R. A. Abou-shanab, P. Van-berkum, and J. S. Angle, Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale, Chemosphere, vol.68, pp.360-367, 2007.

D. Alazard, M. Joseph, F. Battaglia-brunet, J. Cayol, and B. Ollivier, Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments, New taxa: Firmicutes (Class Clostridia, vol.14, pp.305-312, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00756278

T. Allard, T. Weber, C. Bellot, C. Damblans, M. Bardy et al., Tracing source and evolution of suspended particles in the Rio Negro Basin (Brazil) using chemical species of iron, Chem. Geol, vol.280, pp.79-88, 2011.

P. A. Allison and D. E. Briggs, Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic, Geology, vol.21, pp.527-530, 1993.

D. M. Alongi, Coastal ecosystem processes, 1998.

S. Andréfouët and L. Wantiez, Characterizing the diversity of coral reef habitats and fish communities found in a UNESCO World Heritage Site: The strategy developed for Lagoons of New Caledonia, Mar. Pollut. Bull, vol.61, pp.612-620, 2010.

.. L. Ankudinov-a, J. J. Rehr, and S. D. Conradson, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Phys. Rev. B, vol.58, pp.7565-7576, 1998.

Y. Arai, Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxideswater interface, Environ. Sci. Technol, vol.42, pp.1151-1157, 2008.

M. G. Aylmore, D. M. Muir, and M. G. Alymore, Thiosulfate Leaching of Gold-a Review. Miner. Eng, vol.14, pp.135-174, 2001.

P. Bai, S. Zheng, C. Chen, and H. Zhao, Investigation of the Iron-Sulfide Phase Transformation in, Nanoscale. Cryst. Growth Des, vol.14, pp.4295-4302, 2014.

W. M. Bandaranayake, Traditional and medicinal uses of mangroves, Mangroves Salt Marshes, vol.2, pp.133-148, 1998.

E. L. Barrett and M. A. Clark, Tetrathionate reduction and production of hydrogen sulfide from thiosulfate, Microbiol. Rev, vol.51, pp.192-205, 1987.

L. Barnes, D. R. Bellwood, M. Sheaves, and J. K. Tanner, The use of clear-water nonestuarine mangroves by reef fishes on the Great Barrier Reef, Mar. Biol, vol.159, pp.211-220, 2011.

T. S. Bates, B. K. Lamb, A. Guenther, J. Dignon, and R. E. Stoiber, Sulfur Emissions to the Atmosphere from Natural Sources, J. Atmos. Chem, vol.14, pp.315-337, 1992.

T. Becquer, C. Quantin, M. Sicot, and J. P. Boudot, Chromium availability in ultramafic soils from New Caledonia, Sci. Total Environ, vol.301, pp.251-261, 2003.

T. Becquer, C. Quantin, S. Rotte-capet, J. Ghanbaja, C. Mustin et al., Sources of trace metals in Ferralsols in New Caledonia, Eur. J. Soil Sci, vol.57, pp.200-213, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00377662

H. Behling and M. L. Da-costa, Mineralogy, geochemistry, and palynology of modern and late Tertiary mangrove deposits in the Barreiras Formation of Mosqueiro Island, northeastern Pará state, eastern Amazonia, J. South Am. Earth Sci, vol.17, pp.285-295, 2004.

E. L. Bennett and C. J. Reynolds, The value of a mangrove area in Sarawak, Biodivers. Conserv, vol.375, pp.359-375, 1993.

C. M. Van-den-berg, Evidence for organic complexation of iron in seawater, Mar. Chem, vol.50, pp.139-157, 1995.

R. A. Berner, Distribution and diagenesis of sulfur in some sediments from the Gulf of California, Mar. Geol, vol.1, pp.117-140, 1964.

R. A. Berner, Sedimentary Pyrite Formation, Am. J. Sci, vol.268, pp.1-23, 1970.

D. Bertel, J. Peck, T. J. Quick, and J. M. Senko, Iron transformations induced by an acidtolerant Desulfosporosinus species, Appl. Environ. Microbiol, vol.78, pp.81-88, 2012.

T. J. Beveridge, Role of cellular design in bacterial metal accumulation and mineralization, Annu. Rev. Microbiol, vol.43, pp.147-71, 1989.

B. C. Bostick and S. Fendorf, Arsenite sorption on troilite (FeS) and pyrite (FeS2), Geochim. Cosmochim. Acta, vol.67, pp.909-921, 2003.

S. Bouillon, A. V. Borges, E. Castañeda-moya, K. Diele, T. Dittmar et al., Mangrove production and carbon sinks: A revision of global budget estimates, Global Biogeochem. Cycles, vol.22, pp.1-12, 2008.

S. Boursiquot, M. Mullet, M. Abdelmoula, J. Génin, and J. Ehrhardt, The dry oxidation of tetragonal FeS1-x mackinawite, Phys. Chem. Miner, vol.28, pp.600-611, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02046727

N. Bousserrhine, U. G. Gasser, and E. Jeanroy, Bacterial and Chemical Reductive Dissolution of Mn, Co, Cr, Al-Substituted Goethite, Geomicrobiol. J, vol.16, pp.245-258, 1999.

N. Bousserrhine, U. Gasser, E. Jeanroy, and J. Berthelin, Effect of aluminium substitution on ferri-reducing bacterial activity and dissolution of goethites, Earth Planet. Sci, vol.326, pp.617-624, 1998.

R. S. Braithwaite, . R. Kampf-a, R. G. Pritchard, and R. P. Lamb, The occurrence of thiosulfates and other unstable sulfur species as natural weathering products of old smelting slags, Mineral. Petrol, vol.47, pp.255-261, 1993.

N. W. Brand, C. R. Butt, and M. Elias, Nickel laterites : classification and features, J. Aust. Geol. Geophys, vol.17, pp.81-88, 1998.

S. Burley and R. Worden, Sandstone Diagenesis: Recent and Ancient, Int. Assoc. Sedimentol. Repr, p.656, 2003.

G. Cabrera, R. Pérez, J. M. Gómez, A. Ábalos, and D. Cantero, Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains, J. Hazard. Mater, vol.135, pp.40-46, 2006.

B. Cancès, F. Juillot, G. Morin, V. Laperche, L. Alvarez et al., XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant, Environ. Sci. Technol, vol.39, pp.9398-9405, 2005.

D. E. Canfield, B. Thamdrup, and J. W. Hansen, The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction, Geochim. Cosmochim. Acta, vol.57, pp.3867-3883, 1993.

-. Carvalho, M. L. Silva, A. Y. Ramos, H. C. Noguera-tolentino, J. Enzweiler et al., Incorporation of Ni into natural goethite : An investigation by X-ray absorption spectroscopy, Am. Mineral, vol.88, pp.876-882, 2003.

