N. J. Ganem, Z. Storchova, and D. Pellman, Tetraploidy, aneuploidy and cancer, vol.17, issue.2, pp.157-62, 2007.

B. Mierzwa and D. W. Gerlich, Cytokinetic abscission: molecular mechanisms and temporal control, Dev Cell, vol.31, issue.5, pp.525-563, 2014.

O. Gershony, Cytokinetic abscission is an acute G1 event, Cell Cycle, vol.13, issue.21, pp.3436-3477, 2014.

C. T. Chen, Resurrecting remnants: the lives of post-mitotic midbodies, Trends Cell Biol, vol.23, issue.3, pp.118-146, 2013.

E. F. Crowell, Engulfment of the midbody remnant after cytokinesis in mammalian cells, J Cell Sci, issue.127, pp.3840-51, 2014.

W. M. Zhao, A. Seki, and G. Fang, Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis, Mol Biol Cell, vol.17, issue.9, pp.3881-96, 2006.

J. G. Carlton and J. Martin-serrano, Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery, vol.316, pp.1908-1920, 2007.

E. Morita, Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis, EMBO J, vol.26, pp.4215-4242, 2007.

M. Fabbro, Cdk1/Erk2-and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis, Dev Cell, vol.9, issue.4, pp.477-88, 2005.

J. G. Carlton, M. Agromayor, and J. Martin-serrano, Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release, Proc Natl Acad Sci, vol.105, issue.30, pp.10541-10547, 2008.

H. H. Lee, Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55, Science, vol.322, issue.5901, pp.576-80, 2008.

A. W. Ettinger, Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour, Nat Commun, vol.2, p.503, 2011.

T. C. Kuo, Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity, Nat Cell Biol, vol.13, issue.10, pp.1214-1237, 2011.

R. N. Bastos and F. A. Barr, Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission, J Cell Biol, vol.191, issue.4, pp.751-60, 2010.

S. A. Kamranvar, Integrin signaling via FAK-Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody, Oncotarget, vol.7, issue.21, pp.30820-30850, 2016.

N. St-denis, Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission, Mol Cell Proteomics, vol.14, issue.4, pp.946-60, 2015.

P. Frosk, A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis, J Med Genet, 2017.

D. Komander and M. Rape, The ubiquitin code, Annu Rev Biochem, vol.81, pp.203-232, 2012.

C. H. Emmerich, Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains, Proc Natl Acad Sci U S A, vol.110, issue.38, pp.15247-52, 2013.

S. Rahighi, Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation, Cell, vol.136, issue.6, pp.1098-109, 2009.

F. Cordier, The zinc finger of NEMO is a functional ubiquitin-binding domain, J Biol Chem, vol.284, issue.5, pp.2902-2909, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00366746

F. Ngadjeua, Two-sided ubiquitin binding of NF-kappaB essential modulator (NEMO) zinc finger unveiled by a mutation associated with anhidrotic ectodermal dysplasia with immunodeficiency syndrome, J Biol Chem, vol.288, issue.47, pp.33722-33759, 2013.

C. Pohl and S. Jentsch, Final stages of cytokinesis and midbody ring formation are controlled by BRUCE, Cell, vol.132, issue.5, pp.832-877, 2008.

A. Mukai, Dynamic regulation of ubiquitylation and deubiquitylation at the central spindle during cytokinesis, J Cell Sci, issue.121, pp.1325-1358, 2008.

M. L. Matsumoto, K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody, Mol Cell, vol.39, issue.3, pp.477-84, 2010.

E. Laplantine, NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain, EMBO J, vol.28, pp.2885-95, 2009.

S. Wagner, Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins, Oncogene, vol.27, issue.26, pp.3739-3784, 2008.

M. Hubeau, New mechanism of X-linked anhidrotic ectodermal dysplasia with immunodeficiency: impairment of ubiquitin binding despite normal folding of NEMO protein, Blood, vol.118, issue.4, pp.926-961, 2011.

S. Nakazawa, Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis, Nat Commun, vol.7, p.12547, 2016.

S. M. Lin, Structural Insights into Linear Tri-ubiquitin Recognition by A20Binding Inhibitor of NF-kappaB, ABIN-2. Structure, vol.25, pp.66-78, 2017.

A. Toma, Structural basis for ubiquitin recognition by ubiquitin-binding zinc finger of FAAP20, PLoS One, vol.10, issue.3, p.120887, 2015.

M. G. Bomar, Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta, EMBO Rep, vol.8, issue.3, pp.247-51, 2007.

Q. Hu, Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18, Mol Cell, vol.66, issue.4, p.9, 2017.

N. Suzuki, A novel mode of ubiquitin recognition by the ubiquitin-binding zinc finger domain of WRNIP1, FEBS J, vol.283, issue.11, pp.2004-2021, 2016.

X. Xie, Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2, Autophagy, vol.11, issue.10, pp.1775-89, 2015.

T. T. Thach, Molecular determinants of polyubiquitin recognition by continuous ubiquitin-binding domains of Rad18, Biochemistry, vol.54, issue.12, pp.2136-2184, 2015.

O. Grubisha, DARPin-assisted crystallography of the CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding, J Mol Biol, vol.395, issue.1, pp.89-104, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512126

Y. Kulathu, Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain, Nat Struct Mol Biol, vol.16, issue.12, pp.1328-1358, 2009.

M. L. Bondeson, A nonsense mutation in CEP55 defines a new locus for a Meckel-like syndrome, an autosomal recessive lethal fetal ciliopathy, Clin Genet, vol.92, issue.5, pp.510-516, 2017.

K. Arnold, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, vol.22, issue.2, pp.195-201, 2006.

R. A. Laskowski, PROCHECK-a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, pp.283-291, 1993.

W. F. Van-gunsteren, Biomolecular simulation: the GROMOS manual and user guide, 1996.

S. J. De-vries, M. Van-dijk, and A. M. Bonvin, The HADDOCK web server for datadriven biomolecular docking, Nat Protoc, vol.5, issue.5, pp.883-97, 2010.

S. Experimental-procedures,

. Plasmids,

, L351A/Q354A/Q355A His-NOA and D362R/F363P His-NOA were purchased from

M. A. Geneart-(thermofisher-sientific, H. Usa-;, and H. , HA-CEP55 CEP55 D362R/F363P/C440A/C443A and the pGEX4T2-di-Ub and tetra-Ub-plasmid (GE Healthcare) encoding linear di-and tetra-ubiquitin were prepared using conventional molecular cloning and PCR mutagenesis methods, pcDNA3 plasmids (Invitrogen) encoding human HA-CEP55 WT (1-464), pp.15-53

C. Ndp52, His-strep-CEP55 ?ZF-nZF2 TAB2 (665-693) and His-strep, pp.440-470

, CEP55 ?ZF-A20 ZF7 (759-790), were purchased from Eurofins Genomics

, A pET52b3C/LIC plasmid (Merck Millipore) encoding StrepTag-II-tagged human ubiquitin-conjugating enzyme E2-25K-C170S was prepared by Ligation Independent Cloning following the manufacturer's instructions. pGEX-Ubc13 (18894) and pET16b-Mms2 (18893) were provided by Addgene, pEGFP-C1 plasmid (Clontech) encoding GFP-ZF CEP55 was purchased from Eurofins Genomics

E. Wt and . Zf, Strep-Tag-II CEP55 ZF and N-terminal fluorescein-labeled-CEP55 ZF peptides (CEP55 F-ZF) (>95% purity) were purchased from Covalab, pp.435-464

, Cell Signaling), antiTSG101(4a10, GeneTex), anti-HA II and anti-GFP. CEP55 siRNA (SI02653021, Qiagen) and Non-targeting (D-001810-10, Dharmacon) were used. Purification of various proteins and ubiquitin expression Protein purification of all the proteins was carried out on a ÄKTA Prime Purifier (Amersham Pharmacia Biotech). Ubc13, linear di-ub and tetra-Ub expressed as a glutathione-Stransferase (GST) fusion protein, StrepTagII-E2-25K-C170S, His-Mms2 were purified and Lys-63 di-Ub, Lys-63 and Lys-48 tetra-Ub were enzymatically produced as previously, Antibodies against the following proteins were used : anti-?-tubulin (T4026, Sigma), anti-?tubulin (Homemade, Institut Curie), vol.3

F. Ngadjeua, Two-sided ubiquitin binding of NF-kappaB essential modulator (NEMO) zinc finger unveiled by a mutation associated with anhidrotic ectodermal dysplasia with immunodeficiency syndrome, J Biol Chem, vol.288, issue.47, pp.33722-33759, 2013.

E. Wyler, Inhibition of NF-kappaB activation with designed ankyrin-repeat proteins targeting the ubiquitin-binding/oligomerization domain of NEMO, Protein Sci, vol.16, issue.9, pp.2013-2035, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00187352

J. Eisinger, Intramolecular energy transfer in adrenocorticotropin, Biochemistry, vol.8, issue.10, pp.3902-3910, 1969.

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, de longues chaines d'ubiquitine K63 portées par une protéine non identifiée au midbody. PIN1 alors localisée au midbody favoriserait une forme de haute affinité du domaine NOAZ pour les chaines K63. PIN1 pourrait ainsi contribuer en partie à la fonction portée par CEP55, Photochem Photobiol, vol.81, issue.1, pp.212-215, 2005.

R. Schoenheimer, The Dynamic State of Body Constituents, 1942.

C. G. De-duve, R. Appelmans, F. Wattiaux, and R. , Enzymic content of the mitochondria fraction, Nature, vol.172, pp.1143-1144, 1953.

C. W. De-duve and R. , Functions of lysosomes, Annu. Rev. Physiol, vol.28, pp.435-492, 1966.

B. Poole, S. Ohkuma, and M. J. Warburton, Protein Turnover and Lysosome Function. Academic, pp.43-58, 1978.

J. D. Etlinger and A. L. Goldberg, A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes, Proc Natl Acad Sci, vol.74, issue.1, pp.54-62, 1977.

A. Ciechanover, Y. Hod, and A. Hershko, A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes, Biochem. Biophys. Res. Commun, vol.81, pp.1100-1105, 1978.

A. Ciechanover, ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation, Proc Natl Acad Sci U S A, vol.77, issue.3, pp.1365-1373, 1980.

A. Hershko, Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc Natl Acad Sci, vol.77, issue.4, pp.1783-1789, 1980.

A. Ciechanover, Characterization of the heat-stable polypeptide of the ATPdependent proteolytic system from reticulocytes, J Biol Chem, vol.255, issue.16, pp.7525-7533, 1980.

D. Wilkinson, M. K. Urban, and A. L. Haas, Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes, J. Biol. Chem, vol.255, pp.7529-7532, 1980.

I. L. Goldknopf and H. Busch, Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24, Proc Natl Acad Sci, vol.74, issue.3, pp.864-872, 1977.

M. De-napoles, Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation, Dev Cell, vol.7, issue.5, pp.663-76, 2004.

A. Zuin, M. Isasa, and B. Crosas, Ubiquitin signaling: extreme conservation as a source of diversity. Cells, vol.3, pp.690-701, 2014.

A. Hershko, Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown, J Biol Chem, vol.258, issue.13, pp.8206-8220, 1983.

R. Hough, G. Pratt, and M. Rechsteiner, Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates, J Biol Chem, vol.261, issue.5, pp.2400-2408, 1986.

L. Waxman, J. M. Fagan, and A. L. Goldberg, Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates, J Biol Chem, vol.262, issue.6, pp.2451-2458, 1987.

J. Spence, A ubiquitin mutant with specific defects in DNA repair and multiubiquitination, Mol Cell Biol, vol.15, issue.3, pp.1265-73, 1995.

Z. J. Chen, L. Parent, and T. Maniatis, Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity, Cell, vol.84, issue.6, pp.853-62, 1996.

B. Schwanhausser, Global quantification of mammalian gene expression control, Nature, vol.473, issue.7347, pp.337-379, 2011.

N. A. Kulak, Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells, Nat Methods, vol.11, issue.3, pp.319-343, 2014.

L. Hicke and H. Riezman, Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis, Cell, vol.84, issue.2, pp.277-87, 1996.

D. J. Katzmann, M. Babst, and S. D. Emr, Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell, vol.106, pp.145-55, 2001.

