
HAL Id: tel-01952795
https://theses.hal.science/tel-01952795

Submitted on 12 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An integrative process mining approach to mine discrete
event simulation model from event data

Yan Wang

To cite this version:
Yan Wang. An integrative process mining approach to mine discrete event simulation model from event
data. Other [cs.OH]. Université de Bordeaux, 2018. English. �NNT : 2018BORD0183�. �tel-01952795�

https://theses.hal.science/tel-01952795
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR DE

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DES SCIENCES PHYSIQUES ET DE L’INGÉNIEUR

SPECIALITÉ: PRODUCTIQUE

Par Yan WANG

AN INTEGRATIVE PROCESS MINING APPROACH TO
MINE DISCRETE EVENT SIMULATION MODEL FROM

EVENT DATA

Sous la direction de : David CHEN
(Co-directeur : Grégory ZACHAREWICZ, Mamadou Kaba TRAORÉ)

Soutenue le 12 Octobre 2018

Membres du jury :

1. M. ARCHIMÈDE, Bernard Professeur, École nationale d'ingénieurs de Tarbes Président
2. M. SANTUCCI, Jean François Professeur, Université de Corse Pascal Paoli Rapporteur
3. Mme. DIAMANTINI, Claudia Professeur, Università Politecnica delle Marche Rapporteur
4. M. CHEN, David Professeur, Université de Bordeaux Directeur
5. M. ZACHAREWICZ, Grégory Professeur, École des Mines d’Alès Co-directeur
6. M. TRAORÉ, Mamadou Kaba MCF (H.D.R), Université Clermont Auvergne Co-directeur

This thesis is dedicated to my wife Mouna and my parents.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors Prof.

Gregory Zacharewicz, Prof. Mamadou Kaba Traore and Prof. David

Chen for their continuous support of my PhD study and related research,

for their patience, motivation and immense knowledge. Their guidance

helped me to make the research and write the thesis. I could not have

imagined having a better supervisor and mentor for my PhD study.

Besides my supervisors, I would like to thank Prof. Jean-Paul Bourrieres,

Dr. Youssef Bouanan and Dr. Alioune Fall for their insightful comments.

They have helped me to extend the knowledge of my PhD study.

My sincere thanks also goes to China Scholarship Council for supporting

me a four years funding of my PhD study.

At last, I would like to thank to my wife in France for her suggestions

of writing my PhD thesis and her encouragement. I also thank to my

parents in China for their support in my PhD study. Without the love of

my wife and my parents, I will not be able to finish this thesis.

Résumé

L’inférence d’un système, par la reconstruction de la structure à partir

de l’analyse de son comportement, est reconnue comme un problème cri-

tique. Dans la théorie des systèmes, la structure et le comportement

se situent aux extrémités de la hiérarchie qui définit la connaissance du

système. L’inférence d’un système peut être également considérée comme

l’escalade de la hiérarchie depuis la connaissance de bas niveau vers la con-

naissance de plus haut niveau. Ceci n’est possible que sous des conditions

maitrisées et justifiées. Dans cette thèse, une nouvelle méthode d’inférence

de système est proposée. La méthode proposée étend la technique Process

Mining pour extraire des connaissances depuis les données des événements

du système. Les aspects de modularité, de fréquence et de synchronisa-

tion peuvent être extraits des données. Ils sont intégrés ensemble pour

construire un modèle Fuzzy-Discrete Event System Specification (Fuzzy-

DEVS). La méthode proposée, également appelée méthode D2FD (Data

to Fuzzy-DEVS), comprend trois étapes: (1) l’extraction depuis des jour-

naux d’évènements (registres) obtenus à partir des données générées par

le système en utilisant une approche conceptuelle; (2) la découverte d’un

système de transition, en utilisant des techniques de découverte de proces-

sus; (3) l’intégration de méthodes Fuzzy pour générer automatiquement

un modèle Fuzzy-DEVS à partir du système de transition. La dernière

étape est de l’implémenter cette contribution en tant que plugin dans

l’environnement Process Mining Framework (ProM). Afin de valider les

modèles construits, une approximation de modèle basée sur le morphisme

et une méthode prédictive intégrée à Granger Causality sont proposées.

Deux études de cas sont présentées dans lesquelles le modèle Fuzzy-DEVS

est déduit à partir de données réelles, où l’outil SimStudio est utilisé pour

sa simulation. Les modèles ainsi construits et les résultats de simulation

sont validés par comparaison à d’autres modèles.

Mots-clés: Inférence de système, Process Mining (Découverte de Proces-

sus), Fuzzy-DEVS (DEVS Flous), Modélisation et simulation, Validation

de modèle.

4

Abstract

System inference, i.e., the building of system structure from system behav-

ior, is widely recognized as a critical challenging issue. In System Theory,

structure and behavior are at the extreme sides of the hierarchy that de-

fines knowledge about the system. System inference is known as climbing

the hierarchy from less to more knowledge. In addition, it is possible

only under justifying conditions. In this thesis, a new system inference

method is proposed. The proposed method extends the process mining

technique to extract knowledge from event data and to represent complex

systems. The modularity, frequency and timing aspects can be extracted

from the data. They are integrated together to construct the Fuzzy Dis-

crete Event System Specification (Fuzzy-DEVS) model. The proposed

method is also called D2FD (Data to Fuzzy-DEVS) method, and consists

of three stages: (1) extraction of event logs from event data by using the

conceptual structure; (2) discovery of a transition system, using process

discovery techniques; (3) integration of fuzzy methods to automatically

generate a Fuzzy-DEVS model from the transition system. The last stage

is implemented as a plugin in the Process Mining Framework (ProM) envi-

ronment. In order to validate constructed models, morphism-based model

approximation and predictive method integrated with Granger Causality

are proposed. Two case studies are presented in which Fuzzy-DEVS model

is inferred from real life data, and the SimStudio tool is used for its sim-

ulation. The constructed models and simulation results are validated by

comparing to other models.

Keywords: System Inference, Process Mining, Fuzzy-DEVS, Modeling and

Simulation, Model Validation

Résumé

Cette thèse s’inscrit dans le cadre de la modélisation et de la simulation

des processus d’entreprise et vise à contribuer à l’ingénierie des processus

d’entreprise et à ses utilisations dans les entreprises. La modélisation

d’entreprise traite du processus de compréhension d’une entreprise et

de l’amélioration de ses performances grâce à la création de modèles

d’entreprise. Parmi les langages de modélisation d’entreprise, le langage

de modélisation de processus est l’un des plus utilisés pour construire des

modèles de processus. Dans la majorité des cas, les modèles de proces-

sus sont construits sur la base d’hypothèses d’experts ou de la participa-

tion à des entretiens. Les techniques de Process Mining (PM) utilisées

dans cette thèse fournissent une méthode ascendante pour construire des

modèles. PM consiste à découvrir, surveiller et améliorer des processus

réels en extrayant des connaissances à partir des journaux d’événements.

Si des modèles de processus existent dans une entreprise, PM permet de

vérifier si le modèle établi est correct et permet également de compléter ou

d’améliorer les processus existants. Si les modèles de processus n’existent

pas dans une entreprise, PM fournit un moyen complémentaire de con-

struire des modèles de processus.

L’objectif principal de cette thèse est d’exploiter un modèle de simulation

à partir des données d’événement. Avec le développement de l’entreprise,

les systèmes d’information deviennent de plus en plus grands. Les données

enregistrées dans les systèmes d’information augmentent. L’événement

décrit le déroulement d’une activité et il s’agit d’une partie des données.

