
HAL Id: tel-01953502
https://theses.hal.science/tel-01953502

Submitted on 13 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models of Distributed, Differential and Probabilistic
Computation
Christine Tasson

To cite this version:
Christine Tasson. Models of Distributed, Differential and Probabilistic Computation. Logic in Com-
puter Science [cs.LO]. Université Paris Diderot - Paris 7 - Sorbonne Paris Cité, 2018. �tel-01953502�

https://theses.hal.science/tel-01953502
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER DES RECHERCHES
DE

L’UNIVERSITÉ SORBONNE PARIS CITÉ

Spécialité Informatique
École doctorale no 386 - Science Mathématiques Paris-Centre

Sémantiques des Calculs

Distribués, Différentiels et Probabilistes

Mémoire d’habilitation à diriger des recherches présenté et soutenu publiquement par

Christine TASSON

à l’université Paris Diderot (Paris VII)

le 23 novembre 2018
Rapporteurs

M. Marcelo Fiore, University of Cambridge
M. Pierre Fraigniaud, CNRS - Université Paris VII
M. Prakash Panangaden, McGill University

Jury

Mme Lisbeth Fajstrup, Aalborg University
M. Marcelo Fiore, University of Cambridge
Mme Delia Kesner, Université Paris VII
Mme Alexandra Silva, University College London
M. Tarmo Uustalu, Reykjavík University

Président du Jury

M. Achim Jung, University of Birmingham

Sémantiques des Calculs Distribués, Différentiels et Probabilistes

Résumé

Depuis les années 60, la sémantique s’est avérée très utile pour introduire des langages de haut niveau
permettant d’écrire des programmes complexes et de les comprendre d’un point de vue mathématique.
Dans les années 80, la logique linéaire a été introduite par Girard, reflétant des propriétés sémantiques
liées à l’utilisation des ressources. Cette direction a été poursuivie par Ehrhard dans les années 2000
avec l’introduction du λ-calcul différentiel. Dans ses modèles, les programmes sont approximés par
des polynômes, dont les monômes représentent les appels d’un programme à ses entrées lors de son
exécution. Cette approche analytique a constitué un outil crucial pour l’étude des propriétés quantitatives
apparaissant dans les langages de programmation probabiliste. En parallèle, depuis les années 90, plusieurs
modèles géométriques ont été développés pour représenter des traces d’exécution dans les systèmes
distribués. Dans cette thèse d’habilitation, nous présentons des modèles que nous avons étudiés dans
ces trois domaines : les systèmes distribués, le λ-calcul différentiel, la programmation probabiliste, ainsi
que les techniques générales nécessaires et les résultats qu’ils nous ont permis d’obtenir. Celles-ci ont
nécessité l’utilisation et le développement d’outils issus de la combinatoire, de topologie dirigée, d’analyse
fonctionnelle, de théorie des catégories et de probabilités.

Models of Distributed, Differential and Probabilistic Computation

Abstract

Since the 60s, semantics have proved most useful to introduce high-level languages allowing complex
programs to be written and at an accurate mathematical level to be understood. In the 80s, linear
logic was introduced by Girard following semantical properties reflecting resource usage in computation.
This line of research was carried on by Ehrhard in the 2000s with the introduction of differential λ-
calculus. In its models, programs are approximated by polynomials whose monomials represent queries
to inputs along computation. This analytic approach has been a key tool to study quantitative properties
of programs such as probabilistic computation. In parallel, since the 90’s, several geometric models was
developed to give account to execution traces in distributed systems. In this habilitation thesis, we present
models that we have studied in three distinct areas: distributed systems, differential lambda calculus,
probabilistic programing, as well as general techniques to do so and the results they have allowed us to
obtain. Those have required the use and the development of tools coming from combinatorics, directed
topology, functional analysis, category theory and probability.

iii

Contents

Contents v

Introduction 1
0.1 Prelude . 1
0.2 Scientific Context . 2
0.3 Contributions . 5
0.4 Bibliography . 7

1 Distributed computing 11
Introduction . 12
1.1 Concurrent semantics of asynchronous read/write protocols 16
1.2 Protocol complexes, derived from the concurrent semantics 23
1.3 Conclusion . 27
1.4 Bibliography . 28

2 Differential Semantics 31
Introduction . 32
2.1 Monads, adjoints and splittings . 37
2.2 A colimit of monads . 44
2.3 A technical lemma . 47
2.4 The colimit is a monad . 49
2.5 A characterization of Q-algebras. 51
2.6 Example . 54
2.7 Bibliography . 56

3 Probabilistic Semantics 59
Introduction . 61
3.1 Probabilistic coherence spaces . 65
3.2 An adequate model of pure probabilistic λ-calculus . 74
3.3 A fully abstract model of pPCF . 78
3.4 A fully abstract model of pCBPV . 85
3.5 An adequate model of pRPCF . 94
3.6 Conclusion . 106
3.7 Bibliography . 107

List of Figures I

v

Introduction

Contents
0.1 Prelude . 1
0.2 Scientific Context . 2
0.3 Contributions . 5
0.4 Bibliography . 7

0.1 Prelude
This thesis presents my recent research journey, often going in collaborations with other searchers. It

deals with semantics of programming languages with different paradigms: distributive systems (Chap-
ter 1), differential linear logic (Chapter 2) and probabilistic programming (Chapter 3). The common
methodology that drives this thesis is to give a formal description of the meaning of programs inde-
pendently from their syntax. Programs have to implement algorithms and computations correctly, that
is to correspond to their specification. Semantics designs the tools necessary to describe formally this
correspondence between a program and the specification of the algorithm that it implements. For this,
operational semantics is used to describe behavior of programs using rewriting systems and denotational
semantics is used to describe programs by mathematical functions that act upon spaces representing
input and outputs.

There are several goals to this semantical approach: first to prove properties of programs in program-
ming languages using mathematical tools. This is the very first step towards certification of programs.
Perhaps a less common purpose is to give computational meaning to mathematical constructions and to
derive new programming languages that reflect this constructions. This process led to the introduction
of linear logic and of differential linear logic: In the 1980’s, Girard realized that in a model he was
studying, functions that interpret programs followed all a decomposition into a linear function and an
exponential operator; these two key ingredients where used to decompose classical logic and to introduce
linear logic Girard [1987]. In the 2000’s, semantics of linear logic were built upon topological vector
spaces of sequences. In these models functions where smooth (and even formal power series). The differ-
ential operator that exists in those semantics was given: a syntactical counterpart by the introduction of
differential lambda calculus and differential linear logic; a computational meaning related to the number
of queries to the inputs to get a given output Ehrhard and Regnier [2003]; Ehrhard [2018].

Along this manuscript I present different mathematical tools that we have used to denote programs
and their executions. The first tools have a geometric flavor: in Chapter 1, execution traces of processes
in asynchronous distributed systems are represented either as simplices in combinatorial spaces Herlihy
et al. [2013] or as continuous directed paths in directed topological spaces Fajstrup et al. [2016]. The
second tools come from functional analysis and combinatorics: in Chapter 2, programs are interpreted
as smooth maps between topological spaces of infinite dimension or as formal power series. The last
area is probability: in Chapter 3, programs are interpreted as measurable functions between measurable
spaces. All the three approaches rely on an approximation theory through finite representations of
programs that are well chosen to reason and prove their properties. For instance in Chapter 3, one
of the main result (Full Abstraction) relies on the approximation of the interpretation of programs
by well chosen polynomials whose degree is related to the number of times the inputs are queried.
Presenting programs as formal power series (or approximating them as polynomials) is the subject of
differential linear logic (presented in Chapter 2). The differential operator that extends linear logic, can
be understood operationally as a way to produce the best linear approximation of programs (the version
of the program that query once its input to get its output). The power series approximation can be
computed by iterating the differential operator. In Chapter 1, the geometrical structure used by Herlihy

1

Introduction

and his coauthors to represent execution traces of distributed protocols gives another finite representation
of traces. The project research that I want to follow is to relate this approximate representation of
distributed protocols with the approximation theories that was developed in differential linear logic. It
will pave the way to extend results in distributed computing to probabilistic distributed computing. I
will present this research project in more details at the end of this introduction (see Paragraph ??).

The three chapters constituting this manuscript can be read independently, they are preceded by an
introduction that present the state of the art, my contributions in the area and the main results presented
in the chapter. The content of the chapters are of different nature. Chapter 1 is an extract of an article,
resulting from a collaboration with Éric Goubault and Samuel Mimram Goubault et al. [2015a]. The
operational semantics of asynchronous distributed systems and different denotational semantics based
on geometric spaces are presented. Chapter 2 presents an unpublished work in collaboration with Martin
Hyland. It deals with categorical theory of linear and non-linear substitution. It is a first step towards
a new presentation of the differential operator at play in differential Linear Logic. Chapter 3 gives a
panorama of the results that we obtained with Thomas Ehrhard and Michele Pagani about semantics of
probabilistic programming languages handling both discrete or continuous probabilities at ground types.
My contributions and the results presented in this manuscript are summarized in Paragraph 0.3.

0.2 Scientific Context
A distributed system is composed of computing entities, called processes, that communicate

through primitives (e.g. send/receive messages, or update/scan a shared memory) with the purpose
of jointly solving a task. Even in the deterministic case, processes have to handle uncertainties for two
reasons. First, in an asynchrounous setting, processes execute their algorithm locally and at their own
pace, and thus cannot rely on the progress of the others. Second, some processes may be faulty, either
by crash failure (they are delayed or stopped) or by Byzantine failure (they are under malicious control).
Each process has no information on the state of other processes and thus have to base its decisions
on its partial knowledge of the global system (that it infers from the scheduling of the communication
primitives).

A task describes globally the initial and the expected final states of the processes. For instance,
one of the very fundamental problem in distributed computing is the consensus task: Processes start
with an initial value, for instance their identifier. To reach a consensus, the final values have first to be
identical and second to belong to the set of initial values. Given a communication procedure, solving a
task consists in the design of one algorithm that each process will run independently. This algorithm
precises the execution trace (that is the computation and communication steps) of the process that
runs it. Now, considering the system on its whole, scheduling of communication’s primitives have to be
composed with execution traces. Because the system is asynchronous, this amounts to take into account
interleavings of local process traces. A solution is correct when for any set of initial values, for any
interleaved execution trace (whatever asynchronicity and failures can be), the set of final values of correct
processes satisfies the specification of the task. Because of their fast growing number with respect to the
number of communication rounds, it is not possible to explore every interleaved execution trace, thus
the need for formal methods to characterize task solvability.

0 : 0⊥⊥

1 : ⊥1⊥2 : ⊥⊥2

1 : 012

0 : 012

2 : 012

2 : 0⊥2

0 : 0⊥2

1 : ⊥12 2 : ⊥12

0 : 01⊥

1 : 01⊥

u0u1u2s0s1s2

0 1 2

u1u2s1s2u0s0
1 2

0

2
1

0u2s2
u1s1

u0s0
1

2
0

u1s1u2s2u0s0

0

1

2

u1s1u0u2s0s2

u0u2s0s2u1s1
0 2

1

2

0

1

u 2
s 2
u 0
s 0
u 1
s 1

0
2

1
u
0
s
0
u
2
s
2
u
1
s
1

0

2

1

u2s2u0u1s0s1

u0u1s0s1u2s2
0 1

2

0

1

2

u
1 s
1 u
0 s
0 u
2 s
2

0
1

2

u
0
s
0
u
1
s
1
u
2
s
2

1
0

2

u0s0u1u2s1s2

20

1

u0u2s0u1s1s2

21

0

u 1
u 2
s 1
u 0
s 0
s 2

12

0

u
1 u

2 s
2 u

0 s
0 s

1

01

2

u0u1s0u2s1s2

02

1

u
0 u

2 s
2 u

1 s
1 s

0

01

2

u
0
u
1
s 1
u
2
s 0
s 2

Figure 1 – Protocol complex

In the 1990s, two independent lines of research emerged,
aiming to understand the limits of distributed systems.
The papers in the 1980s were teeming with impossibility
results of various kinds like the celebrated impossibility the-
orem of distributed consensus in asynchronous systems if
there is even one faulty processor Fischer et al. [1985]. It
seemed tempting to think that these numerous impossi-
bility results could be viewed as topological obstructions.
To formalize this intuition, Goubault and his co-workers
developed a concurrent semantics based on directed alge-
braic topology Fajstrup et al. [2016, 2006]. Herlihy and co-
workers independently showed that there were topological
obstructions to the existence of certain protocols Herlihy
and Shavit [1999]; Herlihy et al. [2013]. By representing
finite execution traces as a combinatorial structure, the so-
called protocol complex (see Fig. 1 for three processes
and one round of communication), he obtained a charac-
terization of task solvability in crash-tolerant (deterministic) distributed systems in terms of connectivity.

2

Introduction

A scheduling of the communication primitives is formalized in a protocol complex by a simplex (such as
a triangle on Fig. 1) whose vertices are the number of non-faulty processes. Moreover, two simplices are
joined at their border if the processes on this border share the same knowledge of the global system. The
protocol complex may be hard to compute from the description of the distributed system and is often
produced by hand, hence the need for an adequate formalization of distributed protocols from which
the protocol complex would be automatically derived. With Goubault and Mimram, we made a first
step towards automatizing the derivation of protocol complexes by introducing distributed computing
to operational and denotational semantics Goubault et al. [2018]. This work applied to deterministic
protocols. It is the subject of Chapter 1.

The purpose of semantics in the area of programming languages is to describe what programs
compute and how. The celebrated Curry-Howard-Lambek correspondence is at the heart of the design
of programming languages ensuring correctness by construction. The “Curry-Howard” approach relates
programs (of λ-calculus, the core of functional languages) and proofs (of natural deduction) via a one-
to-one correspondence, the types of programs corresponding to formulas Howard [1980]. Generalizing
Milner’s slogan that “well-typed programs cannot go wrong”, types are seen as invariants of computation.
The third part of the correspondence (due to Lambek) relates proofs and programs with structured cate-
gories (cartesian closed categories in the λ-calculus case). It stresses the importance of compositionality
for the properties of interest. Such categorical axiomatizations often result from the study of semantics
for programming languages, which offers “concrete” descriptions of the program invariants, from which
the categorical axiomatics can be extracted.

The methodology behind this thesis is the back-and-forth interactions between programs/proofs and
semantics, resulting in the design of programming/logical constructions which reflect the properties of
the semantics and provide a computational content to mathematical constructions.

Semantics originates in the work of Scott and Strachey [1971] whose motivation was the growing
difficulty in proving (and even expressing) properties of programs and programming languages based only
on their syntax. The idea is to interpret programs as functions, called denotations, between mathematical
structures, in order to abstract away from the specificity of syntax and to give new, solid tools to reason
about programs. There are three main goals: (1) operational semantics giving rigorous definitions
of the operational behavior of programs that can serve as an implementation-independent reference;
(2) providing formal methods to compare the expressiveness of programming languages independently of
their syntax; and (3) denotational semantics supplying mathematical tools for proving computational
properties of programs.

Quantitative semantics is a flourishing research area with deep results and constructions. They have in
particular enabled the construction of models of computational cost (time and space consumption) Laird
et al. [2013], of higher-order quantum functional programming Pagani et al. [2014], and of probabilistic
programming with continuous data types Ehrhard et al. [2018b] (which is the first one combining higher-
order, recursion and measurability). Formal series have emerged as a useful tools to encode input
queries in the λ-calculus, the core of functional languages. More precisely, programs can be seen as a
superposition of monomials representing finite approximations of the computation. The degree of those
monomials is related to the number of times an argument is used by the program Ehrhard and Regnier
[2003]. This approximation theory is called syntactic Taylor expansion Ehrhard and Regnier [2006a].
Seen through the Curry-Howard correspondence, the Taylor expansion has a counterpart in intuitionistic
logic: proofs can be interpreted as power series and their derivatives provide linear approximations of
them. An early version of this observation led Girard to introduce Linear Logic (LL) Girard [1987]
and later Ehrhard and Regnier to introduce the differential λ-calculus Ehrhard and Regnier [2003].
Both these systems emerged after a careful study of denotational models based on power series: one
was based on normal functors Girard [1988] (power series whose coefficients are sets) and the other was
based on analytic functions over topological vector spaces Blute et al. [2012]; Ehrhard [2005]; Kerjean
and Tasson [2018].

Quantitative semantics completes the Curry-Howard correspondence by involving linear algebra,
computer science and proof theory. Using methods from linear algebra and analysis in these quantitative
approaches has allowed to solve problems which were left open in the traditional semantics based on
domains.

LL is characterized by an involutive negation and a pair of dual, exponential modalities (denoted
by ! and ?) which regulate the (explicit) use of structural rules: contraction and weakening. Such a
control over contraction and weakening brings an analogue of the notion of resource to proof theory.
This allows to consider quantitative properties of proofs. In particular, LL allows the decomposition of
the type A ⇒ B into more primitive connectives: A ⇒ B = !A(B. Here, the arrow A(B denotes
the space of the linear functions (from a semantic point of view), and the type of the programs using their

3

Introduction

resources exactly once (from an operational point of view). The type !A denotes the space of the resources
of type A that can be used at will, semantically !A is in some sense analogous to the space of the power
series with formal indeterminates over A. The third part of the Curry-Howard-Lambek correspondence,
the categorical axiomatization, for LL can be formalized by Linear-Non-Linear categories as presented
in Melliès [2009]. In those categorical models, there is a well-behaved adjunction between a symmetric
monoidal category L and a cartesian one M, allowing the exponential modality ! to be interpreted as the
comonad.

In order to be able to take quantitative properties into account, it is natural to interpret programs
as analytic functions. In particular, these functions are infinitely differentiable. A crucial issue is then
to understand whether differentiation is a meaningful syntactic operation. A first positive answer was
given with Ehrhard and Regnier’s differential λ-calculus Ehrhard and Regnier [2003] and their graphical
calculus counterpart differential nets Ehrhard and Regnier [2006b]. Both of these extensions feature
two different ways of passing inputs to programs: the usual, unrestricted one, and a new, linear one.
The latter one consists in defining the derivative Df · x of the program f , seen as a function, on the
argument x. The evaluation of Df · x has a precise operational meaning: it corresponds to passing the
input x to f exactly once. This imposes non-deterministic choices: if f contains several subroutines each
of them demanding for a copy of x, then there are different evaluations of Df · x, depending on which
subroutine is fed with the unique available copy of x. We thus need a formal sum, where each summand
represents a choice. Such sums express syntactically the addition between vectors in the quantitative
semantics, and have a canonical mathematical interpretation — they correspond to the sums that one
obtains when computing the derivative of a product of functions. The derivative operator allows to
compute syntactically the optimal approximation of a program when applied to linear arguments.

As expected, iterated differentiation yields a natural notion of linear approximation of the ordinary
application of a program to an input. This notion relates to ordinary application through the Taylor
formula Ehrhard and Regnier [2008]. More generally, if one fully develops each application occurring in
a program into its corresponding Taylor expansion, the result is an infinite sum of purely “differential
programs” that contain only (multi)linear applications and applications to 0.

In combinatorics, formal series are used to compute asymptotic properties. Generating functions are
one of the most efficient tools to count labelled structures (trees, lists, cycles, ...) by solving the integro-
differential equations that define these structures: those are power series such that the coefficient of their
n-th monomial is the number of structures with n labels. Species have been designed and developed to
describe combinatorial structures such as protocol complexes and operads to compose these structures.
Briefly, an operad is given by an underlying species of operations, together with a unital “multiplication”
which describes composition of operations. Each operad thus generates a monad, whose algebras are
precisely the desired algebraic structures. In abstract algebra, species have been analysed through higher
categories, unifying combinatorics and semantics of LL. These generalized species Fiore et al. [2008]; Fiore
et al. [2016] are the 2-categorical version of Joyal’s combinatorial species generated by the 2-monad of
free symmetric monoidal categories. Thus defined, they encode an algebraic theory of linear substitution:
composition of generalized species covers the substitution monoidal structure of coloured operads Baez
and Dolan [1995] and the linear substitution founding LL. Naturally, generalized species have been used
to represent resource terms appearing in the syntactical Taylor expansion Tsukada et al. [2017, 2018].
Even the non-linear substitution of λ-calculus has been formalised as an algebraic theory of cartesian
operads Hyland [2017, 2014]. How to combine the linear and the non-linear substitution monads, in the
spirit of LL, is the subject of Chapter 2.

Quantitative semantics can be applied to study randomized algorithms. How to implement, formalize
and reason on such algorithms is the subject of probabilistic programming languages Borgström
et al. [2016]; Goodman and Tenenbaum [2014]. This line of research has gained a great interest over the
past few years, with the development of probabilistic models used in areas such as artificial intelligence,
applied statistics and machine learning. What we call probabilistic semantics is the mathematical
foundations of the computation of probabilistic programs with an emphasis on composition. In this
area, Kozen has developed a measure-theoretic semantics, using Markov kernels to describe the oper-
ational semantics of probabilistic programs Kozen [1981]. Then, building on the work of Giry [1982]
and Moggi [1989], Jones and Plotkin [1989] introduced a denotational semantics based on probabilistic
power domains, which led to rich research programs by Di Gianantonio and Edalat [2013], Jung and Tix
[1998], Keimel and Plotkin [2017], among others. Recently, Kozen and Silva used this approach based
on domains to model networks with probabilistic features Smolka et al. [2017].

In parallel, Danos and Ehrhard introduced probabilistic coherent spaces, a denotational semantics,
where formal series denote programs Danos and Ehrhard [2011]. Together with Ehrhard and Pagani,
we proved that this model is precise enough to statically characterize the computational behavior of

4

Introduction

programs handling discrete probabilities Ehrhard et al. [2014]. On a more practical probabilistic side,
probabilistic programming languages, including Church, Anglican, Stan, Tabular, Venture, Hakaru,
have been introduced for applications in probabilistic models by composing small blocks available in
the language releasing searchers from the representation problematic. Basic probabilistic constructors
such as sampling and more complex tools for implementing statistical inference are both construction
of these languages where continuous distributions constitute the key object. Most of them are higher-
order functional programming languages: they allow writing programs that can handle programs as
arguments. To formalize this paradigm, it is necessary to design a cartesian closed category rich enough
for probabilistic semantics. Probabilistic coherent spaces constitute a cartesian closed category, but
handling only discrete ground types such as natural numbers. It is only recently that denotational
semantics of higher-order languages with continuous ground types, such as reals, have been designed.
Indeed, there is a major obstacle Panangaden [1999]: Markov kernels and measurable functions are
not suitable for interpreting composition of functional probabilistic programs. To our knowledge, there
are only two models of probabilistic programming handling higher-order and continuous probabilities:
quasi-Borel spaces designed by Staton and his collaborators Heunen et al. [2017]; Scibior et al. [2018] and
the measurable cones Ehrhard et al. [2018b]. This work is related in Chapter 3. Semantical reasoning
on higher-order programs and compositionality has been advocated from an equational viewpoint Bacci
et al. [2018] and from a categorical viewpoint Dahlqvist et al. [2016]; Kozen [2016].

0.3 Contributions
Chapter 1 is devoted to my contributions to the semantics of distributed systems following the

line of the combinatorial model proposed by Herlihy et al. [2013]. With my coauthors, we studied
asynchronous Byzantine systems (where processes can send fake messages) in Mendes et al. [2014] and
gave a characterization of distributed solvability in this context. We also gave in Goubault et al. [2015b]
a combinatorial proof of the collapsibility of the crash failure protocol complex which is a key feature
that implies impossibility results in fault-tolerant distributed computing.

In order to compute protocol complexes appearing in these combinatorial models, we introduced
distributed systems to operational semantics in Goubault et al. [2015a] and Goubault et al. [2018]. This
semantical approach allows us to give a one-to-one correspondence between several semantical approaches
to the representation of traces of executions in distributed systems. More precisely, Theorem 10 describes
formally the relation between the protocol complex approach of Herlihy and his coauthors and the
directed topology approach of Goubault and his coauthors. The proof reveals the importance of the
local view of the processes on the global state of the system that is encoded in the operational semantics
as presented in Theorem 18.

Chapter 2 tackles semantics of differential linear logic. In this area, I have followed three directions.
First, I have studied and used finiteness spaces introduced in Ehrhard [2005]: in Tasson and Vaux [2018]
we studied type fixpoints; in Pagani et al. [2016], we generalized Ehrhard [2010] and used finiteness spaces
to characterize strongly normalizing terms of non-deterministic λ-calculus. Second, I studied models of
differential linear logic based on topological vector spaces in which the differential operator of the logic
is interpreted as the derivation in calculus and proofs (or programs) are interpreted as smooth functions
in Blute et al. [2012]. Then, because formal series are a key notion to approximate programs. We refined
smooth functions into formal series in Kerjean and Tasson [2018].

In Chapter 2, I present a third contribution that has been developed in collaboration with Martin
Hyland. As suggested in Fiore [2006]; Power and Tanaka [2005], we propose to combine the operadic
axiomatizations of linear substitution of Fiore et al. [2016] (given by the symmetric monoidal monad)
and non-linear substitution of Hyland [2017, 2014] (given by the cartesian monoidal monad). There are
many known ways to combine monads, for instance using distributive laws. Unfortunately, none of these
constructions is suitable for our setting and we investigate a new one based on colimits. We first show
in Theorem 32 that our construction is correct: the colimit of monads produces a monad. Then, in
Theorem 35 we give a characterization of the algebras of the produced monad. It is a first step towards
an algebraic understanding to linear-non-linear substitution (we still need to understand how to lift the
produced monad to profunctors that is needed to interpret terms).

Chapter 3 gives a panorama of the results we had on semantical aspects of probabilistic programming.
The key result we proved was the full abstraction for probabilistic coherent spaces and probabilistic
PCF Ehrhard et al. [2014, 2018a] and then probabilistic Call-By-Push-Value Ehrhard and Tasson [2018].
Theorems 79 and 88 tell us that the semantics of probabilistic coherent spaces characterizes the behavioral
equivalence of probabilistic functional programs. This key property is obtained thanks to the polynomial

5

Introduction

approximation of terms. Indeed, probabilistic coherent spaces is a semantics based on linear logic and
programs are interpreted as formal series. The full abstraction problem reduces to a problem of real
analytic functions. We further studied probabilistic coherent spaces proving in Theorem 64 that the
probability that a pure λ-term reduces to a head normal form is equal to its denotation computed on a
suitable set of values Ehrhard et al. [2011] ; and proving in Proposition 44 that the exponential comonad
of Probabilistic Coherent Spaces is free Crubillé et al. [2017].

In Ehrhard et al. [2018b], we moved from discrete probabilities to continuous ones. We proved
that the cartesian closed category of measurable cones and stable, measurable functions is adequate
for a version of Probabilistic PCF with the single ground type of reals. Moreover, we gave a bunch
of example to prove that this semantics is well-suited to interpret simple randomized algorithms in
Paragraph 3.5.6: standard distributions, conditioning, expectation approximation through Monte-Carlo
methods and inference algorithms as Metropolis-Hastings (see Example 107). We encoded this algorithms
by programs in real probabilistic PCF. We computed their semantics and proved that the encoding are
correct by using the Adequacy Theorem 102.

6

Introduction

0.4 Bibliography
Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott.
Boolean-valued semantics for the stochastic λ-calculus. In LICS, pages 669–678. ACM, 2018. 5

J. C. Baez and J. Dolan. Higher-dimensional algebra and topological quantum field theory. J. Math.
Phys., 36(11), 1995. 4

Richard Blute, Thomas Ehrhard, and Christine Tasson. A convenient differential category. Cahiers de
Topologie et Géométrie Différentielle Catégoriques, 53(3):211–232, 2012. 3, 5

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A lambda-calculus
foundation for universal probabilistic programming. In Jacques Garrigue, Gabriele Keller, and Ei-
jiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pages 33–46. ACM, 2016. 4

Raphaelle Crubillé, Thomas Ehrhard, Michele Pagani, and Christine Tasson. The Free Exponential
Modality of Probabilistic Coherence Spaces. In J. Esperanza and A. Murawski, editors, Proceedings of
the 20th International Conference on Foundations of Software Science and Computation Structures,
FOSSACS 2017. ARCoSS, 2017. 6

Fredrik Dahlqvist, Vincent Danos, and Ilias Garnier. Giry and the machine. Electr. Notes Theor.
Comput. Sci., 325:85–110, 2016. 5

V. Danos and T. Ehrhard. Probabilistic coherence spaces as a model of higher-order probabilistic
computation. Inform. Comput., 2011. doi: 10.1016/j.ic.2011.02.001. 4

P. Di Gianantonio and A. Edalat. A language for differentiable functions. In Foundations of Software
Science and Computation Structures, pages 337–352, 2013. ISBN 978-3-642-37075-5. 4

T. Ehrhard. Finiteness spaces. Math. Struct. Comput. Sci., 15(4), 2005. 3, 5

T. Ehrhard. A finiteness structure on resource terms. In LICS, pages 402–410. IEEE Computer Society,
2010. 5

T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput. Sci., 309(1), 2003. 1, 3, 4

T. Ehrhard and L. Regnier. Böhm trees, Krivine’s Machine and the Taylor Expansion of Lambda-Terms.
In CiE, 2006a. 3

T. Ehrhard and L. Regnier. Differential interaction nets. Theoretical Computer Science, 364(2):166–195,
2006b. 4

T. Ehrhard and L. Regnier. Uniformity and the Taylor expansion of ordinary lambda-terms. Theor.
Comput. Sci., 403(2-3), 2008. 4

Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antiderivatives.
Mathematical Structures in Computer Science, 28(7):995–1060, 2018. 1

Thomas Ehrhard and Christine Tasson. Probabilistic call by push value. Logical Methods in Computer
Science, 2018. Accepted for publication, LMCS. 5

Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of probabilistic
coherence spaces. In LICS, pages 87–96. IEEE Computer Society, 2011. 6

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Probabilistic coherence spaces are fully abstract
for probabilistic PCF. In POPL, pages 309–320. ACM, 2014. 5

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction for probabilistic PCF. Journal
of the ACM, 65(4):23:1–23:44, 2018a. 5

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable, measurable
functions: a model for probabilistic higher-order programming. In POPL, pages 59:1–59:28. ACM,
2018b. 3, 5, 6

L. Fajstrup, É. Goubault, E. Haucourt, S. Mimram, and M. Raussen. Directed Algebraic Topology and
Concurrency. Springer International Publishing, 2016. 1, 2

7

Introduction

Lisbeth Fajstrup, Martin Raußen, and Eric Goubault. Algebraic topology and concurrency. Theoretical
Computer Science, 357(1):241–278, 2006. 2

M. Fiore. On the structure of substitution. Invited address for MFPSXXII, 2006. 5

M. Fiore, N. Gambino, M. Hyland, and G. Winskel. The cartesian closed bicategory of generalised
species of structures. J. London Math. Soc., 77(1), 2008. 4

M. Fiore, N. Gambino, M. Hyland, and G. Winskel. Relative pseudomonads, Kleisli bicategories, and
substitution monoidal structures. ArXiv e-prints, 2016. 4, 5

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985. 2

J.-Y. Girard. Normal functors, power series and lambda-calculus. Annals of Pure and Applied Logic, 37
(2), 1988. 3

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. 1, 3

Michèle Giry. A categorical approach to probability theory, pages 68–85. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1982. 4

Noah D. Goodman and Joshua B. Tenenbaum. Probabilistic models of cognition. http://probmods.org,
2014. 4

Éric Goubault, Samuel Mimram, and Christine Tasson. From geometric semantics to asynchronous
computability. In Distributed Computing - 29th International Symposium, DISC 2015, Tokyo, Japan,
October 7-9, 2015, Proceedings, volume 9363 of Lecture Notes in Computer Science, pages 436–451.
Springer, 2015a. 2, 5

Éric Goubault, Samuel Mimram, and Christine Tasson. Iterated chromatic subdivisions are collapsible.
Applied Categorical Structures, 23(6):777–818, 2015b. 5

Éric Goubault, Samuel Mimram, and Christine Tasson. Geometric and combinatorial views on asyn-
chronous computability. Distributed Computing, 31(4):289–316, 2018. 3, 5

Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. Journal of
the ACM (JACM), 46(6):858–923, 1999. 2

Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through Combinato-
rial Topology. Morgan Kaufmann, 2013. 1, 2, 5

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for higher-order
probability theory. In LICS, pages 1–12. IEEE Computer Society, 2017. 5

W.A. Howard. The formulae-as-types notion of construction. In Jonathan P. Seldin and J. Roger
Hindley, editors, Essays on Combinatory Logic, Lambda Calculus, and Formalism, volume to H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980. 3

M. Hyland. Classical lambda calculus in modern dress. Math. Struct. Comput. Sci., 27(5), 2017. 4, 5

Martin Hyland. Elements of a theory of algebraic theories. Theor. Comput. Sci., 546:132–144, 2014. 4,
5

C. Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In LICS, pages 186–195.
IEEE Computer Society, 1989. 4

Achim Jung and Regina Tix. The troublesome probabilistic powerdomain. Electr. Notes Theor. Comput.
Sci., 13:70–91, 1998. 4

Klaus Keimel and Gordon D. Plotkin. Mixed powerdomains for probability and nondeterminism. Logical
Methods in Computer Science, 13(1), 2017. 4

Marie Kerjean and Christine Tasson. Mackey-complete spaces and power series - a topological model of
differential linear logic. Mathematical Structures in Computer Science, 28(4):472–507, 2018. 3, 5

8

Introduction

Dexter Kozen. Semantics for probabilistic programs. Journal of Computer and System Sciences, 22,
1981. 4

Dexter Kozen. Kolmogorov extension, martingale convergence, and compositionality of processes. In
LICS, pages 692–699. ACM, 2016. 5

J. Laird, G. Manzonetto, G. McCusker, and M. Pagani. Weighted relational models of typed lambda-
calculi. In LICS, 2013. 3

P.-A. Melliès. Categorical semantics of linear logic. 2009. 4

Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 704–713. ACM, 2014. 5

Eugenio Moggi. Computational lambda-calculus and monads. In LICS, pages 14–23. IEEE Computer
Society, 1989. 4

M. Pagani, P. Selinger, and B. Valiron. Applying quantitative semantics to higher-order quantum com-
puting. In ACM SIGPLAN Notices, volume 49. ACM, 2014. 3

Michele Pagani, Christine Tasson, and Lionel Vaux. Strong normalizability as a finiteness structure via
the taylor expansion of λ-terms. In FoSSaCS, volume 9634 of Lecture Notes in Computer Science,
pages 408–423, 2016. 5

Prakash Panangaden. The category of markov kernels. Electronic Notes in Theoretical Computer Sci-
ence, 22:171 – 187, 1999. PROBMIV’98, First International Workshop on Probabilistic Methods in
Verification. 5

John Power and Miki Tanaka. Binding signatures for generic contexts. In TLCA, volume 3461 of Lecture
Notes in Computer Science, pages 308–323. Springer, 2005. 5

Adam Scibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Oster-
mann, Sean K. Moss, Chris Heunen, and Zoubin Ghahramani. Denotational validation of higher-order
bayesian inference. PACMPL, 2(POPL):60:1–60:29, 2018. 5

D. Scott and C. Strachey. Toward A Mathematical Semantics for Computer Languages. In Proceedings
of the Symposium on Computers and Automata, volume XXI, pages 19–46, 1971. 3

Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva. Cantor meets scott:
semantic foundations for probabilistic networks. In POPL, pages 557–571. ACM, 2017. 4

Christine Tasson and Lionel Vaux. Transport of finiteness structures and applications. Mathematical
Structures in Computer Science, 28(7):1061–1096, 2018. 5

T. Tsukada, K. Asada, and L. Ong. Generalised species of rigid resource terms. In LICS, 2017. 4

Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Species, profunctors and taylor expansion
weighted by SMCC: A unified framework for modelling nondeterministic, probabilistic and quantum
programs. In LICS, pages 889–898. ACM, 2018. 4

9

Chapter 1

Distributed computing

Publications of the author
Éric Goubault, Samuel Mimram, and Christine Tasson. Geometric and combinatorial views on asyn-
chronous computability. Distributed Computing, 31(4):289–316, 2018.

Éric Goubault, Samuel Mimram, and Christine Tasson. Iterated chromatic subdivisions are collapsible.
Applied Categorical Structures, 23(6):777–818, 2015a.

Éric Goubault, Samuel Mimram, and Christine Tasson. From geometric semantics to asynchronous
computability. In Distributed Computing - 29th International Symposium, DISC 2015, Tokyo, Japan,
October 7-9, 2015, Proceedings, volume 9363 of Lecture Notes in Computer Science, pages 436–451.
Springer, 2015b.

Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 704–713. ACM, 2014.

Contents
Introduction . 12
1.1 Concurrent semantics of asynchronous read/write protocols 16

1.1.1 Interleaving semantics of atomic read/write protocols 16
1.1.2 Directed geometric semantics . 17
1.1.3 Equivalence of the standard and geometric semantics 18

1.2 Protocol complexes, derived from the concurrent semantics 23
1.2.1 Protocol complex . 23
1.2.2 Construction of the protocol complex from the directed geometric semantics . . 23
1.2.3 Particular case of 1-round immediate snapshot protocols 24

1.3 Conclusion . 27
1.4 Bibliography . 28

11

CHAPTER 1. DISTRIBUTED COMPUTING

Introduction
In this Chapter 1, we present works, in collaboration with Éric Goubault and Samuel Mimram, in

which we study formal methods for fault-tolerant and asynchronous distributed computing, based on a
semantical approach.

A distributed system is made of computing entities, called processes, that communicate through a
net. They collaborate by passing messages (or through a shared memory) in order to solve a task.
However, they have to handle uncertainty for two reasons. First, in an asynchrounous system, processes
execute their algorithm at their own pace. Thus, a process cannot take into account the progress of
the others. Second, some processes may be faulty, either by crash failure (they are delayed or stopped)
or by Byzantine failure (they are under malicious control). Of course, each process does not have any
information on the state of other processes. So that, his decisions have to be based on its partial view
of the global system, that he infers from the messages he receives.

A task describes globally the initial and the expected final states of the processes. For instance, one
of the very fundamental problem in distributed computing is
The consensus task: Processes start with an initial value, for instance their identifier. To reach a
consensus, the final values have first to be identical and second to belong to the set of initial ones.
Solving a task consists in the design of one algorithm that each process will run independently. This
algorithm precises the execution trace (that is the computation and communication steps) of the process
(that runs it). Now, we consider the system on its whole. Because the system is asynchronous, we have
to study every global execution trace, that is the interleaving of the (local) process traces.
Correction of a solution: For any set of initial values, for any interleaved execution trace (whatever
asynchronicity and failures can be), the set of final values of correct processes satisfies the specification
of the task.
Because of their fast growing number with respect to the number of communication rounds, it is not
possible to explore every interleaved execution trace. Thus, we need formal methods to characterize task
solvability. Herlihy and Shavit [1999] introduced protocol complexes, a geometrical formalization of the
set of finite traces. A chromatic complex is made of a set of vertices labeled by process identifiers and a
set of simplexes (subsets of vertices) that represent interleaved execution traces (see Definition 1.2.1 and
Example 12). Moreover, given a distributed system, a protocol complex C is a subdivision of another
one C ′, if C is obtained from traces with more communication rounds than C ′. Then, input and output
complexes are used to represent the input and the output values specified by the task. Finally, simplicial
maps preserve the relations between traces that are encoded in the protocol complex.

Thanks to this geometrical formalization, Herlihy and Shavit [1999] characterized solvability:
Crash Failure Solvability Theorem: A task is solvable in the asynchronous model with crash
failures if and only if there is a simplicial map from a subdivision of the input complex to the output
complex.
In Mendes et al. [2014], we generalized this theorem to Byzantine failures. This result holds for colorless
tasks in which output values depend only on input values and are independent from process identifiers.
Byzantine Solvability Theorem: A colorless task is solvable in the asynchronous model with
n + 1 processes, at most t Byzantine failures and at most I different input values if and only first,
(n + 1) > t(I + 2) and second, there is a continuous function, compatible with the task specification,
from the set of initial configurations with at most t values to the set of final configurations.
The proof that the two conditions imply the existence of a protocol relies on the composition of the
given continuous function with two asynchronous Byzantine protocols: k-set agreement (see Chaudhuri
[1993]) and barycentric agreement (see Herlihy and Shavit [1999]). On the contrary, if there is a protocol,
then we prove the first condition by contradiction and the second one by a reduction to the crash failure
case. Indeed, any protocol tolerant to Byzantine failures is also tolerant to crash failures.
Collapsibility Theorem: One important concept, for applying the Crash Failure Solvability Theorem,
is the connexity of chromatic complexes and their subdivisions. Indeed, if the protocol complex is
connected, then the Crash Failure Solvability Theorem implies that the consensus cannot be solved.
One way of showing connexity is to prove that the complex is collapsible. That means that we can
remove free faces (particular simplices), reducing the protocol complex to a point step by step.
We proved in Goubault et al. [2015b], simultaneously with Kozlov [2013], that the chromatic subdivision
complex is collapsible and so connected. We present in Figure 1.1 the collapsing procedure for the
chromatic subdivision complex for three processes and one round of communication. In blue are the free
faces that are removed at each step.

12

CHAPTER 1. DISTRIBUTED COMPUTING

0, 0

0|1,0|1

0|12,0|2

0|12,0|12

0|12,0|1

0|2,0|2

01, 1

01|2,01|2
01,01

0|1|2,0|1|2 02, 20|2|1,0|2|1

02|1,02|1
02,02

01, 0

1|0,1|0

1|0|2,1|0|2

012, 201|2,0|2

01|2,1|2

012,12

1|02,1|02

012, 1

2|01,2|01

02|1,2|1

02|1,0|1 02, 0
2|0|1,2|0|1

2|0,2|0012, 0

012,02

12|0,2|0 12|0,1|0

012,01

12|0,12|0

012,012

1, 1

1|02,1|2

1|02,1|0

1|2,1|2 12, 2
1|2|0,1|2|0

12,12 12, 1
2|1|0,2|1|0

2|1,2|1 2, 2

2|01,2|0

2|01,2|1

0, 0

0|1,0|1

0|12,0|2

0|2,0|2

0|12,0|12

0|12,0|1

01,1 0|1|2,0|1|2 02,20|2|1,0|2|1

01,0

1|0,1|0

1|0|2,1|0|2

012, 201|2,0|2

01|2,1|2

012,12

1|02,1|02

012, 1

2|01,2|01

02|1,2|1

02|1,0|1 02,0
2|0|1,2|0|1

2|0,2|0012, 0

012,02

12|0,2|0 12|0,1|0

012,01
012,012

1, 1

1|02,1|2

1|02,1|0

1|2,1|2 12,2
1|2|0,1|2|0

12,1
2|1|0,2|1|0

2|1,2|1 2, 2

2|01,2|0

2|01,2|1

0,0

0|12,0|2

0|12,0|12

0|12,0|1

012, 2 012,12

1|02,1|02

012, 1

2|01,2|01
012, 0

012,02 012,01
012,012

1,1

1|02,1|2

1|02,1|0

2,2

2|01,2|0

2|01,2|1

012, 2 012,12 012, 1

012, 0

012,02 012,01
012,012

012, 2 012, 1

012, 0

012,02 012,01

012, 0

Figure 1.1 – The collapse of the chromatic subdivision complex for three processes.

13

CHAPTER 1. DISTRIBUTED COMPUTING

Although this geometrical approach to problems in fault-tolerant distributed computing has been
very successful, there is a potential limitation. Indeed, for some intricate distributed systems, it might
be difficult to produce their corresponding protocol complex. To bypass this issue, in Goubault et al.
[2015b], we have provided a framework that builds protocol complexes from the operational semantics
of communication primitives. Although this framework is designed to be general, we present it for a
well-known and simple case in fault-tolerant distributed computing: atomic snapshot protocols (see Afek
et al. [1993]; Anderson [1993]; Lynch [1996]).

This allows to associate to each interleaved execution trace the global final state of the system and
to characterize traces that are observationally equivalent (they generate the same final state). We have
proved formally the correspondence between traces (up to observational equivalence) and simplexes in
the protocol complex.

We have also formalized the correspondence with another successful geometric model of distributed
systems where time evolution is taken into account. Introduced in the 1990s, directed algebraic topology
uses topological models to give a semantics to concurrent and distributed systems.
Similar representations of execution traces and protocol complexes. In this first Chapter 1,
we draw a correspondence between

• execution traces (up to observational equivalence),

• simplexes in chromatic protocol complexes,

• directed paths in topological models (up to directed homotopy),

• interval orders (that are partially ordered sets of actions).

Noteworthy, we provided new constructions of the protocols complex, based on traces, dipaths, and
interval orders.

Towards a geometric comprehension of probabilistic algorithms. If we allow probabilistic
algorithms (processes can toss a coin), then more tasks are solvable. This is the case for consensus,
solved by Ben-Or [1983] who designed a randomized algorithm (when at most half of the processes are
faulty). Recall that the consensus have been proved to be unsolvable in the deterministic setting (even
for 1 faulty process). We would like to give a geometric comprehension to the probabilistic solvability.
The idea is that the protocol complexes become almost surely disconnected gradually with the growing
number of communication rounds. We will thus need to understand the asymptotic structure of traces
that have non zero-probabilities. A first step will be to give a combinatorial recursive description of
traces which is easy to work with. And our alternative description of protocol complexes will be our
starting point.

