, Systematic uncertainty on the N ch ? N corr correlation in p-Pb and Pb-p

M. Tanabashi, Review of Particle Physics, Phys. Rev. D, vol.98, issue.030001, p.229, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01867148

D. Griffiths, Introduction to elementary particles, vol.10, p.229, 2008.

G. Aad, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett, vol.716, pp.1-29, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00722246

S. Chatrchyan, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett, vol.716, p.59, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00722244

S. K. Choi, Observation of a resonance-like structure in the pi+psi-prime mass distribution in exclusive B-¿ K pi+-psi-prime decays, Phys. Rev. Lett, vol.100, issue.10, p.142001, 2008.

R. Aaij, Observation of J/?p Resonances Consistent with Pentaquark States in ? 0
URL : https://hal.archives-ouvertes.fr/in2p3-01177045

?. J/?k-?-p-decays, Phys. Rev. Lett, vol.115, p.72001, 2015.

F. Mandl and G. Shaw, Quantum field theory, p.11, 2010.

S. Sarkar, H. Satz, and B. Sinha, The physics of the quark-gluon plasma, Lect. Notes Phys, vol.785, p.219, 2010.

Z. Fodor and S. D. Katz, Critical point of QCD at finite T and mu, lattice results for physical quark masses, JHEP, issue.04, p.12, 2004.

M. M. Aggarwal, An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement, vol.12, p.219
URL : https://hal.archives-ouvertes.fr/in2p3-00508740

J. D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev, vol.27, p.45, 1983.

M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci, vol.57, p.219, 2007.

B. Abelev, Centrality determination of Pb-Pb collisions at ? s N N = 2.76 TeV with ALICE, Phys. Rev. C88, vol.14, issue.4, p.45, 2013.

R. Vogt, Ultrarelativistic heavy-ion collisions, vol.29, p.229, 2007.

S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys, vol.70, p.205, 1996.

V. Khachatryan, Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions, Phys. Rev, vol.92, issue.3, p.16, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01139172

K. Aamodt, Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at ? s N N =2.76 TeV, Phys. Rev. Lett, vol.107, p.32301, 2011.

G. Aad, Measurement of the azimuthal anisotropy for charged particle production in ? s N N = 2.76 TeV lead-lead collisions with the ATLAS detector

. Rev, , p.14907, 2012.

C. Y. Wong, Introduction to high-energy heavy ion collisions, p.16, 1995.

P. Braun-munzinger, K. Redlich, and J. Stachel, Particle production in heavy ion collisions, p.17

, Quark-gluon plasma, vol.3, 2004.

J. Stachel, A. Andronic, P. Braun-munzinger, and K. Redlich, Confronting LHC data with the statistical hadronization model, J. Phys. Conf. Ser, vol.509, p.219, 2014.

G. Aad, Measurement of Z boson Production in Pb+Pb Collisions at ? s N N = 2.76 TeV with the ATLAS Detector, Phys. Rev. Lett, vol.110, issue.2, p.17, 2013.

S. Chatrchyan, Study of Z production in PbPb and pp collisions at ? s NN = 2.76 TeV in the dimuon and dielectron decay channels, JHEP, vol.17, issue.03, p.219, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01077231

S. Acharya, Measurement of Z 0-boson production at large rapidities in Pb-Pb collisions at ? s NN = 5.02 TeV, Phys. Lett, vol.780, p.17, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758316

J. E. Augustin, Discovery of a Narrow Resonance in e + e ? Annihilation, Phys. Rev. Lett, vol.33, p.19, 1974.

J. J. Aubert, Experimental Observation of a Heavy Particle J, Phys. Rev. Lett, vol.33, pp.1404-1406, 1974.

S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev, vol.2, pp.1285-1292, 1970.
DOI : 10.1103/physrevd.2.1285

J. Ho?ej?í, Fundamentals of electroweak theory, 2002.

, The Nobel Prize in Physics, Nobelprize.org. Nobel Media AB 2014. Web. 26, 1976.

G. S. Abrams, The Discovery of a Second Narrow Resonance in e+ e-Annihilation, Phys. Rev. Lett, vol.33, p.19, 1974.

S. Okubo, Phi meson and unitary symmetry model, Phys. Lett, vol.5, pp.165-168, 1963.

G. Zweig, An SU 3 model for strong interaction symmetry and its breaking; Version 2

J. Iizuka, A systematics and phenomenology of meson family, Progress of Theoretical Physics Supplement, pp.21-34, 1966.

R. Aaij, Measurement of the ratio of prompt ? c to J/? production in pp collisions at ? s = 7 TeV, Phys. Lett, vol.718, p.22, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00687955

R. Aaij, Measurement of ?(2S) meson production in pp collisions at ? s=7 TeV, Eur. Phys. J. C72, p.22, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00737843

B. Abelev, Measurement of prompt J/? and beauty hadron production cross sections at mid-rapidity in pp collisions at ? s = 7 TeV, JHEP, vol.22, issue.11, p.219, 2012.

G. Aad, Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/? production in proton-proton collisions at ? s = 7 TeV
URL : https://hal.archives-ouvertes.fr/in2p3-00586605

, Nucl. Phys, vol.850, p.219, 2011.

V. Khachatryan, Prompt and non-prompt J/? production in pp collisions at ? s = 7 TeV, Eur. Phys. J, vol.71, p.219, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00537749

R. Aaij, Measurement of J/? production in pp collisions at ? s = 7 TeV, Eur. Phys. J, vol.71, p.219, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00574543

R. Aaij, Measurement of forward J/? production cross-sections in pp collisions at ? s = 13 TeV, JHEP, issue.10, p.172, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01192701

A. Andronic, Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C76, vol.24, issue.3, p.219, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01169535

C. Chang, Hadronic Production of J/? Associated With a Gluon, Nucl. Phys, vol.172, pp.425-434, 1980.

G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev, vol.51, p.24, 1995.

F. Abe, J/? and ?(2S) production in p¯ p collisions at ? s = 1

. Tev, Phys. Rev. Lett, vol.79, p.219, 1997.

M. Krämer, Quarkonium production at high-energy colliders, Prog. Part. Nucl. Phys, vol.47, p.219, 2001.

T. Affolder, Measurement of J/? and ?(2S) polarization in p¯ p collisions at ? s = 1.8 TeV, Phys. Rev. Lett, vol.85, pp.2886-2891, 2000.

M. Beneke and M. Krämer, Direct J/? and ? polarization and cross-sections at the Tevatron, Phys. Rev, vol.55, p.219, 1997.

E. Braaten, B. A. Kniehl, and J. Lee, Polarization of prompt J/? at the Tevatron, Phys. Rev, vol.62, p.219, 2000.

L. Adamczyk, J/? production at high transverse momenta in p + p and Au+Au collisions at ? s N N = 200 GeV, Phys. Lett, vol.722, p.219, 2013.

B. I. Abelev, J/psi production at high transverse momentum in p+p and Cu+Cu collisions at s(NN)**1/2 = 200GeV, Phys. Rev, vol.80, p.219, 2009.

J. Adam, J/? production cross section and its dependence on charged-particle multiplicity in p + p collisions at ? s = 200 GeV, vol.25, p.219

A. Adare, Measurement of Transverse Single-Spin Asymmetries for J/? Production in Polarized p + p Collisions at ? s = 200 GeV, Phys. Rev
URL : https://hal.archives-ouvertes.fr/in2p3-00745786

, D82, p.112008, 2010.