L’un des grands défis aujourd’hui consiste à extraire des informations

utiles de ces données d’événement. Pour cette raison, le modèle de pro-

cessus est construit à partir d’événements en appliquant des techniques

d’exploration de processus. La simulation du modèle de processus fournit

des résultats liés au processus pour la découverte de systèmes réels et de

recherches expérimentales. La validation détermine que les résultats de

la simulation ont une précision suffisante pour l’entreprise. Cette thèse

se concentre sur la découverte du processus. La découverte de proces-

sus en tant que partie intégrante de l’exploration de processus fournit

des techniques pour construire des modèles de processus à partir de jour-

naux d’événements. Le modèle de simulation est basé sur Discrete Event

System Specification (DEVS). Il fournit un cadre général pour décrire

les systèmes complexes. Dans la théorie des systèmes, la structure et le

comportement se situent aux extrêmes de la hiérarchie qui définit la con-

naissance du système. De plus, DEVS offre une définition formelle du

simulateur.

La principale problématique de recherche dans cette thèse est l’inférence

du système. L’inférence de système est définie par le fait que le système

existe et nous essayons de générer la structure à partir d’observations

de son comportement. En outre, il est difficile de collecter des données,

car PM n’accepte que les journaux d’événements appropriés. Ceci cor-

respond à la corrélation des événements, à l’instance de processus et à

l’étendue des données. Il existe de nombreux langages de modélisation de

processus utilisés dans PM. Le réseau de Petri est l’un des plus utilisés.

Comparé à DEVS, le temps est considéré comme une extension ou une

perspective dans PM. En outre, la modularité est insuffisante, ce qui

rend difficile la conception de modèles hiérarchiques. Comparé à d’autres

méthodes de découverte de processus, nous pouvons découvrir que l’alpha-

algorithme est capable de fournir une simultanéité mais ne prend pas en

compte la fréquence. Le modèle n’est pas solide. Le modèle construit par

l’exploitation minière régionale est bien ajusté et précis. En intégrant le

concept de région, le modèle est généralisé. Cependant, le modèle ressem-

ble au spaghetti et est difficile à comprendre. La simplification est un

problème. L’exploration heuristique prend en compte la fréquence. En

ajustant les seuils, le modèle peut tre simplifié. Cette méthode peut se

concentrer sur ce qui est important et ce qui n’est pas important. D’autres

techniques, telles que l’extraction floue, suppriment les activités de simpli-

fication. Mineur inductif peu fréquent (IiM) définit le seuil pour contrôler

le filtrage. Chaque méthode de découverte de processus est indépendante.

Nous devons simplement en trouver un qui explique le mieux les données

d’événement observées. Enfin, le modèle découvert nécessite la valida-

tion opérationnelle. La validation opérationnelle est définie comme la

7

détermination que le comportement de sortie du modèle a une précision

suffisante pour la fonction à laquelle il est destiné.

Dans cette thèse, une approche intégrée est proposée pour découvrir un

modèle Fuzzy Discrete Event System Specification (Fuzzy-DEVS) à par-

tir de données d’événement, également appelé méthode D2FD (Data to

Fuzzy-DEVS). La méthode D2FD comprend trois étapes: (1) extraction

des journaux d’événements à partir de données d’événement en utilisant

structure conceptuelle; (2) découverte d’un système de transition util-

isant un processus techniques de découverte; (3) intégration de méthodes

floues pour automatiquement générer un modèle Fuzzy-DEVS à partir du

système de transition. Dans la première étape, les données d’événement

sont définies et nous proposons une méthode en cinq étapes. Cette méthode

en cinq étapes comprend définition des objectifs, identification des rela-

tions, identification des valeurs, sélection des instances de processus et

cartographie générale. Dans la deuxième étape, nous réutilisons une par-

tie de l’extraction régionale pour découvrir le système de transition à

partir des journaux d’événements. Dans la troisième étape, une approche

basée sur la région améliorée propose de découvrir la région correspondent

- aux états de ing Fuzzy-devs. Dépendance La méthode est utilisée pour

produire la transition interne floue, transition externe floue et fonction de

sortie floue; Le contrôleur de temps Fuzzy adapté (AFTC) est utilisé pour

obtenir une fonction d’avance de temps flou. Pour exécuter le modèle

Fuzzy-DEVS, les mesures de possibilité et la sortie finale de AFTC sont

appliqués. Le résultat final de AFTC est déduit de la moyenne pondérée

méthode à partir de méthodes de défuzzification. Le cluster flou est ap-

pliqué aux fonctions de Modèle couplé Fuzzy-DEVS. La méthode D2FD

est implémentée en tant que plug-in dans l’environnement Process Mining

Framework (ProM). L’outil de simulation SimStudio est intégré pour sa

simulation. Afin de valider les modèles construits, une approximation du

modèle basé sur le morphisme et une méthode de prévision intégrée à la

causalité de Granger sont proposées. Deux études de cas sont présentées

dans lesquelles le modèle Fuzzy-DEVS est déduit de données réelles. Une

de l’agence néerlandaise d’assurance des employés et une autre du groupe

Rabobank ICT (Technologies de l’information et de la communication).

Les modèles construits et les résultats de simulation sont validés par la

comparaison à d’autres modèles.

8

Mots-clés: Inférence de système, Process Mining (Découverte de Proces-

sus), Fuzzy-DEVS (DEVS Flous), Modélisation et simulation, Validation

de modèle.