A. Ciechanover and R. Ben-saadon, N-terminal ubiquitination: more protein substrates join in, Trends Cell Biol, vol.14, issue.3, pp.103-109, 2004.

T. Ravid and M. Hochstrasser, Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue, Nat Cell Biol, vol.9, issue.4, pp.422-429, 2007.

X. Wang, Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3, J Cell Biol, vol.177, issue.4, pp.613-637, 2007.

C. M. Pickart, Mechanisms underlying ubiquitination, Annu Rev Biochem, vol.70, pp.503-536, 2001.
DOI : 10.1146/annurev.biochem.70.1.503

D. Komander, M. J. Clague, and S. Urbe, Breaking the chains: structure and function of the deubiquitinases, Nat Rev Mol Cell Biol, vol.10, issue.8, pp.550-63, 2009.

F. Ikeda and I. Dikic, Protein Modifications: Beyond the Usual Suspects' review series, EMBO Rep, vol.9, issue.6, pp.536-578, 2008.

K. Iwai and F. Tokunaga, Linear polyubiquitination: a new regulator of NF-kappaB activation, EMBO Rep, vol.10, issue.7, pp.706-719, 2009.

J. Jin, Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging, Nature, vol.447, issue.7148, pp.1135-1143, 2007.

Y. Ye and M. Rape, Building ubiquitin chains: E2 enzymes at work, Nat Rev Mol Cell Biol, vol.10, issue.11, pp.755-64, 2009.
DOI : 10.1038/nrm2780

URL : http://europepmc.org/articles/pmc3107738?pdf=render

W. Li, Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling, PLoS One, vol.3, issue.1, p.1487, 2008.

B. A. Schulman and J. W. Harper, Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways, Nat Rev Mol Cell Biol, vol.10, issue.5, pp.319-350, 2009.

X. Yang, Absolute quantification of E1, ubiquitin-like proteins and Nedd8MLN4924 adduct by mass spectrometry, Cell Biochem Biophys, vol.67, issue.1, pp.139-186, 2013.
DOI : 10.1007/s12013-013-9625-5

R. J. Deshaies and C. A. Joazeiro, RING domain E3 ubiquitin ligases, Annu Rev Biochem, vol.78, pp.399-434, 2009.
DOI : 10.1146/annurev.biochem.78.101807.093809

N. Zheng, Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases, Cell, vol.102, issue.4, pp.533-542, 2000.

C. Dominguez, Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches, Structure, vol.12, issue.4, pp.633-677, 2004.

L. Buetow, Activation of a primed RING E3-E2-ubiquitin complex by noncovalent ubiquitin, Mol Cell, vol.58, issue.2, pp.297-310, 2015.

P. D. Mace, Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment, J Biol Chem, vol.283, issue.46, pp.31633-31673, 2008.

Q. Yin, E2 interaction and dimerization in the crystal structure of TRAF6, Nat Struct Mol Biol, vol.16, issue.6, pp.658-66, 2009.

A. Plechanovova, Mechanism of ubiquitylation by dimeric RING ligase RNF4, Nat Struct Mol Biol, vol.18, issue.9, pp.1052-1061, 2011.

J. R. Lydeard, B. A. Schulman, and J. W. Harper, Building and remodelling CullinRING E3 ubiquitin ligases, EMBO Rep, vol.14, issue.12, pp.1050-61, 2013.
DOI : 10.1038/embor.2013.173

URL : http://embor.embopress.org/content/embor/14/12/1050.full.pdf

M. D. Petroski and R. J. Deshaies, Function and regulation of cullin-RING ubiquitin ligases, Nat Rev Mol Cell Biol, vol.6, issue.1, pp.9-20, 2005.
DOI : 10.1038/nrm1547

URL : https://authors.library.caltech.edu/55905/2/nrm1547-S1.pdf

D. Rotin and S. Kumar, Physiological functions of the HECT family of ubiquitin ligases, Nat Rev Mol Cell Biol, vol.10, issue.6, pp.398-409, 2009.

L. Huang, Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade, Science, vol.286, issue.5443, pp.1321-1327, 1999.

H. B. Kamadurai, Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex, Mol Cell, vol.36, issue.6, pp.1095-102, 2009.

R. S. Ranaweera and X. Yang, Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity, J Biol Chem, vol.288, issue.26, pp.18939-18985, 2013.

J. J. Smit and T. K. Sixma, RBR E3-ligases at work, EMBO Rep, vol.15, issue.2, pp.142-54, 2014.

D. E. Spratt, H. Walden, and G. S. Shaw, RBR E3 ubiquitin ligases: new structures, new insights, new questions, vol.458, pp.421-458, 2014.

D. M. Wenzel, UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids, Nature, vol.474, issue.7349, pp.105-113, 2011.

B. Stieglitz, Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP, Nature, issue.503, pp.422-428, 2013.

J. J. Smit, The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension, EMBO J, vol.31, pp.3833-3877, 2012.

T. E. Mevissen, OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell, vol.154, pp.169-84, 2013.

M. K. Hospenthal, T. E. Mevissen, and D. Komander, Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest), Nat Protoc, vol.10, issue.2, pp.349-61, 2015.

M. J. Edelmann, Structural basis and specificity of human otubain 1-mediated deubiquitination, Biochem J, vol.418, issue.2, pp.379-90, 2009.

T. Wang, Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1, J Mol Biol, vol.386, issue.4, pp.1011-1034, 2009.

J. Mccullough, M. J. Clague, and S. Urbe, AMSH is an endosome-associated ubiquitin isopeptidase, J Cell Biol, vol.166, issue.4, pp.487-92, 2004.

A. Bremm, S. M. Freund, and D. Komander, Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne, Nat Struct Mol Biol, vol.17, issue.8, pp.939-986, 2010.

K. Keusekotten, OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin, Cell, issue.153, pp.1312-1338, 2013.

B. K. Fiil, OTULIN restricts Met1-linked ubiquitination to control innate immune signaling, Mol Cell, vol.50, issue.6, pp.818-848, 2013.

S. Virdee, Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase, Nat Chem Biol, vol.6, issue.10, pp.750-757, 2010.

J. D. Licchesi, An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains, Nat Struct Mol Biol, vol.19, issue.1, pp.62-71, 2011.

D. Finley, Recognition and processing of ubiquitin-protein conjugates by the proteasome, Annu Rev Biochem, vol.78, pp.477-513, 2009.

M. Lork, K. Verhelst, and R. Beyaert, CYLD, A20 and OTULIN deubiquitinases in NF-kappaB signaling and cell death: so similar, yet so different, Cell Death Differ, 2017.

R. B. Damgaard, The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity, Cell, vol.166, issue.5, p.20, 2016.

M. E. Sowa, Defining the human deubiquitinating enzyme interaction landscape, Cell, vol.138, issue.2, pp.389-403, 2009.

I. E. Wertz, De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling, Nature, vol.430, issue.7000, pp.694-703, 2004.

K. Newton, Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies, Cell, vol.134, issue.4, pp.668-78, 2008.

S. C. Lin, Molecular basis for the unique deubiquitinating activity of the NFkappaB inhibitor A20, J Mol Biol, vol.376, issue.2, pp.526-566, 2008.

S. Vijay-kumar, C. E. Bugg, and W. J. Cook, Structure of ubiquitin refined at 1.8 A resolution, J Mol Biol, vol.194, issue.3, pp.531-575, 1987.

O. F. Lange, Recognition dynamics up to microseconds revealed from an RDCderived ubiquitin ensemble in solution, Science, vol.320, issue.5882, pp.1471-1476, 2008.

I. Dikic, S. Wakatsuki, and K. J. Walters, Ubiquitin-binding domains-from structures to functions, Nat Rev Mol Cell Biol, vol.10, issue.10, pp.659-71, 2009.

S. C. Shih, K. E. Sloper-mould, and L. Hicke, Monoubiquitin carries a novel internalization signal that is appended to activated receptors, EMBO J, vol.19, issue.2, pp.187-98, 2000.

K. E. Sloper-mould, Distinct functional surface regions on ubiquitin, J Biol Chem, vol.276, issue.32, pp.30483-30492, 2001.

F. E. Reyes-turcu, The ubiquitin binding domain ZnF UBP recognizes the Cterminal diglycine motif of unanchored ubiquitin, Cell, vol.124, issue.6, pp.1197-208, 2006.

S. Rahighi, Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation, Cell, vol.136, issue.6, pp.1098-109, 2009.

L. Jin, Mechanism of ubiquitin-chain formation by the human anaphasepromoting complex, Cell, vol.133, issue.4, pp.653-65, 2008.

W. J. Cook, Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2), J Biol Chem, vol.267, issue.23, pp.16467-71, 1992.

C. Alfano, S. Faggiano, and A. Pastore, The Ball and Chain of Polyubiquitin Structures, Trends Biochem Sci, vol.41, issue.4, pp.371-85, 2016.

D. Komander, Molecular discrimination of structurally equivalent Lys 63linked and linear polyubiquitin chains, EMBO Rep, vol.10, issue.5, pp.466-73, 2009.

Y. A. Kristariyanto, K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin, Mol Cell, vol.58, issue.1, pp.83-94, 2015.

M. A. Michel, Assembly and specific recognition of k29-and k33-linked polyubiquitin, Mol Cell, vol.58, issue.1, pp.95-109, 2015.

Y. A. Kristariyanto, Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations, Biochem J, vol.467, issue.2, pp.345-52, 2015.

R. Varadan, Structural properties of polyubiquitin chains in solution, J Mol Biol, vol.324, issue.4, pp.637-684, 2002.

T. Tenno, Structural basis for distinct roles of Lys63-and Lys48-linked polyubiquitin chains, Genes Cells, vol.9, issue.10, pp.865-75, 2004.

J. F. Trempe, A new crystal form of Lys48-linked diubiquitin, Acta Crystallogr Sect F Struct Biol Cryst Commun, pp.994-1002, 2010.

T. Hirano, Conformational dynamics of wild-type Lys-48-linked diubiquitin in solution, J Biol Chem, vol.286, issue.43, pp.37496-502, 2011.

M. Y. Lai, Structural and biochemical studies of the open state of Lys48-linked diubiquitin, Biochim Biophys Acta, vol.1823, issue.11, pp.2046-56, 2012.

Y. Ryabov and D. Fushman, Interdomain mobility in di-ubiquitin revealed by NMR, Proteins, vol.63, issue.4, pp.787-96, 2006.

R. Varadan, Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain, Mol Cell, vol.18, issue.6, pp.687-98, 2005.

W. J. Cook, Structure of tetraubiquitin shows how multiubiquitin chains can be formed, J Mol Biol, vol.236, issue.2, pp.601-610, 1994.

C. L. Phillips, Structure of a new crystal form of tetraubiquitin, Acta Crystallogr D Biol Crystallogr, vol.57, issue.2, pp.341-345, 2001.

M. J. Eddins, Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH, J Mol Biol, vol.367, issue.1, pp.204-215, 2007.

T. Satoh, Crystal structure of cyclic Lys48-linked tetraubiquitin, Biochem Biophys Res Commun, vol.400, issue.3, pp.329-362, 2010.

R. Varadan, Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling, J Biol Chem, vol.279, issue.8, pp.7055-63, 2004.

S. D. Weeks, Crystal structures of Lys-63-linked tri-and di-ubiquitin reveal a highly extended chain architecture, Proteins, vol.77, issue.4, pp.753-762, 2009.

A. B. Datta, G. L. Hura, and C. Wolberger, The structure and conformation of Lys63linked tetraubiquitin, J Mol Biol, vol.392, issue.5, pp.1117-1141, 2009.

C. A. Castaneda, Unique structural, dynamical, and functional properties of k11-linked polyubiquitin chains, Structure, vol.21, issue.7, pp.1168-81, 2013.

M. L. Matsumoto, K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody, Mol Cell, vol.39, issue.3, pp.477-84, 2010.

J. H. Hurley, S. Lee, and G. Prag, Ubiquitin-binding domains, Biochem J, vol.399, issue.3, pp.361-72, 2006.
DOI : 10.1042/bj20061138

URL : http://europepmc.org/articles/pmc1615911?pdf=render

K. Husnjak and I. Dikic, Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions, Annu Rev Biochem, vol.81, pp.291-322, 2012.