V. D. Barger, W. Keung, and R. J. Phillips, On psi and Upsilon Production via Gluons, Phys. Lett, vol.91, p.219, 1980.

V. D. Barger, W. Keung, and R. J. Phillips, Hadroproduction of ? and ?, Z. Phys, vol.6, p.25, 1980.

Y. Ma, K. Wang, and K. Chao, A complete NLO calculation of the J/? and ? production at hadron colliders, Phys. Rev, vol.84, p.114001, 2011.

Y. Ma and R. Venugopalan, Comprehensive Description of J/? Production in Proton-Proton Collisions at Collider Energies, Phys. Rev. Lett, vol.113, issue.19, p.219, 2014.

L. Adamczyk, J/? polarization in p+p collisions at ? s = 200
URL : https://hal.archives-ouvertes.fr/in2p3-00913294

S. Gev-in, Phys. Lett, vol.739, p.26, 2014.

A. Adare, Transverse momentum dependence of J/psi polarization at midrapidity in p+p collisions at s**(1/2) = 200-GeV, Phys. Rev, vol.82, p.26, 2010.

J. P. Lansberg, J/? production at sqrt(s)=1.96 and 7 TeV: Color-Singlet Model, NNLO* and polarisation, J. Phys, vol.38, p.26, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00713250

H. S. Chung, C. Yu, S. Kim, and J. Lee, Polarization of prompt J/psi in proton-proton collisions at RHIC, Phys. Rev, vol.81, p.26, 2010.

G. Aad, Measurement of the differential cross-sections of prompt and non-prompt production of J/? and ?(2S) in pp collisions at ? s = 7 and 8 TeV with the ATLAS detector, Eur. Phys. J. C76, vol.26, issue.5, p.219, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01242737

A. M. Sirunyan, Measurement of quarkonium production cross sections in pp collisions at ? s = 13 TeV, Phys. Lett, vol.780, p.219, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758282

V. Khachatryan, Measurement of J/? and ?(2S) Prompt Double-Differential Cross Sections in pp Collisions at ? s=7 TeV, Phys. Rev. Lett, vol.114
URL : https://hal.archives-ouvertes.fr/in2p3-01141648

Y. Ma, K. Wang, and K. Chao, J/?(? ) production at the Tevatron and LHC at O(? 4 s v 4 ) in nonrelativistic QCD, Phys. Rev. Lett, vol.106, p.223, 2011.

M. Cacciari, S. Frixione, and P. Nason, The p T spectrum in heavy flavor photoproduction, JHEP, vol.26, issue.03, p.219, 2001.

M. Cacciari, S. Frixione, N. Houdeau, M. L. Mangano, P. Nason et al., Theoretical predictions for charm and bottom production at the LHC, JHEP, vol.26, issue.10, p.219, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00727754

K. Aamodt, Rapidity and transverse momentum dependence of inclusive J/? production in pp collisions at ? s = 7 TeV, Erratum: Phys. Lett, vol.704, p.28, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00590378

. , Quarkonium production cross sections in pp collisions at ? s = 13 TeV, 2016.

R. Aaij, Measurement of J/? production in pp collisions at ? s = 2.76 TeV, JHEP, issue.02, p.28, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00761711

R. Aaij, Production of J/psi and Upsilon mesons in pp collisions at sqrt(s) = 8 TeV, JHEP, vol.28, issue.06, p.208, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00818152

B. Abelev, Inclusive J/? production in pp collisions at ? s = 2.76 TeV, Erratum: Phys. Lett, vol.718, p.117, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00680363

S. Acharya, Energy dependence of forward-rapidity J/? and ?(2S) production in pp collisions at the LHC, Eur. Phys. J. C77, vol.96, issue.6, p.227, 0201.
URL : https://hal.archives-ouvertes.fr/in2p3-01454729

B. B. Abelev, Measurement of quarkonium production at forward rapidity in pp collisions at ? s = 7 TeV, Eur. Phys. J. C74, issue.8, p.2974, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00959806

J. Adam, Inclusive quarkonium production at forward rapidity in pp collisions at ? s = 8 TeV, Eur. Phys. J. C76, issue.4, p.184, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01206393

P. Artoisenet, J. P. Lansberg, and F. Maltoni, Hadroproduction of J/? and ? in association with a heavy-quark pair, Phys. Lett, vol.653, p.219, 2007.

J. M. Campbell, F. Maltoni, and F. Tramontano, QCD corrections to J/psi and Upsilon production at hadron colliders, Phys. Rev. Lett, vol.98, p.252002, 2007.

P. Artoisenet, J. M. Campbell, J. P. Lansberg, F. Maltoni, and F. Tramontano, ? Production at Fermilab Tevatron and LHC Energies, Phys. Rev. Lett, vol.101, p.28, 2008.

J. P. Lansberg, On the mechanisms of heavy-quarkonium hadroproduction, Eur. Phys. J, vol.61, p.219, 2009.

R. Aaij, Measurement of J/? polarization in pp collisions at ? s = 7 TeV, Eur. Phys. J. C73, issue.11, p.29, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00847975

B. Abelev, J/? polarization in pp collisions at ? s = 7 TeV
URL : https://hal.archives-ouvertes.fr/in2p3-00639319

, Phys. Rev. Lett, vol.108, p.82001, 2012.

S. Acharya, Measurement of the inclusive J/ ? polarization at forward rapidity in pp collisions at ? s = 8 TeV, Eur. Phys. J. C78, vol.562, issue.7, p.29, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01801873

M. Butenschoen and B. A. , J/? polarization at Tevatron and LHC: Nonrelativistic-QCD factorization at the crossroads, Phys. Rev. Lett, vol.108, p.29, 2012.
DOI : 10.1103/physrevlett.108.172002

URL : http://arxiv.org/pdf/1201.1872

B. Gong, L. Wan, J. Wang, and H. Zhang, Polarization for Prompt J/? and ?(2S) Production at the Tevatron and LHC, Phys. Rev. Lett, vol.110, issue.4, p.42002, 2013.

H. Shao and K. Chao, Spin correlations in polarizations of P-wave charmonia ? cJ and impact on J/? polarization, Phys. Rev, vol.90, issue.1, p.29, 2014.

T. Matsui and H. Satz, J/? Suppression by Quark-Gluon Plasma Formation, Phys. Lett, vol.178, p.30, 1986.
DOI : 10.1016/0370-2693(86)91404-8

R. L. Thews, M. Schroedter, and J. Rafelski, Enhanced J/? production in deconfined quark matter, Phys. Rev, vol.63, p.54905, 2001.
DOI : 10.1103/physrevc.63.054905

URL : http://cds.cern.ch/record/449342/files/0007323.pdf

B. Abelev, Measurement of charm production at central rapidity in proton-proton collisions at ? s = 2.76 TeV, JHEP, vol.219, issue.07, p.209, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00705656

A. Andronic, P. Braun-munzinger, K. Redlich, and J. Stachel, The statistical model in Pb-Pb collisions at the LHC, Nucl. Phys, vol.30, p.220, 2013.

X. Zhao and R. Rapp, Medium Modifications and Production of Charmonia at LHC, Nucl. Phys, vol.859, p.220, 2011.

X. Du and R. Rapp, Sequential Regeneration of Charmonia in Heavy-Ion Collisions, Nucl. Phys, vol.943, p.220, 2015.

X. Du and R. Rapp, ?(2S) Production at the LHC, J. Phys. Conf. Ser, vol.779, issue.1, p.12042, 2017.

K. Zhou, N. Xu, Z. Xu, and P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev. C89, vol.30, issue.5, p.220, 2014.
DOI : 10.1103/physrevc.89.054911

URL : http://arxiv.org/pdf/1401.5845

E. G. Ferreiro, Charmonium dissociation and recombination at LHC: Revisiting comovers, Phys. Lett, vol.731, pp.57-63, 2014.
DOI : 10.1016/j.physletb.2014.02.011

URL : https://doi.org/10.1016/j.physletb.2014.02.011

E. G. Ferreiro, Excited charmonium suppression in proton-nucleus collisions as a consequence of comovers, Phys. Lett, vol.749, p.220, 2015.

