, International Energy Outlook, vol.0484, 2016.

, Key World Energy Statistics, 2014.

J. Tervo, A. Manninen, and R. Ilola, State-of-the-art of thermoelectric materials processing, 2009.

H. Alam and S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy, vol.2, issue.2, pp.190-212, 2013.

C. A. Gould, N. Y. Shammas, S. Grainger, and I. Taylor, Thermoelectric cooling of microelectronic circuits and waste heat electrical power generation in a desktop personal computer, Mater. Sci. Eng. B, vol.176, pp.316-325, 2011.

C. A. Gould, N. Y. Shammas, S. Grainger, and I. Taylor, A Comprehensive Review of Thermoelectric Technology , Micro-electrical and Power Generation Properties, PROC. 26th INTERNATIONAL CONFERENCE ON MICROELECTRONICS, pp.11-14, 2008.

J. Xie, C. Lee, and H. Feng, Design , Fabrication , and Characterization of CMOS MEMS-Based Thermoelectric Power Generators, Journal of microelectromechanical systems, vol.19, issue.2, pp.317-324, 2010.
DOI : 10.1109/jmems.2010.2041035

C. Gayner and K. K. Kar, Recent advances in thermoelectric materials, Progress in Materials Science, vol.83, pp.330-382, 2016.

J. Jarman, E. Khalil, and E. Khalaf, Energy Analyses of Thermoelectric Renewable Energy Sources, Open J. Energy Effic, vol.2013, pp.173-189, 2013.
DOI : 10.4236/ojee.2013.24019

URL : http://www.scirp.org/journal/PaperDownload.aspx?paperID=37347

F. D. Rosi, B. Abeles, and R. V. Jensen, Materials for thermoelectric refrigeration, J. Phys. Chem. Solids, vol.10, issue.2, 1959.
DOI : 10.1016/0022-3697(59)90074-5

N. Van-nong, N. Pryds, S. Linderoth, and M. Ohtaki, Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+? through heavy doping and metallic

X. Zhang and L. Zhao, ScienceDirect Thermoelectric materials : Energy conversion between heat and electricity, J. Mater, vol.1, pp.92-105, 2015.
DOI : 10.1016/j.jmat.2015.01.001

URL : https://doi.org/10.1016/j.jmat.2015.01.001

C. Gayner and K. K. Kar, Recent advances in thermoelectric materials, Progress in Materials Science, vol.83, pp.330-382, 2016.

G. Pennelli, Review of nanostructured devices for thermoelectric applications, J. Nanotechnol, pp.1268-1284, 2014.

G. Skomedal, Thermoelectric Material for Waste Heat Recovery, p.601, 2013.

J. C. Zheng, Recent advances on thermoelectric materials, Front. Phys. China, vol.3, 2011.
DOI : 10.1007/s11467-008-0028-9

URL : http://arxiv.org/pdf/1106.0888

G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater, vol.7, issue.2, pp.105-114, 2008.

J. Jarman, E. Khalil, and E. Khalaf, Energy Analyses of Thermoelectric Renewable Energy Sources, J. Energy Effic, vol.2013, pp.173-189, 2013.
DOI : 10.4236/ojee.2013.24019

URL : http://www.scirp.org/journal/PaperDownload.aspx?paperID=37347

H. Seok, W. Liu, G. Chen, C. Chu, and Z. Ren, Relationship between thermoelectric figure of merit and energy conversion efficiency, vol.112, pp.8205-8210, 2015.

X. Chen, P. Lin, K. Zhang, H. Baumgart, and B. Geist, Seebeck Coefficient Enhancement of ALD PbTe / PbSe Nanolaminate Structures Deposited inside Porous Silicon, ECS Journal of Solid State Science and Technology, vol.5, issue.9, 2016.
DOI : 10.1149/2.0151609jss

URL : http://jss.ecsdl.org/content/5/9/P503.full.pdf

Z. G. Chen, G. Hana, L. Yanga, L. Cheng, and J. Zou, Nanostructured thermoelectric materials: Current research and future challenge, Progress in Natural Science: Materials International, vol.22, issue.6, pp.535-549, 2012.
DOI : 10.1016/j.pnsc.2012.11.011

URL : https://doi.org/10.1016/j.pnsc.2012.11.011

J. Mao, Z. Liu, and Z. Ren, Size effect in thermoelectric materials, npj Quantum Mater, vol.1, 2016.
DOI : 10.1038/npjquantmats.2016.28

URL : https://www.nature.com/articles/npjquantmats201628.pdf

H. Alam and S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy, vol.2, issue.2, pp.190-212, 2013.

J. R. Szczech, J. M. Higgins, and S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, J. Mater. Chem, vol.21, 2011.

G. Tan, L. Zhao, and M. G. Kanatzidis, Rationally Designing High-Performance Bulk Thermoelectric Materials, Chem. Rev, vol.116, pp.12123-12149, 2016.

L. D. Zhao, S. H. Lo, J. He, H. Li, K. Biswas et al., High performance thermoelectrics from earthabundant materials: Enhanced figure of merit in PbS by second phase nanostructures, J. Am. Chem. Soc, vol.133, 2011.

J. P. Heremans, Low-Dimensional Thermoelectricity, Proceedings of the XXXIV International School of Semiconducting Compounds, vol.108, pp.609-634, 2005.

M. Saleemi, Nano-Engineered Thermoelectric Materials for Waste Heat Recovery, 2014.

L. D. Hicks, T. C. Harmanm, and S. Dresselhaus, Use of quantum-well from nonconventional superlattices to obtain a high figure of merit thermoelectric materials, Appl. Phys. Lett, vol.63, issue.23, 1993.