R. D. Fisher, Structure and ubiquitin binding of the ubiquitin-interacting motif, J Biol Chem, vol.278, issue.31, pp.28976-84, 2003.

K. A. Swanson, L. Hicke, and I. Radhakrishnan, Structural basis for monoubiquitin recognition by the Ede1 UBA domain, J Mol Biol, vol.358, issue.3, pp.713-737, 2006.

L. Penengo, Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin, Cell, vol.124, issue.6, pp.1183-95, 2006.

S. Lee, Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5, Nat Struct Mol Biol, vol.13, issue.3, pp.264-71, 2006.

Y. Yamashita, Ubiquitin-independent binding of Hrs mediates endosomal sorting of the interleukin-2 receptor beta-chain, J Cell Sci, issue.121, pp.1727-1765, 2008.

M. Bienko, Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis, Science, vol.310, issue.5755, pp.1821-1825, 2005.

F. He, Myosin VI Contains a Compact Structural Motif that Binds to Ubiquitin Chains, Cell Rep, vol.14, issue.11, pp.2683-94, 2016.

K. Hofmann and P. Bucher, The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway, Trends Biochem Sci, vol.21, issue.5, pp.172-175, 1996.

F. Ohtake, The K48-K63 Branched Ubiquitin Chain Regulates NF-kappaB Signaling, Mol Cell, vol.64, issue.2, pp.251-266, 2016.
DOI : 10.1016/j.molcel.2016.09.014

J. F. Trempe, Mechanism of Lys48-linked polyubiquitin chain recognition by the Mud1 UBA domain, EMBO J, vol.24, issue.18, pp.3178-89, 2005.

S. Raasi, Diverse polyubiquitin interaction properties of ubiquitin-associated domains, Nat Struct Mol Biol, vol.12, issue.8, pp.708-722, 2005.

E. Matta-camacho, Atypical binding of the Swa2p UBA domain to ubiquitin, J Mol Biol, vol.386, issue.2, pp.569-77, 2009.

S. C. Shih, A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain, EMBO J, vol.22, issue.6, pp.1273-81, 2003.

G. Prag, Mechanism of ubiquitin recognition by the CUE domain of Vps9p, Cell, vol.113, issue.5, pp.609-629, 2003.

R. S. Kang, Solution structure of a CUE-ubiquitin complex reveals a conserved mode of ubiquitin binding, Cell, vol.113, issue.5, pp.621-651, 2003.

C. P. Ponting, Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction, Biochem J, vol.351, pp.527-562, 2000.

P. S. Bilodeau, The GAT domains of clathrin-associated GGA proteins have two ubiquitin binding motifs, J Biol Chem, vol.279, issue.52, pp.54808-54824, 2004.

G. Prag, Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins, Proc Natl Acad Sci, vol.102, issue.7, pp.2334-2343, 2005.
DOI : 10.1073/pnas.0500118102

URL : http://www.pnas.org/content/102/7/2334.full.pdf

D. P. Dowlatshahi, ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding, Dev Cell, vol.23, issue.6, pp.1247-54, 2012.

N. Pashkova, The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes, Dev Cell, vol.25, issue.5, pp.520-553, 2013.
DOI : 10.1016/j.devcel.2013.04.007

URL : https://doi.org/10.1016/j.devcel.2013.04.007

T. Keren-kaplan, Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding, EMBO J, vol.32, issue.4, pp.538-51, 2013.

X. Ren and J. H. Hurley, VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo, EMBO J, vol.29, issue.6, pp.1045-54, 2010.

A. Lange, NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin, Biochemistry, vol.50, issue.1, pp.48-62, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00599333

E. Mizuno, STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif, Mol Biol Cell, vol.14, issue.9, pp.3675-89, 2003.

P. S. Brzovic, A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination, Mol Cell, vol.21, issue.6, pp.873-80, 2006.

W. I. Sundquist, Ubiquitin recognition by the human TSG101 protein, Mol Cell, vol.13, issue.6, pp.783-792, 2004.

T. Slagsvold, Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain, J Biol Chem, vol.280, pp.19600-19606, 1920.

K. Husnjak, Proteasome subunit Rpn13 is a novel ubiquitin receptor, Nature, vol.453, issue.7194, pp.481-489, 2008.

P. Schreiner, Ubiquitin docking at the proteasome through a novel pleckstrinhomology domain interaction, Nature, vol.453, issue.7194, pp.548-52, 2008.

P. Bellare, Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p, RNA, vol.12, issue.2, pp.292-302, 2006.

Q. S. Fu, Structural basis for ubiquitin recognition by a novel domain from human phospholipase A2-activating protein, J Biol Chem, vol.284, issue.28, pp.19043-52, 2009.

Y. He, L. Hicke, and I. Radhakrishnan, Structural basis for ubiquitin recognition by SH3 domains, J Mol Biol, vol.373, issue.1, pp.190-196, 2007.

A. X. Song, Solution structure of the N-terminal domain of DC-UbP/UBTD2 and its interaction with ubiquitin, Protein Sci, vol.19, issue.5, pp.1104-1113, 2010.

Y. Sato, Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3, EMBO J, vol.28, issue.24, pp.3903-3912, 2009.

E. Laplantine, NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain, EMBO J, vol.28, pp.2885-95, 2009.

X. Zhang, An Interaction Landscape of Ubiquitin Signaling, Mol Cell, vol.65, issue.5, p.8, 2017.

J. J. Sims and R. E. Cohen, Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80, Mol Cell, vol.33, issue.6, pp.775-83, 2009.

S. Wagner, Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins, Oncogene, vol.27, issue.26, pp.3739-3784, 2008.

Y. C. Lo, Structural basis for recognition of diubiquitins by NEMO, Mol Cell, vol.33, issue.5, pp.602-617, 2009.

F. Tokunaga, Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation, Nat Cell Biol, vol.11, issue.2, pp.123-155, 2009.

O. Grubisha, DARPin-assisted crystallography of the CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding, J Mol Biol, vol.395, issue.1, pp.89-104, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00512126

S. Nakazawa, Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis, Nat Commun, vol.7, p.12547, 2016.

S. M. Lin, Structural Insights into Linear Tri-ubiquitin Recognition by A20Binding Inhibitor of NF-kappaB, ABIN-2. Structure, vol.25, pp.66-78, 2017.

F. Cordier, The zinc finger of NEMO is a functional ubiquitin-binding domain, J Biol Chem, vol.284, issue.5, pp.2902-2909, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00366746

F. Ngadjeua, Two-sided ubiquitin binding of NF-kappaB essential modulator (NEMO) zinc finger unveiled by a mutation associated with anhidrotic ectodermal dysplasia with immunodeficiency syndrome, J Biol Chem, vol.288, issue.47, pp.33722-33759, 2013.

V. Dubosclard, E. Fontan, and F. Agou, Use of fluorescence spectroscopy for quantitative investigations of ubiquitin interactions with the ubiquitin-binding domains of NEMO, Methods Mol Biol, vol.1280, pp.321-358, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01128925

J. E. Coleman, Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins, Annu Rev Biochem, vol.61, pp.897-946, 1992.

J. Miller, A. D. Mclachlan, and A. Klug, Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes, EMBO J, vol.4, issue.6, pp.1609-1623, 1985.

A. Klug and J. W. Schwabe, Protein motifs 5. Zinc fingers, FASEB J, vol.9, issue.8, pp.597-604, 1995.

C. Andreini, Counting the zinc-proteins encoded in the human genome, J Proteome Res, vol.5, issue.1, pp.196-201, 2006.

G. Malgieri, The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart, FEBS J, vol.282, issue.23, pp.4480-96, 2015.

S. M. Kelly, Recognition of polyadenosine RNA by zinc finger proteins, Proc Natl Acad Sci, vol.104, issue.30, pp.12306-12317, 2007.

J. M. Gaullier, FYVE fingers bind PtdIns(3)P. Nature, vol.394, pp.432-435, 1998.

R. Gamsjaeger, Sticky fingers: zinc-fingers as protein-recognition motifs, Trends Biochem Sci, vol.32, issue.2, pp.63-70, 2007.

O. Leon and M. Roth, Zinc fingers: DNA binding and protein-protein interactions, Biol Res, vol.33, issue.1, pp.21-30, 2000.

S. S. Krishna, I. Majumdar, and N. V. Grishin, Structural classification of zinc fingers: survey and summary, Nucleic Acids Res, vol.31, issue.2, pp.532-50, 2003.

D. J. Gill, Structural insight into the ESCRT-I/-II link and its role in MVB trafficking, EMBO J, vol.26, issue.2, pp.600-612, 2007.

S. L. Alam, Ubiquitin interactions of NZF zinc fingers, EMBO J, vol.23, issue.7, pp.1411-1432, 2004.

Y. Sato, Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex, Proc Natl Acad Sci, vol.108, issue.51, pp.20520-20525, 2011.

Y. Kulathu, Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain, Nat Struct Mol Biol, vol.16, issue.12, pp.1328-1358, 2009.

T. Shiba, Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport, Nat Struct Biol, vol.10, issue.5, pp.386-93, 2003.

I. Bosanac, Ubiquitin binding to A20 ZnF4 is required for modulation of NFkappaB signaling, Mol Cell, vol.40, issue.4, pp.548-57, 2010.

F. Tokunaga, Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kappaB regulation, EMBO J, vol.31, pp.3856-70, 2012.

N. Acharya, DNA polymerase eta lacking the ubiquitin-binding domain promotes replicative lesion bypass in humans cells, Proc Natl Acad Sci, vol.107, issue.23, pp.10401-10406, 2010.

H. L. Williams, M. E. Gottesman, and J. Gautier, Replication-independent repair of DNA interstrand crosslinks, Mol Cell, vol.47, issue.1, pp.140-147, 2012.

J. Mcintyre, Ubiquitin mediates the physical and functional interaction between human DNA polymerases eta and iota, Nucleic Acids Res, vol.41, issue.3, pp.1649-60, 2013.

N. Crosetto, Human Wrnip1 is localized in replication factories in a ubiquitinbinding zinc finger-dependent manner, J Biol Chem, vol.283, issue.50, pp.35173-85, 2008.

N. Suzuki, A novel mode of ubiquitin recognition by the ubiquitin-binding zinc finger domain of WRNIP1, FEBS J, vol.283, issue.11, pp.2004-2021, 2016.

I. Saugar, The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA, Nucleic Acids Res, vol.40, issue.1, pp.245-57, 2012.

V. Notenboom, Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification, Nucleic Acids Res, vol.35, issue.17, pp.5819-5849, 2007.

J. Huang, RAD18 transmits DNA damage signalling to elicit homologous recombination repair, Nat Cell Biol, vol.11, issue.5, pp.592-603, 2009.
DOI : 10.1038/ncb1865

URL : http://europepmc.org/articles/pmc2743127?pdf=render

T. T. Thach, Molecular determinants of polyubiquitin recognition by continuous ubiquitin-binding domains of Rad18, Biochemistry, vol.54, issue.12, pp.2136-2184, 2015.

R. D. Shereda, Y. Machida, and Y. J. Machida, Human KIAA1018/FAN1 localizes to stalled replication forks via its ubiquitin-binding domain, Cell Cycle, vol.9, pp.3977-83, 2010.
DOI : 10.4161/cc.9.19.13207

URL : https://www.tandfonline.com/doi/pdf/10.4161/cc.9.19.13207?needAccess=true

A. M. Ali, FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway, Blood, vol.119, issue.14, pp.3285-94, 2012.

J. L. Wojtaszek, Ubiquitin recognition by FAAP20 expands the complex interface beyond the canonical UBZ domain, Nucleic Acids Res, vol.42, issue.22, pp.13997-4005, 2014.

A. Toma, Structural basis for ubiquitin recognition by ubiquitin-binding zinc finger of FAAP20, PLoS One, vol.10, issue.3, p.120887, 2015.

K. Yang, G. L. Moldovan, and A. D. , RAD18-dependent recruitment of SNM1A to DNA repair complexes by a ubiquitin-binding zinc finger, J Biol Chem, vol.285, issue.25, pp.19085-91, 2010.