9

Table of Content

Prologue 1

General Introduction 2

1 Research Problem 4

1.1 Introduction . 4

1.2 Problem Statement . 4

1.2.1 Challenge of Collecting Data 6

1.2.2 Extension of Model Mining in Process Mining 6

1.2.3 Validation of Mined Model . 7

1.3 Thesis Contribution . 7

1.4 Thesis Outline . 7

2 State of the Art 9

2.1 Introduction . 9

2.2 DEVS Framework . 9

2.2.1 Framework of Modeling and Simulation 10

2.2.2 System Specification Formalisms 12

2.2.2.1 Discrete Event System Specification (DEVS) 13

2.2.2.2 Graphical Notation of DEVS 15

2.2.2.3 Extensions of DEVS and Related Studies 16

2.2.2.4 Fuzzy-DEVS Formalism 17

2.2.3 Levels of System Specification 19

2.2.4 Ontology for Modeling and Simulation 20

2.3 Process Mining . 21

2.3.1 Event Logs . 22

2.3.2 Process Models . 24

2.3.3 Process Discovery Methods 26

2.3.3.1 α Algorithm . 27

i

2.3.3.2 Region-Based Mining 29

2.3.3.3 Heuristic Mining . 29

2.3.3.4 Genetic Mining . 30

2.4 Fuzzy Logic . 30

2.4.1 Fuzzy Sets . 30

2.4.2 Possibility and Probability . 31

2.4.3 Fuzzy Control and Related Works on DEVS 32

2.4.4 Defuzzification Methods and Related Works on DEVS 33

2.4.5 Fuzzy Cluster . 34

2.5 Conclusion . 36

3 Extracting Event Logs and Transition System From Event Data 37

3.1 Introduction . 37

3.2 Background . 37

3.2.1 Definition of Event Data . 38

3.2.2 16 Guidelines of Event Data 39

3.2.3 Toy Case Study . 40

3.3 Five-Steps From Event Data to Event Logs 41

3.3.1 Setting up of Goals . 42

3.3.2 Identification of Relationships 42

3.3.3 Identification of Values . 43

3.3.4 Selection of Process Instance 43

3.3.5 Mapping Between Event Data and Event Logs 44

3.4 From Event Logs to Transition System 46

3.5 Conclusion . 48

4 Mining Fuzzy-DEVS Model From Transition System 49

4.1 Introduction . 49

4.2 From Transition System to Fuzzy-DEVS Model 50

4.2.1 Improved Region-Based Approach 50

4.2.2 Dependency Method with Possibility Measures 56

4.2.3 Adapted Fuzzy Time Controller (AFTC) 58

4.2.4 Applying Fuzzy Cluster for Fuzzy-DEVS Coupled Model . . . 61

4.3 Conclusion . 64

ii

5 Implementation of D2FD Method 65

5.1 Introduction . 65

5.2 Development Environment . 65

5.2.1 Process Mining Framework (ProM) 66

5.2.2 Other Process Mining Tools 67

5.2.3 Simulation Engine SimStudio 68

5.2.4 Other DEVS Simulators . 70

5.3 Application of the D2FD Method . 72

5.3.1 Case Study of Dutch Employee Insurance Agency 73

5.3.2 Convert CSV to XES . 75

5.3.3 Mine Transition System . 78

5.3.4 Convert to Fuzzy-DEVS From TS 80

5.3.5 Integrated SimStudio and Its Simulation Results 82

5.3.6 Case Study of Rabobank Group ICT 84

5.4 Conclusion . 88

6 Validation of D2FD Method 90

6.1 Introduction . 90

6.2 Background . 90

6.2.1 Model Morphism(MoMo) . 91

6.2.2 Verification and Validation of Modeling and Simulation 92

6.2.3 Granger Causality . 95

6.3 Two Proposed Methods for Model Validation 97

6.3.1 Morphism-Based Model Approximation Method 97

6.3.2 Predictive Method Using Granger Causality 98

6.3.3 Case Study Relevant to Two Methods 99

6.3.4 Validation of Case Study of Dutch Employee Insurance Agency 101

6.4 Conclusion . 103

General Conclusion 104

References 109

iii

List of Figures

1.1 Levels of system knowledge and system problems. 5

1.2 General structure of D2FD method. 8

2.1 Framework for modeling and simulation (Zeigler et al., 2000). 10

2.2 Different system specification formalisms. 13

2.3 An example of DEVS graphical notation. 15

2.4 An example of fuzzy time advance. 18

2.5 Basic representation of SES. 21

2.6 General structure of process mining. 22

2.7 Complete meta-model for the XES standard (Günther and Verbeek,

2009). 23

2.8 An example of cluster analysis. 35

3.1 Structure of the event in event data. 38

3.2 The two conceptual structure of the toy case. 43

3.3 General mapping between event data, conceptual structure and XES. 46

3.4 TS model from the start document of the toy case. 47

3.5 TS model from the end document of the toy case. 47

4.1 An example of improved region-based approach. 52

4.2 First toy case from TS to Fuzzy-DEVS atomic model. 54

4.3 Second toy case from TS to Fuzzy-DEVS atomic model. 55

4.4 Two Fuzzy-DEVS atomic models using Dependency Method in the toy

case. 57

4.5 The general structure of AFTC. 59

4.6 Fuzzy-DEVS coupled model in the toy case. 63

4.7 The hypothetical Fuzzy-DEVS atomic model in Figure 4.6. 64

5.1 The UML diagram of Model and Port in SimStudio. 69

5.2 The UML diagram of Simulator Engines in SimStudio. 70

iv

5.3 The screen-shot of Question.csv. 74

5.4 The screen-shot of Werkmap−message.csv. 75

5.5 The conceptual structure of Question.csv. 75

5.6 The conceptual structure of Werkmap−message.csv. 76

5.7 The initial screen of ProM 6. 77

5.8 The plugin screen of Convert CSV to XES on ProM 6. 77

5.9 The screen of the plugin Convert CSV to XES. 78

5.10 The screen of the plugin Transition system miner. 79

5.11 The TS model from Question.csv on ProM 6. 79

5.12 The screen of the plugin Convert to Fuzzy −DEV S using Regions. 80

5.13 Fuzzy-DEVS atomic model generated from Question.csv. 81

5.14 Represented scheme from Figure 5.13. 81

5.15 Fuzzy-DEVS atomic model generated from Werkmap−message.csv. 82

5.16 Part of fuzzy time results from Question.csv by using AFTC. 83

5.17 Part of simulation results fromQuestion.csv andWerkmap−message.csv
by SimStudio. 83

5.18 The conceptual structure of incident activity.csv. 87

5.19 Fuzzy-DEVS atomic model generated from incident activity.csv. . . . 87

5.20 Part of simulation results from incident activity.csv by SimStudio. . 88

6.1 The classification of MoMo. 91

6.2 The structure of the inferring process with verification and validation. 93

6.3 Represented statistical graph from the simulation results in Figure 5.14. 99

6.4 Represented scheme of simulation results by reducing the possibility

from 1 to 0.9995. 100

6.5 Represented scheme of simulation results by setting memory depth as

2 and setting the condition H. 100

6.6 Represented scheme of simulation results by setting memory depth as

4 and setting the condition H. 101

6.7 Compared model from Question.csv. 102

6.8 Compared model from Werkmap−message.csv. 102

v

List of Tables

2.1 Definition of entities and corresponding system specification hierarchy

in Table 2.2 . 11

2.2 System specification hierarchy . 19

2.3 An example of matrix of footprint . 28

3.1 Start document of toy case . 41

3.2 End document of toy case . 41

4.1 Frequency and possibility of first toy case 57

4.2 Frequency and possibility of second toy case 57

4.3 Membership functions of input fuzzy time duration 59

4.4 Membership functions of input fuzzy remaining time 60

4.5 Illustration of rules applied for time selection 60

5.1 Some of the process mining plug-ins in ProM 6.7 66

5.2 Examples of process mining tools . 67

5.3 General comparison of first part of DEVS simulator 72

5.4 General comparison of second part of DEVS simulator 72

5.5 The membership coefficient µĨC with the elapsed time e 84

5.6 The attributes of incident.csv and incident activity.csv. 86

vi

Prologue

This research has been carried out in the research team “Enterprise Modeling and

Engineering” at the IMS laboratory of University of Bordeaux. The thesis presented

in this document fits within the frame of the modeling and simulation of business

processes of enterprises and aims at contributing to enterprise process engineering

and its uses in enterprises.

Since 1970’s, many enterprise modeling techniques have been developed. Among

them, the process modeling language is one of the most used in enterprises to elab-

orate process models. In most of the cases, process models are built top-down by

modeling experts with the help of a methodology through a series of interviews to

collect information. The process mining technique proposed in this thesis is a com-

plementary bottom-up approach to process modeling methodologies. In an enterprise

where process models already exist, applying process mining allows verifying if estab-

lished process models are correctly followed as defined in the models. It also allows

complementing or improving existing processes with additional discovered process

data. In an enterprise where there are no established process models, process mining

technique can be used in a complementary way together with an enterprise modeling

methodology to collect process information in order to build process models.