H. F. Castro, N. H. Williams, and A. Ogram, Phylogeny of sulfate-reducing bacteria, FEMS Microbiol. Ecol, vol.31, pp.1-9, 2000.

M. Cempel and G. Nikel, Nickel : A Review of Its Sources and Environmental Toxicology, Polish J. Environ. Stud, vol.15, pp.375-382, 2006.

D. Cluzel, Synthèse Géologique de la Nouvelle Calédonie et de la Nouvelle Calédonie et de sa Zone Economique Exclusive, 2006.

D. Cluzel and B. Vigier, Syntectonic mobility of supergene nickel ores of new caledonia (Southwest Pacific). Evidence from garnierite veins and faulted regolith, Resour. Geol, vol.58, pp.161-170, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00161201

M. L. Coleman, D. B. Hedrick, D. R. Lovley, D. C. White, and P. Kenneth, Reduction of Fe(III) in sediments by sulphate-reducing bacteria, Nature, vol.361, pp.436-438, 1993.

R. M. Cornell and U. Schwertmann, The iron oxydes: structure, Properties, Reactions, Occurences and Uses, 2003.

J. Cosmidis, K. Benzerara, G. Morin, V. Busigny, O. Lebeau et al., Biomineralization of iron-phosphates in the water column of Lake Pavin, Geochim. Cosmochim. Acta, vol.126, pp.78-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00981391

H. Cypionka, Characterization of sulfate transport in Desulfovibrio desulfuricans, Arch. Microbiol, vol.152, pp.237-243, 1989.

H. Cypionka, Uptake of sulfate, sulfite and thiosulfate by proton-anion symport in Desulfovibrio desulfuricans, Arch. Microbiol, vol.148, pp.144-149, 1987.

D. Dahdouh-guebas, F. Mathenge, C. Kairo, J. G. Koedam, and N. , Utilization of Mangrove Wood Products around Mida Creek (Kenya) Amongst Subsistence and Commercial Users, Econ. Bot, vol.54, pp.513-527, 2000.

D. Das, T. Dutta, K. Nath, S. M. Kotay, A. K. Das et al., Role of Fe-hydrogenase in biological hydrogen production, Curr. Sci, vol.90, pp.1627-1637, 2006.

J. W. Day, W. H. Conner, F. Ley-lou, R. H. Day, and A. M. Navarro, The productivity and composition of mangrove forests, Aquat. Bot, vol.27, pp.267-284, 1987.

T. Delineau, T. Allard, J. Muller, O. Barres, J. Yvon et al., FTIR Reflectance vs. ERP Studies of Structural Iron in Kaolinites, Clays Clay Miner, vol.42, pp.308-320, 1994.

R. Donald and G. Southam, Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite, Geochim. Cosmochim. Acta, vol.63, pp.2019-2023, 1999.

H. Dong, R. K. Kukkadapu, J. K. Fredrickson, J. M. Zachara, D. W. Kennedy et al., Microbial reduction of structural Fe(III) in illite and goethite, Environ. Sci. Technol, vol.37, pp.1268-1276, 2003.

H. L. Drake and J. M. Akagi, Bisulfite reductase of Desulfovibrio vulgaris: explanation for product formation, J. Bacteriol, vol.132, pp.139-143, 1977.

G. Dublet, F. Juillot, G. Morin, E. Fritsch, D. Fandeur et al., Ni speciation in a New Caledonian lateritic regolith: A quantitative X-ray absorption spectroscopy investigation, Geochim. Cosmochim. Acta, vol.95, pp.119-133, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00788748

G. Dublet, F. Juillot, G. Morin, E. Fritsch, D. Fandeur et al., Goethite aging explains Ni depletion in upper units of ultramafic lateritic ores from New Caledonia, Geochim. Cosmochim. Acta, vol.160, pp.1-15, 2015.

N. Duke, Biodiversity of mangrove in New Caledonia -Typologies et Biodiversité des mangroves de, p.213, 2006.

N. C. Duke, J. Meynecke, S. Dittmann, A. M. Ellison, K. Anger et al., A World Without Mangroves?, Science, vol.317, pp.41-42, 2007.

Y. El-mendili, A. Abdelouas, H. El-hajj, and J. Bardeau, Phase transitions of iron sulphides formed by steel microbial corrosion, RSC Adv, vol.3, pp.26343-26351, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00917832

L. Elsgaard and B. B. Jorgensen, Anoxic transformations of radiolabeled hydrogen sulfide in marine and freshwater sediments, Geochim. Cosmochim. Acta, vol.56, pp.2425-2435, 1992.

H. Fadrus and J. Maly, Suppression of Iron (lII) Interference in the Determination of Iron(II) in Water by the 1,10-Phenanthroline Method, Analyst, vol.100, pp.549-554, 1975.

R. Fan and A. R. Gerson, Nickel geochemistry of a Philippine laterite examined by bulk and microprobe synchrotron analyses, Geochim. Cosmochim. Acta, vol.75, pp.6400-6415, 2011.

R. Fan and A. R. Gerson, Synchrotron micro-spectroscopic examination of Indonesian nickel laterites, Am. Mineral, vol.100, pp.926-934, 2015.

M. L. Farquhar and F. R. Livens, Mechanisms of Arsenic Uptake from Aqueous Solution by Interaction with Goethite, Lepidocrocite, Mackinawite, and Pyrite: An X-ray Absorption Spectroscopy Study, Environ. Sci. Technol, vol.36, pp.1757-1762, 2002.

D. Faivre and D. Schuler, Magnetotactic Bacteria and Magnetosomes, Chem. Rev, vol.108, pp.4875-4898, 2008.

L. Faou, A. Rajagopal, B. S. Daniels, L. Fauque, and G. , Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world, FEMS Microbiol. Rev, vol.6, pp.351-381, 1990.

J. Fernandez, S. Ouillon, C. Chevillon, P. Douillet, R. Fichez et al., A combined modelling and geochemical study of the fate of terrigenous inputs from mixed natural and mining sources in a coral reef lagoon, Mar. Pollut. Bull, vol.52, pp.320-331, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00434477

O. Fernandez, J. Z. Capdevila, G. Dalla, and G. Melchor, Efficacy of Rhizophora mangle aqueous bark extract in the healing of open surgical wounds, Fitoterapia, vol.73, pp.564-572, 2002.

J. E. Findley and J. M. Akagi, Evidence for thiosulfate formation during sulfite reduction by Desulfovibrio vulgaris, Biochem. Biophys. Res. Commun, vol.36, pp.266-271, 1969.

