer, Gut Liver, vol.9, issue.1, pp.5-17, 2015.

X. J. Cheng, J. C. Lin, and S. P. Tu, Etiology and Prevention of Gastric Cancer, Gastrointest Tumors, vol.3, issue.1, pp.25-36, 2016.

L. Lu, J. Chen, and H. Tang, EGCG Suppresses ERK5 Activation to Reverse Tobacco SmokeTriggered Gastric Epithelial-Mesenchymal Transition in BALB/c Mice, Nutrients, vol.8, issue.7, 2016.

J. Kim, Y. A. Cho, W. J. Choi, and S. H. Jeong, Gene-diet interactions in gastric cancer risk: a systematic review, World J Gastroenterol, vol.20, issue.28, pp.9600-9610, 2014.

S. Kulnigg-dabsch and . Autoimmune, Wien Med Wochenschr, vol.166, pp.424-430, 2016.

I. Coati, M. Fassan, F. Farinati, D. Y. Graham, R. M. Genta et al., Autoimmune gastritis: Pathologist's viewpoint, World J Gastroenterol, vol.21, issue.42, pp.12179-12189, 2015.

K. Mukaisho, T. Nakayama, T. Hagiwara, T. Hattori, and H. Sugihara, Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, Helicobacter pylori, and bile acids, Front Microbiol, vol.6, p.412, 2015.

M. H. Derakhshan, R. Malekzadeh, and H. Watabe, Combination of gastric atrophy, reflux symptoms and histological subtype indicates two distinct aetiologies of gastric cardia cancer, Gut, vol.57, issue.3, pp.298-305, 2008.

J. P. Dijksterhuis, J. Petersen, and G. Schulte, WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3, Br J Pharmacol, vol.171, issue.5, pp.1195-1209, 2014.

B. T. Macdonald, K. Tamai, and X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases, Dev Cell, vol.17, issue.1, pp.9-26, 2009.

K. Willert and R. Nusse, Wnt proteins, Cold Spring Harb Perspect Biol, vol.4, issue.9, p.7864, 2012.

H. Clevers, Wnt/beta-catenin signaling in development and disease, Cell, vol.127, issue.3, pp.469-480, 2006.

M. A. Chiurillo, Role of the Wnt/?-catenin pathway in gastric cancer: An in-depth literature review, World J Exp Med, vol.5, issue.2, pp.84-102, 2015.

H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler, beta-catenin is a target for the ubiquitinproteasome pathway, EMBO J, vol.16, issue.13, pp.3797-3804, 1997.

C. Liu, Y. Li, and M. Semenov, Control of beta-catenin phosphorylation/degradation by a dualkinase mechanism, Cell, vol.108, issue.6, pp.837-847, 2002.

R. Sugimura and L. Li, Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases, Birth Defects Res C Embryo Today, vol.90, issue.4, pp.243-256, 2010.
DOI : 10.1002/bdrc.20195

Y. Duchartre, Y. M. Kim, and M. Kahn, The Wnt signaling pathway in cancer, Crit Rev Oncol Hematol, vol.99, pp.141-149, 2016.

S. Gencer, G. ?en, G. Do?usoy, A. K. Bell?, M. Paksoy et al., ?-Catenin-independent noncanonical Wnt pathway might be induced in gastric cancers, Turk J Gastroenterol, vol.21, issue.3, pp.224-230, 2010.

F. T. Kolligs, G. Bommer, and B. Göke, Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis, Digestion, vol.66, issue.3, pp.131-144, 2002.
DOI : 10.1159/000066755

URL : https://www.karger.com/Article/Pdf/66755

M. P. Ebert, G. Fei, and S. Kahmann, Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer, Carcinogenesis, vol.23, issue.1, pp.87-91, 2002.

C. Cai and X. Zhu, The Wnt/?-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer, Mol Med Rep, vol.5, issue.5, pp.1191-1196, 2012.

W. M. Clements, J. Wang, and A. Sarnaik, beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer, Cancer Res, vol.62, issue.12, pp.3503-3506, 2002.

D. C. Fang, Y. H. Luo, S. M. Yang, X. A. Li, X. L. Ling et al., Mutation analysis of APC gene in gastric cancer with microsatellite instability, World J Gastroenterol, vol.8, issue.5, pp.787-791, 2002.

A. T. Franco, D. A. Israel, and M. K. Washington, Activation of beta-catenin by carcinogenic Helicobacter pylori, Proc Natl Acad Sci U S A, vol.102, issue.30, pp.10646-10651, 2005.

T. Gnad, M. Feoktistova, M. Leverkus, U. Lendeckel, and M. Naumann, Helicobacter pylori-induced activation of beta-catenin involves low density lipoprotein receptor-related protein 6 and Dishevelled, Mol Cancer, vol.9, p.31, 2010.

X. Yong, B. Tang, and Y. F. Xiao, Helicobacter pylori upregulates Nanog and Oct4 via Wnt/?-catenin signaling pathway to promote cancer stem cell-like properties in human gastric cancer, Cancer Lett, vol.374, issue.2, pp.292-303, 2016.
DOI : 10.1016/j.canlet.2016.02.032

URL : https://doi.org/10.1016/j.canlet.2016.02.032

F. Concha-benavente and R. L. Ferris, Oncogenic growth factor signaling mediating tumor escape from cellular immunity, Curr Opin Immunol, vol.45, pp.52-59, 2017.
DOI : 10.1016/j.coi.2017.01.004

URL : http://europepmc.org/articles/pmc5449256?pdf=render

T. Kunath, M. K. Saba-el-leil, M. Almousailleakh, J. Wray, S. Meloche et al., FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from selfrenewal to lineage commitment, Development, vol.134, issue.16, pp.2895-2902, 2007.

N. Turner and R. Grose, Fibroblast growth factor signalling: from development to cancer, Nat Rev Cancer, vol.10, issue.2, pp.116-129, 2010.
DOI : 10.1038/nrc2780

V. Knights and S. J. Cook, De-regulated FGF receptors as therapeutic targets in cancer, Pharmacol Ther, vol.125, issue.1, pp.105-117, 2010.
DOI : 10.1016/j.pharmthera.2009.10.001

A. T. Dudley and C. J. Tabin, Deconstructing phosphatases in limb development, Nat Cell Biol, vol.5, issue.6, pp.499-501, 2003.

Y. Hattori, H. Odagiri, and H. Nakatani, K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes, Proc Natl Acad Sci, vol.87, issue.15, pp.5983-5987, 1990.

J. H. Jang, K. H. Shin, and J. G. Park, Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers, Cancer Res, vol.61, issue.9, pp.3541-3543, 2001.

M. Katoh, FGF signaling network in the gastrointestinal tract (review), Int J Oncol, vol.29, issue.1, pp.163-168, 2006.

P. S. Hodkinson, A. Mackinnon, and T. Sethi, Targeting growth factors in lung cancer, Chest, vol.133, issue.5, pp.1209-1216, 2008.

G. Galizia, E. Lieto, and M. Orditura, Epidermal growth factor receptor (EGFR) expression is associated with a worse prognosis in gastric cancer patients undergoing curative surgery, World J Surg, vol.31, issue.7, pp.1458-1468, 2007.

J. Kim, N. Kim, and J. H. Park, The Effect of Helicobacter pylori on Epidermal Growth Factor Receptor-Induced Signal Transduction and the Preventive Effect of Celecoxib in Gastric Cancer Cells, Gut Liver, vol.7, issue.5, pp.552-559, 2013.

C. Wallasch, J. E. Crabtree, D. Bevec, P. A. Robinson, H. Wagner et al., Helicobacter pyloristimulated EGF receptor transactivation requires metalloprotease cleavage of HB-EGF, Biochem Biophys Res Commun, vol.295, issue.3, pp.695-701, 2002.

F. Yan, H. Cao, and R. Chaturvedi, Epidermal growth factor receptor activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis, Gastroenterology, vol.136, issue.4, pp.1291-1293, 2009.

T. Borggrefe and F. Oswald, The Notch signaling pathway: transcriptional regulation at Notch target genes, Cell Mol Life Sci, vol.66, issue.10, pp.1631-1646, 2009.

P. Ntziachristos, J. S. Lim, J. Sage, and I. Aifantis, From fly wings to targeted cancer therapies: a centennial for notch signaling, Cancer Cell, vol.25, issue.3, pp.318-334, 2014.

Y. F. Xiao, X. Yong, and B. Tang, Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review), Int J Oncol, vol.48, issue.2, pp.437-449, 2016.

X. Yuan, H. Wu, and H. Xu, Notch signaling: an emerging therapeutic target for cancer treatment, Cancer Lett, vol.369, issue.1, pp.20-27, 2015.

Y. Hashimoto, Y. Akiyama, T. Otsubo, S. Shimada, and Y. Yuasa, Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis, Carcinogenesis, vol.31, issue.5, pp.777-784, 2010.

Y. Sun, X. Gao, and J. Liu, Differential Notch1 and Notch2 expression and frequent activation of Notch signaling in gastric cancers, Arch Pathol Lab Med, vol.135, issue.4, pp.451-458, 2011.

T. S. Yeh, C. W. Wu, and K. W. Hsu, The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2, Cancer Res, vol.69, issue.12, pp.5039-5048, 2009.

G. G. Li, L. Li, and C. Li, Influence of up-regulation of Notch ligand DLL4 on biological behaviors of human gastric cancer cells, World J Gastroenterol, vol.19, issue.28, pp.4486-4494, 2013.

G. Piazzi, L. Fini, and M. Selgrad, Epigenetic regulation of Delta-Like1 controls Notch1 activation in gastric cancer, Oncotarget, vol.2, issue.12, pp.1291-1301, 2011.

Y. C. Tseng, Y. H. Tsai, and M. J. Tseng, Notch2-induced COX-2 expression enhancing gastric cancer progression, Mol Carcinog, vol.51, issue.12, pp.939-951, 2012.

M. Katoh, Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer, Cancer Biol Ther, vol.6, issue.6, pp.832-839, 2007.

T. Liu, W. He, and Y. Li, Helicobacter pylori Infection of Gastric Epithelial Cells Affects NOTCH Pathway In Vitro, Dig Dis Sci, vol.61, issue.9, pp.2516-2521, 2016.

G. Greenburg and E. D. Hay, Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells, J Cell Biol, vol.95, issue.1, pp.333-339, 1982.

E. D. Hay, Role of cell-matrix contacts in cell migration and epithelial-mesenchymal transformation, Cell Differ Dev, vol.32, issue.3, pp.367-375, 1990.

E. D. Hay and A. Zuk, Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced, Am J Kidney Dis, vol.26, issue.4, pp.678-690, 1995.

R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition, J Clin Invest, vol.119, issue.6, pp.1420-1428, 2009.

P. S. Mongroo and A. K. Rustgi, The role of the miR-200 family in epithelial-mesenchymal transition, Cancer Biol Ther, vol.10, issue.3, pp.219-222, 2010.

D. Sun, K. R. Mcalmon, J. A. Davies, M. Bernfield, and E. D. Hay, Simultaneous loss of expression of syndecan-1 and E-cadherin in the embryonic palate during epithelial-mesenchymal transformation, Int J Dev Biol, vol.42, issue.5, pp.733-736, 1998.

F. J. Rodriguez, L. J. Lewis-tuffin, and P. Z. Anastasiadis, E-cadherin's dark side: possible role in tumor progression, Biochim Biophys Acta, vol.1826, issue.1, pp.23-31, 2012.

H. L. Chua, P. Bhat-nakshatri, S. E. Clare, A. Morimiya, S. Badve et al., NF-kappaB represses Ecadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2, Oncogene, vol.26, issue.5, pp.711-724, 2007.