1

General Introduction

With the development of enterprises, information systems are becoming bigger

and bigger. For example, people and organizations depend more and more on the

information and devices on the Internet. Information systems are also becoming

more and more complex as these systems can consist of multiple and heterogeneous

components and intricate interactions among these components. This leads to a big

explosion of multitudes of data recorded in the information systems. Nevertheless,

most of the data are unstructured and organizations have problems to analyze these

data. One of the big challenges today is to extract valuable information from the data

in the information systems. Data mining (Hand, 2007) provides approaches to make

data understandable and useful to the data users. However, multitude of events are

also recorded in the information systems. Data mining has difficulties to deal with

process-related information. Process mining (Van der Aalst, 2011)(Van der Aalst,

2016), as a relatively young area, provides techniques to extract useful information

from events and improve the business processes. Compared with data mining, process

mining not only has control flow discovery, but also has conformance checking which

animates the business process. Process mining connects classical data analytic like

data mining with Business Process Management(BPM) (Weske, 2012).

BPM is the discipline that combines knowledge from information technology

and knowledge from management sciences and applies this to operational business

processes. In BPM, most of business processes are recorded by events. Organizations

are more and more eager to manage, control and support their business process. One

of the big challenges for organization is improving business process to reduce time

and save resources. By modeling a business process and simulating it, organizations

can make better decisions on this improvement. The model in simulation has a

fundamental role, as it makes the real system to be studied more accessible and

comprehensible. The simulation can be considered as a valid method of inquiring, or

rather a procedure for discovering real system and experimental research (Piu, 2010).

2

The original process of developing models and simulations has three steps. A

conceptual model is designed by a subject matter expert from careful consideration of

a problem and its domain. Then, it is realized via a source code simulation through the

implementation of interfaces, data structures and algorithms. Finally, the output of

the simulation for a set of test cases is validated against historical data or other trusted

sources. As a result, modeling and simulation are based on a set of fundamental

assumptions (Pace, 2000). In the process mining, we do not build models based on

expert assumptions, but often build process models from events. The mined process

model is connected to real system and does not provide an idealized view on the

processes. In order to evaluate the process model whether it is a good reflection

of the real process, we have to deal with four forces. Four forces include fitness,

simplicity, precision and generalization (Van der Aalst, 2011). Fitness refers to the

ability to explain observed behavior. The model should be as simple as possible.

Precision means the model should not allow all kinds of behavior unrelated to the

event data that we have seen. At the same time, the model should not be over-fitting.

Process mining needs to find a balance between these four forces.

After modeling and simulation, the developer or the user of the model, the orga-

nizations often concern about the correctness of this model. This concern is addressed

through model verification and model validation. Model verification is related to the

computer program and the implementation. Model validation considers about the

distance between the accuracy and the intended purpose of the model.

3

Chapter 1

Research Problem

1.1 Introduction

The main objective of the research is to design a method to mine a simulation

model from event data, so that the organization can extract useful process information

from data. During the research, system inference is the main research problem.

Three more problems are found and need to be solved. The collection of data is a big

challenge. It is also necessary to select an appropriate formalism for simulation model

to represent business process. At last, the mined simulation model needs methods for

validation.

1.2 Problem Statement

System Theory (Simon, 1991) provides a fundamental framework to understand

dynamical systems. In such a framework, a system is characterized by its structure

and its behavior. All the knowledge about the system can be organized in a 4-level

hierarchy (Klir, 2013). This hierarchy is depicted in Figure 1.1. It is organized as

follows:

� the source level identifies a portion of the real world we are going to observe

and measure;

� the data level corresponds to the set of measurements made on the system from

its observation;

� the generative level uses formulas or equations to constitute a knowledge;

� the structure level describes the component systems that are interconnected

together to form the entire system.

4

Figure 1.1: Levels of system knowledge and system problems.

The system structure is defined by the top levels of the hierarchy and the system

behavior by the bottom levels. Actually, if we go from the high level to the low level,

we will get less knowledge. Conversely, if we go from the low level to the high level,

we will get more knowledge. Models as the abstract representations use a simplified

and straightforward way to describe the real world. The model in the structure level

can provide more useful information to the organization.

Moving between the levels of system knowledge in Figure 1.1, there are three

different kinds of system problems. They are organized as follows:

� System analysis, we know the system structure (existing or hypothetical) and

we try to generate its data;

� System design, the system does not exist yet and we are investigating the al-

ternative structures for a completely new system;

� System inference, the system exists and we are trying to generate its structure

from known evidence of its behavior. This has been called climbing the hill by

Zeigler (Zeigler et al., 2000). Note that a slight but very significant difference

between system design and system inference is the system existence or not, prior

to the study.

For system analysis, most of researchers are working on developing models. Most

of the models are based on expert assumptions. But the models they build by hand

are disconnected from real system. Sometimes these models are not precise. For

system design, there are more than one way to design a model. It is not easy to

design a model which satisfies the organizations. System inference starts from the

data level to the structure level. Some criteria are justified in the data level. These

conditions make unique solutions of generating models. System inference is identified

5

as big challenge in the modeling and simulation. It is recognized as the main problem

in this thesis.

Process mining (Van der Aalst, 2011)(Van der Aalst, 2016) provides techniques

to infer from knowledge given at data level, corresponding knowledge at the structure

level. The idea of process mining is to discover, monitor and improve real processes

by extracting knowledge from event logs readily available in real systems. In the

process mining, process discovery takes the event logs to produce a process model.

While making a process model, the model user is trying to view a process. Moreover,

the discovered process model can be used for animation and specification. Process

discovery can provide potential solutions for system inference, but there are three

problems which need to be handled.

1.2.1 Challenge of Collecting Data

In the process mining, only proper event logs are accepted to construct process

models. There is a big gap between event logs and event data. The challenge is not

the syntactical conversion but to extract event logs from a variety of data sources

for example internet of events, a database system, a comma-separated values (CSV)

file, a transaction log, an enterprise resource planning (ERP) system, a message log.

First, the challenge requires event correlation. The underlying relationship needs to

be explored so that events are related to each other. Second, the process instance

needs to be identified. In a document-based business process, the process instance to

be selected is related to at least one document. Third, the scoping of event data is a

problem. Enterprise or organizations can make thousands of tables which contain a lot

of business information. It is more efficient to locate on the required and interesting

data.

1.2.2 Extension of Model Mining in Process Mining

In the process mining, Petri Net (Petri and Reisig, 2008) is often identified as the

resulting process models. Apart from Petri Net, there are also other different kinds

of process models. However, most of these process models do not consider about

time. Time is identified as one of extensions in the process mining. In addition, there

is a lack of modularity, making the design of hierarchical models difficult to realize.

Therefore, process mining shows limitations in inferring complex systems.

6

1.2.3 Validation of Mined Model

Fuzzy-DEVS model needs to be validated by the people and the organizations.

However, the discovered Fuzzy-DEVS model can get only one simulation result, and

this result is not always validated based on different enterprise requirements. There

is a technological barrier which makes people or enterprises unable to get information

through computer. The reason may be the use of different method and techniques to

represent information. It is necessary to propose some new integrated approaches for

the validation of Fuzzy-DEVS models.

1.3 Thesis Contribution

In this thesis, we propose an integrative method from event data to Fuzzy-DEVS

model (D2FD). DEVS is selected as the simulation model. Moreover, we choose

Fuzzy-DEVS to express the imprecision from event data. The general structure of

D2FD method is shown in Figure 1.2. This method deals with system inference. The

event data comes from the data level and Fuzzy-DEVS model locates on the structure

level in Figure 1.1. D2FD method considers about frequency and time, and deals with

modularity problem. On the one hand, the frequency and the time information are

considered and extracted from event data. On the another hand, the modularity

is observed by conceptual structure of event data. The validation approaches make

the model compatible for the people and the organization. The mined Fuzzy-DEVS

model and its simulation results can help to improve business process and make better

decisions.