D. Fortin, S. Gordon, and T. J. Beveridge, Nickel sulfide, iron-nickel sulfide and iron sulfide precipitation by a newly isolated Desulfotomaculum species and its relation to nickel resistance, FEMS Microbiol. Ecol, vol.14, pp.121-132, 1994.

J. K. Fredrickson, M. F. Romine, A. S. Beliaev, J. M. Auchtung, M. E. Driscoll et al., Towards environmental systems biology of Shewanella, Nat. Rev. Microbiol, vol.6, pp.592-603, 2008.

S. Furuseth, A. Kjekshus, and A. F. Andresen, On the Magnetic Properties of CoSe2, NiS2, and NiSe2, Acta Chem. Scand, vol.23, pp.2325-2334, 1969.

G. ,

T. J. Gallegos, Y. Han, and K. F. Hayes, Model Predictions of Realgar Precipitation by Reaction of As (III) with Synthetic Mackinawite Under Anoxic Conditions, Environ. Sci. Technol, vol.42, pp.9338-9343, 2008.

J. S. Gescher, C. D. Cordova, and A. M. Spormann, Dissimilatory iron reduction in Escherichia coli: Identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases, Mol. Microbiol, vol.68, pp.706-719, 2008.

W. Ghosh and P. Roy, Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus, FEMS Microbiol. Lett, vol.270, pp.124-155, 2007.

A. J. Gilbert and R. Janssen, Use of environmental functions to communicate the values of a mangrove ecosystem under different management regimes, Ecol. Econ, vol.25, pp.323-346, 1998.

M. Gledhill and C. M. Van-den-berg, Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry, Mar. Chem, vol.47, pp.41-54, 1994.

M. B. Goldhaber and I. R. Kaplan, Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California, Mar. Chem, vol.9, pp.95-143, 1980.

C. Gounou, N. Bousserrhine, G. Varrault, and J. Mouchel, Influence of the Iron-Reducing Bacteria on the Release of Heavy Metals in Anaerobic River Sediment, Water. Air. Soil Pollut, vol.212, pp.123-139, 2010.
URL : https://hal.archives-ouvertes.fr/bioemco-00456373

J. P. Gramp, H. Wang, J. M. Bigham, F. S. Jones, and O. H. Tuovinen, Biogenic Synthesis and Reduction of Fe(III)-hydroxysulfates, Geomicrobiol. J, vol.26, pp.275-280, 2009.

J. P. Gramp, J. M. Bigham, F. S. Jones, and O. H. Tuovinen, Formation of Fe-sulfides in cultures of sulfate-reducing bacteria, J. Hazard. Mater, vol.175, pp.1062-1069, 2010.

J. D. Grice and R. B. Ferguson, Crystal Structure Refinement of Millerite (ß-NiS), Can. Mineral, vol.12, pp.248-252, 1974.

D. S. Han, B. Batchelor, and A. Abdel-wahab, Sorption of selenium(IV) and selenium(VI) to mackinawite (FeS): effect of contact time, extent of removal, sorption envelopes, J. Haz, vol.186, pp.451-457, 2011.

C. M. Hansel, S. G. Benner, P. Nico, and S. Fendorf, Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II), Geochim. Cosmochim. Acta, vol.68, pp.3217-3229, 2004.

E. C. Hatchikian, Purification and Properties of Thiosulfate Reductase from Desulfovibrio vulgaris, J. Biochem, vol.105, pp.249-256, 1975.

T. Heitmann and C. Blodau, Oxidation and incorporation of hydrogen sulfide by dissolved organic matter, Chem. Geol, vol.235, pp.12-20, 2006.

K. Hellige, K. Pollok, P. Larese-casanova, T. Behrends, and S. Peiffer, Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces, Geochim. Cosmochim. Acta, vol.81, pp.69-81, 2012.

R. B. Herbert, S. G. Benner, A. R. Pratt, and D. W. Blowes, Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfatereducing bacteria, Chem. Geol, vol.144, pp.87-97, 1998.

G. Holguin, P. Vazquez, and Y. Bashan, The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview, Biol. Fertil. Soils, vol.33, pp.265-278, 2001.

M. Hoffmann, C. Mikutta, and R. Kretzschmar, Arsenite Binding to Natural Organic Matter: Spectroscopic Evidence for Ligand Exchange and Ternary Complex Formation, Environ. Sci. Technol, vol.47, pp.12165-12173, 2013.

R. W. Howarth, Pyrite : Its Rapid Formation in a Salt Marsh and Its Importance in Ecosystem Metabolism, Science, vol.203, pp.49-51, 1979.

S. Huang, K. D. Harris, E. Lopez-capel, D. A. Manning, and D. Rickard, Amorphous nickel sulfide" is hydrated nanocrystalline NiS with a core-shell structure, Inorg. Chem, vol.48, pp.11486-11488, 2009.

M. A. Huerta-diaz and J. W. Morse, A quantitative method for determination of trace metal concentrations in sedimentary pyrite, Mar. Chem, vol.29, pp.119-144, 1990.

M. A. Huerta-diaz and J. W. Morse, Pyritization of trace metals in anoxic marine sediments, Geochim. Cosmochim. Acta, vol.56, pp.2681-2702, 1992.

M. A. Huerta-diaz, A. Tessier, and R. Carigan, Geochemistry of trace metals associated with reduced sulfur in freshwater sediments, Appl. Geochemistry, vol.13, pp.213-233, 1998.

S. Hunger and L. G. Benning, Greigite: a true intermediate on the polysulfide pathway to pyrite, Geochem. Trans, vol.8, pp.1-20, 2007.

K. C. Ivarson and R. O. Hallberg, Formation of mackinawite by the microbial reduction of jarosite and its application to tidal sediments, Geoderma, vol.16, pp.1-7, 1976.

Y. A. Iyaka, Nickel in soils: A review of its distribution and impacts, Sci. Res. Essays, vol.6, pp.6774-6777, 2011.

, J

J. N. , L. Pacheco, J. S. Pham, D. Q. O'brien, T. M. Hausladen et al., Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry. Environ. Sci. Technol, vol.50, pp.46-53, 2016.

H. Y. Jeong, B. Klaue, J. D. Blum, and K. F. Hayes, Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS), Environ. Sci. Technol, vol.41, pp.7699-7705, 2007.

H. Y. Jeong, J. H. Lee, and K. F. Hayes, Characterization of synthetic nanocrystalline mackinawite: Crystal structure, particle size, and specific surface area, Geochim. Cosmochim. Acta, vol.72, pp.493-505, 2008.

K. S. Johnson, R. M. Gordon, and K. H. Coale, What controls dissolved iron concentrations in the world ocean?, Mar. Chem, vol.57, pp.173-179, 1997.

T. Jong and D. L. Parry, Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides, J. Colloid Interface Sci, vol.275, pp.61-71, 2004.