H. Peinado, D. Olmeda, A. Cano, and . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?, Nat Rev Cancer, vol.7, issue.6, pp.415-428, 2007.

Y. Lin, C. Dong, and B. P. Zhou, Epigenetic regulation of EMT: the Snail story, Curr Pharm Des, vol.20, issue.11, pp.1698-1705, 2014.

J. Theys, B. Jutten, and R. Habets, E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells, Radiother Oncol, vol.99, issue.3, pp.392-397, 2011.

L. Larue and A. Bellacosa, Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways, Oncogene, vol.24, issue.50, pp.7443-7454, 2005.

X. Ye and R. A. Weinberg, Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression, Trends Cell Biol, vol.25, issue.11, pp.675-686, 2015.

Y. Nakaya and G. Sheng, Epithelial to mesenchymal transition during gastrulation: an embryological view, Dev Growth Differ, vol.50, issue.9, pp.755-766, 2008.

L. Kerosuo and M. Bronner-fraser, What is bad in cancer is good in the embryo: importance of EMT in neural crest development, Semin Cell Dev Biol, vol.23, issue.3, pp.320-332, 2012.

Y. Nakaya and G. Sheng, EMT in developmental morphogenesis, Cancer Lett, vol.341, issue.1, pp.9-15, 2013.

L. Vi?ovac and J. D. Aplin, Epithelial-mesenchymal transition during trophoblast differentiation, Acta Anat (Basel), vol.156, issue.3, pp.202-216, 1996.

J. M. Lee, S. Dedhar, R. Kalluri, and E. W. Thompson, The epithelial-mesenchymal transition: new insights in signaling, development, and disease, J Cell Biol, vol.172, issue.7, pp.973-981, 2006.

R. C. Stone, I. Pastar, and N. Ojeh, Epithelial-mesenchymal transition in tissue repair and fibrosis, Cell Tissue Res, vol.365, issue.3, pp.495-506, 2016.

C. Gilles, M. Polette, and J. M. Zahm, Vimentin contributes to human mammary epithelial cell migration, J Cell Sci, vol.112, pp.4615-4625, 1999.

S. You, O. Avidan, and A. Tariq, Role of epithelial-mesenchymal transition in repair of the lacrimal gland after experimentally induced injury, Invest Ophthalmol Vis Sci, vol.53, issue.1, pp.126-135, 2012.

A. Lepilina, A. N. Coon, and K. Kikuchi, A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration, Cell, vol.127, issue.3, pp.607-619, 2006.

V. Kumar, A. K. Abbas, J. C. Aster, and C. Robbins, Pathologic Basis of Disease, 2015.

J. Yang and R. A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis, Dev Cell, vol.14, issue.6, pp.818-829, 2008.

J. P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nat Rev Cancer, vol.2, issue.6, pp.442-454, 2002.
DOI : 10.1038/nrc822

H. Y. Jung, L. Fattet, and J. Yang, Molecular pathways: linking tumor microenvironment to epithelialmesenchymal transition in metastasis, Clin Cancer Res, vol.21, issue.5, pp.962-968, 2015.

J. H. Tsai and J. Yang, Epithelial-mesenchymal plasticity in carcinoma metastasis, Genes Dev, vol.27, issue.20, pp.2192-2206, 2013.
DOI : 10.1101/gad.225334.113

URL : http://genesdev.cshlp.org/content/27/20/2192.full.pdf

S. C. Wei and J. Yang, Forcing through Tumor Metastasis: The Interplay between Tissue Rigidity and Epithelial-Mesenchymal Transition, Trends Cell Biol, vol.26, issue.2, pp.111-120, 2016.
DOI : 10.1016/j.tcb.2015.09.009

URL : http://europepmc.org/articles/pmc4728004?pdf=render

L. Li and W. Li, Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation, Pharmacol Ther, vol.150, pp.33-46, 2015.

M. Lombaerts, T. Van-wezel, and K. Philippo, E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines, Br J Cancer, vol.94, issue.5, pp.661-671, 2006.
DOI : 10.1038/sj.bjc.6602996

URL : https://doi.org/10.1038/sj.bjc.6602996

Y. Wang and Y. Shang, Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis, Exp Cell Res, vol.319, issue.2, pp.160-169, 2013.
DOI : 10.1016/j.yexcr.2012.07.019

V. Bolós, H. Peinado, M. A. Pérez-moreno, M. F. Fraga, M. Esteller et al., The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors, J Cell Sci, vol.116, pp.499-511, 2003.

A. Cano, M. A. Pérez-moreno, and R. I. , The transcription factor snail controls epithelialmesenchymal transitions by repressing E-cadherin expression, Nat Cell Biol, vol.2, issue.2, pp.76-83, 2000.
DOI : 10.1038/35000025

URL : https://digital.csic.es/bitstream/10261/32314/3/accesoRestringido.pdf

D. S. Micalizzi and H. L. Ford, Epithelial-mesenchymal transition in development and cancer, Future Oncol, vol.5, issue.8, pp.1129-1143, 2009.

C. Kudo-saito, H. Shirako, T. Takeuchi, and Y. Kawakami, Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells, Cancer Cell, vol.15, issue.3, pp.195-206, 2009.
DOI : 10.1016/j.ccr.2009.01.023

URL : https://doi.org/10.1016/j.ccr.2009.01.023

L. Chen, D. L. Gibbons, and S. Goswami, Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression, Nat Commun, vol.5, p.5241, 2014.
DOI : 10.1038/ncomms6241

URL : https://www.nature.com/articles/ncomms6241.pdf

B. Du and J. S. Shim, Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer, Molecules, vol.21, issue.7, 2016.
DOI : 10.3390/molecules21070965

URL : http://www.mdpi.com/1420-3049/21/7/965/pdf

K. R. Fischer, A. Durrans, and S. Lee, Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance, Nature, vol.527, issue.7579, pp.472-476, 2015.
DOI : 10.1038/nature15748

URL : http://europepmc.org/articles/pmc4662610?pdf=render

J. Huang, H. Li, and G. Ren, Epithelial-mesenchymal transition and drug resistance in breast cancer (Review), Int J Oncol, vol.47, issue.3, pp.840-848, 2015.

!. {},

S. A. Mani, W. Guo, and M. J. Liao, The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, vol.133, issue.4, pp.704-715, 2008.

A. P. Morel, M. Lièvre, C. Thomas, G. Hinkal, S. Ansieau et al., Generation of breast cancer stem cells through epithelial-mesenchymal transition, PLoS One, vol.3, issue.8, p.2888, 2008.
DOI : 10.1371/journal.pone.0002888

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002888&type=printable

C. Scheel and R. A. Weinberg, Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links, Semin Cancer Biol, vol.22, issue.5-6, pp.396-403, 2012.

L. Yang, Y. F. Ping, and X. Yu, Gastric cancer stem-like cells possess higher capability of invasion and metastasis in association with a mesenchymal transition phenotype, Cancer Lett, vol.310, issue.1, pp.46-52, 2011.

H. S. Ryu, D. J. Park, H. H. Kim, W. H. Kim, and H. S. Lee, Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer, Hum Pathol, vol.43, issue.4, pp.520-528, 2012.

M. Kanzawa, S. Semba, S. Hara, T. Itoh, and H. Yokozaki, WNT5A is a key regulator of the epithelialmesenchymal transition and cancer stem cell properties in human gastric carcinoma cells, Pathobiology, vol.80, issue.5, pp.235-244, 2013.

J. Guo, B. Wang, Z. Fu, J. Wei, and W. Lu, Hypoxic Microenvironment Induces EMT and Upgrades StemLike Properties of Gastric Cancer Cells, Technol Cancer Res Treat, vol.15, issue.1, pp.60-68, 2016.

E. Bessède, C. Staedel, A. Amador, and L. A. , Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes, Oncogene, vol.33, issue.32, pp.4123-4131, 2014.

I. S. Sougleri, K. S. Papadakos, M. P. Zadik, M. Mavri-vavagianni, A. F. Mentis et al., Helicobacter pylori CagA protein induces factors involved in the epithelial to mesenchymal transition (EMT) in infected gastric epithelial cells in an EPIYA-phosphorylation-dependent manner, FEBS J, vol.283, issue.2, pp.206-220, 2016.

Y. J. Choi, N. Kim, and H. Chang, Helicobacter pylori-induced epithelial-mesenchymal transition, a potential role of gastric cancer initiation and an emergence of stem cells, Carcinogenesis, vol.36, issue.5, pp.553-563, 2015.

K. Wang, S. T. Yuen, and J. Xu, Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer, Nat Genet, vol.46, issue.6, pp.573-582, 2014.

J. Cools-lartigue, L. Baker, and L. E. Ferri, Molecular Mechanisms in Gastric Carcinogenesis, Gastric Cancer: Principles and Practice, vol.2015, pp.35-56

N. Boku, HER2-positive gastric cancer, Gastric Cancer, vol.17, issue.1, pp.1-12, 2014.

Y. Sukawa, H. Yamamoto, and K. Nosho, HER2 expression and PI3K-Akt pathway alterations in gastric cancer, Digestion, vol.89, issue.1, pp.12-17, 2014.

L. Teng and J. Lu, cMET as a potential therapeutic target in gastric cancer (Review), Int J Mol Med, vol.32, issue.6, pp.1247-1254, 2013.

Y. Churin, Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response, J Cell Biol, vol.161, pp.249-255, 2003.

C. Kang, J. J. Song, J. Lee, and M. Y. Kim, Epigenetics: an emerging player in gastric cancer, World J Gastroenterol, vol.20, issue.21, pp.6433-6447, 2014.

K. W. Tsai, Y. L. Liao, and C. W. Wu, Aberrant hypermethylation of miR-9 genes in gastric cancer, Epigenetics, vol.6, issue.10, pp.1189-1197, 2011.

L. Zheng, T. Qi, and D. Yang, microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1, PLoS One, vol.8, issue.1, p.55719, 2013.

S. S. Xie, J. J. Xu, X. Zhuo, W. Zhou, and T. H. , Emerging roles of non-coding RNAs in gastric cancer: Pathogenesis and clinical implications, World J Gastroenterol, vol.22, issue.3, pp.1213-1223, 2016.

A. Sabesan and J. J. Bennett, Diagnosis, Staging, and Workup of Gastric Cancer, Gastric Cancer: Principles and Practice, vol.2015, pp.127-142

K. Sumiyama, Past and current trends in endoscopic diagnosis for early stage gastric cancer in Japan, Gastric Cancer, vol.20, issue.1, pp.20-27, 2017.

Y. Yamaguchi, Y. Nagata, and R. Hiratsuka, Gastric Cancer Screening by Combined Assay for Serum Anti-Helicobacter pylori IgG Antibody and Serum Pepsinogen Levels-The ABC Method, Digestion, vol.93, issue.1, pp.13-18, 2016.

L. Rosero-bixby and R. Sierra, X-ray screening seems to reduce gastric cancer mortality by half in a community-controlled trial in Costa Rica, Br J Cancer, vol.97, issue.7, pp.837-843, 2007.

Y. K. Huang, J. C. Yu, and W. M. Kang, Significance of Serum Pepsinogens as a Biomarker for Gastric Cancer and Atrophic Gastritis Screening: A Systematic Review and Meta-Analysis, PLoS One, vol.10, issue.11, p.142080, 2015.

!. Citation-!!!,

K. Syrjänen, A Panel of Serum Biomarkers (GastroPanel®) in Non-invasive Diagnosis of Atrophic Gastritis. Systematic Review and Meta-analysis, Anticancer Res, vol.36, issue.10, pp.5133-5144, 2016.