1.4 Thesis Outline

Chapter 2 gives state of the art including DEVS framework, process mining and

fuzzy logic. DEVS graphical notations and Fuzzy-DEVS formalism are explained

in the DEVS framework. Event logs, process models and Two Phase Approach are

explained in the process mining. Fuzzy cluster is explained in the fuzzy logic. The

following chapters are presented from top to bottom in Figure 1.2. From event data to

event log, chapter 3 introduces a five-steps method represented in the first red block.

The definitions of event data are discussed at first. This five-steps method includes

setting up goals, identification of relationships, identification of values, selection of

process instance and general mapping. The first part of Two Phase Approach in

process mining is generally presented at the end of chapter 3 represented in the

7

Figure 1.2: General structure of D2FD method.

second red block. Chapter 4 explains the main part of D2FD method represented in

the third red block. An improved region-based approach, dependency method and

AFTC are proposed for the discovery of Fuzzy-DEVS atomic model. Fuzzy cluster is

proposed for the construction of Fuzzy-DEVS coupled model. The implementation of

D2FD method and two case studies are presented in chapter 5. The process mining

tool ProM is the implementation environment. The simulation tool SimStudio is

integrated for its simulation represented in the fourth red block. In chapter 6, two

validation approaches, morphism-based model approximation and predictive method

using Granger causality are proposed. The case study used in chapter 5 evaluates

these two methods. The results of this case study are validated by comparing with

other models. At last, chapter 6 concludes this thesis. The limitation of D2FD

method and perspectives are discussed. The publications are listed.

8

Chapter 2

State of the Art

2.1 Introduction

The main objective of this thesis is to discover a Fuzzy-DEVS model from event

data. This research is involved in the fields of DEVS framework, process mining

and fuzzy logic. Section 2.2 gives the background of framework of modeling and

simulation, system formalisms and system specification to describe dynamic systems.

Ontology extends the knowledge base of modeling and simulation. The conceptual

structure inherited from System Entity Structure (SES) is used for D2FD method.

In section 2.3, event logs are the starting point. Process mining provides different

methods to discover different process models from event logs. In section 2.4, the

basic concept of fuzzy logic is fuzzy sets. Fuzzy sets as a controller can be applied in

the Fuzzy-DEVS. Fuzzy control as one of the main methods combines fuzzification

methods and defuzzification methods. Fuzzy cluster as one part of cluster analysis is

introduced at the end of section 2.4.

2.2 DEVS Framework

The theory of modeling and simulation has been proposed by Bernard P. Zeigler

in the 1970s (Zeigler et al., 2000). This theory provides a general framework with

several theoretical foundations. There are two main parts of these foundations:

� System specification formalisms: define the types of system models which are

either continuous or discrete. These formalisms are defined by a set of concepts

and principles.

� Levels of system specification: provide the levels which describe the behaviors

and the mechanism of system. These levels correspond to the levels of system

9

knowledge in Figure 1.1.

DEVS is one of the system specification formalisms. DEVS model can be identi-

fied as moore model which its output depends on the state (Wagner, 2005). We first

give the framework of modeling and simulation with some essential concepts. Then we

present DEVS and some related studies. According to different extensions of DEVS,

we focus on Fuzzy-DEVS. The levels of system specification which corresponds to

DEVS are explained later. Ontology of modeling and simulation is discussed in the

end.

2.2.1 Framework of Modeling and Simulation

Bernard P. Zeigler (Zeigler et al., 2000) proposed a framework for modeling

and simulation as shown in Figure 2.1. This framework provides some basic con-

cepts which consists of entities and their relationships. It makes everyone understand

more about modeling and simulation. The entities include source system, behavior

databases, experimental frame, model and simulator.

Figure 2.1: Framework for modeling and simulation (Zeigler et al., 2000).

In Table 2.1, source system and behavior database are related to the source level

and data level in the levels of system knowledge respectively. In particular, behavior

database is collected from source system in real system and specified under the experi-

mental frame. The experimental frame not only defines the type of data elements that

will go into database, but also extracts interesting data by interacting with interesting

system. For example, the frame with interesting data can be classified by generator

which generates input segments to system, acceptor which monitors the experiments

and makes evaluations, and transducer which make analysis on output segments of

10

Table 2.1: Definition of entities and corresponding system specification hierarchy in
Table 2.2

Basic entity Definition
Corresponding system
specification hierarchy

Source system Data in real system or human made Level 0
Behavior
database

Data collected from source system Level 1

Experimental
frame

The specification of observed and exper-
imental system

Levels 3 and 4

Model
Instructions for generating and repre-
senting data

Levels 3 and 4

Simulator
The computational tool to generate the
behavior of the model

Levels 4

the system (Zeigler and Sarjoughian, 2003). Inside the experimental frame, experi-

mental base defines a set of all possible experiments which can be carried out from the

real system, experimental condition defines a set of conditions corresponding to one

specific experiment, and experimental control defines experiment parameters which

only affect the execution of model computations in a simulation (Elzas, 1984).

There are many ways to define a model. A model can be designed from science,

technology and mathematics. In mathematical logic, a model defines a set which

has a collection of axioms and the operations and relations between them (Bender,

2012). In terms of system specification, a model specifies a real system. Model as

the representation of a real phenomenon provides a clear semantic that everyone

can understand. Base model is the closest to real system which accounts for all the

input/output behavior of the real system (Elzas, 1984). In Figure 2.1, the modeling

relation defines which part of system is related to model. Correspondingly, the model

can be distinguished between behavioral model and structural model. The behavioral

model can be described by a triple (Willems, 1989):

Σ = (T,W,B) (2.1)

Where T is the set of time over which the system evolves. W is the signal space in

which the variables whose evolution in time take on their value. B ⊆ W T is behavior

which is the set of signals that are compatible with the laws which govern the system

(W T represents the set of all signals.). The main object in the behavioral model is

the behavior which is the set of all signals compatible with the system and there is

no difference between input and output variables.

11

The behavior model as the basic component can be coupled together to form a

high-level specification model - structural model. An important concept of structure

is decomposition which means that a system can be split into component systems at

a lower level. Conversely, the concept of composition defines the components systems

which are coupled together to form the entire system. These concepts are based on

“closed under composition” (Zeigler et al., 1999), which gives the mathematical proof

of the equivalence of behavioral and structural models. For every coupled model, an

equivalent atomic model (component) can be constructed.

A simulation model consists of a set of instructions, rules, equations or con-

straints. A simulator is a system calculator which follows the relevance of instruc-

tions to execute a model and produce behaviors. It probably can be a computer,

a network or abstractly a logic processor, an algorithm. The simulator focuses on

the simulation of structural models. The simulation relation is related to simulation

correctness which guaranties that a simulator correctly simulates the model. The

validity of models, systems and experimental frame defines the degree on which a

model faithfully represent its system.