Context

The seminal result in this field was established by Fisher, Lynch and Paterson in 1985, who proved
that the consensus task that cannot be solved in a message-passing system (or in shared memory Loui
and Abu-Amara [1987]) with at most one potential crash Fischer et al. [1985]. Later on, Biran, Moran
and Zaks developed a characterization of the decision tasks that can be solved by a (simple) message-
passing system in the presence of one failure Biran et al. [1988]. The argument uses a similarity chain,
which can be seen as a connectedness result of a representation of the space of all reachable states,
called the view complex Kozlov [2012] or the protocol complex Herlihy and Shavit [1999]. Of course,
this argument turned out to be difficult to extend to models with more failures, as higher-connectedness
properties of the protocol complex matter in these cases. This technical difficulty was first tackled, using
homological considerations, by Herlihy and Shavit [1993] (and independently Borowsky and Gafni [1993];
Saks and Zaharoglou [1993]): there are simple decision tasks, such as k-set agreement, a weaker form
of consensus, that cannot be solved for k < n in the wait-free asynchronous model, i.e. shared-memory
distributed protocols on n processes, with up to n − 1 crash failures. Then, the full characterization
of wait-free asynchronous decision tasks with atomic reads and writes (or equivalently, with atomic
snapshots) was described by Herlihy and Shavit [1999]: this relies on the central notion of chromatic
(or colored) simplicial complexes, and their subdivisions. All these results stem from the contractibility
of the “standard” chromatic subdivision, which was completely formalized in Kozlov [2012, 2013] (and
even for iterated models Goubault et al. [2015b]) and which corresponds to the protocol complex of
distributed algorithms solving layered immediate snapshot protocols. Over the years, the geometric

14

CHAPTER 1. DISTRIBUTED COMPUTING

approach to problems in fault-tolerant distributed computing has been very successful (see Herlihy et al.
[2014] for a fairly complete up-to-date treatment).

Another successful theory of concurrent and distributed computations is based on directed algebraic
topology. Actually, the semantics of concurrent and distributed systems can be given by topological
models, as pushed forward in a series of seminal papers in concurrency, in the early 1990s. These
papers have first explored the use of precubical sets and Higher-Dimensional Automata (which are
labeled precubical sets equipped with a distinguished beginning vertex) Pratt [1991]; van Glabbeek
[1991]. Then, they have begun to suggest possible homology theories in Goubault and Jensen [1992]
and Goubault [1995]. Finally, they have pushed the development of a specific homotopy theory which is
a part of a general directed algebraic topology Grandis [2009]. On the practical side, directed topological
models have found applications to deadlock and unreachable state detection Fajstrup et al. [1998],
validation and static analysis Bonichon et al. [2011]; Fajstrup et al. [2012]; Goubault and Haucourt [2005],
state-space reduction (as in e.g. model-checking) Goubault et al. [2013], serializability and correctness
of databases Gunawardena [1994] (see also Fajstrup et al. [2006]; Goubault [2003] for a panorama of
applications).

Contributions

In Goubault et al. [2018] and Goubault et al. [2015a], we show that the protocol complex can be
directly derived from an operational semantics of the underlying communication primitives. We fur-
thermore described a correspondance between protocol complexes and directed algebraic topology. This
correspondance is the subject of this Chapter 1.

In Goubault et al. [2015b], we have given a purely combinatorial proof that the standard and the
iterated chromatic subdivision complex are collapsible. This property is central in theoretical distributed
computing as it implies impossibility results in fault-tolerant distributed computing.

In Mendes et al. [2014], we have extended the application of the combinatorial model used to char-
acterize solvability in crash failure systems to colorless tasks in asynchronous Byzantine systems.

Organization of the Chapter

This chapter is devoted to the geometric description of execution traces. It is extracted from Goubault
et al. [2015a] which is an extended abstract of Goubault et al. [2018].

Section 1.1 begins in §1.1.1 with the definition of the standard operational semantics (or interleaving
semantics) of atomic read/write protocols, and more precisely of atomic snapshot protocols where read
and write primitives are replaced by update and (global) scan ones. In §1.1.2, we give an alternative
geometric semantics, which encodes also independence of actions, as a form of homotopy in a geometric
model. The very basics of directed algebraic topology have been introduced for this purpose, but we
refer the reader to Fajstrup et al. [2016]; Grandis [2009] for more details. Yet, we prove the fact that
(directed) homotopy encodes commutation of actions, in the form of an equivalence between the standard
semantics and the geometric semantics. It is shown in Section 1.1.3, Proposition 4 that two traces in
the interleaving semantics modulo commutation of actions induce dihomotopic (directed) paths in the
geometric model. The converse is shown in Section 1.1.3, Proposition 9, using the combinatorial notion
of interval order (see Fishburn [1970]). We then combine these results with the semantic equivalence of
Proposition 6.

In Section 1.2, we turn to the other geometric model of distributed systems: protocol complexes. The
second main contribution of the paper is developed in Section 1.2.2: the protocol complex for atomic
snapshot protocols (possibly iterated) is derived from the geometric semantics of Section 1.1.2, through
interval orders. We specify this construction in Section 1.2.3 to the case of layered immediate snapshot
which is generally studied by most authors, since it is much simpler to study, and is enough to prove the
classical impossibility theorems, as for instance Herlihy and Shavit [1993]. Our explicit description of
the protocol complex in the latter case is the same as the one of Goubault et al. [2015b] (linked as well
to the equivalent presentation of Kozlov [2012]). Combined with the result of Goubault et al. [2015b]
it proves that the layered immediate snapshot protocols produce collapsible protocol complexes, for any
number of rounds. It then implies the asynchronous computability theorem of Herlihy and Shavit [1993]
all the way from the semantics of the communication primitives.

15

CHAPTER 1. DISTRIBUTED COMPUTING

1.1 Concurrent semantics of asynchronous read/write protocols
1.1.1 Interleaving semantics of atomic read/write protocols

In atomic snapshot protocols, n processes communicate through shared memory using two primitives:
update and scan. Informally, the shared memory is partitioned in n parts, each one corresponding to
one of the n processes. The part of the memory associated with process Pi, with i ∈ {0, . . . , n− 1},
is the one on which process Pi can write, by calling update. This primitive writes onto that part of
memory, a value computed from the value stored in a local register of Pi. Note that as the memory
is partitioned, there are never any write conflicts on memory. Conversely, all processes can read the
entire memory through the scan primitive. Note also that there are never any read conflicts on memory.
Still, it is well known that atomic snapshot protocols are equivalent Lynch [1996] with respect to their
expressiveness in terms of fault-tolerant decision tasks they can solve, to the protocols based on atomic
registers with atomic reads and writes. Generic snapshot protocols are such that all processes loop, any
number of times, on the three successive actions: locally compute a decision value, update then scan.
It is also known Herlihy and Shavit [1993, 1999] that, as far as fault-tolerant properties are concerned,
an equivalent model of computation can be considered: the full-information protocol where, for each
process, decisions are only taken at the end of the protocol, i.e. after rounds of update then scan, only
remembering the history of communications.

Interleaving semantics and trace equivalence.

Formally, we consider a fixed set V of values, together with two distinguished subsets I and O of
input and output values, the elements of V \ (I ∪ O) being called intermediate values, and an element
⊥ ∈ I ∩ O standing for an unknown value. We suppose that the sets of values and intermediate values
are infinite countable, so that pairs 〈x, y〉 of values x, y ∈ V can be encoded as intermediate values, and
similarly for tuples. We suppose fixed a number n ∈ N of processes. We also write [n] as a shortcut
for the set {0, . . . , n− 1}, and Vn for the set of n-tuples of elements of V, whose elements are called
memories. Given v ∈ Vn and i ∈ [n], we write vi for the i-th component of v. We write ⊥n for the
memory l such that li = ⊥ for any u ∈ [n].

There are two families of memories, each one containing one memory cell for each process Pi: the
local memories l = (li)i∈[n] ∈ Vn, and the global (shared) memory: m = (mi)i∈[n] ∈ Vn. A state of a
program is a pair (l,m) ∈ Vn×Vn of such memories. Processes can communicate by performing actions
which consist in updating and scanning the global memory, using their local memory: we denote by ui
any update by the i-th process and si any of its scan. We write Ai = {ui, si} and A =

⋃
i∈[n]Ai for the

set of actions.
Formally, the effect of the actions on the state is defined by a protocol π which consists of two families

of functions πui : V → V and πsi : V × Vn → V indexed by i ∈ [n] such that πsi(x,m) = x for x ∈ O.
Starting from a state (l,m), the effect of actions is as follows: ui means “replace the contents of mi by
πui(li)”, and si means “replace the contents of li by πsi(li,m)”.

A protocol is full-information when πui(x) = x for every x ∈ V, i.e. each process fully discloses its
local state in the global memory. A sequence of actions T ∈ A∗ is called an interleaving trace, and we
write JT Kπ(l,m) for the state reached by the protocol π after executing the actions in T , starting from
the state (l,m). A sequence of actions T ∈ A∗ is well-bracketed or well-formed (giving some form of
generic protocol) when for every i ∈ [n] we have proji(T) ∈ (uisi)∗, where proji : A∗ → A∗i is the obvious
projection which only keeps the letters in Ai in a word over A. We denote by Aω the set of countably
infinite sequences of actions; such a sequence is well-bracketed when every finite prefix is.

It can be noticed that different interleaving traces may induce the same final local view for any
process. Indeed, if i 6= j, then ui and uj modify different parts of the global memory, as we already
noted informally, and thus uiuj and ujui induce the same action on a given state. Similarly, si and sj
change different parts of the local memory, and thus sisj and sjsi induce the same action on a given
state. On the contrary, uisj and sjui may induce different traces as ui may modify the global memory
that is scanned by sj . We thus define an equivalence ≈ on interleaving traces, as the smallest congruence
such that ujui ≈ uiuj and sjsi ≈ sisj for every indices i and j. Therefore :
Proposition 1. The equivalence ≈ of traces induces an operational equivalence: two equivalent inter-
leaving traces starting from the same initial state lead to the same final state.
This justifies that we consider traces up to equivalence in the following. We use the usual notions on such
operational semantics: execution traces, interleaving traces will denote any finite sequences of actions
ui and si in A∗, maximal execution traces are traces that cannot be further extended. We also use the
classical notions of length and concatenation of execution traces.

16

CHAPTER 1. DISTRIBUTED COMPUTING

Decision tasks.

We are going to consider the possibility of solving a particular task with an asynchronous protocol.
Formally, those tasks are specified as follows:
Definition 2. A wait-free task specification Θ is a relation Θ ⊆ In × On such that for all (l, l′) ∈ Θ,
i ∈ [n] such that li = ⊥, and x ∈ I, we also have (lxi , l′) ∈ Θ where lxi is the memory obtained from l
by replacing the i-th value by x. We note dom Θ = {l ∈ In | ∃l′ ∈ On, (l, l′) ∈ Θ} for the domain of a
wait-free task specification Θ and codom Θ = {l′ ∈ On | ∃l ∈ In, (l, l′) ∈ Θ} for its codomain.
Notice that dom Θ induces a simplicial complex, with [n] × (I \ {⊥}) as vertices, and simplices are of
the form {(i, x) ∈ [n]× V | li = x 6= ⊥}, for any l ∈ dom Θ. This simplicial complex is called the input
complex; the output complex is defined similarly from codom Θ. We say that a protocol π solves a
task specification Θ when for every l ∈ dom Θ, and well-bracketed infinite sequence of actions T ∈ Aω,
there exists a finite prefix T ′ of T such that (l, l′) ∈ Θ where l′ is the local memory after executing T ′,
i.e. (l′,m′) = JT ′Kπ(l,⊥n). It can be shown Herlihy and Shavit [1999] that, w.r.t. task solvability, we can
assume that dom Θ contains only the memory l such that li = i, for all i, and its faces; for simplicity we
will do so in Section 1.2.

Of particular interest is the view protocol (sometimes identified with the full-information protocol in
the literature) π^ such that π^

ui(x) = x for x ∈ V, i.e. the protocol is full-information, and π^
si(x,m) =

〈x, 〈m〉〉 for x ∈ V and m ∈ Vn: when reading the global memory, the protocol stores (an encoding of)
the pair constituted of its current local memory x and (an encoding as a value of) the global memory m
it has read. This is akin to the use of generic protocols in normal form Herlihy and Shavit [1999],
where protocols only exchange their full history of communication for a fixed given number of rounds,
and then apply a local decision function. It can be shown that the view protocol is the “most general
one” (i.e. initial in a suitable category). Thus, we will be satisfied with describing the potential sets
of histories of communication between processes, without having to encode the decision values: this is
the basis of the geometric semantics of Section 1.1.2. As a direct consequence, we recover the usual
definition of the solvability of a task as a simplicial map from some iterated protocol complex to the
output complex Herlihy and Shavit [1999]; Herlihy et al. [2014].

1.1.2 Directed geometric semantics
In this section, we give an alternative semantics to atomic snapshot protocols, using a geometric

encoding of the state space, together with a notion of “time direction”. One of the most simple settings
in which this can be performed is the one of pospaces Gierz [1980]; Nachbin [1965]: a pospace is a
topological space X endowed with a partial order ≤ such that the graph of the partial order is closed in
X × X with the product topology. The intuition is that, given two points x, y ∈ X such that x ≤ y, y
cannot be reached before x. The encoding, or semantics of a concurrent or distributed protocol in terms
of directed topological spaces of some sort can be done in a more general manner Fajstrup et al. [2016,
2012]. Here, we simply define, directly, the pospace that gives the semantics we are looking for. It is
rather intuitive and we will check this is correct with respect to the interleaving semantics, in Section
1.1.3.

Consider the pospace Xn(r) below, indexed by the number n of processes and the vector of number
of rounds (r) = (r0, . . . , rn−1) (each ri ∈ N, with i ∈ [n], is the number of times process Pi performs
update followed by scan). Here, we use a vector to represent the number of rounds: this is because we
do not want to treat only the layered immediate snapshot protocols, but more general atomic snapshot
protocols. We claim now that the geometric semantics of the generic protocol, for n processes and (r)
rounds, is represented by the pospace

Xn(r) =
∏
i∈[n]

[0, ri] \
⋃

i,j∈[n],k∈[ri], l∈[rj]

Uki ∩ Slj (1.1)

endowed with the product topology and product order induced by Rn, where
• n, ri ∈ N and u, s are any reals such that 0 < u < s < 1: u (resp. v) is representing the local time

at which an update (resp. scan) takes place in a round, and their precise values will not matter,

• Uki =
{
x ∈

∏
i∈[n][0, ri]

∣∣∣ xi = k + u
}

stands for the region where the i-th process updates the
global memory with its local memory for the k-th time,

• Slj =
{
x ∈

∏
i∈[n][0, ri]

∣∣∣ xj = l + s
}

stands for the region where the j-th process scans the global
memory into its local memory for the l-th time.

17

CHAPTER 1. DISTRIBUTED COMPUTING

U0 S0

U1

S1

U1
1 ∩ S1

0

U1
0 ∩ S1

1

t0

t1

(1.2)

t0

t1

t2

(1.3)

The meaning of (1.1) is that a state (x0, . . . , xn−1) ∈
∏
i∈[n][0, ri], i.e. a

state in which each process Pi is at local time xi, is allowed except when
it is in Uki ∩Slj (for i, j ∈ [n] and k ∈ [ri], l ∈ [rj]): these forbidden states
are precisely the states for which there is a scan and update conflict.
Namely, states in Uki ∩Slj are states for which process Pi updates (for the
k-th time) while process Pj scans (for the l-th time), which is forbidden
in the semantics. Indeed, the memory has to serialize the accesses since
shared locations are concurrently read and written, and either the scan
operation will come before the update one, or the contrary, but the
two operations cannot occur at the same time. This is reflected in the
geometric semantics by a hole in the state space, as pictured on (1.2)
for two processes with one round each, and in (1.4) for two processes
with several rounds each. Notice that the holes are depicted as squares
instead of points to improve the visibility on the diagram. In higher-
dimensions, the holes exhibit a complicated combinatorics.

For instance, for three processes, and one round each, as in (1.3)
shows forbidden regions that intersect one another. What happens in dimension 3 is that for all 3 pairs
of processes (P ,Q), we have to produce a forbidden region which has a projection, on the two axes
corresponding to P and Q, similar to the one on (1.2). Hence for all three pairs of processes, we have
two cylinders with square section punching entirely the set of global states of the system. Each of these
6 cylinders correspond to a pair (P ,Q) of processes, and a hole created either by a scan of P and an
update of Q, or a scan of Q and an update of P . Consider the cylinder created by the conflict between
the scan of P with the update of Q: it intersects exactly two cylinders (parallel to the other axes), the
one created by the scan of the third processor R and the update of Q, and the one created by the update
of R and the scan of P , see (1.3).

1.1.3 Equivalence of the standard and geometric semantics

In the geometric semantics of Section 1.1.2, we can define notions analogous to equivalence of traces
as for the standard interleaving semantics of Section 1.1.1 (Proposition 1). A dipath (or directed path) in
a pospace (X,≤) is a continuous map α : [0, 1]→ X which is continuous and non decreasing when [0, 1] is
endowed with the order and topology induced by the real line. A dipath is the continuous counterpart (as
we will make clear later) of a trace in the interleaving semantics, or an execution. A dipath α : [0, 1]→ X
is called inextendible, if there is no dipath β : [0, 1] → X such that α([0, 1]) (β([0, 1]). This is the
analogous, in our geometric setting, to maximal execution traces. The concatenation of two dipaths
α, α′ : [0, 1] → X with compatible ends, i.e. α(1) = α′(0) is the dipath α · α′ such that α · α′(x) is α(x)
(resp. α′(2x− 1)) when x 6 0.5 (resp. x ≥ 0.5).

The continuous setting allows us to use the classical concepts of (di)homotopy, which is the natural
notion of equivalence between paths, and to use some tools from algebraic topology to derive properties
of protocols (and more generally programs Goubault [2003]). A dihomotopy is a continuous map H :
[0, 1] × [0, 1] → X such that for all t ∈ [0, 1], the map H(−, t) is a dipath. Two dipaths α, β such that
α(0) = β(0) and α(1) = β(1) are dihomotopic, if there is a dihomotopy H : [0, 1] × [0, 1] → X with
H(−, 0) = α and H(−, 1) = β. We denote by [α] the set of inextendible dipaths dihomotopic to α and
dPath(X) the set of dipaths up to dihomotopy. For instance, two dipaths that are dihomotopic in the
geometric semantics X2

(4,2) can be pictured as in Figure (1.4).

r1

r0

u1

s1

u1

s1

u0 s0 u0 s0 u0 s0 u0 s0

u0

u1

s0

u0

s0

u0

s0

u0

s0

s1

u1

s1

(1.4)

18

CHAPTER 1. DISTRIBUTED COMPUTING

From equivalence classes of interleaving traces to dipaths modulo dihomotopy.

To any interleaving trace T with n processes and (r) rounds, we associate a dipath αT in Xn(r). This
dipath accurately reflects the whole computation of T , e.g. if T ′ extends T , then αT ′ also extends αT .
For example, the black path of (1.4) is the dipath associated to the trace u0u1s0u0s1s0u1u0s0u0s1s0:
the points along it correspond to actions and the path consists of a linear interpolation between those.
The dipath αT is built by induction on the length of trace T : when T is of length 0, αT is the constant
dipath staying at the origin; when T is the concatenation of a trace T1 with an action A, we concatenate
the dipath αT1 and a dipath β which is defined according to the previous actions in T1:

Lemma 3. There exists a (not necessarily inextendible) dipath αT in Xn(r) such that αT (0)i = 0, for
every i ∈ [n], and satisfying the following. For any i ∈ [n], if the last action of process i in T is its k-th
update, then αT (1)i ∈

{
k + u, k + u+s

2
}
. If it is its k-th scan, then αT (1)i ∈ {k + s, k + 1}. If the last

action in T is the k-th update of process i, then αT (1)i = k + u. If it is the k-th scan of process i, then
αT (1)i = k + s.

Proof. First, when T is of length 0, αT is the constant dipath staying at the origin 0. Otherwise, let
T = T1 · A be the concatenation of a trace T1 with action A (being either update ui or scan si). By
induction, we have a dipath αT1 starting at 0 and ending at αT1(1), associated to T1, that satisfies
Lemma 3. Now, construct a dipath β, which is a line, as pictured below,

0

j

i

Uj : l + u

l +
u+ s

2

Sj : l + s

l + 1

(k − 1 + s)
Si

k

(k + u)
Ui

end point of αT1
αT1

0

j

i

Uj : l + u

l +
u+ s

2

Sj : l + s

l + 1

k + u

Ui

(k +
u+ s

2
)

(k + s)
Si

end point of β β

(1.5)

starting at β(0) = αT1(1), and ending at β(1) and such that:

• Let us assume that the action A is an update, say the k-th update of process i. As partly represented
on the left part of (1.5), by Lemma 3, since the previous action was a scan or nothing, αT1(1)i ∈
{0, k − 1 + s, k} and we set β(1)i = k + u.
For any other process j 6= i, if the last action of j is its say l-th scan, then αT1(1)j ∈ {l + s, l + 1}
and we set β(1)j = l + 1 (in red tones), otherwise we set β(1)j = αT1(1)j (in blue tones).

• If A is a scan, say the k-th scan of i then, see the right part of (1.5). Since the action of i before
was the k-th update, we have αT1(1)i ∈

{
k + u, k + u+s

2
}
and we set β(1)i = k + s.

For any other process j, if the last action of j is its l-th update, then αT1(1)j =
{
l + u, l + u+s

2
}

and set β(1)j = l + u+s
2 (in red tones), otherwise we set β(1)j = αT1(1)j (in blue tones).

We then define the dipath αT1·A = αT1 · β.

To a maximal interleaving trace T , we associate an inextendible dipath α′T by further extending αT :
we define α′T to be αT · γ where γ is the dipath given by (any parameterization of) the line from
γ(0) = αT (1) to γ(1) = (ri)i∈[n], the point γ(1) being the end of all inextendible dipaths in Xn(r). We
shall not distinguish in the sequel α′T from αT since we will only consider maximal interleaving traces
and their inextendible counterparts.

Proposition 4. Two equivalent interleaving traces induce dihomotopic dipaths.

Proof. Recall from Proposition 1 that the equivalence of traces is generated by uiuj ≈ ujui and sisj ≈
sjsi. Consider two traces T and T ′ and their associated dipaths αT and αT ′ . Assume that T and T ′ are
identical until the (m−1)-th action and only differ by the ordering of their m-th and (m+ 1)-th actions.
Up to reparametrization, we can assume that these actions occur at the same time in αT and αT ′ ,

19

CHAPTER 1. DISTRIBUTED COMPUTING

respectively tm−1, tm, and tm+1.

0

j

i

l−1+s

sj

l

l+u

uj

k−1+s

si
k k+u

ui

α(tm−1) α(tm) α(tm+1)

0

j

i

l+u

uj

l+u+s
2

l+s

sj

k+u

ui
k+u+s

2
k+s

si

αT ′ αT

(1.6)

First assume that in T , the m-th action is the k-th update of process i and the (m + 1)-th action
is the l-th update of process j. On the left part of (1.6), the possible paths are drawn, one color being
associated to one possible point at tm−1. Notice that from tm, the paths are identical and are colored
in black. Indeed, by Lemma 3,

αT (tm)i = k + u and αT (tm+1)j = l + u.

These actions are in the reverse order in T ′, so

αT ′(tm)j = l + u and αT ′(tm+1)i = k + u.

The action of i and j before tm in T are respectively the (k − 1)-th scan and the (l − 1)-th scan or
nothing. Hence,

αT (tm−1)i = αT ′(tm−1)i ∈ {0, (k − 1) + s, k} ,
αT (tm−1)j = αT ′(tm−1)j ∈ {0, (l − 1) + s, l} .

Besides, by construction (the scan and update region is forbidden),

αT ′(tm)i = k and αT (tm)j = l,

αT (tm+1)i = k + u and αT ′(tm+1)j = l + u.

Then t 7→ tαT + (1− t)αT ′ is a dihomotopy in Xn(r) between αT and αT ′ .
Now, assume that in T , the m-th action is the k-th scan of process i and the (m+ 1)-th action is the

l-th scan of process j. The possible paths are drawn on the right part of (1.6). Again by Lemma 3,

αT (tm)i = k + s and αT (tm+1)j = l + s.

These action are in the reverse order in T ′, so

αT ′(tm)j = l + s and αT ′(tm+1)i = k + s.

The action of i and j before tm in T are respectively the k-th update and the l-th update. Hence,

αT (tm−1)i = αT ′(tm−1)i ∈ {k + u, k + (u+ s)/2} ,
αT (tm−1)j = αT ′(tm−1)j ∈ {l + u, l + (u+ s)/2} .

Besides, by construction (the scan and update region is avoided),

αT ′(tm)i = k + (u+ s)/2 and αT (tm)j = l + (u+ s)/2,
αT (tm+1)i = k + s and αT ′(tm+1)j = l + s.

Then t 7→ tα+ (1− t)α′ is a dihomotopy between αT and αT ′ .

Equivalence between equivalence classes of interleaving traces and (colored) interval orders.

In order to prove that dipaths modulo dihomotopy are in bijection with interleaving traces modulo
equivalence, we introduce a combinatorial tool encoding the history of events observable on both an
equivalence class of interleaving traces, and a dihomotopy class of dipaths in our continuous models.

20

CHAPTER 1. DISTRIBUTED COMPUTING

Definition 5. Let (Ix)x∈X be a family of intervals on the real line (R,6). This family induces a poset
(X,4), where ≺ is defined as x ≺ y if and only if for every s ∈ Ix and t ∈ Iy we have s < t. Such a
poset is called an interval order Fishburn [1970]. We denote as x‖y the independence relation.
An [n]-colored interval order is given by an interval order (X,4) and a labeling function ` : X → [n]
such that two elements with the same label are comparable. Then for any i ∈ [n], the restriction of the
interval order to intervals labeled by i is a total order. We denote as cIO(X) the set of colored interval
orders on a set X.

Proposition 6. There is a bijection between [n]-colored interval orders and traces up to equivalence.

Proof. We first associate a colored interval order to an interleaving trace T . For any i ∈ [n]. Let ri be
the number of occurrences of ui in T . Let υki and σki be the respective k-th occurrence of ui and si. Let
X = {(i, k) | k ∈ [ri], i ∈ [n]}. Any embedding of T in the real line induces an interval order by setting
I(i,k) = [υki , σki]. More precisely, X is then endowed with the partial order:

(i, k) ≺ (i′, k′) iff σki < υk
′

i′ (1.7)

that is σki occurs before υk′i′ . We can label this interval order (X,4) by ` : (i, k) 7→ i, and hence produce
an [n]-colored interval order since T is well-bracketed.

Conversely, we associate an interleaving trace TI to an [n]-colored interval order I = (X,4) labeled
by `. For any i ∈ [n], the set {x ∈ X | l(x) = i} is totally ordered of cardinal [ri]. Then, we can
assume w.l.o.g. that X = {(i, k) | k ∈ [ri], i ∈ [n]} and that (i, k) ≺ (i, k′) whenever k < k′. Let us
choose w.l.o.g. an interval representation I of (X,4) such that endpoints are pairwise disjoints. For any
k ∈ [ri], i ∈ [n], let υki and σki be the left and right endpoint of the interval I(i,k) of the real line. The real
line order induces a linear ordering of the endpoints such that the equivalence (1.7) is satisfied. Then TI
is obtained by substituting ui to υki and si to σki in the given sequence of endpoints.

Let us finally prove that two interval representations I = (Ik,i) and J = (Jk,i), indexed by k ∈ [ri] and
i ∈ [n], induce equivalent traces TI ≈ TJ . From the equivalence (1.7), we deduce that if (i, k) ≺ (i′, k′)
then σki < υk

′

i′ and if (i, k)‖(i′, k′) then σki 6< υk
′

i′ , that is σki > υk
′

i′ . Thus, the only freedom is on the
ordering of the ui’s on the one side, and of the si’s on the other side, which corresponds precisely to the
equivalence of traces.

From Propositions 4 and 6, we can associate to any interval order a class of dipaths modulo dihomotopy.
Let i : cIO(Xn)→ dPath(Xn(r)) be mapping an interval order to a dipath up to dihomotopy.

From dipaths modulo dihomotopy to equivalence classes of interleaving traces.

As already mentioned, dipaths geometrically represent execution traces, keeping in mind that dipaths
which can be deformed through a continuous family of executions are operationally equivalent. This
argument can be made concrete for the asynchronous model we are working on, by giving the explicit
relation between dipaths and colored interval orders (Definition 5), because of Proposition 6.

To any inextendible dipath α : [0, 1] → Xn(r), we associate an interval order 4α on the set Xn
(r) =

{(i, k) | i ∈ [n], k ∈ [ri]} through the interval collection for i ∈ [n], I(i,k) = [uki , ski] colored by i where uki
or ski respectively correspond to the event “α enters an update or scan hyperplane”:

uki = inf
{
t ∈ [0, 1]

∣∣ α(t)i ∈ Uki
}
, ski = inf

{
t ∈ [0, 1]

∣∣ α(t)i ∈ Ski
}
. (1.8)

For any i ∈ [n], the restriction of this order to the intervals labeled by i is a total order. Indeed, dipaths
α are non decreasing, u < s and α(uki)i = k + u, α(ski)i = k + s, hence for all k ∈ [ri], uki < ski and if
k 6= 0, sk−1

i < uki .
Let us give simple examples of this in dimension 2 and 3. In dimension 2, and for one round, consider

the three inextendible dipaths in X2
(1,1) pictured on the below (we are not writing the round number

α0

u0 s0

u1

s1

t0

t1 α1

u0 s0

u1

s1

t0

t1 α2

u0 s0

u1

s1

t0

t1

21

CHAPTER 1. DISTRIBUTED COMPUTING

as upper index since we are considering here only one round). Those are representatives of the three
dihomotopy classes of dipaths in this pospace. The dipath α0, on the left-most figure, corresponds
to an execution in which process 1 does its update and scan before process 0 even starts updating.
Hence, the interval of local times at which process 1 updates and scans is less than the interval of
local times at which process 0 updates and scans: this is reflected by the corresponding interval order
[u1, s1] ≺α0 [u0, s0]. The one on the right-most figure, α2 is symmetric: the corresponding interval order
is [u0, s0] ≺α2 [u1, s1]. The dipath on the middle corresponds to an execution in which the two processes
are running synchronously, updating at the same time, and scanning at the same time: the corresponding
interval order is [u0, s0]‖[u1, s1].

t0

t1

t2

In dimension 3, there are more dipaths that one can draw. Consider, for instance,
the synchronous execution of the three processes (i.e. the pospace X3

(1,1,1)), shown
on the right. It corresponds to the interval order where the intervals [u0, s0], [u1, s1]
and [u2, s2] are not comparable. The path figured corresponds to a synchronous
execution.

We then have the following simple facts first :
Lemma 7. Two inextendible dipaths α and β, which intersect the update and scan
hyperplanes in the same order, are dihomotopic.

Proof. Since α and β intersect the update and scan hyperplanes in the same order, we can reparametrize
β such that the times at which uki and slj intersect are the same for α and β. Then, the function defined
by H : x, t 7→ t α(x) + (1 − t)β(x) is a dihomotopy. Let us prove that H takes its value in Xn(r), that
is, for all x, t ∈ [0, 1], H(x, t) /∈ Uki ∩ Slj . Assume for instance that uki > slj . If H(x, t) ∈ Uki , then
H(x, t)i = k + u and, since α, β ∈ Xn(r),

• either α(x)i > k + u and β(x) < k + u, then, as α and β are non decreasing, x > uki and x < uki
and we get a contradiction,

• either α(x)i < k + u and β(x) > k + u, this case is impossible for the same reason,

• or α(x)i = k + u and β(x) = k + u, then, as α and β are non decreasing,

α(x)j ≥ α(uki)j > α(slj)j = l + s

and β(x)j > l + s, thus H(x, t) /∈ Slj .

If uki < slj , consider H(x, t) ∈ Slj to show H(x, t) /∈ Uki .

Remark. One should keep in mind that a dipath α satisfies:
• α(uki)i = k + u and α(ski)i = k + s,

• if uki ≤ t < ski , then k + u ≤ α(t)i < k + s,

• if ski ≤ t < uk+1
i , then k + s ≤ α(t)i < (k + 1) + u.

Moreover, notice that the trace Tα induced by the intersection of α with the update and scan hyperplanes
is associated to the interval order (Xn

(r),4α).
We write α! β when the two dipaths are dihomotopic.

Proposition 8. A dipath α is dihomotopic to the dipath associated to the interval order induced by α,
that is, i ◦ r(α)! α.

Proof. Let T be a trace representing the interval order (Xn
(r),4α) induced by α. Let Tα be the trace

induced by the sequence of intersection of α with the update and scan hyperplanes. By Remark 1.1.3,
Tα is also representing the interval order (Xn

(r),4α), so that Tα and T are equivalent interleaving traces.
Thus, αT ! αTα by Proposition 4. Now, by construction, the dipath αTα intersects the update and
scan hyperplanes in the order given by Tα, that is in the same order as α (see Remark 1.1.3). Therefore,
by Lemma 7, α! αTα . Finally, we get α! αTα ! αT = i(r(α)).

This implies the following, among the main results of this article :
Proposition 9. Two dihomotopic inextendible dipaths on Xn(r) induce the same interval order.

Theorem 10. There is a bijective correspondence between traces up to equivalence and dipaths up to
dihomotopy over Xn(r), that is: r ◦ i = idcIO(Xn), where r : dPath(Xn(r))→ cIO(Xn) maps a dipath up to
dihomotopy to an interval order.

22

CHAPTER 1. DISTRIBUTED COMPUTING

1.2 Protocol complexes, derived from the concurrent semantics
We will see that two executions modulo dihomotopy correspond to higher-dimensional simplices in

protocol complexes (Proposition 13). In the case of update/scan protocols, these executions modulo
dihomotopy are characterized by the nice combinatorial notion of interval order, which makes the con-
struction of the protocol complex (Definition 17) from the geometric semantics immediate.

1.2.1 Protocol complex
The protocol complex has been designed Herlihy and Shavit [1999] to represent the possible reachable

states, at some given round, of the generic protocol in normal form, i.e. it is going to encode all possible
histories of communication between processes, and as we will prove later on, all interleaving traces up
to equivalence (or equivalently the dipaths up to dihomotopy), by maximal simplices:

Definition 11. The protocol complex for atomic snapshot protocols is the abstract simplicial complex
constructed from the generic protocol in normal form, and whose

• vertices are pairs (i, li) where i ∈ [n] represents the name of a process and li its local memory,

• maximal simplices are {(0, l0), . . . , (n, ln)} where li is the local view by process i at the end of the
execution represented by this simplex.

Example 12. The local views in each vertex are determined by the operational semantics of Sec-
tion 1.1.1, as in the following example:

Global ⊥ ⊥

Local 0 1

u0 //
0 ⊥

0 1

u1 //
0 1

0 1

s1 //
0 1

0 01

s0 //
0 1

01 01

leading to the local view l = 〈〈0, 〈0, 1〉〉 , 〈1, 〈0, 1〉〉〉. Similarly, the trace u0s0u1s1 leads to the local view
l = 〈〈0, 〈0,⊥〉〉 , 〈1, 〈0, 1〉〉〉, and there is a third potential outcome of the computation, symmetric to this
last case, in which process 1 updates and scans before process 0 does. Putting this together, according
to Definition 11, we get the protocol complex for one round and two processes Herlihy and Shavit [1999]:

0, (0⊥) 1, (01) 0, (01) 1, (⊥1)

The encoding of the local states, i.e. vertices in the graph above, is as follows. The identifier of the
process whose local view is the number before the comma, e.g. the state 0, (0⊥) above is the local view
of processor 0. The group of numbers or ⊥ within parentheses, e.g. (0⊥) in the state above, is a condensed
notation for the local state where l0 = 〈0, 〈0,⊥〉〉, see Section 1.1.1. Similarly, state 1, (01) denotes the
local view of processor 1, with local state such that l1 = 〈1, 〈0, 1〉〉.

1.2.2 Construction of the protocol complex from the directed geometric se-
mantics

We can now link protocol complexes with interval orders, i.e. traces up to equivalence or dipaths up
to dihomotopy: a colored interval order represents indeed an execution and we can deduce the local view
of the i-th process by restricting the interval order to the last scan of i. We encode local views restricting
to the full information generic protocol in normal form with initial local state li = i for i ∈ [n] (this only
changes the naming of local states, and not the structure of the protocol complex).

Proposition 13. Let (Xn
(r),4) be an [n]-colored interval order. Then the local memory of the i-th

process at round k of its corresponding execution1. is given by its restriction Vki to the k-th scan Ski of
the i-th process, i.e.

Vki = {(j, l) | (i, k)‖(j, l) or (j, l) ≺ (i, k)}

meaning that it is the value of the local state li under the semantics of Section 1.1.1 for the interleaving
path corresponding to the interval order Vki under the equivalence of Proposition 6.

Proof. Remember that (i, k) ≺ (j, l) iff Ski happens before U lj , see (1.7). By contradiction, (i, k)‖(j, l) or
(j, l) ≺ (i, k) iff Ski happens after U lj . We conclude, noticing that the i-th local memory only depends on
the updates preceding the last scan of process i.
1. In the full-information generic protocol in normal form, i.e. its view (see Proposition 6 and the following example).

23

CHAPTER 1. DISTRIBUTED COMPUTING

Example 14. Consider again the one round, two processes case. We have represented below the protocol
complex already depicted in Example 12, and decorated its maximal simplices, i.e. edges, with the
corresponding dipaths modulo dihomotopy above, and the corresponding interval order, below:

0, (0⊥)
0≺1

1, (01)
0 1

0, (01)
0�1

1, (⊥1)

The local view of process 0 which is 0, (0⊥) comes from the restriction of the interval order 0≺1, subscript
of the leftmost edge in the graph above, to 0: an interleaving trace corresponding to this interval order,
under Proposition 6 is u0s0 leading to local state (0⊥) on process 0. Similarly, 1, (01) corresponds to
the local state l1 = (01) for process 1, both for the restriction 0≺1 of 0≺1 to V1

1 (corresponding to a trace
u0s0u1s1, as in the trace superscript of the edge on the left of the graph above) and for the restriction
0 1 of 0 1 to V1

1 (corresponding to a trace u0u1s0s1 for instance, as in the trace superscript of the
middle edge of the graph above).

We are now in a position to give a combinatorial description of the protocol complex of Definition 11,
using interval orders. We call the resulting equivalent complex, the interval order complex:

Definition 15. The interval order complex is the simplicial complex whose

• vertices are ((i, k), V ki) where i stands for the i-th process, k for the round number and V ki for an
interval order such that for all (j, l) ∈ V ki , either (i, k)‖(j, l) or (j, l) ≺ (i, k),

• maximal simplices are {((0, r0), V r00), . . . , ((n, rn), V rnn)} such that there is an interval order (Xn
(r),≺

) whose restriction to (i, ri) is V rii .

In that case we say that it is the interval order complex on (r) rounds and for n+ 1 processes.

Example 16. An example of interval order complex with the traces corresponding to the execution for
2 processes, 2 rounds is depicted at Figure 1.2. Note that this is not the classical iterated subdivision in
three parts at each round, i.e. a 9 edges complex, that is depicted for atomic snapshot protocols Herlihy
et al. [2014]. This is because we are considering more executions than the classical layered immediate
snapshot protocols Herlihy et al. [2014]: we allow round 2 of process 0 to begin while process 1 is still

in round 1 for instance. Consider the interval order
0

��

// 1

0

OO @@

// 1

OO labeling the upper left edge of the protocol

complex in Figure 1.2, where an arrow x // y means x ≺ y. As shown in the same figure, it corresponds

to the execution precisely where process 0 is executing its 2 rounds before process 1 even starts its

first round. The local view of process 0 at (its) round 2 corresponds to the interval order
0

0

OO , restriction

of
0

��

// 1

0

OO @@

// 1

OO to V(2,0)
0 . An interleaving trace corresponding to this is e.g. u0s0u0s0, which, by the semantics

of Section 1.1.1, leads to the local state of process 0: 〈0, 〈0, 〈0,⊥〉〉⊥〉 written in condensed form as the
upper left local state 0, ((0_)_) in Figure 1.2.

In Figure 1.3, we show the interval order complex for 3 processes and 1 round. Note again that we do
not have exactly the same picture as in Herlihy et al. [2014]: to the 13 triangles of Herlihy et al. [2014],
we have to add the 6 extra blue triangles that make the complex not faithfully representable as a planar
shape and which correspond to non immediate snapshot executions. For instance, the upper left blue
triangle is labeled with the interval order where 0 is not comparable to both 1 and 2, and 2 is less than
1. An interleaving trace (up to equivalence) corresponding to this interval order is given on the same
figure: u0u2s2u1s1s0.

1.2.3 Particular case of 1-round immediate snapshot protocols
We have not quite finished with describing the connections between directed algebraic topology

and the protocol complex approach : the combinatorial description of the protocol complex in the
case of layered immediate snapshot protocols seems, at first glance, of a different nature than the one
using interval order complexes of Definition 15. We recall that an (layered, for multi-round protocols)
immediate snapshot protocol Herlihy et al. [2014] is a protocol where the snapshot of a given process
comes “right after” its update, meaning that the allowed traces (within one round), up to equivalence,
should be, of the form ui1 . . . uiksi1 . . . sik . Of course, there is some difference in that interval order

24

CHAPTER 1. DISTRIBUTED COMPUTING

0,
((
0
)(
(0

)1
))

0,
((
0
(0
1
))
(0
1
))

0
1

0OO

1

^^
OO

1
,(
(0
(0
1
))
(0
1
))

0,
((
0
)
)

0

��// 1

0OO
@@ // 1

OO

1,
((
0
)(
(0

)1
))

0
1

0OO
@@ // 1

OO
0
// 1

0OO

//@@ 1OO

0,
((
0
)1
)

0
// 1

0OO
@@ // 1

OO
^^

1,
((
0
)(
01

))

0
1

0OO
@@ // 1

^^
OO

0,
((
0
)(
01

))

0
1

oo

0
//@@

OO

1

^^
OO

1,
(0
(0
1)
)

0
1

oo

0OO

1

^^
OO

0
1

oo

0OO
@@ 1

^^
OO

0,
((
01

)(
0
1)
)

0
1

0OO
@@ 1

^^
OO

1,
((
01

)(
0
1)
)

0
// 1

0OO
@@ 1

^^
OO

1,
(
(
1)
)

0,
((
0
(
1)
)(

1)
)

0
1

��oo

0OO

1
oo^^
OO

0
1

0OO

1
oo^^
OO

1,
(0
(
1)
)

0
1

oo

0OO

1
oo^^
OO

0,
((
01

)(
1)
)

0
1

oo

0OO
@@ 1
oo^^
OO

1,
((
01

)(
1)
)

0
1

0OO
@@ 1
oo^^
OO

0,
((
0
1)
1)

0
// 1

0OO
@@ 1
oo^^
OO

0
// 1

0OO
@@ 1OO

1,
((
0(

1)
)(

1)
)

1
,(
(0
1)
((
01

)1
))

0
1

0OO
@@ 1OO

0
,(
(0
1)
((
0
1
)1
))

Figure 1.2 – The protocol complex, decorated with corresponding traces and interval orders, of 2 processes, 2
rounds.

25

CHAPTER 1. DISTRIBUTED COMPUTING

0 : 0⊥⊥

1 : ⊥1⊥2 : ⊥⊥2

1 : 012

0 : 012

2 : 012

2 : 0⊥2

0 : 0⊥2

1 : ⊥12 2 : ⊥12

0 : 01⊥

1 : 01⊥

u0u1u2s0s1s2

0 1 2

u1u2s1s2u0s0
1 2

0

2
1

0u2s2
u1s1

u0s0
1

2
0

u1s1u2s2u0s0

0

1

2

u1s1u0u2s0s2

u0u2s0s2u1s1
0 2

1

2

0

1

u 2
s 2
u 0
s 0
u 1
s 1

0
2

1
u
0
s 0
u
2
s 2
u
1
s 1

0

2

1

u2s2u0u1s0s1

u0u1s0s1u2s2
0 1

2

0

1

2

u
1 s
1 u

0 s
0 u

2 s
2

0
1

2

u
0 s

0 u
1 s

1 u
2 s

2

1
0

2

u0s0u1u2s1s2

20

1

u0u2s0u1s1s2

21

0

u 1
u 2
s 1
u 0
s 0
s 2

12

0

u
1 u

2 s
2 u

0 s
0 s

1
01

2

u0u1s0u2s1s2

02

1

u
0 u

2 s
2 u

1 s
1 s

0

01

2

u 0
u 1
s 1
u 2
s 0
s 2

Figure 1.3 – Interval order complex with traces of 3 processes, 1 round.

complexes account for non necessarily layered nor “immediate” protocols. It is the aim of this section to
make the connection between the subcomplex of interval order complexes describing layered immediate
snapshot protocols, and the equivalent two definitions of chromatic barycentric subdivision Goubault
et al. [2015b]; Kozlov [2012] that describe combinatorially the protocol complex in that case.

The standard chromatic subdivision χ(∆[n]) of the standard [n]-colored simplicial complex ∆[n] is
defined as follows (see Goubault et al. [2015b], where an equivalence with the Definition in Kozlov [2012]
is also shown):

Definition 17. The standard chromatic subdivision χ(∆[n]) of ∆[n] is the [n]-colored simplicial com-
plex whose vertices are pairs (V, i) with V ⊆ [n] and i ∈ V and simplices are sets of the form
σ = {(V0, i0), . . . , (Vd, id)} with d > −1 (σ = ∅ when d = −1) which are

1. well-colored: for every k, l ∈ [d], ik = il implies k = l,

2. ordered: for every k, l ∈ [d], Vk ⊆ Vl or Vl ⊆ Vk,

3. transitive: for every k, l ∈ [d], il ∈ Vk implies Vl ⊆ Vk.

This complex is colored via the second projection: `(V, i) = i.