S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten et al., Transition metal oxides-Thermoelectric properties, Prog. Mater. Sci, vol.58, pp.1443-1489, 2013.

Y. Zhang and G. D. Stucky, Heterostructured Approaches to Efficient Thermoelectric Materials, Chem. Mater, vol.26, pp.837-848, 2014.

R. Y. Wang, J. P. Feser, J. Lee, D. Talapin, R. Segalman et al., Enhanced Thermopower in PbSe Nanocrystal Quantum Dot Superlattices, NANO LETTERS, vol.8, issue.8, pp.2283-2288, 2008.

D. Baillis and J. Randrianalisoa, Prediction of thermal conductivity of nanostructures: Influence of phonon dispersion approximation, Int. J. Heat Mass Transf, vol.52, pp.11-12, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01018201

J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Env. Sci, vol.2, pp.466-479, 2009.

Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach, Adv. Funct. Mater, vol.20, pp.357-376, 2010.

A. Ali, Y. Chen, V. Vasiraju, G. Schierning, R. Chavez et al., Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion : a review of selected materials and basic considerations of module design, Transl. Mater. Res, vol.2, p.25001, 2016.

D. Li and P. Kim, Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett, vol.83, pp.2934-2936, 2003.

R. Mohanraman, T. W. Lan, T. C. Hsiung, D. Amada, P. C. Lee et al., Engineering Nanostructural Routes for Enhancing Thermoelectric Performance: Bulk to Nanoscale, Front. Chem, vol.3, 2015.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, Enhanced efficiency of solar-driven thermoelectric generator with femtosecond laser-textured metals, Optic Express, vol.19, pp.824-829, 2011.

Y. Wu, S. W. Finefrock, and H. Yang, Nanostructured thermoelectric: Opportunities and challenges, Nano Energy, vol.1, pp.651-653, 2012.

G. Kieslich, G. Cerretti, I. Veremchuk, R. P. Hermann, M. Panthofer et al., A chemists view: Metal oxides with adaptive structures for thermoelectric applications, Phys. Status Solidi Appl. Mater. Sci, vol.213, pp.808-823, 2016.

N. Semmar, L. Coudron, G. Gautier, A. Petit, M. Gaillard et al., Thermal conductivity measurement of porous silicon by pulsed-photothermal method method is based on a pulsed-laser source in the nanosecond regime. A 1D analytical model is coupled with the PPT, Appl. Phys, vol.44, p.355401, 2011.

A. Melhem, D. D. Sousa-meneses, C. Andreazza-vignolle, T. Defforge, G. Gautier et al., Structural, Optical and Thermal Analysis of n-type Mesoporous Silicon Prepared by Electrochemical Etching, J. Phys. Chem. C, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214262

C. Tchiffo-tameko, C. Cachoncinlle, J. Perriere, M. Nistor, A. Petit et al., IR emission and electrical conductivity of Nd / Nb-codoped TiO x ( 1. 5 < x < 2 ) thin films grown by pulsed-laser deposition, Appl. Surf. Sci, vol.389, pp.1062-1068, 2016.

J. Tang, H. Wang, D. H. Lee, M. Fardy, Z. Huo et al., Holey Silicon as an Efficient Thermoelectric Material, Nano Lett, vol.10, pp.4279-4283, 2010.
DOI : 10.1021/nl102931z

URL : https://cloudfront.escholarship.org/dist/prd/content/qt145666kf/qt145666kf.pdf?t=ljnhlk

K. Valalaki, P. Benech, and A. G. Nassiopoulou, High Seebeck Coefficient of Porous Silicon : Study of the Porosity Dependence, Nanoscale Res. Lett, 2016.

M. Jang, Y. Park, and M. Jun, The Characteristics of Seebeck Coefficient in Silicon Nanowires Manufactured by CMOS Compatible Process, Nanoscale Res Lett, pp.1654-1657, 2010.

J. De-boor, D. S. Kim, X. Ao, M. Becker, N. F. Hinsche et al., Thermoelectric properties of porous silicon, Appl. Phys. A, vol.107, pp.789-794, 2012.

S. Harada, K. Tanaka, H. Inui, S. Harada, K. Tanaka et al., Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnèli phases, Journal of Applied Physics, vol.108, p.83703, 2010.

K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Oxide Thermoelectric Materials: A Nanostructuring Approach, Annu. Rev. Mater. Res, vol.40, pp.363-394, 2010.
DOI : 10.1146/annurev-matsci-070909-104521

M. Sondergaard, E. D. Bojesen, K. A. Borup, S. Christensen, M. Christensen et al., Sintering and annealing effects on ZnO microstructure and thermoelectric properties, Acta Mater, vol.61, pp.3314-3323, 2013.

L. Thanh, N. Van-nong, G. J. Snyder, M. Hoang, B. Balke et al., High performance p-type segmented leg of misfit-layered cobaltite and halfHeusler alloy, ENERGY Convers. Manag, vol.99, pp.20-27, 2015.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore et al., Optical ablation by high-power short-pulse lasers, J. Opt. Soc. Am. B, vol.13, issue.2, pp.459-468, 1996.
DOI : 10.1364/josab.13.000459

J. Hohlfeld, S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke et al., Electron and lattice dynamics following optical excitation of metals, Chemical Physics, vol.251, pp.237-258, 2000.