2.2.2 System Specification Formalisms

A system is characterized by its structure and its behavior. The external behav-

ior consists of the input time segment and the output time segment. The internal

structure consists of state and state transition as well as the mapping between state

and output. According to hierarchical system composition, the component systems

are coupled together to form the larger ones. The coupling provides a binding from

output port to input port. There are three advantages of coupling feature:

1. It can be developed and tested as a stand-alone unit.

2. It can be stored in a model repository and reactivated when needed.

3. It can be reused in any applications when it has appropriate behavior.

Models can be represented by a variety of formalisms. Based on mathematical

concepts and properties, there are two dimensions of formal model which are space

and time (Oren, 1987). The space defines that the variables can take finite or infinite

values. It can be distinguished between continuous and discrete. The continuous

variable of model takes the real values. The discrete variable of model has finite

set of values. Time can also be distinguished between continuous and discrete. The

continuous time of model describes the time with real values. The discrete time of

12

model defines the time is temporal and the set of values is finite. By combining the

classification of space and time, we can get four kinds of formalisms as shown in

Figure 2.2 (Zacharewicz, 2006).

Figure 2.2: Different system specification formalisms.

� DESS (Differential Equation System Specification): has continuous time and

continuous states. The differential equation defines the change of the state.

� DTSS (Discrete Time System Specification): has discrete time and continuous

states. The change of the state is based on difference equation.

� DEVS (Discrete Event System Specification): has discrete states and continuous

time. The change of the state depends on the event and each event can occur

at any time.

� Finite state machine: has discrete states and time. It is also called synchronous

finite state machine.

2.2.2.1 Discrete Event System Specification (DEVS)

The DEVS formalism for modeling and simulation is based on discrete events,

and provides a framework with mathematical concepts based on the set theory and

the system theory concepts to describe the structure and the behavior of the system

(Zeigler et al., 2000). It provides a universal way to represent dynamic systems

regardless of the application area.

The two main formalisms are the Classical DEVS (CDEVS) and the Parallel

DEVS (PDEVS). Most of extensions are based on one of these two. A real system

modeled by CDEVS is described as a number of connected behavioral (atomic) and

structural (coupled) components (Zeigler et al., 2000). An atomic model D in CDEVS

is defined as follows:

13

D =< X, Y, S, δint, δext, λ, ta > (2.2)

Where X is the set of input values; S is the set of states; Y is the set of output

values; δint is the internal transition function; δext is the external transition function;

λ is the output function; ta is the duration function. Each atomic model has the

duration specified by ta(s) where s is the current state. When the elapsed time

e = ta(s), the state duration expires and the atomic model will send the output λ(s)

and performs an internal transition to a new state specified by δint(s). However, state

transition can also happen due to arrival of an external event which will place the

model into a new state specified by δext(s, e, x) where x is the input value. The time

advance function ta(s) can take any real value from 0 to ∞. A state with ta(s) value

of 0 is called transient state, and on the other hand, if ta(s) is equal to ∞ the state

is said to be passive, in which the system will remain in this state until receiving an

external event.

A coupled model N in CDEVS is defined as follows:

N =< X, Y,D,EIC,EOC, IC, select > (2.3)

Where both X and Y respectively define the sets of input and output events. D

is a set of indices for the components. The external input coupling EIC specifies the

connections between external and component inputs, while the external output cou-

pling EOC describes the connections between component and external outputs. The

connections between the components themselves are defined by the internal coupling

IC. The tie-breaking function select is used to solve collisions between multiple com-

ponents. When two or more components execute their internal transition at the same

time, this function makes one selection from them. The coupling and transformation

between separating atomic models make it possible to construct a more complicated

hierarchical model.

PDEVS was presented in (Chow and Zeigler, 1994) to better support for paral-

lellism. Compared with CDEVS atomic model, a new function confluent transition

function δconf is added in PDEVS. This function is used to solve collisions between

δint and δext. The collisions happen when an external event comes and an internal

transition is triggered at the same time. Compared with CDEVS coupled model, the

select function is deleted in PDEVS. The models are executed in parallel instead of

sequential.

14

Figure 2.3: An example of DEVS graphical notation.

The formal properties of DEVS formalism not only has closure under composi-

tion, but also has universality and uniqueness (Zeigler and Sarjoughian, 2013). Uni-

versality means that DEVS is able to generate all kinds of discrete event behaviors.

Uniqueness means that DEVS can represent their canonical internal structures iso-

morphically.

2.2.2.2 Graphical Notation of DEVS

Song et al. (Song and Kim, 1994) propose a graphical notation to represent the

DEVS atomic model. The DEVS atomic model is represented by a box with input

and output ports. These ports are the entrances and exits of messages. The messages

which come from the entrance are the input events on X and the messages from the

exit are the output events on Y . An input event p?m means that a message m is

coming from the input port p. Similarly, an output event p!m means that a message

m is going to the output port p. This output event p!m also represents the output

function λ(s). Each state variable in the state set S of DEVS is inside the graphical

box and each one has an unique name. The behavior of the DEVS atomic model

is represented by an activity or a state transition diagram. This diagram consists of

nodes and two kinds of arc. The nodes represent the activity or the state. The dotted

arc denotes the internal transition and the solid arc denotes the external transition.

Figure 2.3 shows an example of an DEVS atomic model. The model is represented

by a box with two ports Pin and Pout. There are three states S1, S2 and S3 represented

by nodes. The dotted arc represents an internal transition δint(S1) = S2 and a

corresponding output function λ(S1) = Pout!m1. After the time of the state S1 is

finished, the output event Pout!m1 goes to the port Pout and the state changes to S2.

The solid arc represents an external transition δext(S2, Pin?m2) = S3. The time of the

state of S2 is infinite. When the input event Pin?m2 comes from the port Pin, the

external transition δext is executed and the state changes to S3.

15

2.2.2.3 Extensions of DEVS and Related Studies

The extensions of DEVS are established based on different conditions when ap-

plying DEVS formalism. DEVS can be extended to Dynamic Structure DEVS and

Generalized-DEVS. In spite of Fuzzy-DEVS, DEVS can be extended to Cell DEVS,

Real Time DEVS, Min-Max DEVS, Symbolic DEVS, Stochastic DEVS and Fuzzy-

DEVS.

Dynamic Structure DEVS (DSDEVS)(Barros, 1995) proposes to use a network

executive in each coupled model to solve dynamical problems. This network executive

can collect all the messages in the system and then initiate a restructuring. How-

ever, without network executive, models cannot change themselves. DSDEVS can be

distinguished between DynDEVS (Uhrmacher, 2001) and DSDE (Barros, 1997). In

DynDEVS, every model can change itself and its structure even if it is not mentioned

to network executive. DSDE integrates PDEVS with DSDEVS and it is implemented

in VLE (explained in section 5.2.4).

Generalized-DEVS (G-DEVS) defines abstractions of signals with piecewise poly-

nomial trajectories (Giambiasi et al., 2001). G-DEVS together with HLA (High Level

Architecture) is able to present a distributed Workflow Reference Model (Zacharewicz

et al., 2008).

Cell DEVS (Wainer and Giambiasi, 2001) integrates DEVS with Cellular Au-

tomata. Cellular Automata divides the model into cells as well as the time. A time

delay is required for Cell DEVS. The downside is that the time becomes discrete

which increases the granularity of the simulation. Cell DEVS is mainly interesting in

the natural science and social network (Bouanan et al., 2014).

Real Time DEVS (Cho and Kim, 1998) proposes a real-time, interactive simula-

tion method for discrete event models. This method is working on an object-oriented

environment. The relation of activity in which the activity is scheduled for execution

can be used for real time simulation (Hu, 2004).