Y. Komatsu and B. A. Jobe, Endoscopic Resection for Gastric Cancer, Gastric Cancer: Principles and Practice, vol.2015, pp.163-173

B. Badgwell and P. F. Mansfield, Open Methods of Resection and Reconstruction for Subtotal and Total Gastrectomy, Gastric Cancer: Principles and Practice, vol.2015, pp.199-209

G. Y. Ku and D. H. Ilson, Neoadjuvant and Adjuvant Treatment-Strategies and Clinical Trials-Western Perspective, Gastric Cancer: Principles and Practice, vol.2015, pp.297-302
DOI : 10.1007/978-3-319-15826-6_21

C. Hajj and K. A. Goodman, Radiation Treatment for Gastric Cancer, Gastric Cancer: Principles and Practice, vol.2015, pp.307-315

A. A. Jácome, A. K. Coutinho, E. M. Lima, A. C. Andrade, D. Santos et al., Personalized medicine in gastric cancer: Where are we and where are we going?, World J Gastroenterol, vol.22, issue.3, pp.1160-1171, 2016.

G. D. Lianos, A. Mangano, and S. Rausei, Targeted Therapy and Novel Agents for the Treatment of Gastric Cancer: A View Toward the Future, Gastric Cancer: Principles and Practice, vol.2015, pp.317-330

H. Song, J. Zhu, and D. Lu, Molecular-targeted first-line therapy for advanced gastric cancer, Cochrane Database Syst Rev, vol.7, p.11461, 2016.
DOI : 10.1002/14651858.cd011461.pub2

URL : https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011461.pub2/media/CDSR/CD011461/CD011461.pdf

P. H. Nguyen, J. Giraud, and C. Staedel, All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth, Oncogene, vol.35, issue.43, pp.5619-5628, 2016.
DOI : 10.1038/onc.2016.87

Y. Hayakawa, J. G. Fox, T. Gonda, D. L. Worthley, S. Muthupalani et al., Mouse models of gastric cancer, Cancers (Basel), vol.5, issue.1, pp.92-130, 2013.

P. M. Treuting, M. A. Valasek, and S. M. Dintzis, 11-Upper Gastrointestinal Tract, Comparative Anatomy and Histology, vol.2012, pp.155-175

E. A. Sausville and A. M. Burger, Contributions of human tumor xenografts to anticancer drug development, Cancer Res, vol.66, issue.7, pp.3351-3354, 2006.

L. D. Shultz, N. Goodwin, F. Ishikawa, V. Hosur, B. L. Lyons et al., Human cancer growth and therapy in immunodeficient mouse models, Cold Spring Harb Protoc, vol.2014, issue.7, pp.694-708, 2014.

Y. Y. Choi, J. E. Lee, and H. Kim, Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer, Sci Rep, vol.6, p.22172, 2016.

Y. Zhu, T. Tian, and Z. Li, Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer, Sci Rep, vol.5, p.8542, 2015.

R. M. Hoffman, Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts, Nat Rev Cancer, vol.15, issue.8, pp.451-452, 2015.

D. Siolas and G. J. Hannon, Patient-derived tumor xenografts: transforming clinical samples into mouse models, Cancer Res, vol.73, issue.17, pp.5315-5319, 2013.
DOI : 10.1158/0008-5472.can-13-1069

URL : http://cancerres.aacrjournals.org/content/73/17/5315.full.pdf

T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, vol.414, issue.6859, pp.105-111, 2001.

C. E. Eckfeldt, E. M. Mendenhall, and C. M. Verfaillie, The molecular repertoire of the 'almighty' stem cell, Nat Rev Mol Cell Biol, vol.6, issue.9, pp.726-737, 2005.

S. He, D. Nakada, and S. J. Morrison, Mechanisms of stem cell self-renewal, Annu Rev Cell Dev Biol, vol.25, pp.377-406, 2009.

G. Huang, S. Ye, X. Zhou, D. Liu, and Q. L. Ying, Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network, Cell Mol Life Sci, vol.72, issue.9, pp.1741-1757, 2015.

E. Fuchs and T. Chen, A matter of life and death: self-renewal in stem cells, EMBO Rep, vol.14, issue.1, pp.39-48, 2013.

Z. Wang and H. Ema, Mechanisms of self-renewal in hematopoietic stem cells, Int J Hematol, vol.103, issue.5, pp.498-509, 2016.

B. D. Simons and H. Clevers, Stem cell self-renewal in intestinal crypt, Exp Cell Res, vol.317, pp.2719-2724, 2011.

E. López-arribillaga, V. Rodilla, and L. Pellegrinet, Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch, Development, vol.142, issue.1, pp.41-50, 2015.

J. Fink and B. K. Koo, Clonal Evolution of Stem Cells in the Gastrointestinal Tract, Adv Exp Med Biol, vol.908, pp.11-25, 2016.

E. R. Lee and C. P. Leblond, Dynamic histology of the antral epithelium in the mouse stomach: II. Ultrastructure and renewal of isthmal cells, Am J Anat, vol.172, issue.3, pp.205-224, 1985.

S. M. Karam and C. P. Leblond, Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell, Anat Rec, vol.236, issue.2, pp.259-279, 1993.

M. Bjerknes and H. Cheng, Multipotential stem cells in adult mouse gastric epithelium, Am J Physiol Gastrointest Liver Physiol, vol.283, issue.3, pp.767-777, 2002.

O. 'brien, C. A. Kreso, A. Dick, and J. E. , Cancer stem cells in solid tumors: an overview, Semin Radiat Oncol, vol.19, issue.2, pp.71-77, 2009.

A. Kreso and J. E. Dick, Evolution of the cancer stem cell model, Cell Stem Cell, vol.14, issue.3, pp.275-291, 2014.

Y. Song, Y. Wang, C. Tong, H. Xi, X. Zhao et al., A unified model of the hierarchical and stochastic theories of gastric cancer, Br J Cancer, 2017.

D. Bonnet and J. E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat Med, vol.3, issue.7, pp.730-737, 1997.

M. Al-hajj, M. S. Wicha, A. Benito-hernandez, S. J. Morrison, and M. F. Clarke, Prospective identification of tumorigenic breast cancer cells, Proc Natl Acad Sci U S A, vol.100, issue.7, pp.3983-3988, 2003.

S. Takaishi, T. Okumura, and S. Tu, Identification of gastric cancer stem cells using the cell surface marker CD44, Stem Cells, vol.27, issue.5, pp.1006-1020, 2009.

K. Fukuda, Y. Saikawa, and M. Ohashi, Tumor initiating potential of side population cells in human gastric cancer, Int J Oncol, vol.34, issue.5, pp.1201-1207, 2009.

E. Sugihara, T. Shimizu, and K. Kojima, Ink4a and Arf are crucial factors in the determination of the cell of origin and the therapeutic sensitivity of Myc-induced mouse lymphoid tumor, Oncogene, vol.31, issue.23, pp.2849-2861, 2012.

N. A. Fischbach, S. Rozenfeld, and W. Shen, HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo, Blood, vol.105, issue.4, pp.1456-1466, 2005.

B. J. Huntly, H. Shigematsu, and K. Deguchi, MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors, Cancer Cell, vol.6, issue.6, pp.587-596, 2004.

A. V. Krivtsov, Z. Feng, and S. A. Armstrong, Transformation from committed progenitor to leukemia stem cells, Ann N Y Acad Sci, vol.1176, pp.144-149, 2009.

N. Barker, R. A. Ridgway, and J. H. Van-es, Crypt stem cells as the cells-of-origin of intestinal cancer, Nature, vol.457, issue.7229, pp.608-611, 2009.

J. Houghton, C. Stoicov, and S. Nomura, Gastric cancer originating from bone marrow-derived cells, Science, vol.306, issue.5701, pp.1568-1571, 2004.

C. Varon, P. Dubus, and F. Mazurier, Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric preneoplasia in mice, Gastroenterology, vol.142, issue.2, pp.281-291, 2012.

N. Barker, M. Huch, and P. Kujala, Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro, Cell Stem Cell, vol.6, issue.1, pp.25-36, 2010.

X. B. Li, G. Yang, and L. Zhu, Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinaltype gastric cancer in mice, Cell Res, vol.26, issue.7, pp.838-849, 2016.

Q. Li, Z. Jia, and L. Wang, Disruption of Klf4 in villin-positive gastric progenitor cells promotes formation and progression of tumors of the antrum in mice, Gastroenterology, vol.142, issue.3, pp.531-542, 2012.

T. Kirchner, S. Müller, and T. Hattori, intraepithelial neoplasia and early cancer of the stomach are related to dedifferentiated epithelial cells defined by cytokeratin-7 expression in gastritis, Virchows Arch, vol.439, issue.4, pp.512-522, 2001.

K. T. Nam, H. J. Lee, and J. F. Sousa, Mature chief cells are cryptic progenitors for metaplasia in the stomach, Gastroenterology, vol.139, issue.6, pp.2028-2037, 2010.

T. Schatton, N. Y. Frank, and M. H. Frank, Identification and targeting of cancer stem cells, Bioessays, vol.31, issue.10, pp.1038-1049, 2009.

Y. Yan, X. Zuo, and D. Wei, Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target, Stem Cells Transl Med, vol.4, issue.9, pp.1033-1043, 2015.

D. Naor, R. V. Sionov, and D. Ish-shalom, CD44: structure, function, and association with the malignant process, Adv Cancer Res, vol.71, pp.241-319, 1997.

M. Zöller, CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?, Nat Rev Cancer, vol.11, issue.4, pp.254-267, 2011.

K. Williams, K. Motiani, P. V. Giridhar, and S. Kasper, CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches, Exp Biol Med (Maywood), vol.238, issue.3, pp.324-338, 2013.

S. Borowicz, M. Van-scoyk, and S. Avasarala, The soft agar colony formation assay, J Vis Exp, vol.2014, issue.92, p.51998

V. Tirino, V. Desiderio, and F. Paino, Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization, FASEB J, vol.27, issue.1, pp.13-24, 2013.

C. Hirschmann-jax, A. E. Foster, and G. G. Wulf, A distinct "side population" of cells with high drug efflux capacity in human tumor cells, Proc Natl Acad Sci U S A, vol.101, issue.39, pp.14228-14233, 2004.

P. H. Nguyen, J. Giraud, and L. Chambonnier, Characterization of Biomarkers of Tumorigenic and Chemoresistant Cancer Stem Cells in Human Gastric Carcinoma, Clin Cancer Res, 2016.

B. Marshall, Helicobacter pylori: 20 years on, Clin Med, vol.2, issue.2, pp.147-152, 2002.

B. Marshall, Gastric spirochaetes: 100 years of discovery before and after Kobayashi, Keio J Med, vol.51, issue.2, pp.33-37, 2002.

J. M. Luck, T. N. Seth, and . Gastric-urease, Biochem J, vol.18, issue.6, pp.1227-1231, 1924.

B. J. Marshall and J. R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration, Lancet, vol.1, issue.8390, pp.1311-1315, 1984.

G. Cs, A. Ja, and C. T. , Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov. Respectively, International Journal of Systematic Bacteriology, vol.39, issue.4, pp.397-405, 1989.

L. P. Andersen, S. Holck, C. O. Povlsen, L. Elsborg, and T. Justesen, Campylobacter pyloridis in peptic ulcer disease. I. Gastric and duodenal infection caused by C. pyloridis: histopathologic and microbiologic findings, Scand J Gastroenterol, vol.22, issue.2, pp.219-224, 1987.

A. Morris and G. Nicholson, Ingestion of Campylobacter pyloridis causes gastritis and raised fasting gastric pH, Am J Gastroenterol, vol.82, issue.3, pp.192-199, 1987.