B. and A. , psi-prime production in Pb-Pb collisions at 158-GeV/nucleon, Eur. Phys. J, vol.49, p.220, 2007.

A. Adare, J/? suppression at forward rapidity in Au+Au collisions at ? s N N = 200 GeV, Phys. Rev, vol.84, p.220, 2011.

A. Adare, J/? Production vs Centrality, Transverse Momentum, and Rapidity in Au+Au Collisions at ? s N N = 200 GeV, Phys. Rev. Lett, p.98

B. B. Abelev, Centrality, rapidity and transverse momentum dependence of J/? suppression in Pb-Pb collisions at ? s NN =2.76 TeV, Phys. Lett, p.734

J. Adam, J/? suppression at forward rapidity in Pb-Pb collisions at ? s NN = 5.02 TeV, Phys. Lett, vol.766, issue.111, p.220, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01338145

J. Adam, Inclusive, prompt and non-prompt J/? production at mid-rapidity in Pb-Pb collisions at ? s NN = 2.76 TeV, JHEP, vol.33, issue.07, p.220, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01148627

S. Chatrchyan, Suppression of non-prompt J/?, prompt J/?, and Y(1S) in PbPb collisions at ? s N N = 2.76 TeV, JHEP, vol.33, issue.05, p.220, 2012.

X. Zhao and R. Rapp, Charmonium in Medium: From Correlators to Experiment, Phys. Rev, vol.82, p.220, 2010.

K. Zhou, N. Xu, and P. Zhuang, Quarkonium Production and Medium Effects in High Energy Nuclear Collisions, vol.33, p.220

L. Adamczyk, Measurement of J/? Azimuthal Anisotropy in Au+Au Collisions at ? s N N =200 GeV, Phys. Rev. Lett, vol.111, 2013.

,

E. Abbas, J/Psi Elliptic Flow in Pb-Pb Collisions at ? s NN =

. Tev, Phys. Rev. Lett, vol.111, p.210, 2013.

S. Acharya, J/? elliptic flow in Pb-Pb collisions at ? s NN = 5, p.2
URL : https://hal.archives-ouvertes.fr/hal-01669832

. Tev, Phys. Rev. Lett, vol.119, issue.24, p.220, 2017.

S. Acharya, D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at ? s NN = 5.02 TeV, Phys. Rev. Lett, vol.120, issue.10, p.33, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01730085

J. Adam, Centrality dependence of particle production in p-Pb collisions at ? s NN = 5.02 TeV, Phys. Rev. C91, issue.6, p.64905, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01098155

F. D. Aaron, Inclusive Deep Inelastic Scattering at High Q 2 with Longitudinally Polarised Lepton Beams at HERA, JHEP, vol.36, issue.09, p.220, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00713763

J. J. Aubert, The ratio of the nucleon structure functions F 2 n for iron and deuterium, Phys. Lett, vol.123, pp.275-278, 1983.
URL : https://hal.archives-ouvertes.fr/in2p3-00008583

K. Rith, Present Status of the EMC effect, Subnucl. Ser, vol.51, p.36, 2015.

K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C77, vol.36, issue.3, p.220, 2017.

A. Adare, Heavy-flavor electron-muon correlations in p+p and d+Au collisions at ? s N N = 200 GeV, Phys. Rev. C89, vol.36, issue.3, p.45, 2014.

E. Iancu and R. Venugopalan, The Color glass condensate and high-energy scattering in QCD, p.38, 2003.

F. Arleo and S. Peigne, J/? suppression in p-A collisions from parton energy loss in cold QCD matter, Phys. Rev. Lett, vol.109, p.38, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00690410

C. Lourenco, R. Vogt, and H. K. Woehri, Energy dependence of J/psi absorption in proton-nucleus collisions, vol.39, p.220, 2009.

A. Adare, Cold Nuclear Matter Effects on J/? Yields as a Function of Rapidity and Nuclear Geometry in Deuteron-Gold Collisions at ? s N N = 200

. Gev, Phys. Rev. Lett, vol.107, p.220, 2011.

K. J. Eskola, H. Paukkunen, and C. A. Salgado, EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP, issue.04, p.65, 2009.

R. Vogt, Shadowing and absorption effects on J/psi production in dA collisions, Phys. Rev, vol.71, p.220, 2005.

D. Kharzeev and K. Tuchin, Signatures of the color glass condensate in J/psi production off nuclear targets, Nucl. Phys, vol.770, p.220, 2006.

D. Kharzeev and K. Tuchin, Open charm production in heavy ion collisions and the color glass condensate, Nucl. Phys, vol.735, p.220, 2004.

A. Adare, Transverse-Momentum Dependence of the J/? Nuclear Modification in d+Au Collisions at ? s N N = 200 GeV, Phys. Rev. C87, vol.40, issue.3, p.220, 2013.

B. Z. Kopeliovich, I. K. Potashnikova, and I. Schmidt, Nuclear suppression of J/Psi: from RHIC to the LHC, Nucl. Phys, vol.864, p.40, 2011.

B. Z. Kopeliovich, I. K. Potashnikova, and I. Schmidt, J/? production in nuclear collisions: Theoretical approach to measuring the transport coefficient, Phys. Rev, vol.82, p.40, 2010.

J. W. Cronin, H. J. Frisch, M. J. Shochet, J. P. Boymond, R. Mermod et al., Production of hadrons with large transverse momentum at 200, 300, and 400 GeV, Phys. Rev, vol.11, pp.3105-3123, 1975.

E. G. Ferreiro, F. Fleuret, J. P. Lansberg, N. Matagne, and A. Rakotozafindrabe, Centrality, Rapidity, and Transverse-Momentum Dependence of Gluon Shadowing and Antishadowing on J/? Production in dAu Collisions at ? s=200 GeV, Few Body Syst, vol.53, p.40, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00723998

E. G. Ferreiro, F. Fleuret, J. P. Lansberg, and A. Rakotozafindrabe, Cold nuclear matter effects on J/psi production: Intrinsic and extrinsic transverse momentum effects, Phys. Lett, vol.680, p.40, 2009.

J. Adam, Rapidity and transverse-momentum dependence of the inclusive J/? nuclear modification factor in p-Pb collisions at ? s N N = 5.02 TeV, JHEP, issue.06, p.41, 2015.

S. Acharya, Inclusive J/? production at forward and backward rapidity in p-Pb collisions at ? s NN = 8.16 TeV
URL : https://hal.archives-ouvertes.fr/hal-01801876

J. L. Albacete, Predictions for Cold Nuclear Matter Effects in p+Pb Collisions at ? s N N = 8.16 TeV, Nucl. Phys, vol.972, p.220, 2018.

J. Lansberg and H. Shao, Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions, Eur. Phys. J. C77, issue.1, p.1, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01384325

Y. Ma, R. Venugopalan, K. Watanabe, and H. Zhang, ?(2S) versus J/? suppression in proton-nucleus collisions from factorization violating soft color exchanges, Phys. Rev. C97, issue.1, p.14909, 2018.

B. Ducloué, T. Lappi, and H. Mäntysaari, Forward J/? production at high energy: centrality dependence and mean transverse momentum, Phys. Rev, vol.94, issue.7, p.43, 2016.