Z. Lin and L. Zhigilei, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, PHYSICAL REVIEW B, vol.77, p.75133, 2008.

A. Kaiser, Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation, PHYSICAL REVIEW B, vol.65, pp.1-11, 2002.

L. D. Landau, Timescales in the response of materials to femtosecond laser excitation, Appl. Phys.A, vol.769, pp.767-769, 2004.

T. J. Derrien, T. Sarnet, M. Sentis, and T. E. Itina, Application of a two-temperature model for the investigation of the periodic structure formation on Si surface in femtosecond laser interactions, JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, vol.12, issue.3, pp.610-615, 2010.
URL : https://hal.archives-ouvertes.fr/ujm-00530631

B. Rethfeld, D. S. Ivanov, and M. E. Garcia, Modelling ultrafast laser ablation, J. Phys. D: Appl. Phys, vol.50, p.193001, 2017.

B. N. Chichkov, C. Momma, S. Nolte, F. Von-alvensleben, and A. Tu?nnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A Mater. Sci. Process, vol.63, issue.2, pp.109-115, 1996.

J. Thorstensen and S. E. Foss, Temperature dependent ablation threshold in silicon using ultrashort laser pulses, J. Appl. Phys, vol.112, issue.10, 2012.
DOI : 10.1063/1.4766380

N. M. Bulgakova, Theoretical Models and Qualitative Interpretations of Fs Laser Material Processing, J. Laser Micro/Nanoengineering, vol.2, pp.76-86, 2007.
URL : https://hal.archives-ouvertes.fr/ujm-00140565

T. Zier, E. S. Zijlstra, A. Kalitsov, I. Theodonis, and M. E. Garcia, Signatures of nonthermal melting, Struct. Dyn, vol.2, pp.1-9, 2015.

N. M. Bulgakova and I. M. Bourakov, Phase explosion under ultrashort pulsed laser ablation: Modeling with analysis of metastable state of melt, Appl. Surf. Sci, vol.197, pp.41-44, 2002.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, Accumulation effects in laser ablation of metals with high-repetition-rate lasers Gediminas, Proc. of SPIE, vol.7005, 2008.

J. B. Savolainen, M. Snogdahl, and C. Peter, Ultra-short pulse laser ablation of metals : threshold fluence , incubation coefficient and ablation rates, Appl Phys A, pp.97-101, 2010.

P. T. Mannion, J. Magee, E. Coyne, G. M. Connor, and T. J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air, Applied Surface Science, vol.233, pp.275-287, 2004.

F. Di-niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona et al., Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates, Optic Express, vol.22, pp.2230-2236, 2014.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Femtosecond laser ablation of silicon-modification thresholds and morphology, Appl. Phys. A, vol.74, pp.19-25, 2002.

C. S. Nathala, A. Ajami, W. Husinsky, B. Farooq, S. I. Kudryashov et al., Ultrashort laser pulse ablation of copper , silicon and gelatin : effect of the pulse duration on the ablation thresholds and the incubation coefficients, Appl. Phys. A, vol.122, pp.1-8, 2016.

S. Xiao, E. L. Gurevich, and A. Ostendorf, Incubation effect and its influence on laser patterning of ITO thin film, Appl.Phys. A, pp.333-338, 2012.

D. Ashkenasi, R. Stoian, and A. Rosenfeld, Single and multiple ultrashort laser pulse ablation threshold of Al2O3 (corundum) at different etch phases, Applied Surface Science, pp.154-155, 2000.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, Surface damage threshold and structuring of dielectrics using femtosecond laser pulses : the role of incubation, Applied Surface Science, vol.150, pp.101-106, 1999.

A. Rosenfeld, D. Ashkenasi, E. E. Campbell, M. Lorenz, R. Stoian et al., MATERIAL PROCESSING WITH FEMTOSECOND LASER PULSES

M. Birnbaum, Semiconductor Surface Damage Produced by Ruby Lasers, Journal of Applied Physics, vol.36, 1965.

J. Cui, A. Nogales, T. A. Ezquerra, and E. Rebollar, Influence of substrate and film thickness on polymer LIPSS formation, Appl. Surf. Sci, vol.394, pp.125-131, 2017.

B. Tan and K. Venkatakrishnan, A femtosecond laser-induced periodical surface structure on crystalline silicon, J. Micromech.Microeng, vol.16, pp.1080-1085, 2006.

T. J. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld et al., Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water, J. Appl. Phys, vol.116, issue.7, 2014.

M. S. Trtica, B. M. Gakovic, B. B. Radak, D. Batani, T. Desai et al., Periodic surface structures on crystalline silicon created by 532nm picosecond Nd:YAG laser pulses, Appl. Surf. Sci, vol.254, pp.1377-1381, 2007.

T. T. Huynh and N. Semmar, Dependence of ablation threshold and LIPSS formation on copper thin films by accumulative UV picosecond laser shots, Appl. Phys. A Mater. Sci. Process, vol.116, pp.1429-1435, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00971274

S. I. Kudryashov, E. V. Golosov, A. A. Ionin, Y. R. Kolobov, A. E. Ligachev et al., Nanostructuring of solid surfaces by femtosecond laser pulses, AIP Conf. Proc, vol.1278, pp.156-164, 2010.

T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola et al., Periodic patterning of silicon by direct nanosecond laser interference ablation, Appl. Surf. Sci, vol.258, pp.1175-1180, 2011.

