C. F. Coombs, Printed Circuits Handbook, Mcgraw-hill, vol.9, 2001.

B. Daigle, Printed circuit board material and design considerations for wireless applications, 1996 Proceedings 46th Electronic Components and Technology Conference, pp.354-357, 1996.
DOI : 10.1109/ectc.1996.517413

, Controlled Impedance Circuit Boards and High-Speed Logic Design, 1996.

A. Aguayo, R04003 high frequency material insertion loss comparison with other material types, 1995.

, Chapter, Composite Materials, Butterworth-Heinemann, pp.57-93, 2017.

L. Isola and . Manufacturing, , vol.12, p.161, 2012.

, Metal Foil for Printed Wiring Applications, IPC, issue.11, 2000.

D. G. Foulke and F. E. Crane, Electroplaters' Process Control Handbook, 1963.

M. A. Oien, Methods for evaluating plated-through-hole reliability, 14th International Reliability Physics Symposium, vol.118, p.16, 1976.
DOI : 10.1109/irps.1976.362731

F. Fehrer and G. Haddick, Thermal-mechanical processing and repairability observations for FR-4, cyanate ester and cyanate ester/epoxy blend PCB substrates, Circuit World, vol.19, issue.2, p.16, 1993.
DOI : 10.1108/eb046201

D. B. Barker and A. Dasgupta, Thermal Stress Issues in Plated-Through-Hole Reliability, pp.648-683, 1993.
DOI : 10.1007/978-1-4684-7767-2_20

K. Weinberg and W. H. Müller, A strategy for damage assessment of thermally stressed copper vias in microelectronic printed circuit boards, Microelectronics Reliability, vol.48, issue.1, p.17, 2008.

S. Q. Huang, K. C. Yung, and B. Sun, A finite element model and experimental analysis of PTH reliability in rigid-flex printed circuits using the taguchi method, International Journal of Fatigue, vol.40, p.17, 2012.

. Bibliographie,

A. Salahouelhadj, M. Martiny, S. Mercier, L. Bodin, D. Manteigas et al., Reliability of thermally stressed rigid-flex printed circuit boards for high density interconnect applications, Microelectronics Reliability, vol.54, p.17, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01513627

K. Watanabe, Y. Kariya, N. Yajima, K. Obinata, Y. Hiroshima et al., Low-cycle fatigue testing and thermal fatigue life prediction of electroplated copper thin film for through hole via, Microelectronics Reliability, vol.82, p.17, 2018.

G. Girard, M. Jrad, S. Bahi, M. Martiny, S. Mercier et al., Experimental and numerical characterization of thin woven composites used in printed circuit boards for high frequency applications, Composite Structures, vol.193, p.21, 2018.

T. Ishikawa and T. Chou, Stiffness and strength behaviour of woven fabric composites, Journal of Materials Science, vol.17, issue.11, pp.3211-3220, 1982.

N. K. Naik and V. K. Ganesh, Prediction of on-axes elastic properties of plain weave fabric composites, Composites Science and Technology, vol.45, issue.2, p.45, 1992.

N. R. Sottos, J. M. Ockers, and M. Swindeman, Thermoelastic properties of plain weave composites for multilayer circuit board applications, Journal of Electronic Packaging, vol.121, pp.37-43, 1999.

Z. Hashin and B. W. Rosen, The elastic moduli of fiber-reinforced materials, Journal of Applied Mechanics, vol.31, pp.223-232, 1964.

J. J. Xiong, R. A. Shenoi, and J. Gao, An analytical model to predict residual thermal stress in 2D orthogonal plain weave fabric composites, International Journal of Solids and Structures, vol.46, pp.1872-1883, 2009.

O. Döbrich, T. Gereke, and C. Cherif, Modeling the mechanical properties of textilereinforced composites with a near micro-scale approach, Composite Structures, vol.135, p.51, 2016.

Y. Q. Wang and X. K. Sun, Digital element simulation of textile processes, Composites Science and Technology, vol.61, issue.2, pp.311-319, 2001.