F. Arleo and S. Peigné, Quarkonium suppression in heavy-ion collisions from coherent energy loss in cold nuclear matter, JHEP, issue.10, p.73, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178617

B. Chen, T. Guo, Y. Liu, and P. Zhuang, Cold and Hot Nuclear Matter Effects on Charmonium Production in p+Pb Collisions at LHC Energy, Phys. Lett, vol.765, p.220, 2017.
DOI : 10.1016/j.physletb.2016.12.021

URL : https://doi.org/10.1016/j.physletb.2016.12.021

. , Preliminary Physics Summary: Inclusive J/? production at forward rapidity in p-Pb collisions at ? s NN = 8.16 TeV

J. Adam, Centrality dependence of inclusive J/? production in p-Pb collisions at ? s NN = 5.02 TeV, JHEP, issue.11, p.127, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01169682

R. Vogt, Cold Nuclear Matter Effects on J/? and ? Production at the LHC, Phys. Rev, vol.81, p.220, 2010.

F. Arleo, R. Kolevatov, S. Peigné, and M. Rustamova, Centrality and pT dependence of J/psi suppression in proton-nucleus collisions from parton energy loss, JHEP, issue.05, p.155, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00859719

J. L. Albacete, Predictions for p+Pb Collisions at ? s NN = 5 TeV, Int. J. Mod. Phys
URL : https://hal.archives-ouvertes.fr/hal-00920751

R. Aaij, Study of J/? production and cold nuclear matter effects in pP b collisions at ? s N N = 5 TeV, JHEP, issue.02, p.43, 2014.

R. Aaij, Prompt and nonprompt J/? production and nuclear modification in pPb collisions at ? s NN = 8.16 TeV, Phys. Lett, vol.774, p.220, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645577

H. Shao, HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics, Comput. Phys. Commun, vol.184, p.43, 2013.

H. Shao, HELAC-Onia 2.0: an upgraded matrix-element and event generator for heavy quarkonium physics, Comput. Phys. Commun, vol.198, pp.238-259, 2016.

K. Kovarik, nCTEQ15-Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework, Phys. Rev, vol.93, issue.8, p.220, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01192579

B. Ducloué, T. Lappi, and H. Mäntysaari, Forward J/? production in proton-nucleus collisions at high energy, Phys. Rev. D91, issue.11, p.43, 2015.

F. Arleo and S. Peigne, Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter, JHEP, issue.03, p.43, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00861683

M. Cacciari, M. Greco, and P. Nason, The P(T) spectrum in heavy flavor hadroproduction, JHEP, issue.05, p.7, 1998.

A. M. Sirunyan, Measurement of prompt and nonprompt J/? production in pp and pPb collisions at ? s NN = 5.02 TeV, Eur. Phys. J. C77, vol.43, issue.4, p.220, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01458781

G. Aad, Measurement of differential J/? production cross sections and forward-backward ratios in p + Pb collisions with the ATLAS detector, Phys. Rev. C92, issue.3, p.43, 2015.

R. Vogt, Shadowing effects on J/? and ? production at energies available at the CERN Large Hadron Collider, Phys. Rev, vol.92, issue.3, p.34909, 2015.

F. Siegert, Monte-Carlo event generation for the LHC, vol.46, p.220, 2010.

M. Diehl and J. R. Gaunt, Double parton scattering theory overview, p.45

R. Maciula, M. Luszczak, and A. Szczurek, Production of charm quark/antiquark pairs at LHC, PoS, vol.2012, p.45, 2012.

E. R. Cazaroto, V. P. Goncalves, and F. S. Navarra, Heavy quark production and gluon saturation in double parton scattering at the LHC, Phys. Rev, vol.88, issue.3, p.221, 2013.

R. Aaij, Observation of double charm production involving open charm in pp collisions at ? s = 7 TeV, JHEP, issue.06, p.141, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00697167

V. Khachatryan, Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC, JHEP, issue.09, p.45, 2010.

S. Chatrchyan, Observation of long-range near-side angular correlations in proton-lead collisions at the LHC, Phys. Lett, vol.718, pp.795-814, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00743920

B. B. Abelev, Long-range angular correlations of ?, K and p in p-Pb collisions at ? s NN = 5.02 TeV, Phys. Lett, vol.726, pp.164-177, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00843893

G. Aad, Observation of associated near-side and away-side long-range correlations in ? s NN = 5.02 TeV proton-lead collisions with the ATLAS detector
URL : https://hal.archives-ouvertes.fr/in2p3-00768613

, Phys. Rev. Lett, vol.110, issue.18, p.182302, 2013.

G. Aad, Measurement with the ATLAS detector of multi-particle azimuthal correlations in p+Pb collisions at ? s N N =5.02 TeV, Phys. Lett

, B725, pp.60-78, 2013.

T. Lang and M. Bleicher, Possibility for J/? suppression in high-multiplicity proton-proton collisions at ? s N N = 7 TeV, Phys. Rev. C87, issue.2, p.24907, 2013.

J. Adam, Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at ? s NN = 5.02 TeV, Phys. Rev. Lett
URL : https://hal.archives-ouvertes.fr/in2p3-01247070

S. M. Sjöstrand and P. Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun, vol.178, p.221, 2008.

E. G. Ferreiro and C. Pajares, High multiplicity pp events and J/? production at LHC, Phys. Rev, vol.86, p.221, 2012.

B. Z. Kopeliovich, H. J. Pirner, I. K. Potashnikova, K. Reygers, and I. Schmidt, J/? in high-multiplicity pp collisions: Lessons from pA collisions, Phys. Rev, vol.88, issue.11, p.221, 2013.

K. Werner, B. Guiot, I. Karpenko, and T. Pierog, Analysing radial flow features in p-Pb and p-p collisions at several TeV by studying identified particle production in EPOS3, Phys. Rev. C89, vol.47, issue.6, p.221, 2014.

S. G. Weber, Measurement of J/? production as a function of event multiplicity in pp collisions at ? s = 13 TeV with ALICE, Nucl. Phys, vol.967, p.221, 2017.

J. Adam, Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at ? s = 7
URL : https://hal.archives-ouvertes.fr/in2p3-01148625

. Tev, JHEP, vol.47, issue.09, p.221, 2015.

H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, and K. Werner, Parton based Gribov-Regge theory, Phys. Rept, vol.350, p.221, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00021464

B. Abelev, J/? Production as a Function of Charged Particle Multiplicity in pp Collisions at ? s = 7 TeV, Phys. Lett, vol.712, p.221, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00669824

P. Skands, S. Carrazza, and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C74, issue.8, p.51, 2014.

C. Jahnke, J/? production as a function of event multiplicity in pp collisions at ? s = 13 TeV using EMCal-triggered events with ALICE at the LHC, p.14

, International Workshop on Hadron Physics (Hadron Physics 2018) Florianopolis, 2018.

R. Ma, Measurement of J/? production in p + p collisions at s=500 GeV at STAR experiment, Nucl. Part. Phys. Proc, p.51, 2016.

J. Adam, Measurement of D-meson production versus multiplicity in p-Pb collisions at ? s NN = 5.02 TeV, JHEP, vol.52, issue.08, p.221, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01278252

D. Adamová, J/? production as a function of charged-particle pseudorapidity density in p-Pb collisions at ? s NN = 5.02 TeV, Phys. Lett, vol.776, p.226, 2018.

B. B. Abelev, Multiplicity dependence of the average transverse momentum in pp, p-Pb, and Pb-Pb collisions at the LHC, Phys. Lett, vol.727, p.221, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00841162

S. Chatrchyan, Event activity dependence of Y(nS) production in ? s N N =5.02 TeV pPb and ? s=2.76 TeV pp collisions, JHEP, vol.54, issue.04, p.221, 2014.