B. B. Jorgensen, Mineralization of organic matter in the sea bed-the role of sulphate reduction, Nature, vol.296, pp.643-645, 1982.

B. B. Jorgensen, The sulfur cycle of a coastal marine sediment, Limnol. Oceanogr, vol.22, pp.814-832, 1977.

B. B. Jorgensen, The sulfur cycle of freshwater sediments: Role of thiosulfate, Limnol. Oceanogr, vol.35, pp.1329-1342, 1990.

F. Juillot, G. Morin, P. Ildefonse, G. Calas, and G. E. Brown, EXAFS signature of structural Zn at trace levels in natural and synthetic trioctahedral 2:1 phyllosilicates, Am. Mineral, vol.91, pp.1432-1441, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00106896

I. R. Kaplan and S. C. Rittenberg, Microbiological Fractionation of Sulphur Isotopes, J. Gen. Microbiol, vol.34, pp.195-212, 1964.

A. Kappler, M. Benz, B. Schink, and A. Brune, Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment, FEMS Microbiol. Ecol, vol.47, pp.85-92, 2004.

K. Kathiresan and B. L. Bingham, Biology of mangroves and mangrove Ecosystems, Adv. Mar. Biol, vol.40, pp.81-251, 2001.

D. P. Kelly, J. K. Shergill, W. P. Lu, and A. P. Wood, Oxidative metabolism of inorganic sulfur compounds by bacteria, Int. J. Gen. Mol. Microbiol, vol.71, pp.95-107, 1997.

H. T. Kieu, E. Müller, and H. Horn, Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria, Water Res, vol.45, pp.3863-70, 2011.

Y. Kim, Y. Lee, and Y. Roh, Microbial synthesis of iron sulfide (FeS) and iron carbonate (FeCO3) nanoparticles, J. Nanosci. Nanotechnol, vol.15, pp.5794-5797, 2015.

K. Kobayashi, S. Tachibana, and M. Ishimoto, Intermediary Formation of Trithionate in Sulfite Reduction by a Sulfate-Reducing Bacterium, J. Biochem, vol.65, pp.385-387, 1969.

P. Kraal, E. D. Burton, and R. T. Bush, Iron monosulfide accumulation and pyrite formation in eutrophic estuarine sediments, Geochim. Cosmochim. Acta, vol.122, pp.75-88, 2013.

E. Kristensen, F. Andersen, N. Holmboe, M. Holmer, and N. Thongtham, Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Aquat. Microb. Ecol, vol.22, pp.199-213, 2000.

E. Kristensen, S. Bouillon, T. Dittmar, and C. Marchand, Organic carbon dynamics in mangrove ecosystems: A review, Aquat. Bot, vol.89, pp.201-219, 2008.

M. Kuhl and B. B. Jorgensen, Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms, Appl. Environ. Microbiol, vol.58, pp.1164-1174, 1992.

R. K. Kukkadapu, J. M. Zachara, S. C. Smith, J. K. Fredrickson, and C. X. Liu, Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments, Geochim. Cosmochim. Acta, vol.65, pp.2913-2924, 2001.

K. D. Kwon, K. Refson, and G. Sposito, Transition metal incorporation into mackinawite (tetragonal FeS), Am. Mineral, vol.100, pp.1509-1517, 2015.

K. Lalonde, A. Mucci, A. Ouellet, and Y. Gélinas, Preservation of organic matter in sediments promoted by iron, Nature, vol.483, pp.198-200, 2012.

Y. Lan and E. C. Butler, Monitoring the transformation of mackinawite to greigite and pyrite on polymer supports, Appl. Geochemistry, vol.50, pp.1-6, 2014.

M. Langumier, R. Sabot, R. Obame-ndong, M. Jeannin, S. Sablé et al., Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria, Corros. Sci, vol.51, pp.2694-2702, 2009.

L. Pape, P. Battaglia-brunet, F. Parmentier, M. Joulian, C. Gassaud et al., Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium, J. Hazard. Mater, pp.1-6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01383818

A. R. Lennie, A. T. Redfern, P. F. Schofield, and J. V. , Synthesis and Rietveld crystal structure refinement of mackinawite, FeS. Mineral. Mag, vol.59, pp.677-683, 1995.

A. R. Lennie, S. A. Redfern, P. E. Champness, C. P. Stoddart, P. F. Schofield et al., Transformation of mackinawite to greigite : An in situ X-ray powder diffraction and transmission electron microscope study, Am. Mineral, vol.82, pp.302-309, 1997.

A. E. Lewis, Review of metal sulphide precipitation, Hydrometallurgy, vol.104, pp.222-234, 2010.

M. Lewis, R. Pryor, and L. Wilking, Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review, Environ. Pollut, vol.159, pp.2328-2346, 2011.

J. Li, Y. Liu, T. Zhang, L. Wang, X. Liu et al., The effect of Ni(II) on properties of bulking activated sludge and microbial analysis of sludge using 16S rDNA gene, Bioresour. Technol, vol.102, pp.3783-3789, 2011.

Y. Li, H. Vali, J. Yang, T. J. Phelps, and C. L. Zhang, Reduction of Iron Oxides Enhanced by a Sulfate-Reducing Bacterium and Biogenic H2S, Geomicrobiol. J, vol.23, pp.103-117, 2006.

F. Lopes, P. Morin, R. Oliveira, and L. F. Melo, The influence of nickel on the adhesion ability of Desulfovibrio desulfuricans, Colloids surfaces B Biointerfaces, vol.46, pp.127-160, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01814496

D. R. Lovley, J. D. Coates, E. L. Bluntharris, E. J. Phillips, and J. C. Woodward, Humic substances as electron acceptors for microbial respiration, Nature, vol.382, pp.445-448, 1996.

D. R. Lovley and M. J. Klug, Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments, Geochim. Cosmochim. Acta, vol.50, pp.11-18, 1986.

D. R. Lovley and E. J. Phillips, Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments, Appl. Environ. Microbiol, vol.53, pp.2636-2641, 1987.

D. R. Lovley, E. E. Roden, E. J. Phillips, and J. C. Woodward, Enzymatic iron and uranium reduction by sulfate-reducing bacteria, Mar. Geol, vol.113, pp.41-53, 1993.

W. Lu and D. P. Kelly, Thiosulphate Oxidation, Electron Transport and Phosphorylation in Cell-free Systems from Thiobacillus A2, Microbiology, vol.129, pp.1661-1671, 1983.

R. D. Ludwig, D. J. Smyth, D. W. Blowes, L. E. Spink, R. T. Wilkin et al., Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB, Environ. Sci. Technol, vol.43, pp.1970-1976, 2009.