G. E. Buck, W. K. Gourley, W. K. Lee, K. Subramanyam, J. M. Latimer et al., Relation of Campylobacter pyloridis to gastritis and peptic ulcer, J Infect Dis, vol.153, issue.4, pp.664-669, 1986.

C. S. Goodwin, J. A. Armstrong, and B. J. Marshall, Campylobacter pyloridis, gastritis, and peptic ulceration, J Clin Pathol, vol.39, issue.4, pp.353-365, 1986.

, An international association between Helicobacter pylori infection and gastric cancer. The EUROGAST Study Group, Lancet, vol.341, issue.8857, pp.1359-1362, 1993.

L. E. Hansson, L. Engstrand, and O. Nyrén, Helicobacter pylori infection: independent risk indicator of gastric adenocarcinoma, Gastroenterology, vol.105, issue.4, pp.1098-1103, 1993.

M. J. Blaser, K. Kobayashi, T. L. Cover, P. Cao, I. D. Feurer et al., Helicobacter pylori infection in Japanese patients with adenocarcinoma of the stomach, Int J Cancer, vol.55, issue.5, pp.799-802, 1993.

L. Schistosomes, . Flukes, and . Helicobacter, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, IARC Monogr Eval Carcinog Risks Hum, vol.61, pp.1-241, 1994.

M. M. Khalifa, R. R. Sharaf, and R. K. Aziz, Helicobacter pylori: a poor man's gut pathogen?, Gut Pathog, vol.2, issue.1, p.2, 2010.

B. Peleteiro, A. Bastos, A. Ferro, and N. Lunet, Prevalence of Helicobacter pylori infection worldwide: a systematic review of studies with national coverage, Dig Dis Sci, vol.59, issue.8, pp.1698-1709, 2014.

M. G. Bruce and H. I. Maaroos, Epidemiology of Helicobacter pylori infection, Helicobacter, vol.13, pp.1-6, 2008.

N. Banatvala, K. Mayo, F. Megraud, R. Jennings, J. J. Deeks et al., The cohort effect and Helicobacter pylori, J Infect Dis, vol.168, issue.1, pp.219-221, 1993.

R. F. Harvey, R. W. Spence, and J. A. Lane, Relationship between the birth cohort pattern of Helicobacter pylori infection and the epidemiology of duodenal ulcer, QJM, vol.95, issue.8, pp.519-525, 2002.

R. Roosendaal, E. J. Kuipers, and J. Buitenwerf, Helicobacter pylori and the birth cohort effect: evidence of a continuous decrease of infection rates in childhood, Am J Gastroenterol, vol.92, issue.9, pp.1480-1482, 1997.

Y. H. Grad, M. Lipsitch, and A. E. Aiello, Secular trends in Helicobacter pylori seroprevalence in adults in the United States: evidence for sustained race/ethnic disparities, Am J Epidemiol, vol.175, issue.1, pp.54-59, 2012.

J. S. Muhammad, S. F. Zaidi, and T. Sugiyama, Epidemiological ins and outs of helicobacter pylori: a review, J Pak Med Assoc, vol.62, issue.9, pp.955-959, 2012.

S. Wen and S. F. Moss, Helicobacter pylori virulence factors in gastric carcinogenesis, Cancer Lett, vol.282, issue.1, pp.1-8, 2009.
DOI : 10.1016/j.canlet.2008.11.016

URL : http://europepmc.org/articles/pmc2746929?pdf=render

A. Mentis, P. Lehours, and F. Mégraud, Epidemiology and Diagnosis of Helicobacter pylori infection, Helicobacter, vol.20, pp.1-7, 2015.

H. M. Malaty, Epidemiology of Helicobacter pylori infection, Best Pract Res Clin Gastroenterol, vol.21, issue.2, pp.205-214, 2007.

T. Osaki, M. Okuda, and J. Ueda, Multilocus sequence typing of DNA from faecal specimens for the analysis of intra-familial transmission of Helicobacter pylori, J Med Microbiol, vol.62, pp.761-765, 2013.

Y. T. Van-duynhoven and R. De-jonge, Transmission of Helicobacter pylori: a role for food?, Bull World Health Organ, vol.79, issue.5, pp.455-460, 2001.

D. Vaira, J. Holton, and C. Ricci, Review article: the transmission of Helicobacter pylori from stomach to stomach, Aliment Pharmacol Ther, vol.15, pp.33-42, 2001.

M. S. Gião, N. F. Azevedo, S. A. Wilks, M. J. Vieira, and C. W. Keevil, Persistence of Helicobacter pylori in heterotrophic drinking-water biofilms, Appl Environ Microbiol, vol.74, pp.5898-5904, 2008.

K. S. Ahmed, A. A. Khan, and I. Ahmed, Impact of household hygiene and water source on the prevalence and transmission of Helicobacter pylori: a South Indian perspective, Singapore Med J, vol.48, issue.6, pp.543-549, 2007.

N. R. Bellack, M. W. Koehoorn, Y. C. Macnab, and M. G. Morshed, A conceptual model of water's role as a reservoir in Helicobacter pylori transmission: a review of the evidence, Epidemiol Infect, vol.134, issue.3, pp.439-449, 2006.

S. Schwarz, G. Morelli, and B. Kusecek, Horizontal versus familial transmission of Helicobacter pylori, PLoS Pathog, vol.4, issue.10, p.1000180, 2008.

G. M. Garrity, J. A. Bell, L. T. Class, and V. Epsilonproteobacteria, Bergey's Manual® of Systematic Bacteriology: Volume Two The Proteobacteria Part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, pp.1145-1194, 2005.

J. P. Euzéby, List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet, Int J Syst Bacteriol, vol.47, issue.2, pp.590-592, 1997.

O. Bode, G. Morphology, and U. , Physiology and Genetics, 2001.

R. J. Owen, Helicobacter-species classification and identification, Br Med Bull, vol.54, issue.1, pp.17-30, 1998.
DOI : 10.1093/oxfordjournals.bmb.a011667

URL : https://academic.oup.com/bmb/article-pdf/54/1/17/6703670/54-1-17.pdf

Y. Wen, E. A. Marcus, U. Matrubutham, M. A. Gleeson, D. R. Scott et al., Acid-adaptive genes of Helicobacter pylori, Infect Immun, vol.71, issue.10, pp.5921-5939, 2003.

B. E. Dunn, G. P. Campbell, G. I. Perez-perez, and M. J. Blaser, Purification and characterization of urease from Helicobacter pylori, J Biol Chem, vol.265, issue.16, pp.9464-9469, 1990.

N. C. Ha, S. T. Oh, J. Y. Sung, K. A. Cha, M. H. Lee et al., Supramolecular assembly and acid resistance of Helicobacter pylori urease, Nat Struct Biol, vol.8, issue.6, pp.505-509, 2001.

K. A. Eaton, C. L. Brooks, D. R. Morgan, and S. Krakowka, Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets, Infect Immun, vol.59, issue.7, pp.2470-2475, 1991.

M. Tsuda, M. Karita, T. Mizote, M. G. Morshed, K. Okita et al., Essential role of Helicobacter pylori urease in gastric colonization: definite proof using a urease-negative mutant constructed by gene replacement, Eur J Gastroenterol Hepatol, vol.6, issue.1, pp.49-52, 1994.

H. Kuwahara, Y. Miyamoto, and T. Akaike, Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production, Infect Immun, vol.68, issue.8, pp.4378-4383, 2000.

X. Fan, H. Gunasena, and Z. Cheng, Helicobacter pylori urease binds to class II MHC on gastric epithelial cells and induces their apoptosis, J Immunol, vol.165, issue.4, pp.1918-1924, 2000.

P. Malfertheiner, F. Megraud, O. 'morain, and C. A. , Management of Helicobacter pylori infectionthe Maastricht V/Florence Consensus Report, Gut, vol.66, issue.1, pp.6-30, 2017.

X. D. Yu, R. B. Zheng, and J. H. Xie, Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors, J Ethnopharmacol, vol.162, pp.69-78, 2015.

L. S. Ardekani, S. L. Gargari, and I. Rasooli, A novel nanobody against urease activity of Helicobacter pylori, Int J Infect Dis, vol.17, issue.9, pp.723-728, 2013.

D. R. Scott, E. A. Marcus, Y. Wen, J. Oh, and G. Sachs, Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface, Proc Natl Acad Sci, vol.104, issue.17, pp.7235-7240, 2007.

J. K. Akada, M. Shirai, H. Takeuchi, M. Tsuda, and T. Nakazawa, Identification of the urease operon in Helicobacter pylori and its control by mRNA decay in response to pH, Mol Microbiol, vol.36, issue.5, pp.1071-1084, 2000.

Y. H. Fong, H. C. Wong, M. H. Yuen, P. H. Lau, Y. W. Chen et al., Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease, PLoS Biol, vol.11, issue.10, p.1001678, 2013.

C. C. Mcgowan, A. Necheva, S. A. Thompson, T. L. Cover, and M. J. Blaser, Acid-induced expression of an LPSassociated gene in Helicobacter pylori, Mol Microbiol, vol.30, issue.1, pp.19-31, 1998.

M. Pflock, S. Kennard, N. Finsterer, and D. Beier, Acid-responsive gene regulation in the human pathogen Helicobacter pylori, J Biotechnol, vol.126, issue.1, pp.52-60, 2006.

M. Pflock, N. Finsterer, B. Joseph, H. Mollenkopf, T. F. Meyer et al., Characterization of the ArsRS regulon of Helicobacter pylori, involved in acid adaptation, J Bacteriol, vol.188, issue.10, pp.3449-3462, 2006.

J. T. Loh, S. S. Gupta, D. B. Friedman, A. M. Krezel, and T. L. Cover, Analysis of protein expression regulated by the Helicobacter pylori ArsRS two-component signal transduction system, J Bacteriol, vol.192, issue.8, pp.2034-2043, 2010.

H. Kavermann, B. P. Burns, and K. Angermuller, Identification and characterization of Helicobacter pylori genes essential for gastric colonization, J Exp Med, vol.197, issue.7, pp.813-822, 2003.

D. N. Baldwin, B. Shepherd, and P. Kraemer, Identification of Helicobacter pylori genes that contribute to stomach colonization, Infect Immun, vol.75, issue.2, pp.1005-1016, 2007.

K. A. Eaton, D. R. Morgan, and S. Krakowka, Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori, J Med Microbiol, vol.37, issue.2, pp.123-127, 1992.

C. Y. Kao, B. S. Sheu, and S. M. Sheu, Higher motility enhances bacterial density and inflammatory response in dyspeptic patients infected with Helicobacter pylori, Helicobacter, vol.17, issue.6, pp.411-416, 2012.

E. Aihara, C. Closson, and A. L. Matthis, Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori, PLoS Pathog, vol.10, issue.7, p.1004275, 2014.

L. E. Martínez, J. M. Hardcastle, and J. Wang, Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments, Mol Microbiol, vol.99, issue.1, pp.88-110, 2016.

G. Geis, H. Leying, S. Suerbaum, U. Mai, and W. Opferkuch, Ultrastructure and chemical analysis of Campylobacter pylori flagella, J Clin Microbiol, vol.27, issue.3, pp.436-441, 1989.

C. Josenhans, A. Labigne, and S. Suerbaum, Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species, J Bacteriol, vol.177, issue.11, pp.3010-3020, 1995.

M. Kostrzynska, J. D. Betts, J. W. Austin, and T. J. Trust, Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella, J Bacteriol, vol.173, issue.3, pp.937-946, 1991.