J. Adam, Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions, Nature Phys, vol.13, p.221, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01703781

B. B. Abelev, Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p-Pb Collisions at ? s N N = 5.02 TeV, Phys. Lett, vol.728, p.55, 2014.

J. Adam, Multi-strange baryon production in p-Pb collisions at ? s NN = 5.02 TeV, Phys. Lett, vol.758, p.55, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01249887

B. B. Abelev, Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at ? s N N = 2.76 TeV, Phys. Lett, vol.728, p.55, 2014.

L. Evans and P. Bryant, LHC Machine, JINST, vol.3, 2008.

G. Aad, The ATLAS Experiment at the CERN Large Hadron Collider, JINST, vol.3, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00315956

S. Chatrchyan, The CMS Experiment at the CERN LHC, JINST, vol.3, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00311605

A. A. Alves, The LHCb Detector at the LHC, JINST, vol.3, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00312316

K. Aamodt, The ALICE experiment at the CERN LHC, JINST, vol.3, p.221, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00311441

B. Abelev, Technical Design Report for the Upgrade of the ALICE Inner Tracking System, J. Phys, vol.41, p.61, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01018515

G. Dellacasa, ALICE technical design report of the inner tracking system (ITS)

B. B. Abelev, Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys, vol.29, p.1430044, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00949658

C. , , vol.64, p.229, 2014.

E. Bruna, A. Dainese, M. Masera, and F. Prino, Vertex reconstruction for proton-proton collisions in ALICE

D. Elia, B. Ghidini, and M. Nicassio, Measurement of pseudorapidity density of charged particles in proton-proton collisions with the ALICE Pixel detector, vol.64, p.221

G. Dellacasa, ALICE time projection chamber, 2000.

C. W. Fabjan, ALICE: Physics performance report, J. Phys, vol.II, pp.1295-2040, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00024110

, ALICE Figure Repository, vol.66, p.221

P. Cortese, ALICE transition-radiation detector

A. Andronic and J. P. Wessels, Transition radiation detectors, Nuclear Instruments and Methods in Physics Research A, vol.666, p.65, 2012.

G. Dellacasa, ALICE technical design report of the time-of-flight system (TOF)
URL : https://hal.archives-ouvertes.fr/in2p3-00019978

P. Cortese, ALICE: Addendum to the technical design report of the time of flight system (TOF)

A. Alici, The MRPC-based ALICE Time-Of-Flight detector: status and performance, Nucl. Instrum. Meth, vol.706, p.65, 2013.

P. Cortese, ALICE technical design report on forward detectors: FMD, T0 and V0, vol.66, p.67
URL : https://hal.archives-ouvertes.fr/in2p3-00024755

E. Abbas, Performance of the ALICE VZERO system, JINST, vol.8, p.10016, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00834081

S. Van-der-meer, Calibration of the effective beam height in the ISR, 1968.

J. Adam, Determination of the event collision time with the ALICE detector at the LHC, Eur. Phys. J. Plus, vol.132, issue.2, p.221, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01380433

G. Dellacasa, ALICE technical design report of the zero degree calorimeter (ZDC)

. , ALICE technical design report of the dimuon forward spectrometer, vol.71, p.222

L. S. Azhgirey, I. S. Baishev, K. M. Potter, and V. V. Talanov, Machine Induced Background in the Low Luminosity Insertions of the LHC

A. Charpy, Study of the muon production from open heavy flavours predicted by the Color Glass Condensate model in proton-proton and proton-lead collision with the ALICE muon spectrometer at LHC. Theses, p.222, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00188303

V. P. Lizardo, Inclusive J/? production measurement in Pb-Pb collisions at ? s N N = 2, p.76

. Tev-with-the-alice-muon and . Spectrometer, Orsay, vol.84, p.222, 2013.

L. Aphecetche, Numerical Simulations and Offline Reconstruction of the Muon Spectrometer of ALICE

B. B. Abelev, Measurement of visible cross sections in proton-lead collisions at ? s NN = 5.02 TeV in van der Meer scans with the ALICE detector

, JINST, vol.9, issue.11, p.11003, 2014.

C. W. Fabjan, L. Jirdén, V. Lindestruth, L. Riccati, D. Rorich et al., ALICE trigger data-acquisition high-level trigger and control system, 2004.

H. Engel, T. Alt, T. Breitner, A. G. Ramirez, T. Kollegger et al., The alice high-level trigger read-out upgrade for lhc run 2, Journal of Instrumentation, vol.11, issue.01, 2016.

Z. Valle, Performance of the ALICE muon spectrometer. Weak boson production and measurement in heavy-ion collisions at LHC, vol.80, p.222, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00198703

D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth, vol.462, pp.152-155, 2001.

E. Barberio and Z. Was, PHOTOS: A Universal Monte Carlo for QED radiative corrections. Version 2.0, Comput. Phys. Commun, vol.79, pp.291-308, 1994.

R. Brun, F. Bruyant, M. Maire, A. C. Mcpherson, and P. Zanarini, , vol.3

S. Agostinelli, GEANT4: A Simulation toolkit, Nucl. Instrum. Meth, vol.506, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

J. and M. Blanco, Study of J/? production dependence with the charged particle multiplicity in p-Pb collisions at ? s NN = 5.02 TeV and pp collisions at ? s = 8 TeV with the ALICE experiment at the LHC, pp.2016-2017
URL : https://hal.archives-ouvertes.fr/tel-01343641

M. Lenhardt, Etude du taux de production des J/psi et muons simples en collisions proton-protonàprotonà l'aide du spectromètrè a muons de l'expérience ALICE au LHC, 2011.

B. Audurier, Etude de la production inclusive de J/? dans les collisions pp et Pb-PbàPb`Pbà ? s N N = 5.02 TeV avec le spectromètrè a muons de l'expérience ALICE au LHC, vol.84, p.115

, Tracking efficiency determination

. Accessed,

P. Pillot, , vol.88, p.91, 2017.

R. Partridge, Observation of an ? c Candidate State with Mass 2978 ± 9 MeV, Phys. Rev. Lett, vol.45, pp.1150-1153, 1980.

M. Butenschoen and B. A. , Reconciling J/? production at HERA, RHIC, Tevatron, and LHC with NRQCD factorization at next-to-leading order, Phys. Rev. Lett, vol.106, p.223, 2011.

R. E. Nelson, R. Vogt, and A. D. Frawley, Narrowing the uncertainty on the total charm cross section and its effect on the J/? cross section, Phys. Rev. C87, vol.117, issue.1, p.223, 2013.

D. Acosta, Measurement of the J/? meson and b?hadron production cross sections in p¯ p collisions at ? s = 1960 GeV, Phys. Rev, vol.71, p.223, 2005.

A. Adare, J/? production versus transverse momentum and rapidity in p + p collisions at ? s = 200-GeV, Phys. Rev. Lett, vol.98, p.223, 2007.

J. Badier, Experimental J/psi Hadronic Production from 150-GeV/c to 280-GeV/c, Z. Phys, vol.20, p.223, 1983.

. , Preliminary Physics Summary: Centrality dependence of inclusive J/? production in p-Pb collisions at ? s NN = 8.16 TeV

M. Aguilar-benitez, Comparative Properties of 400-GeV/c Proton-Proton Interactions With and Without Charm Production, Z. Phys, vol.41, p.174, 1988.

S. Roesler, R. Engel, and J. Ranft, The Monte Carlo event generator DPMJET-III, Advanced Monte Carlo for radiation physics, particle transport simulation and applications. Proceedings, Conference, MC2000, pp.1033-1038, 2000.