C. Lachaud, Distinct functional roles for the two SLX4 ubiquitin-binding UBZ domains mutated in Fanconi anemia, J Cell Sci, issue.127, pp.2811-2818, 2014.

K. N. Yamamoto, Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway, Proc Natl Acad Sci, vol.108, issue.16, pp.6492-6498, 2011.

R. C. Centore, Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response, Mol Cell, vol.46, issue.5, pp.625-660, 2012.

A. Mosbech, DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks, Nat Struct Mol Biol, vol.19, issue.11, pp.1084-92, 2012.
DOI : 10.1038/nsmb.2395

E. J. Davis, DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage, Nat Struct Mol Biol, vol.19, issue.11, pp.1093-100, 2012.

D. A. Tumbarello, The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy, PLoS Pathog, vol.11, issue.10, p.1005174, 2015.

T. L. Thurston, Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy, EMBO J, vol.35, issue.16, pp.1779-92, 2016.

X. Xie, Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2, Autophagy, vol.11, issue.10, pp.1775-89, 2015.

M. G. Bomar, Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta, EMBO Rep, vol.8, issue.3, pp.247-51, 2007.

A. A. Rizzo, NMR structure of the human Rad18 zinc finger in complex with ubiquitin defines a class of UBZ domains in proteins linked to the DNA damage response, Biochemistry, vol.53, issue.37, pp.5895-906, 2014.

J. J. Sims, Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains, Nat Struct Mol Biol, vol.16, issue.8, pp.883-892, 2009.

A. Kohler, Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module, Cell, vol.141, issue.4, pp.606-623, 2010.

H. Ouyang, Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini, J Biol Chem, vol.287, issue.4, pp.2317-2344, 2012.

M. J. Clague, C. Heride, and S. Urbe, The demographics of the ubiquitin system, Trends Cell Biol, vol.25, issue.7, pp.417-443, 2015.

S. E. Kaiser, Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools, Nat Methods, vol.8, issue.8, pp.691-697, 2011.

H. Y. Joo, Regulation of cell cycle progression and gene expression by H2A deubiquitination, Nature, vol.449, issue.7165, pp.1068-72, 2007.

T. Wu, UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex, Proc Natl Acad Sci, vol.107, issue.4, pp.1355-60, 2010.

W. Kim, Systematic and quantitative assessment of the ubiquitin-modified proteome, Mol Cell, vol.44, issue.2, pp.325-365, 2011.

M. J. Emanuele, Global identification of modular cullin-RING ligase substrates, Cell, vol.147, issue.2, pp.459-74, 2011.

D. Komander and M. Rape, The ubiquitin code, Annu Rev Biochem, vol.81, pp.203-232, 2012.

Y. Kravtsova-ivantsiv, S. Cohen, and A. Ciechanover, Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor, Mol Cell, vol.33, issue.4, pp.496-504, 2009.

N. Shabek, The size of the proteasomal substrate determines whether its degradation will be mediated by mono-or polyubiquitylation, Mol Cell, vol.48, issue.1, pp.87-97, 2012.

I. Livneh, Monoubiquitination joins polyubiquitination as an esteemed proteasomal targeting signal, Bioessays, issue.6, p.39, 2017.

H. Wang, Role of histone H2A ubiquitination in Polycomb silencing, Nature, vol.431, issue.7010, pp.873-881, 2004.

C. Hoege, RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO, Nature, vol.419, issue.6903, pp.135-176, 2002.

Y. J. Machida, UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation, Mol Cell, vol.23, issue.4, pp.589-96, 2006.

D. Mukhopadhyay and H. Riezman, Proteasome-independent functions of ubiquitin in endocytosis and signaling, Science, vol.315, issue.5809, pp.201-206, 2007.

J. Peng, A proteomics approach to understanding protein ubiquitination, Nat Biotechnol, vol.21, issue.8, pp.921-927, 2003.
DOI : 10.1038/nbt849

P. Xu, Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation, Cell, vol.137, issue.1, pp.133-178, 2009.

M. D. Petroski and R. J. Deshaies, Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34, Cell, vol.123, issue.6, pp.1107-1127, 2005.

B. Chen, The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site, Proc Natl Acad Sci, vol.103, issue.2, pp.341-347, 2006.

K. Flick, A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome, Nat Cell Biol, vol.8, issue.5, pp.509-524, 2006.

M. Min, Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages, Mol Biol Cell, vol.26, issue.24, pp.4325-4357, 2015.

A. Bremm, Cezanne (OTUD7B) regulates HIF-1alpha homeostasis in a proteasome-independent manner, EMBO Rep, vol.15, issue.12, pp.1268-77, 2014.

S. Moniz, Cezanne regulates E2F1-dependent HIF2alpha expression, J Cell Sci, vol.128, issue.16, pp.3082-93, 2015.
DOI : 10.1242/jcs.168864

URL : http://jcs.biologists.org/content/128/16/3082.full.pdf

Z. J. Chen and L. J. Sun, Nonproteolytic functions of ubiquitin in cell signaling, Mol Cell, vol.33, issue.3, pp.275-86, 2009.

Y. Kulathu and D. Komander, Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages, Nat Rev Mol Cell Biol, vol.13, issue.8, pp.508-531, 2012.

C. Wang, TAK1 is a ubiquitin-dependent kinase of MKK and IKK, Nature, vol.412, issue.6844, pp.346-51, 2001.

L. Deng, Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain, Cell, vol.103, issue.2, pp.351-61, 2000.

C. Doil, RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins, Cell, vol.136, issue.3, pp.435-481, 2009.

G. S. Stewart, The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage, Cell, vol.136, issue.3, pp.420-454, 2009.

M. U. Gack, TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-Imediated antiviral activity, Nature, vol.446, issue.7138, pp.916-920, 2007.
DOI : 10.1038/nature05732

E. J. Song, The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome, Genes Dev, vol.24, issue.13, pp.1434-1481, 2010.

J. Spence, Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain, Cell, vol.102, issue.1, pp.67-76, 2000.

V. Kirkin, A role for ubiquitin in selective autophagy, Mol Cell, vol.34, issue.3, pp.259-69, 2009.

C. Raiborg and H. Stenmark, The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins, Nature, vol.458, issue.7237, pp.445-52, 2009.

Z. P. Xia, Direct activation of protein kinases by unanchored polyubiquitin chains, Nature, vol.461, issue.7260, pp.114-123, 2009.
DOI : 10.1038/nature08247

URL : http://europepmc.org/articles/pmc2747300?pdf=render

W. Zeng, Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity, Cell, vol.141, issue.2, pp.315-345, 2010.

J. Noad, LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-kappaB, Nat Microbiol, vol.2, p.17063, 2017.
DOI : 10.1038/nmicrobiol.2017.63

URL : http://europepmc.org/articles/pmc5576533?pdf=render

S. J. Van-wijk, Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-kappaB and restricts bacterial proliferation, Nat Microbiol, vol.2, p.17066, 2017.

C. N. Cunningham, USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria, Nat Cell Biol, vol.17, issue.2, pp.160-169, 2015.
DOI : 10.1038/ncb3097

T. M. Durcan, USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin, EMBO J, vol.33, issue.21, pp.2473-91, 2014.
DOI : 10.15252/embj.201489729

URL : http://emboj.embopress.org/content/33/21/2473.full.pdf

D. Srivastava and O. Chakrabarti, Mahogunin-mediated alpha-tubulin ubiquitination via noncanonical K6 linkage regulates microtubule stability and mitotic spindle orientation, Cell Death Dis, vol.5, p.1064, 2014.
DOI : 10.1038/cddis.2014.1

URL : https://www.nature.com/articles/cddis20141.pdf

A. E. Elia, Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response, Mol Cell, vol.59, issue.5, pp.867-81, 2015.

M. Gatti, RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage, Cell Rep, vol.10, issue.2, pp.226-264, 2015.
DOI : 10.1016/j.celrep.2014.12.021

URL : https://doi.org/10.1016/j.celrep.2014.12.021

V. R. Palicharla and S. Maddika, HACE1 mediated K27 ubiquitin linkage leads to YB1 protein secretion, Cell Signal, vol.27, issue.12, pp.2355-62, 2015.
DOI : 10.1016/j.cellsig.2015.09.001

Z. Liu, Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression, Cancer Cell, vol.26, issue.1, pp.106-126, 2014.
DOI : 10.1016/j.ccr.2014.05.015

URL : https://doi.org/10.1016/j.ccr.2014.05.015

J. You and C. M. Pickart, A HECT domain E3 enzyme assembles novel polyubiquitin chains, J Biol Chem, vol.276, issue.23, pp.19871-19879, 2001.
DOI : 10.1074/jbc.m100034200

URL : http://www.jbc.org/content/276/23/19871.full.pdf

D. Y. Kim, Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis, Plant Cell, vol.25, issue.5, pp.1523-1563, 2013.

W. C. Yuan, K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking, vol.54, pp.586-600, 2014.
DOI : 10.1016/j.molcel.2014.03.035

URL : https://doi.org/10.1016/j.molcel.2014.03.035

Y. Miao, J. Wu, and S. N. Abraham, Ubiquitination of Innate Immune Regulator TRAF3 Orchestrates Expulsion of Intracellular Bacteria by Exocyst Complex, Immunity, vol.45, issue.1, pp.94-105, 2016.

H. Tran, Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains, Genes Dev, vol.22, issue.4, pp.528-570, 2008.

J. Jin, Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid, Nat Immunol, vol.17, issue.3, pp.259-68, 2016.

A. Ordureau, Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy, Proc Natl Acad Sci U S A, vol.112, issue.21, pp.6637-6679, 2015.

A. Ordureau, Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis, Mol Cell, vol.56, issue.3, pp.360-75, 2014.
DOI : 10.1016/j.molcel.2014.09.007

URL : https://doi.org/10.1016/j.molcel.2014.09.007

S. A. Sarraf, Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization, Nature, vol.496, issue.7445, pp.372-378, 2013.

J. S. Thrower, Recognition of the polyubiquitin proteolytic signal, EMBO J, vol.19, issue.1, pp.94-102, 2000.

Y. Lu, Substrate degradation by the proteasome: a single-molecule kinetic analysis, Science, vol.348, issue.6231, p.1250834, 2015.

C. H. Emmerich, Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains, Proc Natl Acad Sci U S A, vol.110, issue.38, pp.15247-52, 2013.

G. L. Grice, The Proteasome Distinguishes between Heterotypic and Homotypic Lysine-11-Linked Polyubiquitin Chains, Cell Rep, vol.12, issue.4, pp.545-53, 2015.

H. J. Meyer and M. Rape, Enhanced protein degradation by branched ubiquitin chains, Cell, vol.157, issue.4, pp.910-931, 2014.

R. G. Yau, Assembly and Function of Heterotypic Ubiquitin Chains in CellCycle and Protein Quality Control, Cell, vol.171, issue.4, p.20, 2017.

R. Yau and M. Rape, The increasing complexity of the ubiquitin code, Nat Cell Biol, vol.18, issue.6, pp.579-86, 2016.

K. N. Swatek and D. Komander, Ubiquitin modifications, Cell Res, vol.26, issue.4, pp.399-422, 2016.

J. M. Boname, Efficient internalization of MHC I requires lysine-11 and lysine63 mixed linkage polyubiquitin chains, Traffic, vol.11, issue.2, pp.210-230, 2010.

H. J. Lee, Quantitative analysis of phosphopeptides in search of the disease biomarker from the hepatocellular carcinoma specimen, Proteomics, vol.9, issue.12, pp.3395-408, 2009.

H. Zhou, Toward a comprehensive characterization of a human cancer cell phosphoproteome, J Proteome Res, vol.12, issue.1, pp.260-71, 2013.

A. Lundby, Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues, Nat Commun, vol.3, p.876, 2012.

D. L. Swaney, Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation, Nat Methods, issue.10, pp.676-82, 2013.

K. Rikova, Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, vol.131, pp.1190-203, 2007.

J. V. Olsen, Global, in vivo, and site-specific phosphorylation dynamics in signaling networks, Cell, vol.127, issue.3, pp.635-683, 2006.