Remark. The transitivity (property 3) of Definition 17 is equivalent to looking only at immediate snapshot
executions. Observe the left upper blue triangle of Figure 1.2, which is composed of vertices (0 : 012),
(1 : 012) and (2 : 0⊥2) (respectively meaning ({0, 1, 2} , 0), ({0, 1, 2} , 1) and ({0, 2} , 2) in the notations
of Definition 17). It does not correspond to a layered execution: it corresponds to the equivalence class
of traces u0u2s2u1s1s0. Transitivity does not hold either: 0 ∈ {0, 2} but {0, 1, 2} 6⊆ {0, 2}.

This leads us to the last main result of our article :

Theorem 18. Layered immediate snapshot executions correspond to the interval orders such that: J ≺ K
and I is not comparable with J implies I ≺ K. The subcomplex of the interval order complex on one
round, (Xn

(1,...,1),4), that contains only immediate snapshot executions is isomorphic to the chromatic
barycentric subdivision of Definition 17.

Proof. For the first part, suppose that we have an interval order 4, representing some simplex in the
interval order complex such that J ≺ K and I is not comparable with J and K. I, J and K cor-
respond to some intervals of updates and scans local times on some process, [ulii , s

li
i], [uljj , s

lj
j] and

26

CHAPTER 1. DISTRIBUTED COMPUTING

[ulkk , s
lk
k] respectively. Suppose that I is not comparable with K, this means that the interleaving path

. . . ulii . . . u
lj
j . . . s

lj
j . . . u

lk
k . . . s

lk
k . . . s

li
i . . . is in the equivalence class represented by the interval order we

are considering. This is clearly not layered nor immediate snapshot, therefore being a layered immediate
snapshot execution implies the condition on 4 of Theorem 18.

Conversely, we suppose that for I not comparable to J and J ≺ K, then I ≺ K and we prove that
all interleaving paths are layered and immediate snapshot ones. Suppose we have an interleaving path
(up to equivalence) of the form: Tuljj Us

lj
j V u

lk
k Wslkk X where T , U , V , W and X are interleaving paths.

This is a layered immediate snapshot execution except if there are update and scans ulii , s
li
i such that

ulii appears in U and slii appears in W . But ulii appearing in U implies I = [ulii , s
li
i] is not comparable

with J and hence, by hypothesis, I must be less that K, implying that slii appears in U or V .
Now, we prove the second statement. Consider a simplex σ = {(V0, i0), . . . , (Vd, id)} with d > 0 (the

case d = −1 is trivial) in the chromatic barycentric subdivision of Definition 17. We associate to σ the
following simplex in the interval order complex: we construct a partial order 4σ on {(V0, i0), . . . , (Vd, id)}
such that Vk ≺σ Vl if Vk (Vl and the color of (Vl, il) is il, we just need to prove that this partial order
is a colored interval order, and that the condition of Theorem 18 holds.

Let us now consider, in our partial order 4σ, four elements (Vx, ix), (Vy, iy), (Vz, iz) and (Vt, it),
and suppose furthermore that (Vx, ix) ≺σ (Vy, iy) and (Vz, iz) ≺σ (Vt, it). Then, as σ is “ordered” (see
Definition 17), necessarily, either Vx ⊆ Vz or Vz ⊆ Vx. Suppose we are in the first situation. We also
have that Vz ⊆ Vt and Vz 6= Vt by definition of 4. Hence Vx ≺σ Vt. We conclude that, as a partial order,
4σ is (2+2)-free, property which characterizes interval orders Fishburn [1970].

Now consider again σ in the chromatic barycentric subdivision, and its associated interval order 4σ.
Take (Vy, iy) ≺σ (Vz, iz) and (Vx, ix) which is not comparable with (Vy, iy). Hence, by definition of the
(strict) order ≺σ, Vx = Vy or Vx 6⊆ Vy. In the first case, (Vx, ix) ≺σ (Vz, iz), trivially, and in the second
case, by property 2 (“ordered”) of Definition 17, Vy (Vx which implies (Vy, iy) ≺σ (Vx, ix), impossible
since (Vx, ix) and (Vy, iy) are supposed incomparable.

Finally, note that well-coloredness of σ implies that the labeling we define is indeed a labeling function
of a colored interval order.

Conversely, suppose we have a 1-round colored interval order (X,4) on d + 1 elements which
satisfies the property from Theorem 18. We consider the interval orders V ki , restriction of X to
Vki = {(j, l) | (i, k)‖(j, l) or (j, l) ≺ (i, k)}. We construct a (colored) d-simplex in the chromatic barycen-
tric subdivision of Definition 17 by defining k-simplices (for all k 6 n) σX = ((|V kii |, i))i∈[k] (where |V |
the set of elements of an interval order V). Indeed we check easily that this is well-colored. Suppose we
have (|Vk|, ik) and (|Vl|, il) such that il ∈ |Vk|. As Vk and Vl are restrictions of the same interval order
to both the set of elements less than or incomparable to ik, respectively il, and that by definition of Vl,
il ∈ Vl, we have |Vl| ⊆ |Vk|. A similar argument shows that property 2 of Definition 17 holds as well.

1.3 Conclusion
We have revealed strong connections between directed algebraic topology, with its applications to

semantics and validation of concurrent systems, and the protocol complex approach to fault-tolerant
distributed systems. This has been exemplified on the simple layered immediate snapshot model, but
also on the more complicated (non layered, non immediate) iterated snapshot model. This, combined with
the results of Kozlov [2013] and Goubault et al. [2015b], entirely classifies geometrically the computability
of wait-free layered immediate snapshot protocols, directly from the semantics of the update and scan
primitives. We classified combinatorially, en route, the potential schedules of executions (equivalently,
the potential local views of processes) as an interesting and well-known combinatorial structure: interval
orders.

This is a first step towards a more ambitious program. Fault-tolerant distributed models, whose
protocol complex are more complex to guess combinatorially, may be handled by going through the very
same steps we went through, starting with the geometric semantics of the communication primitives,
and classifying dipaths modulo dihomotopy. We shall apply this to atomic read/write protocols with
extra synchronization primitives such as test&set, compare&swap and others. In the long run, we would
like to derive impossibility results directly by observing some obstructions in the semantics, in the form
of suitable directed algebraic topological invariants.

27

CHAPTER 1. DISTRIBUTED COMPUTING

1.4 Bibliography
Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared memory.
J. ACM, 40(4), September 1993. 14

J. H. Anderson. Composite registers. In Conference on Principles of Distributed Computing. ACM, New
York, 1993. 14

Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous agree-
ment protocols. In Proceedings of the Second Annual ACM Symposium on Principles of Distributed
Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983. ACM. ISBN 0-89791-110-5. 14

Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial characterization of the distributed tasks
which are solvable in the presence of one faulty processor. In Proceedings of the seventh annual ACM
Symposium on Principles of distributed computing, pages 263–275. ACM, 1988. 14

R. Bonichon, G. Canet, L. Correnson, É. Goubault, E. Haucourt, M. Hirschowitz, S. Labbé, and S. Mim-
ram. Rigorous evidence of freedom from concurrency faults in industrial control software. In SAFE-
COMP, 2011. 15

E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous computa-
tions. In Proc. of the 25th STOC. ACM Press, 1993. 14

Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchronous
systems. Inf. Comput., 105(1):132–158, 1993. 12

L. Fajstrup, É. Goubault, and M. Raussen. Detecting deadlocks in concurrent systems. In CONCUR,
number 1466 in LNCS. Springer-Verlag, 1998. 15

L. Fajstrup, É. Goubault, E. Haucourt, S. Mimram, and M. Raussen. Directed Algebraic Topology and
Concurrency. Springer International Publishing, 2016. 15, 17

Lisbeth Fajstrup, Martin Raußen, and Eric Goubault. Algebraic topology and concurrency. Theoretical
Computer Science, 357(1):241–278, 2006. 15

Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin Raußen. Trace
spaces: An efficient new technique for state-space reduction. In ESOP, pages 274–294, 2012. 15, 17

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985. 14

Peter C Fishburn. Intransitive indifference with unequal indifference intervals. Journal of Mathematical
Psychology, 7(1):144–149, 1970. 15, 21, 27

G. Gierz. A Compendium of continuous lattices. Springer, 1980. 17

É. Goubault. The Geometry of Concurrency. Ph.D. dissertation, ENS, 1995. 15

É. Goubault. Some geometric perspectives in concurrency theory. Homology, Homotopy and Appl., 2003.
15, 18

É. Goubault and E. Haucourt. A practical application of geometric semantics to static analysis of
concurrent programs. In CONCUR 2005. Springer, 2005. 15

É. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In Proc. of CONCUR, 1992.
15

É. Goubault, T. Heindel, and S. Mimram. A geometric view of partial order reduction. MFPS, Electr.
Notes Theor. Comput. Sci., 298, 2013. 15

Éric Goubault, Samuel Mimram, and Christine Tasson. From geometric semantics to asynchronous
computability. In Distributed Computing - 29th International Symposium, DISC 2015, Tokyo, Japan,
October 7-9, 2015, Proceedings, volume 9363 of Lecture Notes in Computer Science, pages 436–451.
Springer, 2015a. 15

Éric Goubault, Samuel Mimram, and Christine Tasson. Iterated chromatic subdivisions are collapsible.
Applied Categorical Structures, 23(6):777–818, 2015b. 12, 14, 15, 26, 27

28

CHAPTER 1. DISTRIBUTED COMPUTING

Éric Goubault, Samuel Mimram, and Christine Tasson. Geometric and combinatorial views on asyn-
chronous computability. Distributed Computing, 31(4):289–316, 2018. 15

M. Grandis. Directed Algebraic Topology : Models of Non-Reversible Worlds, volume 13 of New Mathe-
matical Monographs. Cambridge University Press, 2009. ISBN 978-0-521-76036-2. 15

J. Gunawardena. Homotopy and concurrency. Bulletin of the EATCS, 54:184–193, 1994. 15

Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient tasks. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 111–120. ACM,
1993. 14, 15, 16

Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. Journal of
the ACM (JACM), 46(6):858–923, 1999. 12, 14, 16, 17, 23

Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through Combinatorial
Topology. Elsevier, 2014. 15, 17, 24

Dmitry Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy and Applications,
14(2):197–209, 2012. 14, 15, 26

Dmitry Kozlov. Topology of the view complex. arXiv preprint arXiv:1311.7283, 2013. 12, 14, 27

M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous
processes. Advances in Computing Research, 4, 1987. 14

Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996. 14, 16

Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine
asynchronous systems. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 704–713. ACM, 2014. 12, 15

L. Nachbin. Topology and order. Van Nostrand mathematical studies. Van Nostrand, 1965. 17

V. Pratt. Modeling concurrency with geometry. In POPL. ACM Press, 1991. 15

Michael E. Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: the topology of public
knowledge. In STOC, pages 101–110, 1993. 14

R. van Glabbeek. Bisimulation semantics for higher dimensional automata. Technical report, Stanford,
1991. 15

29

Chapter 2

Differential Semantics

Publications of the author
Marie Kerjean and Christine Tasson. Mackey-complete spaces and power series - a topological model of
differential linear logic. Mathematical Structures in Computer Science, 28(4):472–507, 2018.

Christine Tasson and Lionel Vaux. Transport of finiteness structures and applications. Mathematical
Structures in Computer Science, 28(7):1061–1096, 2018.

Michele Pagani, Christine Tasson, and Lionel Vaux. Strong normalizability as a finiteness structure via
the taylor expansion of λ-terms. In FoSSaCS, volume 9634 of Lecture Notes in Computer Science,
pages 408–423, 2016.

Richard Blute, Thomas Ehrhard, and Christine Tasson. A convenient differential category. Cahiers de
Topologie et Géométrie Différentielle Catégoriques, 53(3):211–232, 2012.

Contents
Introduction . 32
2.1 Monads, adjoints and splittings . 37

2.1.1 Monads and comonads . 37
2.1.2 Adjoints . 41
2.1.3 Splittings . 43

2.2 A colimit of monads . 44
2.2.1 The lax colimit Q. 45
2.2.2 The splitting of Q . 46

2.3 A technical lemma . 47
2.4 The colimit is a monad . 49
2.5 A characterization of Q-algebras. 51
2.6 Example . 54
2.7 Bibliography . 56

31

CHAPTER 2. DIFFERENTIAL SEMANTICS

Introduction
Denotational semantics addresses one of the most fundamental challenges in computer science: de-

scribing how and what programs compute.

Programming language semantics. The well-known Curry-Howard-Lambek correspondence is at
the heart of the design of programming languages, ensuring correctness by construction. The “Curry-
Howard” approach (see Howard [1980]) relates programs (of λ-calculus) and proofs (of natural deduction)
via a one-to-one correspondence, the types of programs corresponding to formulas. The third part of
the correspondence (due to Lambek) relates proofs and programs with structured categories (cartesian
closed categories in the λ-calculus case). In this way, it stresses the importance of compositionality for
the properties of interest. Such categorical axiomatizations often result from the study of denotational
semantics for programming languages. Indeed, semantics offers concrete descriptions of the program
invariants, from which the categorical axiomatics can be extracted.

Power series, syntax and semantics. A fine understanding of the usage of resources is at the core
of quantitative semantics, which is a flourishing research area with deep results and constructions. They
have in particular enabled the construction of models of computational cost (time and space consumption)
(Laird et al. [2013]), of higher-order quantum functional programming (Pagani et al. [2014]), and of
probabilistic programming with continuous data types (Ehrhard et al. [2018]). In §3.5 of Chapter 3, we
present this last model: the first one combining higher-order, recursion and measurability.

In this line of research, power series have emerged as one of the most useful tools to encode resource
usage in the λ-calculus. More precisely, programs can be seen as a superposition of monomials represent-
ing finite approximations of the computation. The degree of those monomials is related to the number
of times an argument is used by the program (see Ehrhard and Regnier [2003]). This approximation
theory, called syntactic Taylor expansion, was studied in Ehrhard and Regnier [2008] and Ehrhard and
Regnier [2006a]. Seen through the Curry-Howard correspondence, the Taylor expansion has a counter-
part in intuitionistic logic: proofs can be interpreted as power series and their derivatives provide linear
approximations of them. An early version of this observation led Girard to introduce Linear Logic (LL)
(see Girard [1987]) and later Ehrhard and Regnier to introduce the differential λ-calculus (see Ehrhard
and Regnier [2003]). Both these systems emerged after a careful study of denotational models based on
power series. The first one was introduced by Girard [1988]. It was based on normal functors (power
series whose coefficients are sets). Then, Ehrhard [2005] introduced finiteness spaces which is based
based on analytic functions over linearized topological vector spaces and which is closely related to nor-
malization as proved by Ehrhard [2010] and developed in Pagani et al. [2016]. Further models based
on topological vector spaces were revealed in Blute et al. [2012] and equipped with analytic functions
in Kerjean and Tasson [2016].

As a matter of fact, quantitative semantics completes the Curry-Howard correspondence by involving
linear algebra, computer science and proof theory:

Denotations ⇔ Programs ⇔ Proofs
power series ⇔ duplicating or erasing resources ⇔ using structural and logical rules
linear functions ⇔ using resources exactly once ⇔ using only logical rules

Using methods from linear algebra and analysis in these quantitative approaches has allowed to solve
problems which were left open in the traditional semantics based on domains. For instance, in Ehrhard
et al. [2014], the regularity of power series has been the key ingredient for proving that the model
of probabilistic programming with discrete data types is precise enough to characterize statically the
computational behaviour of probabilistic programs. This is the subject of next Chapter 3.

Linear Logic is characterized by an involutive negation and a pair of dual, exponential modalities
(denoted by ! and ?) which regulate the (explicit) use of structural rules: contraction and weakening. Such
a control over contraction and weakening brings an analogue of the notion of resource to proof theory.
This allows to consider quantitative properties of proofs. In particular, LL allows the decomposition
of the type A ⇒ B into more primitive connectives: A ⇒ B = !A (B. Here, the arrow A (B
denotes the space of the linear functions (from a semantic point of view), and the type of the programs
using their resources exactly once (from an operational point of view). The type !A denotes the space
of the resources of type A that can be used at will; semantically, !A is in some sense analogous to
the space of the power series with formal indeterminates over A. For Linear Logic, the third part of
the Curry-Howard-Lambek correspondence, namely the categorical axiomatisation, can be formalized

32

CHAPTER 2. DIFFERENTIAL SEMANTICS

by Linear-Non-Linear categories as presented in Melliès [2009]. In those categorical models, there is a
well-behaved adjunction between a symmetric monoidal category L and a cartesian one M, allowing the
exponential modality ! to be interpreted as the comonad ! = L ◦M :

L ⊥ M .

L

M

In order to be able to take quantitative properties into account, it is natural to interpret programs
as analytic functions. In particular, these functions are infinitely differentiable. A crucial issue is then
to understand whether differentiation is a meaningful syntactic operation. A first positive answer was
given in Ehrhard and Regnier [2003] with the differential λ-calculus and in Ehrhard and Regnier [2006b]
with differential linear logic. Both of these extensions feature two different ways of passing inputs to
programs: the usual, unrestricted one, and a new, linear one. The latter one consists in defining the
derivative Df · x of the program f , seen as a function, on the argument x. The evaluation of Df · x has
a precise operational meaning: it corresponds to passing the input x to f exactly once. This imposes
non-deterministic choices: if f contains several subroutines, each of them demanding for a copy of x,
then there are different evaluations of Df · x, depending on which subroutine is fed with the unique
available copy of x. We thus need a formal sum, where each summand represents a choice. Such sums
express syntactically the addition between vectors in the quantitative semantics, and have a canonical
mathematical interpretation — they correspond to the sums that one obtains when computing the
derivative of a product of functions. The derivative operator allows to compute syntactically the optimal
approximation of a program when applied to linear arguments.

As expected, iterated differentiation yields a natural notion of linear approximation of the ordinary
application of a program to an input. This notion relates to ordinary application through the Taylor
formula (see Ehrhard and Regnier [2008]):

f(x) =
∞∑
n=0

1
n! (D

nf · xn)0 , (2.1)

(where D2f ·x2 = D(Df ·x) ·x and so on). More generally, if one fully develops each application occurring
in a program into its corresponding Taylor expansion, the result is an infinite sum of purely differential
programs that contain only (multi)linear applications and applications to 0.

Species, operads and substitutions. Another closely related research area where power series
are used in relationship with counting resources is analytic combinatorics as described in Flajolet and
Sedgewick [2009]. Generating functions are one of the most efficient tools to count labelled structures
(trees, lists, cycles,...) by solving the integro-differential equations that define these structures: those
are power series such that the coefficient of their n-th monomial is the number of structures with n
labels. This has led Joyal [1981] to generalize power series by replacing lists of coefficients with species of
structures and power series by analytic functors. A species essentially consists of structures labelled by
natural numbers, acted upon by permutations. Typically, the set of terms for some algebraic signature
{f : 2, . . .} forms a species: permutations σ : [n]→ [n] act on terms with variables in [n] = {1, . . . , n} by
substitution. For instance, if σ swaps 1 and 2, we have σ · f(1, 2) = f(2, 1). Such an action may not be
free (for instance, in the species of multisets of elements of [n], any multiset consisting of several times
the same element, i.e. {i, . . . , i}, is invariant by permutation): the action thus carries more information
than generating series.

Since their introduction, species and analytic functors have remained an active topic in combinatorics
(see Chauve et al.; Jacquot [2014]; Vallette [2007]), where they are sometimes called grammars, but have
also pervaded other areas of mathematics and computer science. For instance, in programming, they have
inspired indexed containers, a particularly well-behaved class of data types, for which certain functions are
automatically derivable (typically iterators and zippers, where the corresponding notion of differentiation
of types is very similar to the one found in differential λ-calculus). Similarly, in semantics, analytic
functors have been shown to form a model of LL in Hasegawa [2002] and of Differential LL in Hyvernat
[2014]. Finally, in categorical algebra, species form the basis for operads (see Loday and Vallette [2012]),
which are used to describe algebraic structures. Briefly, an operad is given by an underlying species
of operations, together with a unital “multiplication” which describes composition of operations. Each
operad thus generates a monad, whose algebras are precisely the desired algebraic structures.

33

CHAPTER 2. DIFFERENTIAL SEMANTICS

More important, generalizations of species unifying combinatorics and semantics of LL have been
proposed. In particular, the notion of generalized species, introduced in Fiore et al. [2008], is the 2-
categorical version of Joyal’s combinatorial species. Formally, a generalized species is a profunctor
F : LA −7→ B (that is a functor Bop × LA→ Set) where L is the 2-monad of free symmetric monoidal
categories on categories. Concretely, for a category A, LA is the category of finite sequences 〈a1, . . . , an〉
of objects of A with concatenation as the symmetric monoidal product.

In particular, when applied to the terminal category 1, with one object and one morphism, this
construction leads to Bop = L1, the category of finite cardinals and bijections. Notice that Bop encap-
sulates the basic operation governing linear typing contexts: the exchange rule as described in Power
and Tanaka [2005]. A standard species is nothing else but a single sorted generalized species L1 −7→ 1
(that is, a functor Bop → Set).

Generalized species can be used to represent a syntactic theory for a typed linear calculus as described
in Tanaka [2000]. Let A denote the category of types and let L : LA −7→ A represent the set of well
typed terms: L(〈a1, . . . , an〉, a) is the set of terms t typed by the judgement x1 : a1, . . . , xn : an ` t : a.
Substitution then yields a “multiplication” natural transformation L ◦ L → L, making L a monoid in
the Kleisli bicategory of L in Prof . This monoidal structure accounts for linear substitution: given
terms x1 : a1, . . . , xn : an ` t : a and xi1 : ai1, . . . , xini : aini ` si : ai (for i = 1, . . . , n) in L, the monoid
multiplication returns the substituted term x1 : a1, . . . , xn : an ` t[si/xi] : a, which is again in L.

Several relevant structures with linear flavour have been shown to form monads in this Kleisli bicate-
gory: the substitution structure of coloured operads (see Baez and Dolan [1995]), the linear substitution
at the basis of LL, and the resource λ-calculus – the target of syntactic Taylor expansion (see Tsukada
et al.). In this sense, composition in the Kleisli bicategory of L encodes an algebraic theory of linear
substitution.

We have seen how generalized species arise naturally from the 2-monad L extended to Prof . Be-
cause L is tightly linked with linear logic, it is natural to expect that a non-linear setting will be captured
by moving from L toM, the “free cartesian category” 2-monad. And indeed, composition in the Kleisli
bicategory of M encodes an algebraic theory of cartesian substitution. More concretely, the objects of
MA are the same as LA, but the morphisms differ. In particular, when applied to 1, these construc-
tions yields Fop the cartesian category of finite cardinals equipped with the addition (as product) and
morphisms α ∈M1(k,m) consisting of functions α : [m]→ [k].

Notice that, from the structural rules point of view, Fop covers non-linear operations such as forgetting
and repeating. Indeed, for each m in Fop, there is the ith product projection m → 1 corresponding to
forgetting all m variables except the i-th one and the diagonal 1 → m corresponding to repeating a
variable m times (see Fiore et al. [1999]). Just as L, the 2-monadM extends to the bicategory Prof .

We can encode models of typed λ-calculus (with types in a category A) by a profunctorM :MA→ A.
Indeed, the composition in the Kleisli bicategory induces a monoidal structure M◦M→M that
accounts for non-linear substitution. In particular, Hyland [2017] gives the abstract theory for pure
λ-calculus as a profunctor M1 −7→ 1 endowed with retraction maps: M(n + 1) → M(n) encoding ab-
straction (that binds the first of n+ 1 variables resulting in an n variables term) and M(n)→M(n+ 1)
inducing application.

In this Chapter 2, we present a work resulting from a collaboration with Martin Hyland. This work
is a first step in order to develop an adequate axiomatic theory based on category theory. As mentioned
before, resource-sensitive calculi feature a notion of syntactic derivation, inducing a subtle interplay
between linear and non-linear substitution.

Since its introduction by Ehrhard and Regnier [2003], there have been several equational axiomatisa-
tions of differential λ-calculus: Blute et al. [2006]; Ehrhard [2016]; Fiore [2007]. In this way, the French
and Canadian schools have unified the syntactic derivation with the one found in usual calculus, through
the use of categorical axiomatizations. These are based on the notion of differential category, which is
a symmetric monoidal closed category with biproducts. The biproducts induce an additive structure on
homsets, which is necessary for the equations (as for instance, the Leibniz rule) to even make sense. In
a differential category, there is also a symmetric monoidal comonad (the exponential modality) denoted
by !. The derivation is encoded thanks to the codereliction coder which induces a deriving transformation
d when combined with coproduct:

coderA : A→!A dA : A⊗!A coderA⊗id!A−−−−−−−−→!A⊗!A ∇−→!A

Composing the deriving transformation with a non-linear morphism f : A⊗!A dA−−→!A f−→ B produces the
differential dAf ·u (x) of f in the direction given by u in A at x in !A. This deriving transformation has

34

CHAPTER 2. DIFFERENTIAL SEMANTICS

to satisfy equations corresponding to standard rules of calculus and to other rules related to linearity
and to the additive structure:

coder; e = 0 (The derivative of a constant is 0)

coder; ∆ = coder ⊗ ν + ν ⊗ coder (Leibniz rule)

coder; ε = 1 (The derivative of a linear function is a constant)

(coder ⊗ 1);∇; ρ = (coder ⊗∆); ((∇; coder)⊗ ρ));∇ (Chain rule)

One of the main drawbacks of this presentation is that it is monolithic, in the sense that the axioms
coming from the presence of substitution and those coming from the presence of derivation cannot
be clearly identified. Instead, we would like to elaborate a construction which is similar to the one
traditionally used in universal algebra (or its categorical framework given by Lawvere theories), which
can be performed in two steps: first, the stage is set by considering categories with finite products and
then, in that setting, particular theories may be defined (as free categories with finite products featuring
such and such operations and equations). We aim at developing a similar distinction in the case of
derivation by axiomatizing derivation on top of a primary setting, featuring a combination of linear and
non-linear substitution.

Over the last decade, the theory of monads has been used to describe the structures of substitution
and binding: Fiore et al. [1999]; Hirschowitz and Maggesi [2007]; Power and Tanaka [2005].The use of
monads for these new purposes can be understood from the perspective of Kleisli bicategories (see Fiore
et al. [2016]; Hyland [2014]): when extended to the bicategory of profunctors, 2-monads encapsulate a
notion of substitution. In order to describe the world of the differential λ-calculus in primitive terms,
one needs a setting in which both kinds of substitution (linear and non-linear) coexist. This suggests
combining the free symmetric monoidal category and the free cartesian category monads. We plan to
shift the focus from listing the axioms for a derivation theory to laying a foundation for an operadic
theory emphasizing the interplay between linear and non-linear substitution. In this Chapter 2, we build
this construction of monad and characterize its algebras.

Contributions
Finiteness Spaces. As mentioned before, they are vector spaces endowed with a linearized topology.
Together with analytic functions, they constitue a model of simply typed λ-calculus. In Tasson and
Vaux [2018], we studied type fixpoints in this model. We described a construction of finiteness spaces,
and use it to prove the existence of least fixpoints of some functors. This result allowed us to interpret
lazy recursive algebraic datatypes in finiteness spaces.

In addition, it is known from the very beginning that Finiteness Spaces cannot interpret fixpoint
combinators, and so neither recursion nor untyped λ-calculus. Actually, finiteness spaces are related to
the normalization property. In Pagani et al. [2016], we used finiteness spaces to characterize strongly
normalizing terms of non-deterministic λ-calculus. For this, we interpreted a λ-termM as a power series
in two steps, first by associating to M its Taylor expansion which is a sum of resource terms potentially
containing redexes; second, by reducing each of the resource terms into a normal form and by summing
the results. The problem is to characterize terms for which the resulting coefficients are finite, and which
are thus strongly normalizable. We proved that every strongly normalizable non-deterministic λ-term
can be interpreted by a power series with finite coefficients. It is a generalization of Ehrhard [2010]
where terms typable by a non-deterministic variant of Girard’s System F have always finite coefficients.
Noteworthy, we generalize the proof technique of Ehrhard [2010] who uses a finiteness structure on the
set of resource terms.

Vectorial semantics of Differential Linear logic. Although Finiteness Spaces constitute one of
the model that gave rise to Differential Linear Logic, their linearized topology is unusual. We enlighten
in Blute et al. [2012] the category of convenient vector spaces which is a model of Differential Linear
Logic whose objects are topological vector spaces used in functional analysis. In this model, functions
are interpreted as smooth function. Moreover, the differential operator of Differential Linear Logic is
interpreted as the usual Gâteaux derivative in mathematics. Notice that much of the structure necessary
to demonstrate that convenient vector spaces constitute a model were present in Kriegl and Michor
[1997]. The interest of our work is to have extracted and revealed the structure of Linear Logic. As
already mentioned, power series are a key notion in models of Linear Logic. It was then natural to refine

35

CHAPTER 2. DIFFERENTIAL SEMANTICS

the model of convenient spaces and smooth functions into the model of convenient vector spaces and
power series. More precisely, in Kerjean and Tasson [2018], we constructed an exponential whose Kleisli
category is made of smooth functions that can be written as power series. Notice that it is still an open
question to prove that this exponential is free.

Linear-Non-Linear substitution monad. In this Chapter 2, we develop a work in collaboration
with Martin Hyland. As suggested in Power and Tanaka [2005], we propose to combine the operadic
axiomatizations of linear substitution of Fiore et al. [2016] (given by the symmetric monoidal monad L)
and non-linear substitution of Hyland [2017, 2014] (given by the cartesian monoidal monadM). There
are many known ways to combine monads, for instance using distributive laws (see Cheng [2011]; Street
[1972]) or by taking the sum or the tensor (see Hyland et al. [2006]). Unfortunately, none of these
constructions is suitable for our setting and we investigate a new one based on lax colimits.

More precisely, note that any cartesian category is a symmetric monoidal category. Therefore, by
the universal property of the free symmetric monoidal monad L, there is a natural map LA kA−−→ MA.
We construct the lax colimit QA of this map and prove that Q is a 2-monad accounting for both linear
and non-linear substitution. The resulting Q can be described similarly to L and M and the single
typed variant Q1 corresponds to Tanaka and Power’s abstract, mixed linear-non-linear variable binding.
Concretely, for a category A, QA is the category of finite sequences 〈a1, . . . , an, b1, . . . , bp〉 with two types
of objects ai being linear and bj being non-linear (duplicable and erasable).

Future works. To complete the picture, we will have to study, in future works, the linear-non-linear
substitution structure and thus the operadic theories induced by Q. We will have to extend Q to the
Kleisli bicategory of profunctors. The first step will be to characterize lax Q-algebras in order to show
that the relative pseudomonad of presheaves has a lifting to Q-algebras. This will give a new example
of the constructions described in Fiore et al. [2016] and complete one step of the program described
in Fiore [2006]. We will have to include derivative in this framework as an operator turning a non-linear
context into a linear one. We will also incorporate the additive structure to recover a general theory of
derivation (including the derivative of product, Leibniz rule).

Organization of the chapter

We begin in Section 2.1 with a presentation of monads and adjoints in a 2-categorical setting that will
be needed in the following sections. Then, we describe the colimit construction of monads in Section 2.2.
In Section 2.3, we prove a key Lemma that we then apply to show that our construction gives rise to
a monad in Section 2.4 and to characterize its algebras in Section 2.5. In Section 2.6, we conclude by
the example that we are interested in, that are the monads for symmetric monoidal categories and for
cartesian categories.

36

CHAPTER 2. DIFFERENTIAL SEMANTICS

2.1 Monads, adjoints and splittings
All over this Chapter 2, we will extensively use monads on the 2-category Cat of categories, functors

and natural transformations. In this preliminary part, we recall the 2-categorical story for (co)monads,
adjoints and splittings. Most of this appeared in Bénabou [1967], Street [1972] and Lack and Street [2002].
We follow terminology and definitions of Leinster [2004]. However, from our knowledge, Proposition 30
is new. As far as the reading of the remaining of this Chapter 2 is concerned, the important points are:

• Definition 19 of monad and map of monads

• Definitions 21 and 22 idempotent comonad,

• Definitions 28 of splitting,

• Proposition 29 stating a one-to-one correspondence between idempotent comonads and splittings,

• Proposition 30 that proves that a map of comonads between splittings can be splitted.

Although in the following sections, we will only use strict maps, we present the lax versions. Indeed,
this work is preliminary and we will need the lax versions to lift to presheaves the comonad Q that we
will build.

2.1.1 Monads and comonads
Definition 19. Let X be an object in a 2-category C. A monad over X is a functor X t−→ X with a
unit η : idX ⇒ t and a multiplication µ : t2 ⇒ t satisfying the unit and associativity diagrams:

t t2 t

t

t·ηη·t

µ and
t3 t2

t2 t

µ·t

t·µ µ

µ

(2.2)

A lax map of monads (a, ϕ) : (X, t) ⇒ (X ′, t′) is a functor a : X → X ′ and a 2-cell ϕ : t′a ⇒ at
satisfying the commutative diagrams for units and associativity:

a a

t′a at

ηa aη

ϕ

and
t′2a t′at at2

t′a at

µa

t′ϕ ϕt

aµ

ϕ

(2.3)

A transformation σ : (a, ϕ)→ (a′, ϕ′) between map of monads is a 2-cell σ : a′ ⇒ a such that:

t′a at

t′a′ a′t

ϕ

t′σ σt

ϕ′

(2.4)

This defines a 2-category Mon(C) whose objects are monads, whose functors are lax map of monads
and whose 2-cells are monad functor transformations.

Thanks to the direction 2-cell in the definition of lax map of monads, the functor t together with the
multiplication (X, idX) (t,µ)==⇒ (X, t) constitutes a lax map of monads.

In the following sections, we will use monads on CAT and their 2-category of algebras.

Definition 20. Let (L, ηL, µL) be a monad in CAT. The 2-category Alg(L) of L-algebras is given by:
An algebra (A, a) is a category A with a functor a : LA→ A such that aηL = idA and aLa = aµL :

L2A→ A.
A map of algebras g : (A, a)→ (B, b) is a functor g : A→ B such that ga = bLg : LA→ B.
A transformation of maps of algebras α between map of algebras g, h : (A, a) → (B, b) is a natural

transformation α : g ⇒ h such that bLα = αa.

Thanks to the direction 2-cell in its definition, a lax map of monads from L toM (monads in CAT)
induces a map from L-algebras toM-algebras.

37

CHAPTER 2. DIFFERENTIAL SEMANTICS

Definition 21. Let X be an object in the 2-category C.
A comonad is a functor X f−→ X together with a counit f ε=⇒ idX and a multiplication f2 δ=⇒ f . which

satisfies unit and associativity laws:

f

f f2 f

δ

f ·εε·f

and
f3 f2

f2 f

δ·f

f ·δ δ

δ

(2.5)

A lax map of comonads (or perhaps colax opmap of comonads) (a, ϕ) : (X, f)⇒ (X ′, f ′) is a functor
a : X → X ′ together with a 2-cell ϕ : af ⇒ f ′a satisfying the commutative diagrams for units and
associativity:

a a

f ′a af

εa aε

ϕ

and
f ′2a f ′af af2

f ′a af

δa

f ′ϕ ϕf

aδ

ϕ

(2.6)

A transformation σ : (a, ϕ)→ (a′, ϕ′) of map of comonads is a 2-cell σ : a⇒ a′ such that:

f ′a af

f ′a′ a′f

ϕ

f ′σ σf

ϕ′

(2.7)

This defines a 2-category CoMon(C) whose objects are comonads, whose functors are lax map of
comonads and whose 2-cells are comonad functor transformations.

Remark. The comonad f : X → X together with the comultiplication δ : f ⇒ f2 induces a map of
comonads from (X, idX) to (X, f).

In this chapter, we will extensively use pasting diagrams. The definition of comonads uses counit
and comultiplication

X X
f

ε
and X X X

f

f f
δ

(2.8)

which satisfy unit law

X X X
f

ε

f

f
δ

= X X
f

f

= X X X

f

f f

ε

δ

(2.9)

and associativity

X X X X

f

f

f f
δ

δ

f = X X X X

f

f

δ
f

f f
δ

(2.10)

The definition of lax map of comonads can be rephrased as

X X

X ′ X ′

a

f

a

f ′

ε

ϕ =
X X

X ′

f

ε
a (2.11)

38

CHAPTER 2. DIFFERENTIAL SEMANTICS

and

X X X

X ′ X ′ X ′

a

f

f

δ

f

a u

f ′ f ′

ϕ ϕ =
X X

X ′ X ′ X ′

a

f

a

f ′

f ′

ϕ

f ′
δ (2.12)

Definition 22. An idempotent comonad is a comonad whose comultiplication is invertible. In this case,
δ−1 = ε · f = f · ε, in other words

X X X
f

ε

f = X X X
f f

ε
is the inverse δ−1 of δ. (2.13)

A strict idempotent comonad is a comonad whose comultiplication δ is the identity. In this case,
f2 = f and

X X X
f

ε

f = X X
f

f

= X X X
f f

ε
(2.14)

Eilenberg-Moore objects correspond to algebras for a monad. In Street [1976], it was shown that
Eilenberg-Moore objects are weighted limits in the 2-category C. From now on, we assusme C has all
limits.
Definition 23. Let (X, f) be a comonad in a 2-category C. The Eilenberg-Moore object of f consists
of an object Xf equipped with a functor ef : Xf → X and a 2-cell χf : ef ⇒ fef such that (ef , χf) :
(Xf , idXf)⇒ (X, f) is a lax map of comonads, that is:

ef ef

fef

χf

εef
and

ef fef

fef f2ef

χf

χf fχf

δef

(2.15)

and there is a natural isomorphism:

C(Y,Xf) ' coMnd(C)((Y, idY), (X, f)) (2.16)

given by:

Y Xf

u

u′

σ goes to (Y, idY) (X, f)

(efu,χfu)

(efu′,χfu′)

χf∗σ (2.17)

Remark. Because (ef , χf) : (Xf , idXf)⇒ (X, f) is a lax map of comonads, χf : (ef , χf)⇒ (fef , δef) is
a transformation of lax maps of comonads (see definition Diagram (2.7) and right Diagram of (2.15)).

We can rephrase the condition of the above definition in terms of pasting diagrams using the 2-cell

Xf X X

ef

ef f

χf

(2.18)

as

Xf X

ef

ef
= Xf X X

ef

ef f

ε

χf

(2.19)

and

Xf X X X

ef

ef

ef f
χf

χf

f = Xf X X X

ef

ef

χf
f

f f
δ

(2.20)

39

CHAPTER 2. DIFFERENTIAL SEMANTICS

Proposition 24. Let X f−→ X be a comonad with counit ε and comultiplication δ. There is ẽf : X → Xf

and η : ef ẽf ⇒ idX such that

f = ef ẽf , δ = χf ẽf , χf = efη and χf = efε. (2.21)

Moreover, if f is an idempotent comonad, then χf = efη and εef are inversed and so isomorphisms and
if f is a strict idempotent comonad, then idfX = ẽfef .

Proof. Since (f, δ) : (X, idX)→ (X, f) is a map of comonad (see remark Page 38) and by 1-cell univer-
sality of Xf (Property (2.16)), there exists a unique 1-cell ẽf : X → Xf such that:

X Xf X Xẽf

ef

ef f

χf

= X X X

f

f f

δ

(2.22)

We define the η by 2-cell universality of Xf (Property (2.16)). Indeed, we noticed Page 39 that χf :
(ef , χf)⇒ (fef , δef) is a transformation of maps of comonads, so by 2-cell universality (Property (2.16)),
there is a unique 2-cell η : idXf ⇒ ẽfef such that efη = χf , that is:

Xf X Xf X
ef

η

ẽf ef
= Xf X X

ef

ef

χf

f
(2.23)

It follows, by Diagrams (2.19) and (2.23), that

Xf X Xf X
ef

η

ẽf ef
ε

= Xf X X

ef

ef

χf

f

ε
= Xf X

ef

ef

(2.24)

Then, by Diagrams (2.22) and (2.23),

X Xf X Xf X
ẽf

ε
ef

η

ẽf
ef = X X X

f

f

ε

δ
f = X X

f

f

(2.25)

So that, by 2-cell universality of Eilenberg-Moore object (Property 2.16),:

X Xf X Xf

ẽf
ε

ef

η

ẽf
= X Xf

ẽf

ẽf

(2.26)

If f is an idempotent comonad, let us prove that χf is the inverse of εef . Indeed, from the definition
of the Eilenberg-Moore object, the composite ef χf=⇒ fef

εef==⇒ ef is equal to ef id=⇒ ef by Diagram (2.19).
Moreover, by Diagram (2.13),

Xf X X

X

ef

ef

f

εχf

f

=
Xf X X

X

ef

ef

f

χf

f

ε = Xf X

fef

fef

(2.27)

Hence, χf = efη and εef are inversed and so isomorphisms.

40

CHAPTER 2. DIFFERENTIAL SEMANTICS

Assume now that f is a strict idempotent comonad, that is δ : f2 = f . Then, both idXf and ẽfef
factorize the cone δef :

Xf X Xf X Xef ẽf ef

f2

f

= Xf Xf X Xef

f2

f

Indeed, f2ef ẽf = f2f = f2 for the upper map and fef ẽf = f2 = f for the lower map By 1-cell
universality, we conclude that idXf = ẽfef .

The following Proposition 25 corresponds to a comonadic presentation of Lemma 6.6.1 in Leinster
[2004].

Proposition 25. Let X f−→ X and X ′ f−→
′
X ′ be two comonads. There is a one-to-one correspondence

between lax map of comonads (a, ϕ) : (X, f)⇒ (X ′, f ′) and pairs (a, b) of functors such that the following
square commutes:

Xf X

X ′
f ′

X ′

b

ef

a

ef
′

(2.28)

Moreover, if there is a lax map of comonads (a, ϕ) : (X, f)⇒ (X ′, f ′), then there is θ : b ẽf ⇒ ẽf
′
a such

that:
X Xf X

X ′ X ′
f ′

X ′

ẽf

a b

ef

θ
a

ẽf
′

ef
′

=
X X

X ′ X ′

f

a a
ϕ

f ′

(2.29)

Proof. The composite (Xf , idXf) (ef ,χf)====⇒ (X, f) (a,ϕ)===⇒ (X ′, f ′) is a map of comonads. Thus, by the 1-cell
universality (Property (2.16)) of X ′f

′
, there is b : Xf → X ′

f ′ such that ef ′b = aef which corresponds
to the Square (2.28).

For the converse, using the Square (2.28) and Equation (2.21), we build the lax map of comonads
af ⇒ f ′a as the composite:

af = aef ẽf = ef
′
bẽf

χf
′
bẽf====⇒ f ′ef

′
bẽf = f ′aef ẽf = f ′af

f ′aη==⇒ f ′a

The 2-cell ϕ : af ⇒ f ′a is a transformation of maps of comonads from (ef ′bẽf , ϕf) : (X, idX) →
(X ′, f ′) to (ef ′ ẽf ′a, f ′ϕ) : (X, idX) → (X ′, f ′) because efbẽf = aef ẽf = af and ef ′ ẽf ′a = f ′a. Indeed,
the transformation condition (2.7) boils down to the obvious square:

af2 f ′af

f ′af f ′
2
a

ϕf

ϕf f ′ϕ

f ′ϕ

The existence of θ : b ẽf ⇒ ẽf
′
a and Diagram (2.28) follows by 2-cell universality (Property (2.16)).

2.1.2 Adjoints

Definition 26. Let X and Y be two objects in a 2-cateory C. An adjunction Y X
s
>
r

between

the functors r and s is given by the unit η : idY ⇒ rs and the counit ε : sr ⇒ idY satisfying the triangle
equalities:

s srs

s

sη

εs and
r rsr

r

ηr

rε (2.30)

41

CHAPTER 2. DIFFERENTIAL SEMANTICS

which can be rephrased as diagrams:

Y X X

Y

s

r

η

s

ε = Y X

s

s

and
X X Y

Y

r

r
η

s
ε = X Y

r

r

(2.31)

Of course, an adjunction induces a monad rs on Y and a comonad sr on X.

Map of adjunctions. Suppose Y X
s
>
r

and W Z
v
>
u

are adjoints with units η : idY ⇒ rs

and η : idW ⇒ uv and counits ε : sr ⇒ idY and ε : vu ⇒ idW . There are two good notions of map of
adjunctions from (s a r) to (v a u).

In both cases, we have functors X a−→ Z and Y b−→W as in the diagram:

Y X

W Z

b
s
>

a

r

v
>
u

From this diagram, we see that we could consider 2-cells:

ϕ : vb⇒ as θ : br ⇒ ua

χ : as⇒ vb ψ : ua⇒ br.

In both cases, we have ϕ and θ and, as one might naturally suppose, they are mates: that is,
θ is the composite given by the composite br ηbr==⇒ uvbr

uϕr==⇒ uasr
uaε==⇒ ua,

ϕ is the composite given by the composite vb vbη==⇒ vbrs
vθs==⇒ vuas

εas==⇒ as.

• In one case, maybe the lax case, we have ψ : ua ⇒ br and the natural unit an counit conditions
holds:

uvb uas brs

b

uϕ ψs

ηb bη

vua vbr asr

b
εa

vψ ϕr

aε

So, the main data are a, b, ϕ, ψ. It is then automatic that ψ is an isomorphism with inverse θ, the
mate of ϕ.

• In the other case, maybe the colax case, we have χ : as ⇒ vb and the natural unit and counit
condition holds for θ and χ: the main data are a, b, θ, χ.

uvb uas brs

b

uχ θs

ηb bη

vua vbr asr

b
εa

vθ χr

aε

It is then automatic that χ is an isomorphism with inverse ϕ, the mate of θ.

If (a, b, ϕ, ψ) gives a lax map of adjunctions, then we get a map of monads (Y, rs)→ (W,uv) with 2-cell
uvb⇒ brs given by the composite uvb uϕ=⇒ uas

ψs=⇒ brs. This direction of 2-cell induces a functor between
the corresponding Eilenberg-Moore categories.