T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C92, issue.3, p.135, 2015.

V. Zaccolo, , vol.165, p.167

R. Arnaldi,

, Feynman diagrams showing vacuum fluctuations at the lowest order in QCD, p.11

. , The QCD phase-space diagram

. .. , Space-time evolution of a collisions of heavy-ion. Taken from [8]

. , Schematic view of the initial geometry of a collisions of nuclei A and B at the impact parameter b. Modified from

. , A sketch of a peripheral heavy ion collisions. The asymmetric overlap region gives rise to momentum anisotropy

. , The Z 0 boson R AA values for the combination of the dimuon and dielectron channel as a function of the number of participants N part in Pb-Pb at ? s NN = 2.76 TeV. Taken from [24]

. , OZI forbidden (left) and allowed (right) c¯ c decay

. , Spectroscopy of stable charmonia states

. , 22 2.4 (a) The p T dependence of the fraction of non-prompt J/? f b at midrapidity in pp at ? s = 7 TeV measured in ALICE, The energy dependence of the d? b ¯ b /dy production cross section, vol.37

, Examples of Feynman diagrams describing the charm quark pair creation in QCD

. , Figure taken from [46]. (b) Polarisation of prompt J/? (top) and ?(2S) (bottom) from 1.8 TeV p¯ p collisions at the Tevatron. The coloured bands show different NRQCD predictions, Visualised are colour singlet, colour octet and total contributions

, The p T differential J/? cross section in pp collisions at ? s = 200 GeV at the RHIC

. , non-prompt with FONLL calculation [66, 67]. (b) Prompt J/? and ?(2S) at 13 TeV measured with CMS [63], compared with NRQCD calculation [65] (middle panel) and with data

. , Non-prompt-to-inclusive J/? fraction f b measured by CMS in pp at ? s = 7 and 13 TeV

. .. , Schema of J/? sequential suppression. Figure taken from [42], p.30

]. .. , 31 2.14 (a) Measured over expected J/? and ?(2S) as a function of the crossing length, which relates to centrality [96]. (b) Suppression of J/? at mid-and forward rapidity as a function of centrality

. , 16 (a) Prompt R AA at midrapidity as a function of p T at ? s NN = 2.76 TeV measured with ALICE

. , (b) Centrality dependent forward rapidity R AA at ? s NN = 5

, rapidity for semi-central (20?40%) Pb-Pb collisions at ? s NN = 5, p.34

. , Parton distribution functions for valence quarks, sea quarks, and gluon at a scale Q 2 = 10 GeV [110]

. , the EPPS16 parametrisation

. , The EPPS16 nuclear modification functions for gluons in the lead nucleus at the energy scale Q 2 = 1.69 and 10 GeV 2 [113]

P. ;. Gev, 39 2.23 (Left) Rapidity differential J/? R dAu for peripheral (top) and central (middle) collisions at ? s NN = 200 GeV measured by PHENIX. The data are compared to theoretical calculation combining EPS09 nPDFs with a absorption cross section (red lines), and with a saturation model (green lines). The ratio of the two centrality classes is shown in the bottom panel. Figure taken from [118]. (Right) R dAu of J/? as a function of p T for (a) backward, (b) mid-and (c) froward rapidity in minimum bias d-Au collisions at ? s NN = 200 GeV measured by PHENIX, The data are compared to theoretical calculation combining EPS09 nPDFs with an absorption cross section

, The J/? nuclear modification as a function of rapidity in Pb-Pb collisions at ? s NN =

. Tev, ALICE data are compared with available theoretical calculations. The box around unity shows the correlated uncertainty, p.41

, The p T differential nuclear modification factor for inclusive J/? measured in ALICE in p-Pb at ? s NN = 8.16 TeV. Data are in well described by all available models, pp.131-136

]. .. ,

. , mid-(centre) and forward (right) rapidity. The boxes centred at Q pPb = 1 represent the relative uncertainties correlated over centrality. Comparison with theoretical calculations, Inclusive J/? Q pPb as a function of N coll at backward (left), vol.95, pp.139-141

, Schema of the front absorber of the Muon Spectrometer, p.71

. , Schema of detection elements used in MCH. The quadrants used in the Stations 1 and 2 are shown on the left. The slats of the Stations 3, 4 and 5 are pictured on the right. Taken from

. , Structure of the RPC in Muon Trigger. Taken from

]. .. , , p.75

. , The bottom row shows projections of J/? acceptance (left) into the p T axis at ?3.6 < y < ?3.0 and (right) into y axis at 2 < p T < 4 GeV/c, The top row shows the two dimensional A?

M. .. , 81 5.3 Schema of the MCH showing the arrangement of individual chambers and stations. Possible track passing responses are shown for Station 1. Stations 4 and 5 are considered as one ensemble (St45). Taken from [221]

. , The top row shows the individual distributions as a function of p T , y, ? and muon charge. The bottom row shoes corresponding ratios of data/MC. The distributions correspond to p-Pb data at ? s NN = 8, Comparison of kinematic distributions in data (red) and MC (blue)

, Tracking efficiency estimated as a function of run in the p-Pb period at ? s NN =

. Tev, The red points represent data while the blue points represent the MC, vol.87

, Ratio of the tracking efficiency in data and MC as a function of detection element (DE) in Chamber 1. Corresponding to the p-Pb data at ? s NN = 8.16 TeV, vol.87

T. and ?. .. , 89 5.10 Ratio of the tracking efficiency in data and in MC in the Pb-p period as a function of run, p T , y, and ?. The ratios were computed from the second reconstruction pass of the Pb-p data, MC in the p-Pb period as a function of run

. , The ratios were computed from the third reconstruction pass of the Pb-p data. Courtesy of Philippe Pillot, MC in the Pb-p period as a function of run

, Schema of a decay of J/? into a pair of opposite sign muons in the laboratory frame, p.95

, The dimuon invariant mass spectrum in pp collisions at ? s = 5.02 TeV, p.95

. , Example of CB2+VWG fit to the dimuon invariant mass spectrum over the range 2.1 < M inv < 4.5 GeV/c in pp collisions at ? s = 5

, T and rapidity as a function of the fit trial in pp collisions at ? s = 5.02 TeV. The solid red line shows the mean value averaged over all trials

. , The dashed lines show the standard deviation

. , The evolution of A? with time in pp collisions at ? s = 5

, differential A? in pp collisions at ? s = 5.02 TeV. (Left) A? as a function of p T

.. .. &lt;-p-t-&lt;-12-gev/c,

, Top row shows the N corr J/? as a function of p T (left) and y (right). The lines represent variations of the shape assuming Gaussian uncertainty, which are used to re-weight the MC. Bottom row shows the ratio of RMS over average of all re-weighted A?, Variation of MC shape within statistical uncertainty on data, vol.102

. , The left column shows the p T differential uncertainty, while the right one shows the y differential. The blue points correspond to the combinations of the extreme shapes, The systematic uncertainty on A? associated to the MC input shape in pp collisions at ? s = 5.02 TeV

, Differential inclusive J/? cross section in pp collisions at ? s = 5.02 TeV. Taken from

. .. ,

. , Inclusive J/? cross section at forward rapidity as a function of (a) p T and (b) y. Taken from

. , p T as a function of ? s. ALICE measurements at forward (full points) and midrapidity

. , T in pp at ? s = 13 TeV

. , The red (magenta) curve shows the default cut used in the APS to clean the pile-up. Exemplar distributions corresponding to the Pb-p period