C. Choudhary, Lysine acetylation targets protein complexes and co-regulates major cellular functions, Science, vol.325, issue.5942, pp.834-874, 2009.

A. Lundby, Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns, Cell Rep, vol.2, issue.2, pp.419-450, 2012.

F. Ohtake, Ubiquitin acetylation inhibits polyubiquitin chain elongation, EMBO Rep, vol.16, issue.2, pp.192-201, 2015.

B. T. Weinert, Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation, Cell Rep, vol.4, issue.4, pp.842-51, 2013.

S. M. Jin, Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL, J Cell Biol, vol.191, issue.5, pp.933-975, 2010.

D. P. Narendra, PINK1 is selectively stabilized on impaired mitochondria to activate Parkin, PLoS Biol, vol.8, issue.1, p.1000298, 2010.

F. Koyano, Ubiquitin is phosphorylated by PINK1 to activate parkin, Nature, vol.510, issue.7503, pp.162-168, 2014.

M. Lazarou, The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy, Nature, vol.524, issue.7565, pp.309-323, 2015.

J. M. Heo, The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy, Mol Cell, vol.60, issue.1, pp.7-20, 2015.

T. Wauer, Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis, EMBO J, vol.34, issue.3, pp.307-332, 2015.

D. L. Swaney, R. A. Rodriguez-mias, and J. Villen, Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover, EMBO Rep, vol.16, issue.9, pp.1131-1175, 2015.

S. Bhogaraju, Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination, Cell, vol.167, issue.6, pp.1636-1649, 2016.

F. Lamoliatte, Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions, Mol Cell Proteomics, vol.12, issue.9, pp.2536-50, 2013.

I. A. Hendriks, Uncovering global SUMOylation signaling networks in a sitespecific manner, Nat Struct Mol Biol, vol.21, issue.10, pp.927-963, 2014.

F. Galisson, A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells, Mol Cell Proteomics, vol.10, issue.2, pp.110-004796, 2011.

K. Uzunova, Ubiquitin-dependent proteolytic control of SUMO conjugates, J Biol Chem, vol.282, issue.47, pp.34167-75, 2007.

E. Bianconi, An estimation of the number of cells in the human body, Ann Hum Biol, vol.40, issue.6, pp.463-71, 2013.

L. Meijer, Le cycle de division cellulaire et sa régulation, Bulletin du cancer, 2006.

M. Malumbres and M. Barbacid, To cycle or not to cycle: a critical decision in cancer, Nat Rev Cancer, vol.1, issue.3, pp.222-253, 2001.

S. M. Jones and A. Kazlauskas, Growth factor-dependent signaling and cell cycle progression, Chem Rev, vol.101, issue.8, pp.2413-2436, 2001.

O. Rath and F. Kozielski, Kinesins and cancer, Nat Rev Cancer, vol.12, issue.8, pp.527-566, 2012.

F. Di-pietro, A. Echard, and X. Morin, Regulation of mitotic spindle orientation: an integrated view, EMBO Rep, vol.17, issue.8, pp.1106-1136, 2016.

A. Satyanarayana and P. Kaldis, Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms, Oncogene, vol.28, issue.33, pp.2925-2964, 2009.

A. W. Murray, Recycling the cell cycle: cyclins revisited, Cell, vol.116, issue.2, pp.221-255, 2004.

L. H. Hartwell and T. A. Weinert, Checkpoints: controls that ensure the order of cell cycle events, Science, vol.246, issue.4930, pp.629-663, 1989.

A. Khodjakov and J. Pines, Centromere tension: a divisive issue, Nat Cell Biol, vol.12, issue.10, pp.919-942, 2010.

B. Mierzwa and D. W. Gerlich, Cytokinetic abscission: molecular mechanisms and temporal control, Dev Cell, vol.31, issue.5, pp.525-563, 2014.

R. A. Green, E. Paluch, and K. Oegema, Cytokinesis in animal cells, Annu Rev Cell Dev Biol, vol.28, pp.29-58, 2012.

M. Glotzer, The 3Ms of central spindle assembly: microtubules, motors and MAPs, Nat Rev Mol Cell Biol, vol.10, issue.1, pp.9-20, 2009.

R. Uehara, The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells, Proc Natl Acad Sci, vol.106, issue.17, pp.6998-7003, 2009.

R. Uehara and G. Goshima, Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase, J Cell Biol, vol.191, issue.2, pp.259-67, 2010.

T. Kamasaki, Augmin-dependent microtubule nucleation at microtubule walls in the spindle, J Cell Biol, vol.202, issue.1, pp.25-33, 2013.

P. Bieling, I. A. Telley, and T. Surrey, A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps, Cell, vol.142, issue.3, pp.420-452, 2010.

M. J. Cundell, The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation, Mol Cell, vol.52, issue.3, pp.393-405, 2013.

W. Jiang, PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis, Mol Cell, vol.2, issue.6, pp.877-85, 1998.

C. Mollinari, PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone, J Cell Biol, vol.157, issue.7, pp.1175-86, 2002.

R. Neef, Cooperation between mitotic kinesins controls the late stages of cytokinesis, Curr Biol, vol.16, issue.3, pp.301-308, 2006.

R. Subramanian, Insights into antiparallel microtubule crosslinking by PRC1, a conserved nonmotor microtubule binding protein. Cell, vol.142, pp.433-476, 2010.

C. Zhu, Spatiotemporal control of spindle midzone formation by PRC1 in human cells, Proc Natl Acad Sci, vol.103, issue.16, pp.6196-201, 2006.

M. Mishima, S. Kaitna, and M. Glotzer, Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity, Dev Cell, vol.2, issue.1, pp.41-54, 2002.

V. Pavicic-kaltenbrunner, M. Mishima, and M. Glotzer, Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex, Mol Biol Cell, vol.18, issue.12, pp.4992-5003, 2007.

M. Mishima, Cell cycle regulation of central spindle assembly, Nature, vol.430, issue.7002, pp.908-921, 2004.

A. Guse, M. Mishima, and M. Glotzer, Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis, Curr Biol, vol.15, issue.8, pp.778-86, 2005.

M. E. Douglas, Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis, Curr Biol, vol.20, issue.10, pp.927-960, 2010.

A. Hutterer, M. Glotzer, and M. Mishima, Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody, Curr Biol, vol.19, issue.23, pp.2043-2052, 2009.

M. Carmena, The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis, Nat Rev Mol Cell Biol, vol.13, issue.12, pp.789-803, 2012.

S. Hummer and T. U. Mayer, Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex, Curr Biol, vol.19, issue.7, pp.607-619, 2009.

K. Krupina, Ubiquitin Receptor Protein UBASH3B Drives Aurora B Recruitment to Mitotic Microtubules, Dev Cell, vol.36, issue.1, pp.63-78, 2016.

R. Nunes-bastos, Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A, J Cell Biol, vol.202, issue.4, pp.605-626, 2013.

H. Bringmann and A. A. Hyman, A cytokinesis furrow is positioned by two consecutive signals, Nature, vol.436, issue.7051, pp.731-735, 2005.

R. Dechant and M. Glotzer, Centrosome separation and central spindle assembly act in redundant pathways that regulate microtubule density and trigger cleavage furrow formation, Dev Cell, vol.4, issue.3, pp.333-377, 2003.

W. M. Bement, H. A. Benink, and G. Von-dassow, A microtubule-dependent zone of active RhoA during cleavage plane specification, J Cell Biol, vol.170, issue.1, pp.91-101, 2005.

O. Yuce, A. Piekny, and M. Glotzer, An ECT2-centralspindlin complex regulates the localization and function of RhoA, J Cell Biol, vol.170, issue.4, pp.571-82, 2005.

V. E. Foe and G. Von-dassow, Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation, J Cell Biol, vol.183, issue.3, pp.457-70, 2008.

M. Werner, E. Munro, and M. Glotzer, Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis, Curr Biol, vol.17, issue.15, pp.1286-97, 2007.

J. C. Canman, Determining the position of the cell division plane, Nature, vol.424, issue.6952, pp.1074-1082, 2003.

J. L. Bos, H. Rehmann, and A. Wittinghofer, GEFs and GAPs: critical elements in the control of small G proteins, Cell, vol.129, issue.5, pp.865-77, 2007.

M. E. Burkard, Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells, PLoS Biol, vol.7, issue.5, p.1000111, 2009.

M. Petronczki, Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle, Dev Cell, vol.12, issue.5, pp.713-738, 2007.

B. A. Wolfe, Polo-like kinase 1 directs assembly of the HsCyk-4

, RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation, PLoS Biol, vol.7, issue.5, p.1000110, 2009.

K. C. Su, T. Takaki, and M. Petronczki, Targeting of the RhoGEF Ect2 to the equatorial membrane controls cleavage furrow formation during cytokinesis, Dev Cell, vol.21, issue.6, pp.1104-1119, 2011.

R. N. Bastos, CYK4 inhibits Rac1-dependent PAK1 and ARHGEF7 effector pathways during cytokinesis, J Cell Biol, vol.198, issue.5, pp.865-80, 2012.

A. Loria, K. M. Longhini, and M. Glotzer, The RhoGAP domain of CYK-4 has an essential role in RhoA activation, Curr Biol, vol.22, issue.3, pp.213-222, 2012.

A. L. Miller and W. M. Bement, Regulation of cytokinesis by Rho GTPase flux, Nat Cell Biol, vol.11, issue.1, pp.71-78, 2009.

J. C. Canman, Inhibition of Rac by the GAP activity of centralspindlin is essential for cytokinesis, Science, vol.322, issue.5907, pp.1543-1549, 2008.

M. Glotzer, Cytokinesis in Metazoa and Fungi, Cold Spring Harb Perspect Biol, issue.9, 2017.

H. Kosako, Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow, Oncogene, vol.19, issue.52, pp.6059-64, 2000.

D. H. Castrillon and S. A. Wasserman, Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development, vol.120, pp.3367-77, 1994.

S. Watanabe, mDia2 induces the actin scaffold for the contractile ring and stabilizes its position during cytokinesis in NIH 3T3 cells, Mol Biol Cell, vol.19, issue.5, pp.2328-2366, 2008.

F. Chang, D. Drubin, and P. Nurse, cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin, J Cell Biol, vol.137, issue.1, pp.169-82, 1997.

N. Watanabe, p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin, EMBO J, vol.16, issue.11, pp.3044-56, 1997.

F. Matsumura, Regulation of myosin II during cytokinesis in higher eukaryotes, Trends Cell Biol, vol.15, issue.7, pp.371-378, 2005.

A. Carvalho, A. Desai, and K. Oegema, Structural memory in the contractile ring makes the duration of cytokinesis independent of cell size, Cell, vol.137, issue.5, pp.926-963, 2009.

M. E. Calvert, Myosin concentration underlies cell size-dependent scalability of actomyosin ring constriction, J Cell Biol, vol.195, issue.5, pp.799-813, 2011.

C. M. Field and B. M. Alberts, Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex, J Cell Biol, vol.131, issue.1, pp.165-78, 1995.

A. J. Piekny and M. Glotzer, Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis, Curr Biol, vol.18, issue.1, pp.30-36, 2008.

A. F. Straight, C. M. Field, and T. J. Mitchison, Anillin binds nonmuscle myosin II and regulates the contractile ring, Mol Biol Cell, vol.16, issue.1, pp.193-201, 2005.

L. Sun, Mechanistic insights into the anchorage of the contractile ring by anillin and Mid1, Dev Cell, vol.33, issue.4, pp.413-439, 2015.

Q. Chen and T. D. Pollard, Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring, J Cell Biol, vol.195, issue.3, pp.485-98, 2011.

S. Mostowy and P. Cossart, Septins: the fourth component of the cytoskeleton, Nat Rev Mol Cell Biol, vol.13, issue.3, pp.183-94, 2012.

M. Mavrakis, Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles, Nat Cell Biol, vol.16, issue.4, pp.322-356, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01134475

C. Roubinet, Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis, J Cell Biol, vol.195, issue.1, pp.99-112, 2011.

A. Echard, Phosphoinositides and cytokinesis: the "PIP" of the iceberg. Cytoskeleton (Hoboken), vol.69, pp.893-912, 2012.