Also, one gets what might be called an op-map of comonads (X, sr)→ (Z, vu) with 2-cell vua⇒ asr

given by the composite vua vψ=⇒ vbr
ϕr=⇒ asr. This direction of 2-cell induces a functor between the

corresponding Kleisli categories.
In this work, we will use the dual story for the colax map (a, b, θ, χ) of adjunctions. In particular, we

get a lax map of comonad (following Definition 21) (X, sr)→ (Z, vu) with functor a and 2-cell asr ⇒ vua

given by the composite asr χr=⇒ vbr
vθ=⇒ vua. Actually, the converse is also true.

Proposition 27. There is a one-to-one correspondence between adjoints with colax maps of adjunctions
and comonads with lax maps of comonads.

42

CHAPTER 2. DIFFERENTIAL SEMANTICS

Proof. An adjoint induces a comonad. We have already noticed that a pair of adjoints Y X
s
>
r

with unit η and counit ε induces a comonad X
sr−→ X with counit ε and comultiplication δ given by

the composite: sr sηr==⇒ srsr. We also just noticed that a colax map of adjunctions induces a lax map of
comonad.
A comonad induces an adjoint. Let X f−→ X be a comonad with counit ε and comultiplication δ. We
set Y = Xf the Eilenberg-Moore object, s = ef : Xf → X. Proposition 24 gives us the right adjoint
r = ẽf : X → Xf and the unit η.

Let (a, ϕ) : (X, f)⇒ (X ′, f ′) be a lax map of comonad (see Definition 21). By Proposition 25, there
is a map b : Xf → X ′

f ′ and a 2-cell θ : b ẽf ⇒ ẽf
′
a such that:

X Xf X

X ′ X ′
f ′

X ′

ẽf

a b

ef

θ
a

ẽf
′

ef
′

=
X X

X ′ X ′

f

a a
ϕ

f ′

(2.32)

Thus, we have a colax map of adjunctions (a, b, θ,=).

2.1.3 Splittings
We are now interested in (strict) idempotent comonads and splittings in a 2-category. This is a

generalization to 2-categories of what happens in the category of categories, as presented in [Borceux,
1994, Part 4.2].

Definition 28. Let C be a 2-category.
A splitting is an adjoint pair such that sη (or equivalently εs) is an isormorphism. For a strictsplitting,

sr = idX . A map of splitting is a colax map of adjunctions between two splittings.

Proposition 29. There is a one-to-one correspondence between idempotent comonads with lax map of
comonads and splittings with map of splittings. There is a one-to-one correspondance between strict
idempotent comonads with strict maps and strict splitting with strict map of splittings.

Proof. It is a direct consequence of Proposition 27 by noticing that if an adjunction is a splitting, then
ηs is an isomorphism, then the comultiplication δ = rηs of the associated comonad f = sr is also an
isomorphism. Conversely, by Proposition 24 if f is an idempotent comonad, then the pair of adjoints

Xf X
ef
>
ẽf

is a splitting as efη and εef are inverse from each other and so both isomorphisms. By

the same Proposition 24, if f is a strict idempotent comonad, then ẽfef = idY , that is the splitting is
strict.

Proposition 30. Suppose Y X
s
>
r

and Y ′ X ′

s′
>
r′

are two splittings with units η : idY ⇒ rs

and η : idY ′ ⇒ r′s′ and counits ε : sr ⇒ idX and ε : s′r′ ⇒ idX′ . A map of comonads (a, ϕ) : sr ⇒ s′r′

induces a map of splitting (a, b, θ, χ) such that:

X Y X

X ′ Y ′ X ′

r

a

s

a
ϕ

r′ s′

=
X Y X

X ′ Y ′ X ′

r

a

s

θ
b a

χ

r′ s′

(2.33)

Proof. An equivalence of categories. Starting from a pair of adjoints, Y X
s
>
r

we show that there

is an equivalence of categories between the Eilenberg-Moore object of the comonad induced by the
adjunction and Y .

We construct J : Y → Xf by to 1-cell universality (Property 2.16). Indeed (s, sη) is a map of
comonads from (Y, idY)⇒ (X, f) (recall that f = sr). Thus, efJ = s and sη = χfJ :

Y X Y Xs

η

r s = Y Xf X Y XJ ef

ef

r

χf

s (2.34)

43

CHAPTER 2. DIFFERENTIAL SEMANTICS

We remarked in Page 39 that χf = efη : (ef , χf)⇒ (fef , δef) is a transformation of maps of comonads.
By proposition 29, f = sr is an idempotent comonad. By Proposition 24, εef : (fef , δef) ⇒ (ef , χf)
is the inverse of efη. Thus, εef is a transformation of maps of comonads. Because fef = efJref

and by 2-cell universality (Property 2.16), the isomorphic transformation εef : (efJref , δef)⇒ (ef , χf)
corresponds to the isomorphic 2-cell: ε̃ : Jref ⇒ idXf . Moreover, η is the mate of ε̃:

Xf X Y Xf X Yef r

ε̃

J ef

η

r = Xf X

ef

ef
(2.35)

and

Y Xf X Y Xf
J ef

η

r

ε̃

J
= X Xf

J

J
(2.36)

Together, they induce the equivalence of categories between Xf and Y .

A lax map of comonads induces a map of splittings. Consider two pair of adjoints Y X
s
>
r

and

Y X
s′
>
r′

and a lax map of comonads (a, ϕ) : sr ⇒ s′r′. By Proposition 25. There are b : Xf → X ′
f ′

and θ : b ẽf ⇒ ẽf
′
a such that:

X Xf X

X ′ X ′
f ′

X ′

ẽf

a b

ef

θ
a

ẽf
′

ef
′

=
X X

X ′ X ′

f

a a
ϕ

f ′

(2.37)

The map of splitting is given by the pasting diagram:

X X Y X

Xf Xf

X ′
f ′

X ′ X ′ X ′

X ′ Y ′ X ′

a

ẽf

r

J

s

a

η
ef ε̃

ef

b

ẽf
′ ef

′

ẽf
′

r′

f ′

χf
′

θ

ε

r′ s′

(2.38)

We check that it is indeed a colax map of adjunctions.

From now on, we will only consider strict maps of comonads and splitting.

2.2 A colimit of monads
We consider two monads L andM on Cat with units ηL and ηM and with multiplications µL and

µM. From now on, we work in the 2-category Alg(L) of L-algebras and strict maps (see Definition 20).
We assume that L is finitary, that is its underlying functor preserves filtered colimits. It implies that
the 2-category of algebras Alg(L) is complete and cocomplete, so that we can compute colimits. Note
that our constructions does not take place in the 2-category Mon(C) of 2-monads, but in the 2-category
Alg(L) of L-algebras.

44

CHAPTER 2. DIFFERENTIAL SEMANTICS

We assume that there is a strict map of monad (id, λ) : (Cat,L) ⇒ (Cat,M). So that, by Dia-
grams (2.3) of Definition 19, the following standard diagrams commute for any category A:

A LA

MA

ηLA

ηMA

λA (2.39)

LA MA

MLA

LLA MMA

LMA

λA

MλA

µLA

LλA

λLA

µMA

λA

(2.40)

Remark that λ : L → M makes any M-algebra an L-algebra. Besides, λA : LA → MA is a map
of L-algebras from the free L-algebra µLA : LLA → LA to the L-algebra LMA

λMA−−−→MMA
µMA−−→MA

induced by the freeM-algebra.
We will build a new monad Q as a colimit over the map of monad λ : L →M. A concrete example

of this construction is given in Section 2.6.

2.2.1 The lax colimit Q.
From now on, we fix a category A. Nevertheless, all the construction that appears in what follows

are functorial and natural with respect to this category.
In Alg(L), we take the lax colimit QA of λA : LA→MA as a map of L-algebras.
Let ∆C be the constant functor with value C and OpLax(λA,∆C) be the category of oplax natural

transformations from λA to ∆C and modifications between them1. Then, there is a natural isomorphism:

Alg(L)(QA,C) ' OpLax(LA λA−−→MA,∆C) (2.41)
over the universal cone (2.42) in Alg(L):

LA QA

MA QA

λA

kA

`A

αA
(2.42)

given by:

QA C

u

u′

σ goes to
LA C

MA C

λA

c1

c′1

γ1

c2

ϕ
=

LA C

MA C

λA

c′1

c2

c′2

γ2

ϕ′ (2.43)

The universal property of QA has both 1-cell: ukA = c1, u`A = c2, uλA = ϕ and 2-cell aspects:
σkA = γ1 and σ`A = γ2.

The universal property at once gives Q the structure of a 2-functor, we shall use that functoriality
and the associated naturality of the constructions without further comment.

Moreover, using the fact that the colimit is taken in the 2-category Alg(L), we compute the data:

• Since QA is itself an L-algebra, we have LQA uA−−→ QA with the following commuting diagrams:

QA LQA

QA

ηLQA

idQA
uA (2.44) and

L2QA LQA

LQA QA

LuA

µLQA uA

uA

(2.45)

• Since LA kA−−→ QA andMA
`A−→ QA are L-algebra maps, we get the commuting diagrams:

1. Notice that we get oplax natural transformations when taking a lax colimit over Alg(L) since it is a limit over Alg(L)op.

45

CHAPTER 2. DIFFERENTIAL SEMANTICS

L2A LQA

LA QA

LkA

µLA uA

kA

(2.46) and

LMA LQA

M2A

MA QA

L`A

λMA

uA

µMA

`A

(2.47)

• Since αA is an L-algebra 2-cell and by commuting Diagrams (2.40), (2.46) and (2.47), the following
pastings are equal 2-cells:

L2A LA QA

MA

µLA

kA

λA `A

αA
=
L2A LQA QA

LMA

LkA

LλA

uA

L`A

LαA
(2.48)

2.2.2 The splitting of Q
In this paragraph, we show that `A :MA → QA has a right adjoint hA : QA →MA whose unit is the

identity and whose counit βA is idempotent. Thus, the pair of adjoints MA QA
`A

>
hA

is a splitting

(see Definition 28). Thus, by Proposition 29, hA`A is an idempotent comonad (see Definition 21).

A retract. The 1-cell universality of the colimit applied to the evident identity 2-cells gives the exis-
tence of the unique map QA hA−−→MA of L-algebras such that:

LA QA MA

MA
λA

kA hA

αA

`A

=
LA MA

MA
λA

λA

idA

(2.49)

We see from the 1-cell universality, that we get the following commutative diagrams:

MA QA MA

idA

`A hA and LA QA MA
kA

λA

hA (2.50)

so that from the left hand side, we get thatMA
`A−→ QA and QA hA−−→MA presentMA as a retract of

QA in Alg(L).
The fact that hA is a map of L-algebra gives the commuting diagram:

LQA LMA

M2A

QA MA

LhA

uA

λMA

µMA

hA

(2.51)

An idempotent counit. We now prove the the existence of a 2-cell βA such that:

QA QA

MA

idA

hA

βA

`A

=
QA QA QA

MA MA

idA

hA

idA

hA

βA

`A

βA

`A

(2.52)

46

CHAPTER 2. DIFFERENTIAL SEMANTICS

The 2-cell βA comes from the 2-cell universality of the colimit. The two cones

LA

QA QA

MA

λA

kA

kA

idQA

`A

`A

αA

and

LA

QA QA

MA

λA

`AλA

kA

`AhA

`A

`A

αA

(2.53)

are in correspondance by the two 2-cells:

LA QA

kA

`AλA

αA and MA QA

`A

`A

idA
(2.54)

So that, there is a unique 2-cell:

QA QA

idQA

`AhA

βA such that βAkA = αA and βA`A = id`A (2.55)

This can be rephrased by diagrams:

MA

LA QA QA

`A

kA idA

hA
βA

=
MA

LA QA

`AλA

kA

αA (2.56)

MA

MA QA QA

`A

`A idA

hA
βA

= MA QA

`A

`A

idA
(2.57)

We conclude the idempotence of βA from Diagram (2.57). Moreover, βAkAηLA = αAη
L
A because of

Diagram (2.56).
Finally, we will need the following commuting diagram, that comes from the definition of hA (Equa-

tion (2.51)) and the fact that ` is a map of L-algebra (Equation (2.47)).

LQA LMA LMA

M2A

QA MA QA

LhA

uA

L`A

λMA

uA

µMA

(2.51) (2.47)

hA `A

(2.58)

2.3 A technical lemma
Lemma 31. Assume that LX Xw is an L-algebra, and that MY Y

y is an M-algebra,

and that there is a splitting Y X
s
>
r

with unit η : idY = rs and counit ε : sr ⇒ idX such that

LX LY LX

MY

X Y X

Lr

w

Ls

λY

w

y

r s

(2.59)

47

CHAPTER 2. DIFFERENTIAL SEMANTICS

Then, the 1-cell QX Xx , obtained by universality on the cone

LX X

X

MX MY Y

w

λX r

idX

Mr y

s

ε
=

LX

QX X

MX MY Y

w

λX

kX

x

Mr

`X

αX

y

s

(2.60)

satisfies the 1-cell equalities:

X LX QX

X

ηLX

idX

kX

x and
LQX QX

LX X

u

Lx x

w

and

MQX M2X MX

QX

MX QX X

MhX

Mx

µMX

`X

x

`X x

(2.61)

and the 2-cell equality:

QX QX X

MX

idQX

hX

x

`X
β =

QX X X

Y

x idX

r s
ε (2.62)

Proof. First notice that, by naturality of λ, Diagram (2.59) implies the commutation of:

LX X

MX MY Y

w

λX r

Mr y

=

LX X

LY

MX MY Y

w

λX

Lr

r

λY

(2.59)

Mr y

(2.63)

The 2-cell in Diagram (2.62) are the same, by 2-cell universality, as they satisfy the same equations:

x · β · ` =x · α = ε · x · `
x · β · k =x · idk = ε · x · k

that come from the respective definition of β and x.
The left-most diagram of (2.61) commutes because w is an L-algebra and by definition of x (2.60):

X LX QX

X

ηLX

idX

kX

w
x

(2.64)

The middle diagram of (2.61) commutes because x is a map of L-algebra.
For the right-most diagram of (2.61), we will need the commutation of Diagram:

QX MX

MY

X Y

hX

x

Mr

y

r

(2.65)

48

CHAPTER 2. DIFFERENTIAL SEMANTICS

It comes from 2-cell universality, as the right-then-down map comes from the identity 2-cell:

LX MX MY

Y

MX MY

λX

λX Mr

y

Mr

y

=

LX MX MY

QX MX MY Y

MX MY

λX

λX

kX

Mr

y

hX Mr y

Mr

`X

αX
y

(2.66)
and the down-then-right map comes from the identity 2-cell:

LX X

Y

MX MY Y X

λX

w

(2.63)

r

r

Mr y s

idY
r

=

LX X

QX X Y

MX MY Y X

λX

w

kX r

x r

Mr

`X

αX

y s

r

(2.67)
Finally, we applyM to Diagram (2.65) and use naturality of µMX , the fact that (Y, y) is anM-algebra
and the definition of x (2.60) as x`X = syMr:

MQX M2X MX

M2Y MY

MX MY Y QX

QX X

MhX

Mx

M2r

µMX

`X

r

My

µMX

y

Mr

`X

y
s

x

x

(2.68)

2.4 The colimit is a monad
We will use the technical Lemma 31 to prove that the colimit Q is also a monad. Let us first define

the unit ηQ and the multiplication µQ for Q

Unit. We set A ηL−−→ LA kA−−→ QA. Notice that, thanks to definition of h, see Diagramm (2.50),

A QA

MA

ηQ

ηM
h (2.69)

Multiplication. By Paragraph §2.2.2 and Diagram 2.58, we can apply Lemma 31 to X = QA and
Y = MA, rQA = hA, sQA = `A and εQA = βA. Then, Q2A

µQA−−→ QA is unique such that the two
following cones are equal:

LQA QA QA

LMA

MQA MMA MA

λMQA

uA

LhA

idQA

hA
λMA

MhA µMA

βA
`A =

LQA

QQA QA

MQA

kQA

λMQA
µQA

`QA

αQA

(2.70)

49

CHAPTER 2. DIFFERENTIAL SEMANTICS

Monad laws. They stem from Diagram (2.61) which can be rewritten as:

QA QQA

QA

ηQQA

idQA
µQA

and
LQQA QQA

LQA QA

u

LµQA µQA

w

and

MQQA M2QA MQA

QQA

MQA QQA QA

MhQA

MµQA

µMQA

`QA

µQA

`QA µQA

(2.71)
The two right-most-diagrams, give by 1-cell and 2-cell universality, the following commutative diagram:

QQQA QQA

LQA QA

µQQA

QµQA µQA

µQA

(2.72)

Map of monads. Notice that k is a map of monad, indeed it comes from the definition of µQ and the
fact that u is a map of L algebra:

LLA LQA

QQA

LA MA

LkA

µLA

kQA

u

µQA

kA

(2.73)

Notice that h is also a map of monad. As a by-product of Lemma 31, we get Diagram (2.65), which can
be rewritten as:

QQA MQA

MMA

QA MA

hQA

µQA

MhA

µMA

hA

(2.74)

In general,M `−→ Q is not a map of monad. However, we have the following commuting diagram, which
is coming from the definition of the multiplication in Diagram (2.70).

MQX Q2X

M2X MX QX

`QX

Mh
µQ

µM `X

(2.75)

We will also use the following commuting diagram which commutes by definition of h, see Diagram (2.50),
and by Diagram (2.74)

M2X MQX Q2X

M2X MQX QX

MX

M`

µM

`QX

Mh h
µQ

µM

Mh

h

(2.76)

We can sum up in the following these results.

50

CHAPTER 2. DIFFERENTIAL SEMANTICS

Theorem 32. Q is a monad, L k−→ Q and Q h−→ M are map of monads and µQX is a strict map of
comonad from the comonad Q2X

`QXhQX−−−−−−→ Q2X to the comonad QX `XhX−−−−→ QX, that is:

Q2X MQX Q2X X
hQX

idQ2X

βQX

kQX µQX = Q2X QX MX QX
µQX hX

idQX

βX

kX (2.77)

2.5 A characterization of Q-algebras.
We want to describe the algebras of the colimit monad, Lemma 31 gives us a sufficient condition:

Proposition 33. Under the hypothesis of Lemma 31, x is a Q-algebra, that is:

X QX

X

ηQ

idX
x and

Q2X QX

QX X

µQX

Qx

x

x

(2.78)

Proof. The left-most Diagram of (2.61) gives the unit property. The two right-most Diagrams of (2.61)
define two cones which are equal so that by 2-cell universality, we get the multiplication property.

We want to prove the reverse and check that a Q-algebra satisfies properties of Lemma 31 !
Let X be a Q-algebra: QX x−→ X. Then, LX kX−−→ QX x−→ X is the structure of L-algebra over X.

An idempotent comonad. We define a map of L-algebra X f−→ X as f : X ηM−−→MX
`X−−→ QX x−→.

We will need the following square:

QX MX QX

X X

hX

x

`X

x

f

(2.79)

that results from the definition of the Retract hX in Diagram (2.50), the definition of the multiplication
of Q in Diagram (2.75) and the naturality of ` and ηM, and the fact that x is a Q-algebra.

MX QX X

M2X MQX MX

M2X Q2X QX

MX QX X

ηMMX

hX

x

ηMQX ηMX

f

M`X

MhX
`QX

Mx

`X

µMX µQX

Qx

x

`X x

(2.80)

By composing the Square (2.79) by X ηMX−−→ MX
`X−−→ QX and because hX`x = idMX , we get f2 = f .

Notice that x`XηL = xηQ = idX , so that we can define the counit as ε : xαηM

X X

f

idX

ε =
X MX QX X

LX

ηM

ηL

`X x

λ
kX

αX
(2.81)

A map of idempotent comonad. To prove that x is a map of idempotent comonad, we have to prove at
the 2-cell level, that xβX = εx,

QX MX QX X
hX

idQX

β

kX x = QX X Xx f

idX

ε

(2.82)

51

CHAPTER 2. DIFFERENTIAL SEMANTICS

By 2-cell universality, it boils down to proving that xαX = xβXkX = εxkX and idx`X = xβX`X = εx`X .
Remind from Square (2.75) that fx = xkXhX and from definition of hX in Diagram (2.50) that hXkX =
λ and hX`X = idMX , so that fxkX = x`Xλ and fx`X = x`X . We deduce that xαX = εx`X :

LX QX X

MX QX X

kX

λ

x

f ε

`X

x

=
LX

MX QX X

λ
kX

`X

α

x

(2.83)

and that idx`X = εxkX :

MX QX X

X

`X x

f ε =
MX QX

QX X

`X

`X

x
idx`X

x

(2.84)

The splitting induced by the comonad f and the map of splitting induced by x. By Proposition 29, since
f is a (strict) idempotent comonad, there is a stricit splitting X f−→ X = X

r−→ Y
s−→ X in L-algebras

such that rs = idY . Moreover by Proposition 30, since x is a map of idempotent comonad, it is also a
map of splitting in L-algebras. Thus, there is a mapMX

t−→ Y of L-algebras such that:

QX MX QX

X Y X

h

x

`

t x

r s

and

LMX LY

M2X

MX Y

Lt

λMX

z

µMX

t

(2.85)

Notice thatMX
t−→ Y =MX

`−→ QX x−→ X
r−→ Y . Indeed, rs) idY , thus t = rst = rx`X .

Moreover, we haveMX
Mf−−→MX

t−→ Y =MX
t−→ Y . Indeed, the following diagram commutes by

naturality of `, because x is a Q algebra and by using Diagrams (2.85) and (2.76)

MX M2X MQX MX

Q2X QX

QX X

MX Y

Mf

MηM

idMX

M`

µM

Mx

`QX `

t

Qx

µQ x

x

h r

t

(2.86)

An M-algebra. We define MY
y−→ Y = MY

Ms−−→ MX
t−→ Y . It is by definition a map of L-algebra.

Moreover, the structure of L-algebra over Y is:

LY Y

MY LX QX X

MX

Y

z

Ls
λY

s

y

Ms
λX

kX

h

x

rt

(2.87)

by naturality of s and λ, by definitions of h (see Diagram (2.50)), of y, of the splitting r and s and by
Diagram (2.85).

52

CHAPTER 2. DIFFERENTIAL SEMANTICS

The following diagram commutes because r and s are maps of L-algebras:

LX LY LX

QX MY QX

X Y X

Lr

kX

Ls

λY kX

x y x

r s

(2.88)

Let us prove that MY
y−→ Y is an M-algebra. First the unit law results from naturality of ηM, from

Diagrams (2.69) and (2.85) and by definition of y and of the splitting s and r.

Y MY

X MX QX X Y

QX X Y

ηM

s

y

Ms

ηM

ηQ

` x
r

x

h

r

s

(2.89)

The multiplication law results from naturality of µM and k, by Definition of h see Diagram (2.50),
because x is a Q-algebra and by Diagram (2.86):

M2Y M2X MQX MX MY

M2X Q2X QX MX

QX X QX

MX Y X

MY MX QX X Y

M2s

µM µM

Mt

M`

`QX

Mx

Mh

Mr

` Ms

µM

Qx

µQ x `

t

x

h

r

r x

` s r

Ms

`

`

x
r

(2.90)

We can sum up these results as:

Proposition 34. Let QX x−→ X be a Q-algebra, then LX Xw = LX QX X
kX x is

an L-algebra, there are anM-algebra MY Y
y and a splitting X Y Xr s such that:

Y X Ys

idY

r and X Y X Y X

Y

r

r

idX

s r s

s

ε

(2.91)

and
LX LY LX

MY

X Y X

Lr

w

Ls

λY

w

y

r s

(2.92)

53

CHAPTER 2. DIFFERENTIAL SEMANTICS

then, QX Xx satisfies the 1-cell universality on the cone

LX X

X

MX MY Y

w

λX r

idX

Mr y

s

ε
=

LX

QX X

MX MY Y

w

λX

kX

x

Mr

`X

αX

y

s

(2.93)

and it satisfies the 1-cell equalities:

X LX QX

X

ηLX

idX

kX

x and
LQX QX

LX X

u

Lx x

w

and

MQX M2X MX

QX

MX QX X

MhX

Mx

µMX

`X

x

`X x

(2.94)
and the 2-cell equality:

QX QX X

MX

idQX

hX

x

`X
β =

QX X X

Y

x idX

r s
ε (2.95)

This gives us a characterization of Q-algebras:

Theorem 35. A Q-algebra is the data of an L-algebra LX w−→ X, a splitting in L-algebras X r−→ Y
s−→ X

which is an idempotent comonad, and anM-algebraMY
y−→ Y such that we have the factorization:

LX LY LX

MY

X Y X

Lr

w

Ls

λY

w

y

r s

(2.96)

2.6 Example
We develop our colimit construction on the 2-monad L on the 2-category CAT for symmetric

monoidal categories (see Example 36) and in the 2-monad M for finite product categories (see Ex-
ample 37). Their colimit Q is presented in Example 38. As mentioned in the introduction of the
Chapter, we have in mind the application of this construction to model of differential λ-calculus. If we
can prove that the monad Q lifts from CAT to profunctors, then the bikleisli category will be a good
candidate for a model of the linear and the non-linear substitution appearing in differential λ-calculus.

Example 36 (The 2-monad for symmetric monoidal categories). For a category A, we denote by LA the
category whose objects are finite sequences 〈ai〉i∈[n], with n ∈ N and ai ∈ A, whose morphisms 〈ai〉i∈[n] →〈
a′j
〉
j∈[n] consist of a pair of a bijection σ of [n], and a sequence 〈fi〉i∈[n] of morphisms fi ∈ A(ai, a′σ(i)).

Notice that LA is the free symmetric strict monoidal category on A with unit given by the empty
sequence 〈_〉 and tensor product given by concatenation 〈ai〉i∈[n]⊕

〈
a′j
〉
j∈[m] , 〈a1, . . . , an, a

′
1, . . . , a

′
m〉.

We have just described the action on objects of the 2-monad L : CAT → CAT. We describe the
structure of the 2-monad. The unit ηL : Id → L has components given by embeddings ηLA : A ↪→ LA
and the multiplication µL : L2 → L has components given by the tensor product on LA:

ηLA(a) , 〈a〉 µLA(〈ui〉i∈[n]) , ⊕i∈[n]ui

54

CHAPTER 2. DIFFERENTIAL SEMANTICS

The universal property of L requires that for any functor F : A→ B, where B is a symmetric monoidal
category, we have a diagram:

A LA

B

ηLA

F

F⊗η⊗
F

In particular, the free symmetric monoidal category Bop , L1 over 1 is the category of natural
numbers whose morphisms Bop(u, v) = Sn whenever u = v = [n]. Notice that Bop encapsulates the
basic operation for ruling contexts with linear variable: the exchange rule (see Tanaka [2000])

The 2-category Alg(L) is made of strict algebras of L, i.e. symmetric strict monoidal categories,
strict morphims and strict transformations.

Example 37 (The 2-monad for cartesian categories). Let us now describe MA, the free cartesian
categories over A. The object are the same as LA, but the morphisms differ: a morphism 〈bi〉i∈[n] →〈
b′j
〉
j∈[m] consists of a pair of a function ρ : [m]→ [n] and for each i ∈ [m], a morphism fi ∈ A(bρ(i), b′i).

The terminal object is the empty sequence and the product of two sequences is given by concatenation.
In particular, Fop the free cartesian category on 1 has natural numbers as objects, finite products are

given by addition of natural numbers, so that a morphism α ∈M1(k,m) is given by, for each i ∈ [m], a
choice of projection k → 1. Hence, α is defined by a function [m]→ [k]. Notice that, from the variable
ruling view, Fop encapsulates non linear operations such as forgetting and repeating. For each m in Fop,
there is: the ith product projection m → 1 corresponding to forgetting all m variables except the ith
one ; the diagonal 1→ m corresponding to repeating a variable m times (see Fiore et al. [1999]).

Actually, M is a 2-monad on CAT whose unit ηM and multiplication µM are defined similarly as
the ones of L.

ηMA (b) , 〈b〉 and µMA (〈vi〉i∈[n]) , ⊕i∈[n]vi

It enjoys also an extension property of any functor F : A→ B with B cartesian to a cartesian functor
F×.

The 2-category Alg(M) is made of strict algebras ofM, i.e. cartesian categories, cartesian morphims
and strict transformations.

Example 38 (The 2-monad for linear-non-linear categories). Let us now describe Q, the 2-monad
obtained by our colimit construction. The objects are finite sequences 〈a1, . . . , an, b1, . . . , bp〉 of two
kinds of objects of A. Intuitively, the ais are linear (they behave as in LA) and the underlined bi are
not linear (they behave as inMA). The morphisms are

〈a1, . . . , an, b1, . . . , bp〉
τ :[m+q]→[n+p],fi:aρ(i)→a′i−−−−−−−−−−−−−−−−−−→ 〈a′1, . . . , a′m, b

′
1, . . . , b

′
q〉

where τ is a function whose restriction to [m] is an injection. This means that a morphism can forget
that an a is linear and transform it into a non linear b.

We have a map hA :MA→ QA which transform linear as to the same categories as, but considered
as non linear, hA : 〈a1, . . . , an, b1, . . . , bp〉 7→ 〈a1, . . . , an, b1, . . . , bp〉.

Let us now describe the structure of monad:

ηQA (a) , 〈a〉 and µQA : 〈u1, . . . , un, v1, . . . , vp〉 7→ u1 ⊕ · · · ⊕ un ⊕ hA(v1)⊕ · · · ⊕ hA(vp)

Finally, thanks to the characterization Theorem 35, the 2-category Alg(Q) is made of a symmetric

monoidal category X, together with a cartesian category Y and a splitting Y X
s
>
r

such that the

monoidal structure of Y is the same as its cartesian structure.

55

CHAPTER 2. DIFFERENTIAL SEMANTICS

2.7 Bibliography
J. C. Baez and J. Dolan. Higher-dimensional algebra and topological quantum field theory. J. Math.
Phys., 36(11), 1995. 34

J. Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar, volume 47, pages
1–77. Springer, 1967. 37

R. Blute, T. Ehrhard, and C. Tasson. A Convenient Differential Category. Cah. Topologies géom. diff.,
2012. 32

RF Blute, JRB Cockett, and RAG Seely. Differential categories. Mathematical structures in computer
science, 16(06):1049–1083, 2006. 34

Richard Blute, Thomas Ehrhard, and Christine Tasson. A convenient differential category. Cahiers de
Topologie et Géométrie Différentielle Catégoriques, 53(3):211–232, 2012. 35

Francis Borceux. Handbook of Categorical Algebra 2 – Categories and Structures. Cambridge Univ.
Press, 1994. 43

C. Chauve, É. Fusy, and J. Lumbroso. An exact enumeration of distance-hereditary graphs. In ANALCO
2017, pages 31–45. 33

E. Cheng. Distributive laws for Lawvere theories. ArXiv e-prints, December 2011. 36

T. Ehrhard. Finiteness spaces. Math. Struct. Comput. Sci., 15(4), 2005. 32

T. Ehrhard. A finiteness structure on resource terms. In LICS, pages 402–410. IEEE Computer Society,
2010. 32, 35

T. Ehrhard. An introduction to differential linear logic: proof-nets, models and antiderivatives. CoRR,
abs/1606.01642, 2016. 34

T. Ehrhard and L. Regnier. The differential lambda-calculus. Theoretical Computer Science, 309(1-3):
1–41, 2003. 32, 33, 34

T. Ehrhard and L. Regnier. Böhm trees, Krivine’s Machine and the Taylor Expansion of Lambda-Terms.
In CiE, 2006a. 32

T. Ehrhard and L. Regnier. Differential interaction nets. Theoretical Computer Science, 364(2):166–195,
2006b. 33

T. Ehrhard and L. Regnier. Uniformity and the Taylor expansion of ordinary lambda-terms. Theor.
Comput. Sci., 403(2-3), 2008. 32, 33

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Probabilistic coherence spaces are fully abstract
for probabilistic PCF. In POPL, pages 309–320. ACM, 2014. 32

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable, measurable
functions: a model for probabilistic higher-order programming. In POPL, pages 59:1–59:28. ACM,
2018. 32

M. Fiore. On the structure of substitution. Invited address for MFPSXXII, 2006. 36

M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proceedings of the 14th
Annual IEEE Symposium on Logic in Computer Science, page 193, 1999. 34, 35, 55

M. Fiore, N. Gambino, M. Hyland, and G. Winskel. The cartesian closed bicategory of generalised
species of structures. J. London Math. Soc., 77(1), 2008. 34

M. Fiore, N. Gambino, M. Hyland, and G. Winskel. Relative pseudomonads, Kleisli bicategories, and
substitution monoidal structures. ArXiv e-prints, 2016. 35, 36

M.P. Fiore. Differential structure in models of multiplicative biadditive intuitionistic linear logic. Lecture
Notes in Computer Science, 4583:163, 2007. 34

56

CHAPTER 2. DIFFERENTIAL SEMANTICS

P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
ISBN 978-0-521-89806-5. URL http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521898065. 33

J.-Y. Girard. Normal functors, power series and lambda-calculus. Annals of Pure and Applied Logic, 37
(2), 1988. 32

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. 32

Ryu Hasegawa. Two applications of analytic functors. Theor. Comput. Sci., 272(1-2):113–175, 2002. 33

A. Hirschowitz and M. Maggesi. Modules over monads and linearity. Lecture Notes in Computer Science,
4576:218, 2007. 35

W.A. Howard. The formulae-as-types notion of construction. In Jonathan P. Seldin and J. Roger
Hindley, editors, Essays on Combinatory Logic, Lambda Calculus, and Formalism, volume to H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980. 32

M. Hyland. Classical lambda calculus in modern dress. Math. Struct. Comput. Sci., 27(5), 2017. 34, 36

M. Hyland, G. Plotkin, and J. Power. Combining effects: Sum and tensor. Theoretical Computer Science,
357(1-3):70–99, 2006. 36

Martin Hyland. Elements of a theory of algebraic theories. Theor. Comput. Sci., 546:132–144, 2014. 35,
36

P. Hyvernat. A linear category of polynomial functors (extensional part). Log. Meth. Comput. Sci., 10
(2), 2014. 33

A. Jacquot. Constructions par greffe, combinatoire analytique et génération analytique. (Graft reconstruc-
tion, analytic combinatorics and analytical generation). PhD thesis, Paris 13 University, Villetaneuse,
Saint-Denis, Bobigny, France, 2014. 33

A. Joyal. Une théorie combinatoire des séries formelles. Adv. Math., 42(1):1 – 82, 1981. 33

M. Kerjean and C. Tasson. Mackey-complete spaces and power series–a topological model of differential
linear logic. Math. Struct. Comput. Sci., 2016. 32

Marie Kerjean and Christine Tasson. Mackey-complete spaces and power series - a topological model of
differential linear logic. Mathematical Structures in Computer Science, 28(4):472–507, 2018. 36

A. Kriegl and P.W. Michor. The convenient setting of global analysis, volume 53. American Mathematical
Society, 1997. 35

Stephen Lack and Ross Street. The formal theory of monads ii. Journal of Pure and Applied Algebra,
175(1):243 – 265, 2002. Special Volume celebrating the 70th birthday of Professor Max Kelly. 37

J. Laird, G. Manzonetto, G. McCusker, and M. Pagani. Weighted relational models of typed lambda-
calculi. In LICS, 2013. 32

T. Leinster. Higher Operads, Higher Categories. August 2004. 37, 41

J.-L. Loday and B. Vallette. Algebraic operads, volume 346 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. 2012. 33

P.-A. Melliès. Categorical semantics of linear logic. 2009. 33

M. Pagani, P. Selinger, and B. Valiron. Applying quantitative semantics to higher-order quantum com-
puting. In ACM SIGPLAN Notices, volume 49. ACM, 2014. 32

Michele Pagani, Christine Tasson, and Lionel Vaux. Strong normalizability as a finiteness structure via
the taylor expansion of λ-terms. In FoSSaCS, volume 9634 of Lecture Notes in Computer Science,
pages 408–423, 2016. 32, 35

John Power and Miki Tanaka. Binding signatures for generic contexts. In TLCA, volume 3461 of Lecture
Notes in Computer Science, pages 308–323. Springer, 2005. 34, 35, 36

57

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065

CHAPTER 2. DIFFERENTIAL SEMANTICS

R. Street. The formal theory of monads. J. Pure Appl. Algebra, 2(2):149–168, 1972. 36, 37

Ross Street. Limits indexed by category-valued 2-functors. Journal of Pure and Applied Algebra, 8(2):
149 – 181, 1976. 39

Miki Tanaka. Abstract syntax and variable binding for linear binders. In Mathematical Foundations of
Computer Science 2000, 25th International Symposium, MFCS 2000, Bratislava, Slovakia, August 28
- September 1, 2000, Proceedings, pages 670–679, 2000. 34, 55

Christine Tasson and Lionel Vaux. Transport of finiteness structures and applications. Mathematical
Structures in Computer Science, 28(7):1061–1096, 2018. 35

T. Tsukada, K. Asada, and L. Ong. Generalised species of rigid resource terms. In LICS 2017. 34

B. Vallette. Homology of generalized partition posets. J. Pure Appl. Algebra, 208(2):699–725, 2007. 33

58

Chapter 3

Probabilistic Semantics

Publications of the author
Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of probabilistic
coherence spaces. In LICS, pages 87–96. IEEE Computer Society, 2011.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Probabilistic coherence spaces are fully abstract
for probabilistic PCF. In POPL, pages 309–320. ACM, 2014.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction for probabilistic PCF. Journal
of the ACM, 65(4):23:1–23:44, 2018a.

Thomas Ehrhard and Christine Tasson. Probabilistic call by push value. Logical Methods in Computer
Science, 2018. Accepted for publication, LMCS.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable, measurable
functions: a model for probabilistic higher-order programming. In POPL, pages 59:1–59:28. ACM,
2018b.

59

CHAPTER 3. PROBABILISTIC SEMANTICS

Contents
Introduction . 61
3.1 Probabilistic coherence spaces . 65

3.1.1 Definition and basic properties of Pcoh . 65
3.1.2 A model of Linear Logic . 66
3.1.3 A model of typed and untyped λ-calculus . 68
3.1.4 Coalgebras to model call-by-value . 71
3.1.5 Type fixpoints . 73

3.2 An adequate model of pure probabilistic λ-calculus 74
3.2.1 Syntax and operational semantics of Λ+ . 74
3.2.2 Examples . 75
3.2.3 Interpretation of Λ+ in Pcoh . 75
3.2.4 Soundness and Adequacy . 76

3.3 A fully abstract model of pPCF . 78
3.3.1 Syntax and operational semantics of pPCF . 78
3.3.2 Examples . 80
3.3.3 Interpretation of pPCF in Pcoh . 82
3.3.4 Soundness and Adequacy . 83
3.3.5 Full Abstraction . 84

3.4 A fully abstract model of pCBPV . 85
3.4.1 Syntax and operational semantics of Λp

HP . 85
3.4.2 Examples . 88
3.4.3 Interpretation of Λp

HP in Pcoh . 90
3.4.4 Soundness and Adequacy . 91
3.4.5 Full Abstraction . 92

3.5 An adequate model of pRPCF . 94
3.5.1 Syntax of pRPCF . 94
3.5.2 Operational Semantics . 95
3.5.3 Denotational Semantics: the category Cstabm 97
3.5.4 Interpretation of pRPCF in Cstabm . 100
3.5.5 Soundness and Adequacy . 100
3.5.6 Examples . 101
3.5.7 Some measure theory . 105

3.6 Conclusion . 106
3.7 Bibliography . 107

60

CHAPTER 3. PROBABILISTIC SEMANTICS

Introduction
This Chapter 3 is devoted to the denotational semantics of probabilistic programming.
We started this piece of work with Thomas Ehrhard and Michele Pagani with the think of taking

benefit of the smoothness of the interpretation of programs in Linear Logic models. Actually, this plan
was already hinted at the very beginning of Linear Logic. It was mentioned in the appendix of the seminal
paper Girard [1988] and further developed in Girard [2004] which introduced Probabilistic Coherent
Spaces. Those spaces were studied in full details in Danos and Ehrhard [2011]. They are shown to be
a model of Linear Logic and of probabilistic PCF, a call-by-name1 probabilistic programming language.
One important particularity of this model is that program interpretation can be seen as power series. The
reduction is defined through a stochastic matrix Red indexed by terms. The meaning of the coefficient
RedM,M ′ is the probability that M reduces to M ′ in one step. We are first interested in the invariance
of the interpretation with respect to the reduction:
Soundness: For every term M , JMK =

∑
M ′ RedM,M ′JM ′K.

After, we are interested in the adequacy lemma: if the type of M is natural numbers, then for any
natural number n ∈ N, Red∞M,n = JMKn. It implies that two terms with the same semantics cannot
be distinguished from their behavior in any evaluation context. We say that they are observationally
equivalent:
Adequacy: Let M and M ′ be two closed terms. If JMK = JM ′K then M ∼M ′.
The last theorem we are interested in is Full-Abstraction. It boils down to the converse of Adequacy.
Full Abstraction: Two programs have the same semantics if and only if they behave in the same way
in whatever context they are evaluated.
Soundness and Adequacy were proved in Danos and Ehrhard [2011] for probabilistic PCF. Full Ab-
straction is well-known to be a hard to prove property. Besides, the demonstration (we gave in Ehrhard
et al. [2014]) is different from the usual ones which rely on the definabilty of points of the semantics.
Our proof relies on a powerful and original tool: namely, programs are interpreted as power series with
non-negative coefficients. Let us describe the sketch of proof. We reason by contrapositive. Given two
terms with different semantics, we define a context that separates them. This context, when composed
with the terms are interpreted as two power series with different coefficients. An argument from real
analysis and Adequacy lead to separate the two terms.

Yet, in probabilistic PCF, there is
An expressivity issue: It might be hard to encode probabilistic algorithm. For instance, consider
this simple Las Vegas algorithm on a finite array with 0 and 1 cells,

1. randomly choose an index k;

2. test if the content of the cell of index k is 0;

3. if yes, output the index k;

4. if no, start again from step 1.

In a call-by-name language, variables are computed each time they appear, potentially leading to different
outputs in a probabilistic setting. Yet, we need to memorize the value of the index k (step 1.) in order
to output the same value later (step 3.). So that, we need to have a call-by-value evaluation on ground-
types. Natural numbers and other value types are interpreted as coalgebras (introduced in §3.1.4) which
is the key notion that is compatible with call-by-value. The language we introduce next incorporate this
semantic property.

We first extended in Ehrhard et al. [2018a], the probabilistic PCF with a let construction for the
ground-type of natural numbers. The resulting language, probabilistic PCF, is denoted as pPCF (see
Section 3.3), for which we proved Soundness, Adequacy and Full-Abstraction theorems.

In order to generalize this let construct to other types such as Lists or Streams, we studied
in Ehrhard and Tasson [2018], a probabilistic extension of call-by-push-value, where all values enjoy this
let construction. The resulting language is denoted as Λp

HP (see Section 3.4). We proved Soundness,
Adequacy and Full-Abstraction theorems. The Adequacy Theorem 85 for Λp

HP is more involved than the
one for pPCF, because of recursive types. We adapted the traditional proof that uses logical relations with
a method inspired by Pitts [1994] in order to compute fixpoint of logical relations. The Full-Abstraction
Theorem 88 needs to introduce new tools based on coalgebras.
1. In the call-by-name evaluation strategy, the argument expression is first passed to the function that will potentially
copy the expression, before being evaluated each time it occurs

61

CHAPTER 3. PROBABILISTIC SEMANTICS

Notice that pPCF can be encoded into Λp
HP (as we show §3.4.2). Thus, the adequacy result for pPCF

is implied by the one for Λp
HP. Indeed, all contexts for the first language are contexts for the second

one. However, the Full-Abstraction results are different because there are more contexts in Λp
HP than in

pPCF.
The first language that we will present in this chapter is pure λ-calculus, denoted as Λ+ (see Sec-

tion 3.2). This allows us to introduce gently the technique we used for proving the Adequacy Theorem
for recursive types in Λp

HP.
Finally, we turned recently towards the continuous probability settings in Ehrhard et al. [2018b].

Thomas Ehrhard has built a model of a continuous probabilistic programming language, generalizing
the semantics developed for the discrete setting. Although the interpretations of programs are not yet
proved to be power series, noteworthy, they enjoy a strong form of monotonicity that we call stability.
Indeed, it is deeply related with the standard notion of stability designed for sequential algorithms
in Berry [1978]. We introduced pRPCF, a version of pPCF with two main differences. First, natural
numbers and successor are replaced by reals and measurable functions. Second, the probabilistic binary
choice is replaced by a sampler uniformly choosing a real in the [0, 1] interval. We defined the operational
semantics by replacing stochastic matrices by stochastic kernels. Finally, we proved that this model is
sound, adequate in §3.5.5 and well-designed to interpret the most standard probabilistic algorithms
in §3.5.6.

Context

Since the 80’s, formal methods have been applied to probabilistic programming languages. For in-
stance, Kozen [1979] defined a denotational semantics for a first-order while-language extended with a
real random number generator. This topic has then been seized by the domain theoretic community
with the monadic approach due to Moggi [1989]. This standard approach is based on the use of power-
domains Plotkin [1976]. In Jones and Plotkin [1989], types are interpreted as domains on which acts a
probabilistic powerdomain monad V. A probabilistic program of type A→ B is interpreted as a contin-
uous function [A] → V([B]) which maps a value of [A] to a probability distribution over values of [B].
In this way, Jones got computational adequacy results in the typed and untyped case for call-by-value2

strategy.
To explicit the differences between the domain theoretic approach and our approach based on quan-

titative semantics, let us take the example of a first-order program M taking integers as inputs and
intergers as outputs, that is with type M : N ⇒ N .