G. W. Luther, Pyrite synthesis via polysulfide compounds, Geochim. Cosmochim. Acta, vol.55, pp.2839-2849, 1991.

G. W. Luther, A. J. Findlay, D. J. Macdonald, S. M. Owings, T. E. Hanson et al., Thermodynamics and kinetics of sulfide oxidation by oxygen: A look at inorganically controlled reactions and biologically mediated processes in the environment, Front. Microbiol, vol.2, pp.1-9, 2011.

M. ,

G. R. Macfarlane and M. D. Burchett, Zinc distribution and excretion in the leaves of the grey mangrove , Avicennia marina (Forsk.) Vierh, Environ. Exp. Bot, vol.41, pp.167-175, 1999.

M. Madigan, Brock Biology of Microorganisms, International Microbiology, 2012.

R. Mahadevan, D. R. Bond, J. E. Butler, V. Coppi, B. O. Palsson et al., Characterization of Metabolism in the Fe (III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling, Appl. Environ. Microbiol, vol.72, pp.1558-1568, 2006.

R. Maignien, Revue of research on laterites, pp.1-136, 1966.

F. Maillot, G. Morin, Y. Wang, D. Bonnin, P. Ildefonse et al., New insight into the structure of nanocrystalline ferrihydrite: EXAFS evidence for tetrahedrally coordinated iron(III), Geochim. Cosmochim. Acta, vol.75, pp.2708-2720, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01054558

A. Manceau and J. M. Combes, Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS, Phys. Chem. Miner, vol.15, pp.283-295, 1988.

C. Marchand, M. Allenbach, and E. Lallier-vergès, Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, Geoderma, vol.160, pp.444-456, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00536395

C. Marchand, J. Fernandez, B. Moreton, L. Landi, E. Lallier-vergès et al., The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed, Chem. Geol, pp.70-80, 2012.

C. Marius and J. Lucas, Holocene mangrove swamps of West Africa sedimentology and soils, J. African Earth Sci, vol.12, pp.41-54, 1991.

R. J. Masau, J. K. Oh, and I. Suzuki, Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans, Can. J. Microbiol, vol.47, pp.348-358, 2001.

M. Melashvili, C. Fleming, I. Dymov, D. Matthews, and D. Dreisinger, Equation for thiosulphate yield during pyrite oxidation, Miner. Eng, vol.74, pp.105-111, 2015.

P. M. Matias, I. Pereira, C. Soares, C. M. Carrondo, and M. A. , Sulphate respiration from hydrogen in Desulfovibrio bacteria: A structural biology overview, Prog. Biophys. Mol. Biol, vol.89, pp.292-329, 2005.

K. L. Mckee, Soil physicochemical patterns and mangrove species distribution -reciprocal effects?, J. Ecol, vol.81, pp.477-487, 1993.

B. Meyer and J. Kuevert, Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5'-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes -Origin and evolution of the dissimilatory sulfate-reduction pathway, Microbiology, vol.153, pp.2026-2044, 2007.

A. Michalowicz, J. Moscovici, D. Muller-bouvet, and . Provost, MAX: Multiplatform Applications for XAFS, J. Phys. Conf. Ser, vol.190, p.12034, 2009.

E. Miranda-tello, M. Fardeau, L. Fernández, F. Ramírez, J. Cayol et al., Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico, Anaerobe, vol.9, pp.97-103, 2003.

K. Mitchell, R. M. Couture, T. M. Johnson, P. R. Mason, and P. Van-cappellen, Selenium sorption and isotope fractionation: Iron(III) oxides versus iron(II) sulfides, Chem. Geol, vol.342, pp.21-28, 2013.

R. Mohanraju and R. Natarajan, Methanogenic bacteria in mangrove sediments, Hydrobiologia, vol.247, pp.187-193, 1992.

G. Morin, A. Mangeret, G. Othmane, L. Stetten, M. Seder-colomina et al., , 2016.

, Mononuclear U ( IV ) complexes and ningyoite as major uranium species in lake sediments, Geochemical Perspect. Lett, vol.2, pp.95-105

J. W. Morse and T. Arakaki, Adsorption and coprecipitation of divalent metals with mackinawite (FeS), Geochim. Cosmochim. Acta, vol.57, pp.3635-3640, 1993.

J. W. Morse and D. Rickard, Chemical dynamics of sedimentary acid volatile sulfide, Environ. Sci. Technol, vol.38, pp.131-136, 2004.

J. W. Morse and Q. Wang, Pyrite formation under conditions approximating those in anoxic sediments: II. Influence of precursor iron minerals and organic matter, Mar. Chem, vol.57, pp.187-193, 1997.

I. Moura, S. Bursakov, C. Costa, and J. J. Moura, Nitrate and nitrite utilization in sulfatereducing bacteria, Anaerobe, vol.3, pp.279-290, 1997.

M. Mullet, S. Boursiquot, J. Génin, and J. Ehrhardt, Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron, Geochim. Cosmochim. Acta, vol.66, pp.829-836, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02048794

G. Muyzer, E. C. De-waal, and A. G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol, vol.59, pp.695-700, 1993.

G. Muyzer and A. J. Stams, The ecology and biotechnology of sulphate-reducing bacteria, Nat. Rev. Microbiol, vol.6, pp.441-54, 2008.

C. R. Myers and K. H. Nealson, Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor, Science, vol.240, pp.1319-1321, 1988.

N. Nakatani, T. Ohtsu, I. Nonaka, G. Wiriyathanawudhiwong, N. Morigasaki et al., Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from Ssulfocysteine increases L-cysteine production in Escherichia coli, Microb. Cell Fact, vol.11, pp.1-9, 2012.

W. Nakatsukasa and J. M. Akagi, Thiosulfate reductase isolated from Desulfotomaculum nigrificans, J. Bacteriol, vol.98, pp.429-433, 1969.

S. Nayak and A. C. Dash, Oxidation of the thiosulfate ion by some iron(III) complexes with phenolate -Amide-amine coordination: A comparative kinetic study, Transit. Met. Chem, vol.31, pp.930-937, 2006.

A. L. Neal, S. Techkarnjanaruk, A. Dohnalkova, D. Mccready, B. M. Peyton et al., Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfatereducing bacteria, Geochim. Cosmochim. Acta, vol.65, pp.223-235, 2001.

I. Neria-gonzález, E. T. Wang, F. Ramírez, J. M. Romero, and C. Hernández-rodríguez, Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico, Anaerobe, vol.12, pp.122-133, 2006.

K. P. Nevin and D. R. Lovley, Lack of Production of Electron-Shuttling Compounds or Solubilization of Fe (III) during Reduction of Insoluble Fe (III) Oxide by Geobacter metallireducens, Appl. Environ. Microbiol, vol.66, pp.2248-2251, 2000.