. , 4) and red line the alternative polynomial form proposed in Eq. (7.2.1.2) for the intermediate tracklet range, N CL versus N tr SPD pile-up cut. The black line represents Eq

, Custom Physics Selection pile-up rejection cuts for CMUL events, p.127

. , The top row shows the N tr as a function of run with APS and with CPS. The bottom row shows the ratio of the CPS/APS distributions, Comparison of N tr extracted with CPS and APS in p-Pb and Pb-p in dimuon events

, The z-coordinate of the SPD vertex in p-Pb and Pb-p. The maximum of the distribution is shifted in both period with respect to the nominal interaction point, p.130

, Event averaged number of tracklets N tr versus z-coordinate of the SPD vertex v z before (blue) and after (red) the Poissonian correction using v 0 z = Max{?10, 10}, p.131

. .. , The top left (right) panel shows the distribution of raw (corrected) tracklets N raw (N corr ). The bottom left plot shows projection of the top 2D distributions into the tracklets axis (N raw in black or N corr in red, commonly denoted as N tr ). The bottom right plot shows the projections into the v z axis (N raw in black or N corr in red), Number of tracklets N tr versus v z in CMUL7 triggered events in the p-Pb period, p.132

, The LHC16s period has overall larger multiplicity than LHC16r, which is the usual case in Pb-p collisions compared to p-Pb. (b) N raw vs v z in CMUL7 triggered events in LHC16rs periods renormalised to unity. (c) N raw vs v z in CINT7 triggered events in LHC16rs periods. (d) N raw vs v z in CINT7 triggered events in LHC16rs periods renormalised to unity. (e, f) Comparison between renormalised N raw vs v z in CMUL7 and CINT7 events in LHC16r and LHC16s respectively. The bottom panel shows the ratio of the two histograms. The ratio being consistent with unity, we apply the same correction to both CMUL7 and CINT7 in given period, Event averaged number of tracklets N raw versus v z in CMUL7 and CINT7 triggered event samples. (a) N raw vs v z in CMUL7 triggered events in p-Pb (LHC16r) and Pbp (LHC16s) periods, p.133

, Comparison of N raw (black) distribution and N corr obtained using minimum (blue), mean (green), and maximum (red) in the p-Pb period, Pb data sample, p.134

, In each plot, the bottom panel shows ratio of data/MC unless stated otherwise. (a) ? lab distribution of reconstructed tracklets. (b) ? distribution of reconstructed tracklets. The bottom panel show weighted ratio of data/MC; weights were number of MB events in each ? bin. (c) v z distribution in ?20 < v z < 20 cm. (d) N raw distribution, Pb data (red) and the corresponding DPMJET MC production (blue), p.136

. , The top left plot shows the profiles compared between data and the two sets of MC. The top left shows ratio of data/DPMJET with a visible non-flat structure. Bottom left the same for data/EPOS, again a structure is present along z-vertex. Bottom right compares the two generated samples-we see that profiles from different MC are similar, 11 N raw (v z ) profiles in p-Pb period

. , 137 7.13 N raw (v z ) (blue) and N corr (v z ) (red) in DPMJET and EPOS Monte Carlo, Same as Fig. 7.11 but for Pb-p period, p.138

/. .. Mc,

. , The red line shows the pol4 fit to the ratio. The fit was done over an extended range ?15 < v z < 15 cm to prevent edge effects at v z = ±10 cm, Top left panel shows DPMJET p-Pb, top right panel DPMJET Pb-p, bottom left EPOS p-Pb, and bottom right

, Green line denotes the expo*expo fit. Both functions are fit in the range 60 < N raw < 165. The vertical red chequered line shows the cut-off at N raw = 165 above which the weights are set to 1. The middle panel shows the ratio of data/MC ratio histogram and the expo*expo function. The bottom panel shows the ratio of histogram and the expo*pol2 function, p.141

N. Weighted and . Corr, Used double exponential N raw weight, MC compared with the data

, Example shows DPMJET Pb-p. Note that black (no weight) points are hidden below the green (z-vertex weight) ones. Top row shows the N raw (left) and N corr distributions, the respective bottom panels show the ratio of the weighted distributions with respect to the unweighted one, Effect of run, z-vertex and N raw weights on tracklets distributions and profiles, p.143

. , Shown are also fits to the profile, see text for more details. The grey vertical lines denote the limits of N corr bins used in the J/? signal extraction. The N ch ? N corr correlation was weighted by the combined weight, using double exponential N raw weight, N ch ? N corr correlation from the DPMJET MC production for the p-Pb period

. , On left are the results obtained from different N ch ? N corr correlation fits (see legend). The projections of N corr intervals into the N ch axis (the MC truth) is drawn in open red circles. The left plot shows the ratios of each of these distributions over the MC truth, N ch computed for each N corr bin in p-Pb

. , On left are the results obtained from different N ch ? N corr correlation fits (see legend). The projections of N corr intervals into the N ch axis (the MC truth) is drawn in open red circles. The left plot shows the ratios of each of these distributions over the MC truth, N ch computed for each N corr bin in Pb-p

. , The left-hand-side plots show the spread of the different correlation factor ? values in one period with varying generator and N raw weights. The following distributions are shown: DPMJET with double exponential weights (black), DPMJET with no weights (red), DPMJET with Expo*Pol2 weights (green), EPOS with double exponential weights (blue), EPOS with no weights (yellow), EPOS with Expo*Pol2 weights (magenta). The last-but-one two are distributions obtained from distributions corrected by MC profiles: DPMJET with double exponential weights (turquoise), EPOS with double exponential weights (teal). The mauve datapoints show the results obtained with the N corr double exponential weight. The plot on right shows the ratio of each of these distributions over the one obtained from DPMJET with double exponential weights, Systematic uncertainty on the MC input for the p-Pb period

. , The left-hand-side plots show the spread of the different correlation factor ? values in one period with varying generator and N raw weights. The following distributions are shown: DPMJET with double exponential weights (black), DPMJET with no weights (red), DPMJET with Expo*Pol2 weights (green), EPOS with double exponential weights (blue), EPOS with no weights (yellow), EPOS with Expo*Pol2 weights (magenta). The last two are distributions obtained from distributions corrected by MC profiles: DPMJET with double exponential weights (turquoise), EPOS with double exponential weights (teal). The plot on right shows the ratio of each of these distributions over the one obtained from DPMJET with double exponential weights, Systematic uncertainty on the MC input for the Pb-p period

. , The values were extracted from global fit with ? = 0. The red line shows the v z-integrated value

. , Nomenclature: pp13data-extracted from pp data at 13 TeV, pp13MC-extracted from pp MC at 13 TeV, pPb8MC (Pbp8MC)extracted from p-Pb (Pb-p) MC at 8 TeV, pPb8RA (Pbp8RA)-extracted from p-Pb (Pb-p) data at 8 TeV without pile-up or vertex cuts, pPb8JC (Pbp8JC)-extracted from p-Pb (Pb-p) data at 8 TeV with the custom pile-up and vertex cuts used in this analysis

, Used fit: combination CB2+DoubleExponential with p-Pb (Pb-p) tails extracted from data sample with vertex selection over the fit range

&. M-?-+-?-?-&lt;,

. , Top row shows the p-Pb period, bottom row the Pb-p period. Used fit: combination CB2+Double Exponential with p-Pb (Pb-p) tails extracted from data sample with vertex selection over the fit range 2 < M µ + µ ? < 5 GeV/c 2

. , Dashed vertical lines show separate group of tests using a single set of tails

. , The example show the one-but-last bin 127, Relative N J/? in the Pb-p period

. , Dimuon trigger normalisation factor in p-Pb as a function of run, computed via the two-step offline method