N. Destouches, N. Crespo-monteiro, G. Vitrant, Y. Lefkir, S. Reynaud et al., Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation, J. Mater. Chem. C, vol.2, p.31, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-01006145

S. K. Das, H. Messaoudi, A. Debroy, E. Mcglynn, and R. Grunwald, Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials, Opt. Mater. Express, vol.3, pp.1705-1715, 2013.

J. Bonse, A. Rosenfeld, and J. Kru?ger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys, vol.106, issue.10, 2009.

J. Bonse and J. Kru?ger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon, J. Appl. Phys, vol.108, issue.3, 2010.

T. T. Huynh, A. Petit, and N. Semmar, Picosecond laser induced periodic surface structure on copper thin films, Applied Surface Science, vol.302, pp.109-113, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00942420

A. Talbi, C. T. Tameko, A. Stolz, E. Millon, C. Boulmer-leborgne et al., Nanostructuring of titanium oxide thin film by UV femtosecond laser beam: From one spot to large surfaces, Appl. Surf. Sci, vol.418, pp.425-429, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01492029

H. Mei, C. Wang, J. Yao, Y. C. Chang, J. Cheng et al., Development of novel flexible black silicon, Opt. Commun, vol.284, pp.1072-1075, 2011.

A. Y. Vorobyev and C. Guo, Direct femtosecond laser surface nano/microstructuring and its applications, Laser Photonics Rev, vol.7, pp.385-407, 2013.

A. Serpenguzel, A. Kurt, I. Inanc?, J. Carey, and E. Mazur, Luminescence of black silicon, J. Nanophotonics, vol.2, issue.1, 2008.

T. Sarnet, J. E. Carey, and E. Mazur, From black silicon to photovoltaic cells, using short pulse lasers, AIP Conf. Proc, vol.1464, pp.219-228, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01418601

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne et al., Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication, Thin Solid Films, vol.516, pp.6791-6795, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357312

O. Varlamova, F. Costache, M. Ratzke, and J. Reif, Control parameters in pattern formation upon femtosecond laser ablation, Appl. Surf. Sci, vol.253, pp.7932-7936, 2007.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, Femtosecond laser-induced periodic surface structures, J. Laser Appl, vol.24, issue.4, 2012.

J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, Self-organized regular surface patterning by pulsed laser ablation, Phys. Status Solidi Curr. Top. Solid State Phys, vol.6, pp.681-686, 2009.

S. Gräf and F. A. Mu?ller, Polarisation-dependent generation of fs-laser induced periodic surface structures, Appl. Surf. Sci, vol.331, pp.150-155, 2015.

E. L. Gurevich and S. V. Gurevich, Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness, Appl. Surf. Sci, vol.302, pp.118-123, 2014.

J. F. Young, J. S. Preston, H. M. Van-driel, and J. E. Sipe, Laser induced periodic surface structure. II. Experimens on Ge, Si, Al and brass, Physical Review B, vol.27, issue.2, pp.1155-1172, 1983.

J. Bonse, A. Rosenfeld, and J. Kruger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys, vol.106, issue.10, 2009.

H. Sandra, S. Kirner, and A. Rosenfeld, Laser-Induced Periodic Surface Structures-A Scientific Evergreen, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol.23, issue.3, 2017.

E. L. Gurevich, On the influence of surface plasmon-polariton waves on pattern formation upon laser ablation, Applied Surface Science, vol.278, pp.52-56, 2013.

V. I. Emel, Mechanisms of the formation of low spatial frequency LIPSS on Ni / Ti reactive multilayers, J. Phys. D: Appl. Phys, vol.49, p.365103, 2016.

O. Varlamova, Self-organized Surface Patterns Originating from Laser-Induced Instability. thesis dissertation, 2013.

S. Yazidi, A. Fafin, S. Rousselet, F. Pailloux, S. Camelio et al., Structure and farfield optical properties of self-organized bimetallic AuxAg1?x nanoparticles embedded in alumina thin film, Phys. Status Solidi C, vol.12, issue.12, pp.1344-1348, 2015.

E. Rebollar, M. Castillejo, and T. A. Ezquerra, Laser induced periodic surface structures on polymer films : From fundamentals to applications, Eur. Polym. J, vol.73, pp.162-174, 2015.

J. Reif, O. Varlamova, S. Uhlig, S. Varlamov, and M. Bestehorn, On the physics of selforganized nanostructure formation upon femtosecond laser ablation, Appl. Phys. A Mater. Sci. Process, vol.117, pp.179-184, 2014.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, Self-organized Surface Patterns Originating from Laser-Induced Instability, Nano-Optics and Nanophotonics, pp.3-30, 2015.

J. M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett, vol.7, pp.196-198, 1982.

J. R. Dorvee, J. Sailor, and G. M. Miskelly, Digital microfluidics and delivery of molecular payloads with magnetic porous silicon chaperones, pp.721-730, 2008.

G. Mann, S. Pentzien, and J. Kru?ger, Applied Surface Science Beam diameter dependence of surface damage threshold of fused silica fibers and preforms for nanosecond laser treatment at 1064 nm wavelength, Appl. Surf. Sci, vol.276, pp.312-316, 2013.

S. Martin, A. Hertwig, M. Lenzner, K. Krüger, and W. Kautek, Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses, Appl. Phys.A, vol.77, pp.883-884, 2003.

A. Naghilou, O. Armbruster, M. Kitzler, and W. Kautek, Merging Spot Size and Pulse Number Dependence of Femtosecond Laser Ablation Thresholds: Modeling and Demonstration with High Impact Polystyrene, J. Phys. Chem. C, vol.119, pp.22992-22998, 2015.