G. Geis, S. Suerbaum, B. Forsthoff, H. Leying, and W. Opferkuch, Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori, J Med Microbiol, vol.38, issue.5, pp.371-377, 1993.

N. Soleimani, M. Mobarez, A. Farhangi, and B. , Cloning, expression and purification flagellar sheath adhesion of Helicobacter pylori in Escherichia coli host as a vaccination target, Clin Exp Vaccine Res, vol.5, issue.1, pp.19-25, 2016.

H. Yoshiyama and T. Nakazawa, Unique mechanism of Helicobacter pylori for colonizing the gastric mucus, Microbes Infect, vol.2, issue.1, pp.55-60, 2000.

Z. Qin, W. T. Lin, S. Zhu, A. T. Franco, and J. Liu, Imaging the motility and chemotaxis machineries in Helicobacter pylori by cryo-electron tomography, J Bacteriol, 2016.

L. K. Sycuro, Z. Pincus, and K. D. Gutierrez, Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization, Cell, vol.141, issue.5, pp.822-833, 2010.
DOI : 10.1016/j.cell.2010.03.046

URL : https://doi.org/10.1016/j.cell.2010.03.046

L. K. Sycuro, T. J. Wyckoff, and J. Biboy, Multiple peptidoglycan modification networks modulate Helicobacter pylori's cell shape, motility, and colonization potential, PLoS Pathog, vol.8, issue.3, p.1002603, 2012.
DOI : 10.1371/journal.ppat.1002603

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1002603&type=printable

L. K. Sycuro, C. S. Rule, and T. W. Petersen, Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology, Mol Microbiol, vol.90, issue.4, pp.869-883, 2013.
DOI : 10.1111/mmi.12405

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/mmi.12405

M. Bonis, C. Ecobichon, S. Guadagnini, M. C. Prévost, and I. G. Boneca, A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence, Mol Microbiol, vol.78, issue.4, pp.809-819, 2010.

D. Keilberg and K. M. Ottemann, How Helicobacter pylori senses, targets and interacts with the gastric epithelium, Environ Microbiol, vol.18, issue.3, pp.791-806, 2016.

K. H. Lam, T. K. Ling, and S. W. Au, Crystal structure of activated CheY1 from Helicobacter pylori, J Bacteriol, vol.192, issue.9, pp.2324-2334, 2010.

S. Foynes, N. Dorrell, and S. J. Ward, Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa, Infect Immun, vol.68, issue.4, pp.2016-2023, 2000.

M. S. Pittman, M. Goodwin, and D. J. Kelly, Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation, Microbiology, vol.147, pp.2493-2504, 2001.

P. Lertsethtakarn, K. M. Ottemann, and D. R. Hendrixson, Motility and chemotaxis in Campylobacter and Helicobacter, Annu Rev Microbiol, vol.65, pp.389-410, 2011.

A. S. Rolig, J. Shanks, J. E. Carter, and K. M. Ottemann, Helicobacter pylori requires TlpD-driven chemotaxis to proliferate in the antrum, Infect Immun, vol.80, issue.10, pp.3713-3720, 2012.

T. M. Andermann, Y. T. Chen, and K. M. Ottemann, Two predicted chemoreceptors of Helicobacter pylori promote stomach infection, Infect Immun, vol.70, issue.10, pp.5877-5881, 2002.

M. A. Croxen, G. Sisson, R. Melano, and P. S. Hoffman, The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa, J Bacteriol, vol.188, issue.7, pp.2656-2665, 2006.

O. A. Cerda, F. Núñez-villena, S. E. Soto, J. M. Ugalde, R. López-solís et al., tlpA gene expression is required for arginine and bicarbonate chemotaxis in Helicobacter pylori, Biol Res, vol.44, issue.3, pp.277-282, 2011.

J. Y. Huang, E. G. Sweeney, and M. Sigal, Chemodetection and Destruction of Host Urea Allows Helicobacter pylori to Locate the Epithelium, Cell Host Microbe, vol.18, issue.2, pp.147-156, 2015.

L. Sanders, T. M. Andermann, and K. M. Ottemann, A supplemented soft agar chemotaxis assay demonstrates the Helicobacter pylori chemotactic response to zinc and nickel, Microbiology, vol.159, pp.46-57, 2013.

S. Schreiber, M. Konradt, and C. Groll, The spatial orientation of Helicobacter pylori in the gastric mucus, Proc Natl Acad Sci U S A, vol.101, issue.14, pp.5024-5029, 2004.

B. A. Rader, C. Wreden, K. G. Hicks, E. G. Sweeney, K. M. Ottemann et al., Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB, Microbiology, vol.157, pp.2445-2455, 2011.

S. Odenbreit, Adherence properties of Helicobacter pylori: impact on pathogenesis and adaptation to the host, Int J Med Microbiol, vol.295, issue.5, pp.317-324, 2005.

D. E. Kirschner and M. J. Blaser, The dynamics of Helicobacter pylori infection of the human stomach, J Theor Biol, vol.176, issue.2, pp.281-290, 1995.

B. J. Voss, J. A. Gaddy, W. H. Mcdonald, and T. L. Cover, Analysis of surface-exposed outer membrane proteins in Helicobacter pylori, J Bacteriol, vol.196, issue.13, pp.2455-2471, 2014.

R. A. Alm, J. Bina, B. M. Andrews, P. Doig, R. E. Hancock et al., Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families, Infect Immun, vol.68, issue.7, pp.4155-4168, 2000.

M. Oleastro and A. Ménard, The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis, Biology (Basel), vol.2, issue.3, pp.1110-1134, 2013.

B. S. Sheu, H. B. Yang, Y. C. Yeh, and J. J. Wu, Helicobacter pylori colonization of the human gastric epithelium: a bug's first step is a novel target for us, J Gastroenterol Hepatol, vol.25, issue.1, pp.26-32, 2010.

M. E. Moore, T. Borén, and J. V. Solnick, Life at the margins: modulation of attachment proteins in Helicobacter pylori, Gut Microbes, vol.2, issue.1, pp.42-46, 2011.

M. Oleastro, R. Cordeiro, and J. Ferrand, Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease, J Infect Dis, vol.198, issue.9, pp.1379-1387, 2008.

Y. C. Yeh, W. L. Chang, H. B. Yang, H. C. Cheng, J. J. Wu et al., H. pylori cagL amino acid sequence polymorphism Y58E59 induces a corpus shift of gastric integrin ?5?1 related with gastric carcinogenesis, Mol Carcinog, vol.50, issue.10, pp.751-759, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00021509

Y. Yamaoka, O. Ojo, and S. Fujimoto, Helicobacter pylori outer membrane proteins and gastroduodenal disease, Gut, vol.55, issue.6, pp.775-781, 2006.
DOI : 10.1136/gut.2005.083014

URL : http://europepmc.org/articles/pmc1856239?pdf=render

A. Covacci, S. Censini, and M. Bugnoli, Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer, Proc Natl Acad Sci, vol.90, issue.12, pp.5791-5795, 1993.

L. E. Wroblewski, R. M. Peek, and K. T. Wilson, Helicobacter pylori and gastric cancer: factors that modulate disease risk, Clin Microbiol Rev, vol.23, issue.4, pp.713-739, 2010.
DOI : 10.1128/cmr.00011-10

URL : https://cmr.asm.org/content/23/4/713.full.pdf

J. F. Weel, R. W. Van-der-hulst, and Y. Gerrits, The interrelationship between cytotoxin-associated gene A, vacuolating cytotoxin, and Helicobacter pylori-related diseases, J Infect Dis, vol.173, issue.5, pp.1171-1175, 1996.

M. Selbach, S. Moese, C. R. Hauck, T. F. Meyer, and S. Backert, Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo, J Biol Chem, vol.277, issue.9, pp.6775-6778, 2002.

M. Stein, F. Bagnoli, R. Halenbeck, R. Rappuoli, W. J. Fantl et al., c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs, Mol Microbiol, vol.43, issue.4, pp.971-980, 2002.

M. Poppe, S. M. Feller, G. Römer, and S. Wessler, Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility, Oncogene, vol.26, issue.24, pp.3462-3472, 2007.

I. Tammer, S. Brandt, R. Hartig, W. König, and S. Backert, Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering, Gastroenterology, vol.132, issue.4, pp.1309-1319, 2007.

H. Higashi, R. Tsutsumi, and S. Muto, SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein, Science, vol.295, issue.5555, pp.683-686, 2002.

S. Yamazaki, A. Yamakawa, and Y. Ito, The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa, J Infect Dis, vol.187, issue.2, pp.334-337, 2003.

H. Higashi, A. Nakaya, and R. Tsutsumi, Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation, J Biol Chem, vol.279, issue.17, pp.17205-17216, 2004.
DOI : 10.1074/jbc.m309964200

URL : http://www.jbc.org/content/279/17/17205.full.pdf

B. G. Neel, H. Gu, and L. Pao, The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling, Trends Biochem Sci, vol.28, issue.6, pp.284-293, 2003.

R. Tsutsumi, A. Takahashi, T. Azuma, H. Higashi, and M. Hatakeyama, Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA, Mol Cell Biol, vol.26, issue.1, pp.261-276, 2006.

N. Murata-kamiya, Pathophysiological functions of the CagA oncoprotein during infection by Helicobacter pylori, Microbes Infect, vol.13, issue.10, pp.799-807, 2011.

M. Selbach, S. Moese, R. Hurwitz, C. R. Hauck, T. F. Meyer et al., The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation, EMBO J, vol.22, issue.3, pp.515-528, 2003.

I. Saadat, H. Higashi, and C. Obuse, Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity, Nature, vol.447, issue.7142, pp.330-333, 2007.
DOI : 10.1038/nature05765

K. Kikuchi, N. Murata-kamiya, S. Kondo, and M. Hatakeyama, Helicobacter pylori stimulates epithelial cell migration via CagA-mediated perturbation of host cell signaling, Microbes Infect, vol.14, issue.5, pp.470-476, 2012.

H. Higashi, R. Tsutsumi, and A. Fujita, Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites, Proc Natl Acad Sci, vol.99, issue.22, pp.14428-14433, 2002.

T. Azuma, A. Yamakawa, and S. Yamazaki, Correlation between variation of the 3' region of the cagA gene in Helicobacter pylori and disease outcome in Japan, J Infect Dis, vol.186, issue.11, pp.1621-1630, 2002.

M. Hatakeyama, Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA, Oncogene, vol.27, issue.55, pp.7047-7054, 2008.

O. Handa, Y. Naito, and T. Yoshikawa, CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling, Biochem Pharmacol, vol.73, issue.11, pp.1697-1702, 2007.

R. H. Argent, M. Kidd, R. J. Owen, R. J. Thomas, M. C. Limb et al., Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori, Gastroenterology, vol.127, issue.2, pp.514-523, 2004.

L. Nagase, T. Hayashi, T. Senda, and M. Hatakeyama, Dramatic increase in SHP2 binding activity of Helicobacter pylori Western CagA by EPIYA-C duplication: its implications in gastric carcinogenesis, Sci Rep, vol.5, p.15749, 2015.

R. M. Ferreira, J. C. Machado, M. Leite, F. Carneiro, and C. Figueiredo, The number of Helicobacter pylori CagA EPIYA C tyrosine phosphorylation motifs influences the pattern of gastritis and the development of gastric carcinoma, Histopathology, vol.60, issue.6, pp.992-998, 2012.

H. Mimuro, T. Suzuki, J. Tanaka, M. Asahi, R. Haas et al., Grb2 is a key mediator of helicobacter pylori CagA protein activities, Mol Cell, vol.10, issue.4, pp.745-755, 2002.