Min-Max DEVS (Hamri et al., 2006) proposes to use interval to represent a

possible value for the actual delay in DEVS which is also called min-max delay. This

method is used for internal transition and external transition in DEVS. Fuzzy-DEVS

for the transitions between states takes uncertainty into account and Min-Max DEVS

for the lifetime of the state considers about imprecision (Bisgambiglia, 2008).

Symbolic DEVS (Lee and Chi, 2005) proposes to observe the time information

from the symbolic for example traffic signal control variables and traffic information.

The simulation is based on real-time.

16

Stochastic DEVS (Castro et al., 2008) proposes to apply probability on the in-

ternal transition and external transition of DEVS. Since Fuzzy-DEVS is related to

possibility, the comparison between possibility and probability is shown in section

2.4.2.

2.2.2.4 Fuzzy-DEVS Formalism

The formalism of Fuzzy-DEVS (Kwon et al., 1996) applies fuzzy set theory on the

original DEVS formalism which is explained in section 2.2.2.1. Since four functions of

the original DEVS formalism are defined on crisp sets, Fuzzy-DEVS generalizes the

four functions on fuzzy sets. The DEVS model can be distinguished by DEVS atomic

model and DEVS coupled model. The four functions are all in the DEVS atomic

model for example, internal transition, external transition, output function and time

advance function. A fuzzy atomic model D̃ is specified as follow:

D̃ =< X, Y, S, δ̃int, δ̃ext, λ̃, t̃a > (2.4)

Where

� X: the set of input values.

� Y : the set of output values.

� S: the set of states.

� δ̃int: S × S → [0, 1], fuzzy internal transition function.

� δ̃ext: Q×X × S × S → [0, 1], fuzzy external transition function, Q = {(s, e) | s
∈ S, 0 ≤ e ≤ ta(s)} where ta(s) is the defuzzified value of t̃a.

� λ̃: S × Y → [0, 1], fuzzy output function.

� t̃a: S × Ã→ [0, 1], fuzzy time advance function. Ã is the set of fuzzy linguistic

numbers.

Here, the DEVS concepts of internal transition, external transition, output func-

tion and time advance function, are integrated with fuzzy set logic. Fuzzy set logic

is introduced in section 2.4.1. Fuzzy internal transition and fuzzy external transition

provide state transitions with fuzzy relation which represents the possibility of each

state transition. δ̃int(st, st+1) has a membership function on S×S which is between 0

and 1. When the elapsed time reaches to the defuuzified value ta(st), this membership

17

Figure 2.4: An example of fuzzy time advance.

function gives the possibility of the transition from the present state st to the next

state st+1. Respectively, δ̃int(st, xt, st+1) has a membership function on Q×X×S×S
which is between 0 and 1. When the input event xt comes and the elapsed time e is

smaller than ta(st) (in another words, the input event applies before the time advance

of the state st), this membership function gives the possibility of the transition from

the present state st to the next state st+1. Fuzzy output function also provides the

output function with fuzzy relation to represent possibilities of output event. Accord-

ing to the fuzzy internal transition, fuzzy output function has a membership function

on S×Y which is between 0 and 1. When the elapsed time reaches to ta(st), λ̃(st, yt)

has a possibility of the output event yt from the state st. λ̃(st, yt) is the grade that

the output event yt goes to the corresponding port in the Fuzzy-DEVS atomic model.

Fuzzy time advance function is extended to a fuzzy set Ã which represents fuzzy

linguistic numbers. These fuzzy linguistic numbers may be such as “small” and

“big”. The fuzzy time advance functions has a membership function on S × Ã which

is between 0 and 1. t̃a(s, ã) represents the possibility of the tima advance value of

the state s associated with the linguistic numbers ã. For example, if ã = “small”,

t̃a(s, ã) = 0.3. If ã = “big”, t̃a(s, ã) = 0.7. As a result, the state can have more than

one time advance value with an appropriate possibility. The time advance function

of the state can not be decided precisely which is also called uncertainty. When the

actual time advance value is needed for simulation , the defuzzification methods can

be used to transform the fuzzy time advance values into crisp values. The methods of

defuzzification are discussed in section 2.4.4. These crisp values can be fuzzed again to

be submitted to customers. Figure 2.4 shows an example of fuzzy time advance. The

fuzzy numbers “ZE”, “S”, “B” represent the linguistic terms “near zero”, “small”,

“big”. The time advance value t1 in Figure 2.4(a) has a fuzzy time value of “small”

with the possibility of 0.8 and “big” with the possibility of 0.4. In Figure 2.4(b), if the

18

current state has a fuzzy time value of “near zero” with the possibility of 0.8, “small”

with the possibility of 0.4 and “big” with the possibility of 0.2, we can get a crisp

time value t2 using defuzzification method. The defuzzification method is centroid

method which calculates all the gray part of Figure 2.4(b).

The second form of Fuzzy-DEVS model is Fuzzy-DEVS coupled model. The

coupled model connects all the atomic model together to form the entire system

model. The formalism of Fuzzy-DEVS coupled model is the same as DEVS coupled

model in section 2.2.2.1.

2.2.3 Levels of System Specification

Table 2.2: System specification hierarchy

Level Specification name
Corresponding
level of knowledge

What we know at this level

0 Observation frame Source system

How to stimulate the system
with inputs; what variable to
measure and how to observe
them over a time base.

1 I/O behavior Data system
Time-indexed data collected
from a source system; consists
of input/output pairs.

2 I/O function
Given an initial state, every in-
put stimulus produces a unique
output.

3 State transition Generative system

Given a state and an input,
what is the state after the input
stimulus is over; what output
event is generated by a state.

4 Coupled component Structure system

Components are coupled to-
gether. The components can
be specified at lower levels or
can even be structure systems
themselves.

The 4-level hierarchy in Figure 1.1 proposed by Klir describes the levels of system

knowledge. Meanwhile, B.P. Zeigler (Zeigler et al., 2000) proposed the hierarchy of

system specification as shown in Table 2.2. Source system is observed from real world

in level 0. Then the inputs and outputs are extracted in level 1. The initial state is

necessary in level 2 so the system is not only decided by inputs and outputs but also

19

by initial state. This level aims to generate a conceptual model implemented on a

computer that it is able to return to the initial state (Zacharewicz, 2006). Then state

transition mechanisms are described at level 3 and coupling feature at level 4. The

main difference between these two hierarchies is the simulation context in which the

hierarchy of system specification can describe how the system behave over time. The

hierarchy of specification in Table 2.2 corresponds to DEVS framework. For example,

level 1 specifies the inputs and outputs of DEVS. Level 2 and 3 specify the states of

DEVS.

2.2.4 Ontology for Modeling and Simulation

Modeling and simulation, regarding its philosophy computational and concep-

tual aspects, is used as a tool to solve technical or managerial problems. There are

three important concepts for modeling and simulation: ontology, epistemology and

teleology (Tolk, 2012). Ontology is a branch of metaphysics handling the nature of

being. Methodological ontologies capture the knowledge of paradigms and methods.

Referential ontologies can ensure to use the same terminology and relations when

addressing problems. In the modeling and simulation, the methodological ontology

refers to “how to model” and the referential ontology refers to “what to model”

(Michiardi and Molva, 2002). The ontology of intelligent modeling and simulation

applications is important because the two generated models from experts can be mis-

aligned on the conceptual level. This misalignment can be caused by difference in

resolution scope and structure or cultural and organizational biases. Epistemology

provides the constraints on both methodological and referential ontology of modeling

and simulation. It is able to identify the parts which are not appropriate due to the

limitations of accessible tools and methods. Teleology is related to the validation

that models not only represent knowledge but also gain knowledge. The beautiful

ontology is anticipated in which the examples of ontologies are considered by their

authors in different arguments as beautiful (D’Aquin and Gangemi, 2011).