. , Dimuon trigger normalisation factor in Pb-p as a function of run, computed via the two-step offline method

, Comparison of F norm in multiplicity intervals computed with three different methods, p.163

, Multiplicity dependent vertex finding NSD event selection efficiency in p-Pb, p.165

, Multiplicity dependent vertex finding NSD event selection efficiency in Pb-p, p.165

. , Comparison of the multiplicity dependent relative J/? yields obtained from Poissonian correction with respect of the N raw (v z ) maximum and binomial correction with respect to the N raw (v z ) minimum

. .. , Ratio of relative J/? yields corrected with respect to the minimum and of the relative yields corrected with respect to the maximum of the N raw (v z ), p.167

. , Black points denote 'baseline', which is the standard settings used in the whole analysis, red is the same but with different randomisation seed, green and blue stand fro yields obtained from running the task with-0.1 or +0.1 offset respectively. Top right is the same but for relative multiplicity dependent invariant yields. Bottom left and bottom right show ratio of the two with respect to the corresponding baseline, Bin-flow systematic uncertainty in p-Pb. The top left plot shows the invariant yields as a function of multiplicity for each of the task settings

. , Black points denote 'baseline', which is the standard settings used in the whole analysis, red is the same but with different randomisation seed, green and blue stand fro yields obtained from running the task with-0.1 or +0.1 offset respectively. Top right is the same but for relative multiplicity dependent invariant yields. Bottom left and bottom right show ratio of the two with respect to the corresponding baseline, Bin-flow systematic uncertainty in Pb-p. The top left plot shows the invariant yields as a function of multiplicity for each of the task settings

, The top left plot shows the invariant yields as a function of multiplicity for each of the task settings. Black points denote 'baseline', which is the standard settings used in the whole analysis, red and green are extracted using SPD pile up cut with argument (3, 0.6) and (5, 0.8) respectively. Top right is the same but for relative multiplicity dependent invariant yields. Bottom left and bottom right show ratio of the two with respect to the corresponding baseline, Pile-up systematic uncertainty in p-Pb, p.172

, The top left plot shows the invariant yields as a function of multiplicity for each of the task settings. Black points denote 'baseline', which is the standard settings used in the whole analysis, red and green are extracted using SPD pile up cut with argument (3, 0.6) and (5, 0.8) respectively. Top right is the same but for relative multiplicity dependent invariant yields. Bottom left and bottom right show ratio of the two with respect to the corresponding baseline, Pile-up systematic uncertainty in Pb-p, p.173

. , Pb-going) at ? s NN = 8.16 TeV. The NSD and vertex normalisation uncertainty is quoited separately. The uncertainty on the multiplicity axis is partially correlated in multiplicity, p-Pb (p-going) and Pb-p

. , Self-normalised J/? yields as a function of self-normalised charged particle multiplicity in p-Pb and Pb-p at ? s NN = 8.16 TeV divided by the diagonal. The uncertainty on the multiplicity axis is partially correlated in multiplicity

, Multiplicity integrated invariant J/? yields in p-Pb and Pb-p at ? s NN = 8, vol.16

. , 176 7.45 The correlation between the ZNA percentile and the N corr in the CINT7-B-NOPFMUFAST triggered p-Pb data sample, Full discs show results of this multiplicity analysis, open circles denote results from R pPb analysis

. , The boxes around the centrality dependent data points show the fully uncorrelated systematic uncertainty on the relative yields. The vertical brackets denote the fully correlated systematics on relative yields, Comparison of multiplicity dependent results with results from centrality analysis

, Comparison of multiplicity differential relative J/? yields in p-Pb and Pb-p at ? s NN = 5, p.2

, Double differential A?(p T , y) of the Muon Spectrometer in p-Pb and Pb-p at ? s NN =

. .. Tev,

. , The M inv spectrum was fitted with a function combining a CB2 signal + double exponential background + tails extracted in cross section analysis in pp at 13 TeV over a fit range 2 < M inv < 5 GeV/c. The f ( of quadratic and exponential function, A? corrected invariant mass spectrum in p-Pb and the corresponding p T fit

. , Pb multiplicity dependent spectra using the following option: M inv described by a combination of NA60 signal + double exponential background with MC tails, f (p T ) described by a quadratic function multiplied by an exponential

]. .. , , p.10

. , Masses were taken from [1], while radii were quoted from

, Typical momentum fractions for forward J/? (2.5 < y lab < 4.0) at the LHC, p.37

. , Dimensions of individual layers of ITS [191], p.61

, Definition of trigger classes used in J/? analysis in pp collisions at ? s = 5.02 TeV, p.94

T. .. ,

. , The J/? acceptance-efficiency in p T bins integrated over 2.5 < y < 4.0 and in bins of y integrated in p T

. , The systematic uncertainty on A? associated to the MC input shape as a function of p T (left) and y (right)

. , The systematic uncertainty on trigger efficiency associated to the muon p T cut threshold in pp collisions at ? s = 5

Y. .. ,

. , Definition of trigger classes used in J/? multiplicity analysis in p-Pb collisions at ? s NN = 8

. , The cuts are applied sequentially, i. e. application of each of the cuts implies also application of the previously listed cuts, CMUL7 and CINT7 trigger samples in p-Pb and Pb-p after each pile-up cut

. , Number of CMUL7 and CINT7 triggered events in p-Pb and Pb-p after each SPD vertex

, Minimal and maximal values of N tr (v z ) in CMUL7 and CINT7 triggered data, p.134

. .. Pb-p, , p.146

. , dN ch /d? at midrapidity |? lab | < 1

. , Sources of systematic uncertainties on the charged-particle multiplicity. Values marked with asterisk are correlated in multiplicity

. , Mean corrected number of tracklets N corr and corresponding average number of charged particles N ch in p-Pb and Pb-p periods

. , Pb and Pb-p in the multiplicity integrated case and in individual multiplicity bins. We also show sum over all bins and difference ? between and integrated result

N. Relative and .. .. Pb-p, 159 7.11 Normalisation factor computed via the two-step offline method (F off2 norm ), the one step offline method (F off1 norm ) and the rescaling one (F resc norm ) per multiplicity bin for, pp.p-Pb

.. .. Pb-p-data,

. , The values in parentheses correspond to the multiplicity integrated uncertainties related to th signal extraction. Values marked with asterisk are correlated in multiplicity

. , Multiplicity dependent relative invariant J/? yields

. , The last values bin in Pb-p did not properly converge, therefore we excluded it from the analysis. Uncertainty on the multiplicity not shown

. , The last values bin in Pb-p did not properly converge, therefore we excluded it from the analysis. Uncertainty on the multiplicity not shown

. , The values in parentheses correspond to the multiplicity integrated uncertainties related to the signal extraction. Values marked with asterisk are correlated in multiplicity

. , The global systematic uncertainty includes the uncertainty on the trigger, tracking, and trigger-track matching efficiencies, and on the MC input, Multiplicity integrated p T results

, The analysed data sample consist of 25 runs satisfying the QA section criteria: 244340, LHC15n: pp data at ? s = 5.02 TeV ALICE collected pp data at 5.02 TeV between, 2015.

, The analysed data sample consists of 57 QA selected runs: 265594, LHC16r: p-Pb data at ? s NN = 8.16 TeV ALICE collected p-Pb data at 8.16 TeV from November, vol.18, 2016.

, The analysed data sample consists of 75 QA selected runs: 266437, C.3 LHC16s: Pb-p data at ? s NN = 8.16 TeV ALICE collected Pb-p data at 8.16 TeV from, 2016.