In the domain theoretic approach, the type N is interpreted by the flat domain N⊥ of unrelated
natural numbers together with a lowest element ⊥ representing divergence. The probabilistic monad
gives rise to the probabilistic distributions over N⊥. In the quantitative semantics approach, the type
N is interpreted as a set of indices N together with a set of non-negative sequences PN ⊂ (R+)N which
corresponds to subprobabilistic distributions. Therefore, at this ground type, there is only a difference
of presentation between the two approaches: either we weight ⊥ with the probability of diverging or we
consider sub-probabilities.

In the domain theoretic approach, M is denoted as a continuous function [M] : N⊥ → V(N⊥). Now
if we want to apply M to a probabilistic input, we need to lift its interpretation with a let construction:
[let n be x in M] : V(N⊥)→ V(N⊥) which first computes the outcome of the random variable x and then
passes it to M . This consists of a call-by-value strategy:

[let n be x in M] : x 7→
(∑

n

JMKn,qxn

)
q

.

Indeed, alike the Law of total probabilities, the probability to get the output q is the sum over the
outcomes n of the random variable x of the probability that M outputs q knowing that the input is n
together with the probability that x outcomes n.

In the quantitative semantics approach, the program M is interpreted as a probabilistic operator
that preserves subprobability distributions: JMK : PN → PN . Now, the random variable is handled
following a call-by-name strategy:

JMK : x 7→

 ∑
µ=[n1,...,nk]

JMKµ,q
k∏
i=1

xni

q

.

2. In the call-by-value evaluation strategy, the argument expression is evaluated once for all, and the resulting value is
passed to the function that will use it at will.

62

CHAPTER 3. PROBABILISTIC SEMANTICS

Indeed, to compute the probability to get output value q: first, we sum over the bags of outcomes ni of
the random variable x (one outcome for each occurrence of x in M); then we multiply the probability
JMKµ,q that M outputs q with this bag µ = [n1, . . . , nk] of inputs and the probability

∏k
i=1 xni that

x outcomes successively n1, . . . , nk. Notice that we do not take into account the order these outcomes
appear (this model is based on the relational model and not on games semantics which distinguished
the order the arguments are evaluated). Noteworthy, the interpretation of a program is a power series
with potentially infinitely many parameters which are the coefficients of the sequence x. This is the key
property of our approach.

The problematic in the domain theoretic approach is to find a full subcategory of continuous domains
that is both cartesian closed and closed under the probabilistic monad V (see Jung and Tix [1998]). In
the quantitative semantics approach, we do have a cartesian closed category3 which is moreover fully
abstract for a probabilistic extension of PCF.

More recently, the domain theoretic approach has been renewed. We can mention the cartesian
closed category of Kegelspitzen Keimel and Plotkin [2017] and Scott continuous functions, considered
in Rennela [2016] as a model for discrete probabilistic programming. Let us mention the model based
on event structure and game semantics in Castellan et al. [2018] who obtained a Full abstraction result
derived from ours.

In the last years, continuous probabilistic languages have gain an increasing interest. The functional
paradigm is particulary relevant in this area (see Park et al. [2008]). Let us mention the probabilistic
language WebPPL (see Goodman and Tenenbaum [2014]) which is built on top of a purely functional
fragment of Javascript, Church (see Goodman et al. [2008]) and Anglican (see Wood et al. [2014]).

The formal methods for those languages have inherited from the work of Kozen [1979], where programs
are interpreted as stochastic kernels between measurable spaces. The possible configurations of the
memory are described by measurable spaces, while kernels define the probabilistic transformation of
the memory induced by program execution. Kozen’s approach cannot be trivially extended to higher-
order types, because there is no clear notion of measurable subset for a functional space. Indeed, we
do not know which measurable space can describe values of type, say, R → R (see Aumann [1961] for
details). Panangaden [1999] reframed the work by Kozen in a categorical setting, using the category
Kern of stochastic kernels. This category has been presented as the Kleisli category of the so-called
Giry’s monad (see Giry [1982]) over the category Meas of measurable spaces and measurable functions.
One can precisely state the issue for higher-order types in this framework — both Meas and Kern are
cartesian categories but not closed.

The denotational semantics approach to probabilistic programming has been recently relaunched by
the increasing importance of continuous distributions and sampling primitives. Indeed, this raises the
question of the measurability of a morphism as the interpretation of the sampling primitives requires
integration. This question has not been investigated yet in the domain theoretic approach and forces to
introduce a new line of works which puts the focus on measurability.

The challenge is to define a cartesian closed category in which base types such as reals would be
interpreted as measurable spaces. As already mentioned, the category Meas of measurable spaces and
functions is cartesian but not closed. To overcome this problem, Staton et al. [2016] embed Meas in a
functor category which is cartesian closed although not well-pointed. Then, to get a more concrete and a
well-pointed category, they introduce the category of quasi-borel spaces (see Heunen et al. [2017]) which
are sets endowed with a set of random variables. Notice that both categories miss the order completeness,
and thus the possibility of interpreting higher-order recursion. This is a big difference with our model,
presented in §3.5, of measurable cones and stable, measurable functions which is order complete.

Contributions

In Ehrhard et al. [2011], we have proved an adequacy theorem for Probabilistic Coherent Spaces and
a probabilistic extension of the pure λ-calculus: the probability that a term reduces to a head normal
form is equal to its denotation computed on a suitable set of values.

In Ehrhard et al. [2014], we have proved a Full-Abstraction theorem for Probabilistic Coherent
spaces and a probabilistic extension of probabilistic PCF, a well-known simply typed universal functional
language. The type hierarchy is based on a single ground type of natural numbers. However, we soon
realized that the call-by-value strategy was not expressive enough (see our Las Vegas example in §3.3.2).
Thus, we introduced a let construct, allowing a call-by-value strategy for ground-type arguments. This
extension reflects a denotational property. Indeed, the interpretation of the type of natural numbers is
3. Notice that in this model, objects are domains and morphisms are scott-continuous. However, this category is not a
full subcategory of the category of domains so that we do not solve the domain theoretic issue.

63

CHAPTER 3. PROBABILISTIC SEMANTICS

equipped with a coalgebraic structure. Thus, it inherits properties of the exponential of Linear Logic:
ground-type values can be erased and duplicated at will. That is why they are compatible with the
call-by-value strategy. In Ehrhard et al. [2018a], we extended the Full-Abstraction result to this refined
language. Then, Ehrhard [2016] proved that this let construct can be extended to all coalgebraic types.
Using ideas from half-polarized linear logic, he proposed a Call-by-push-value language in which values
can be erased or duplicated. In Ehrhard and Tasson [2018], we studied a probabilistic version of this
language and adapted the Full-Abstraction result. Although the proof follows the same schema, we had
to develop new concepts to adapt it.

In Crubillé et al. [2017], we proved that the exponential comonad of Probabilistic Coherent Spaces is
free. The proof consists in showing that the free comonad computed by the formula introduced in MEL
[2017] is the same as the exponential of Probabilistic Coherent Spaces.

In Ehrhard et al. [2018b], we moved from discrete probabilities to continuous ones. We proved that
the cartesian closed category of measurable cones and stable, measurable functions is adequate for a
version of Probabilistic PCF with the single ground type of reals. Moreover, it is well-suited to interpret
simple randomized algorithms such as Metropolis-Hasting.

Organization of the Chapter

This chapter is organized as follows. We first give a brief introduction to probabilistic coherent spaces
(Section 3.1). We take the opportunity to state that the exponential is free (§3.1.2). We introduce all
the concepts needed for interpreting the three languages we consider in the following: Λ+, the pure λ-
calculus (Section 3.2); pPCF, the probabilistic extension of PCF (Section 3.3); and Λp

HP, the probabilistic
extension of CBPV (Section 3.4). Finally, we turn to our last piece of work (Section 3.5): After a short
presentation of the model of measurable cones and stable, measurable functions, we present pRPCF,
the probabilistic extension of real PCF, states the adequacy result and study in details interpretation of
probabilistic programs. To finish we describe in §3.5.7 the probability theory that is needed to understand
this section.

Notations
Let I and J be countable sets. Given u, u′ ∈ (R+)I , we define the pairing

〈u, u′〉 =
∑
i∈I

uiu
′
i ∈ R+ ∪ {∞} .

Let u ∈ (R+)I and v ∈ (R+)J . We denote (u⊗ v)(i,j) = uivj ∈ (R+)I×J the tensor product of u and v.
Let t ∈ (R+)I×J be a matrix. We denote t⊥ ∈ (R+)J×I the transpose of t, that is (t⊥)j,i = ti,j .
A finite multiset of elements of I is a function µ : I → N whose support supp(µ) = {a ∈ I | µ(a) 6= 0}
is finite. We denote as Mfin(I) the set of all finite multisets of elements of I. Given a finite family
a1, . . . , an of elements of I, let [a1, . . . , an] be the multiset µ such that µ(a) = #{i | ai = a}. We use
additive notations for multiset unions:

∑k
i=1 µi is the multiset µ such that µ(a) =

∑k
i=1 µi(a). The

empty multiset is denoted as 0 or []. If k ∈ N, the multiset kµ maps a to kµ(a).
Given terms M and N and given a variable x, we use M [N/x] for the term M where x is substituted
with N .
The set of head normal forms is denoted as hnf, the letter H will be ranged over hnf.

Symbols
A,B . . . types of pPCF and pRPCF. 78, 94

E[·] Evaluation contexts of pPCF, Λp
HP and pRPCF. 79, 87, 96

M,N, . . . terms of pPCF, Λp
HP and pRPCF. 74, 78, 86, 94

V,W, . . . value terms of Λp
HP. 87

ϕ,ψ, . . . positive types of Λp
HP. 86

σ, τ, . . . general types of Λp
HP. 86

64

CHAPTER 3. PROBABILISTIC SEMANTICS

3.1 Probabilistic coherence spaces
This first part is dedicated to Probabilistic Coherence Spaces which constitute a model of classical

Linear Logic introduced by Girard and developed in full details in Danos and Ehrhard [2011] to which
we refer. The reader interested in more involved results can refer to Ehrhard et al. [2018a] and Ehrhard
and Tasson [2018].

3.1.1 Definition and basic properties of Pcoh
As often in quantitative models of Linear Logic, a probabilistic coherent space is defined by a web

which represents the possible outcomes of a program and by a subspace of sequences indexed by its web,
which represents the different outcomes of probabilistic programs weighted by a coefficient corresponding
roughly to the probability that this outcomes occurs. This subspace has to be equal to its biorthogonal
for a well-suited biorthogonality. This corresponds to the fact that programs and environments interact
correctly.

Let I be a countable set. Given u, u′ ∈ (R+)I , we say that u and u′ are orthogonal whenever
〈u, u′〉 ≤ 1 (recall the pairing notation introduced in §3). The orthogonal of X ⊆ (R+)I , is then given
by X⊥ = {u′ ∈ (R+)I | ∀u ∈ X 〈u, u′〉 6 1} and satisfies as usual X ⊆ Y ⇒ Y⊥ ⊆ X⊥ , X ⊆ X⊥⊥ and
X⊥⊥⊥ = X⊥ .

Definition 39. A probabilistic coherence space (PCS) is a pair X = (|X|,PX) where |X| is a countable
set called the web and PX ⊆ (R+)|X| satisfies

• PX⊥⊥ = PX (equivalently, PX⊥⊥ ⊆ PX),

• for each a ∈ |X| there exists u ∈ PX such that ua > 0,

• for each a ∈ |X| there exists A > 0 such that ∀u ∈ PX ua 6 A.

The second condition ensures that every index of |X| is covered by vector which has a corresponding
non zero coefficient on this index. The third condition implies that the set of coefficient on one given
index is bounded. The purpose of these two conditions is to prevent infinite coefficients to appear in the
semantics. This property in turn will be essential for guaranteeing the morphisms interpreting proofs to
be analytic functions, which will be the key property to prove full abstraction.

Actually, PX has many good properties:

• PX is unitary with respect to the norm induced by the orthogonality: Given u ∈ PX, we define
the norm ‖u‖X = sup{〈u, u′〉 | u′ ∈ PX⊥}, so that ‖u‖X ∈ [0, 1] by definition.

• PX is a cone: Given u, v ∈ PX and α, β ∈ R+ such that α+ β 6 1, one has αu+ βv ∈ PX.

• PX is equipped with the most obvious partial order relation (using the usual order on R):

u 6 v iff ∀a ∈ |X| ua 6 va . (3.1)

Finally, PCS are domains, relating them with usual models of probabilistic programming:

Proposition 40. PX is an ω-continuous domain.

As a consequence, given a family (u(i))i∈N of elements of PX and a family (αi)i∈N of elements of R+

such that
∑
i∈N αi 6 1, one has

∑
i∈N αiu(i) ∈ PX.

Morphisms of PCSs

A morphism from a PCS X to a PCS Y is a matrix t ∈ (R+)|X|×|Y | which maps PX to PY . To
make this statement precise, we define the application t u ∈ R+|Y | of a matrix t to a vector u ∈ PX as4

(t u)b =
∑
a∈|X| ta,bua.

We say that t is a (linear) morphism from X to Y if u ∈ PX implies t u ∈ PY , that is

∀u ∈ PX ∀v′ ∈ PY ⊥ ,
∑

(a,b)∈|X|×|Y |

ta,buav
′
b 6 1 .

4. This is an unordered sum, which is potentially infinite. It makes sense since all its terms are non-negaitve.

65

CHAPTER 3. PROBABILISTIC SEMANTICS

X⊥ =
(
|X|,PX⊥

)
1 = ⊥ = ({∗}, [0, 1]{?})

X ⊗ Y =
(
|X| × |Y |, {u⊗ v | u ∈ PX and v ∈ PY }⊥⊥

)
X (Y = (|X| × |Y |, {t | if u ∈ PX then t u ∈ PY })

&
i∈I

Xi =
(⋃
i∈I
{i} × |Xi|, {u | ∀i ∈ I u(i) ∈ PXi, where ∀a ∈ |Xi| u(i)a = u(i,a)}

)

⊕
i∈I

Xi =
(⋃
i∈I
{i} × |Xi|,

{
u | ∀i ∈ I u(i) ∈ PXi and

∑
i∈I
‖u(i)‖Xi 6 1

})

!X =
(
Mfin(|X|), {u! | u ∈ PX}⊥⊥

)
, where u!

µ =
∏
a∈|X|

uµ(a)
a

Figure 3.1 – Constructions of LL in Pcoh

The diagonal matrix Id ∈ (R+)|X|×|X|, given by Ida,b = 1 if a = b and Ida,b = 0 otherwise, is a morphism.
Composition of morphisms is defined as matrix multiplication: let s be a morphism from X to Y and t
a morphism from Y to Z. We define t s ∈ (R+)|X|×|Z| by

(t s)a,c =
∑
b∈|Y |

sa,btb,c

and a simple computation shows that t s ∈ Pcoh(X,Z). More precisely, we use the fact that, given
u ∈ PX, one has (t s)u = t (s u). Associativity of composition holds because matrix multiplication is
associative. IdX is the identity morphism at X.

PCSs and morphisms of PCSs constitute a category that we denote Pcoh.

The partially ordered class of probabilistic coherence spaces

In order to interpret fixpoint of types in Pcoh, we need to equip this category with a well-behaved
order between PCSs. Intuitively, X ⊆ Y if the web of X is included in the web of Y and if the sequences
of X correspond to restrictions of sequences of Y to the web of X.

Given u ∈ (R+)|X| and I ⊆ |X| we use u|I for the element v of (R+)|X| such that va = ua if a ∈ I
and va = 0 otherwise. Of course if u ∈ PX, then its restriction to I satisfies u|I ∈ PX.

We define5 an order relation, denoted as ⊆, on probabilistic coherent spaces:

X ⊆ Y ⇔
{
|X| ⊆ |Y | ,
P(X) = {v||X| s.t. v ∈ P(Y)}. (3.2)

Notice that the orthogonal is non-decreasing: if X ⊆ Y then X⊥ ⊆ Y ⊥ .
We define the category Pcoh⊆ as the partially ordered class whose objects are those of Pcoh and

such that Pcoh⊆(X,Y) has a unique element ηX,Y when X ⊆ Y or is empty when X 6⊆ Y .

Proposition 41. Pcoh⊆ is directed co-complete.

3.1.2 A model of Linear Logic
Now, we give the description of the category Pcoh as a model of Linear Logic. For this purpose, we

use the notion of Linear Category introduced by Bierman [1995], as presented in Melliès [2009] which is
our main reference for this topic. The constructions are summarized in Figure 3.1. They all define PCSs
and the justification can be found in Danos and Ehrhard [2011].

We first present the ∗-autonomous structure which is based on the multiplicative constructs: the
tensor product ⊗, the linear map(and the dualizaing object ⊥.
5. This order relation can be equivalently defined as a retraction-embedding pair (which is the usual way of computing
fixpoints)

66

CHAPTER 3. PROBABILISTIC SEMANTICS

Then we turn to the cartesian structure which is based on the additive constructs: the cartesian
product & and the coproduct ⊕.

Finally, we present the last but not least ingredient which is the exponential structure based on the
exponential comonad ! that allows to duplicate or erase in a model of linear logic.

We refer to Page 64 for notations used in this section.

∗-autonomous structure

The bifunctor ⊗ : Pcoh×Pcoh→ Pcoh is defined by

|X ⊗ Y | = |X| × |Y | ,
P(X ⊗ Y) = {x⊗ y s.t. x ∈ P(X), y ∈ P(Y)}⊥⊥.

The action of ⊗ on morphisms u ∈ Pcoh(X,Y) and v ∈ Pcoh(X ′, Y ′) is defined by (u⊗ v)(a,a′),(b,b′) =
ua,bva′,b′ , for (a, a′) ∈ |X ⊗X ′|, (b, b′) ∈ |Y ⊗ Y ′|. The unity of ⊗ is given by the singleton web PCS
1 = ({?}, [0, 1]{?}).

The object of linear morphisms X (Y is defined as

|X (Y | = |X| × |Y | ,
P(X (Y) = Pcoh(X,Y).

One proves that X (Y is a PCS by checking X (Y = (X⊥ ⊗ Y)⊥.
The definition of PCS morphisms implies the following characterization of elements of X (Y :

Lemma 42. Let X and Y be PCSs. If t ∈ (R+)|X|×|Y |, then t ∈ P(X (Y) iff ∀u ∈ PX, t u ∈ PY .

The evaluation morphism ev ∈ Pcoh(X ⊗ (X (Y), Y) is given by ev(a,(a′,b)),b′ = δa,a′δb,b′ . If
t ∈ Pcoh(Z ⊗ X,Y), then the associated linearly curryfied morphism cur(t) ∈ Pcoh(Z,X (Y) is
given by cur(t)(c,(a,b)) = t((c,a),b).

Last, the dualizing object ⊥ is defined as the dual of 1 which is indeed equal to 1: ⊥ = 1⊥ = 1.

Cartesian structure

Pcoh admits the cartesian product of any countable family (Xi)i∈I of PCSs, defined by

|&i∈IXi| = ∪i∈I({i} × |Xi|),

P(&i∈IXi) =
{
x ∈ (R+)|&i∈IXi| s.t. ∀i ∈ I, πi(x) ∈ P(Xi)

}
.

where πi(x) is the vector in (R+)|Xi| denoting the i-th component of x, i.e. πi(x)a = x(i,a). The j-th
projection prj ∈ Pcoh(&i∈IXi, Xj) is defined by prj(i,a),b = δi,jδa,b.

Notice that the empty product yields the terminal object of Pcoh. We may write A1 & A2 for the
binary product: we can present any x ∈ P(A1 &A2) as the pair (π1(x), π2(x)) ∈ P(A1) × P(A2) of its
components. When Xi is equal to X for each i ∈ I, we may write the product &i∈IXi by XI .

Example 43. We introduce the key example of natural numbers and define N = ⊕i∈N 1, that is |N| = N
and u ∈ (R+)N belongs to PN if

∑
n∈N un 6 1.

Exponential structure

The functorial promotion ! : Pcoh→ Pcoh is defined on objects by

|!X| =Mfin(|X|),
P(!X) = {x! s.t. x ∈ P(X)}⊥⊥,

where x! is the vector of (R+)Mfin(|X|) defined by x!
µ =

∏
a∈|X| x

µ(a)
a , for any µ ∈Mfin(|X|).

The action of ! on a morphism t ∈ Pcoh(X,Y) is defined by, for any µ ∈ |!X|, µ′ ∈ |!Y |,

(!t)µ,µ′ =
∑

r∈L(µ,µ′)

[
µ

µ′

](∏
(a,b)∈|X|×|Y |

t
r(a,b)
a,b

)

67

CHAPTER 3. PROBABILISTIC SEMANTICS

where L(µ, µ′) is the set of multisets over |X|×|Y | whose first projection is µ and whose second projection
is µ′ (occurrences do matter) and where[

µ′

ρ

]
=
∏
b∈|Y |

µ′(b)!∏
a∈|X|

ρ(a, b)!

is the number6 of ways to associate the elements of µ′ to the elements of µ in order to get ρ. Let us
underline that such a coefficient introduces scalars greater than 1.

As an example, let Bool = (1 & 1)⊥ and call t, f the only two elements of its web. Notice that
P(Bool) = {x ∈ (R+){t,f} s.t. xt + xf 6 1}. Consider t ∈ (R+)|Bool|×|1| defined by tt,∗ = tf ,∗ = 1.
Notice t ∈ Pcoh(Bool, 1), hence !t ∈ Pcoh(!Bool, !1). We have !t[t,f],[∗,∗] =

[[∗,∗]
[(t,∗),(f ,∗)]

]
tt,∗tf ,∗ = 2.

This shows why, in the definition of a PCS, scalars are in R+ instead of restricting them to [0, 1].
Let us underline that adding the coefficient

[
p
r

]
in the definition of !t is crucial for ! to be a functor,

in fact for having the commutation with the composition (see [Danos and Ehrhard, 2011, Sect. 1.6]).
The functorial promotion is equipped with a structure of comonad. The counit (also called dereliction)

is derX ∈ Pcoh(!X,X) given by (derX)µ,a = δµ,[a]. The comultiplication (also called digging) is digX ∈
Pcoh(!X, !!X) given by (digX)µ,M = δµ,

⊎
M , where

⊎
M is the multiset in |!X| obtained as the multiset

union of the multisets in M ∈ |!!X|.

Free exponential

From the additive structure and the lax symmetric monoidal structure, we can construct a structure
of comonoid on !X whose contraction contrX ∈ Pcoh(!X, !X⊗ !X) and weakening weakX ∈ Pcoh(!X,1)
are given by (contrX)µ,(µ′,µ′′) = δµ,µ′]µ′′ , and (weakX)µ,? = δµ,[] for any µ, µ′, µ′′ ∈Mfin(|X|).

We proved in Crubillé et al. [2017] that it is the free comonoid structure. Thanks to the construction
introduced in MEL [2017], the free exponential modality (under some commutativity conditions) can
be constructed as the limit of its approximants. We proved that the free exponential and the usual
exponential of Pcoh are actually the same.

Theorem 44. For all commutative comonoid C and f ∈ Pcoh(C,X), there exists only one commutative
comonoid morphism f† commuting the diagram:

!X X

C

der!X

f
∃!f†

This means that !X is the terminal object of the category of commutative comonoids over X.

3.1.3 A model of typed and untyped λ-calculus
As usual, we can recover a model of typed λ-calculus from a model of linear logic through the Kleisli

category construction. Indeed, the intuitionistic arrow X ⇒ Y of typed λ-calculus is encoded by !X (Y
using the linear arrow and the exponential of Linear Logic.

Let us consider the Kleisli category Pcoh! induced by the comonad associated with the functorial
promotion. The objects of Pcoh! are the PCSs and the set of morphisms Pcoh!(X,Y) is equal to
Pcoh(!X,Y).

The morphisms in the Kleisli category enjoy an alternative description as analytic functions. This
is the key property of our work, so that we devote it some explanations.

Let s ∈ (R+)|!X(Y |. We define a function ŝ : PX → R+|Y | such that, given u ∈ PX,

ŝ(u) = s u! =

 ∑
µ∈|!X|

sµ,bu
µ

b∈|Y |

.

6. Note the asymmetry between µ′ and µ: if µ = [a, b], µ′ = [c, c], then L(µ, µ′) has exactly one element, [(a, c), (b, c)],
and the number of ways of getting it is

[
µ′

[(a,c),(b,c)]

]
= 2, while, inverting µ′ and µ, we have that L(µ′, µ) has always one

element, [(c, a), (c, b)], but the number of ways of getting it is
[

m
[(c,a),(c,b)]

]
= 1.

68

CHAPTER 3. PROBABILISTIC SEMANTICS

Because, u! ∈ P(!X) and thanks to Lemma 42, we get the characterization:

s ∈ P(!X (Y) iff ∀u ∈ PX, ŝ(u) ∈ PY,

which can be rephrased in terms of Kleisli morphisms:

Theorem 45. If s and s′ ∈ Pcoh!(X,Y) then, s = s′ (as matrices) iff ŝ = ŝ′ (as functions).

This means that any morphism in Pcoh!(X,Y) can be identified with the associated analytic function
from P(X) to P(Y), and this identification is compatible with composition. Thus, in the sequel we will
give a morphism in Pcoh!(X,Y) either as a matrix in Pcoh(!X (Y) or as a composition of analytic
maps.

Let us describe the counit and the comultiplication of the comonad ! as analytic functions:

∀u ∈ PX, d̂erX(u) = u and d̂igX(u) = (u!)!.

Then, we can describe the structure of the Kleisli category. The identity IdX on X is the dereliction
derX , while the composition s ◦! t of two morphisms t ∈ Pcoh!(X,Y), s ∈ Pcoh!(Y, Z) is defined by
s ◦! t = s ◦ !t ◦ digX or equivalently by ŝ ◦! t = ŝ ◦ t̂.

As it is known from Girard [1987], the monoidal closedness of Pcoh is lifted to a cartesian closedness
in Pcoh! by the monoidality of the comonad !: there are an isomorphism m0 between 1 and !> and
another one m2

X,Y between !(X & Y) and !X ⊗ !Y . These isomorphims are defined by their matrices
m0 ∈ (R+)|1(!>| as m0

∗,[] = 1 and m2
X,Y ∈ (R+)|!X⊗!Y(!(X&Y)| as (m2

X,Y)λ,ρ,µ = δµ,1·λ+2·ρ where
i · [a1, . . . , an] = [(i, a1), . . . , (i, an)].

Let us use the analytic function approach to describe the cartesian closed structure of the kleisli
category.

The product of a countable family (Xi)i∈I is the PCS &i∈IXi endowed with the projections Prj ∈
Pcoh!(&i∈IXi, Xj) characterized by the analytic function P̂r

j
such that P̂r

j
((xi)i∈I) = xj .

The object of the kleisli morphisms from X to Y is X ⇒ Y = !X (Y . The evaluation and
the curryfication are characterized as composition of analytic functions. The evaluation morphism Ev :
P((X ⇒ Y) &X)→ P(Y) corresponds to the analytic function such that Êv(f, x) = f(x) for any (f, x) ∈
P(X ⇒ Y) × P(X) ' P((X ⇒ Y) &X). Given an analytic f : P(X & Z) → P(Y), its curryfication
Ĉur(f) : P(Z)→ P(X ⇒ Y) is given by Ĉur(f)(z)(x) = f(x, z) for x ∈ P(X), z ∈ P(Z).

Thanks to the description of Kleisli morphisms as analytic functions, we can relate the model of PCS
with the domains theoretic approach. Indeed, we have already stated that PCSs are ω-continuous (see
Proposition 40). Now, we states that Kleisli morphims are Scott-continuous:

Proposition 46. Let s ∈ Pcoh!(X,Y). The function ŝ is Scott-continuous.

Example 47. Take X = Y = 1. A morphism in Pcoh(!1,1) can be seen as a function f : [0, 1]→ [0, 1]
such that f(u) =

∑∞
n=0 snu

n where the sn’s are non-negative and satisfy
∑∞
n=0 sn 6 1. Of course, not

all Scott continuous function [0, 1] → [0, 1] are of that particular shape! Take for instance the function
f : [0, 1] → [0, 1] defined by f(u) = 0 if u 6 1

2 and f(u) = 2u − 1 if u > 1
2 ; this function f is Scott

continuous but has no derivative at u = 1
2 and therefore cannot be expressed as a power series.

In order to interpret recursive programs in pPCF (see Section 3.3, we need that the Kleisli category is
cpo-enriched thanks to the monotone convergence theorem. Moreover, least upper bounds are computed
pointwise.

Proposition 48. Let s, s′ ∈ P(!X (Y). If s 6 s′, then ∀u ∈ PX ŝ(u) 6 ŝ′(u). Let (s(i))i∈N be
a monotone sequence of elements of Pcoh!(X,Y) and let s = supi∈N s(i). Then ∀u ∈ PX ŝ(u) =
supi∈I ŝi(u).

Remark. We can have s, s′ ∈ Pcoh(!X,Y) such that ∀u ∈ PX ŝ(u) 6 ŝ′(u) but without having that
s 6 s′. Take for instance X = Y = 1. As in the example above we can see ŝ and ŝ′ as functions
[0, 1]→ [0, 1] given by ŝ(u) =

∑∞
n=0 snu

n and ŝ′(u) =
∑∞
n=0 s

′
nu

n, and s 6 s′ means that ∀n ∈ N sn 6 s′n.
Then let s be defined by sn = 1 if n = 2 and sn = 0 otherwise, and s′ be defined by s′n = 1 if n = 1 and
s′n = 0 otherwise. We have ŝ(u) = u2 6 ŝ′(u) = u for all u ∈ [0, 1] whereas s and s′ are not comparable
in P(!1(1).

Furthermore, the intepretation of recursive programs can also be computed thanks to the fixpoint
operator that can be defined in the Kleisli category.

69

CHAPTER 3. PROBABILISTIC SEMANTICS

Proposition 49. The Kleisli category Pcoh! has a least fixpoint operator.
Proof. Let X be a PCS and F0 ∈ Pcoh!(((X ⇒ X)⇒ X) & (X ⇒ X), X) be

((X ⇒ X)⇒ X) & (X ⇒ X)

(X ⇒ X) & ((X ⇒ X)⇒ X) & (X ⇒ X) (X ⇒ X) & X

X

〈pr2, pr1, pr2〉
〈pr1, Ev ◦ 〈pr2, pr3〉〉

Ev

We define F ∈ Pcoh!((X ⇒ X) ⇒ X, (X ⇒ X) ⇒ X) as the curryfication F = Cur (F0). Then, let us
consider F ∈ P((X ⇒ X)⇒ X), that is F ∈ Pcoh(X ⇒ X,X). Then, F̂(F) = Ev ◦ 〈IdX⇒X , F 〉 is in
Pcoh(X ⇒ X,X). Since F is a morphism in Pcoh, the function F̂ is Scott continuous and therefore
has a least fixpoint fix ∈ Pcoh(X ⇒ X,X), namely fix = supn∈N F̂n(0) (the sequence (F̂n(0))n∈N is
monotone in the cpo P((X ⇒ X)⇒ X) because F̂ is monotone).

If we set fixn = F̂n(0) ∈ Pcoh(X ⇒ X,X), we have fix0 = 0 and fixn+1 = Ev ◦ 〈Id,fixn〉.
Then, given f ∈ Pcoh(X,X), we have fîxn(f) = f̂n(0) and fîx(f) = supn∈N f̂

n(0). So that, fix is
the usual least fixpoint operator, and this operation turns out to be a morphism in Pcoh!, namely
fix ∈ Pcoh!(X ⇒ X,X).

This means that this standard least fixpoint operator can be described as an analytic function, which
is not completely obvious at first sight.

In order to interpret pure λ-calculus (see Section 3.2.1), we need a reflexive object, that exists in
the Kleisli category as proved in [Danos and Ehrhard, 2011, Sect. 2].This means that there is a PCS D
together with a pair made of λ ∈ Pcoh!(D ⇒ D,D) and app ∈ Pcoh!(D,D ⇒ D) which gives rise to
an isomorphism between D and D ⇒ D: app ◦! λ = IdD⇒D and λ ◦! app = IdD.
Proposition 50. The category Pcoh! has a reflexive object (D,λ, app).

Proof. The PCS D, defined in Figure 3.2, is obtained by iterating the operation X 7→
(
!XN

)⊥ starting

|D0| = ∅ |D`+1| =Mfin(
⋃
n∈N

{n} × |D`|) |D| =
⋃
`∈N

|D`|

P(D0) = 0 P(D`+1) =
{
v ∈ (R+)|D`+1| s.t. ∀u ∈ P(DN

`), 〈v, u!〉6 1
}

P(D) =
{
v ∈ (R+)|D| s.t. ∀` ∈ N,∀u ∈ P(DN

`), 〈v||D`+1| , u
!〉6 1

}
Figure 3.2 – Definition of D as the least fixpoint of the operation X 7→ (!XN)⊥. Recall that v||D`+1| ∈ (R+)|D`+1|

is obtained by restricting v ∈ (R+)|D| to the indexes |D`+1| ⊆ |D|.

from the empty-web PCS D0 = (∅,0). Notice that D`+1 =
(
!DN

`

)⊥.
D is the least upper bound of {D`}`∈N, an increasing chain with respect to the order X ⊆ Y defined

in Paragraph 3.1.1. Moreover, the operation X 7→
(
!XN

)⊥ is Scott continuous (i.e. monotone and
preserving directed lowest upper bound), hence D is its least fixed point by Kleene-Tarski Theorem
(see Tarski [1955]).

Let µ ∈ |!D`| =Mfin(|D`|) and d ∈ |D`+1| =Mfin(∪n∈N{n} × |D`|), we denote:

µ :: d = [(0, c) s.t. c ∈ µ]] [(n+ 1, c) s.t. (n, c) ∈ d] (3.3)

Notice that µ :: d ∈ D`+1. Conversely, for any point in d ∈ D`+1 there is a unique µ ∈ |!D`|,
potentially empty, and d′ ∈ |D`+1| such that d = µ :: d′ .

The empty multiset is a remarkable element of |D| that we denote ?. In particular, we have ? =
[] :: ?. This notation underlines an isomorphism between the webs of D and D ⇒ D, which is equal to
Mfin(|D|)× |D|.

We set λ ∈ Pcoh!(D ⇒ D,D) and app ∈ Pcoh!(D,D ⇒ D) as follows: for any µ ∈Mfin(|D ⇒ D|),
µ′, µ′′ ∈Mfin(|D|), and d ∈ |D|,

λµ,µ′::c = δµ,[(µ′,d)], appµ′′,(µ′,d) = δµ′′,[µ′::d].

An easy computation shows that app ◦! λ = IdD⇒D and λ ◦! app = IdD, so that (D,λ, app) yields an
extensional model of pure λ-calculus.

70

CHAPTER 3. PROBABILISTIC SEMANTICS

It is significant that D satisfies two different recursive equations: X = (!XN)⊥ and X = X ⇒ X.
The first gives the construction of D and, in fact, D is its minimal solution (with respect to ⊆). The
second equation is needed to interpret the pure λ-calculus. However D is not its minimal solution, since
the empty-web PCS D0 trivially satisfies D0 = D0 ⇒ D0.

Remark that D is isomorphic to DN ⇒ ⊥. In fact, if P(D) is meant to contain the denotations of
terms, the vectors in P(DN) represent infinite stacks of terms, whose promotion play the role of the
environments.

3.1.4 Coalgebras to model call-by-value
We introduce coalgebras as they are of particular interest in what follows. Indeed, as !X, they are

equipped with a commutative comonoid that allows to duplicate and to erase through the contraction
and weakening that are defined below.

Eilenberg-Moore category

By definition, a coalgebra of the ! comonad is a pair (P , h) where P is a PCS and h ∈ Pcoh(P , !P)
satisfying the following commutations

P !P

P

P !P

!P !!P

h

derP
IdP

h

!hh

digP

A morphism of coalgebras from (P 1, h1) to (P 2, h2) is an f ∈ Pcoh(P 1, P 2) such that the
following diagram commutes

P 1 P 2

!P 1 !P 2

f

!f

h1 h2

Coalgebras and their morphisms constitute the Eilenberg-Moore category Pcoh! of !-coalgebras. The
functor ! can be seen as a functor from Pcoh to Pcoh! mapping a PCS X to a coalgebra (!X,digX)
and a morphism f ∈ Pcoh(X,Y) to a coalgebra !f (since digX is the comultiplication of the comonad
!. It is right adjoint to the forgetful functor U : Pcoh! → Pcoh. This adjunction maps every morphism
f ∈ Pcoh(P ,X), to a morphism f ! ∈ Pcoh!(P, !X) such that f ! = !f hP . Moreover, if g ∈ Pcoh!(Q,P),
we have f ! g = (f g)!.

The Eilenberg-Moore category Pcoh! is cartesian (with product of shape P ⊗ Q = (P ⊗ Q,hP⊗Q)
and terminal object (1,h1), still denoted as 1). This category is also co-cartesian with coproduct of
shape P ⊕ Q = (P ⊕ Q,hP⊕Q) and initial object (0,h0) still denoted as 0. The complete definitions
can be found in Ehrhard [2016]. We use cP ∈ Pcoh!(P, P ⊗ P) (contraction) for the diagonal and
wP ∈ Pcoh!(P,1) (weakening) for the unique morphism to the terminal object.

Dense coalgebras

Given an object P of Pcoh!, we use P!(P) for the set of coalgebraic elements of P(P), where an
element u ∈ P(P) is coalgebraic if, considered as a morphism from 1 to P , u belongs to Pcoh!(1, P).
This is equivalent to u! = hP u.

Definition 51. An object P of Pcoh! is dense if, for any object Y of Pcoh and any two morphisms
t, t′ ∈ Pcoh(P , Y), if t u = t′ u for all u ∈ P!(P), then t = t′.

The following lemma is useful in the sequel and holds in any model of Linear Logic.

Lemma 52. Let X be a probabilistic coherence space. Then, P!(!X) = {u! | u ∈ PX}.
Let P` and Pr be coalgebras.

71

CHAPTER 3. PROBABILISTIC SEMANTICS

Then, P` ⊗ Pr is the cartesian product of P` and Pr in Pcoh!. The function P!(P`) × P!(Pr) →
P!(P` ⊗ Pr) which maps (u, v) to u ⊗ v is a bijection. The projections pr⊗i ∈ Pcoh!(P` ⊗ Pr, Pi) are
characterized by pr⊗i (u` ⊗ ur) = ui.

Moreover, the function {`} × P!(P`) ∪ {r} × P!(Pr) → P!(P` ⊕ Pr) which maps (i, u) to ini(u) is a
bijection. The injection u 7→ ini(u) has a left inverse pri ∈ Pcoh(P` ⊕ Pr, Pi) defined by (pri)(j,a),b =
δi,jδa,b, which is not a coalgebra morphism in general.

Proof. Let v ∈ P!(!X). We have v! = h!X v = digX v hence (derX v)! = !derX v! = !derX digX v = v.
The other properties result from the fact that the Eilenberg-Moore category Pcoh! is cartesian and
co-cartesian with ⊗ and ⊕ as product and co-product, see Melliès [2009] for more details.

Because of these properties we write sometimes (u`, ur) instead of u` ⊗ ur when ui ∈ P!(Pi) for
i ∈ {`, r}.

Theorem 53. For any probabilistic coherence space X, !X is a dense coalgebra. If P` and Pr are dense
coalgebras then P` ⊗ Pr and P` ⊕ Pr are dense.

Proof. Let X be an object of Pcoh. By the preceding Lemma 52, P!(!X) = {u! | u ∈ PX}. It
follows that !X is a dense coalgebra by Theorem 45. Assume that P` and Pr are dense coalgebras. Let
t, t′ ∈ Pcoh(P` ⊗ Pr, Y) be such that t w = t′ w for all w ∈ P!(P` ⊗ Pr). We have cur (t) and cur (t′) ∈
Pcoh(P`, P r (Y). Therefore, using the density of P`, it suffices to prove that cur (t)u` = cur (t′)u`
for each u` ∈ P!(P`). Let u` ∈ P!(P`), let s = cur (t)u`, s′ = cur (t′)u` and let ur ∈ P!(Pr). We have
s ur = t (u`⊗ur) = t′ (u`⊗ur) = s′ ur since u`⊗ur ∈ P!(P` ⊗ Pr) and therefore s = s′ since Pr is dense.
Let now t, t′ ∈ Pcoh(P`⊕Pr, Y) be such that t w = t′ w for all w ∈ P!(P` ⊕ Pr). To prove that t = t′, it
suffices to prove that t ini = t′ ini for i ∈ {`, r}. Since Pi is dense, it suffices to prove that t ini u = t′ ini u
for each u ∈ P!(Pi) which follows from the fact that ini u ∈ P!Pi.

The sub-category Pcoh! of dense coalgebras is cartesian and co-cartesian and is well-pointed by
Theorem 53. We use Pcoh!

den for this sub-category.
We end this section by an important example. Indeed, it shows that natural numbers can be du-

plicated and erased even in a call-by-name setting. This will be useful for interpreting probabilistic
programs where it is necessary to sample a random variable and to use its outcome several times.

Example 54 (The natural numbers example). Observe that 1 has a natural structure of !-coalgebra
υ ∈ Pcoh(1, !1) which is obtained as the following composition of morphisms

1 !> !!> !1m0 dig> !(m0)−1

Checking that (1, υ) is indeed a !-coalgebra boils down to a simple diagrammatic computation using the
general axioms satisfied by the comonadic and monoidal structure of the ! functor.

A simple computation shows that υ∗,n = 1 for all n ∈ |!1| (remember that |!1| = N).
Let (Xi, hi)i∈I be a countable family of coalgebras. Then we can endow X =

⊕
i∈I Xi with a

structure of coalgebra h ∈ Pcoh(X, !X). By the universal property of the coproduct, it suffices to define
for each i ∈ I a morphism h′i : Xi → !X. We set h′i = !ini hi where we record that ini : Xi → X is the
ith canonical injection into the coproduct. It is then quite easy to check that (X,h) is a coalgebra using
the fact that each (Xi, hi) is a coalgebra.

Consider the case where I = N, Xi = 1 and hi = υ for each i ∈ N. Then we use N to denote the
corresponding object X and hN for the corresponding coalgebra structure, hN ∈ Pcoh(N, !N). Notice
that N is the PCS introduced in Example 43. We use n ∈ Pcoh(1,N) for the nth injection that we
consider also as the element of PN defined by nk = δn,k.

An easy computation shows that

(hN)n,µ =
{

1 if µ = k[n] for some k ∈ N,

0 otherwise.

Let t ∈ Pcoh!(N, X) for some object X of Pcoh. Then t hN ∈ Pcoh(N, X) is a linearized7version
of t. Given u ∈ PN, an easy computation shows that

t hN u =
∞∑
n=0

unt̂(n) .

7. This is not at all the same kind of linearization as the one introduced by Differential Linear Logic Ehrhard [2018].

72

CHAPTER 3. PROBABILISTIC SEMANTICS

The objects N and 1 ⊕N are obviously isomorphic, through the morphisms p ∈ Pcoh(N,1 ⊕N)
and s ∈ Pcoh(1⊕N,N) given by

pn,(1,∗) = s(1,∗),n = δn,0 and pn,(2,n′) = s(2,n′),n = δn,n′+1.

We set succ = s in2 ∈ Pcoh(N,N), so that succn,n′ = δn+1,n′ represents the successor function.
We can now define the morphim corresponding to the conditional.
Given an object X of Pcoh, we define a morphism

if ∈ Pcoh(N⊗ !X ⊗ !(!N(X), X) .

For this, we define first if0 ∈ Pcoh(1⊗ !X ⊗ !(!N(X), X) as the following composition of morphisms
(without mentioning the isomorphisms associated with the monoidality of ⊗)

!X ⊗ !(!N(X) !X X
!X ⊗ w derX

and next if+ ∈ Pcoh(N⊗ !X ⊗ !(!N(X), X) (with the same conventions as above)

N⊗ !X ⊗ !(!N(X) !N⊗ (!N(X) X
hN ⊗ w⊗ der ev σ

where σ is the isomorphism associated with the symmetry of the functor ⊗.
The universal property of ⊕ and the fact that _ ⊗ Y is a left adjoint for each object Y allows

therefore to define if ′ ∈ Pcoh((1 ⊕ N) ⊗ !X ⊗ !(!N(X), X). Finally, our conditional morphism is
if = if′ (p⊗ !X ⊗ !(!N(X)) ∈ Pcoh(N⊗ !X ⊗ !(!N(X), X). The isomorphism p ∈ Pcoh(N,1⊕N)
is defined at the end of Section 3.1.4.

Notice that the two following diagrams commute

1⊗ !X ⊗ !(!N(X) N⊗ !X ⊗ !(!N(X)

X

0⊗ Id

if
der ⊗ w

1⊗ !X ⊗ !(!N(X) N⊗ !X ⊗ !(!N(X)

!N⊗ (!N(X) X

n+ 1⊗ Id

ifn! ⊗ w
ev σ

This second commutation boils down to the following simple property: ∀n ∈ N hN n = n!, meaning
that hN promote n. Observe that it is not true however that ∀u ∈ PN hN u = u!. This means that hN
allows to duplicate and erase “true” natural numbers n but not general elements of PN which can be
considered as “computations” and not as “values”.

3.1.5 Type fixpoints
Linear Logic

All the operations of LL define monotone continuous functionals on Pcoh⊆8 which moreover commute
with the functor E. As a consequence, if Xi ⊆ Yi for i = 1, 2 then X1 (X2 ⊆ Y1 (Y2 (recall that
X⊥1 ⊆ X

⊥
2), and (commutes with directed colimits in Pcoh⊆.

