W. Yan, Z. Grégory, T. Kaba, and C. David, Verification and validation of D2FD method. New Information Communication Sciences and Technology for Sustainable Development International France-China Workshop, Clermond Ferrand, 2017.

W. Yan, Z. Grégory, T. Kaba, and C. David, Use fuzzy clustering for discrete event simulation model construction, The 20th World Congress of the International Federation of Automatic Control, 2017.

W. Yan, Z. Grégory, T. Kaba, and C. David, A tool for mining discrete event simulation model, Winter Simulation Conference, pp.3066-3077, 2017.

W. Yan, Z. Grégory, T. Kaba, and C. David, A predictive validation method for discovering discrete event simulation models. Les journées DEVS francophones applications de la théorie de la modélisation et de la simulation (JDF).Cépadù es, pp.19-20, 2018.

C. Agostinho, J. Sarraipa, F. D'antonio, and R. Jardim-gonçalves, Enhancing step-based interoperabity using model morphisms, Enterprise Interoperability II, pp.817-828, 2007.
DOI : 10.1007/978-1-84628-858-6_89

C. Agostinho, J. Sarraipa, D. Goncalves, and R. Jardim-goncalves, Tuplebased semantic and structural mapping for a sustainable interoperability, Doctoral Conference on Computing, Electrical and Industrial Systems, pp.45-56, 2011.
DOI : 10.1007/978-3-642-19170-1_5

URL : https://hal.archives-ouvertes.fr/hal-01566581

. Springer,

F. J. Barros, Dynamic structure discrete event system specification: a new formalism for dynamic structure modeling and simulation, Proceedings of the 27th conference on Winter simulation, pp.781-785, 1995.
DOI : 10.1109/wsc.1995.478858

URL : http://repository.lib.ncsu.edu/bitstream/1840.4/5802/1/1995_0118.pdf

F. J. Barros, Modeling formalisms for dynamic structure systems, ACM Transactions on Modeling and Computer Simulation (TOMACS), vol.7, issue.4, pp.501-515, 1997.
DOI : 10.1145/268403.268423

URL : https://estudogeral.sib.uc.pt/bitstream/10316/10705/1/Modeling%20formalisms%20for%20dynamic%20structure%20systems.pdf

H. Bazoun, G. Zacharewicz, Y. Ducq, and H. Boye, Business process simulation: Transformation of bpmn 2.0 to devs models, Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, pp.13-16, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00990758

E. A. Bender, An introduction to mathematical modeling, Courier Corporation, 2012.

P. A. Bisgambiglia, Approche de modélisation approximative pour des systèmes ` a ´ evénements discrets: ApplicationàApplicationà l'´ etude de propagation de feux de forêt, 2008.

P. A. Bisgambiglia, L. Capocchi, P. Bisgambiglia, and S. Garredu, Fuzzy inference models for discrete event systems, Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, pp.1-8, 2010.
DOI : 10.1109/fuzzy.2010.5584707

URL : https://hal.archives-ouvertes.fr/hal-00589139

P. A. Bisgambiglia, E. De-gentili, P. Bisgambiglia, and J. Santucci, Discrete events system simulation-based defuzzification method, Electrotechnical Conference, pp.132-138, 2008.
DOI : 10.1109/melcon.2008.4618423

URL : https://hal.archives-ouvertes.fr/hal-00341225

P. A. Bisgambiglia, E. D. Gentili, P. Bisgambiglia, and J. F. Santucci, Fuzzy modeling for discrete events systems, MELECON 2008-The 14th IEEE Mediterranean Electrotechnical Conference, pp.151-157, 2008.
DOI : 10.1109/melcon.2008.4618426

URL : https://hal.archives-ouvertes.fr/hal-00341188

Y. Bouanan, M. B. El-alaoui, G. Zacharewicz, and B. Vallespir, Using devs and cell-devs for modelling of information impact on individuals in social network, IFIP International Conference on Advances in Production Management Systems, pp.409-416, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01387279

M. Bunge, Causality and modern science, 2017.

M. Cameranesi, C. Diamantini, L. Genga, and D. Potena, Students' careers analysis: a process mining approach, Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, p.26, 2017.
DOI : 10.1145/3102254.3102270

R. Castro, E. Kofman, and G. Wainer, A formal framework for stochastic devs modeling and simulation, Proceedings of the 2008 Spring simulation multiconference, pp.421-428, 2008.

Y. Y. Chen and T. C. Tsao, A description of the dynamic behavior of fuzzy systems, IEEE Transactions on Systems, Man, and Cybernetics, vol.19, issue.4, pp.745-755, 1989.

S. M. Cho and T. G. Kim, Real-time devs simulation: Concurrent, timeselective execution of combined rt-devs model and interactive environment, Proceeding of 1998 Summer Simulation Conference, p.90, 1998.