E. S. Schulze and S. H. Blose, Passage of molecules across the intercellular bridge between post-mitotic daughter cells, Exp Cell Res, vol.151, issue.2, pp.367-73, 1984.

O. Gershony, Cytokinetic abscission is an acute G1 event, Cell Cycle, vol.13, issue.21, pp.3436-3477, 2014.

E. F. Crowell, J. Y. Tinevez, and A. Echard, A simple model for the fate of the cytokinesis midbody remnant: implications for remnant degradation by autophagy, Bioessays, vol.35, issue.5, pp.472-81, 2013.

J. Lafaurie-janvore,

, Biol Aujourdhui, vol.207, issue.2, pp.133-181, 2013.

J. M. Mullins and J. J. Biesele, Terminal phase of cytokinesis in D-98s cells, J Cell Biol, vol.73, issue.3, pp.672-84, 1977.

J. R. Mcintosh and S. C. Landis, The distribution of spindle microtubules during mitosis in cultured human cells, J Cell Biol, vol.49, issue.2, pp.468-97, 1971.

C. K. Hu, M. Coughlin, and T. J. Mitchison, Midbody assembly and its regulation during cytokinesis, Mol Biol Cell, vol.23, issue.6, pp.1024-1058, 2012.

N. Elad, Microtubule organization in the final stages of cytokinesis as revealed by cryo-electron tomography, J Cell Sci, issue.124, pp.207-222, 2011.

G. Piperno, M. Ledizet, and X. J. Chang, Microtubules containing acetylated alphatubulin in mammalian cells in culture, J Cell Biol, vol.104, issue.2, pp.289-302, 1987.

P. Steigemann, Aurora B-mediated abscission checkpoint protects against tetraploidization, Cell, vol.136, issue.3, pp.473-84, 2009.

J. Guizetti, Cortical constriction during abscission involves helices of ESCRTIII-dependent filaments, Science, vol.331, issue.6024, pp.1616-1636, 2011.

M. Gai, Citron kinase controls abscission through RhoA and anillin, Mol Biol Cell, vol.22, issue.20, pp.3768-78, 2011.

A. Kechad, Anillin acts as a bifunctional linker coordinating midbody ring biogenesis during cytokinesis, Curr Biol, vol.22, issue.3, pp.197-203, 2012.

W. M. Zhao, A. Seki, and G. Fang, Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis, Mol Biol Cell, vol.17, issue.9, pp.3881-96, 2006.

J. G. Carlton, M. Agromayor, and J. Martin-serrano, Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release, Proc Natl Acad Sci, vol.105, issue.30, pp.10541-10547, 2008.

N. Elia, Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission, Proc Natl Acad Sci, vol.108, issue.12, pp.4846-51, 2011.

U. Gruneberg, Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2, J Cell Biol, vol.166, issue.2, pp.167-72, 2004.

E. Schonteich, Molecular characterization of Rab11-FIP3 binding to ARF GTPases, Eur J Cell Biol, vol.86, issue.8, pp.417-448, 2007.

I. Kouranti, Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis, Curr Biol, vol.16, issue.17, pp.1719-1744, 2006.

A. Echard, Terminal cytokinesis events uncovered after an RNAi screen, Curr Biol, vol.14, issue.18, pp.1685-93, 2004.

M. P. Somma, Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells, Mol Biol Cell, vol.13, issue.7, pp.2448-60, 2002.

D. 'avino and P. P. , How to scaffold the contractile ring for a safe cytokinesis-lessons from Anillin-related proteins, J Cell Sci, vol.122, pp.1071-1080, 2009.

A. J. Piekny and A. S. Maddox, The myriad roles of Anillin during cytokinesis, Semin Cell Dev Biol, vol.21, issue.9, pp.881-91, 2010.

E. Joo, C. W. Tsang, and W. S. Trimble, Septins: traffic control at the cytokinesis intersection, Traffic, vol.6, issue.8, pp.626-660, 2005.

M. P. Estey, Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission, J Cell Biol, vol.191, issue.4, pp.741-750, 2010.

J. Liu, Cleavage furrow organization requires PIP(2)-mediated recruitment of anillin, Curr Biol, vol.22, issue.1, pp.64-73, 2012.

P. Madaule, Role of citron kinase as a target of the small GTPase Rho in cytokinesis, Nature, vol.394, issue.6692, pp.491-495, 1998.

Z. I. Bassi, Sticky/Citron kinase maintains proper RhoA localization at the cleavage site during cytokinesis, J Cell Biol, vol.195, issue.4, pp.595-603, 2011.

N. El-amine, Opposing actions of septins and Sticky on Anillin promote the transition from contractile to midbody ring, J Cell Biol, vol.203, issue.3, pp.487-504, 2013.

U. Gruneberg, KIF14 and citron kinase act together to promote efficient cytokinesis, J Cell Biol, vol.172, issue.3, pp.363-72, 2006.

Z. I. Bassi, Citron kinase controls a molecular network required for midbody formation in cytokinesis, Proc Natl Acad Sci U S A, vol.110, issue.24, pp.9782-9789, 2013.

S. Watanabe, Citron kinase mediates transition from constriction to abscission through its coiled-coil domain, J Cell Sci, issue.126, pp.1773-84, 2013.

Y. Kurasawa, Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation, EMBO J, vol.23, issue.16, pp.3237-3285, 2004.

S. Lekomtsev, Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis, Nature, vol.492, issue.7428, pp.276-285, 2012.

H. Makyio, Structural basis for Arf6-MKLP1 complex formation on the Flemming body responsible for cytokinesis, EMBO J, vol.31, issue.11, pp.2590-603, 2012.

M. A. Lemmon, Pleckstrin homology (PH) domains and phosphoinositides, Biochem Soc Symp, issue.74, pp.81-93, 2007.

J. A. Schiel, C. Childs, and R. Prekeris, Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance, Trends Cell Biol, issue.23, pp.319-346, 2013.

J. Mccullough, L. A. Colf, and W. I. Sundquist, Membrane fission reactions of the mammalian ESCRT pathway, Annu Rev Biochem, vol.82, pp.663-92, 2013.

G. M. Gaietta, Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy, Proc Natl Acad Sci, vol.103, issue.47, pp.17777-82, 2006.

H. Hehnly and S. Doxsey, Polarity sets the stage for cytokinesis, Mol Biol Cell, vol.23, issue.1, pp.7-11, 2012.

A. Gromley, Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission, Cell, vol.123, issue.1, pp.75-87, 2005.

A. B. Fielding, Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis, EMBO J, vol.24, pp.3389-99, 2005.

A. R. Skop, Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms, Science, vol.305, issue.5680, pp.61-67, 2004.

M. Murthy, Sec6 mutations and the Drosophila exocyst complex, J Cell Sci, issue.118, pp.1139-50, 2005.
DOI : 10.1242/jcs.01644

URL : http://jcs.biologists.org/content/118/6/1139.full.pdf

S. H. Low, Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells, Dev Cell, vol.4, issue.5, pp.753-762, 2003.

H. Neto, G. Balmer, and G. Gould, Exocyst proteins in cytokinesis: Regulation by Rab11, Commun Integr Biol, issue.6, p.27635, 2013.
DOI : 10.4161/cib.27635

URL : https://doi.org/10.4161/cib.27635

G. M. Wilson, The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis, Mol Biol Cell, vol.16, issue.2, pp.849-60, 2005.

J. A. Schiel, Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission, J Cell Sci, issue.124, pp.1411-1435, 2011.
DOI : 10.1242/jcs.081448

URL : http://jcs.biologists.org/content/124/9/1411.full.pdf

L. Chesneau, An ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis, Curr Biol, vol.22, issue.2, pp.147-53, 2012.

D. Dambournet, Rab35 GTPase and OCRL phosphatase remodel lipids and Factin for successful cytokinesis, Nat Cell Biol, vol.13, issue.8, pp.981-989, 2011.

J. A. Schiel, FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis, Nat Cell Biol, vol.14, issue.10, pp.1068-78, 2012.

G. C. Simon, Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis, EMBO J, vol.27, issue.13, pp.1791-803, 2008.
DOI : 10.1038/emboj.2008.112

URL : http://emboj.embopress.org/content/27/13/1791.full.pdf

S. Fremont, Oxidation of F-actin controls the terminal steps of cytokinesis, Nat Commun, vol.8, p.14528, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01492528

P. Morin, C. Flors, and M. F. Olson, Constitutively active RhoA inhibits proliferation by retarding G(1) to S phase cell cycle progression and impairing cytokinesis, Eur J Cell Biol, vol.88, issue.9, pp.495-507, 2009.
DOI : 10.1016/j.ejcb.2009.04.005

URL : http://europepmc.org/articles/pmc2750871?pdf=render

S. Fremont, Emerging roles of MICAL family proteins-from actin oxidation to membrane trafficking during cytokinesis, J Cell Sci, vol.130, issue.9, pp.1509-1517, 2017.

J. E. Garrus, Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding, Cell, vol.107, issue.1, pp.55-65, 2001.

J. Martin-serrano, T. Zang, and P. D. Bieniasz, HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress, Nat Med, vol.7, issue.12, pp.1313-1322, 2001.

L. Verplank, Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag), Proc Natl Acad Sci U S A, vol.98, issue.14, pp.7724-7733, 2001.

D. G. Demirov, Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function, Proc Natl Acad Sci, vol.99, issue.2, pp.955-60, 2002.

J. G. Carlton and J. Martin-serrano, Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery, vol.316, pp.1908-1920, 2007.

X. Gan and S. J. Gould, Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome/microvesicle proteins, Mol Biol Cell, vol.22, issue.6, pp.817-847, 2011.

J. F. Nabhan, Formation and release of arrestin domain-containing protein 1mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein, Proc Natl Acad Sci, vol.109, issue.11, pp.4146-51, 2012.

T. Matusek, The ESCRT machinery regulates the secretion and long-range activity of Hedgehog, Nature, vol.516, issue.7529, pp.99-103, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117493

A. J. Jimenez, ESCRT machinery is required for plasma membrane repair, Science, vol.343, issue.6174, p.1247136, 2014.

L. L. Scheffer, Mechanism of Ca(2)(+)-triggered ESCRT assembly and regulation of cell membrane repair, Nat Commun, vol.5, p.5646, 2014.

Y. Olmos, ESCRT-III controls nuclear envelope reformation, Nature, vol.522, issue.7555, pp.236-245, 2015.

M. Vietri, Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing, Nature, vol.522, issue.7555, pp.231-236, 2015.

A. Zhang, Biogenesis of lysosome-related organelles complex-1 subunit 1 (BLOS1) interacts with sorting nexin 2 and the endosomal sorting complex required for transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments, J Biol Chem, vol.289, issue.42, pp.29180-94, 2014.

N. Issman-zecharya and O. Schuldiner, The PI3K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation, Dev Cell, vol.31, issue.4, pp.461-73, 2014.

N. Loncle, An ESCRT module is required for neuron pruning, vol.5, p.8461, 2015.

J. H. Hurley, ESCRTs are everywhere, EMBO J, vol.34, pp.2398-407, 2015.

J. Schoneberg, Reverse-topology membrane scission by the ESCRT proteins, Nat Rev Mol Cell Biol, vol.18, issue.1, pp.5-17, 2017.

A. Lange, Evidence for cooperative and domain-specific binding of the signal transducing adaptor molecule 2 (STAM2) to Lys63-linked diubiquitin, J Biol Chem, vol.287, issue.22, pp.18687-99, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00873866

C. Raiborg, Hrs recruits clathrin to early endosomes, EMBO J, vol.20, issue.17, pp.5008-5029, 2001.

K. Hofmann and L. Falquet, A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems, Trends Biochem Sci, vol.26, issue.6, pp.347-50, 2001.

O. Pornillos, HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein, J Cell Biol, vol.162, issue.3, pp.425-459, 2003.

D. Teis, ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation, EMBO J, vol.29, issue.5, pp.871-83, 2010.

H. Teo, D. B. Veprintsev, and R. L. Williams, Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins, J Biol Chem, vol.279, issue.27, pp.28689-96, 2004.