Coalgebras

We will need to interpret fixpoint of coalgebras in the interpretation of ΛHP.
This notion of inclusion on probabilistic coherence spaces extends to coalgebras (again, we refer

to Ehrhard [2016] for more details) and we can define an order P ⊆ Q in Pcoh!
⊆ where P and Q are

objects of Pcoh!.
Notice that the colimit in (Pcoh!)⊆ of a directed family of dense coalgebras is dense. We use

(Pcoh!
den)⊆ for the sub-class of Pcoh!

⊆ whose objects are the dense coalgebras (with the same order
relation).
8. The order ⊆ on PCSs has been defined in Paragraph 3.1.1.

73

CHAPTER 3. PROBABILISTIC SEMANTICS

3.2 An adequate model of pure probabilistic λ-calculus
This section presents results of Ehrhard et al. [2011]. The model of probabilistic coherent spaces

was already known to be a sound model of a probabilistic extension of pure λ-calculus (see Danos and
Ehrhard [2011]). We prove the Adequacy Theorem and give a computational meaning to this model: the
probability that a term reduces to a head normal form is equal to its denotation computed on a suitable
set of values.

3.2.1 Syntax and operational semantics of Λ+

Λ+ :M,N, . . . := ∗ | x | λxM | (M)N |M +p N, p ∈ [0, 1] ∩ Q

(a) The Syntax of Λ+

(λxσM)N 1→M [N/x] M +p N
p→M M +p N

1−p→ N

M
p→M ′

λxM
p→ λxM ′

M
p→M ′

M not abstraction
(M)N p→ (M ′)N

(b) Probabilistc one-step head-reduction of p→

RedM,M ′ =

∑
π

pπ,
where π range over derivations
of M pπ→M ′

1 if M = M ′ is head-normal
0 otherwise.

Red∞M,M ′ =
∨
n

RednM,M ′

M ∼M ′, if for all closed term C,
∑
H∈hnf

Red∞(C)M,H =
∑
H∈hnf

Red∞(C)M ′,H .

(c) “Transitive closure” of p→ and observational equivalence of closed terms.

Figure 3.3 – Syntax and operational semantics of Λ+

The syntax of Λ+, the pure probabilistic lambda-calculus is given in Figure 3.3a. The term ∗ is a
constant, considered as a closed term. Although it is used in the proofs, the adequacy Theorem 64 still
holds without having ∗ in the syntax. We will consider only the head-reduction, i.e. the small step
operational semantics defined in Figure 3.3. The notation M p→ N means that the term M reduces in
one step to the term N with probability p ∈ [0, 1]. As expected, the normal forms of this strategy are
the head normal forms, i.e. the terms of the shape λx1 . . . x`.MN1 . . . Nn, with M either a variable or ∗.
The set of head normal forms is denoted as hnf, the letter H will be ranged over hnf.

As in the preceding sections, we present the head-reduction as a Markov process over the set Λ+,
following Danos and Ehrhard [2011]. We consider the set Λ+ as a set of states and the transition matrix
Red ∈ [0, 1]Λ+×Λ+ given in Figure 3.3c. Notice that, if M and N are fixed, then ΠM,N has at most
two elements, as for example in the case M = N +p N that flips a biased coin and goes on with M or
N according to the outcome. Red is a stochastic matrix (i.e. for all terms M ,

∑
N∈Λ+ RedM,N = 1),

the value of RedM,N intuitively describes the probability of evolving from the state M to the state N
in one step. A term M is absorbing whenever RedM,M = 1: the absorbing states are those which are
invariant under the transition matrix. Notice that the head normal forms are all absorbing, but there
are absorbing terms which are not hnf, such as the ever-looping term Ω. The n-th power Redn of the
matrix Red is a stochastic matrix on Λ+ (in case n = 0, we have the identity matrix on Λ+). Intuitively,
the value of RednM,N is the probability of evolving from the state M to the state N in exactly n steps.
Let M ∈ Λ+ and H absorbing. Red∞M,H is defined in Figure 3.3c as the lowest upper bound of the
monotonic sequence {RednM,H}n∈N. Intuitively, Red∞M,H defines the probability that M reaches a head
normal form H in an arbitrary number of steps.

74

CHAPTER 3. PROBABILISTIC SEMANTICS

∆M MM (λy.x)M x

(λy.y)M M

λy.x

λy.y

1
1
3 1

2
3

1

1
3

2
3

ΘM M(ΘM) (λy.x)(ΘM) x

(λy.y)(ΘM)

1 1
1
3 1

2
31

Figure 3.4 – Reduction trees of the terms ∆M and ΘM , with M = λy.x+ 1
3
λy.y.

J∗KΓ(v) = e? JxKΓ(v) = πx(v)
Jλx.MKΓ(v) = λ

(
u 7→ JMKx,Γ(u :: v)

)
JMNKΓ(v) = app

(
JMKΓ(v)

)
(JNKΓ(v))

JM +p NKΓ(v) = pJMKΓ(v) + (1− p)JNKΓ(v)

Figure 3.5 – Interpretation of a term in Λ+ as an entire function from P(DΓ) to P(D).

3.2.2 Examples
We use the following notations for terms useful to build examples:

Θ = (λxy.y(xxy))(λxy.y(xxy)), ∆ = λx.xx, Ω = ∆∆.

Figure 3.4 gives two examples of reduction tree. The reduction is non-deterministic since there are two
rules associated with the random constructor. Remark that L+pN intuitively expresses a superposition
between L and N , rather than an uncertain knowledge whether the term is L or N . Figure 3.4, for
example, shows that ∆(λy.x + 1

3
λy.y) reduces to λy.x (with probability 2

9), in which case the random
term λy.x+ 1

3
λy.y behaves behaves sometimes as λy.y and sometimes as λy.x.

We are interested in the probability that a given term reduces to a given head normal form after
an arbitrary large (but finite) number of reduction steps. Computing such a probability is not trivial
because of the presence of non-normalizing terms. For example, the probability that Θ(λy.x + 1

3
λy.y)

reduces to x must be, intuitively, the limit of 1
3
∑∞
n=0

2n
3n = 1 (see Figure 3.4). In particular, recalling

the first example, we have Redn∆M,x = 1
3 if n > 3, otherwise it is 0. Thus, Red∞∆M,x = 1

3 and, as for the
second example, RednΘM,x = 1

3
∑k
i=0
(2

3
)i, for 4(k + 1) 6 n < 4(k + 2). Hence, Red∞ΘM,x = 1.

3.2.3 Interpretation of Λ+ in Pcoh
Recall from Proposition 50 that Pcoh! has a reflexive object (D,λ, app). We recall the notation

introduced in its proof: if r ∈ P(D) and u ∈ P(DN), r :: u is the vector in P(DN) defined by π0(r :: u) = r
and πn+1(r :: u) = πn(u).

The closed terms of Λ+ are interpreted as vectors in P(D). In the general case, given a term M and
a list Γ of pairwise different variables containing all the free variables of M , the interpretation of M is
a morphism JMKΓ ∈ Pcoh!(DΓ, D), which can be seen as an entire function:

JMKΓ : P(DΓ)→ P(D).

The definition of JMKΓ is given in Figure 3.5, by structural induction on M . Using the notation of that
figure, we recall that πx(v) ∈ P(D) is the x-th component of v ∈ P(DΓ), for x ∈ Γ. Also, recall the
writing u :: v denotes the vector in P(Dx,Γ) whose x-th component is u ∈ P(D) and whose components
in Γ are given by v ∈ P(DΓ). Finally, u 7→ JMKx,Γ(u :: v) denotes the entire function mapping any
u ∈ P(D) to JMKx,Γ(u :: v) ∈ P(D). We will simply write JMK in case M is a closed term.

Notice that ∗ is interpreted by the basis vector e? in the direction of the empty multiset ? ∈ |D|, and
+p is interpreted by the p-weighted sum. Apart from these, the interpretation follows the one determined
by the categorical model of the pure λ-calculus given by the cartesian closed structure of the category
Pcoh! and the reflexive object (D,λ, app). More precisely, JxKΓ is the x-th projection of the product
DΓ, Jλx.MKΓ (v) = λ ◦! Cur

(
JMKx,Γ

)
◦! v and JMNKΓ (v) = Ev ◦!

(
app ◦!

(
JMKΓ ◦! v

)
, JNKΓ ◦! v

)
.

75

CHAPTER 3. PROBABILISTIC SEMANTICS

Next Lemma 55 precises the intuition about pairing and orthogonal. Recall that the interpretration
of a closed term M is a vector JMK in P(D) and the interpretration of an environment intended as an
infinite stack of terms is a vector u in P(DN). Then, the interaction of a term and an environment is
given by pairing and promotion: 〈JMK, u!〉.

Lemma 55. For every v, r ∈ P(D) and u ∈ P(DN), 〈app(v)(r), u!〉=〈v, (r :: u)!〉 .

3.2.4 Soundness and Adequacy
The next proposition precises the invariance of the interpretation along the reduction.:

Proposition 56 (Soundness). For every term M ∈ Λ+, and sequence Γ ⊇ FV(M),

JMKΓ =
∑
N∈Λ+

RedM,N JNKΓ.

Proof. It is a standard structural induction on M . The case M = (λx.N)L is achieved by means of
the substitution lemma JN [L/x]KΓ(v) = JNKx,Γ(JLKΓ(v), v), inferred also by a structural induction on
N .

Our main result (Adequacy Theorem 64) will give a computational meaning to the values of the
vectors in P(D) associated with the indexes in |D2|. We have |D1| = {?} and

|D2| = {m0 :: · · · :: mk :: ? s.t. k ∈ N and ∀i 6 k, mi = [?, . . . , ?] ∈Mfin(|D1|)} .

Our goal is to achieve the Adequacy Theorem 64 stating:
∑
d∈|D2|JMKd =

∑
H∈hnf Red∞M,H , that is

the probability that a closed term M reaches a head normal form is equal to the sum of the values of
JMK on the points of |D2|. We refer to Ehrhard et al. [2011] for a detailed proof of this result and give
here a sketch of the reasoning.

The first inequality
∑
d∈|D2|JMKd >

∑
H∈hnf Red∞M,H (Proposition 58) is an easy consequence of the

invariance of the interpretation under head-reduction (Proposition 56) and of the next Lemma 57 that
ensures that

∑
d∈|D2|JMKd = 1 wheneverM is a head normal form. Let us first notice that

∑
d∈|D2|JMKd

estimates the behavior of M when applied to an infinite stack made of ∗ terms. We denote e~? the vector
of P(DN) that embodied this stack defined as, ∀i ∈ N, πi(e~?) = e? ∈ P(D). It satisfies e~? = e? :: e~?, (e~?)!

is in P(D⊥) and
∀v ∈ P(D),

∑
d∈|D2|

vd =〈v, (e~?)!〉6 1.

Lemma 57. Let M ∈ Λ+
0 . If M is a head normal form, then

∑
d∈|D2|JMKd = 1.

Proof. In order to prove that 〈JMK, (e~?)!〉= 1, for a closed head normal form M , we use that M is of
the shape λx1 . . . λx`.HM1 . . .Mm, where H is either ∗ or a variable in {x1, . . . , x`}. Since e~? = e? :: e~?,
we can apply the equation of Lemma 55 from right-to-left and conclude by using the interpretation of
Figure 3.5, the retraction property app ◦! λ = Id, and the fact that app(e?)(u) = e? for any u ∈ D.

Proposition 58. Let M ∈ Λ+
0 . Then,

∑
d∈|D2|JMKd >

∑
H∈hnf Red∞M,H .

Proof. The proof is made in two steps: first, we prove that
∑
d∈|D2|JMKd >

∑
H∈hnf RednM,H by induction

on n. Then, the result follows from
∑
H∈hnf Red∞M,H = sup∞n=0

(∑
H∈hnf RednM,H

)
that holds since

RednM,H is an increasing positive sequence.The base case of the induction results from Lemma 57 and
the induction case from the invariance of the semantics under reduction Proposition 56.

Then, we turn to the converse inequality,
∑
d∈|D2|JMKd 6

∑
H∈hnf Red∞M,H . Its proof is by far more

delicate. In fact it corresponds to a quantitative version of the sensibility of Scott’s model with respect to
the standard λ-calculus Hyland [1976]: a λ-term with no head normal form is interpreted by the bottom
element of the model. The inequality will be proved using a notion of formal approximation relating the
syntactical behavior of the closed terms in Λ+ with their denotations in D.

The converse of the soundness Proposition 58 is a consequence of the adequacy Lemma 63. We adapt
the technique of logical relations (see e.g. Plotkin [1977]; Reynolds) to our quantitive framework. The
idea is to find a relation C between vectors and terms relating the values of the firsts to the computational
behavior of the seconds. Basically, one extends the operation on PCSs defining D to an operation Φ

76

CHAPTER 3. PROBABILISTIC SEMANTICS

acting on the relations in P(D) × Λ+
0 (Definition 59). Then, C is the result of the closure by Φ of the

relation between v and M defined by
∑
d∈|D2| vd 6

∑
H∈hnf Red∞M,H . However, the operation Φ is not

monotonic, hence finding its closure is not trivial. We then use a technique due to Pitts [1994], consisting
in deriving C from a fixed point of a monotonic operation Ψ (Definition 60, Proposition 62) associated
with Φ.

We will use this technique again for the Adequacy proof for Λp
HP (see §3.4.4).

Definition 59. For any relation R ⊆ P(D)× Λ+
0 , we define the relation Φ(R) ⊆ P(D)× Λ+

0 as follows:

Φ(R) =

(v,M) s.t. ∀u ∈ P(DN),∀n ∈ N, ∀N0, . . . , Nn−1 ∈ Λ+

0
if ∀i < n, (πi(u), Ni) ∈ R and if ∀i > n, πi(u) = e?,
then 〈v, u!〉6

∑
H∈hnf Red∞(MN0...Nn−1),H

 .

Let us underline the analogy between Φ and the operation X 7→ (!XN)⊥ defining our reflexive object
D. Indeed, P((!XN)⊥) is the set of those vectors v ∈ (R+)|!X

N| such that for all u ∈ (R+)|X
N| , if for

every i ∈ N, πi(u) ∈ P(X), then 〈v, u!〉6 1.
By e~? ∈ P(DN), (v,M) ∈ Φ(R) entails

∑
d∈|D2| vd =〈v, (e~?)!〉6

∑
H∈hnf Red∞M,H . Indeed, we will

define a relation C such that (JMK,M) ∈ C for any closed term M ∈ Λ+
0 . The relation C is in fact a

fixed point for Φ.

Definition 60. Given a pair (R+, R−) ∈
(
P(D × Λ+

0)
)2, let Ψ(R+, R−) = (Φ(R−),Φ(R+)) ∈

(
P(D ×

Λ+
0)
)2. The order v on

(
P(D×Λ+

0)
)2 is (R1, R2) v (R3, R4) iff R1 ⊆ R3 and R2 ⊇ R4. Clearly, v defines

a complete lattice on
(
P(D×Λ+

0)
)2. We denote by

d
its greatest lower bound and we consider the greatest

lower bound of the set of the pre-fixed points of Ψ: (C+,C−) =
d
{(R+, R−) s.t. Ψ(R+, R−) v (R+, R−)}

Lemma 61. We have Ψ(C+,C−) = (C+,C−). In particular, C+ = Φ(C−) and C− = Φ(C+).

Proof. As R ⊆ R′ entails Φ(R′) ⊆ Φ(R), Ψ is monotone increasing with respect to v. Hence, by Tarski’s
Theorem on fixed points Tarski [1955] the greatest lower bound of the set of the pre-fixed points of Ψ is
the least fixed point of Ψ. In particular, by definition of Ψ, Φ(C+) = C− and Φ(C−) = C+.

Proposition 62 shows that actually C+ = C−, so this is a fixed point for Φ. The inclusion C+ ⊆ C−
follows easily from the previous lemma, while the proof of the converse C− ⊆ C+ uses the approximations
of the vectors in P(D) given by the chain {D`}`∈N of which D is the limit.

Proposition 62. We have C+ = C−, which is then a fixed point of Φ. From now on, we denote it
simply by C.

We now state that (JMK,M) ∈ C = Φ(C) for every closed term M . The proof, which is quite
involved, is achieved by structural induction on M .

Lemma 63. Let M ∈ Λ+, Γ = (y0, . . . , yn−1) ⊇ FV(M), (u0, N0), . . . , (un−1, Nn−1) ∈ C. We have:

JMKΓ(u0, . . . , un−1)CM{N0/y0, . . . , Nn−1/yn−1}.

From the Adequacy Lemma 63, one can easily derive a number of results giving a computational
meaning to the probabilistic coherence spaces interpretation of terms.

Theorem 64. For any M ∈ Λ+
0 , we have∑

d∈|D2|

JMKd =
∑
H∈hnf

Red∞M,H .

Proof. Proposition 58 gives one inequality. For the converse, Lemma 63 gives (JMK,M) ∈ C, so by
Proposition 62, (JMK,M) ∈ Φ(C). Hence, by definition of Φ, 〈JMK, e!

~?〉6
∑
H∈hnf Red∞M,H . We conclude

by recalling that 〈JMK, e!
~?〉=

∑
d∈|D2|JMKd (see Equation (3.2.4)).

A corollary of the adequacy Theorem 64 is the soundness of the order 6 on vectors (Equation (3.1))
with respect to the following operational pre-order 4 on terms.

Definition 65. For any terms M,N , we define M 4 N whenever for every context C[·],∑
H∈hnf

Red∞C[M],H 6
∑
H∈hnf

Red∞C[N],H .

77

CHAPTER 3. PROBABILISTIC SEMANTICS

We prove by a structural induction on the contexts that the interpretation J·K is context closed:

Lemma 66. If JMKΓ 6 JNKΓ, then for every context C[·], JC[M]KΓ 6 JC[N]KΓ.

This entails, thanks to the Adequacy Theorem 64, that

Corollary 67. Let M,N ∈ Λ+ and Γ ⊇ FV(M) ∪ FV(N). Then JMKΓ 6 JNKΓ entails M 4 N .

3.3 A fully abstract model of pPCF
This section presents results from Ehrhard et al. [2018a]. We define an extension of the probabilistic

PCF studied in Danos and Ehrhard [2011], with a let construction. More precisely, this construction is
encoded from a more primitive one: ifzm(n,M, z · N) that tests if n is equal to 0, then it goes on with
M , else it goes on with N by passing the value n−1 to the variable z in N . This conditional reflects the
coalgebraic structure of natural numbers described in Example 54. Actually, this coalgebraic structure
was introduced in order to allow the let construction (see §3.3.2) which reflects a call-by-value handling
of natural numbers. Moreover, it allows to encode the Las Vegas example (see §3.3.2) presented in the
introduction of this chapter (see Page 61).

3.3.1 Syntax and operational semantics of pPCF

A,B . . . := N | A⇒ B

(a) Types of pPCF

M,N, . . . := n | succ(M) | x | λxAM | (M)N | fix(M) |
ifzm(L,M, z ·N) | coin(p), p ∈ [0, 1] ∩ Q

(b) Terms of ΛpN

Γ, x : A ` x : A
n ∈ N

Γ ` n : N
Γ `M : N

Γ ` succ(M) : N

Γ, x : A `M : B
Γ ` λxAM : A⇒ B

Γ `M : A⇒ B Γ ` N : A
Γ ` (M)N : B

Γ `M : A⇒ A
Γ ` fix(M) : A

Γ ` L : N Γ `M : A Γ, z : N ` N : A
Γ ` ifzm(L,M, z ·N) : A

p ∈ [0, 1] ∩ Q

Γ ` coin(p) : N

A typing context is a sequence Γ = (x1 : A1, . . . , xn : An) where the xi’s are pairwise distinct variables.
(c) Typing system of pPCF

Figure 3.6 – Syntax of pPCF

The syntax of ΛpN of our probabilistic extension pPCF of PCF is given in Figure 3.6. Notice that there
is only one ground type N , the type of natural numbers. The booleans true and false are represented
by 1 or 0. The probabilistic choice is encoded by the term coin(p) that reduces to 0 with probability p
and to 1 with probability 1− p.

The term ifzm(M, z, P ·R) deserves a comment. It relies on the fact that N is interpreted by N which
is recursively defined as a coproduct N = 1⊕N. The canonical coalgebra structure of the type N (see
Example 54) allows to discard or duplicate a value of type N . This explains why it can be passed to
the term of type R through the variable z whose linear type, in a standard call-by-name translation of
PCF into Linear Logic, would be !N and not N . Indeed, the coalgebra structure is precisely a linear
morphism N(!N.

Proposition 68. Let M be a term and Γ be a typing context. There is at most one type A such that
Γ `M : A.

Lemma 69. If Γ, x : A `M : B and Γ ` N : A, then Γ `M [N/x] : B.

The reduction rules of pPCF are given in Figure 3.7 p.79. Given two terms M , M ′ and a real number
p ∈ [0, 1], we define M p→ M ′, meaning that M reduces in one step to M ′ with probability p, by the
following deduction system.

78

CHAPTER 3. PROBABILISTIC SEMANTICS

(
λxAM

)
N →w M [N/x] fix(M)→w (M) fix(M)

succ(n)→w n+ 1 ifzm(0, P, z ·R)→w P ifzm(n+ 1, P, z ·R)→w R [n/z]

(a) Deterministic one-step reduction →w

M →w M
′

M
1→M ′

coin(p) p→ 0 coin(p) 1−p→ 1

(b) Probabilistic one-step reduction p→

E[·] := (E[])M | ifzm(E[],M, z ·N) | succ(E[])

E[M] p→ E[N], whenever M p→ N

(c) Evaluation contexts and context closure of reduction p→.

RedM,M ′ =

p if M p→M ′

1 if M is weak-normal and M ′ = M

0 otherwise.

RednM,M ′ = (Red · Redn)M,M ′ =
∑
M0

RedM,M0RednM0,M ′

Red∞M,M ′ =
∨
n

RednM,M ′

(d) Stochastic matrix of reduction

M ∼M ′, if Red∞(C)M,0 = Red∞(C)M ′,0 for all closed term C of type A⇒ N .

(e) Observational equivalence of closed terms.

Figure 3.7 – Operational semantics of pPCF

We define first a deterministic weak reduction relation →w (see Figure 3.7a) and then we define the
probabilistic reduction relation p→, for p ∈ [0, 1] ∩ Q (see figure 3.7b). This reduction can be called
weak-head reduction (or simply weak reduction) since it always reduces the leftmost outermost redex
and never reduces redexes under abstractions. We say that M is weak-normal if there is no reduction
M

p→M ′.
In order to define observational equivalence, we need to represent the probability of convergence of

a term to a normal form. As in Danos and Ehrhard [2011], we consider the reduction as a discrete
time Markov chain whose states are terms and stationary states are weak normal terms. We then
define a stochastic matrix indexed by terms Red ∈ [0, 1]pPCF×pPCF (see Figure 3.7d). Saying that Red is
stochastic means that the coefficients of Red belong to [0, 1] and that, for any given term M , one has∑
M ′ RedM,M ′ = 1 (actually there are at most two terms M ′ such that RedM,M ′ 6= 0).
For all M,M ′ ∈ pPCF, if M ′ is weak-normal then the sequence (RednM,M ′)∞n=1 is monotone and

included in [0, 1], and therefore has a lowest upper bound that we denote as Red∞M,M ′ which defines a
sub-stochastic matrix (taking Red∞M,M ′ = 0 when M ′ is not weak-normal). When M ′ is weak-normal,
the number p = Red∞M,M ′ is the probability that M reduces to M ′ after a finite number of steps.

For two closed terms M1, M2 of type A, the observational equivalence is given in Figure 3.7e. For
simplicity we consider only closed terms M1 and M2. We could also define an observational equivalence

79

CHAPTER 3. PROBABILISTIC SEMANTICS

on non closed terms, replacing the term C with a context C[·] which could bind free variables of theMi’s.
This would not change the Full-Abstraction result. The choice of testing the probability of reducing to 0
in the definition of observational equivalence is arbitrary: we would get the same equivalence by replacing
0 by n.

3.3.2 Examples
We give a series of terms written in pPCF which implement natural simple algorithms to illustrate

the expressive power of the language. We explain intuitively the behavior of these programs, and one
can also have a look at §3.3.3 where the denotational interpretations of these terms in Pcoh are given,
presented as functions.
Given a type A, we set ΩA = fix(λxA x) so that ` ΩA : A, which is the ever-looping term of type A.

Arithmetics

The predecessor function, which is usually a basic construction of PCF, is defined as:

pred = λxN ifzm(x, 0, z · z)

it is clear then that (pred) 0→w
∗ 0 and that (pred)n+ 1→w

∗ n.
The addition function can be defined as:

add = λxN fix(λaN⇒N λyN ifzm(y, x, z · succ((a) z)))

and it is easily checked that ` add : N ⇒ N ⇒ N .
The exponential function can be defined as follows and satisfies (exp2)n→w

∗ 2n.

exp2 = fix(λeN⇒N λxN ifzm(x,1, z · (add) (e) z (e) z))

In the same line, one defines a comparison function cmp

cmp = fix(λcN⇒N⇒N λxN λyN ifzm(x, 0, z · ifzm(y, 1, z′ · (c) z z′)))

such that (cmp)nm reduces to 0 if n 6 m and to 1 otherwise.

The let construction

This version of pPCF, which is globally call-by-name, offers however the possibility of handling integers
in a CBV way. For instance, we can set

let x be M in N = ifzm(M,N [0/x] , z ·N [succ(z)/x])

and this construction can be typed as:

Γ `M : N Γ, x : N ` N : A
Γ ` let x be M in N : A

One can also check that the following reduction inference holds

M
p→M ′

let x be M in N p→ let x be M ′ in N
whereas it is no true that

M
p→M ′

N [M/x] p→ N [M ′/x]

(consider cases where x does not occur in N , or occurs twice. . .). We have of course

let x be n in N →w N [θ(n)/x]

where θ(0) = 0 and θ(n+ 1) = succ(n) (which reduces to n+ 1 in one deterministic step) by definition
of this construction.

80

CHAPTER 3. PROBABILISTIC SEMANTICS

Random generators

Using these constructions, we can define a closed term unif2 of type N ⇒ N which, given an integer
n, yields a uniform probability distribution on the integers 0, . . . , 2n − 1:

unif2 = fix(λuN⇒N λxN ifzm(x, 0, z · ifzm(coin(1/2), (u) z, z′ · (add) (exp2) z (u) z))) .

Observe that, when evaluating (unif2)M (where ` M : N), the term M is evaluated only once thanks
to the CBV feature of the conditional construct. Indeed, we do not want the upper bound of the interval
on which we produce a probability distribution to change during the computation (the result would be
unpredictable!).

We use a rejection sampling, we can define a function unif which, given an integer n, yields a uniform
probability distribution on the integers 0, . . . , n:

unif = λxN let y be x in fix(λuN let z be (unif2) y in ifzm((cmp) z y, z, w · (u) y))

One checks easily that ` unif : N ⇒ N . Given n ∈ N, this function applies iteratively unif2 until the
result is 6 n. It is not hard to check that the resulting distribution is uniform (with probability 1

n+1 for
each possible result).

Last, let n ∈ N and let ~p = (p0, . . . , pn) be such that pi ∈ [0, 1] ∩ Q and p0 + · · ·+ pn 6 1. Then one
defines a closed term ran(~p) which reduces to i with probability pi for each i ∈ {0, . . . , n}. The definition
is by induction on n.

ran(p0, . . . , pn) =

0 if p0 = 1 whatever be the value of n
ifzm(coin(p0), 0, z · ΩN) if n = 0
ifzm(coin(p0), 0, z · succ(ran(p1

1−p0
, . . . , pn

1−p0
))) otherwise

Observe indeed that in the first case we must have p1 = · · · = pn = 0.

A simple Las Vegas program

We present the example that is the starting point of the coalgebra point of view. Indeed, we were stuck
in encoding this basic probabilistic program, because we did not know how to duplicate the outcomes
of a random variable without sampling it again. The introduction of the let construct solved this issue
elegantly. This construct is available because natural numbers are interpreted by a coalgebra. Therefore,
they can be discarded or duplicated.

Given a function f : N→ N and n ∈ N, such that for half of the k ∈ {0, . . . , n}, (f) k = 0 and for the
other half (f) k = 1, find a k ∈ {0, . . . , n} such that f(k) = 0.

This can be done by iterating random choices of k until we get a value such that f(k) = 0: this is
probably the simplest example of a Las Vegas algorithm.

The following function does the job:

LV f n = fix(λrN let y be (unif)n in ifzm((f) y, y, z · r))

with ` LV f n : (N ⇒ N)⇒ N ⇒ N . Our CBV integers are crucial here since without our version of the
conditional, it would not be possible to get a random integer and use this value y both as an argument
for f and as a result if the expected condition holds.

Let us describe the stochastic matrix associated to the reduction of LV f n (see its definition in Fig-
ure 3.7d) Red1

LV f n,k = 1
n+1 .

If (f) k = 0, then Red1
LV f n,k = 1

n+1 . Yet, if (f) k = 1, which happens with probability 1
2 , then LV f n

reduces to itself but is not a weak normal form, so that: Red1
LV f n,LV f n = 1

2 .
We iterate this process and get a recursive equation:

∀j, ∀k ∈ {0, . . . , n} s.t. (f) k = 0, Redj+1
LV f n,k = Red1

LV f n,LV f nRedjLV f n,k + Red1
LV f n,kRedjk,k

= 1
2 RedjLV f n,k + 1

n+1

Red∞LV f n,k = 1
n+1

∞∑
j=0

1
2j = 2

n+1 .

Now, by summing over all the k such that (f) k = 0, we get that LV f n will output the index of a cell
that contains 0 with probability 1.

Similarly, we can compute that ∀k ∈ {0, . . . , n} s.t. (f) k = 1, Redj+1
LV f n,k = 0.

81

CHAPTER 3. PROBABILISTIC SEMANTICS

3.3.3 Interpretation of pPCF in Pcoh
We first give the interpretation of types. Given a type A, we define an object [A] of Pcoh as follows:

[N] = N and [A⇒ B] = [A]⇒ [B].
Then we give the interpretation of terms. Given a context Γ = (x1 : A1, . . . , xk : Ak), a type A and a

termM such that Γ `M : A, we define a morphism JMKΓ ∈ Pcoh!([Γ], [A]) where [Γ] = [A1] & · · · & [Ak].
Equivalently, we can see JMKΓ as a morphism in Pcoh(JΓK!, [A]) where JΓK! = ![A1]⊗ · · · ⊗ ![Ak]. By
Theorem 45, this morphism can be fully described as a function ĴMKΓ :

∏k
i=1 P[Ai]→ P[A].

The interpretation of terms, given in Figure 3.8 are defined by induction on the typing derivation of
Γ `M : A, or, equivalently, on M .

• If M = xi, then JMKΓ = pri, that is ĴMKΓ(u1, . . . , uk) = ui.

• If M = n, then JMKΓ = n ◦ B where B is the unique morphism in Pcoh!([Γ],>). That is
ĴMKΓ(#»u) = n.

• If M = coin(p), for some p ∈ [0, 1] ∩ Q, then JMKΓ = p0 + (1− p)1.

• If M = succ(P) with Γ ` P : N , then JP KΓ ∈ Pcoh!([Γ],N). We set

ĴMKΓ(#»u) =
∞∑
n=0

(ĴP KΓ(#»u))nn+ 1.

• If M = ifzm(P,Q, z · R), Γ ` P : N , Γ ` Q : A and Γ, z : N ` R : A then by inductive hypothesis
JP KΓ ∈ Pcoh!([Γ],N), JQKΓ ∈ Pcoh!([Γ], [A]) and JRKΓ,z:N ∈ Pcoh!([Γ]⊗ !N, [A]). We set

ĴMKΓ(#»u) = (ĴP KΓ(#»u))0ĴQKΓ(#»u) +
∞∑
n=0

(ĴP KΓ(#»u))n+1 ̂JRKΓ,z:N (#»u , n) .

• If M = (P)Q with Γ ` P : A⇒ B and Γ ` Q : A then we have JP KΓ ∈ Pcoh!([Γ], ![A]([B]) and
JQKΓ ∈ Pcoh!([Γ], [A]). We set ĴMKΓ(#»u) = ĴP KΓ(#»u)(ĴQKΓ(#»u)).

• If M = λxA P with Γ, x : A ` P : B, then JP KΓ,x:A ∈ Pcoh!([Γ]⊗ ![A], [B]). We set ĴMKΓ(#»u)(u) =
̂JP KΓ,x:A(#»u , u).

• If M = fix(P) with Γ ` P : A⇒ A, then JP KΓ ∈ Pcoh!([Γ], ![A]([A]). For u ∈ P(JAK), we define
f(u) = ĴP KΓ(#»u)(u). Then, we set ĴMKΓ(#»u) = supn∈N f

n(0).

Figure 3.8 – Interpretation of pPCF in Pcoh. The terms are supposed typed as in Figure 3.6c, and ~u ∈ JΓK.

Examples

We refer to the various terms introduced in Section 3.3.2 and describe their interpretations as func-
tions.

For instance, We have ` pred : N ⇒ N so JpredK ∈ P(N⇒ N), and one checks easily that:

ĴpredK(u) = (u0 + u1)0 +
∞∑
n=1

un+1n, ĴaddK(u)(v) =
∞∑
n=0

(n∑
i=0

uivn−i

)
n,

Ĵexp2K(u) =
∞∑
n=0

un2n, ĴcmpK(u)(v) =
(∑
i6j

uivj

)
0 +

(∑
i>j

uivj

)
1

Jran(#»p)K =
n∑
i=0

pii, ĴunifK(u) =
∞∑
n=0

un
n+ 1

(n∑
i=0

i
)

=
∞∑
i=0

(∞∑
n=i

un
n+ 1

)
i

For the let construction let x be P in R where Γ ` P : N and Γ, z : N ` R : A,

̂Jlet x be P in RKΓ(#»u) =
∞∑
n=0

(ĴP KΓ(#»u))n ̂JRKΓ,z:N (#»u , n) .

82

CHAPTER 3. PROBABILISTIC SEMANTICS

We postpone the computation of the semantics of our simple Las Vegas algorithm presented in page 84
as it will be an easy consequence of the Adequacy Lemma 76.

3.3.4 Soundness and Adequacy
We begin by the Substitution Lemma that relates syntactical substitution with semantical composi-

tion:

Lemma 70. If Γ, x : A ` M : B and Γ ` P : A, then JM [P/x]KΓ = JMKΓ,x:A ◦ 〈Id[Γ], JP KΓ〉 in Pcoh!.
In other words, for any #»u ∈ P[Γ], we have ̂JM [P/x]KΓ(#»u) = ̂JMKΓ,x:A(#»u , ĴP KΓ(#»u)).

The proof is a simple induction on M . The simplest way to write it is to use the functional charac-
terization of the semantics.

Let ΛAΓ be the set of all terms M such that Γ ` M : A. In the case where Γ is empty, and so the
elements of ΛAΓ are closed, we use ΛA0 to denote that set.

We formulate the invariance of the interpretation of terms under weak-reduction, using the
stochastic reduction matrix introduced in §3.3.1. It results from a simple case analysis on the shape of
M and by using the Substitution Lemma.

Theorem 71. Let Γ `M : A. Then,

JMKΓ =
∑

M ′∈ΛAΓ

RedM,M ′JM ′KΓ.

As it is often the case, the Adequacy Theorem 77 that relates denotational and observational equiva-
lence is a consequence of the Adequacy Lemma 76, which relates the denotation of a close term `M : N
with its operational semantics:

∀n ∈ N, Red∞M,n = (JMK)n.

The left-to-right inequality results from the invariance of the semantics:

Theorem 72. Let M be such that `M : N . Then,

∀n ∈ N, Red∞M,n 6 JMKn .

Proof. Iterating Theorem 71, we get ∀k ∈ N, JMK =
∑
M ′∈ΛN0

RedkM,M ′JM ′K. Therefore, for all k ∈ N,
JMKn > RedkM,n and the result follows, since n is weak-normal. �

For the converse inequality, we use a logical relation that encodes this inequality for ground types and
that transposes it to higher type through the logical relation machinery, following the method introduced
in Amadio and Curien [1998], simplifying the technique of Plotkin [1977].

For any type A we define a logical relation RA ⊆ ΛA0 × P[A] by induction on types as follows:

• M RN u if ∀n ∈ N un 6 Red∞M,n

• M RA⇒B t if ∀P ∈ ΛA0 ∀u ∈ P[A] P RA u ⇒ (M)P RB t̂(u) . Here, t ∈ P[A⇒ B] and hence
t̂ : P[A]→ P[B]

The following Lemma 73, shows that the logical relation follows the definition of Red∞ as the lowest
upper bound of Redn (see Figure 3.7). It is a consequence of Proposition 48 using an induction on types.

Lemma 73. Let M ∈ Λσ0 . Then M Rσ 0. Moreover, if (u(i))i∈N is an increasing sequence in P[σ] such
that ∀i ∈ N M Rσ u(i), then M Rσ supi∈N u(i).

The next lemma, proved by induction on types, describes the behavior of the logical relation with
respect to antireduction.

Lemma 74. Let σ be a type, M,M ′ ∈ Λσ0 and u ∈ P[σ]. Then

M ′ Rσ u⇒M Rσ RedM,M ′u .

The logical relation Lemma 75 is proved by induction on the typing derivation of a term M and by
inspection of cases.

83

CHAPTER 3. PROBABILISTIC SEMANTICS

Lemma 75. Assume that Γ ` M : σ where Γ = (x1 : σ1, . . . , x` : σ`). For all families (Pi)`i=1 and
(ui)`i=1 one has

(∀i Pi Rσi ui)⇒M [P1/x1, . . . , P`/x`] Rσ JMKΓ(u1, . . . , u`)

A direct consequence of the definition of the logical relation at ground type and of this theorem is
that if ` M : N we have ∀n ∈ N, Red∞M,n > JMKn. By Theorem 72 we have therefore the following
operational interpretation of the semantics of ground type closed terms.

Theorem 76. If `M : N then, for all n ∈ N, Red∞M,n = JMKn.

As a consequence, we get the semantics of the Las Vegas algorithm presented in Page 84

JLV f nKk =
{ 2

n+1 , if (f) k = 0
0, otherwise. (3.4)

As usual, the Adequacy Theorem 77 follows straightforwardly from Theorem 76. The observational
equivalence relation on terms is defined in Figure 3.7e.

Theorem 77 (Adequacy). Let M and M ′ be closed terms of pPCF with same type.
If JMK = JM ′K then M ∼M ′.

Proof. Let M and M ′ closed terms with type A. Assume that JMK = JM ′K. Let C be a closed term of
type A⇒ N . Theorem 76 implies:

Red∞(C)M,0 = J(C)MK0 = (ĴCK(JMK))0 = (ĴCK(JM ′K))0 = J(C)M ′K0 = Red∞(C)M ′,0 .

�

3.3.5 Full Abstraction
We want to prove that Pcoh provides an equationally fully abstract model of pPCF, that is: two

terms have the same denotation if and only if they are observationally equivalent. Thanks to Adequacy
Theorem 77, we already proved the direct implication. This paragraph is devoted to the converse
implication, that is: given two terms M and M ′ such that Γ ` M : A and Γ ` M ′ : A, if M ∼ M ′ then
JMKΓ = JM ′KΓ.

Let us first convey some intuitions about our approach to Full Abstraction. The first thing to say is
that the usual method, which consists in proving that the model contains a collection of definable elements
which is dense in a topological sense, does not apply here because definable elements are very sparse in
Pcoh. For instance, in P[N ⇒ N], there is an element t which is characterized by t̂(u) = 4u0u10. We
have t ∈ P[N ⇒ N] because, for any u ∈ PN we have u0+u1 6 1 and hence u0u1 6 u0(1−u0) 6 1/4, and
therefore t̂(u) ∈ [0, 1]. Actually, t is not definable in pPCF and the best definable approximation of t is
obtained by means of the term λx ifzm(x, ifzm(x,ΩN , z′ · ifzm(z′, 0, z′′ · ΩN)), z · ΩN) whose interpretation
s satisfies ŝ(u) = 2u0u10.

Our approach lies on a reasoning by contradiction. Let M and M ′ be terms (that we suppose
closed for simplifying and without loss of generality) such that ` M : A and ` M ′ : A. Assume
that JMK 6= JM ′K. We have to prove that M 6∼ M ′. Let us choose any point of the web, a ∈ |[A]|,
which is an index where the matrices JMK and JMK′ differ: JMKa 6= JM ′Ka. This point a of the web
encodes the structure of a context C such that ` C : A⇒ N that will separate observationally the two
terms M and M ′. Indeed, we will have J(C)MK0 6= J(C)M ′K0, so that by Adequacy Lemma 76, we get
Red∞(C)M,0 6= Red∞(C)M ′,0 which contradicts observational equivalence (see Figure 3.7e).

Following Bucciarelli et al. [2011], in order to define C, independently of M and M ′, we associate
with a a testing term a− such that ` a− : N ⇒ A⇒ N and which has the following essential property:

There is an n ∈ N – depending only on a – such that, given w,w′ ∈ P[A] such that wa 6= w′a
there are rational numbers p0, . . . , pn−1 ∈ [0, 1] such that Ĵa−K(u)(w)0 6= Ĵa−K(u)(w′)0 where
u = p00 + · · ·+ pn−1n− 1.

Applying this property to w = JMK and w′ = JM ′K, we obtain the required term F by setting
F = (a−) ran(p0, . . . , pn−1).

In order to prove this crucial property of a−, we consider the map ϕw : u 7→ Ĵa−K(u)(w)0 which
is an entire function depending only on the n first components u0, . . . , un−1 of u ∈ PN (again, n is a
non-negative integer which depends only on a).

84

CHAPTER 3. PROBABILISTIC SEMANTICS

We prove that the coefficient in ϕw of the monomial u0u1 . . . un−1 is wa.

It follows that the functions ϕw and ϕw′ are different, and therefore take different values on an
argument of shape p00 + · · ·+ pn−1n− 1 where all pis are rational, because ϕw and ϕw′ are continuous
functions.

Let us now give the exact statement of the theorems that are proved in full details in Ehrhard and
Tasson [2018].

We first state a separation theorem which expresses that our testing terms a−, when fed with suitable
rational probability distributions, are able to separate any two distinct elements of the interpretation of
a type.

Theorem 78 (Separation). Let A be a type and let a ∈ |[A]|. Let w,w′ ∈ P[A] be such that wa 6= w′a.
Let n = |a|−. There is a sequence (qi)n−1

i=0 of rational numbers such that the element u ∈ PN, defined by
(u)i = qi if 0 6 i < n and (u)i = 0 otherwise, satisfies Ja−K(u)(w) 6= Ja−K(u)(w′).

We have now all the ingredients to prove the Full Abstraction theorem:

Theorem 79 (Full Abstraction). Let A be a type, Γ be a typing context and let M and M ′ be terms
such that Γ `M : A and Γ `M ′ : A. If M ∼M ′. Then, JMKΓ = JM ′KΓ.

Proof. Assume that JMKΓ 6= JM ′KΓ.
Let (x1 : A1, . . . , xk : Ak) be the typing context Γ. Let N = λx1

A1 · · ·λxkAkM and N ′ =
λx1

A1 · · ·λxkAkM ′ be closures of M and M ′. Let τ = A1 ⇒ · · ·Ak ⇒ A.
Let w = JNK and w′ = JN ′K. Since w 6= w′, there is a ∈ |[τ]| such that wa 6= w′a. By Separation

Theorem 78, we can find a sequence (qi)n−1
i=0 of rational numbers such that for all i ∈ {0, . . . , n− 1} one

has qi > 0 and
∑n−1
i=0 qi 6 1. Then, u =

∑n−1
i=0 qiei ∈ PN satisfies Ja−K(u)(w)0 6= Ja−K(u)(w′)0.

Observe that u = Jran(q0, . . . , qn−1)K.
Let C be the following term:

C =
(
a−
)

ran(q0, . . . , qn−1)
which satisfies ` C : A⇒ N , J(C)MK = Ja−K(u)(w) and J(C)M ′K = Ja−K(u)(w′).

Applying Theorem 76, we get

Red(N)∞(C)M,0 6= Red(N)∞(C)M ′,0

which shows that M 6∼M ′. �

3.4 A fully abstract model of pCBPV
This section presents results from Ehrhard and Tasson [2018]. In the preceding Section 3.3, we

presented an extension of the probabilistic PCF of Danos and Ehrhard [2011]. Although it is globally
call-by-name, we introduced a let constructor that allows to handle values of ground-type natural
numbers as in a call-by-value. Now, we turn to Λp

HP, a probabilistic extension of call-by-push-value
described in Figure 3.9. We generalize the call-by-value strategy from natural numbers to all ground-
types that are values. This notion of value is defined syntactically in Figure 3.9a and corresponds, in
the semantics to coalgebras described in §3.1.4. We decompose the language pPCF of the preceding
paragraph with respect to the value type and the general types, and get a language which is closed to
polarized Linear Logic. Then, in §3.4.2, we encode the constructions of pPCF (among others) in Λp

HP.
The operational semantics (see Figure 3.10f) and the Soundness Theorem 81 are straightforward

generalizations. However, the Adequacy Theorem 84 for Λp
HP is more involved and implies the Adequacy

Theorem 77 for pPCF. Indeed, the terms of pPCF can be encoded in our new language. The Full-
abstraction Theorem 88 for Λp

HP holds and is proved along the same sketch of proof as the Full-abstraction
Theorem 79 for pPCF. Yet, it necessitates to use the dense property that we introduced for coalgebras
on Page 71.

3.4.1 Syntax and operational semantics of Λp
HP

We introduce in Figure 3.9 the syntax of Λp
HP of call-by-push-value (where HP stands for “half

polarized”).
There are two kinds of types: positive types and general types which are defined by mutual induction.