A. C. Chow and B. P. Zeigler, Parallel devs: A parallel, hierarchical, modular modeling formalism, Simulation Conference Proceedings, pp.716-722, 1994.

D. 'aquin, M. , and A. Gangemi, Is there beauty in ontologies?, Applied Ontology, vol.6, issue.3, pp.165-175, 2011.

A. K. De-medeiros, A. J. Weijters, and W. M. Van-der-aalst, Genetic process mining: an experimental evaluation, Data Mining and Knowledge Discovery, vol.14, issue.2, pp.245-304, 2007.

E. G. De-murillas, H. A. Reijers, and W. M. Van-der-aalst, Connecting databases with process mining: a meta model and toolset, Enterprise, BusinessProcess and Information Systems Modeling, pp.231-249, 2016.

M. Dhamala, G. Rangarajan, and M. Ding, Analyzing information flow in brain networks with nonparametric granger causality, Neuroimage, vol.41, issue.2, pp.354-362, 2008.

C. Diamantini, L. Genga, D. Potena, and W. M. Van-der-aalst, Building instance graphs for highly variable processes, Expert Systems with Applications, vol.59, pp.101-118, 2016.

D. Dubois, L. Foulloy, G. Mauris, and H. Prade, Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities, Reliable computing, vol.10, issue.4, pp.273-297, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02068408

D. Dubois and H. Prade, Theory of possibility an approach to computerized processing of uncertainty, 1988.

D. Dubois and H. Prade, Putting rough sets and fuzzy sets together, Intelligent Decision Support, pp.203-232, 1992.

M. S. Elzas, System paradigms as reality mappings, Simulation and Model-Based Methodologies: An Integrative View, pp.41-67, 1984.

D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded system design: modeling, synthesis and verification, 2009.

J. F. Geweke, Measures of conditional linear dependence and feedback between time series, Journal of the American Statistical Association, vol.79, issue.388, pp.907-915, 1984.

N. Giambiasi, B. Escude, and S. Ghosh, Gdevs: A generalized discrete event specification for accurate modeling of dynamic systems, 5th International Symposium on Autonomous Decentralized Systems, pp.464-469, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01479673

N. Giambiasi, M. Smaili, and C. Frydman, Discrete event simulation with fuzzy times, European Simulation Symposium, 1994.

R. Gore and S. Diallo, The need for usable formal methods in verification and validation, Winter Simulation Conference (WSC), pp.1257-1268, 2013.

C. W. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica: Journal of the Econometric Society, pp.424-438, 1969.

G. Greco, A. Guzzo, L. Pontieri, and D. Sacca, Discovering expressive process models by clustering log traces, IEEE Transactions on Knowledge and Data Engineering, vol.18, issue.8, pp.1010-1027, 2006.

C. W. Günther and W. M. Van-der-aalst, Fuzzy mining-adaptive process simplification based on multi-perspective metrics, International Conference on Business Process Management, pp.328-343, 2007.

C. W. Günther and E. Verbeek, Xes standard definition. Fluxicon Process Laboratories 13, p.14, 2009.

M. E. Hamri, N. Giambiasi, and C. Frydman, Min-max-devs modeling and simulation, Simulation Modelling Practice and Theory, vol.14, issue.7, pp.909-929, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01479660

D. J. Hand, Principles of data mining, Drug safety, vol.30, issue.7, pp.621-622, 2007.

A. Harbola, D. Negi, and D. Harbola, Infinite automata and formal verification, International Journal, vol.2, issue.3, 2012.

F. Heidari and N. Assy, Usage analytics using process mining, 12th International Workshop on Business Process Intelligence (BPI). Key Findings for the Dutch Employee Insurance Agency, 2016.

F. Höppner, Fuzzy cluster analysis: methods for classification, data analysis and image recognition, 1999.

X. Hu, A simulation-based software development methodology for distributed real-time systems, 2004.

N. Interop, consortium, deliverable dtg3. 2: Tg momo roadmap. Google Scholar, 2005.

C. J. Jacques and G. A. Wainer, Using the cd++ devs toolkit to develop petri nets, Summer Computer Simulation Conference, pp.51-56, 1998.

A. Jalali, Exploring different aspects of users behaviours in the dutch autonomous administrative authority through process cubes, 2016.

M. Jans, M. G. Alles, and M. A. Vasarhelyi, A field study on the use of process mining of event logs as an analytical procedure in auditing, The Accounting Review, vol.89, issue.5, pp.1751-1773, 2014.

L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis, vol.344, 2009.

R. M. Keller, Formal verification of parallel programs, Communications of the ACM, vol.19, issue.7, pp.371-384, 1976.

M. S. Khan, Fuzzy time control modeling of discrete event systems. ICIAR-51, WCECS, pp.683-688, 2008.

J. Kim and B. P. Zeigler, Designing fuzzy logic controllers using a multiresolutional search paradigm, IEEE Transactions on Fuzzy Systems, vol.4, issue.3, pp.213-226, 1996.