J. Bonse, A. Rosenfeld, and J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys, vol.106, issue.10, 2009.

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, Single-and multi-pulse formation of surface structures under static femtosecond irradiation, Appl. Surf. Sci, vol.253, pp.8075-8079, 2007.
URL : https://hal.archives-ouvertes.fr/ujm-00170151

J. Bonse and J. Kru?ger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon, J. Appl. Phys, vol.108, issue.3, 2010.

J. Ryu, Y. J. Jang, S. Choi, H. J. Kang, H. Park et al., All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution, NPG Asia Materials, vol.8, pp.248-257, 2016.

J. Bonse, A. Rosenfeld, and J. Kru?ger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys, vol.106, issue.10, 2009.

E. L. Gurevich and S. V. Gurevich, Laser Induced Periodic Surface Structures induced by surface plasmons coupled via roughness, Appl. Surf. Sci, vol.302, pp.118-123, 2014.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Femtosecond laser ablation of silicon-modification thresholds and morphology, Appl. Phys. A, vol.74, pp.19-25, 2002.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, Accumulation effects in laser ablation of metals with high-repetition-rate lasers Gediminas, Proc. of SPIE, vol.7005, 2008.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics, Appl. Surf. Sci, vol.374, pp.331-338, 2016.

A. I. Andrei, E. Golosov, R. K. Yu, I. K. Sergei, A. E. Ligachev et al., Formation of quasi-periodic nano-and microstructures on silicon surface under IR and UV femtosecond laser pulses, Quantum Electron, vol.41, issue.9, p.829, 2011.

M. A. Green, Solar Energy Materials & Solar Cells Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients, Solar Energy Materials & Solar, vol.92, pp.1305-1310, 2008.

H. M. Van-driel, J. E. Sipe, and J. F. Young, Laser-induced periodic surface structure on solids: A universal phenomenon, Phys. Rev. Lett, vol.49, 1955.

J. D. Fowlkes, A. J. Pedraza, D. A. Blom, and H. M. Meyer, Surface microstructuring and longrange ordering of silicon nanoparticles, Appl. Phys. Lett, vol.80, pp.3799-3801, 2002.

R. L. Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation, Appl. Phys. Lett, vol.98, pp.8-11, 2011.

A. Melhem, D. D. Sousa-meneses, C. Andreazza-vignolle, T. Defforge, G. Gautier et al., Structural, Optical and Thermal Analysis of n-type Mesoporous Silicon Prepared by Electrochemical Etching, J. Phys. Chem. C, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214262

L. Delfour and T. E. Itina, Mechanisms of Ultrashort Laser-Induced Fragmentation of Metal Nanoparticles in Liquids: Numerical Insights, J. Phys. Chem. C, vol.119, pp.13893-13900, 2015.
URL : https://hal.archives-ouvertes.fr/ujm-01179798

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, Material decomposition mechanisms in femtosecond laser interactions with metals, Phys. Rev. BCondens. Matter Mater. Phys, vol.75, pp.1-5, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00194823

N. M. Bulgakova and I. M. Bourakov, Phase explosion under ultrashort pulsed laser ablation: Modeling with analysis of metastable state of melt, Appl. Surf. Sci, vol.197, pp.41-44, 2002.

N. M. Bulgakova, Theoretical Models and Qualitative Interpretations of Fs Laser Material Processing, J. Laser Micro/Nanoengineering, vol.2, pp.76-86, 2007.
URL : https://hal.archives-ouvertes.fr/ujm-00140565

T. T. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam, Appl. Phys. Lett, vol.107, p.19, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226065

M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. Khishchenko, Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment, Phys. Chem. Chem. Phys, vol.15, pp.3108-3122, 2013.
URL : https://hal.archives-ouvertes.fr/ujm-00710851

K. Gouriet, T. E. Itina, S. Noel, J. Hermann, M. Sentis et al., Formation of nanoparticles by short and ultra-short laser pulses, Proc. SPIE-Int. Soc, vol.7005, pp.1-8, 2008.

T. E. Itina and A. Voloshko, Nanoparticle formation by laser ablation in air and by spark discharges at atmospheric pressure, Appl. Phys. B Lasers Opt, vol.113, pp.473-478, 2013.
URL : https://hal.archives-ouvertes.fr/ujm-00867080

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban et al., Non-thermal melting in semiconductors measured at femtosecond resolution, Nature, vol.410, pp.65-68, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00523521

J. Jia, M. Li, and C. V. Thompson, Amorphization of silicon by femtosecond laser pulses, Appl. Phys. Lett, vol.84, pp.3205-3207, 2004.

M. S. Rogers, C. P. Grigoropoulos, A. M. Minor, and S. S. Mao, Absence of amorphous phase in high power femtosecond laser-ablated silicon, Appl. Phys. Lett, vol.94, 2007.

Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita et al., Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation, Appl. Phys. Lett, vol.90, pp.1-3, 2007.

J. M. Liu, R. Yen, H. Kurz, N. Bloembergen, J. M. Liu et al., Phase transformation on and charged particle emission from a silicon crystal surface , induced by picosecond laser pulses, Appl. Phys. Lett, vol.39, p.755, 1981.