The type 1 is the neutral element of ⊗. Observe also that there are no restriction on the variance of types

85

CHAPTER 3. PROBABILISTIC SEMANTICS

Positive types ϕ,ψ, . . . := 1 | !σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Rec ζ · ϕ
General types σ, τ, . . . := ϕ | ϕ(σ

(a) Types of Λp
HP

M,N, . . . := x | () | M ! | derM | (M,N) | in`M | inrM | λxϕM | 〈M〉N | fix x!σM

| case(M,x` ·N`, xr ·Nr) | pr`M | prrM | coin(p), p ∈ [0, 1] ∩ Q

| fold(M) | unfold(M)

(b) Terms of Λp
HP

P ` () : 1 P, x : ϕ ` x : ϕ
P `M : σ
P `M ! : !σ

P `M : !σ
P ` derM : σ

P, x : ϕ `M : σ
P ` λxϕM : ϕ(σ

P `M : ϕ(σ P ` N : ϕ
P ` 〈M〉N : σ

P, x : !σ `M : σ
P ` fix x!σM : σ

P `M : ϕ` ⊗ ϕr i ∈ {`, r}
P ` priM : ϕi

P `M` : ϕ` P `Mr : ϕr
P ` (M`,Mr) : ϕ` ⊗ ϕr

P `M : ϕi i ∈ {`, r}
P ` iniM : ϕ` ⊕ ϕr P ` coin(p) : 1⊕ 1

P `M : ϕ` ⊕ ϕr P, x` : ϕ` `M` : σ P, xr : ϕr `Mr : σ
P ` case(M,x` ·M`, xr ·Mr) : σ

P `M : ψ [Rec ζ · ψ/ζ]
P ` fold(M) : Rec ζ · ψ

P `M : Rec ζ · ψ
P ` unfold(M) : ψ [Rec ζ · ψ/ζ]

A typing context is an expression P = (x1 : ϕ1, . . . , xk : ϕk) where all types are positive and the xis are
pairwise distinct variables.

(c) Typing system of Λp
HP.

Figure 3.9 – Syntax of Λp
HP.

in the recursive type construction: for instance, Rec ζ · ϕ is a well-formed positive type if ϕ = !(ζ (ζ),
where ζ has a negative and a positive occurrence. Notice that our positive types are positive in the sense
of logical polarities, and not of the variance of type variables!

Values are particular Λp
HP terms (they are not a new syntactic category) defined in Figure 3.10a. It

is easy to check that they are all typed with positive types.
Figure 3.10 defines a deterministic weak reduction relation →w and a probabilistic reduction relation

p→. This reduction is weak in the sense that we never reduce within a “box” M ! or under a λ.
The distinguishing feature of this reduction system is the role played by values in the definition of→w.

Consider for instance the case of the term pr` (M`,Mr); one might expect this term to reduce directly
to M` but this is not the case. One needs first to reduce M` and Mr to values before extracting the first
component of the pair (the terms pr` (M`,Mr) and M` have not the same denotational interpretation in
general). Of course, replacing Mi with M !

i allows a lazy behavior. Similarly, in the →w rule for case,
the term on which the test is made must be reduced to a value (necessarily of shape in`V or inrV if the
expression is well typed) before the reduction is performed. This allows to “memoize” the value V for
further usage: the value is passed to the relevant branch of the case through the variable xi.

Given two terms M , M ′ and a real number p ∈ [0, 1], M p→M ′ means that M reduces in one step to
M ′ with probability p.

We say that M is weak normal if there is no p and no reduction M p→M ′. It is clear that any value
is weak normal. When M is closed, M is weak normal iff it is a value or an abstraction.

86

CHAPTER 3. PROBABILISTIC SEMANTICS

V,W, . . . := x | () | M ! | (V,W) | in`V | inrV | fold(V) .

(a) Values of Λp
HP

derM ! →w M 〈λxϕM〉V →w M [V/x]
i ∈ {`, r}

pri (V`, Vr)→w Vi

fix x!σM →w M
[
(fix x!σM)!/x

] i ∈ {`, r}
case(iniV, x` ·M`, xr ·Mr)→w Mi [V/xi]

unfold(fold(V))→w V

(b) Deterministic one-step reduction →w

M →w M
′

M
1→M ′

coin(p) p→ in`() coin(p) 1−p→ inr()

(c) Probabilistic one-step reduction p→

E[·] := derE[] | 〈E[]〉V | 〈M〉E[] | | pr`E[] | prrE[] | (E[],Mr) | (V,E[])
| in`E[] | inrE[] | case(E[], x` ·M`, xr ·Mr) | fold(E[]) | unfold(E[])

E[M] p→ E[N], whenever M p→ N

(d) Evaluation contexts and context closure of reduction p→.

RedM,M ′ =

p if M p→M ′

1 if M is weak-normal and M ′ = M

0 otherwise.

RednM,M ′ = (Red · Redn)M,M ′ =
∑
M0

RedM,M0RednM0,M ′

Red∞M,M ′ =
∨
n

RednM,M ′

(e) Stochastic matrix of reduction

M ∼M ′, if Red∞〈C〉M !,() = Red∞〈C〉M ′!,() for all closed term C of type !σ(1.

(f) Observational equivalence of closed terms

Figure 3.10 – Operational semantics of Λp
HP

In order to simplify the presentation, we choose in Figure 3.10 a reduction strategy. For instance, we
decide that, for reducing (M`,Mr) to a value, one needs first to reduce M` to a value, and then Mr; this
choice is of course completely arbitrary. A similar choice is made for reducing terms of shape 〈M〉N ,
where we require the argument to be reduced first.

As for pPCF, in Section 3.3.1 we consider the reduction as a discrete time Markov chain whose states
are terms and stationary states are weak normal terms. We define a stochastic matrix Red ∈ [0, 1]Λ

p
HP×Λp

HP

in 3.10e representing the probability to reduce in one step and get by iteration the substochastic matrix
Red∞ ∈ [0, 1]Λ

p
HP×Λp

HP representing the probability to reduce to a weak normal term in finitely many steps.

87

CHAPTER 3. PROBABILISTIC SEMANTICS

For two closed terms M , M ′ of type A, the observational equivalence is given in Figure 3.10e.

3.4.2 Examples
In this section, we show how to encode usual types and terms in programming language theory.

Noteworthy, in the example of natural numbers, we encode the constructions of pPCF, the language that
we described in Section 3.3. Thanks to recursive types, we also encode Lists and Streams.

For the sake of readability, we drop the fold/unfold constructs associated with recursive types defi-
nitions; they can easily be inserted at the right places.

Ever-looping program

Given any type σ, we define Ωσ = fix x!σ der x which satisfies ` Ωσ : σ. Then, Ωσ →w der (Ωσ)! →w
Ωσ. Thus, we can consider Ωσ as the ever-looping program of type σ.

Booleans

Let type B = 1⊕1. Then, P ` coin(p) : B. We define the “true” constant as t = in`() and the “false”
constant as f = inr(). The corresponding eliminator is defined as follows. Given terms M , N` and Nr,
we set if(M,N`, Nr) = case(M,x` ·N`, xr ·Nr) where xi is not free in Ni for i ∈ {`, r}. Then,

P `M : B P ` N` : σ P ` Nr : σ
P ` if(M,N`, Nr) : σ

.

We have the following weak and probabilistic reduction rules, derived from Figure 3.10:

if(t, N`, Nr)→w N` if(f , N`, Nr)→w Nr
M

p→M ′

if(M,N`, Nr)
p→ if(M ′, N`, Nr)

.

Natural numbers

We recover natural numbers constructions of pPCF presented in §3.1. They will have the same
operational and denotational semantics.

We define the type N of unary natural numbers by N = 1⊕N (i.e. N = Rec ζ · (1⊕ ζ)). We define
0 = in`() and n+ 1 = inrn so that we have P ` n : N for each n ∈ N.

Then, given a term M , we define the term succ(M) = inrM , so that

P `M : N
P ` succ(M) : N .

Finally, given terms M , N` and Nr and a variable x not free in N`, we define an “ifz” conditional by
ifzm(M,N`, x ·Nr) = case(M, z ·N`, x ·Nr), so that

P `M : N P ` N` : σ P, x : N ` Nr : σ
P ` ifzm(M,N`, x ·Nr) : σ

We have the following weak and probabilistic reduction rules, derived from Figure 3.10:

i ∈ {`, r}
ifzm(iniV,M`, x ·Mr)→w Mi [V/x]

M
p→M ′

ifzm(M,N`, x ·Nr)
p→ ifzm(M ′, N`, x ·Nr)

These conditionals will be used in the examples below.

Streams

Let ϕ be a positive type and Sϕ be the positive type defined by Sϕ = !(ϕ⊗Sϕ), that is Sϕ = Rec ζ · !(ϕ⊗ ζ).
We can define a term M such that `M : Sϕ(N (ϕ which computes the n-th element of a stream:

M = fix f !(Sϕ(N(ϕ) λxSϕ λyN ifzm(y, pr`(der x), z · 〈der f〉prr(der x) z).

Let O = (Ωϕ⊗Sϕ)! be a term which represents the “undefined stream”. More precisely, it is a stream
which is a value, but which contains nothing. It should not be confused with ΩSϕ which has the same
type but which is not a value. We have ` O : Sϕ, and observe that the reduction of 〈M〉O converges
(to an abstraction) and that 〈M〉O 0 diverges.

88

CHAPTER 3. PROBABILISTIC SEMANTICS

Conversely, we can define a term N such that ` N : !(N (ϕ)(Sϕ which turns a function into the
stream of its successive applications to an integer.

N = fix F !(!(N(ϕ)(Sϕ) λf !(N(ϕ) (〈der f〉0, 〈derF 〉(λxN 〈der f〉succ(x))!)! .
Observe that the recursive call of F is encapsulated into a box, which makes the construction lazy. As
a last example, consider the term P such that ` P : (Sϕ ⊗ Sϕ)((N ⊕N)(ϕ is given by

P = λySϕ⊗Sϕ λcN⊕N case(c, x · 〈M〉x pr`y, x · 〈M〉x prry).

Take ϕ = 1 and consider the term Q =
(

((), O)!
, O
)
. Then, we have ` Q : S1 ⊗ S1, and observe that

〈P 〉Q in`0 converges to () whereas 〈P 〉Q inr0 diverges.
These examples suggest that Sϕ behaves as should behave a type of streams of elements of type ϕ.

Lists

There are various possibilities for defining a type of lists of elements of a positive type ϕ. The simplest
definition is L0 = 1 ⊕ (ϕ⊗ L0). This corresponds to the ordinary ML type of lists. But we can also
define L1 = 1 ⊕ !(ϕ⊗ L1) and then we have a type of lazy lists (or terminable streams) where the tail
of the list is computed only when required. Here is an example of a term L such that ` L : L1, with
ϕ = B = 1⊕ 1 which is a list of random length containing random booleans:

L = fix x!L1 if(coin(1/4), in`(), inr(coin(1/2)⊗ der x)!).

Then, L will reduce with probability 1
4 to the empty list in`(), and with probability 3

4 to the list L′ =
inr(coin(1/2) ⊗ L)! (up to the equivalence of derL! with L) which is a value. One can access this value
by evaluating the term case(L′, z · _, y · der y) where _ is any term of type B ⊗ L1 (we know that this
branch will not be evaluated) and this term reduces to (t, L) or (f , L) with probability 1

2 . In turn, each
of these terms (b, L) will reduce to (b, in`()) with probability 1

4 and to (b, L′) with probability 3
4 .

We can iterate this process, defining a term R of type L1 (L0 which evaluates completely a
terminable stream to a list:

R = fix f !(L1(L0) λxL1 case(x, z · in`(), z · 〈λyBool⊗L1 (pr`y, 〈der f〉prry)〉der z) .

Then 〈R〉L, which is a closed term of type L0, terminates with probability 1. The expectation of the
length of this “random list” is

∑∞
n=0 n(3

4)n = 12.
We could also consider L2 = 1⊕(!σ ⊗ L2) which allows to manipulate lists of objects of type σ (which

can be a general type) without accessing their elements.

Probabilistic tests

We encode a program that flips a biased coin and goes on with M1 or M2 according to the outcome.
If P ` Mi : σ for i = 1, 2, we set flipp(M1,M2) = if(coin(p),M1,M2) and this term satisfies P `

flipp(M1,M2) : σ. If Mi reduces to a value Vi with probability qi, then flipp(M1,M2) reduces to V1 with
probability p q1 and to V2 with probability (1− p)q2.

Let n ∈ N and let #»p = (p0, . . . , pn) be such that pi ∈ [0, 1] ∩ Q and p0 + · · · + pn 6 1. Then one
defines a closed term ran(#»p), such that ` ran(#»p) : N , which reduces to i with probability pi for each
i ∈ {0, . . . , n}. The definition is by induction on n.

ran(#»p) =

0 if p0 = 1 whatever be the value of n
if(coin(p0), 0,ΩN) if n = 0
if(coin(p0), 0, succ(ran(p1

1−p0
, . . . , pn

1−p0
))) otherwise

As an example of use of the test to zero conditional, we define, by induction on k, a family of terms
eqk such that ` eqk : N (1 and that tests the equality to k:

eq0 = λxN ifzm(x, (), z · Ω1) eqk+1 = λxN ifzm(x,Ω1, z · 〈eqk〉z)

For M such that `M : N , the term 〈eqk〉M reduces to () with a probability equal to the probability of
M to reduce to k.

89

CHAPTER 3. PROBABILISTIC SEMANTICS

3.4.3 Interpretation of Λp
HP in Pcoh

The important point in the interpretation of Λp
HP is that positive types are interpreted as coalgebras

(in the Eilenberg-Moore category Pcoh!, see §3.1.4) and general types as standard probabilistic coherent
spaces (in Pcoh, see §3.1.2). Moreover, contexts are always interpreted as coalgebras so that the variables
can be handled as in a call-by-value.

Given a type σ with free type variables contained in the repetition-free list #»

ζ , and given a sequence
#»

P of length n of objects of Pcoh!, we define [σ] #»
ζ (#»

P) as an object of Pcoh and when ϕ is a positive type
(whose free variables are contained in #»

ζ) we define [ϕ]!#»
ζ

(#»

P) as an object of Pcoh!. These operations
are continuous and their definitions follow the general pattern described in Ehrhard [2016].

Theorem 80. Let ϕ be a positive type and let #»

ζ = (ζ1, . . . , ζn) be a repetition-free list of type variables
which contains all the free variables of ϕ. Let #»

P be a sequence of n dense coalgebras. Then [ϕ]!#»
ζ

(#»

P) is
a dense coalgebra. In particular, when ϕ is closed, the coalgebra [ϕ]! is dense.

This is an immediate consequence of the definition of [ϕ]! and of Theorem 53.
Given a typing context P = (x1 : ϕ1, . . . , xk : ϕk), a type σ and a term M such that P `M : σ,

then M is interpreted as a morphism JMKP ∈ Pcoh([P], [σ]). For all constructs of the language but
probabilistic choice, this interpretation uses the generic structures of the model described in Section 3.1.
The description of this interpretation can be found in Ehrhard [2016].

If x1 : ϕ1, . . . , xk : ϕk ` M : σ, the morphism JMKP is completely characterized by its values on
(u1, . . . , uk) ∈ P!([P]!). Using this observation, we describe the interpretation of terms in Figure 3.11.

• Jcoin(p)K = pe(`,∗) + (1− p)e(r,∗).

• J()K = 1 ∈ P1 = [0, 1].

• JxiKP(#»u) = ui.

• JN !KP(#»u) = (JNKP(#»u))!.

• J(M`,Mr)KP(#»u) = JM`KP(#»u)⊗ JMrKP(#»u).

• JiniNKP(#»u) = ini(JNKP(#»u)), i ∈ {`, r}.

• JderNKP(#»u) = der[σ](JNKP(#»u)), assuming that P ` N : !σ.

• If P ` N : ϕ(σ and P ` R : ϕ then JNKP(#»u) ∈ P([ϕ]([σ]), and JRKP(#»u) ∈ P([ϕ]). Using the
application of a matrix to a vector, J〈N〉RKP(#»u) = JNKP(#»u) JRKP(#»u).

• If P, x : ϕ ` N : σ then JλxϕNKP(#»u) ∈ P([ϕ]([σ]) is completely described by the fact that, for
all u ∈ P!([ϕ]!), one has JλxϕNKP(#»u)u = JNKP,x:ϕ(#»u , u). This is a complete characterization of
this interpretation by Theorem 80.

• If P ` N : ϕ` ⊕ ϕr and P, yi : ϕi ` Ri : σ for i ∈ {`, r}, then
Jcase(N, y` ·R`, yr ·Rr)KP(#»u) = JR`KP,y`:ϕ`(#»u , pr`(JNKP(#»u))) + JRrKP,yr:ϕr (#»u , prr(JNKP(#»u)))
where pri ∈ Pcoh(P` ⊕ Pr, Pi) is the ith “projection” introduced in §3.1.4, left inverse for ini.

• If P, x : !σ ` N : σ then JNKP,x:!σ ∈ Pcoh([P] ⊗ ![σ], [σ]) and Jfix x!σ NKP(#»u) = sup∞n=0 f
n(0)

where f : P[σ]→ P[σ] is the Scott-continuous function given by f(u) = JNKP,x:!σ(#»u , u!).

• If P ` N : ψ [Rec ζ · ψ/ζ] then Jfold(N)KP = JNKP , indeed [ψ [Rec ζ · ψ/ζ]] = [Rec ζ · ψ].

• If P ` N : Rec ζ · ψ then Junfold(N)KP = JNKP .

Figure 3.11 – Interpretation of Λp
HP in Pcoh. The terms are supposed typed as in Figure 3.9c, and ~u ∈ JPK.

Examples of term interpretations

Let us now give interpretation of types and terms given as examples in §3.4.2.
B = 1⊕1 satisfies |[B]| = {(`, ∗), (r, ∗)} and u ∈ (R+)|[B]| satisfies u ∈ P[B] iff u(`,∗) + u(r,∗) 6 1. The

90

CHAPTER 3. PROBABILISTIC SEMANTICS

coalgebraic structure of this object is given by

(hB)(j,∗),[(j1,∗),...,(jk,∗)] =
{

1 if j = j1 = · · · = jk

0 otherwise.

The object N = [N] satisfies N = 1 ⊕ N so that |N| = {(`, ∗), (r, (`, ∗)), (r, (r, (`, ∗))), . . .} and we use n
for the element of |N| which has n occurrences of r. Given u ∈ (R+)|N|, we use `(u) for the element of
(R+)|N| defined by l(u)n = un+1. By definition of N, we have u ∈ PN iff u0 + ‖`(u)‖N 6 1, and then
‖u‖N = u0 + ‖`(u)‖N. It follows that u ∈ PN iff

∑∞
n=0 un 6 1 and of course ‖u‖N =

∑∞
n=0 un. Then the

coalgebraic structure hN is defined exactly as hB above. In the sequel, we identify |N| with N.
Let us give the interpretation of the terms defined in §3.4.2:

• JΩσK = Jfix x!σ der xK = 0

• JtK = e(`,∗) and JfK = e(r,∗)

• Jif(M,N`, Nr)KP(#»u) = (JMKP)(`,∗)(#»u)JN`KP(#»u) + (JMKP)(r,∗)(#»u)JNrKP(#»u)

• Jflipp(M`,Mr)KP(#»u) = pJM`KP(#»u) + (1− p)JMrKP(#»u)

• JnK = n for n ∈ N

• (Jsucc(M)KP)n+1(#»u) = JMKn(#»u)

• Jifzm(M,N`, x ·Nr)KP(#»u) = (JMKP)0(#»u)JN`KP(#»u) +
∑∞
n=0 (JMKP)n+1(#»u)JNrKP(#»u)(n)

• Jran(#»p)K =
∑n
i=1 piei

• J〈eq`〉MKP(#»u) = JMKP(#»u)`e∗

3.4.4 Soundness and Adequacy
We state the main theorems and give the sketch of the proof of Adequacy which involves the Pitt’s

trick that we already used this trick in a simpler setting for probabilistic pure λ-calculus (see Page 76).
The invariance of the interpretation is proved by a structural induction on M :

Theorem 81. If M satisfies P `M : σ then

JMKP =
∑
P`M ′:σ

RedM,M ′JM ′KP

As usual, the Adequacy Theorem 84 is a consequence of the Adequacy Lemma 84 which relates
operational and denotational semantics for ground type terms: if `M : 1, then JMK = Red∞M,().

The left-to-right inequality is an immediate consequence of Theorem 81 and of the definition of Red∞
(see §3.4.1):

Theorem 82. Let M be a term such that `M : 1 so that JMK ∈ [0, 1]. Then JMK > Red∞M,().

In spite of its very simple statement, the proof of the converse inequality is rather long. The difficulty
comes from the recursive type definitions allowed by our syntax. The proof uses a combination of the
techniques introduced to prove the Adequacy Lemma for pPCF (see §3.3.4) and Λ+ (see §3.2.4).

We describe the thread of this proof which is due to Thomas Ehrhard, but do not give the involved
technical details which can be found in Ehrhard and Tasson [2018].

As usual, the proof is based on the definition of logical relations between terms and elements of the
model (more precisely, given any type σ, we have to define a relation between closed terms of types σ
and elements of P[σ]; let us call such a relation a σ-relation).

We have no positivity restrictions on the occurrence of type variables with respect to which recursive
types are defined. Besides, types are neither covariant nor contravariant with respect to these type
variables. Thus, we use a very powerful technique introduced in Pitts [1994] for defining this logical
relation.

Indeed, a type variable ζ can have positive and negative occurrences in a positive9 type ϕ. Consider
for instance the case ϕ = !(ζ (ζ), where the type variable ζ has a positive (on the right of the ()
and a negative occurrence (on the left). To define the logical relation associated with Rec ζ · ϕ, we have
9. Warning: the word “positive” has two different meanings here!

91

CHAPTER 3. PROBABILISTIC SEMANTICS

to find a fixpoint for the operation which maps a (Rec ζ ·ϕ)-relation R to the relation Φ(R) = !(R(R)
(which can be defined using R as a “logical relation” in a fairly standard way). Relations are naturally
ordered by inclusion, and this strongly suggests to define the above fixpoint using this order relation by
Tarski’s Fixpoint Theorem. The problem however is that Φ is neither a monotone nor an anti-monotone
operation on relations. Indeed, ζ has a positive and a negative occurrence in ϕ.

It is here that Pitts’s trick comes in. We replace the relations R with pairs of relations R = (R−,R+)
ordered as follows: R v S if R+ ⊆ S+ and S− ⊆ R−. Then we define accordingly Φ(R) as a pair of
relations by Φ(R)− = !(R+ (R−) and Φ(R)+ = !(R− (R+). Now the operation Φ is monotone
with respect to the v relation and it becomes possible to apply Tarski’s Fixpoint Theorem to Φ and get
a pair of relations R such that R = Φ(R). The next step consists in proving that R− = R+. This is
obtained by means of an analysis of the definition of the interpretation of fixpoints of types as colimits
in the category Pcoh⊆. One is finally in position of proving a fairly standard “Logical Relation Lemma”
from which adequacy follows straightforwardly.

Theorem 83 (Logical Relation Lemma). Let x1 : ϕ1, . . . , xk : ϕk `M : σ, (Vi, vi) ∈ R(ϕi) (where Vi is
a value and vi ∈ P![ϕi]) for i ∈ {1, . . . , k} and #»v = (v1, . . . , vk). Then,

(M [V1/x1, . . . , Vk/xk] , JMKx1,...,xk #»v) ∈ R(σ).

There are other techniques that are needed for this proof. The most important is that values are
handled in a special way so that we actually consider two kinds of pairs of relations. Also, a kind of
“biorthogonality closure” plays an essential role in the handling of positive types, no surprise for the
readers acquainted with Linear Logic, see for instance the proof of normalization in Girard [1987].

From Theorem 82 and Theorem 83, we deduce the Adequacy Lemma:

Lemma 84. Let M be a closed term such that `M : 1. Then JMK = Red∞M,().

We finally get the Adequacy Theorem which relates denotational and observational equivalence
(see Figure 3.10f) in the same way as for pPCF (see Theorem 77):

Theorem 85 (Adequacy). Let M,M ′ be closed terms of Λp
HP such that `M : σ and `M ′ : σ.

If JMK = JM ′K then M ∼M ′.

Proof. Assume that JMK = JM ′K. Let C be a closed term of type !σ(1. Then, we apply Lemma 84:

Red∞〈C〉M !,() = J〈C〉M !K = JCKJMK! = JCKJM ′K! = Red∞〈C〉M ′!,() .

�

3.4.5 Full Abstraction
We prove now the Full Abstraction Theorem 88, that is the converse of the Adequacy Theorem. The

proof follows the same pattern as for pPCF (see §3.3.5). However, it is not simply an adaptation to this
more granular setting. Indeed, we need to take into account values but also, we need the ingredient of
dense coalgebras (see the paragraph on Dense Coalgebras Page 71).

We give in this paragraph the sketch of reasoning and underline the changes with respect to the proof
for pPCF (see §3.3.5).

We reason by contrapositive and assume that two closed terms M1 and M2 have different semantics.
Remember from §3.4.3 and §3.1.1, that a closed term of type σ is interpreted as a vector with indices in
the web |JσK|, so that there is a ∈ |JσK| such that JM1Ka 6= JM2Ka. We want to design a term that will
separate M1 and M2 observationally (see Figure 3.10f for the definition of observational equivalence).

We define a testing term ` a− : !N ((!σ(1) that will depend only on the structure of the element
a of the web. We then use properties of the semantics (namely that terms of type !N (τ can be seen as
power series as explained in Theorem 45 to find reals ~p such that the context C = 〈a−〉ran(~p)! separates
M1 and M2:

Red∞〈〈a−〉ran(~p)!〉M !
1,()
6= Red∞〈〈a−〉ran(~p)!〉M !

2,()

Although we spare the reader of the technical definition of the testing terms (they can be found
in Ehrhard and Tasson [2018]), we describe their properties. The testing term a− is defined by induction
on the structure of the point a. Actually, we need three kinds of testing terms:

• Given a positive type ϕ and a ∈ |[ϕ]|, we define a term a0 such that

` a0 : !N (ϕ(1.

92

CHAPTER 3. PROBABILISTIC SEMANTICS

• Given a general type σ and a ∈ |[σ]|, we define terms a+ and a− such that

` a+ : !N (σ ` a− : !N (!σ(1.

We also introduce natural numbers |a|0, |a|− and |a|+ depending only on a. They represent the finite
numbers of parameters on which the power series Ĵa0K, Ĵa−K and Ĵa+K depend respectively.

We denote as m0(a), m−(a) and m+(a) natural numbers depending only on a and that will appear re-
spectively as the coefficient of the unitary monomial

∏|a|0
k=0 ζk,

∏|a|−
k=0 ζk and

∏|a|+
k=0 ζk of the corresponding

power series. These numbers are all non negative.
Lemma 86 states a key observation: the semantics of a− is a power series with finitely many param-

eters. The coefficient of the unitary monomial can be seen as a morphism in P[!σ(1].

Lemma 86. Let σ be a general type and t ∈ P[!N (σ].

1. Assume that there is k ∈ N such that for any c ∈ |[σ]|, the power series t̂c over P[N] depends on
the k first parameters. For any c ∈ |[σ]|, let us denote as c1

~ζ

(
t̂
)
c
the coefficient of the monomial

ζ0 . . . ζk−1 of t̂c. Then, k−k c1
~ζ

(
t̂
)
∈ P[σ].

2. Assume moreover that σ = ϕ(τ where ϕ is a positive type and τ a general type. Let m ∈ P[τ]
and a ∈ |[ϕ]|. If ∀u ∈ P![ϕ]! c1

~ζ

(
t̂
)
u = mua then ∀u ∈ P[ϕ] c1

~ζ

(
t̂
)
u = mua.

We are now ready to prove the central point in the proof of Full Abstraction. Namely, the coefficient
of the unitary monomial of a testing term associated with a point a of the web allows to extract the
a-coefficient of an argument, up to a non-zero coefficient depending only on a.

Lemma 87. Let σ be a type and a ∈ |[σ]|.

1. Assume that σ = ϕ is positive. If a′ ∈ |[ϕ]|, then Ĵa0K(a′,∗) is a power series over P[N] depending
on |a|0 parameters. We define c1

~ζ

(
Ja0K

)
(a′,∗) = c1

~ζ

(
Ĵa0K(a′,∗)

)
. It satisfies c1

~ζ

(
Ja0K

)
∈ P[ϕ(1]

and for any u ∈ P([ϕ]), c1
~ζ

(
Ja0K

)
u = m0(a)ua.

2. Assume that σ is a general type. For any a′ ∈ |[σ]|, Ĵa+Ka′ is a power series over P[N] depending on
|a|+ parameters. We define c1

~ζ
(Ja+K)a′ = c1

~ζ

(
Ĵa+Ka′

)
. It satisfies c1

~ζ
(Ja+K) ∈ P[σ] and c1

~ζ
(Ja+K) =

m+(a) ea where ea is the base vector such that (ea)a′ = δa′,a for a′ ∈ |[σ]|.

3. Let σ be a general type. For any a′ ∈ |[!σ]|, Ĵa−K(a′,∗) is a power series over P[N] depending on

|a|− parameters. We define c1
~ζ

(Ja−K)(a′,∗) = c1
~ζ

(
Ĵa−K(a′,∗)

)
. It satisfies c1

~ζ
(Ja−K) ∈ P[!σ(1] and

for any u ∈ P[σ], c1
~ζ

(Ja−K)u! = m−(a)ua.

Ingredients of the proof. The proof is by mutual induction on the size of a and the structure of ϕ. It
uses crucially Lemma 86 and Theorem 80 on the characterization of dense types that allows to compute
functions over dense types only by computing them on coalgebric points.

Theorem 88 (Full Abstraction). If `M1 : σ and `M2 : σ satisfy M1 ∼M2 then JM1K = JM2K.

Proof. Reason by contrapositive and assume that JM1K 6= JM2K.
There is a ∈ |[σ]| such that JM1Ka 6= JM2Ka. Then by Lemma 87, Jλx!N 〈〈a−〉x〉M !

iK, for i ∈ {1, 2}, are
real power series with finitely parameters and different coefficients. Indeed, because Jλx!N 〈〈a−〉x〉M !

iK
#»

ζ
!
=

Ja−K
#»

ζ
!
JMiK!, the coefficients of their unitary monomial ζ0 . . . ζ|a|−−1 are

m−(a) JM1Ka 6= m−(a) JM2Ka.

By real analysis for multivariate power series, there is ~p = (p0, . . . , p|a|−−1) ∈ P[N] with pi ∈ Q ∩ [0, 1]
such that the two power series are different: Ja−K ~p ! JM1K! 6= Ja−K ~p ! JM2K!.

We compute J〈〈a−〉ran(#»p)!〉M !
iK = Ja−K ~p ! (JMiK). By the Adequacy Lemma 84, 〈〈a−〉ran(#»p)!〉M !

i

converges to () with probability J〈〈a−〉ran(#»p)!〉M !
iK.

Thus, the two terms converge to () with different probabilities. It follows that M1 6∼M2 (see 3.10f).

93

CHAPTER 3. PROBABILISTIC SEMANTICS

A,B . . . := R | σ ⇒ τ

(a) Types of pRPCF

M,N, . . . :=r | f(M1, . . . ,Mn) | x | λxσM | (M)N
| fix(M) | ifz(L,M,N) | let(x,M,N) | sample

(b) Terms of ΛpR

Γ, x : A ` x : A
r ∈ R

Γ ` r : R
f meas. Rn → R Γ `Mi : R, ∀i 6 n

Γ ` f(M1, . . . ,Mn) : R

Γ, x : A `M : B
Γ ` λxAM : A⇒ B

Γ `M : A⇒ B Γ ` N : A
Γ ` (M)N : B

Γ `M : A⇒ A
Γ ` fix(M) : A

Γ ` L : R Γ `M : R Γ ` N : R
Γ ` ifz(L,M,N) : R

Γ `M : R Γ, x : R ` N : R
Γ ` let(x,M,N) : R

Γ ` sample : R

A typing context is a sequence Γ = (x1 : σ1, . . . , xn : σn) where the xi’s are pairwise distinct variables.
(c) Typing system of pRPCF

Figure 3.12 – Syntax of pRPCF

3.5 Measurable cones and measurable, stable functions, an ad-
equate model of pRPCF

Our goal is to show the expressiveness of the category of measurable cones and measurable, stable
functions, dentoed as Cstabm.

We introduce a probabilistic programming language pRPCF with reals as ground-types. Notice that
this is an ideal language which does not deal with the issues about a realistic implementation of com-
putations over real numbers. We refer the reader interested in such implementation to Vuillemin [1988]
or Escardó [1996]. The language pRPCF (see Figure 3.12) follows the same pattern as the language
pPCF (see Figure 3.6). Yet there are differences: the ground-type of reals replaces the one of natural
numbers; A countable set of basic measurable real functions replace the successor which is the basic
natural number construction; the sampling generating the uniform distribution over the unit segment
replaces the biased coins that generate true or false with probability p or 1− p.

We present the denotational semantics in §3.5.3. This semantics designed by Thomas Ehrhard is
a tour de force as it is a cartesian closed category with measurable cones as objects and measurable
functions as morphims. Recall that one of the issue to design a semantics handling higher order functions
and continuous probabilistic programming is that the categories Meas and Kern are not cartesian closed.

We present in §3.5.6 a bunch of examples of probabilistic algorithms based on probabilistic distribu-
tions and on rejection sampling algorithms. We will prove the correctness of these encodings using the
denotational semantics (see §3.5.3), this latter corresponding to the program operational behavior by
the Adequacy Theorem 102.

3.5.1 Syntax of pRPCF
We give in Figure 3.12 the syntax of ΛpR of our probabilistic real PCF, briefly pRPCF, together with

the typing rules. The types are presented in Figure 3.12a, where the constant R is the ground type
for the set of real numbers. The terms are presented in Figure 3.12b where the metavariable r ranges
over the whole set of reals R, while the metavariable f ranges over a fixed countable set C of functional
identifiers, basic measurable functions over real numbers. Examples of these functions include addition
+, comparison >, and equality =; they are often written in infix notation. When clear from the context,
we sometimes write f for f . To be concise, we consider only the ground type R, the boolean operators
(like > or =) then evaluate to 1 or 0, representing resp. true and false.

The typing system, presented in Figure 3.12c, extends the usual constructs of PCF with reals and
continuous probabilities. The constant sample stands for the uniform distribution over [0, 1], i.e. the
Lebesgue measure λ[0,1] restricted to the unit interval. The fact that pRPCF has only this distribution as
a primitive is not limiting, in fact many other probabilistic measures (like binomial, geometric, gaussian

94

CHAPTER 3. PROBABILISTIC SEMANTICS

or exponential distribution) can be defined from λ[0,1] and the other constructs of the language, see e.g.
Park et al. [2008] and §3.5.6. The let construction allows a call-by-value discipline over the ground type
R: the execution of let(x,M,N) samples a value (a real number r) from a probabilistic distribution M
and passes it to N by replacing every free occurrence of x in N with r. This primitive10 is essential for
the expressiveness of pRPCF and will be discussed both operationally and semantically.

pRPCF has a limited number of constructs, but it is known that many probabilistic primitives can
be introduced as syntactic sugar from the ones in pRPCF, as shown in examples (see §3.5.6).

3.5.2 Operational Semantics
In Figure 3.13, we define the operational semantics of pRPCF as an extension to a continuous setting

of the operational semantics Markov chain of Danos and Ehrhard [2011] presented in the preceding
sections.

The operational semantics is defined starting from the rewriting rules of Figure 3.13a, extending the
standard call-by-name reduction of PCF (see Plotkin [1977]). The probabilistic primitive sample draws
a possible value from [0, 1]. A redex is a term in one of the forms at left-hand side of the δ→ relation,
defined in Figure 3.13a. A normal form is a term M which is not reducible under δ→. Notice that the
closed normal forms of ground type R are the real numerals. The definition of the evaluation context
(Figure 3.13b) is the usual one defining the deterministic lazy call-by-name strategy: we do not reduce
under an abstraction and there is always at most one redex to reduce. It is standard to check the Subject
Reduction property: if Γ `M : A and M δ→ N , then Γ ` N : A.

In order to define observational equivalence, we need to represent the probability of convergence of a
term to a normal form. We define, in Figure 3.13d, a stochastic kernel Red (see definition in §3.5.7) such
that Red(M,U) is the probability that a term M reduces into the measurable set of terms U . In this
way, we have replaced the discrete stochastic matrix used in the Sections 3.3 and 3.4 by its continuous
counterpart, namely a stochastic kernel.

Before defining this kernel, we equip ΛpR with a structure of measurable space whose definition is
spelled out in Figure 3.13c. This defines a σ-algebra ΣΛpR of sets of terms equivalent to the one given
in Borgström et al. [2016] and Staton et al. [2016] for slightly different languages.

From now on, let us fix (zi)i∈N, an enumeration of variables of type R without repetitions. Notice
that any term M ∈ ΛpR with n different occurrences of real numerals, can be decomposed univocally into
a term z1 : R, . . . , zn : R,Γ ` S : A without real numerals and a substitution σ = {r1/z1, . . . , rn/zn},
such that: (i) M = Sσ; (ii) each zi occurs exactly once in S; (iii) zi occurs before zi+1 reading the term
from left to right. Because of this latter condition, we can omit the name of the substituted variables,
writing simply S~r with ~r = (r1, . . . , rn). We denote as ΛΓ`A

n the set of terms in ΛpR with no occurrence
of numerals and respecting conditions (ii) and (iii) above. Let S, T, . . . range over such real-numeral-free
terms.

Given S ∈ ΛΓ`A
n , we set ΛpRS = {M ∈ ΛpR s.t. ∃~r ∈ Rn,M = S~r}. The bijection s : ΛpRS → Rn

given by s(S~r) = ~r endows ΛpRS with a σ-algebra isomorphic to ΣRn : U ∈ ΣΛpRS
iff s(U) ∈ ΣRn . The

fact that ΛΓ`A
n is countable and that Kern has countable coproducts (see §3.5.7), allows us to define

the measurable space of pRPCF terms of type Γ ` A as the coproduct:

(ΛpR,ΣΛpR) =
∐

n∈N,S∈ΛΓ`A
n

(ΛpRS ,ΣΛpRS
) (3.5)

We define the stochastic kernel Red in Figure 3.13d. Given a set U ⊆ R, we denote as U ∈ ΛpR the set
of numerals associated with the real numbers in U . Of course U is measurable in R iff U is measurable
in ΛpR. The following lemma allows us to define Red and Red∞

Lemma 89. Given Γ, x : B ` M : A the function Substx,M mapping N ∈ ΛpR to M{N/x} ∈ ΛpR is
measurable.

The last case of the definition of Red sets the normal forms as accumulation points of Red, so that
Red(M,U) gives the probability that we observe U after at most one reduction step applied to M . The
definition in the case of E[sample] specifies that sample is drawing from the uniform distribution over
[0, 1]. Notice that, if U ⊆ R is measurable, then the set {r ∈ [0, 1] s.t. E[r] ∈ U} is measurable by
Lemma 89.
10. Notice that this primitive corresponds to the sample construction in Park et al. [2008].

95

CHAPTER 3. PROBABILISTIC SEMANTICS

(λxσM)N δ→M [N/x] f(r1, . . . , rn) δ→ f(r1, . . . , rn)

ifz(r,M,N) δ→

{
M if r = 0,
N otherwise.

let(x, r,M) δ→M{r/x}

fix(M) δ→M(fix(M)) sample δ→ r for any r ∈ [0, 1].

(a) Reduction rules of a pRPCF redex.

E[·] := (E[·])M | ifz(E[·],M,N) | let(x,E[·], N) | f(r1, . . . , ri−1, E[·],Mi+1, . . . ,Mn)

E[M] δ→ E[N], whenever M δ→ N

(b) Grammar of the evaluation contexts and context closure of the reduction.

U ⊆ ΛpR is measurable if and only if ∀n, ∀S ∈ ΛΓ`A
n , {~r s.t. S~r ∈ U} ∈ ΣRn

(c) Measurable space structure on (ΛpR,ΣΛpR
)

If M ∈ ΛpR and U ⊆ ΛpR measurable,

Red(M,U) =

δE[N](U) if M = E[R],

R
δ→ N and R 6= sample.

λ{r ∈ [0, 1] s.t. E[r] ∈ U} if M = E[sample],
δM (U) if M normal form.

Redn+1(M,U) = (Red ◦ Redn)(M,U) =
∫

ΛpR
Red(t, U) Redn(M,dt)

Red∞(M,U) =
∨
n

(Redn(M,U)) .

(d) Stochastic kernels of reduction.

M ∼M ′, if Red∞(C)M,U = Red∞(C)M ′,U ,
for all closed term C of type A⇒ R, for all measurable set U ⊆ ΛpR of numerals.

(e) Observational equivalence of closed terms.

Figure 3.13 – Operational semantics of pRPCF.

96

CHAPTER 3. PROBABILISTIC SEMANTICS

Proposition 90. For any sequent Γ ` A, the map Red is a stochastic kernel from ΛpR to ΛpR.
Proof. The fact that Red(M,_) is a measure is an immediate consequence of the definition of Red and
the fact that any evaluation context E[] defines a measurable map (Lemma 89).

Given a measurable set U ⊆ ΛpR, we must prove that Red(_, U) is a measurable function from ΛpR
to [0, 1]. Since ΛpR can be written as the coproduct described in Equation (3.5), it is sufficient to prove
that for any n and S ∈ ΛΓ`A

n , RedS(_, U) : ΛpRS → [0, 1] is a measurable function. We reason by case
study on the shape of S using the definition of a redex and the fact that there is always at most one
redex to reduce.

We can then iterate Red using the composition of stochastic kernels (see Equation (3.7) of §3.5.7).
In Figure 3.13d, we define Redn+1 which gives the probability that we observe U after at most n + 1
reduction steps from M . Because the normal forms are accumulation points, one can prove by induction
on n that:
Lemma 91. Let Γ ` M : A and let U be a measurable set of normal forms in ΛpR. The sequence
(Redn(M,U))n is monotone non-decreasing.

We can then define, for M ∈ ΛpR and U a measurable set of normal forms, its limit Red∞ (see
Figure 3.13d). In particular, if M is a closed term of ground type R, the only normal forms that M can
reach are numerals, in this case Red∞(M,_) corresponds to the probabilistic distribution over R which
is computed by M according to the operational semantics of pRPCF.

The observational equivalence relation ∼ between closed terms is given in Figure 3.13e.

3.5.3 Denotational Semantics: the category Cstabm

In §3.1, we have presented Pcoh as a model for probabilistic language restricted to countable data
types (like booleans and natural numbers, excluding the real numbers). Any distribution over a countable
set is discrete, i.e. it can be described as a linear combination of its possible outcomes and there is no
need of a notion of measurable space. In previous sections, we have shown that the category PCoh! of
probabilistic coherence spaces and analytic functions gives fully abstract denotational models of functional
languages extended with a random natural number generator. The main goal of this section is to present
a generalization of these models in order to account for continuous data types also.

The major difficulty for such a generalization is that a probabilistic coherence space is defined with
respect to a kind of canonical basis (called web) that corresponds to the possible samples of a distribution,
at the level of ground types. For continuous data types, these webs should be replaced by measurable
spaces, and then one is stuck on the already mentioned (see Page 63) impossibility of associating a
measurable space with a functional type – both Meas and Kern being not cartesian closed.

Complete cones

Our solution, for an axiomatic presentation not referring to a web, is to replace probabilistic coherence
spaces with cones defined in Andô [1962] and already used by Selinger [2004]. A cone is similar to a
normed vector space, but with non-negative real scalars.

A complete cone P is an R+-semimodule together with a norm ‖ ‖P satisfying some natural axioms
and such that the unit ball BP , defined by the norm, is complete with respect to the cone order 6P .
Definition 92. A cone P is an R+-semimodule given together with an R+-valued function ‖_‖P such
that the following conditions hold for all x, x′, y, y′ ∈ P and α ∈ R+

x+ y = x+ y′ ⇒ y = y′ ‖αx‖P = α‖x‖P
‖x‖P = 0⇒ x = 0

‖x+ x′‖P 6 ‖x‖P + ‖x′‖P
‖x‖P 6 ‖x+ x′‖P .

For α ∈ R+ the set BP (α) = {x ∈ P | ‖x‖P 6 α} is the ball of P of radius α. The unit ball is
BP = BP (1). A subset S of P is bounded if S ⊆ BP (α) for some α ∈ R+.

Observe that ‖0‖P = 0 by the second condition (homogeneity of the norm) and that if x + x′ = 0
then x′ = x = 0 by the last condition (monotonicity of the norm).

Let us define the cone order relation of P . Let x and x′ ∈ P . We write x 6P x′ if there is a y ∈ P
such that x′ = x + y. This y is then unique, and we denote x′ − x = y. The relation 6P is easily seen
to be an order relation on P . (The usual laws of calculus using subtraction hold under the restriction
that all usages of subtraction must be well-defined, for instance, if x, y, z ∈ P satisfy z 6P y 6P x then
we have x− z = (x− y) + (y − z).)

A cone P is complete if any non-decreasing sequence (xn)n∈N of elements of BP has a least upper
bound supn∈N xn ∈ BP .

97

CHAPTER 3. PROBABILISTIC SEMANTICS

Any probabilistic coherence space can be seen as a cone as well as the set Meas(X) of all bounded
measures over a measurable space X:
Example 93. Let X = (|X |,PX) be a probablistic coherence space (see §3.1.1). Remember that this
means that |X | is a countable set (called web) and PX ⊆ (R+)|X | satisfies PX = PX⊥⊥ (where, given
F ⊆ (R+)|X |, the set F⊥ ⊆ (R+)|X | is F⊥ = {u′ ∈ (R+)|X | | ∀u ∈ F ,

∑
a∈|X| uau

′
a 6 1})11. We define

a cone X̂ by setting X̂ = {u ∈ (R+)|X | | ∃ε > 0 εu ∈ PX}, defining algebraic operations in the usual
componentwise way and setting ‖u‖X̂ = inf{α > 0 | 1

αu ∈ PX} = sup{
∑
a∈|X| uau

′
a | u′ ∈ PX⊥}.