P. F. Fuchs, G. Pinter, and M. Tonjec, Determination of the orthotropic material properties of individual layers of printed circuit boards, Microelectronics Reliability, vol.52, issue.11, pp.2723-2730, 2012.

. Bibliographie,

E. J. Barbero, J. Trovillion, J. A. Mayugo, and K. K. Sikkil, Finite element modeling of plain weave fabrics from photomicrograph measurements, Composite Structures, vol.73, p.51, 2006.

Z. Chen, F. Yang, and S. A. Meguid, Multi-level modeling of woven glass/epoxy composite for multilayer printed circuit board applications, International Journal of Solids and Structures, vol.51, p.64, 2014.

S. Jacques, I. De-baere, and W. Van-paepegem, Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites, Composites Science and Technology, vol.92, p.24, 2014.

T. Gereke, S. Malekmohammadi, C. Nadot-martin, C. Dai, F. Ellyin et al., Multiscale stochastic modeling of the elastic properties of strand-based wood composites, Journal of Engineering Mechanics, vol.138, issue.7, pp.791-799, 2012.

S. Malekmohammadi, B. Tressou, C. Nadot-martin, F. Ellyin, and R. Vaziri, Analytical micromechanics equations for elastic and viscoelastic properties of strand-based composites, Journal of Composite Materials, vol.48, issue.15, pp.1857-1874, 2014.

X. Bai, M. A. Bessa, A. R. Melro, P. P. Camanho, L. Guo et al., High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites, Composite Structures, vol.134, pp.132-141, 2015.

S. D. Green, M. Y. Matveev, A. C. Long, D. Ivanov, and S. R. Hallett, Mechanical modelling of 3D woven composites considering realistic unit cell geometry, Composite Structures, vol.118, p.25, 2014.

H. Srbová, T. Kroupa, and V. Luke?, Comparison of homogenization approaches used for the identification of the material parameters of unidirectional composites, Materials and Technology, vol.51, pp.373-378, 2017.

L. Signor, P. Kumar, B. Tressou, C. Nadot-martin, J. Miranda-ordonez et al., Evolution of the thermal conductivity of sintered silver joints with their porosity predicted by the finite element analysis of real 3D microstructures, Journal of Electronic Materials, vol.47, issue.7, pp.4170-4176, 2018.

S. G. Abaimov, A. A. Khudyakova, and S. V. Lomov, On the closed form expression of the Mori-Tanaka theory prediction for the engineering constants of a unidirectional fiber-reinforced ply, Composite Structures, vol.142, pp.1-6, 2016.

R. M. Jones, Mechanics of Composite Materials 2 nd edition, vol.33, 1998.

. Bibliographie,

L. Delannay, P. J. Jacques, and S. R. Kalidindi, Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons, International Journal of Plasticity, vol.22, issue.10, p.39, 2006.
DOI : 10.1016/j.ijplas.2006.01.008

N. Kowalski, L. Delannay, P. Yan, and J. Remacle, Finite element modeling of periodic polycrystalline aggregates with intergranular cracks, International Journal of Solids and Structures, vol.90, p.39, 2016.
DOI : 10.1016/j.ijsolstr.2016.04.010

C. Mareau and C. Robert, Different composite voxel methods for the numerical homogenization of heterogeneous inelastic materials with FFT-based techniques, Mechanics of Materials, vol.105, p.39, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01433013

R. Logé, M. Bernacki, H. Resk, L. Delannay, H. Digonnet et al., Linking plastic deformation to recrystallization in metals using digital microstructures, Philosophical Magazine, vol.88, p.39, 2008.

F. ?i?ka, S. Forest, and P. Gumbsch, Simulations of stress-strain heterogeneities in copper thin films: Texture and substrate effects, Computational Materials Science, vol.39, issue.1, p.39, 2007.