Y. Churin, L. Al-ghoul, O. Kepp, T. F. Meyer, W. Birchmeier et al., Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response, J Cell Biol, vol.161, issue.2, pp.249-255, 2003.
DOI : 10.1083/jcb.200208039

URL : http://jcb.rupress.org/content/161/2/249.full.pdf

M. R. Amieva, R. Vogelmann, A. Covacci, L. S. Tompkins, W. J. Nelson et al., Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA, Science, vol.300, issue.5624, pp.1430-1434, 2003.

F. Bagnoli, L. Buti, L. Tompkins, A. Covacci, and M. R. Amieva, Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells, Proc Natl Acad Sci, vol.102, issue.45, pp.16339-16344, 2005.

S. Censini, C. Lange, and Z. Xiang, cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors, Proc Natl Acad Sci, vol.93, issue.25, pp.14648-14653, 1996.

P. Olbermann, C. Josenhans, and Y. Moodley, A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island, PLoS Genet, vol.6, issue.8, p.1001069, 2010.

A. Covacci, J. L. Telford, D. Giudice, G. Parsonnet, J. Rappuoli et al., Helicobacter pylori virulence and genetic geography, Science, vol.284, issue.5418, pp.1328-1333, 1999.

N. S. Akopyants, S. W. Clifton, and D. Kersulyte, Analyses of the cag pathogenicity island of Helicobacter pylori, Mol Microbiol, vol.28, issue.1, pp.37-53, 1998.

S. Maeda, H. Yoshida, and T. Ikenoue, Structure of cag pathogenicity island in Japanese Helicobacter pylori isolates. Gut, vol.44, issue.3, pp.336-341, 1999.

C. Nilsson, A. Sillén, and L. Eriksson, Correlation between cag pathogenicity island composition and Helicobacter pylori-associated gastroduodenal disease, Infect Immun, vol.71, issue.11, pp.6573-6581, 2003.

N. Salama, K. Guillemin, T. K. Mcdaniel, G. Sherlock, L. Tompkins et al., A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains, Proc Natl Acad Sci, vol.97, issue.26, pp.14668-14673, 2000.

D. A. Israel, N. Salama, and C. N. Arnold, Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses, J Clin Invest, vol.107, issue.5, pp.611-620, 2001.

P. I. Hsu, I. R. Hwang, and D. Cittelly, Clinical presentation in relation to diversity within the Helicobacter pylori cag pathogenicity island, Am J Gastroenterol, vol.97, issue.9, pp.2231-2238, 2002.

T. Ikenoue, S. Maeda, and K. Ogura, Determination of Helicobacter pylori virulence by simple gene analysis of the cag pathogenicity island, Clin Diagn Lab Immunol, vol.8, issue.1, pp.181-186, 2001.

L. H. Ta, L. M. Hansen, and W. E. Sause, Conserved Transcriptional Unit Organization of the Cag Pathogenicity Island among Helicobacter pylori Strains, Front Cell Infect Microbiol, vol.2, p.46, 2012.

R. M. Peek, C. Fiske, and K. T. Wilson, Role of innate immunity in Helicobacter pylori-induced gastric malignancy, Physiol Rev, vol.90, issue.3, pp.831-858, 2010.

N. Tegtmeyer, S. Wessler, and S. Backert, Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis, FEBS J, vol.278, issue.8, pp.1190-1202, 2011.

S. Keates, A. C. Keates, M. Warny, R. M. Peek, P. G. Murray et al., Differential activation of mitogenactivated protein kinases in AGS gastric epithelial cells by cag+ and cag-Helicobacter pylori, J Immunol, vol.163, issue.10, pp.5552-5559, 1999.

M. Naumann, S. Wessler, and C. Bartsch, Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island, J Biol Chem, vol.274, issue.44, pp.31655-31662, 1999.

J. E. Crabtree, Role of cytokines in pathogenesis of Helicobacter pylori-induced mucosal damage, Dig Dis Sci, vol.43, issue.9, pp.46-55, 1998.

Y. Yamaoka, M. Kita, T. Kodama, N. Sawai, and J. Imanishi, Helicobacter pylori cagA gene and expression of cytokine messenger RNA in gastric mucosa, Gastroenterology, vol.110, issue.6, pp.1744-1752, 1996.

Y. Yamaoka, T. Kodama, M. Kita, J. Imanishi, K. Kashima et al., Relation between cytokines and Helicobacter pylori in gastric cancer, Helicobacter, vol.6, issue.2, pp.116-124, 2001.

N. A. Sánchez-zauco, J. Torres, and G. E. Pérez-figueroa, Impact of cagPAI and T4SS on the inflammatory response of human neutrophils to Helicobacter pylori infection, PLoS One, vol.8, issue.6, p.64623, 2014.

S. Backert and M. Selbach, Role of type IV secretion in Helicobacter pylori pathogenesis, Cell Microbiol, vol.10, issue.8, pp.1573-1581, 2008.

M. Hatakeyama, Helicobacter pylori CagA-a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins, Microbes Infect, vol.5, issue.2, pp.143-150, 2003.

T. L. Cover and M. J. Blaser, Purification and characterization of the vacuolating toxin from Helicobacter pylori, J Biol Chem, vol.267, issue.15, pp.10570-10575, 1992.

H. Lu, Y. Yamaoka, and D. Y. Graham, Helicobacter pylori virulence factors: facts and fantasies, Curr Opin Gastroenterol, vol.21, issue.6, pp.653-659, 2005.
DOI : 10.1097/01.mog.0000181711.04529.d5

T. L. Cover, The vacuolating cytotoxin of Helicobacter pylori, Mol Microbiol, vol.20, issue.2, pp.241-246, 1996.

I. Szabò, S. Brutsche, and F. Tombola, Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity, EMBO J, vol.18, issue.20, pp.5517-5527, 1999.

F. Tombola, C. Carlesso, and I. Szabò, Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: possible implications for the mechanism of cellular vacuolation, Biophys J, vol.76, issue.3, pp.1401-1409, 1999.

S. Lanzavecchia, P. L. Bellon, P. Lupetti, R. Dallai, R. Rappuoli et al., Three-dimensional reconstruction of metal replicas of the Helicobacter pylori vacuolating cytotoxin, J Struct Biol, vol.121, issue.1, pp.9-18, 1998.

J. C. Atherton, The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases, Annu Rev Pathol, vol.1, pp.63-96, 2006.

M. Molinari, C. Galli, and N. Norais, Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers, J Biol Chem, vol.272, issue.40, pp.25339-25344, 1997.
DOI : 10.1074/jbc.272.40.25339

URL : http://www.jbc.org/content/272/40/25339.full.pdf

M. Molinari, C. Galli, and M. De-bernard, The acid activation of Helicobacter pylori toxin VacA: structural and membrane binding studies, Biochem Biophys Res Commun, vol.248, issue.2, pp.334-340, 1998.

P. Sommi, V. Ricci, and R. Fiocca, Persistence of Helicobacter pylori VacA toxin and vacuolating potential in cultured gastric epithelial cells, Am J Physiol, vol.275, issue.4, pp.681-688, 1998.

M. De-bernard, D. Burroni, E. Papini, R. Rappuoli, J. Telford et al., Identification of the Helicobacter pylori VacA toxin domain active in the cell cytosol, Infect Immun, vol.66, issue.12, pp.6014-6016, 1998.

D. T. Smoot, J. H. Resau, M. H. Earlington, M. Simpson, and T. L. Cover, Effects of Helicobacter pylori vacuolating cytotoxin on primary cultures of human gastric epithelial cells, Gut, vol.39, issue.6, pp.795-799, 1996.

H. Li, I. Kalies, B. Mellgård, and H. F. Helander, A rat model of chronic Helicobacter pylori infection. Studies of epithelial cell turnover and gastric ulcer healing, Scand J Gastroenterol, vol.33, issue.4, pp.370-378, 1998.

T. L. Cover, U. S. Krishna, D. A. Israel, and R. M. Peek, Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin, Cancer Res, vol.63, issue.5, pp.951-957, 2003.

R. M. Peek, M. J. Blaser, and D. J. Mays, Helicobacter pylori strain-specific genotypes and modulation of the gastric epithelial cell cycle, Cancer Res, vol.59, issue.24, pp.6124-6131, 1999.

A. Galmiche, J. Rassow, and A. Doye, The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release, EMBO J, vol.19, issue.23, pp.6361-6370, 2000.

D. C. Willhite, T. L. Cover, and S. R. Blanke, Cellular vacuolation and mitochondrial cytochrome c release are independent outcomes of Helicobacter pylori vacuolating cytotoxin activity that are each dependent on membrane channel formation, J Biol Chem, vol.278, issue.48, pp.48204-48209, 2003.

M. Boncristiano, S. R. Paccani, and S. Barone, The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms, J Exp Med, vol.198, issue.12, pp.1887-1897, 2003.

B. Gebert, W. Fischer, E. Weiss, R. Hoffmann, and R. Haas, Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation, Science, vol.301, issue.5636, pp.1099-1102, 2003.
DOI : 10.1126/science.1086871

M. Molinari, M. Salio, and C. Galli, Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA, J Exp Med, vol.187, issue.1, pp.135-140, 1998.

E. Papini, B. Satin, and N. Norais, Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin, J Clin Invest, vol.102, issue.4, pp.813-820, 1998.

V. Supajatura, H. Ushio, and A. Wada, Cutting edge: VacA, a vacuolating cytotoxin of Helicobacter pylori, directly activates mast cells for migration and production of proinflammatory cytokines, J Immunol, vol.168, issue.6, pp.2603-2607, 2002.

J. C. Atherton, P. Cao, R. M. Peek, M. K. Tummuru, M. J. Blaser et al., Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration, J Biol Chem, vol.270, issue.30, pp.17771-17777, 1995.

T. L. Cover, M. K. Tummuru, P. Cao, S. A. Thompson, and M. J. Blaser, Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains, J Biol Chem, vol.269, issue.14, pp.10566-10573, 1994.

J. C. Atherton, P. Cao, R. M. Peek, M. K. Tummuru, M. J. Blaser et al., Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration, J Biol Chem, vol.270, issue.30, pp.17771-17777, 1995.

D. P. Letley, J. L. Rhead, R. J. Twells, B. Dove, and J. C. Atherton, Determinants of non-toxicity in the gastric pathogen Helicobacter pylori, J Biol Chem, vol.278, issue.29, pp.26734-26741, 2003.

C. Pagliaccia, M. De-bernard, and P. Lupetti, The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity, Proc Natl Acad Sci, vol.95, issue.17, pp.10212-10217, 1998.

X. Ji, T. Fernandez, and D. Burroni, Cell specificity of Helicobacter pylori cytotoxin is determined by a short region in the polymorphic midregion, Infect Immun, vol.68, issue.6, pp.3754-3757, 2000.

J. C. Atherton, R. M. Peek, K. T. Tham, T. L. Cover, and M. J. Blaser, Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori, Gastroenterology, vol.112, issue.1, pp.92-99, 1997.

Y. Yamaoka, Mechanisms of disease: Helicobacter pylori virulence factors, Nat Rev Gastroenterol Hepatol, vol.7, issue.11, pp.629-641, 2010.

J. L. Rhead, D. P. Letley, and M. Mohammadi, A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer, Gastroenterology, vol.133, issue.3, pp.926-936, 2007.

R. F. Maldonado, I. Sá-correia, and M. A. Valvano, Lipopolysaccharide modification in Gram-negative bacteria during chronic infection, FEMS Microbiol Rev, vol.40, issue.4, pp.480-493, 2016.