Example 94. LetX be a measurable space. The set of all R+-valued measures onX is the cone Meas(X).
The algebraic operations are defined in the usual “pointwise” way (e.g. (µ+ ν)(U) = µ(U) + ν(U)) and
the norm given by ‖µ‖Meas(X) = µ(X). Observe that such a cone has not to be of the shape X̂ . For
instance, the cone Meas(R) associated with the Lebesgue σ-algebra on R (made of Borel sets) will be our
interpretation of the ground type R.

A type A of pRPCF will be associated with a complete cone JAK and a closed program of type A will
be denoted as an element in the unit ball BJAK. The order completeness of BJAK is crucial for defining
the interpretation of the recursive programs, as usual.

Stable functions

A program taking inputs of type A and giving outputs of type B will be denoted as a map from
BJAK to BJBK. The difficulty was to find the right properties enjoyed by such functions in order to get a
cartesian closed category, namely that the set of these functions generates a complete cone compatible
with the cartesian structure (which will be the denotation of the type A→ B). A first attempt is to use
the usual notion of Scott continuity.
Definition 95. Let P and Q be cones. A bounded map from P to Q is a function f : BP → Q such
that f(BP) ⊆ BQ(α) for some α ∈ R+. The greatest lower bound of these α’s is called the norm of
f and is denoted as ‖f‖. Let f be a bounded map from P to Q. Then, ‖f‖ = supx∈BP ‖f(x)‖Q and
f(BP) ⊆ BQ(‖f‖).

A function f : P → Q is linear if it commutes with sums and scalar multiplication. A Scott-
continuous function from a complete cone P to a complete cone Q is a bounded map from P to Q which
is non-decreasing and commutes with the least upper bounds of non-decreasing sequences.

It turns out that Scott-continuity is a condition too weak for ensuring cartesian closeness. A precise
analysis of this point led us to the conclusion that these functions have also to be absolutely monotonic.
Given a function f : BP → Q which is non-decreasing, we introduce a notation for the difference near
x ∈ BP : for all u ∈ P such that x+ u ∈ BP ,

∆f(x;u) = f(x+ u)− f(x) ∈ BQ
Definition 96. Let P be a cone and let u ∈ BP . We define a new cone Pu (the local cone of P at u) as
follows. We set Pu = {x ∈ P | ∃ε > 0 εx+ u ∈ BP} and

‖x‖Pu = inf{1/ε | ε > 0 and εx+ u ∈ BP}

An n-non-decreasing function from P to Q is a function f : BP → Q such that if n = 0, then f
is non-decreasing and if n > 0, then f is non-decreasing and, for all u ∈ BP , the function ∆f(_;u) is
(n− 1)-non-decreasing from Pu to Q.

One says that f is absolutely monotonic if it is n-non-decreasing for all n ∈ N.
This latter condition is usually expressed by saying that all derivatives are everywhere non-negative.

However we define it as the non-negativity of iterated differences. Such non-differential definitions
of absolute monotonicity have already been considered various times in classical analysis, see for in-
stance [McMillan, 1954].

We call stable functions the Scott continuous and absolutely monotonic functions, allowing for a
cpo-enriched cartesian closed structure over the category of cones:
Theorem 97. Complete cones and stable functions consitute a category denoted Cstab. More explicitly,
Cstab(P,Q) is the set of all functions f : BP → Q which are absolutely monotonic from P to Q, Scott-
continuous and satisfy f(BP) ⊆ BQ.

We borrow the term of “stable function” from Berry’s analysis of sequential computation [Berry,
1978]. In fact, our definition is deeply related with a notion of “probabilistic” sequentiality, as it rejects
the “parallel or” (but not the “Gustave function”).
11. There are actually two additional conditions which are not essential here.

98

CHAPTER 3. PROBABILISTIC SEMANTICS

Measurability

The notion of stability is however not enough to interpret all primitives of probabilistic functional
programming. One should be able to integrate at least first-order functions in order to sample programs
denoting probabilistic distributions, e.g. the denotation of the let construct.

The cone Meas(R) of R+-valued measures on R (Example 94) is the natural candidate to model the
ground type R. In particular, a real numeral will be interpreted as the Dirac measure δr. Consider now a
closed term let(x,M,N) of type R, so that `M : R and x : R ` N : R. The term M will be associated
with a measure µ in B(Meas(R)), while N will be a stable function f from the whole B(Meas(R)) to
B(Meas(R)). However, according to the operational semantics (Figure 3.13), N is supposed to get a
real number r for x, and not a generic measure. This means that one has to compose f with a map
δ : R → B(Meas(R+)) defined by δ(r) = δr, so that f ◦ δ : R → B(Meas(R)). Now, the natural way to
pass µ to f ◦ δ is then by the integral

∫
R(f ◦ δ)(r)µ(dr). However, this would be meaningful only in

case f ◦ δ is measurable, and this is not the case for all stable functions f .
The problem is that there are stable functions which are not measurable, so not Lebesgue integrable.

We therefore equip the cones with a notion of measurability tests, inducing a notion of measurable paths
in a cone.

Definition 98. We consider cones P equipped with a collection (Mn(P))n∈N where Mn(P) ⊆ (⊥ P)Rn

satisfies the following properties:

• 0 ∈ Mn(P),

• if ` ∈ Mn(P) and h : Rp → Rn is measurable then ` ◦ h ∈ Mp(P),

• and for any ` ∈ Mn(P) any x ∈ P , the function Rn → R+ which maps #»r to `(#»r)(x) is in Mn,
i.e. is a measurable map Rn → R+.

A cone P equipped with a family (Mn(P))n∈N satisfying the above conditions will be called a measurable
cone. The elements of the sets Mn(P) will be called the measurablility tests of P .

Measurability tests have parameters in Rn and are not simply Scott-continuous linear forms for
making it possible to prove that the evaluation function of the cartesian closed structure is well behaved.

Definition 99. Let P be a cone and let n ∈ N. Ameasurable path of arity n in P is a function γ : Rn → P
such that: γ(Rn) is bounded in P and, for all k ∈ N and all ` ∈ Mk(P), the function ` ∗ γ : Rk+n → R+

defined by (` ∗ γ)(#»r , #»s) = `(#»r)(γ(#»s)) is inMk+n, i.e. is a measurable map Rk+n → R+.
We use Pathn(P) for the set of measurable paths of P and Pathn1 (P) for the set of measurable paths

which take their values in BP .

In the case the cone is associated with a standard measurable space X, i.e. it is of the form Meas(X),
then the measurability tests are the measurable sets of X. However, at higher-order types the definition
is less immediate. The crucial point is that the measurable paths in Meas(X) are Lebesgue integrable,
as expected. We then call measurable a stable map preserving measurable paths:

Definition 100. Let P and Q be measurable complete cones. A stable function from P to Q (remember
that then f is actually a function BP → Q) is measurable if, for all n ∈ N and all γ ∈ Pathn1 (P), one has
f ◦ γ ∈ Pathn(Q).

We use Cstabm for the subcategory of Cstab whose morphisms are measurable.

This gives a cartesian category, denoted Cstabm, with an object of morphisms from P to Q in
Cstabm given by the pair (P ⇒m Q,Ev) (see Figure 3.14).

Theorem 101. The category Cstabm is cartesian closed.

Let us turn back to the initial problem of integrating maps appearing in the let constructions: the map
δ : R→ Meas(R) such that δ(r) = δr belongs to Path1

1(Meas(R)). Therefore, given f ∈ Cstabm(Meas(R),Meas(R)),
the function f ◦ δ is a measurable path from R to Meas(R) which can be integrated.

This result can be generalized, to f ∈ Cstabm(Meas(R), P), where P is isomorphic to a cone of the
form Q⇒m Meas(R) for some Q), so that we can define the semantics of the let construct for terms N
with non empty contexts appearing in pRPCF (see Figure 3.15).

99

CHAPTER 3. PROBABILISTIC SEMANTICS

∏
i∈I

Pi = {(xi)i∈I s.t. ∀i ∈ I, xi ∈ Pi}, ‖(xi)i∈I‖∏
i∈I

Pi
= sup

i∈I
‖xi‖Pi

Mn(
∏
i∈I

Pi) = {
⊕
i∈I

li | ∀i ∈ I li ∈ Mn(Pi)}, with
⊕
i∈I

li(~r)(xi)n∈I =
∑
i∈I

li(~r)(xi)

(a) finite cartesian product (I finite set).

P ⇒m Q = {f : BP → Q | ∃ε > 0, εf ∈ Cstabm(P,Q)},
‖f‖P⇒mQ = sup

x∈BP
‖f(x)‖Q

Mn(P ⇒m Q) = {γ . m | γ ∈ Pathn(P),m ∈ Mn(Q)},
with γ . m(~r)(f) = m(~r)(f(γ(~r)))

(b) object of morphisms

Figure 3.14 – The CCC structure of Cstabm. The projections, pairing and the evaluation are defined as standard.

JxK(~g, a) = a JrK~g = δr JsampleK~g = λ[0,1]

JλxA.MK~g = a 7→ JMK(~g, a) JMNK~g = JMK~g(JNK~g)

JYMK~g = sup
n

((JMK~g)n0)

Jf(M1, . . . ,Mn)K~g = U 7→ (JM1K~g ⊗ · · · ⊗ JMnK~g)(f−1(U))

Jifz(L,M,N)K~g = (JLK~g{0}) JMK~g + (JLK~g(R\{0})) JNK~g

Jlet(x,M,N)K~g = U 7→
∫

R
JNK(~g, δr)(U) JMK~g(dr)

Figure 3.15 – Interpretation of pRPCF in Cstabm. The terms are supposed typed as in Figure 3.12c, and ~g ∈ JΓK,
a ∈ JAK.

3.5.4 Interpretation of pRPCF in Cstabm

Let us underline that, although the definition of Cstabm and the proof of its cartesian closeness are
not trivial, the denotation of the programs (Figure 3.15) is completely standard, extending the usual
interpretation of PCF programs as Scott-continuous functions (see Plotkin [1977]).

The interpretation of pRPCF in Cstabm extends the standard model of PCF in a cpo-enriched cate-
gory. The ground type R is denoted as the cone Meas(R) of bounded measures over R (see Example 94),
the arrow A → B by the object of morphisms JAK ⇒m JBK and a sequence A1, . . . , An by the carte-
sian product

∏n
i=1JAiK (see Figure 3.14). The denotation of a judgement Γ ` M : A is a morphism

JMKΓ`A ∈ Cstabm(JΓK, JAK), given in Figure 3.15 by structural induction on M . We omit the type
exponent when clear from the context. Notice that if Γ ` M : R, then for ~g ∈ JΓK, JMK~g is a measure
on R.

The fact that the definitions of Figure 3.15 lead to morphisms in the category Cstabm results easily
from the cartesian closeness of this category and from the algebraic and order theoretic properties of its
objects.

3.5.5 Soundness and Adequacy
The soundness property states that the interpretation is invariant under reduction. In a non-

deterministic case, this means that the semantics of a term is the sum of the semantics of all its possible
one-step reducts (see Laird et al. [2013]). Here, the reduction is a stochastic kernel, so this sum becomes
an integral,

∀M ∈ ΛpR, JMKΓ`A =
∫

ΛpR
JtKΓ`ARed(M,dt). (3.6)

100

CHAPTER 3. PROBABILISTIC SEMANTICS

Let us turn to adequacy: Let M be a closed term of ground type of pRPCF. Both the operational
and the denotational semantics associate with M a distribution over R — the adequacy property states
that these two distributions are actually the same:

Theorem 102 (Adequacy). Let `M : R. Then, for every measurable set U ⊆ R,

JMK`R(U) = Red∞(M,U),

where U is the set of numerals corresponding to the real numbers in U .

The proof is standard: the soundness property gives as a corollary that the “operational” distribution
is bounded by the “denotational” one. The converse is obtained by using a suitable logical relation.

A major byproduct of this result is then to make it possible to reason about higher-order programs
as functions between cones, which is quite convenient when working with programs acting on measures.

3.5.6 Examples
Numerals are associated with Dirac measures and a functional constant f yields the pushforward

measure of the product of the measures denoting the arguments of f . For example,

J+(3, 2)K`R = U 7→ δ3 ⊗ δ2({(r1, r2) s.t. r1 + r2 ∈ U}) = δ5.

In order to make clear the difference between call-by-value and call-by-name reductions in a proba-
bilistic setting, let us consider the following two terms:

M = (λx.(x = x))sample, N = let(x, sample, x = x).

Both are closed terms of type R, “applying” the uniform distribution to x 7→ x = x, the diagonal func-
tion. However, M implements a call-by-name application, whose reduction duplicates the probabilistic
primitive before sampling the distribution, while the evaluation of N first samples a real number r and
then duplicates it:

M → sample = sample→ r = s for any r and s,
N → let(x, r, x = x)→ r = r for any r.

The distribution associated with M by Red∞ is the Dirac δ0, because Red∞(M,U) = Red3(M,U) =
λ({(r, r) s.t. r ∈ [0, 1]})× δ1(U) +λ({(r, s) s.t. r 6= s, r, s ∈ [0, 1]})× δ0(U) = δ0(U). The last equality is
because the diagonal set {(r, r) s.t. r ∈ [0, 1]} has Lebesgue measure zero. This expresses that M evalu-
ates to 0 (i.e. “false”) with probability 1, although there are an uncountable number of reduction paths
reaching 1. On the contrary, the distribution associated with N is δ1: Red∞(N,U) = Red3(M,U) =
λ([0, 1])× δ1(U) = δ1(U), meaning that N always evaluates to 1 (i.e. “true”).

The two terms implementing the diagonal have different semantics: for any measurable U of R, for
any r, s ∈ U , r = s has value 0 or 1. Besides, the diagonal {(r, s) s.t. r = s ∈ {1}} in [0, 1]2 has measure
0, and its complementary {(r, s) s.t. r = s ∈ {0}} has measure 1. Thus,

J(λx.(x = x))sampleK`R(U) = (λ[0,1] ⊗ λ[0,1]){(r, s) s.t. r = s ∈ U} = δ0(U).

and, Jlet(x, sample, x = x)K`R(U) = δ1(U), as it is equal by definition to:∫
R
(δr ⊗ δr){(x, y) s.t. x = y ∈ U}λ[0,1](dr) =

∫
R
δ1(U)λ[0,1](dr) = δ1(U).

Example 103 (Extended branching). Let U be a measurable set of real numbers whose characteristic
function χU is in C, let L ∈ ΛpR and M,N ∈ ΛpR for A = B1 ⇒ . . . Bn ⇒ R. Then the term Γ ` if(L ∈
U,M,N) : A, branching between M and N according to the outcome of L being in U , is a syntactic
sugar12 for

if(L ∈ U,M,N) = λxB1 . . . λxBn .ifz(χU (L), Nx1 . . . xn,Mx1 . . . xn).
The construct ifz sums up the denotation of the two branches according to the probability that the

first term evaluates to 0 or not. Given a measurable set U ⊆ R, a closed term L of ground type and two
closed terms M,N of a type A,

Jif(L ∈ U,M,N)K`A = (JχU (L)K`R(R \ {0})) JMK`A + (JχU (L)K`R({0})) JNK`A

= (JLK`R(U)) JMK + (JLK`R(R \ U)) JNK.
12. The swap between M and N is due to fact that ifz is the test to zero.

101

CHAPTER 3. PROBABILISTIC SEMANTICS

Similarly, the let constructor can be extended to any output type A = B1 ⇒ . . . Bn ⇒ R. Given
M ∈ ΛpR and N ∈ ΛpR, we denote by let(x,M,N) the term λxB1 . . . λxBn .let(x,M,Nx1 . . . xn) which is
in ΛpR. However we do not know in general how to extend the type of the bound variable x to higher
types in this model. The issue is clear at the denotational level, where the let construction is expressed
with an integral (see Figure 3.15). With each ground type, we associate a positive cone Meas(X) which
is generated by a measurable space X. At higher types, the associated cones do not have to be generated
by measurable spaces.

Notice that, because of this restriction on the type of the bound variable x, our let constructor does
not allow to embed into our language the full call-by-value PCF.

Example 104 (Probability distributions).
The Bernoulli distribution takes the value 1 with some probability p and the value 0 with probability
1− p. It can be expressed as the term of type R → R, taking the parameter p as argument and testing
whether sample draws a value within [0, p],

bernoulli = λp.let(x, sample, x≤p) and Jbernoulli pK`R = pδ1 + (1− p)δ0

Indeed, if U is measurable, then Jbernoulli pK`R(U) =
∫

R δr⊗ δp({(x, y) s.t. x ≤ y ∈ U})λ[0,1](dr), this
latter being equal to λ[0,1]([0, p])δ1(U) + λ[0,1]((p, 1])δ0(U) = pδ1(U) + (1− p)δ0(U).

The exponential distribution at rate 1 is specified by its density e−x. The exponential distribution
exp computes the probability that an exponential random variable belongs to U . It can be implemented
as the term exp of type R by the inversion sampling method:

exp = let(x, sample,− log(x)) and JexpK`R(U) =
∫

R+
χU (s)e−sλ(ds)

Indeed, Jlet(x, sample,− log(x))K`R(U) =
∫

R δr({x s.t. − log x ∈ U})λ[0,1](dr), which, by substitution of
r = e−s, is equal to ∫

R
χU (− log r)λ[0,1](dr) =

∫
R+
χU (s)e−sλ(ds).

The standard normal distribution (gaussian with mean 0 and variance 1) is defined by its density
1√
2π e
− 1

2x
2
. We use the well-known method of Box and Muller [1958] to encode it:

normal = let(x, sample, let(y, sample, (−2 log(x))
1
2 cos(2πy))).

We compute the semantics of normal and check that we get a normal distribution:

JnormalK`R(U) = Jlet(x, sample, let(y, sample, (−2 log(x))
1
2 cos(2πy)))K`R(U)

=
∫

R2
χU (

√
−2 log u cos(2πv))λ[0,1](du)λ[0,1](dv)

= 1
2π

∫
R2
χU (x)e−

(x2+y2)
2 λ(dx)λ(dy).

By polar substitution with x =
√
−2 log u cos(2πv), y =

√
−2 log u cos(2πv), we get:

JnormalK`R(U) = 1√
2π

∫
U

e−
x2

2 λ(dx)

The Gaussian distribution. We can encode the Gaussian distribution as a function of the expected
value x and standard deviation σ by

gauss = λxλσ. let(y, normal, (σy)+x).

We compute Jgauss r σK`R(U) = 1√
2π

∫
R χU (σ y + r)e−

y2

2 λ(dy) = 1
σ
√

2π

∫
U

e−(z−rσ)2
λ(dz).

The next example uses rejection sampling, which we already used in the discrete case to encode a
uniform law in pPCF (see Example 3.3.2).

102

CHAPTER 3. PROBABILISTIC SEMANTICS

Example 105 (Conditioning). Let U be a measurable set of real numbers such that χU ∈ C. We
define a term observe(U) of type R ⇒ R, taking a term M and returning the renormalization of the
distribution of M on the only samples that satisfy U :

observe(U) = λm.fix(λy.let(x,m, if(x ∈ U, x, y))).

This corresponds to the usual way of implementing conditioning by rejection sampling: the evaluation
of (observe(U))M samples a real r from M ; if r ∈ U holds, then the program returns r, otherwise
it iterates the procedure. Notice that observe(U)M makes a crucial use of sampling. The program
λm.fix(λy.if(m ∈ U,m, y)) has a different behavior, because the two occurrences of m correspond in this
case to two independent random variables.

Let M be a closed term of type R. We compute the semantics of ` (observe(U))M : R by using
soundness. Since observe(U)M →∗ let(x,M, if(x ∈ U, x, (observe(U))M)), we get by soundness that
for all V ⊆ R measurable,

J(observe(U))MK(V) =
∫

R
Jif(x ∈ U, x, (observe(U))M)Kx:R`R(δr)(V) JMK(dr)

=
∫

R
(δr(U) δr(V) + (δr(R \ U)) (J(observe(U))MK(V))) JMK(dr)

=
∫

R
(χU (r)χV (r)) JMK(dr) + (J(observe(U))MK(V))

∫
R
χR\U (r) JMK(dr).

The last equality holds since J(observe(U))MK does not depend on r. If M represents a probability
distribution, so that JMK(U) = 1 − JMK(R \ U) and if moreover JMK(U) 6= 0, this equation gives the
conditional probability:

J(observe(U))MK(V) =
∫

R(χU (r)χV (r)) JMK(dr)
1−

∫
R χR\U (r) JMK(dr) = JMK(V ∩ U)

JMK(U)

If JMK(U) = 0, then the denotation of the fixpoint is J(observe(U))MK = 0. Indeed, we check that
(Jλy let(x,M, if(x ∈ U, x, y))K)n0 = 0. By adequacy, the program then loops with probability 1 when
JMK(U) = 0.

Now, consider the term O = λm.Y(λy.if(m ∈ U,m, y)) presented in Example 105 as a wrong imple-
mentation of observe(U). Since (O)M →∗ if(M ∈ U,M, (O)M), assuming that JMK is a probability
distribution and V a measurable set, one gets with a similar reasoning that, in case JMKU 6= 0, then
J(O)MK(V) = (JMK(V) JMK(U))/JMK(U) = JMK(V). As before, if JMK(U) = 0, then J(O)MK = 0.

The next example necessitates to perform independent copies of a real random variable.

Example 106 (Monte Carlo Simulation). We use the Monte Carlo method to compute the n-th estimate
and approximate the expected value of a measurable function.

By definition, the expected value of a Lebesgue integrable function f with respect to a distribution µ is∫
R f(x)µ(dx). The Monte Carlo method relies on the law of large numbers: if x1, . . . ,xn are independent
and identically distributed random variables of equal probability distribution µ, then the n-th estimate
1
n (f(x1) + · · ·+ f(xn)) converges almost surely to

∫
R f(x)µ(dx), as n tends to ∞.

Let n ∈ N. We encode the n-th estimate combinator of type (R ⇒ R)⇒ R⇒ R by:

expectationn = λf.λm. 1n (
n times︷ ︸︸ ︷

f(m)+ . . .+f(m))

Notice that it is crucial here that the variablem has n occurrences representing n independent random
variables, this being in contrast with Example 105.

Let us compute its semantics. Let f ∈ C, M be a term of type R and U ⊆ R be measurable. Then,

Jexpectationnf MK`R(U) = JMK`R ⊗ · · · ⊗ JMK`R({(x1, · · · , xn) s.t. 1
n (f(x1) + · · ·+ f(xn)) ∈ U}).

This is exactly the law of 1
n (f(x1)+· · ·+f(xn)) where the xi’s are independent and identically distributed

random variables of law JMK`R. Thus, we have correctly encoded the n-th estimate of the expected
value of f with respect to µ.

When the preceding Example 106 cannot be applied, because, for instance, it is hard to compute
independent and identically distributed random variables following law µ. Then, we can replace them by
a Markov-Chain (xn) with invariant measure µ. The purpose of the Metropolis-Hasting is to compute
this Markov-Chain.

103

CHAPTER 3. PROBABILISTIC SEMANTICS

Example 107 (Metropolis-Hasting). We present an encoding of the Metropolis-Hasting algorithm which
is used in statistical inference and physics. This algorithm has been studied in Borgström et al. [2016]
from a syntactical viewpoint and in Scibior et al. [2018] in the semantics of Quasi-Borel Spaces (see He-
unen et al. [2017]).

Let µ be a distribution with density π with respect to the Lebesgue measure (i.e. for all U ⊆ R
measurable, µ(U) =

∫
U
π(x)λ(dx)). Assume that we know π up to a normalization factor (which can

be hard to compute has it needs to evaluate an integral). The Metropolis-Hasting algorithms generates
a Markov-Chain which is designed to be easy to compute and to converge quickly to a random variable
that follows the distribution law µ. We first choose a suitable conditional density function g(·, x) such
that g(x, y) = g(y, x) (for instance, a gaussian distribution with mean x). Let x0 be such that π(x0) > 0.
Then, the steps of the algorithms are:

1. Initial state is x := x0

2. Sample next state y according to probability density g(·, x)

3. Compute the acceptance probability α(x, y) = π(y)
π(x) and sample uniformly u in the interval [0, 1].

Then, if u ≤ α(x, y), then accept it and assign x := y, otherwise, if u > α(x, y), then reject it and
leave x unchanged.

Intuitively, if y is better than x, then we keep it, otherwise, we also keep it but with probability α(x, y).
We assume to be given a term G : R → R encoding the conditional density function g (for instance,

G = λx. gaussxσ if we choose the gaussian distribution with standard deviation σ). Then, we encode
the Metropolis-Hasting algorithm as MH such that if n is an integer, then MHnx0 is the n-th iteration of
the algorithm, with x0 as starting point:

MH = fix λhλnλx0 ifz(n, x0, let(x, h(n− 1)x0, let(y,Gx, let(z, bernoulli(α(x, y)), ifz(z, x, y)))))

We want to prove that this program encodes correctly the Metropolis-Hasting algorithm. Let xn be
the result of the evaluation of MHnx0, following the operational semantics described in Figure 3.13. Let
U ⊆ R be measurable. We need to prove that xn is a Markov Chain (see §3.5.7) whose invariant measure
is π and whose initial state is x0 such that π(x0) > 0. The measure of xn, defined as the probability
that xn ∈ U , is given by Red(MH(n)x0, U) (see the Adequacy Lemma 102).

Now, we want to compute Red(MH(n)x0, ·). We first apply the Adequacy Theorem 102: for all n ∈ N,
Red(MH(n)x0, U) = JMH(n)x0K`R(U). Then, we apply the Soundness Theorem 3.6. Indeed, since

MH0x0
δ→ x0

MH(n+ 1)x0
δ→ let(x, MHnx0, let(y,Gx, let(z, bernoulli(α(x, y)), ifz(z, x, y))))

and thanks to the interpretation of terms defined in Figure 3.15, we deduce:

Red(MH(0)x0, U) = δx0(U)
Red(MH(n+ 1)x0, U) = JMH(n+ 1)x0K`R(U)

=Jlet(x, MHnx0, let(y,Gx, let(z, bernoulli(α(x, y)), ifz(z, x, y))))K`R(U)

=
∫

R
Jlet(y,Gx, let(z, bernoulli(α(x, y)), ifz(z, x, y)))Kx:R`R(δr)(U) JMHnx0K`R(dr)

=
∫

R
PMH(r, U) Red(MHnx0, dr),

This last equality shows that xn is a Markov-Chain whose law is defined with respect to the kernel
PMH(r, U). Recall that Gx is a term of type R whose semantics has density function g(·, x), meaning that
JGxK`R(U) =

∫
U
g(y, x)λ(dy). Thus, we now compute

PMH(r, U) = Jlet(y,Gx, let(z, bernoulli(α(x, y)), ifz(z, x, y)))Kx:R`R(δr)(U)

=
∫

R
[(1− α(r, t))δr(U) + α(r, t)δt(U)]g(t, r)λ(dt)

= δr(U)
(

1−
∫

R
α(r, t)g(t, r)λ(dt)

)
+
∫
U

α(r, t)g(t, r)λ(dt)

This is the classical form of the Metropolis-Hasting kernel associated to the algorithm described above.

104

CHAPTER 3. PROBABILISTIC SEMANTICS

Let us show that π is the density of the invariant measure of the Markov-Chain xn. For this, we
need to prove that

∫
R PMH(r, U)π(r)λ(dr) =

∫
U
π(r)λ(dr). This results from the Fubini theorem and from

α(r, t)π(r) = α(t, r)π(t) and g(r, t) = g(t, r).
To sum up, we have proved that our encoding of the n-th step of the Metropolis-Hasting algorithm

evaluates to a random variable xn. Besides, (xn) is a Markov-Chain whose invariant measure has density
π. Thus, it converges to a random variable x whose law has also density π. This proves that our encoding
is correct.

3.5.7 Some measure theory
This paragraph gathers the probability theory that is needed to understand the above development.
A σ-algebra ΣX on a set X is a family of subsets of X that is non-empty, closed under complements

and countable unions and such that ∅ ∈ ΣX . A measurable space is a pair (X,ΣX) of a set X equipped
with a σ-algebra ΣX . A measurable set of (X,ΣX) is an element of ΣX . From now on, we will denote
a measurable space (X,ΣX) simply by its underlying set X, whenever the σ-algebra is clear or irrel-
evant. We consider R and R+ as measurable spaces equipped with the Lebesgue σ-algebra, generated
by the open intervals. A bounded measure on a measurable space X is a map µ : ΣX → R+ satisfying
µ(
⊎
i∈I Si) =

∑
i∈I µ(Si) for any countable family {Si}i∈I of disjoint sets in ΣX . We call µ a probability

(resp. subprobability) measure, whenever µ(X) = 1 (resp. µ(X) ≤ 1). When µ is a measure on Rn, we
often call it a distribution.

A measurable function f : (X,ΣX) → (Y,ΣY) is a function f : X → Y such that f−1(U) ∈ ΣX for
every U ∈ ΣY . The pushforward measure f∗µ from a measure µ on X along a measurable map f is
defined as (f∗µ)(U) = µ(f−1(U)), for every U ∈ ΣY .

These notions have been introduced in order to define the Lebesgue integral
∫
X
f(x)µ(dx) of a generic

measurable function f : X → R with respect to a measure µ over X. This paper uses only basic facts
about the Lebesgue integral which we do not detail here.

Measures are special cases of kernels. A bounded kernel K fromX to Y is a functionK : X×ΣY → R+

such that: (i) for every x ∈ X, K(x, ·) is a bounded measure over Y ; (ii) for every U ∈ ΣY , K(·, U) is a
measurable map from X to R+. A stochastic kernel K is a kernel such that K(x, ·) is a sub-probability
measure for every x ∈ X. Notice that a bounded measure (resp. sub-probability measure) µ over X
can be seen as a particular bounded kernel (resp. stochastic kernel) from the singleton measurable space
({?}, {∅, {?}}) to X.

A random variable x : (X,Σ, µ)→ R is a real valued Borel measurable function.
A stochastic process is an indexed family of random variables xn : X → R. Let µ(U |x1, . . . , xn)

denotes the conditional probability that xn+1 is in A given that xi is xi. Then a Markov chain is a
stochastic process such that µ(U |x1, . . . , xn) = µ(U |xn), meaning that the probability of xn+1 only
depends on the value of xn.

Categorical Approach. We use two categories having measurable spaces as objects, denoted respec-
tively Meas and Kern.

The category Meas has measurable functions as morphisms. This category is cartesian (but not
cartesian closed), the cartesian product (X,ΣX)× (Y,ΣY) of (X,ΣX) and (Y,ΣY) is (X × Y,ΣX ⊗ΣY),
where X × Y is the set-theoretic product and ΣX ⊗ ΣY is the σ-algebra generated by the rectangles
U × V , where U ∈ ΣX and V ∈ ΣY . It is easy to check that the usual projections are measurable maps,
as well as that the set-theoretic pairing 〈f, g〉 of two functions f : Z → X, g : Z → Y is a measurable
map from Z to X × Y , whenever f , g are measurable.

The category Kern has stochastic kernels as morphisms13. Given a stochastic kernel H from X to
Y and K from Y to Z, the kernel composition K ◦ H is a stochastic kernel from X to Z defined as, for
every x ∈ X and U ∈ ΣZ :

(K ◦ H)(x, U) =
∫
Y

K(y, U)H(x, dy). (3.7)

Notice that the above integral is well-defined because H(x, ·) is a stochastic measure from condition (i)
on kernels and K(·, U) is a measurable function from condition (ii). A simple application of Fubini’s
theorem gives the associativity of the kernel composition. The identity kernel is the function mapping
(x, U) to 1 if x ∈ U and to 0 otherwise.

Unlike Meas, we consider a tensor product ⊗ in Kern which is a symmetric monoidal product but
not the cartesian product14. The action of ⊗ over the objects X,X ′ is defined as the cartesian product
13. One can well define the category of bounded kernels also, but this is not used here.
14. Indeed, Kern has cartesian products, but we will not use them.

105

CHAPTER 3. PROBABILISTIC SEMANTICS

in Meas, so that we still denote it as X ×X ′. The tensor of a kernel K from X to Y and K ′ from X ′

to Y ′ is the kernel K ⊗K ′ given as follows, for (x, x′) ∈ X ×X ′ and U ∈ ΣY , U ′ ∈ ΣY ′ :

K ⊗K ′((x, x′), U × U ′) = K(x, U)K ′(x′, U ′) (3.8)

Notice that Kern is not closed with respect to ⊗. Recall that a measure can be seen as a kernel from
the singleton measurable space, so that Equation (3.8) defines also a tensor product between measures
over resp. Y and Y ′.

The category Kern has also countable coproducts. Given a countable family (Xi,Σi)i∈I of measurable
spaces, the coproduct

∐
i∈I(Xi,Σi) has as underlining set the disjoint union ∪i∈IXi × {i} of the Xi’s,

and as the σ-algebra the one generated by ∪i∈IUi × {i} disjoint union of Ui ∈ Σi. The injections ιj
from Xj to

∐
i∈I Xi are defined as ιi(x,∪j∈IUj × {j}) = χUi(x). Given a family Ki from Xi to Y , the

copairing [Ki]i∈I from
∐
i∈I Xi to Y is defined by [Ki]i∈I((x, j), U) = Kj(x, U).

Actually, the categories Meas and Kern can be related in a very similar way as the relation between
the categories Set (of sets and functions) and Rel (of sets and relations). In fact, Kern corresponds to
the Kleisli category of the so-called Giry’s monad over Meas [Giry, 1982], exactly as the category Rel
of relations is the Kleisli category of the powerset monad over Set (see [Panangaden, 1999]). Since this
paper does not use this construction, we do not detail it.

3.6 Conclusion

discrete
data

continuous
& discrete data

Markov PCoh PCoh!

first-order lang. linear logic cbn PCF

Kern Clinm Cstabm

Kleisli

Kleisli

Figure 3.16 – Relationship between probabilistic coherence categories and the category of measurable cones and
stable, measurable morphisms. Dashed arrows are still conjectures.

Let us sketch the relations, sketched in Figure 3.16, between the two categories we have presented
in this chapter: the category PCoh! of probabilistic coherence spaces and analytic functions which
has been the starting point of our approach and the category Cstabm of measurable cones and stable,
measurable functions presented in the last section. The two categories give models of the functional
primitives (PCF-like languages), but PCoh! is restricted to discrete data types, while Cstabm extends
the model to continuous types. We guess this extension to be conservative, hence the arrow is hooked
but just dashed.

There are many open questions in this area that are listed below:

• How to decompose the category Cstabm into a model of Linear Logic, that is a category Clinm
of measurable cones and continuous, linear, measurable functions; together with an exponential
comonad ?

• Does the stable, measurable functions admits a decomposition as analytic functions, that we could
exploit to apply our Full-Abstraction proof technique ?
A step forward has been taken in this direction in Crubillé [2018] where morphisms of Probabilistic
Coherent Spaces are proved to be exactly stable measurable morphisms.

• Differential programming relies on the optimization of statstical algorithms through gradient de-
scent. How to combine differential extensions of Linear Logic and stable functions that are infinitely
differentiable (inside the unit ball) in order to give a semantical account of this topical subject ?

106

CHAPTER 3. PROBABILISTIC SEMANTICS

3.7 Bibliography
An explicit formula for the free exponential modality of linear logic. Mathematical Structures in Computer
Science, page 1–34, 2017. 64, 68

Roberto Amadio and Pierre-Louis Curien. Domains and lambda-calculi, volume 46 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998. 83

Tsuyoshi Andô. On fundamental properties of a banach space with a cone. Pacific Journal of Mathe-
matics, 12(4):1163–1169, 1962. 97

Robert J. Aumann. Borel structures for function spaces. Illinois J. Math., 5(4):614–630, 12 1961. 63

Gérard Berry. Stable models of typed lambda-calculi. In Automata, Languages and Programming, Fifth
Colloquium, Udine, Italy, July 17-21, 1978, Proceedings, volume 62 of Lecture Notes in Computer
Science, pages 72–89. Springer, 1978. 62, 98

Gavin Bierman. What is a categorical model of intuitionistic linear logic? In Mariangiola Dezani-
Ciancaglini and Gordon D. Plotkin, editors, Proceedings of the second Typed Lambda-Calculi and
Applications conference, volume 902 of Lecture Notes in Computer Science, pages 73–93. Springer-
Verlag, 1995. 66

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A lambda-calculus
foundation for universal probabilistic programming. In Jacques Garrigue, Gabriele Keller, and Ei-
jiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pages 33–46. ACM, 2016. 95, 104

G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates. Ann. Math.
Statist., 29(2):610–611, 06 1958. doi: 10.1214/aoms/1177706645. 102

Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard, and Giulio Manzonetto. Full Abstraction for
Resource Calculus with Tests. In Marc Bezem, editor, CSL, volume 12 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2011. 84

Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn Winskel. The concurrent game semantics
of probabilistic PCF. In LICS, pages 215–224. ACM, 2018. 63

Raphaëlle Crubillé. Probabilistic stable functions on discrete cones are power series. In LICS, pages
275–284. ACM, 2018. 106

Raphaelle Crubillé, Thomas Ehrhard, Michele Pagani, and Christine Tasson. The Free Exponential
Modality of Probabilistic Coherence Spaces. In J. Esperanza and A. Murawski, editors, Proceedings of
the 20th International Conference on Foundations of Software Science and Computation Structures,
FOSSACS 2017. ARCoSS, 2017. 64, 68

Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-order proba-
bilistic computation. Information and Computation, 152(1):111–137, 2011. 61, 65, 66, 68, 70, 74, 78,
79, 85, 95

Thomas Ehrhard. Call-by-push-value from a linear logic point of view. In ESOP, volume 9632 of Lecture
Notes in Computer Science, pages 202–228. Springer, 2016. 64, 71, 73, 90

Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antiderivatives.
Mathematical Structures in Computer Science, 28(7):995–1060, 2018. 72

Thomas Ehrhard and Christine Tasson. Probabilistic call by push value. Logical Methods in Computer
Science, 2018. Accepted for publication, under minor revisions. 61, 64, 65, 85, 91, 92

Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of probabilistic
coherence spaces. In LICS, pages 87–96. IEEE Computer Society, 2011. 63, 74, 76

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Probabilistic coherence spaces are fully abstract
for probabilistic PCF. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 309–320.
ACM, 2014. 61, 63

107

CHAPTER 3. PROBABILISTIC SEMANTICS

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction for probabilistic PCF. Journal
of the ACM, 65(4):23:1–23:44, 2018a. 61, 64, 65, 78

Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable, measurable
functions: a model for probabilistic higher-order programming. In POPL, pages 59:1–59:28. ACM,
2018b. 62, 64

Martin Escardó. Pcf extended with real numbers. Theoretical Computer Science, 162(1):79 – 115, 1996.
94

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987. 69, 92

Jean-Yves Girard. Normal functors, power series and the λ-calculus. Annals of Pure and Applied Logic,
37:129–177, 1988. 61

Jean-Yves Girard. Between logic and quantic: a tract. In Thomas Ehrhard, Jean-Yves Girard, Paul
Ruet, and Philip Scott, editors, Linear Logic in Computer Science, volume 316 of London Mathematical
Society Lecture Notes Series, pages 346–381. Cambridge University Press, 2004. 61

Michèle Giry. A categorical approach to probability theory, pages 68–85. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1982. 63, 106

Noah D. Goodman and Joshua B. Tenenbaum. Probabilistic models of cognition. http://probmods.org,
2014. 63

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum.
Church: a language for generative models. In David A. McAllester and Petri Myllymäki, editors, UAI
2008, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence, Helsinki, Finland,
July 9-12, 2008, pages 220–229, 2008. 63

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for higher-order
probability theory. In LICS, pages 1–12. IEEE Computer Society, 2017. 63, 104

Martin Hyland. A syntactic characterization of the equality in some models for the lambda calculus. J.
London Math. Soc, 12:361–370, 1976. 76

Claire Jones and Gordon Plotkin. A probabilistic powerdomains of evaluation. In Proceedings of the 4th
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, 1989. 62

Achim Jung and Regina Tix. The troublesome probabilistic powerdomain. Electr. Notes Theor. Comput.
Sci., 13:70–91, 1998. 63

Klaus Keimel and Gordon D. Plotkin. Mixed powerdomains for probability and nondeterminism. Logical
Methods in Computer Science, 13(1), 2017. 63

Dexter Kozen. Semantics of probabilistic programs. In 20th Annual Symposium on Foundations of
Computer Science, San Juan, Puerto Rico, 29-31 October 1979, pages 101–114. IEEE Computer
Society, 1979. 62, 63

Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted relational models of typed
lambda-calculi. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013,
New Orleans, LA, USA, June 25-28, 2013. IEEE Computer Society, June 2013. 100

Brockway McMillan. Absolutely Monotone Functions. Annals of Mathematics, 60(3):467–501, 1954. 98

Paul-André Melliès. Categorical semantics of linear logic. Panoramas et Synthèses, 27, 2009. 66, 72

Eugenio Moggi. Computational lambda-calculus and monads. In LICS, pages 14–23. IEEE Computer
Society, 1989. 62

Prakash Panangaden. The category of markov kernels. Electronic Notes in Theoretical Computer Sci-
ence, 22:171 – 187, 1999. PROBMIV’98, First International Workshop on Probabilistic Methods in
Verification. 63, 106

Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language based on sampling
functions. ACM Trans. Program. Lang. Syst., 31(1):4:1–4:46, December 2008. 63, 95

108

CHAPTER 3. PROBABILISTIC SEMANTICS

AndrewM. Pitts. Computational adequacy via ‘mixed’ inductive definitions. In Stephen Brookes, Michael
Main, Austin Melton, Michael Mislove, and David Schmidt, editors, Mathematical Foundations of
Programming Semantics, pages 72–82, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. ISBN
978-3-540-48419-6. 61, 77, 91

Gordon Plotkin. A powerdomain construction. SIAM Journal of Computing, 5(3):452–487, 1976. 62

Gordon Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5:223–256,
1977. 76, 83, 95, 100

Mathys Rennela. Convexity and order in probabilistic call-by-name FPC. CoRR, abs/1607.04332, 2016.
URL http://arxiv.org/abs/1607.04332. 63

John C. Reynolds. On the relation between direct and continuation semantics. ICALP, Lecture Notes
in Comput. Sci., 14:141–156, 1974. 76

Adam Scibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Oster-
mann, Sean K. Moss, Chris Heunen, and Zoubin Ghahramani. Denotational validation of higher-order
bayesian inference. PACMPL, 2(POPL):60:1–60:29, 2018. 104

Peter Selinger. Towards a semantics for higher-order quantum computation. In Proceedings of the 2nd
International Workshop on Quantum Programming Languages, Turku, Finland, number 33 in TUCS
General Publication. Turku Centre for Computer Science, 2004. 97

Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, and Ohad Kammar. Semantics for proba-
bilistic programming: higher-order functions, continuous distributions, and soft constraints. In LICS,
pages 525–534. ACM, 2016. 63, 95

Alfred Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific J. Math., 5:285–309,
1955. 70, 77

Jean Vuillemin. Exact real computer arithmetic with continued fractions. In Proceedings of the 1988
ACM Conference on LISP and Functional Programming, LFP ’88, pages 14–27, New York, NY, USA,
1988. ACM. ISBN 0-89791-273-X. 94

Frank D. Wood, Jan-Willem van de Meent, and Vikash Mansinghka. A new approach to probabilistic
programming inference. In AISTATS, volume 33 of JMLR Workshop and Conference Proceedings,
pages 1024–1032. JMLR.org, 2014. 63

109

http://arxiv.org/abs/1607.04332

List of Figures

1 Protocol complex . 2

1.1 The collapse of the chromatic subdivision complex for three processes. 13
1.2 Protocol complex with traces and interval orders of 2 processes, 2 rounds 25
1.3 Interval order complex with traces of 3 processes, 1 round. 26

3.1 Constructions of LL in Pcoh . 66
3.2 Definition of the reflexive object in Pcoh . 70
3.3 Syntax and operational semantics of Λ+ . 74
3.5 Interpretation of Λ+ in Pcoh . 75
3.6 Syntax of pPCF . 78
3.7 Operational semantics of pPCF . 79
3.8 Interpretation of pPCF in Pcoh . 82
3.9 Syntax of Λp

HP. 86
3.10 Operational semantics of Λp

HP . 87
3.11 Interpretation of Λp

HP in Pcoh . 90
3.12 Syntax of pRPCF . 94
3.13 Operational semantics of pRPCF. 96
3.14 Structure of CCC of Cstabm . 100
3.15 Interpretation of pRPCF in Cstabm . 100
3.16 Relationship between Pcoh and Cstabm . 106

I

	Contents
	Introduction
	Prelude
	Scientific Context
	Contributions
	Bibliography

	Distributed computing
	Introduction
	Concurrent semantics of asynchronous read/write protocols
	Protocol complexes, derived from the concurrent semantics
	Conclusion
	Bibliography

	Differential Semantics
	Introduction
	Monads, adjoints and splittings
	A colimit of monads
	A technical lemma
	The colimit is a monad
	A characterization of Q-algebras.
	Example
	Bibliography

	Probabilistic Semantics
	Introduction
	Probabilistic coherence spaces
	An adequate model of pure probabilistic -calculus
	A fully abstract model of pPCF
	A fully abstract model of pCBPV
	An adequate model of pRPCF
	Conclusion
	Bibliography

	List of Figures