F. Adzima, Modélisation et simulation de procédés de mise en forme de tôles métalliques ultrafines, vol.82, p.39, 2016.

T. Mura, Micromechanics of Defects in Solids, Kluwer Academic Publishers, vol.42, p.40, 1987.

Z. Hashin, The elastic moduli of heterogeneous materials, Journal of Applied Mechanics, vol.29, pp.143-150, 1962.

R. Hill, Theory of mechanical properties of fiber-strengthened materials: I. elastic behavior, Journal of the Mechanics and Physics of Solids, vol.12, issue.4, p.40, 1964.

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, p.40, 1973.

W. Voigt, Theoretische Studien über die Elasticitätsverhältnisse der Krystalle, vol.34, pp.3-51, 1887.

A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, vol.9, pp.49-58, 1929.
DOI : 10.1002/zamm.19290090104

T. Christman, A. Needleman, and S. Suresh, An experimental and numerical study of deformation in metal-ceramic composites, Acta Metallurgica, vol.37, issue.11, pp.3029-3050, 1989.

C. C. Swan, Techniques for stress-and strain-controlled homogenization of inelastic periodic composites, Computer Methods in Applied Mechanics and Engineering, vol.117, issue.3, pp.249-267, 1994.

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and nonlinear properties of composites, Comptes-rendus de l'Académie des sciences série II 318, pp.1417-1423, 1994.

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1, pp.69-94, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01282728

J. Teixeira-pinto, C. Nadot-martin, F. Touchard, M. Gueguen, and S. Castagnet, Towards the size estimation of a representative elementary domain in semi-crystalline polymers, Mechanics of Materials, vol.95, pp.116-124, 2016.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13, pp.3647-3679, 2003.

A. Anthoine, Derivation of the in-plane elastic characteristics of masonry through homogenization theory, International Journal of Solids and Structures, vol.32, issue.2, pp.137-163, 1995.

O. Van-der-sluis, P. J. Schreurs, W. A. Brekelmans, and H. E. Meijer, Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling, Mechanics of Materials, vol.32, issue.8, pp.449-462, 2000.

O. Pierard, J. Llorca, J. Segurado, and I. Doghri, Micromechanics of particle-reinforced elasto-viscoplastic composites: Finite element simulations versus affine homogenization, International Journal of Plasticity, vol.23, pp.1041-1060, 2007.

M. Herráez, C. González, C. Lopes, R. Guzmán-de-villoria, J. Llorca et al., Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: An approach to virtual materials design, Composites Part A : Applied Science and Manufacturing, vol.91, pp.484-492, 2016.

G. Weng, The theoretical connection between Mori-Tanaka's theory and the

. Hashin-strickman-walpole and . Bounds, International Journal of Engineering Science, vol.28, pp.1111-1120, 1990.

Z. Hashin, Viscoelastic fiber reinforced materials, vol.4, p.52, 1966.

S. Torquato, Random Heterogeneous Materials, vol.54, 2002.

J. Vial, D. Picart, P. Bailly, and F. Delvare, Numerical and experimental study of the plasticity of hmx during a reverse edge-on impact test, Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.4, p.45006, 2013.

P. Smith, Computer simulation results for the two-point probability function of composite media, Journal of Computational Physics, vol.76, pp.176-191, 1988.

B. D. Lubachevsky, How to simulate billiards and similar systems, Journal of Computational Physics, vol.94, issue.2, p.54, 1991.

J. Rousseau, Cristallographie géométrique et radiocristallographie, Dunod, vol.70, 2000.

J. Lemaitre and J. Chaboche, Mécanique des matériaux solides, Dunod, vol.74, p.103, 2004.

C. O. Frederick and P. J. Armstrong, A mathematical representation of the multiaxial bauschinger effect, Materials at High Temperatures, vol.24, issue.1, p.79, 2007.

J. Chaboche, Time-independant constitutive theories for cyclic plasticity, International Journal of Plasticity, vol.2, pp.149-188, 1986.

J. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects, International Journal of Plasticity, vol.7, pp.661-678, 1991.

S. Bari and T. Hassan, An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation, International Journal of Plasticity, vol.18, issue.7, pp.873-894, 2002.

H. Tresca, Mémoire sur l'écoulement des corpes solides soumis à de fortes pressions, Comptes Rendus de l'Académie des Sciences de Paris 59, vol.81

B. De-saint-venant, Mémoire sur l'établissement des équations différentielles des mouvements intérieurs opérés dans les corps solides ductiles au-delà des limites où l'élasticité pourrait les ramener à leur premier état, Journal de Mathématiques Pures et Appliquées, vol.16, pp.308-316, 1871.

R. Mises, Mechanik der festen Körper im plastisch-deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, MathematischPhysikalische Klasse, vol.81, pp.582-592, 1913.

W. Prager, The theory of plasticity: A survey of recent achievements, Proceedings of the Institution of Mechanical Engineers, vol.169, issue.1, pp.41-57, 1955.

W. Fu, Y. Chang, B. He, and C. Wu, Determination of Young's modulus and Poisson's ratio of thin films by X-ray methods, Thin Solid Films, vol.544, pp.201-205, 2013.

Y. Xiang, X. Chen, and J. J. Vlassak, The mechanical properties of electroplated Cu thin films measured by means of the bulge test technique, MRS Proceedings, vol.695, p.82, 2001.

R. A. Hill, A theory of the yielding and plastic flow of anisotropic metals 193, vol.82, pp.281-297, 1948.

F. Bron and J. Besson, A yield function for anisotropic materials application to aluminum alloys, International Journal of Plasticity, vol.20, issue.4, pp.937-963, 2004.
DOI : 10.1016/j.ijplas.2003.06.001

URL : https://hal.archives-ouvertes.fr/hal-00165873

J. R. Hancock and J. C. Grosskreutz, Mechanisms of fatigue hardening in copper single crystals, Acta Metallurgica, vol.17, issue.2, pp.77-97, 1969.

D. Barker, M. Pecht, A. Dasgupta, and S. Naqvi, Transient thermal stress analysis of a plated through hole subjected to wave soldering, Journal of Electronic Packaging, vol.113, issue.2, p.83, 1991.

T. Walter, G. Khatibi, M. Nelhiebel, W. Heinz, and W. Robl, High cycle fatigue properties of Cu films, Microelectronic Engineering, vol.137, pp.64-69, 2015.

K. Fellner, T. Antretter, P. F. Fuchs, and Q. Toa, Numerical simulation of the electrical performance of printed circuit boards under cyclic thermal loads, Microelectronics Reliability, vol.62, p.83, 2016.

C. Fu, I. C. Ume, and D. L. Mcdowell, Thermal stress and fatigue analysis of platedthrough holes using an internal state variable constitutive model, Finite Elements in Analysis and Design, vol.30, p.83, 1998.

D. L. Mcdowell, A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity, International Journal of Plasticity, vol.8, issue.6, pp.695-728, 1992.

L. Portier, S. Calloch, D. Marquis, and P. Geyer, Ratchetting under tension-torsion loadings: experiments and modelling, International Journal of Plasticity, vol.16, pp.303-335, 2000.
DOI : 10.1016/s0749-6419(99)00056-x

C. Tome, G. R. Canova, U. F. Kocks, N. Christodoulou, and J. J. Jonas, The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals, Acta Metallurgica, vol.32, issue.10, pp.1637-1653, 1984.

R. Dudek, R. Döring, M. Hildebrandt, S. Rzepka, S. Stegmeier et al., Analyses of thermo-mechanical reliability issues for power modules designed in planar technology, EuroSimE, p.84

L. F. Coffin, A study of the effects of cyclic thermal stresses on a ductile meta, Transactions of the ASME, vol.76, pp.931-950, 1954.