S. Kim, H. S. Sarjoughian, and V. Elamvazhuthi, Devs-suite: a componentbased simulation tool for rapid experimentation and evaluation, Spring Simulation Multi-conference, 2009.

G. J. Klir, Architecture of systems problem solving, 2013.

R. Ko?í and V. Janou?ek, Simulation based design of control systems using devs and petri nets, International Conference on Computer Aided Systems Theory, pp.849-856, 2009.

O. Kutz and J. Hois, , 2012.

Y. W. Kwon, H. C. Park, S. H. Jung, and T. G. Kim, Fuzzy-devs formalism: concepts, realization and applications, Proceedings AIS, pp.227-234, 1996.

A. M. Law, How to build valid and credible simulation models, Winter Simulation Conference (WSC), pp.39-47, 2008.

C. C. Lee, Fuzzy logic in control systems: fuzzy logic controller. i, IEEE Transactions on systems, man, and cybernetics, vol.20, issue.2, pp.404-418, 1990.

J. Lee and S. Chi, Using symbolic devs simulation to generate optimal traffic signal timings, Simulation, vol.81, issue.2, pp.153-170, 2005.

P. Michiardi and R. Molva, Core: a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks, Advanced communications and multimedia security, pp.107-121, 2002.

J. Mieke, From data to event log, 2015.

M. Mitchell, An Introduction to Genetic Algorithms, 1998.

T. Oren, Taxonomy of simulation model processing, 1987.

D. K. Pace, Ideas about simulation conceptual model development, Johns Hopkins APL technical digest, vol.21, issue.3, pp.327-336, 2000.

J. L. Peterson, Petri nets, ACM Computing Surveys (CSUR), vol.9, issue.3, pp.223-252, 1977.

C. A. Petri and W. Reisig, Petri net. Scholarpedia, vol.3, p.6477, 2008.

C. Piu, Simulation games: Ontology. Simulation and Gaming for Mathematical Education: Epistemology and Teaching Strategies, p.25, 2010.

G. Quesnel, R. Duboz, and . Ramat, The virtual laboratory environmentan operational framework for multi-modelling, simulation and analysis of complex dynamical systems, Simulation Modelling Practice and Theory, vol.17, issue.4, pp.641-653, 2009.

A. Roebroeck, E. Formisano, and R. Goebel, The identification of interacting networks in the brain using fmri: model selection, causality and deconvolution, Neuroimage, vol.58, issue.2, pp.296-302, 2011.

T. J. Ross, Fuzzy logic with engineering applications, 2009.

J. F. Santucci and L. Capocchi, Fuzzy discrete-event systems modeling and simulation with fuzzy control language and devs formalism, Sixth International Conference on Advances in System Simulation (SIMUL2014), pp.250-255, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083102

R. G. Sargent, Verification and validation of simulation models, Winter Simulation Conference (WSC), pp.162-176, 2009.

A. W. Scheer, Business Process Engineering: Reference Models for Industrial Enterprises. Business process engineering / August-Wilhelm Scheer, 1998.

S. Scheps, Business intelligence for dummies, 2011.

S. Schlesinger, Terminology for model credibility, Simulation, vol.32, issue.3, pp.103-104, 1979.

C. Seo, B. P. Zeigler, R. Coop, and D. Kim, Devs modeling and simulation methodology with ms4 me software tool, Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, p.33, 2013.

A. K. Seth, Granger causality, vol.2, p.1667, 2007.

A. K. Seth, A matlab toolbox for granger causal connectivity analysis, Journal of neuroscience methods, vol.186, issue.2, pp.262-273, 2010.

A. K. Seth, Measuring autonomy and emergence via granger causality, Artificial life, vol.16, issue.2, pp.179-196, 2010.
DOI : 10.1162/artl.2010.16.2.16204

URL : http://sro.sussex.ac.uk/29803/1/artl%252E2010%252E16%252E2%252E16204.pdf

H. A. Simon, The architecture of complexity, Facets of systems science, pp.457-476, 1991.

F. Song, G. Zacharewicz, and D. Chen, Pattern-based core word recognition to support ontology matching, International Journal of Knowledge-based and Intelligent Engineering Systems, vol.17, issue.2, pp.167-176, 2013.
DOI : 10.3233/kes-130270

URL : https://hal.archives-ouvertes.fr/hal-01055575

H. S. Song and T. G. Kim, The devs framework for discrete event systems control, AI, Simulation, and Planning in High Autonomy Systems. Distributed Interactive Simulation Environments., Proceedings of the Fifth Annual Conference on, pp.228-234, 1994.