I. Fyfe, Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments, J Biol Chem, vol.286, issue.39, pp.34262-70, 2011.

P. I. Hanson, Plasma membrane deformation by circular arrays of ESCRT-III protein filaments, J Cell Biol, vol.180, issue.2, pp.389-402, 2008.

R. Pires, A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments, Structure, vol.17, issue.6, pp.843-56, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00405383

C. P. Lee, The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein-Barr Virus, PLoS Pathog, vol.8, issue.9, p.1002904, 2012.

T. Obita, Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4, Nature, vol.449, issue.7163, pp.735-744, 2007.

C. Kieffer, Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding, Dev Cell, vol.15, issue.1, pp.62-73, 2008.

M. D. Stuchell-brereton, ESCRT-III recognition by VPS4 ATPases, Nature, vol.449, issue.7163, pp.740-744, 2007.

I. Azmi, Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1, J Cell Biol, vol.172, issue.5, pp.705-722, 2006.

S. Shim, S. A. Merrill, and P. I. Hanson, Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly, Mol Biol Cell, vol.19, issue.6, pp.2661-72, 2008.

M. Babst, The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function, EMBO J, vol.17, issue.11, pp.2982-93, 1998.

N. Monroe and C. P. Hill, Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines, J Mol Biol, vol.428, issue.9, pp.1897-911, 2016.

Q. T. Shen, Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly, J Cell Biol, vol.206, issue.6, pp.763-77, 2014.

G. Effantin, ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding, Cell Microbiol, vol.15, issue.2, pp.213-239, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01179717

M. J. Dobro, Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission, Mol Biol Cell, vol.24, issue.15, pp.2319-2346, 2013.

N. Chiaruttini, Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation, Cell, vol.163, issue.4, pp.866-79, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01238262

J. Mccullough, Structure and membrane remodeling activity of ESCRT-III helical polymers, Science, vol.350, issue.6267, pp.1548-51, 2015.

M. Agromayor and J. Martin-serrano, Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo, J Biol Chem, vol.281, issue.32, pp.23083-91, 2006.

J. Solomons, Structural basis for ESCRT-III CHMP3 recruitment of AMSH. Structure, vol.19, pp.1149-59, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01243652

P. E. Row, The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation, J Biol Chem, vol.282, issue.42, pp.30929-30966, 2007.

S. B. Thoresen, ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4, Nat Cell Biol, vol.16, issue.6, pp.550-60, 2014.

J. W. Connell, Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion, Traffic, vol.10, issue.1, pp.42-56, 2009.

A. Mukai, Dynamic regulation of ubiquitylation and deubiquitylation at the central spindle during cytokinesis, J Cell Sci, issue.121, pp.1325-1358, 2008.

E. Morita, Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis, EMBO J, vol.26, pp.4215-4242, 2007.

H. H. Lee, Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55, Science, vol.322, issue.5901, pp.576-80, 2008.

M. Bajorek, Structural basis for ESCRT-III protein autoinhibition, Nat Struct Mol Biol, vol.16, issue.7, pp.754-62, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01602907

J. G. Carlton, ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C, Science, vol.336, issue.6078, pp.220-225, 2012.

L. Christ, ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission, J Cell Biol, vol.212, issue.5, pp.499-513, 2016.

I. Goliand, Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death, Mol Biol Cell, vol.25, issue.23, pp.3740-3748, 2014.

G. Mondal, BRCA2 localization to the midbody by filamin A regulates cep55 signaling and completion of cytokinesis, Dev Cell, vol.23, issue.1, pp.137-52, 2012.

S. Lekomtsev, Evidence that the tumor-suppressor protein BRCA2 does not regulate cytokinesis in human cells, J Cell Sci, issue.123, pp.1395-400, 2010.

N. Elia, Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling, vol.102, pp.167-167, 2012.

C. Pohl and S. Jentsch, Final stages of cytokinesis and midbody ring formation are controlled by BRUCE, Cell, vol.132, issue.5, pp.832-877, 2008.

Q. L. Aoh, SCAMP3 negatively regulates epidermal growth factor receptor degradation and promotes receptor recycling, Mol Biol Cell, vol.20, issue.6, pp.1816-1848, 2009.

A. P. Sagona, PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody, Nat Cell Biol, vol.12, issue.4, pp.362-71, 2010.

V. Nahse, The Abscission Checkpoint: Making It to the Final Cut, Trends Cell Biol, vol.27, issue.1, pp.1-11, 2017.

C. Norden, The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage, Cell, vol.125, issue.1, pp.85-98, 2006.

M. Mendoza, A mechanism for chromosome segregation sensing by the NoCut checkpoint, Nat Cell Biol, vol.11, issue.4, pp.477-83, 2009.

L. Capalbo, The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis, Open Biol, vol.2, issue.5, p.120070, 2012.

A. Caballe, ULK3 regulates cytokinetic abscission by phosphorylating ESCRTIII proteins. Elife, vol.4, p.6547, 2015.

J. Lafaurie-janvore, ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge, Science, vol.339, issue.6127, pp.1625-1634, 2013.

D. R. Mackay, M. Makise, and K. S. Ullman, Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint, J Cell Biol, vol.191, issue.5, pp.923-954, 2010.

A. Mazouzi, G. Velimezi, and J. I. Loizou, DNA replication stress: causes, resolution and disease, Exp Cell Res, vol.329, issue.1, pp.85-93, 2014.

D. R. Mackay and K. S. Ullman, ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission, Mol Biol Cell, vol.26, issue.12, pp.2217-2243, 2015.
DOI : 10.1091/mbc.e14-11-1563

URL : https://doi.org/10.1091/mbc.e14-11-1563

A. M. Marzesco, Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells, J Cell Sci, issue.118, pp.2849-58, 2005.

V. Dubreuil, Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1, J Cell Biol, vol.176, issue.4, pp.483-95, 2007.

A. W. Ettinger, Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour, Nat Commun, vol.2, p.503, 2011.
DOI : 10.1038/ncomms1511

URL : https://www.nature.com/articles/ncomms1511.pdf

E. F. Crowell, Engulfment of the midbody remnant after cytokinesis in mammalian cells, J Cell Sci, issue.127, pp.3840-51, 2014.

C. Pohl, Dual control of cytokinesis by the ubiquitin and autophagy pathways, Autophagy, vol.5, issue.4, pp.561-563, 2009.

T. C. Kuo, Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity, Nat Cell Biol, vol.13, issue.10, pp.1214-1237, 2011.
DOI : 10.1038/ncb2332

URL : http://europepmc.org/articles/pmc4208311?pdf=render

K. Lotz, G. Pyrowolakis, and S. Jentsch, BRUCE, a giant E2/E3 ubiquitin ligase and inhibitor of apoptosis protein of the trans-Golgi network, is required for normal placenta development and mouse survival, Mol Cell Biol, vol.24, issue.21, pp.9339-50, 2004.

R. Chahwan, Dma/RNF8 proteins are evolutionarily conserved E3 ubiquitin ligases that target septins, Cell Cycle, vol.12, issue.6, pp.1000-1008, 2013.
DOI : 10.4161/cc.23947

URL : https://www.tandfonline.com/doi/pdf/10.4161/cc.23947?needAccess=true

V. Plans, M. Guerra-rebollo, and T. M. Thomson, Regulation of mitotic exit by the RNF8 ubiquitin ligase, Oncogene, vol.27, issue.10, pp.1355-65, 2008.
DOI : 10.1038/sj.onc.1210782

URL : https://www.nature.com/articles/1210782.pdf

F. A. Mallette, RNF8-and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites, EMBO J, vol.31, issue.8, pp.1865-78, 2012.
DOI : 10.1038/emboj.2012.47

URL : http://emboj.embopress.org/content/31/8/1865.full.pdf

G. T. Lok, Differential regulation of RNF8-mediated Lys48-and Lys63-based poly-ubiquitylation, Nucleic Acids Res, vol.40, issue.1, pp.196-205, 2012.
DOI : 10.1093/nar/gkr655

URL : https://academic.oup.com/nar/article-pdf/40/1/196/16964633/gkr655.pdf

P. Isakson, TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy, Autophagy, issue.9, pp.1955-64, 2013.
DOI : 10.4161/auto.26085

S. A. Wickstrom, CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin, EMBO J, vol.29, issue.1, pp.131-175, 2010.

F. Stegmeier, The tumor suppressor CYLD regulates entry into mitosis, Proc Natl Acad Sci, vol.104, issue.21, pp.8869-74, 2007.
DOI : 10.1073/pnas.0703268104

URL : http://europepmc.org/articles/pmc1867381?pdf=render

M. J. Clague and S. Urbe, Endocytosis: the DUB version, Trends Cell Biol, vol.16, issue.11, pp.551-560, 2006.
DOI : 10.1016/j.tcb.2006.09.002

A. Belaid, Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability, Cancer Res, vol.73, issue.14, pp.4311-4333, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00912953

A. Belaid, Autophagy and SQSTM1 on the RHOA(d) again: emerging roles of autophagy in the degradation of signaling proteins, Autophagy, vol.10, issue.2, pp.201-209, 2014.

M. Fabbro, Cdk1/Erk2-and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis, Dev Cell, vol.9, issue.4, pp.477-88, 2005.

R. N. Bastos and F. A. Barr, Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission, J Cell Biol, vol.191, issue.4, pp.751-60, 2010.
DOI : 10.1083/jcb.201008108

URL : http://jcb.rupress.org/content/jcb/191/4/751.full.pdf

P. Frosk, A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis, J Med Genet, 2017.

I. Martinez-garay, The novel centrosomal associated protein CEP55 is present in the spindle midzone and the midbody, Genomics, vol.87, issue.2, pp.243-53, 2006.

U. K. Von-schwedler, The protein network of HIV budding, Cell, vol.114, issue.6, pp.701-714, 2003.

J. C. Kagan, V. G. Magupalli, and H. Wu, SMOCs: supramolecular organizing centres that control innate immunity, Nat Rev Immunol, vol.14, issue.12, pp.821-827, 2014.
DOI : 10.1038/nri3757

URL : http://europepmc.org/articles/pmc4373346?pdf=render

J. Scholefield, Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti, Nat Commun, vol.7, p.12629, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01377851

A. Van-der-horst and K. K. Khanna, The peptidyl-prolyl isomerase Pin1 regulates cytokinesis through Cep55, Cancer Res, vol.69, issue.16, pp.6651-6660, 2009.

A. Van-der-horst, J. Simmons, and K. K. Khanna, Cep55 stabilization is required for normal execution of cytokinesis, Cell Cycle, vol.8, issue.22, pp.3742-3751, 2009.

S. A. Kamranvar, Integrin signaling via FAK-Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody, Oncotarget, vol.7, issue.21, pp.30820-30850, 2016.

N. St-denis, Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission, Mol Cell Proteomics, vol.14, issue.4, pp.946-60, 2015.

Y. C. Chang, Characterization of centrosomal proteins Cep55 and pericentrin in intercellular bridges of mouse testes, J Cell Biochem, vol.109, issue.6, pp.1274-85, 2010.

T. Iwamori, TEX14 interacts with CEP55 to block cell abscission, Mol Cell Biol, vol.30, issue.9, pp.2280-92, 2010.
DOI : 10.1128/mcb.01392-09

URL : https://mcb.asm.org/content/30/9/2280.full.pdf

H. J. Kim, Structural and biochemical insights into the role of testis-expressed gene 14 (TEX14) in forming the stable intercellular bridges of germ cells, Proc Natl Acad Sci, vol.112, issue.40, pp.12372-12379, 2015.

M. P. Greenbaum, TEX14 is essential for intercellular bridges and fertility in male mice, Proc Natl Acad Sci, vol.103, issue.13, pp.4982-4989, 2006.

M. P. Greenbaum, L. Ma, and M. M. Matzuk, Conversion of midbodies into germ cell intercellular bridges, Dev Biol, vol.305, issue.2, pp.389-96, 2007.