T. Sarnet, J. E. Carey, and E. Mazur, From black silicon to photovoltaic cells, using short pulse lasers, International Symposium on High Power Laser Ablation, pp.219-228, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01418601

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur et al., Microstructured silicon photodetector, Appl. Phys. Lett, vol.89, pp.3-5, 2006.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, Infrared absorption by sulfurdoped silicon formed by femtosecond laser irradiation, Appl. Phys. A Mater. Sci. Process, vol.79, pp.1635-1641, 2004.
DOI : 10.1007/s00339-004-2676-0

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, Femtosecond laser-induced formation of submicrometer spikes on silicon in water, Appl. Phys. Lett, vol.85, pp.5694-5696, 2004.

A. Y. Vorobyev and C. Guo, Direct femtosecond laser surface nano/microstructuring and its applications, Laser Photonics Rev, vol.7, pp.385-407, 2013.
DOI : 10.1002/lpor.201200017

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, Laser-Induced Periodic Surface Structures-A Scientific Evergreen, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol.23, issue.3, 2017.
DOI : 10.1109/jstqe.2016.2614183

URL : https://doi.org/10.1109/jstqe.2016.2614183

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, Laser-induced periodic surface structures on titanium upon single-and two-color femtosecond double-pulse irradiation, Opt. Express, vol.23, pp.25959-25971, 2015.

T. J. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld et al., Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water, J. Appl. Phys, vol.116, issue.7, 2014.

M. Martínez-calderon, A. Rodríguez, A. Dias-ponte, M. C. Morant-miñana, M. Gómezaranzadi et al., Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS, Appl. Surf. Sci, vol.374, pp.81-89, 2016.

T. T. Huynh and N. Semmar, Dependence of ablation threshold and LIPSS formation on copper thin films by accumulative UV picosecond laser shots, Appl. Phys. A Mater. Sci. Process, vol.116, pp.1429-1435, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00971274

F. Ruffino, A. Pugliara, E. Carria, L. Romano, C. Bongiorno et al., Towards a laser fluence dependent nanostructuring of thin Au films on Si by nanosecond laser irradiation, Appl. Surf. Sci, vol.258, pp.9128-9137, 2012.

S. Harada, K. Tanaka, and H. Inui, Thermoelectric properties and crystallographic shear structures in titanium oxides of the Mag?li phases, J. Appl. Phys, vol.108, pp.1-7, 2010.

I. Vaiciulis, M. Girtan, A. Stanculescu, L. Leontie, F. Habelhames et al., on Titanium Oxide Spray Deposited Thin Films for Solar Cells Applications, Proc. Rom. Acad. Ser. A, vol.13, pp.335-342, 2012.

T. Watanabe, R. Nakajima, M. Wang, S. Minabe, A. Koizumi et al., Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films, vol.351, pp.260-263, 1999.
DOI : 10.1016/b978-044450247-6.50076-x

O. I. Eroshov, P. Perminov, S. V. Zabotnov, M. B. Gongal&apos;skii, A. A. Ezhov et al., Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media, Crystallogr. Reports, vol.57, pp.831-835, 2012.

N. G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R. J. Potter et al., Silicon nanoparticles generated by femtosecond laser ablation in a liquid environment, J. Nanoparticle Res, vol.12, issue.2, pp.573-580, 2010.
DOI : 10.1007/s11051-009-9625-y

R. Intartaglia, K. Bagga, and F. Brandi, Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield, Opt. Express, vol.22, pp.3117-3144, 2014.

S. Gräf and F. A. Mu?ller, Polarisation-dependent generation of fs-laser induced periodic surface structures, Appl. Surf. Sci, vol.331, pp.150-155, 2015.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban et al., Non-thermal melting in semiconductors measured at femtosecond resolution, Nature, vol.410, pp.65-68, 2001.
DOI : 10.1038/35065045

URL : https://hal.archives-ouvertes.fr/hal-00523521

N. Medvedev, Z. Li, and B. Ziaja, Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation, Phys. Rev. B-Condens. Matter Mater. Phys, vol.91, pp.1-10, 2015.
DOI : 10.1103/physrevb.91.054113

URL : http://bib-pubdb1.desy.de//record/207883/files/PhysRevB.91.054113.pdf

N. M. Bulgakova, Theoretical Models and Qualitative Interpretations of Fs Laser Material Processing, J. Laser Micro/Nanoengineering, vol.2, pp.76-86, 2007.
DOI : 10.2961/jlmn.2007.01.0014

URL : https://hal.archives-ouvertes.fr/ujm-00140565

A. I. Andrei, E. Golosov, R. K. Yu, I. K. Sergei, A. E. Ligachev et al., Formation of quasi-periodic nano-and microstructures on silicon surface under IR and UV femtosecond laser pulses, Quantum Electron, vol.41, issue.9, p.829, 2011.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, Accumulation effects in laser ablation of metals with high-repetition-rate lasers Gediminas, Proc. of SPIE, vol.7005, 2008.

J. M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett, vol.7, pp.196-198, 1982.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Femtosecond laser ablation of silicon-modification thresholds and morphology, Appl. Phys. A, vol.74, pp.19-25, 2002.

J. B. Savolainen, M. Snogdahl, and C. Peter, Ultra-short pulse laser ablation of metals : threshold fluence , incubation coefficient and ablation rates, Appl Phys A, pp.97-101, 2010.

X. Ji, L. Jiang, X. Li, W. Han, Y. Liu et al., Femtosecond laser-induced crossperiodic structures on a crystalline silicon surface under low pulse number irradiation, Appl. Surf. Sci, vol.326, pp.216-221, 2015.