S. S. Manson, Fatigue: A complex subject-some simple approximations, Experimental Mechanics, vol.5, issue.4, pp.193-226, 1965.
DOI : 10.1007/bf02321056

URL : http://hdl.handle.net/2060/19650010514

G. Simons, C. Weippert, J. Dual, and J. Villain, Size effects in tensile testing of thin cold rolled and annealed Cu foils, Materials Science and Engineering : A, vol.416, issue.1, pp.290-299, 2006.

J. C. Pang, L. L. Nie, L. B. Zhu, Z. J. Zhang, G. Yao et al.,

. Zhang, Low-cycle fatigue behavior and life prediction of copper busbar, Advanced Engineering Materials, vol.86, p.85

O. Kraft, R. Schwaiger, and P. Wellner, Fatigue in thin films: lifetime and damage formation, Materials Science and Engineering : A, vol.95, p.85, 2001.

M. Hommel and O. Kraft, Deformation behavior of thin copper films on deformable substrates, Acta Materialia, vol.49, p.85, 2001.

O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, and E. Arzt, Fatigue behavior of polycrystalline thin copper films, Zeitschrift für Metallkunde, vol.93, p.85, 2002.

R. Schwaiger, G. Dehm, and O. Kraft, Cyclic deformation of polycrystalline Cu films, Philosophical Magazine, vol.83, issue.6, p.85, 2003.

Y. Ono and S. Morito, Investigation into early fatigue damage in electrodeposited copper, International Journal of Fatigue, vol.54, p.86, 2013.

R. Mönig, R. R. Keller, and C. A. Volkert, Thermal fatigue testing of thin metal films, Review of Scientific Instruments, vol.75, issue.11, p.86, 2004.

. Bibliographie,

A. Wimmer, A. Leitner, T. Detzel, W. Robl, W. Heinz et al., Damage evolution during cyclic tension-tension loading of micron-sized Cu lines, Acta Materialia, vol.67, issue.86, pp.297-307, 2014.

C. Esnouf, Caractérisation microstructurale des matériaux ; analyse par rayonnements X et électronique, Ppur, 2011.

W. Heinz, W. Robl, and G. Dehm, Influence of initial microstructure on thermomechanical fatigue behavior of Cu films on substrates, Microelectronic Engineering, vol.137, pp.5-10, 2015.

E. O. Hall, The deformation and ageing of mild steel: III discussion of results, Proceedings of the Physical Society. Section B, vol.64, issue.9, pp.747-91, 1951.

N. J. Petch, The cleavage strength of polycrystals, The Journal of the Iron and Steel Institute, vol.173, issue.5, pp.25-28, 1953.

G. I. Taylor, Plastic strain in metals, Journal of Institute of Metals, vol.62, issue.93, pp.307-324, 1938.

A. Molinari, G. R. Canova, and S. Ahzi, A self consistent approach of the large deformation polycrystal viscoplasticity, Acta Metallurgica, vol.35, issue.12, pp.2983-2994, 1987.

K. Kowalczyk-gajewska, Modelling of texture evolution in metals accounting for lattice reorientation due to twinning, European Journal of Mechanics-A/Solids, vol.29, issue.1, pp.28-41, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00516878

J. W. Christian and S. Mahajan, Deformation twinning, Progress in Materials Science, vol.39, issue.1, pp.1-157, 1995.

D. Barbier, N. Gey, N. Bozzolo, S. Allain, and M. Humbert, Ebsd for analysing the twinning microstructure in fine-grained twip steels and its influence on work hardening, Journal of Microscopy, vol.235, issue.1, pp.67-78, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509738

M. Rezaiee-pajand and S. Sinaie, On the calibration of the chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction, International Journal of Solids and Structures, vol.46, pp.3009-3017, 2009.

A. H. Mahmoudi, S. M. Pezeshki-najafabadi, and H. Badnava, Parameter determination of chaboche kinematic hardening model using a multi objective genetic algorithm, Computational Materials Science, vol.14, pp.1114-1122, 2011.