K. P. Nevin and D. R. Lovley, Mechanisms for Fe(III) Oxide Reduction in Sedimentary Environments, Geomicrobiol. J, vol.19, pp.141-159, 2002.

P. H. Nielsen, Sulfur sources for hydrogen sulfide production in biofilms from sewer systems, Water Sci. Technol, vol.23, pp.1265-1274, 1991.

V. Noël, C. Marchand, F. Juillot, G. Ona-nguema, E. Viollier et al., EXAFS analysis of iron cycling in mangrove sediments downstream a lateritized ultramafic watershed (Vavouto Bay, Geochim. Cosmochim. Acta, vol.136, pp.211-228, 2014.

V. Noël, G. Morin, F. Juillot, C. Marchand, J. Brest et al., Ni cycling in mangrove sediments from New Caledonia, Geochim. Cosmochim. Acta, vol.169, pp.82-98, 2015.

K. Nordstrom, K. M. Cunningham, Y. Xu, and M. Schoonen, Sulfur redox chemistry and the origin of thiosulfate in hydrothermal waters of Yellowstone National Park. Water-Rock Interact, pp.641-644, 1998.

H. Noureddine, M. Fakih, Y. Makhour, D. Zeineddine, and N. Bousserrhine, Co and Mn decrease chemical and biological reduction rate of iron oxyhydroxides, Phys. Procedia, vol.21, pp.211-219, 2011.

G. Ona-nguema, M. Abdelmoula, F. Jorand, O. Benali, A. Géhin et al., Iron (II,III) Hydroxycarbonate Green Rust Formation and Stabilization from Lepidocrocite Bioreduction, Environ. Sci. Technol, vol.36, pp.16-20, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01959552

J. D. Ostergren, G. E. Brown, G. A. Parks, and T. N. Tingle, Quantitative speciation of lead in selected mine tailings from Leadville, CO. Environ. Sci. Technol, vol.33, pp.1627-1636, 1999.

F. M. Page, The reaction between ferric and thiosulphate ions, Trans. Faraday Soc, vol.49, pp.635-643, 1953.

A. K. Parida and A. B. Das, Salt tolerance and salinity effects on plants: a review, Ecotoxicol. Environ. Saf, vol.60, pp.324-373, 2005.

R. H. Parkman, J. M. Charnock, N. D. Bryan, F. R. Livens, and D. J. Vaughan, Reactions of copper and cadmium ions in aqueous solution with goethite, lepidocrocite, mackinawite, and pyrite, Am. Mineral, vol.84, pp.407-419, 1999.

V. Patil, A. Singh, N. Naik, U. Seema, and B. Sawant, Carbon Sequestration in Mangroves Ecosystems, J. Environ. Res. Dev, vol.7, pp.1-8, 2012.

R. R. Patterson and S. Fendorf, Reduction of Hexavalent Chromium by Amorphous Iron Sulfide, Environ. Sci. Technol, vol.31, pp.2039-2044, 1997.

S. Peiffer, T. Behrends, K. Hellige, P. Larese-casanova, M. Wan et al., Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration, Chem. Geol, vol.400, pp.44-55, 2015.

N. Perrier, J. P. Ambrosi, F. Colin, and R. J. Gilkes, Biogeochemistry of a regolith: The New Caledonian koniambo ultramafic massif, J. Geochemical Explor, vol.88, pp.54-58, 2006.

A. Picard, A. Gartman, and P. R. Girguis, What Do We Really Know about the Role of Microorganisms in Iron Sulfide Mineral Formation? Front, Earth Sci, vol.4, pp.1-10, 2016.

G. S. Pokrovski and J. Dubessy, Stability and abundance of the trisulfur radical ion S3-in hydrothermal fluids, Earth Planet. Sci. Lett, vol.411, pp.298-309, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01303806

J. Pollock, K. A. Weber, J. Lack, L. A. Achenbach, M. R. Mormile et al., Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake, Appl. Microbiol. Biotechnol, vol.77, pp.927-934, 2007.

M. Posfai and R. E. Dunin-borkowski, Biosystems. Rev. Mineral. Geochemistry, vol.61, pp.679-714, 2006.

D. Postma and R. Jakobsen, Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface, Geochim. Cosmochim. Acta, vol.60, pp.3169-3175, 1996.

S. R. Poulson, P. J. Colberg, and J. I. Drever, Toxicity of heavy metals (Ni, Zn) to Desulfovibrio desulfuricans, Geomicrobiol. J, vol.14, pp.41-49, 1997.

S. W. Poulton, M. D. Krom, and R. Raiswell, A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide, Geochim. Cosmochim. Acta, vol.68, pp.3703-3715, 2004.

M. Price-carter, J. Tingey, T. A. Bobik, and J. R. Roth, The Alternative Electron Acceptor Tetrathionate Supports B12 -Dependent Anaerobic Growth of Salmonella enterica Serovar Typhimurium on Ethanolamine or 1,2-Propanediol, J. Bacteriol, vol.183, pp.2463-2475, 2001.

J. Prietzel, A. Botzaki, N. Tyufekchieva, M. Brettholle, T. Jürgen et al., Sulfur Speciation in Soil by S K-Edge XANES Spectroscopy : Comparison of Spectral Deconvolution and Linear Combination Fitting, Environ. Sci. Technol, vol.45, pp.2878-2886, 2011.

A. J. Pyzik and S. E. Sommer, Sedimentary iron monosulfides: kinetics and mechanism of formation, Geochim. Cosmochim. Acta, vol.45, pp.687-698, 1981.

B. Ravel and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat, vol.12, pp.537-578, 2005.

R. J. Reiffenstein, W. C. Hulbert, and S. H. Roth, Toxicology of Hydrogen Sulfide, Annu. Rev. Pharmacol. Toxicol, vol.34, pp.109-134, 1992.

T. Ressler, O. Timpe, T. Neisius, J. Find, G. Mestl et al., Time-Resolved XAS Investigation of the Reduction/Oxidation of MoO3?x, J. Catal, vol.191, pp.75-85, 2000.

D. Rickard, Kinetics and mechanism of pyrite formation at low temperatures, Am. J. Sci, vol.275, pp.636-652, 1975.

D. Rickard, Kinetics of FeS precipitation : Part 1. Competing reaction mechanisms, Geochim. Cosmochim. Acta, vol.59, pp.4367-4379, 1995.

D. Rickard, Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation, Geochim. Cosmochim. Acta, vol.61, pp.115-134, 1997.

D. Rickard and G. W. Luther, Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism, Geochim. Cosmochim. Acta, vol.61, pp.135-147, 1997.