A. H. Ter-hofstede, W. M. Van-der-aalst, M. Adams, and N. Russell, Modern Business Process Automation: YAWL and its support environment, 2009.

T. Thaler, S. Knoch, N. Krivograd, P. Fettke, and P. Loos, Itil process and impact analysis at rabobank ict, BPI Challenge, 2014.

A. Tolk, Ontology, epistemology, and teleology for modeling and simulation: Philosophical foundations for intelligent M&S applications, vol.44, 2012.

M. K. Traoré, A next generation modeling and simulation framework, Proceedings of the International Conference on Simulation Tools and Techniques for Communications, 2008.

A. M. Uhrmacher, Dynamic structures in modeling and simulation: a reflective approach, ACM Transactions on Modeling and Computer Simulation, vol.11, issue.2, pp.206-232, 2001.
DOI : 10.1145/384169.384173

W. M. Van-der-aalst, The application of petri nets to workflow management, Journal of circuits, systems, and computers, vol.8, issue.01, pp.21-66, 1998.

W. M. Van-der-aalst, Process Mining-Discovery, Conformance and Enhancement of Business Processes, 2011.

W. M. Van-der-aalst, Extracting event data from databases to unleash process mining, BPM-Driving innovation in a digital world, pp.105-128, 2015.

W. M. Van-der-aalst, Causal nets: a modeling language tailored towards process discovery, International conference on concurrency theory, pp.28-42, 2011.

W. M. Van-der-aalst, T. Weijters, and L. Maruster, Workflow mining: Discovering process models from event logs, IEEE Transactions on Knowledge and Data Engineering, vol.16, issue.9, pp.1128-1142, 2004.

Y. Van-tendeloo, Research internship i: Efficient devs simulation, 2013.

Y. Van-tendeloo and H. Vangheluwe, The modular architecture of the python (p) devs simulation kernel: work in progress paper, Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS Integrative, p.14, 2014.

F. Wagner, Moore or mealy model. States works, 2005.

G. Wainer and N. Giambiasi, Timed cell-devs: modeling and simulation of cell spaces, Discrete event modeling and simulation technologies, pp.187-214, 2001.

A. Weijters and J. Ribeiro, Flexible heuristics miner (fhm), Computational Intelligence and Data Mining (CIDM), 2011 IEEE Symposium on, pp.310-317, 2011.
DOI : 10.1109/cidm.2011.5949453

URL : https://pure.tue.nl/ws/files/3346781/694416.pdf

. Ieee,

M. Weske, Business process management architectures, Business Process Management, pp.333-371, 2012.
DOI : 10.1007/978-3-642-28616-2_7

J. C. Willems, Models for dynamics, Dynamics reported, pp.171-269, 1989.

D. Youcef and H. Maamar, Specification of the state lifetime in the devs formalism by fuzzy controller, 2014.

G. Zacharewicz, Un environnement G-DEVS/HLA: ApplicationàApplicationà la modélisation et simulation distribuée de workflow, 2006.
DOI : 10.3166/jds.18.375-402

URL : https://hal.archives-ouvertes.fr/hal-00411815/file/Environnement_G-DEVS_HLA_pour_la_simulat.pdf

G. Zacharewicz, C. Frydman, and N. Giambiasi, G-devs/hla environment for distributed simulations of workflows, Simulation, vol.84, issue.5, pp.197-213, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00173590

L. A. Zadeh, Fuzzy sets, Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A Zadeh, pp.394-432, 1996.

B. P. Zeigler, G. Ball, H. Cho, J. Lee, and H. Sarjoughian, Implementation of the devs formalism over the hla/rti: Problems and solutions, Simulation Interoperation Workshop, vol.99, 1999.

B. P. Zeigler and P. E. Hammonds, Modeling & simulation-based data engineering: introducing pragmatics into ontologies for net-centric information exchange, 2007.

B. P. Zeigler, Y. Moon, V. L. Lopes, and J. Kim, Devs approximation of infiltration using genetic algorithm optimization of a fuzzy system, Mathematical and Computer Modelling, vol.23, pp.215-228, 1996.

B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems, 2000.

B. P. Zeigler and H. S. Sarjoughian, Introduction to devs modeling and simulation with java: Developing component-based simulation models, 2003.

B. P. Zeigler and H. S. Sarjoughian, Devs integrated development environments. In Guide to Modeling and Simulation of Systems of Systems, pp.11-26, 2013.
DOI : 10.1007/978-3-319-64134-8_2

. Springer,

Q. Zhou, Research on heterogeneous data integration model of group enterprise based on cluster computing, Cluster Computing, vol.19, issue.3, pp.1275-1282, 2016.

H. J. Zimmermann, Fuzzy control, Fuzzy Set Theoryand Its Applications, pp.203-240, 1996.