J. J. Seeley and S. Ghosh, Molecular mechanisms of innate memory and tolerance to LPS, J Leukoc Biol, vol.101, issue.1, pp.107-119, 2017.

T. W. Cullen, D. K. Giles, L. N. Wolf, C. Ecobichon, I. G. Boneca et al., Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa, PLoS Pathog, vol.7, issue.12, p.1002454, 2011.

B. J. Appelmelk, M. A. Monteiro, S. L. Martin, and A. P. Moran, Vandenbroucke-Grauls CM. Why Helicobacter pylori has Lewis antigens, Trends Microbiol, vol.8, issue.12, pp.565-570, 2000.

M. A. Monteiro, P. Zheng, and B. Ho, Expression of histo-blood group antigens by lipopolysaccharides of Helicobacter pylori strains from asian hosts: the propensity to express type 1 blood-group antigens, Glycobiology, vol.10, issue.7, pp.701-713, 2000.

H. P. Wirth, M. Yang, R. M. Peek, K. T. Tham, and M. J. Blaser, Helicobacter pylori Lewis expression is related to the host Lewis phenotype, Gastroenterology, vol.113, issue.4, pp.1091-1098, 1997.

B. J. Appelmelk, M. C. Martino, and E. Veenhof, Phase variation in H type I and Lewis a epitopes of Helicobacter pylori lipopolysaccharide, Infect Immun, vol.68, issue.10, pp.5928-5932, 2000.

M. Q. Du and P. G. Isaccson, Gastric MALT lymphoma: from aetiology to treatment, Lancet Oncol, vol.3, issue.2, pp.97-104, 2002.

C. R. Kapadia, Gastric atrophy, metaplasia, and dysplasia: a clinical perspective, J Clin Gastroenterol, vol.36, issue.5, pp.29-36, 2003.

G. Y. Lauwers, Defining the pathologic diagnosis of metaplasia, atrophy, dysplasia, and gastric adenocarcinoma, J Clin Gastroenterol, vol.36, issue.5, pp.37-43, 2003.

C. B. Jackson, L. M. Judd, and T. R. Menheniott, Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression, J Pathol, vol.213, issue.2, pp.140-151, 2007.
DOI : 10.1002/path.2218

A. C. Ferreira, H. Isomoto, M. Moriyama, T. Fujioka, J. C. Machado et al., Helicobacter and gastric malignancies, Helicobacter, vol.13, issue.1, pp.28-34, 2008.

I. Kato, S. Tominaga, and Y. Ito, Atrophic gastritis and stomach cancer risk: cross-sectional analyses, Jpn J Cancer Res, vol.83, issue.10, pp.1041-1046, 1992.
DOI : 10.1111/j.1349-7006.1992.tb02719.x

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918674

S. K. Lindén, K. M. Driessen, and M. A. Mcguckin, Improved in vitro model systems for gastrointestinal infection by choice of cell line, pH, microaerobic conditions, and optimization of culture conditions, Helicobacter, vol.12, issue.4, pp.341-353, 2007.

Q. Jia, M. Feng, Y. Wang, and S. Xue, Gastric cancer cells in collagen gel matrix: three-dimensional growth and differential expression of adhesion molecules (CD44s, CD54, E-cadherin), J Biomed Mater Res A, vol.84, issue.4, pp.917-925, 2008.

Y. J. Kim, H. I. Bae, O. K. Kwon, and M. S. Choi, Three-dimensional gastric cancer cell culture using nanofiber scaffold for chemosensitivity test, Int J Biol Macromol, vol.45, issue.1, pp.65-71, 2009.

M. Pompaiah and S. Bartfeld, Gastric Organoids: An Emerging Model System to Study Helicobacter pylori Pathogenesis, Curr Top Microbiol Immunol, vol.400, pp.149-168, 2017.

S. Bartfeld, T. Bayram, and M. Van-de-wetering, In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection, Gastroenterology, vol.148, issue.1, pp.126-136, 2015.

K. W. Mccracken, E. M. Catá, and C. M. Crawford, Modelling human development and disease in pluripotent stem-cell-derived gastric organoids, Nature, vol.516, issue.7531, pp.400-404, 2014.

P. Schlaermann, B. Toelle, and H. Berger, A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro, Gut, vol.65, issue.2, pp.202-213, 2016.

D. H. Kim, S. W. Kim, and Y. J. Song, Long-term evaluation of mice model infected with Helicobacter pylori: focus on gastric pathology including gastric cancer, Aliment Pharmacol Ther, vol.18, issue.1, pp.14-23, 2003.

X. Wang, R. Willén, M. Svensson, A. Ljungh, and T. Wadström, Two-year follow-up of Helicobacter pylori infection in C57BL/6 and Balb/cA mice, APMIS, vol.111, issue.4, pp.514-522, 2003.

A. B. Rogers, N. S. Taylor, M. T. Whary, E. D. Stefanich, T. C. Wang et al., Helicobacter pylori but not high salt induces gastric intraepithelial neoplasia in B6129 mice, Cancer Res, vol.65, issue.23, pp.10709-10715, 2005.

K. B. Hahm, K. M. Lee, and Y. B. Kim, Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice, Aliment Pharmacol Ther, vol.16, issue.2, pp.115-127, 2002.

J. G. Fox, A. B. Rogers, and M. T. Whary, Accelerated progression of gastritis to dysplasia in the pyloric antrum of TFF2-/-C57BL6 x Sv129 Helicobacter pylori-infected mice, Am J Pathol, vol.171, issue.5, pp.1520-1528, 2007.

N. Kuzushita, A. B. Rogers, and N. A. Monti, p27kip1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice, Gastroenterology, vol.129, issue.5, pp.1544-1556, 2005.

J. G. Fox, T. C. Wang, and A. B. Rogers, Host and microbial constituents influence Helicobacter pyloriinduced cancer in a murine model of hypergastrinemia, Gastroenterology, vol.124, issue.7, pp.1879-1890, 2003.

S. Tu, G. Bhagat, and G. Cui, Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice, Cancer Cell, vol.14, issue.5, pp.408-419, 2008.

K. Yokota, Y. Kurebayashi, and Y. Takayama, Colonization of Helicobacter pylori in the gastric mucosa of Mongolian gerbils, Microbiol Immunol, vol.35, issue.6, pp.475-480, 1991.

F. Hirayama, S. Takagi, Y. Yokoyama, E. Iwao, and Y. Ikeda, Establishment of gastric Helicobacter pylori infection in Mongolian gerbils, J Gastroenterol, vol.31, issue.9, pp.24-28, 1996.

F. Hirayama, S. Takagi, H. Kusuhara, E. Iwao, Y. Yokoyama et al., Induction of gastric ulcer and intestinal metaplasia in mongolian gerbils infected with Helicobacter pylori, J Gastroenterol, vol.31, issue.5, pp.755-757, 1996.

T. Watanabe, M. Tada, H. Nagai, S. Sasaki, and M. Nakao, Helicobacter pylori infection induces gastric cancer in mongolian gerbils, Gastroenterology, vol.115, issue.3, pp.642-648, 1998.

F. Hirayama, S. Takagi, E. Iwao, Y. Yokoyama, K. Haga et al., Development of poorly differentiated adenocarcinoma and carcinoid due to long-term Helicobacter pylori colonization in Mongolian gerbils, J Gastroenterol, vol.34, issue.4, pp.450-454, 1999.

Q. Zheng, X. Y. Chen, Y. Shi, and S. D. Xiao, Development of gastric adenocarcinoma in Mongolian gerbils after long-term infection with Helicobacter pylori, J Gastroenterol Hepatol, vol.19, issue.10, pp.1192-1198, 2004.

S. Honda, T. Fujioka, M. Tokieda, R. Satoh, A. Nishizono et al., Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils, Cancer Res, vol.58, pp.4255-4259, 1998.

S. Honda, T. Fujioka, M. Tokieda, T. Gotoh, A. Nishizono et al., Gastric ulcer, atrophic gastritis, and intestinal metaplasia caused by Helicobacter pylori infection in Mongolian gerbils, Scand J Gastroenterol, vol.33, issue.5, pp.454-460, 1998.

A. T. Franco, E. Johnston, and U. Krishna, Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors, Cancer Res, vol.68, issue.2, pp.379-387, 2008.

J. Romero-gallo, E. J. Harris, U. Krishna, M. K. Washington, G. I. Perez-perez et al., Effect of Helicobacter pylori eradication on gastric carcinogenesis, Lab Invest, vol.88, issue.3, pp.328-336, 2008.

A. Elfvin, I. Bölin, V. Bothmer, and C. , Helicobacter pylori induces gastritis and intestinal metaplasia but no gastric adenocarcinoma in Mongolian gerbils, Scand J Gastroenterol, vol.40, issue.11, pp.1313-1320, 2005.

K. Harvey and N. Tapon, The Salvador-Warts-Hippo pathway-an emerging tumour-suppressor network, Nat Rev Cancer, vol.7, issue.3, pp.182-191, 2007.

K. F. Harvey and I. K. Hariharan, The hippo pathway, Cold Spring Harb Perspect Biol, vol.4, issue.8, p.11288, 2012.

A. Sebio and H. J. Lenz, Molecular Pathways: Hippo Signaling, a Critical Tumor Suppressor, Clin Cancer Res, vol.21, issue.22, pp.5002-5007, 2015.

S. Moleirinho, A. Tilston-lunel, L. Angus, F. Gunn-moore, and P. A. Reynolds, The expanding family of FERM proteins, Biochem J, vol.452, issue.2, pp.183-193, 2013.

C. Yi and J. Kissil, Merlin and Angiomotin in Hippo-Yap Signaling, The Hippo Signaling Pathway and Cancer, vol.2013, pp.11-25

L. Angus, S. Moleirinho, and L. Herron, Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP, Oncogene, vol.31, issue.2, pp.238-250, 2012.

J. Kremerskothen, C. Plaas, and K. Büther, Characterization of KIBRA, a novel WW domaincontaining protein, Biochem Biophys Res Commun, vol.300, issue.4, pp.862-867, 2003.

R. Baumgartner, I. Poernbacher, N. Buser, E. Hafen, and H. Stocker, The WW domain protein Kibra acts upstream of Hippo in Drosophila, Dev Cell, vol.18, issue.2, pp.309-316, 2010.

Z. Meng, T. Moroishi, and K. L. Guan, Mechanisms of Hippo pathway regulation, Genes Dev, vol.30, issue.1, pp.1-17, 2016.

A. M. Slavotinek, The Family of Crumbs Genes and Human Disease, Mol Syndromol, vol.7, issue.5, pp.274-281, 2016.

B. J. Thompson, F. Pichaud, and K. Röper, Sticking together the Crumbs-an unexpected function for an old friend, Nat Rev Mol Cell Biol, vol.14, issue.5, pp.307-314, 2013.

J. C. Boggiano and R. G. Fehon, Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling, Dev Cell, vol.22, issue.4, pp.695-702, 2012.

A. D. Szymaniak, J. E. Mahoney, W. V. Cardoso, and X. Varelas, Crumbs3-Mediated Polarity Directs Airway Epithelial Cell Fate through the Hippo Pathway Effector Yap, Dev Cell, vol.34, issue.3, pp.283-296, 2015.

A. Elbediwy, Z. I. Vincent-mistiaen, and B. J. Thompson, YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage, Bioessays, vol.38, issue.7, pp.644-653, 2016.

F. Martin-belmonte and M. Perez-moreno, Epithelial cell polarity, stem cells and cancer, Nat Rev Cancer, vol.12, issue.1, pp.23-38, 2011.

M. Mohseni, J. Sun, and A. Lau, A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway, Nat Cell Biol, vol.16, issue.1, pp.108-117, 2014.