J. Bonse, A. Rosenfeld, and J. Kruger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys, vol.106, issue.10, 2009.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO, J. Appl. Phys, vol.105, issue.3, 2009.

R. L. Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple et al., Formation of Periodic Nanoripples on Silicon and Germanium Induced by Femtosecond Laser Pulses, Phys. Procedia, vol.12, pp.29-36, 2011.

J. Reif, O. Varlamova, S. Uhlig, S. Varlamov, and M. Bestehorn, On the physics of selforganized nanostructure formation upon femtosecond laser ablation, Appl. Phys. A, vol.117, pp.179-184, 2014.

T. T. Huynh, M. Vayer, A. Sauldubois, A. Petit, and N. Semmar, Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam, Appl. Phys. Lett, vol.107, p.19, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226065

S. Strobel, C. Kirkendall, and J. Chang, Thermal stability of electrodeposited platinum nanowires and morphological transformations at elevated temperatures, Nanotechnology, vol.23, p.475710, 2012.

T. T. Huynh, A. Petit, and N. Semmar, Picosecond laser induced periodic surface structure on copper thin films, Appl. Surf. Sci, vol.302, pp.109-113, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00942420

M. Gedvilas, G. Raiukaitis, V. Kuikas, and K. Regelskis, Driving forces for self-organization in thin metal films during their partial ablation with a cylindrically focused laser beam, AIP Conf. Proc, vol.1464, pp.229-243, 2012.

T. T. Huynh, A. Petit, and N. Semmar, Picosecond laser induced periodic surface structure on copper thin films, Applied Surface Science, vol.302, pp.109-113, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00942420

K. Jacobs and U. Saarlandes, Influence of Slip on the Rayleigh-Plateau Rim Instability in Dewetting Polymer Films, 2014.

N. Semmar, M. Tebib, J. Tesar, N. N. Puscas, and E. Amin-chalhoub, Applied Surface Science Direct observation of phase transitions by time-resolved pyro / reflectometry of KrF laserirradiated metal oxides and metals, Applied Surface Science, vol.255, pp.5549-5552, 2009.

K. Wang, A. Wang, A. Tomic, L. Wang, A. M. Abeykoon et al., Enhanced thermoelectric power and electronic correlations in RuSe2, APL Materials, vol.3, p.41513, 2015.

G. Ren, S. Butt, C. Zeng, Y. Liu, B. I. Zhan et al., Electrical and Thermal Transport Behavior in Zn-Doped BiCuSeO Oxyselenides, Journal of ELECTRONIC MATERIALS, 2014.

M. Battabyal, B. Priyadarshini, D. Sivaprahasam, N. S. Karthiselva, and R. Gopalan, The effect of Cu2O nanoparticle dispersion on the thermoelectric properties of n-type skutterudites, J. Phys. D. Appl. Phys, vol.455309, 2014.

S. Demirel, E. Altin, E. Oz, S. Altin, A. Bayri et al., An enhancement ZT and spin state transition of Ca3Co4O9 with Pb doping, Journal of Alloys and Compounds, vol.627, pp.430-437, 2015.

X. Chen, P. Lin, K. Zhang, H. Baumgart, and B. Geist, Seebeck Coefficient Enhancement of ALD PbTe / PbSe Nanolaminate Structures Deposited inside Porous Silicon, ECS Journal of Solid State Science and Technology, vol.5, pp.503-508, 2016.

J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader et al., Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment, J. Mater. Chem. A, 2013.

E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou et al., Invited Article : A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3, Review of Scientific Instruments, vol.86, p.11301, 2015.

P. F. Poudeu, J. D&apos;angelo, A. D. Downey, J. L. Short, T. P. Hogan et al., High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2, Angew. Chemie-Int. Ed, vol.45, pp.3835-3839, 2006.

R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, and N. , MOCVD of Bi2Te3 , Sb2Te3 and their superlattice structures for thin-film thermoelectric applications, Journal of Crystal Growth, vol.170, pp.817-821, 1997.

S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten et al., Transition metal oxides-Thermoelectric properties, Prog. Mater. Sci, vol.58, pp.1443-1489, 2013.

M. Yasukawa, Y. Shiga, and T. Kono, Electrical conduction and thermoelectric properties of perovskite-type, Solid State Communications, vol.152, pp.964-967, 2012.

Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, Recent Progress on PEDOT-Based Thermoelectric Materials, pp.732-750, 2015.

A. Zhou, W. Wang, X. Yao, B. Yang, J. Li et al., Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe ( PSM ), Applied Thermal Engineering, vol.107, pp.552-559, 2016.

R. Singh, Z. Bian, A. Shakouri, G. Zeng, J. Bahk et al., Direct measurement of thin-film thermoelectric figure of merit, Applied Physics Letters, vol.94, p.212508, 2009.

P. K. Rawat and B. Paul, Simple design for Seebeck measurement of bulk sample by 2-probe method concurrently with electrical resistivity by 4-probe method in the temperature range 300-1000 K, Measurement, vol.91, pp.613-619, 2016.

Q. Li and X. Yin, Effects of Phase Composition on Microstructure and Mechanical Properties of Lu 2 O 3-doped Porous Silicon Nitride Ceramics, J. Mater. Sci. Technol, vol.27, pp.529-533, 2011.

Y. K. Koh, S. L. Singer, W. Kim, J. M. Zide, H. Lu et al., Comparison of the 3? method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors, J. Appl. Phys, vol.105, p.54303, 2009.