F. Su, R. Mao, J. Xiong, K. Zhou, Z. Zhang et al., On thermo-mechanical reliability of plated-through-hole (PTH), Microelectronics Reliability 52, vol.119, p.114, 2012.

. Bibliographie,

K. Macurova, Simulation of the packaging process of embedded components in printed circuit boards, Montanuniversitaet Leoben Institute of Mechanics, p.114, 2015.

W. Kpobie, M. Martiny, S. Mercier, F. Lechleiter, L. Bodin et al., Thermo-mechanical simulation of PCB with embedded components, Microelectronics Reliability, vol.65, p.117, 2016.
DOI : 10.1016/j.microrel.2016.08.016

L. C. Lee, V. S. Darekar, and C. K. Lim, Micromechanics of multilayer printed circuit boards, IBM Journal of Research and Development, vol.28, issue.6, pp.711-718, 1984.
DOI : 10.1147/rd.286.0711

J. Blumm, A. Lindemann, M. Meyer, and C. Strasser, Characterization of PTFE using advanced thermal analysis techniques, International Journal of Thermophysics, vol.31, issue.137, pp.1919-1927, 2010.
DOI : 10.1007/s10765-008-0512-z

. .. Exemple-de-circuit-imprimé-multicouche, 6 1.2 Observation au microtomographe des différentes trames de verre de matériaux étudiés au cours de la thèse

. , Observation en coupe au MEB d'un stratifié, composé d'un empilement de trois trames de verre

, Nomenclature des trames de verre utilisées dans les circuits imprimés

. , D'après les données techniques d'Isola

. , Observation en coupe au microscope de deux feuillards produits par des méthodes différentes

. , Étapes de gravure des couches de cuivre

, Le diamètre d'un trou traversant est d'environ 200 µm et l'épaisseur du circuit est de l'ordre de 1 mm pour un multicouche. L'épaisseur de cuivre présent dans les trous est de l, p.14

. , L'épaisseur de chaque substrat isolant est de quelques centaines de micromètres, et environ 20 µm pour les films de cuivre

. , Les modes de défaillance fréquents sont mis en évidence sur un circuit imprimé quatre couches

. .. Composantes-de-contraintes-sur-un-Élément-de-matière, , p.27

, Montage expérimental de mesures des coefficients d'élasticité, p.31

. , Liste des tableaux 1.1 Nomenclature des différents cuivres que l'on peut trouver dans un circuit imprimé. D'après Isola [6]

. , Nomenclature des épaisseurs de feuillards de cuivre communément utilisées dans les circuits imprimés

. , Propriétés élastiques mesurées dans le plan à température ambiante sur un substrat composite

, Se référer aux Figures 2.16 et 2.18 pour illustration, Grandeurs géométriques définissant la structure interne du stratifié étudié, p.48

. , Prédictions des propriétés élastiques isotropes transverses du toron avec une fraction volumique de 67 %. Comparaison des quatre méthodes présentées. Les fibres sont alignées dans la direction 1

. , Prédictions des propriétés élastiques isotropes transverses du toron avec une fraction volumique de 50 %. Comparaison des quatre méthodes présentées. Les fibres sont alignées dans la direction 1

. , Prédictions des propriétés élastiques isotropes transverses du toron avec une fraction volumique de 30 %. Comparaison des quatre méthodes présentées. Les fibres sont alignées dans la direction 1

. .. , Comparaison de grandeurs caractéristiques des microstructures d'un cuivre laminé recuit et d'un cuivre électrodéposé. Les grains d'une taille inférieure ou égale à 2 pixels ont été exclus de l'analyse, p.92

. .. , Paramètres du modèle de Lemaitre-Chaboche identifiés sur les deux amplitudes de chargement, cuivre HTE de 35 µm d'épaisseur, p.106

. , Propriétés des matériaux nécessaires à la simulation thermomécanique transitoire

. , Modules élastiques

. , Propriétés de la simulation de référence, qui seront modifiées lors de l'étude paramétrique