D. Rickard and J. W. Morse, Acid volatile sulfide (AVS), Mar. Chem, vol.97, pp.141-197, 2005.

D. Rickard and G. W. Luther, Metal Sulfide Complexes and Clusters, Rev. Mineral. Geochemistry, vol.61, pp.421-504, 2006.

D. Rickard and G. W. Luther, Chemistry of Iron Sulfides, Chem. Rev, vol.107, pp.514-562, 2007.

D. Rickard, Microbial Sulfide Oxidation in Sediments, Dev. Sedimentol, vol.65, pp.353-372, 2012.

M. Rieder, J. C. Crelling, O. ?ustai, M. Drábek, Z. Weiss et al., Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic, Int. J. Coal Geol, vol.71, pp.115-121, 2007.

W. M. Roberts, A. L. Walker, and A. S. Buchanan, The Chemistry of Pyrite Formation in Aqueous Solution and its Relation to the Depositional Environment, Miner. Depos, vol.29, pp.18-29, 1969.

B. Robineau, L. Berthault, and P. Christmann, Geosciences, vol.14, pp.50-59, 2011.

E. E. Roden and J. M. Zachara, Microbial Reduction of Crystalline Iron(III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth, Environ. Sci. Technol, vol.30, pp.1618-1628, 1996.

A. L. Rose and T. D. Waite, Kinetics of iron complexation by dissolved natural organic matter in coastal waters, Mar. Chem, vol.84, pp.85-103, 2003.

S. L. Saalfield and B. C. Bostick, Changes in Iron , Sulfur , and Arsenic Speciation Associated with Bacterial Sulfate Reduction in Ferrihydrite-Rich Systems, Environ. Sci. Technol, vol.43, pp.8787-8793, 2009.

M. Dos-santos-afonso and W. Stumm, Reductive Dissolution of Iron(III) (Hydr)oxides by Hydrogen Sulfide, Am. Chem. Soc, vol.8, pp.1671-1675, 1992.

H. Sass, J. Steuber, M. Kroder, P. M. Kroneck, and H. Cypionka, Formation of thionates by freshwater and marine strains of sulfate-reducing bacteria, Arch. Microbiol, vol.158, pp.418-421, 1992.

H. Sass, M. Berchtold, J. Branke, H. König, H. Cypionka et al., Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp, nov. Syst. Appl. Microbiol, vol.21, pp.212-221, 1998.

A. C. Scheinost and L. Charlet, Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products, Environ. Sci. Technol, vol.42, 1984.
URL : https://hal.archives-ouvertes.fr/insu-00335668

U. Schwertmann, Solubility and dissolution of iron oxides, Plant Soil, vol.130, pp.1-25, 1991.

U. Schwertmann and M. Latham, Properties of iron oxides in some New Caledonian oxisols, Geoderma, vol.39, pp.105-123, 1986.

R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. Sect. A, vol.32, pp.751-767, 1976.

J. Schieber, Sedimentary pyrite: A window into the microbial past, Geology, vol.30, pp.531-534, 2002.

A. Schippers and B. B. Jorgensen, Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments, Geochim. Cosmochim. Acta, vol.66, pp.85-92, 2002.

L. Shi, T. C. Squier, J. M. Zachara, and J. K. Fredrickson, Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes, Mol. Microbiol, vol.65, pp.12-20, 2007.

R. Skála, I. Císa?ová, and M. Drábek, Inversion twinning in troilite, Am. Mineral, vol.91, pp.917-921, 2006.

B. J. Skinner, R. C. Erd, and F. S. Grimaldi, Greigite, the thio-spinel of iron; a new mineral, J. Mineral. Soc. Am, vol.49, pp.543-555, 1964.

A. J. Slowey and G. E. Brown, Transformations of mercury, iron, and sulfur during the reductive dissolution of iron oxyhydroxide by sulfide, Geochim. Cosmochim. Acta, vol.71, pp.877-894, 2007.

D. Y. Sorokin, A. Teske, L. A. Robertson, and J. G. Kuenen, Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group, FEMS Microbiol. Ecol, vol.30, pp.113-123, 1999.

V. S. Souza-júnior, P. Vidal-torrado, M. T. Garcia-gonzaléz, X. L. Otero, and F. Macías, Soil Mineralogy of Mangrove Forests from the State of São Paulo, Southeastern Brazil, Soil Sci. Soc. Am. J, vol.72, pp.848-857, 2008.

M. Stipani?ev, F. Turcu, L. Esnault, E. W. Schweitzer, R. Kilian et al., Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater environment, Electrochim. Acta, vol.113, pp.390-406, 2013.

L. Stoffels, M. Krehenbrink, B. C. Berks, and G. Unden, Thiosulfate reduction in Salmonella enterica is driven by the proton motive force, J. Bacteriol, vol.194, pp.475-85, 2012.

J. W. Stucki and J. E. Kostka, Microbial reduction of iron in smectite, Comptes Rendus Geosci, vol.338, pp.468-475, 2006.

W. Stumm and J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, p.1022, 1995.

M. Stylo, N. Neubert, Y. Roebbert, S. Weyer, and R. Bernier-latmani, Mechanism of Uranium Reduction and Immobilization in Desulfovibrio vulgaris Biofilms, Environ. Sci. Technol, vol.49, pp.10553-10561, 2015.

N. F. Tam and Y. S. Wong, Mangrove soils as sinks for wastewater-borne pollutants, Hydrobiologia, vol.295, pp.231-241, 1995.

N. F. Tam and Y. S. Wong, Retention and distribution of heavy metals in mangrove soils receiving wastewater, Environ. Pollut, vol.94, pp.283-91, 1996.

N. F. Tam and Y. S. Wong, Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps, Environ. Pollut, vol.110, pp.195-205, 2000.

L. A. Taylor and K. L. Williams, Smythite, (Fe, Ni)9S11 -A redefinition, Am. Mineral, vol.57, pp.1571-1577, 1972.

B. K. Teo, EXAFS : Basic Principles and Data Analysis, p.359, 1986.

A. Teske, T. Brinkhoff, G. Muyzer, D. P. Moser, J. Rethmeier et al., Diversity of Thiosulfate-Oxidizing Bacteria from Marine Sediments and Hydrothermal Vents, Appl. Environ. Microbiol, vol.66, pp.3125-3133, 2000.

R. K. Thauer, K. Jungermann, and K. Decker, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev, vol.41, pp.100-180, 1977.

T. L. Theis and P. C. Singer, Complexation of Iron(II) by Organic Matter and Its Effect on Iron(II) Oxidation, Environ. Sci. Technol, vol.8, pp.569-573, 1974.