M. P. Greenbaum, Mouse TEX14 is required for embryonic germ cell intercellular bridges but not female fertility, Biol Reprod, vol.80, issue.3, pp.449-57, 2009.
DOI : 10.1095/biolreprod.108.070649

URL : https://academic.oup.com/biolreprod/article-pdf/80/3/449/10571056/biolreprod0449.pdf

B. D. Manning and L. C. Cantley, AKT/PKB signaling: navigating downstream. Cell, vol.129, pp.1261-74, 2007.
DOI : 10.1016/j.cell.2007.06.009

URL : https://doi.org/10.1016/j.cell.2007.06.009

B. A. Hemmings and D. F. Restuccia, PI3K-PKB/Akt pathway, Cold Spring Harb Perspect Biol, vol.4, issue.9, p.11189, 2012.
DOI : 10.1101/cshperspect.a011189

URL : http://cshperspectives.cshlp.org/content/4/9/a011189.full.pdf

M. Cheung and J. R. Testa, Diverse mechanisms of AKT pathway activation in human malignancy. Curr Cancer Drug Targets, vol.13, pp.234-278, 2013.

W. L. Yang, The E3 ligase TRAF6 regulates Akt ubiquitination and activation, Science, vol.325, issue.5944, pp.1134-1142, 2009.
DOI : 10.1126/science.1175065

URL : http://europepmc.org/articles/pmc3008763?pdf=render

D. F. Restuccia and B. A. Hemmings, Cell signaling. Blocking Akt-ivity. Science, vol.325, issue.5944, pp.1083-1087, 2009.

C. D. Fan, Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response, J Biol Chem, vol.288, issue.3, pp.1674-84, 2013.

C. H. Chen, FLJ10540-elicited cell transformation is through the activation of PI3-kinase/AKT pathway, Oncogene, vol.26, issue.29, pp.4272-83, 2007.

C. H. Chen, VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3K/AKT pathway, PLoS One, vol.4, issue.4, p.5052, 2009.

C. F. Hwang, Oncogenic fibulin-5 promotes nasopharyngeal carcinoma cell metastasis through the FLJ10540/AKT pathway and correlates with poor prognosis, PLoS One, vol.8, issue.12, p.84218, 2013.

J. Jeffery, Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish, FASEB J, vol.29, issue.5, pp.1999-2009, 2015.

C. Y. Tsai, Upregulation of FLJ10540, a PI3K-association protein, in rostral ventrolateral medulla impairs brain stem cardiovascular regulation during mevinphos intoxication, Biochem Pharmacol, vol.93, issue.1, pp.34-41, 2015.

J. Jeffery, Beyond cytokinesis: the emerging roles of CEP55 in tumorigenesis, Oncogene, vol.35, issue.6, pp.683-90, 2016.

M. Sakai, Elevated expression of C10orf3 (chromosome 10 open reading frame 3) is involved in the growth of human colon tumor, Oncogene, vol.25, issue.3, pp.480-486, 2006.

D. Colak, Age-specific gene expression signatures for breast tumors and crossspecies conserved potential cancer progression markers in young women, PLoS One, vol.8, issue.5, p.63204, 2013.

M. Koch and M. Wiese, Gene expression signatures of angiocidin and darapladib treatment connect to therapy options in cervical cancer, J Cancer Res Clin Oncol, vol.139, issue.2, pp.259-67, 2013.

A. Waseem, Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma, Oral Oncology, vol.46, issue.7, pp.536-542, 2010.

J. Tao, CEP55 contributes to human gastric carcinoma by regulating cell proliferation, Tumour Biol, vol.35, issue.5, pp.4389-99, 2014.

T. Shiraishi, Cancer/Testis antigens as potential predictors of biochemical recurrence of prostate cancer following radical prostatectomy, Journal of Translational Medicine, issue.9, 2011.

P. K. Singh, Expression and clinical significance of Centrosomal protein 55 (CEP55) in human urinary bladder transitional cell carcinoma, Immunobiology, vol.220, issue.1, pp.103-111, 2015.

W. Zhang, Upregulation of centrosomal protein 55 is associated with unfavorable prognosis and tumor invasion in epithelial ovarian carcinoma, Tumour Biol, vol.37, issue.5, pp.6239-54, 2016.

P. Weinberger, Cell Cycle M-Phase Genes Are Highly Upregulated in Anaplastic Thyroid Carcinoma, Thyroid, vol.27, issue.2, pp.236-252, 2017.

C. Montero-conde, Molecular profiling related to poor prognosis in thyroid carcinoma, Oncogene, vol.27, issue.11, pp.1554-61, 2008.

G. Wang, Centrosomal Protein of 55 Regulates Glucose Metabolism, Proliferation and Apoptosis of Glioma Cells via the Akt/mTOR Signaling Pathway, J Cancer, vol.7, issue.11, pp.1431-1471, 2016.

C. H. Chen, FLJ10540 is associated with tumor progression in nasopharyngeal carcinomas and contributes to nasopharyngeal cell proliferation, and metastasis via osteopontin/CD44 pathway, Journal of Translational Medicine, p.10, 2012.

L. Hui, Identification of biomarkers with a tumor stage-dependent expression and exploration of the mechanism involved in laryngeal squamous cell carcinoma, Oncol Rep, vol.34, issue.5, pp.2627-2662, 2015.

W. Jiang, Z. Wang, and Y. Jia, CEP55 overexpression predicts poor prognosis in patients with locally advanced esophageal squamous cell carcinoma, Oncol Lett, vol.13, issue.1, pp.236-242, 2017.
DOI : 10.3892/ol.2016.5414

URL : http://www.spandidos-publications.com/ol/13/1/236/download

T. Fujiwara, Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells, Nature, vol.437, issue.7061, pp.1043-1050, 2005.
DOI : 10.1038/nature04217

A. Walther, R. Houlston, and I. Tomlinson, Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut, vol.57, pp.941-50, 2008.
DOI : 10.1136/gut.2007.135004

T. Davoli and T. De-lange, The causes and consequences of polyploidy in normal development and cancer, Annu Rev Cell Dev Biol, vol.27, pp.585-610, 2011.

T. Davoli and T. De-lange, Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells, Cancer Cell, vol.21, issue.6, pp.765-76, 2012.

S. L. Carter, A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers, Nat Genet, vol.38, issue.9, pp.1043-1051, 2006.

W. Zhou, NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers, Cancer Cell, issue.23, pp.48-62, 2013.

C. H. Chen, Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity, Oncogene, vol.28, issue.30, pp.2723-2760, 2009.

Y. Hirohashi, Cytotoxic T lymphocytes: Sniping cancer stem cells, Oncoimmunology, 2012, vol.1, issue.1, pp.123-125
DOI : 10.4161/onci.1.1.18075

URL : https://www.tandfonline.com/doi/pdf/10.4161/onci.1.1.18075?needAccess=true

X. Y. Gao and X. L. Wang, An adoptive T cell immunotherapy targeting cancer stem cells in a colon cancer model, J BUON, vol.20, issue.6, pp.1456-63, 2015.

H. L. Goel and A. M. Mercurio, VEGF targets the tumour cell, Nat Rev Cancer, issue.13, pp.871-82, 2013.
DOI : 10.1038/nrc3627

URL : http://europepmc.org/articles/pmc4011842?pdf=render

Y. C. Chang, Centrosomal protein 55 (Cep55) stability is negatively regulated by p53 protein through Polo-like kinase 1 (Plk1), J Biol Chem, vol.287, issue.6, pp.4376-85, 2012.
DOI : 10.1074/jbc.m111.289108

URL : http://www.jbc.org/content/287/6/4376.full.pdf

J. Laoukili, M. Stahl, and R. H. Medema, FoxM1: at the crossroads of ageing and cancer, Biochim Biophys Acta, vol.1775, issue.1, pp.92-102, 2007.

S. S. Myatt and E. W. Lam, The emerging roles of forkhead box (Fox) proteins in cancer, Nat Rev Cancer, vol.7, issue.11, pp.847-59, 2007.

P. Wolter, Central spindle proteins and mitotic kinesins are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cell lines and are potential targets for therapy, Oncotarget, vol.8, issue.7, pp.11160-11172, 2017.

K. Kato, Matrix metalloproteinases 2 and 9 in oral squamous cell carcinomas: manifestation and localization of their activity, J Cancer Res Clin Oncol, vol.131, issue.6, pp.340-346, 2005.

Z. Lu and T. Hunter, Prolyl isomerase Pin1 in cancer. Cell Res, vol.24, issue.9, pp.1033-1082, 2014.

M. L. Bondeson, A nonsense mutation in CEP55 defines a new locus for a Meckel-like syndrome, an autosomal recessive lethal fetal ciliopathy, Clin Genet, 2017.

N. J. Ganem, Z. Storchova, and D. Pellman, Tetraploidy, aneuploidy and cancer, vol.17, issue.2, pp.157-62, 2007.

C. T. Chen, Resurrecting remnants: the lives of post-mitotic midbodies, Trends Cell Biol, vol.23, issue.3, pp.118-146, 2013.

M. Hubeau, New mechanism of X-linked anhidrotic ectodermal dysplasia with immunodeficiency: impairment of ubiquitin binding despite normal folding of NEMO protein, Blood, vol.118, issue.4, pp.926-961, 2011.

Q. Hu, Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18, Mol Cell, vol.66, issue.4, p.9, 2017.

M. L. Bondeson, A nonsense mutation in CEP55 defines a new locus for a Meckel-like syndrome, an autosomal recessive lethal fetal ciliopathy, Clin Genet, vol.92, issue.5, pp.510-516, 2017.

K. Arnold, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, vol.22, issue.2, pp.195-201, 2006.

R. A. Laskowski, PROCHECK-a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, pp.283-291, 1993.

W. F. Van-gunsteren, Biomolecular simulation: the GROMOS manual and user guide, 1996.

S. J. De-vries, M. Van-dijk, and A. M. Bonvin, The HADDOCK web server for datadriven biomolecular docking, Nat Protoc, vol.5, issue.5, pp.883-97, 2010.

C. Lobry, Negative feedback loop in T cell activation through IkappaB kinaseinduced phosphorylation and degradation of Bcl10, Proc Natl Acad Sci, vol.104, issue.3, pp.908-921, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00162543

F. De-chaumont, Icy: an open bioimage informatics platform for extended reproducible research, Nat Methods, vol.9, issue.7, pp.690-696, 2012.

E. Wyler, Inhibition of NF-kappaB activation with designed ankyrin-repeat proteins targeting the ubiquitin-binding/oligomerization domain of NEMO, Protein Sci, vol.16, issue.9, pp.2013-2035, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00187352

J. Eisinger, Intramolecular energy transfer in adrenocorticotropin, Biochemistry, vol.8, issue.10, pp.3902-3910, 1969.

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations, Photochem Photobiol, vol.81, issue.1, pp.212-215, 2005.

E. Fontan, NEMO oligomerization in the dynamic assembly of the IkappaB kinase core complex, FEBS J, vol.274, issue.10, pp.2540-51, 2007.

K. P. Lu and X. Z. Zhou, The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease, Nat Rev Mol Cell Biol, vol.8, issue.11, pp.904-920, 2007.

S. B. Lavoie, A. L. Albert, and M. Vincent,

, Med Sci, vol.19, issue.12, pp.1251-1259, 2003.

M. Bernabe-rubio, Novel role for the midbody in primary ciliogenesis by polarized epithelial cells, J Cell Biol, vol.214, issue.3, pp.259-73, 2016.

P. Majumder and O. Chakrabarti, Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101, Cell Death Dis, vol.6, p.1970, 2015.

C. A. Banks, TNIP2 is a Hub Protein in the NF-kappaB Network with Both Protein and RNA Mediated Interactions, Mol Cell Proteomics, vol.15, issue.11, pp.3435-3449, 2016.

N. Von-muhlinen, LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy, Mol Cell, vol.48, issue.3, pp.329-371, 2012.

Y. C. Wong and E. L. Holzbaur, Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation, Proc Natl Acad Sci, vol.111, issue.42, pp.4439-4487, 2014.

N. Shembade, The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20, Nat Immunol, vol.9, issue.3, pp.254-62, 2008.

I. Barisic, Meckel-Gruber Syndrome: a population-based study on prevalence, prenatal diagnosis, clinical features, and survival in Europe, Eur J Hum Genet, vol.23, issue.6, pp.746-52, 2015.

E. A. Nigg and J. W. Raff, Centrioles, centrosomes, and cilia in health and disease, Cell, vol.139, issue.4, pp.663-78, 2009.