C. A. Paddock, G. L. Eesley, C. A. Paddock, and G. L. Eesley, Transient thermoreflectance from thin metal films Transient thermoreflectance from thin, Journal of Applied Physics, vol.60, p.285, 1986.

A. Melhem, D. D. Sousa-meneses, C. Andreazza-vignolle, T. Defforge, G. Gautier et al., Structural, Optical and Thermal Analysis of n-type Mesoporous Silicon Prepared by Electrochemical Etching, J. Phys. Chem. C, vol.119, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214262

K. A. Aissa, N. Semmar, A. Achour, Q. Simon, A. Petit et al., Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputtering, J. Phys. D: Appl. Phys, vol.47, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057144

E. Amin-chalhoub, N. Semmar, L. Coudron, G. Gautier, C. Boulmer-leborgne et al., Thermal conductivity measurement of porous silicon by the pulsed-photothermal method, J. Phys. D. Appl. Phys, vol.44, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649058

O. N. Lamellae and O. F. Arbitrary, A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape, PTechReview, vol.20, pp.220-224, 1958.

O. Abbes, A. Melhem, C. Boulmer-leborgne, and N. Semmar, Establishment of optimized metallic contacts on silicon for thermoelectric applications, vol.6, pp.961-964, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226057

M. Wagner, Simulation of thermoelectric device, 2007.

R. E. Bentley, The Theory and Practice of Thermoelectric Thermometry, Handbook of Temperature Measurement, vol.3, 1998.

J. Samuel and . Rosenberg, Nickel and Its Alloys, Inst. Mater. Res. Natl. Bur. Stand, 1968.

D. F. Laughton, Electrical Engineer's Reference Book, 2002.

. V. Figure, SEM characterization of TiO1.8 (PVD) irradiated by 100 fs @ 266 nm. a) Surface view at low magnification, b) zoomed image of a), c) and d) zoomed images of c and d zones

. Tio1, 8 thin film nanostrucutring using a 500 fs laser @ 1030 nm Figure.V.6. Schematic of the experimental set up using 500 fs laser @ 1030 nm

. Figure, SEM views of TiO1.8 surface morphology evolution (after 500 fs laser irradiation @ 1030 nm) with increasing F

. V. Figure, SEM images at different magnifications of laser spot formed on TiO1.6 (PLD) thin film under 500 fs irradiation @ 343 nm (F= 120 mJ/cm² and N= 10000)

S. Rapp, M. Domke, M. Schmidt, and H. P. Huber, Physical Mechanisms during fs Laser Ablation of Thin SiO2 Films, Phys. Procedia, vol.41, pp.734-740, 2013.

J. Lee, S. Kim, and M. Lee, Micro-scale patterning of indium tin oxide film by spatially modulated pulsed Nd:YAG laser beam, Appl. Surf. Sci, vol.258, pp.9107-9111, 2012.

D. Douti, L. Gallais, and M. Commandré, Laser-induced damage of optical thin films submitted to 343 , 515 , and 1030 nm multiple subpicosecond pulses, Optical Engineering, vol.53, issue.12, p.122509, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01097102

L. A. Emmert, M. Mero, and W. Rudolph, Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses, Journal of Applied Physics, vol.108, p.43523, 2010.

D. N. Nguyen, L. A. Emmert, M. Mero, and W. Rudolph, The Effect of Annealing on the Subpicosecond Breakdown Behavior of Hafnia Films, Proc. of SPIE, vol.7132, 2008.

M. Mero, K. Starke, and J. C. Jasapara, On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses, Optical Engineering, vol.44, issue.5, p.51107, 2005.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, Surface damage threshold and structuring of dielectrics using femtosecond laser pulses : the role of incubation, Applied Surface Science, vol.150, pp.101-106, 1999.

G. M. Connor, C. Mcdonnell, D. Milne, C. Prieto, H. Chan et al., Laser patterning of very thin indium tin oxide thin films on PET substrates, Appl. Surf. Sci, vol.359, pp.567-575, 2015.

N. Farid, H. Chan, D. Milne, A. Brunton, and G. M. Connor, Stress assisted selective ablation of ITO thin film by picosecond laser, Appl. Surf. Sci, vol.427, pp.499-504, 2017.

F. Liang and S. L. Chin, Physical evolution of nanograting inscription on the surface of fused silica, OPTICAL MATERIALS EXPRESS, vol.2, pp.1244-1250, 2012.

G. Miyaji and K. Miyazaki, Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses, OPTICS EXPRESS, vol.16, pp.16265-16271, 2008.

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger et al., Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser : a shared electromagnetic origin, SCIENTIFIC REPORTS, vol.7, p.12306, 2017.
URL : https://hal.archives-ouvertes.fr/ujm-01845204

L. Wang, Y. Liu, Z. Zhang, B. Wang, J. Qiu et al., Polymer composites-based thermoelectric materials and devices, Compos. Part B, vol.122, pp.145-155, 2017.

O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly ( 3 , 4ethylenedioxythiophene ), Nat. Mater, vol.10, pp.429-433, 2011.

C. Gayner and K. K. Kar, Recent advances in thermoelectric materials, Progress in Materials Science, vol.83, pp.330-382, 2016.
DOI : 10.1016/j.pmatsci.2016.07.002

E. Rebollar, J. R. Vazquez-de-aldana, I. Mart?-n-fabiani, M. Hernandez, D. R. Rueda et al., Assessment of femtosecond laser induced periodic surface structures on polymer films, Phys. Chem. Chem. Phys, vol.15, p.11287, 2013.