M. Tokonami, K. Nishiguchi, and N. Morimoto, Crystal struture of a monoclinic pyrrhotite (Fe7S8), Am. Mineral, vol.57, pp.1066-1080, 1972.

F. M. Valente, A. S. Oliveira, N. Gnadt, I. Pacheco, A. V. Coelho et al., Hydrogenases in Desulfovibrio vulgaris Hildenborough: Structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase, J. Biol. Inorg. Chem, vol.10, pp.667-682, 2005.

M. Varon-lopez, A. C. Dias, C. C. Fasanella, A. Durrer, I. S. Melo et al., Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments, Environ. Microbiol, vol.16, pp.845-855, 2014.

H. Veeramani, A. C. Scheinost, N. Monsegue, N. P. Qafoku, R. Kukkadapu et al., Abiotic reductive immobilization of U(VI) by biogenic mackinawite, Environ. Sci. Technol, vol.47, pp.2361-2369, 2013.

P. M. Vignais and A. Colbeau, Molecular biology of microbial hydrogenases, Curr. Issues Mol. Biol, vol.6, pp.159-88, 2004.

S. Virly, Atlas des mangrove de Nouvelle-Calédonie -Typologies et biodiversité des mangroves de Nouvelle-Calédonie, Zonéco Program Report, p.213, 2006.

A. Volbeda, M. Charon, C. Piras, E. C. Hatchikian, M. Frey et al., Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas, Nature, vol.373, pp.580-587, 1995.

A. Volbeda and J. C. Fontecilla-camps, Structure-function relationships of nickel-iron sites in hydrogenase and a comparison with the active sites of other nickel-iron enzymes, Coord. Chem. Rev, vol.249, pp.1609-1619, 2005.

M. Wagner, A. J. Roger, J. L. Flax, G. A. Brusseau, and D. Stahl, Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration, J. Bacteriol, vol.180, pp.2975-2982, 1998.

Y. Wang, H. Zhu, and N. F. Tam, Polyphenols, tannins and antioxidant activities of eight true mangrove plant species in South China, Plant Soil, vol.374, pp.549-563, 2013.

E. Wasmer and Q. David, Rapport sur la situation économique de la, 2012.

S. R. Wasserman, P. G. Allen, D. K. Shuh, J. J. Bucher, and N. M. Edelstein, EXAFS and principal component analysis: a new shell game, J. Synchrotron Radiat, vol.6, pp.284-286, 1999.

J. H. Watson, D. C. Ellwood, Q. Deng, S. Mikhalovsky, C. E. Hayter et al., Heavy metal adsorption on bacterially produced, FeS. Miner. Eng, vol.8, pp.1097-1108, 1995.

J. H. Watson, B. A. Cressey, A. P. Roberts, D. C. Ellwood, J. M. Charnock et al., Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria, J. Magn. Magn. Mater, vol.214, pp.13-30, 2000.

S. M. Webb, SIXPack : a Graphical User Interface for XAS Analysis Using IFEFFIT, Phys. Scr, vol.115, pp.1011-1014, 2005.

D. Wei and K. Osseo-asare, Aqueous synthesis of finely divided pyrite particles, Colloids and Surfaces, vol.121, pp.27-36, 1997.

M. A. Wells, E. R. Ramanaidou, M. Verrall, and C. Tessarolo, Mineralogy and crystal chemistry of "garnierites" in the Goro lateritic nickel deposit, Eur. J. Mineral, vol.21, pp.467-483, 2009.

M. Wolthers, S. J. Van-der-gaast, and D. Rickard, The structure of disordered mackinawite, Am. Mineral, vol.88, 2003.

M. Wolthers, L. Charlet, C. H. Van-der-weijden, P. R. Van-der-linde, and D. Rickard, Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite, Geochim. Cosmochim. Acta, vol.69, pp.3483-3492, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00109252

C. Xing, D. Zhang, K. Cao, S. Zhao, X. Wang et al., In situ growth of FeS microsheet networks with enhanced electrochemical performance for lithium-ion batteries, J. Mater. Chem. A, vol.3, pp.8742-8749, 2015.

Y. Xu, Y. He, X. Feng, L. Liang, J. Xu et al., Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an ironreducing bacterium Clostridium beijerinckii, Z. Sci. Total Environ, pp.215-223, 2014.

S. Ye, E. A. Laws, Q. Wu, S. Zhong, X. Ding et al., Pyritization of trace metals in estuarine sediments and the controlling factors: a case in Jiaojiang Estuary of Zhejiang Province, China. Environ. Earth Sci, vol.61, pp.973-982, 2010.

S. Ye, E. Laws, S. Zhong, X. Ding, and S. Pang, Sequestration of metals through association with pyrite in subtidal sediments of the Nanpaishui Estuary on the Western Bank of the Bohai Sea, Mar. Pollut. Bull, vol.62, pp.934-975, 2011.

M. Yücel, G. W. Luther, and W. S. Moore, Earthquake-induced turbidite deposition as a previously unrecognized sink for hydrogen sulfide in the Black Sea sediments, Mar. Chem, vol.121, pp.176-186, 2010.

J. Zava?nik, N. Stankovi?, S. M. Arshad, and A. Re?nik, Sonochemical synthesis of mackinawite and the role of Cu addition on phase transformations in the Fe-S system, J. Nanoparticle Res, vol.16, pp.1-13, 2014.

L. Zhang, Y. Lin, H. Zhou, S. Wei, and C. , Condensed tannins from mangrove species Kandelia candel and Rhizophora mangle and their antioxidant activity, Molecules, vol.15, pp.420-451, 2010.

Y. Zhang, M. Chen, J. Yang, J. Zhou, and Y. Wang, Screening and Identification of NitrateReducing , Sulfide-Oxidizing Bacteria and their Characteristics, vol.6, pp.252-256, 2011.

Z. Zhao, W. Qiu, X. Koenig-a,-fan, and J. D. Gu, Nitrate removal from saline water using autotrophic denitrification by the bacterium Thiobacillus denitrificans MP-1, Environ. Technol, vol.25, pp.1201-1210, 2004.

C. Zhou, R. Vannela, K. F. Hayes, and B. E. Rittmann, Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris, J. Hazard. Mater, vol.272, pp.28-35, 2014.

C. Zhou, Z. Liu, P. Pataranutaporn, R. Vannela, K. F. Hayes et al., Biogenic nano-particulate iron-sulfide produced through sulfate and Fe(III)-(hydr)oxide reductions was enhanced by pyruvate as the electron donor, RSC Adv, vol.5, pp.100750-100761, 2015.

L. Zhu, B. J. Richardson, and Q. Yu, Anisotropic growth of iron pyrite FeS2 nanocrystals via oriented attachment, Chem. Mater, vol.27, pp.3516-3525, 2015.