B. M. Gumbiner and N. G. Kim, The Hippo-YAP signaling pathway and contact inhibition of growth, J Cell Sci, vol.127, pp.709-717, 2014.

F. X. Yu and K. L. Guan, The Hippo pathway: regulators and regulations, Genes Dev, vol.27, issue.4, pp.355-371, 2013.

N. G. Kim, E. Koh, X. Chen, and B. M. Gumbiner, E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components, Proc Natl Acad Sci U S A, vol.108, issue.29, pp.11930-11935, 2011.

P. Reddy, M. Deguchi, Y. Cheng, and A. J. Hsueh, Actin cytoskeleton regulates Hippo signaling, PLoS One, vol.8, issue.9, p.73763, 2013.
DOI : 10.1371/journal.pone.0073763

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0073763&type=printable

L. Regué, F. Mou, and J. Avruch, G protein-coupled receptors engage the mammalian Hippo pathway through F-actin: F-Actin, assembled in response to Galpha12/13 induced RhoA-GTP, promotes dephosphorylation and activation of the YAP oncogene, Bioessays, vol.35, issue.5, pp.430-435, 2013.

S. Wu, J. Huang, J. Dong, and D. Pan, hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts, Cell, vol.114, issue.4, pp.445-456, 2003.

K. F. Harvey, C. M. Pfleger, and I. K. Hariharan, The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis, Cell, vol.114, issue.4, pp.457-467, 2003.

J. A. Galan and J. Avruch, MST1/MST2 Protein Kinases: Regulation and Physiologic Roles, Biochemistry, vol.55, issue.39, pp.5507-5519, 2016.

J. Fitamant, D. Zhou, F. Mou, L. R. Barrufet, N. Bardeesy et al., MST1/2 and Other Upstream Signaling that Affect Hippo Pathway Function, The Hippo Signaling Pathway and Cancer, vol.2013, pp.27-49

R. W. Justice, O. Zilian, D. F. Woods, M. Noll, and P. J. Bryant, The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation, Genes Dev, vol.9, issue.5, pp.534-546, 1995.

Y. Nishiyama, T. Hirota, and T. Morisaki, A human homolog of Drosophila warts tumor suppressor, h-warts, localized to mitotic apparatus and specifically phosphorylated during mitosis, FEBS Lett, vol.459, issue.2, pp.159-165, 1999.

W. Tao, S. Zhang, and G. S. Turenchalk, Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity, Nat Genet, vol.21, issue.2, pp.177-181, 1999.

N. Yabuta, T. Fujii, and N. G. Copeland, Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts, Genomics, vol.63, issue.2, pp.263-270, 2000.

Y. Li, J. Pei, H. Xia, H. Ke, H. Wang et al., Lats2, a putative tumor suppressor, inhibits G1/S transition, Oncogene, vol.22, issue.28, pp.4398-4405, 2003.

S. Visser and X. Yang, LATS tumor suppressor: a new governor of cellular homeostasis, Cell Cycle, vol.9, pp.3892-3903, 2010.

E. H. Chan, M. Nousiainen, R. B. Chalamalasetty, A. Schäfer, E. A. Nigg et al., The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1, Oncogene, vol.24, issue.12, pp.2076-2086, 2005.

L. Hoa, Y. Kulaberoglu, and R. Gundogdu, The characterisation of LATS2 kinase regulation in Hippo-YAP signalling, Cell Signal, vol.28, issue.5, pp.488-497, 2016.

A. Hergovich, Regulation and functions of mammalian LATS/NDR kinases: looking beyond canonical Hippo signalling, Cell Biosci, vol.3, issue.1, p.32, 2013.

K. H. Lee, Y. G. Goan, and M. Hsiao, MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer, Exp Cell Res, vol.315, issue.15, pp.2529-2538, 2009.

C. Belair, J. Baud, and S. Chabas, Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression, Silence, vol.2, issue.1, p.7, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00639316

K. Zhang, E. Rodriguez-aznar, and N. Yabuta, Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation, EMBO J, vol.31, issue.1, pp.29-43, 2012.

H. Suzuki, N. Yabuta, and N. Okada, Lats2 phosphorylates p21/CDKN1A after UV irradiation and regulates apoptosis, J Cell Sci, vol.126, pp.4358-4368, 2013.

M. Sudol, P. Bork, and A. Einbond, Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain, J Biol Chem, vol.270, issue.24, pp.14733-14741, 1995.

F. Kanai, P. A. Marignani, and D. Sarbassova, TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins, EMBO J, vol.19, issue.24, pp.6778-6791, 2000.

S. Piccolo, S. Dupont, and M. Cordenonsi, The biology of YAP/TAZ: hippo signaling and beyond, Physiol Rev, vol.94, issue.4, pp.1287-1312, 2014.

C. G. Hansen, T. Moroishi, and K. L. Guan, YAP and TAZ: a nexus for Hippo signaling and beyond, Trends Cell Biol, vol.25, issue.9, pp.499-513, 2015.

A. Vassilev, K. J. Kaneko, H. Shu, Y. Zhao, and M. L. Depamphilis, TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm, Genes Dev, vol.15, issue.10, pp.1229-1241, 2001.

B. Zhao, X. Ye, and J. Yu, TEAD mediates YAP-dependent gene induction and growth control, Genes Dev, vol.22, issue.14, pp.1962-1971, 2008.

J. L. Bandura and B. A. Edgar, Yorkie and Scalloped: partners in growth activation, Dev Cell, vol.14, issue.3, pp.315-316, 2008.

A. V. Pobbati and W. Hong, Emerging roles of TEAD transcription factors and its coactivators in cancers, Cancer Biol Ther, vol.14, issue.5, pp.390-398, 2013.

I. Krupska, E. A. Bruford, and B. Chaqour, Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities, Hum Genomics, vol.9, p.24, 2015.

F. Hall-glenn and K. M. Lyons, Roles for CCN2 in normal physiological processes, Cell Mol Life Sci, vol.68, pp.3209-3217, 2011.

R. Urtasun, M. U. Latasa, and M. I. Demartis, Connective tissue growth factor autocriny in human hepatocellular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation, Hepatology, vol.54, issue.6, pp.2149-2158, 2011.

K. F. Harvey, X. Zhang, and D. M. Thomas, The Hippo pathway and human cancer, Nat Rev Cancer, vol.13, issue.4, pp.246-257, 2013.

Y. Aylon, Y. Ofir-rosenfeld, and N. Yabuta, The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1, Genes Dev, vol.24, issue.21, pp.2420-2429, 2010.

Y. Aylon, D. Michael, A. Shmueli, N. Yabuta, H. Nojima et al., A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization, Genes Dev, vol.20, pp.2687-2700, 2006.

Y. Aylon, N. Yabuta, and H. Besserglick, Silencing of the Lats2 tumor suppressor overrides a p53dependent oncogenic stress checkpoint and enables mutant H-Ras-driven cell transformation, Oncogene, vol.28, issue.50, pp.4469-4479, 2009.

Y. Zhou, T. Huang, A. S. Cheng, J. Yu, W. Kang et al., The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis, Int J Mol Sci, vol.17, issue.1, 2016.

F. Zanconato, M. Cordenonsi, and S. Piccolo, YAP/TAZ at the Roots of Cancer, Cancer Cell, vol.29, issue.6, pp.783-803, 2016.

S. E. Hiemer and X. Varelas, Stem cell regulation by the Hippo pathway, Biochim Biophys Acta, vol.1830, issue.2, pp.2323-2334, 2013.

Z. P. Xu, J. S. Zhu, Q. Zhang, and X. Y. Wang, A breakdown of the Hippo pathway in gastric cancer, Hepatogastroenterology, vol.58, pp.1611-1617, 2011.

S. Jiao, H. Wang, and Z. Shi, A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer, Cancer Cell, vol.25, issue.2, pp.166-180, 2014.

N. Li, N. Yu, and J. Wang, miR-222/VGLL4/YAP-TEAD1 regulatory loop promotes proliferation and invasion of gastric cancer cells, Am J Cancer Res, vol.5, issue.3, pp.1158-1168, 2015.

B. Lim, J. L. Park, and H. J. Kim, Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer, Carcinogenesis, vol.35, issue.5, pp.1020-1027, 2014.

T. Moroishi, C. G. Hansen, and K. L. Guan, The emerging roles of YAP and TAZ in cancer, Nat Rev Cancer, vol.15, issue.2, pp.73-79, 2015.

F. Ziemssen and H. Heimann, Evaluation of verteporfin pharmakokinetics-redefining the need of photosensitizers in ophthalmology, Expert Opin Drug Metab Toxicol, vol.8, issue.8, pp.1023-1041, 2012.

M. K. Akens, M. R. Hardisty, and B. C. Wilson, Defining the therapeutic window of vertebral photodynamic therapy in a murine pre-clinical model of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin), Breast Cancer Res Treat, vol.119, issue.2, pp.325-333, 2010.

M. T. Huggett, M. Jermyn, and A. Gillams, Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer, Br J Cancer, vol.110, issue.7, pp.1698-1704, 2014.

E. Donohue, A. Tovey, and A. W. Vogl, Inhibition of autophagosome formation by the benzoporphyrin derivative verteporfin, J Biol Chem, vol.286, issue.9, pp.7290-7300, 2011.

Y. Liu-chittenden, B. Huang, and J. S. Shim, Genetic and pharmacological disruption of the TEADYAP complex suppresses the oncogenic activity of YAP, Genes Dev, vol.26, issue.12, pp.1300-1305, 2012.

S. Song, J. A. Ajani, and S. Honjo, Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties, Cancer Res, vol.74, issue.15, pp.4170-4182, 2014.

S. Song, S. Honjo, and J. Jin, The Hippo Coactivator YAP1 Mediates EGFR Overexpression and Confers Chemoresistance in Esophageal Cancer, Clin Cancer Res, vol.21, issue.11, pp.2580-2590, 2015.

H. Zhang, S. K. Ramakrishnan, and D. Triner, Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1, Sci Signal, vol.8, issue.397, p.98, 2015.

J. Y. Leung, H. L. Wilson, and K. J. Voltzke, Sav1 Loss Induces Senescence and Stat3 Activation Coinciding with Tubulointerstitial Fibrosis, Mol Cell Biol, 2017.

E. K. Konstantinou, S. Notomi, and C. Kosmidou, Verteporfin-induced formation of protein crosslinked oligomers and high molecular weight complexes is mediated by light and leads to cell toxicity, Sci Rep, vol.7, p.46581, 2017.

B. Liu, Y. Zheng, F. Yin, J. Yu, N. Silverman et al., Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila, Cell, vol.164, issue.3, pp.406-419, 2016.
DOI : 10.1016/j.cell.2015.12.029

URL : https://doi.org/10.1016/j.cell.2015.12.029

F. Yao, W. Zhou, C. Zhong, and W. Fang, LATS2 inhibits the activity of NF-? B signaling by disrupting the interaction between TAK1 and IKK?, Tumour Biol, vol.36, issue.10, pp.7873-7879, 2015.

R. Johnson and G. Halder, The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment, Nat Rev Drug Discov, vol.13, issue.1, pp.63-79, 2014.

L. J. Lombardo, F. Y. Lee, and P. Chen, Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays, J Med Chem, vol.47, issue.27, pp.6658-6661, 2004.

J. Rosenbluh, D. Nijhawan, and A. G. Cox, ?-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis, Cell, vol.151, issue.7, pp.1457-1473, 2012.
DOI : 10.1016/j.cell.2013.03.007

URL : https://doi.org/10.1016/j.cell.2013.03.007