DEVS has the modularity which is able to construct hierarchical system models.

Applied to ontology engineering, modularity is central not only to reducing the com-

plexity of understanding ontologies but also to maintaining, querying and reasoning

over modules (Kutz and Hois, 2012).

The System Entity Structure (SES) (Zeigler and Hammonds, 2007) approach

defines an ontological framework to represent modeling and simulation knowledge in

a hierarchical manner. Figure 2.5 shows the basic elements of the SES. Entities rep-

resent things that exist in the real world. They can be assigned with variables, which

20

Figure 2.5: Basic representation of SES.

provide values within given ranges and types. Aspects represent ways of decomposing

entities into more detailed parts. Multi-aspects are aspects for which the components

are all of one kind. Specializations represent categories in specific forms that an entity

can assume.

2.3 Process Mining

BPM (Weske, 2012) is widely used as a structured approach toward the goal of

improving agility and operational performance. To better understand BPM, we con-

sider Business Process Lifecycle which consists of design and analysis, configuration,

enactment and evaluation. One of the phases is the evaluation which uses information

available to evaluate and improve business process models and their implementations.

However, most of organizations and researchers analyze and build models based on

expert assumption rather than quantified collected fact. Most of information is not

observed from real system to support evaluation phase and trigger the lifecycle.

Process mining (Van der Aalst, 2011) provides the methods to discover, mon-

itor and improve actual processes by extracting knowledge from event logs readily

available in real systems. There are three techniques in process mining as shown in

Figure 2.6:

� Discovery: is used to extract an event log with using recorded historical infor-

mation to produce a model.

� Conformance: is used to check if the event logs from reality conform to the

process model.

21

Figure 2.6: General structure of process mining.

� Enhancement: uses information of event logs about the actual process to extend

or improve an existing process model.

According to the objective of the thesis, we focus on the process discovery. First,

we give an introduction of event logs in section 2.3.1. In section 2.3.2, we present

some of process models which are used in the process mining. Four main process

discovery methods are introduced in section 2.3.3.

2.3.1 Event Logs

The event logs are based on the XES standard (Günther and Verbeek, 2009).

Figure 2.7 shows a complete meta-model of the XES standard using UML (Unified

Modeling Language) class diagram. An XES document (i.e., XML file) contains one

log which is related to one specific process. A log can contain any number of traces.

Each trace describes a sequential list of events corresponding to a particular case.

Events present the atomic granules of activity observed from operational process.

The log, its traces, and its events may have any number of attributes. Attributes

are defined by the type of data value they represent for example string, date, int,

float, boolean, ID, list and container. Attributes can be distinguished by nested

attributes and global attributes. Nested attributes can provide maximum flexibility.

For example attributes can have child attributes when using lists or containers. Global

attributes are the attributes which are available and properly defined for all the

elements on their respective level all over the document. Besides, the event classifier

which is composed of attributes is used as an identity to compare between events.

It is mandatory in the XES standard and needs to be defined at first. An extension

22

Figure 2.7: Complete meta-model for the XES standard (Günther and Verbeek, 2009).

defines a set of attributes for a specific perspective. The extensions aggregate the

log. The concept extension defines an attribute which stores commonly understood

names of type elements. Similarly, the time extension stores the time information.

The concept extension and time extension are mostly used in this thesis. In addition,

there are lifecycle extension (i.e. a lifecycle transition in a model), organizational

extension (i.e. events based on human or organizations), semantic extension (events

or other elements of the XES type may refer to different concepts), ID extension (i.e.

23

unique identifiers of elements) and cost extension (i.e. cost information associated

with activity). Section 3.3.5 shows an example of XES file.

2.3.2 Process Models

Petri nets (Petri and Reisig, 2008) is mostly used as the resulting process model

in the process mining. Petri Nets is one of several mathematical modeling languages

for the description of distributed systems. A Petri net is a bipartite graph consisting

of place and transition. Arc is used to connect between place and transition. The

network structure is static and token flows through the network. Despite the four

parameters, the state of a Petri net is determined by the distribution of tokens and

is referred as marking. Enabling and firing are the main operating rules. One of the

recent studies is using process mining techniques to analyze the career of students

and construct Petri Nets models (Cameranesi et al., 2017).

Comparing with DEVS, Petri Nets can be embedded into DEVS because a DEVS

model can represent any discrete event behavior (Koč́ı and Janoušek, 2009). Jacques

and Wainer (Jacques and Wainer, 2002) propose an approach of mapping of the Petri

Net modeling formalism into the DEVS modeling formalism. This approach is imple-

mented based on the simulation tool CD++ (explained in section 5.2.4). Bazoun et al.

(Bazoun et al., 2014) define a transformation approach of BPMN models into DEVS

simulation models based on the meta-model approach and describe the enrichment of

obtained DEVS models through performance indicators. This approach includes an

exhaustive mapping, the transformation architecture and an implementation in the

modeling and simulation tool SLMToolBox.

Transition System (TS) is identified as the most basic process modeling notation.

The concept of TS (Keller, 1976) is discussed in 1976. A formal definition of a TS is

a pair (S, �) where S is a set of states and �is a binary relation on S, called the set

of transitions. A named TS is a triple (S, �, Σ) where (S, �) is a TS and each TS

is assigned one or more names in the set Σ.

A visualized TS (Van der Aalst, 2011) is a triplet TS = (S,A, T) where S is the

set of states, A is the set of activities, and T ⊆ S × A × S is the set of transitions.

The states are represented by black circles. There are one initial state Sstart and one

final state Send. In this thesis, we only consider about Finite-State Machine (FSM)

where the state space is finite. Each state has a unique label. This label is merely an

identifier and has no meaning. Transitions are represented by arcs. Each transition

connects two states and is labeled with the name of an activity. Multiple arcs can

bear the same label.

24

Given a TS, one can reason about its behavior. The transition starts in one of the

initial states. Any path in the graph starting in such a state corresponds to a possible

execution sequence. A path terminates successfully if it ends in one of the final states.

A path deadlocks if it reaches a non-final state without any outgoing transition. The

TS may live-lock if some transitions are still enabled but it is impossible to reach one

of the final states. An example of TS is shown in section 3.4.

WorkFlow nets (WF-nets) (Van der Aalst, 1998) is developed as a subclass of

Petri nets. The difference between them is that there are a dedicated source place

as input and a dedicated sink place as output. WF-nets is able to describe the start

and the end of an business process instance so it is appropriate for business process

modeling. Moreover, if we enrich WF-nets with notations, we can get a YAWL (Yet

Another Workflow Language) (Ter Hofstede et al., 2009). The purpose of YAWL

language is to have a simple language using various descriptive patterns.

A more advanced language is Business Process Modeling Notation (BPMN)1

which is widely used in the business process modeling. The latest version is 2.0.

There are start event and end event. The atomic activity is represented by task.

The split and join routes between tasks can be represented by gateways. There are

different types of gateways: AND, XOR, OR. The pool and lane can provide more

information about organization and actors.

Event-driven Process Chains (EPCs) (Scheer, 1998) is another business process

modeling which uses classical notations to describe models. The EPCs is one of the

first language which allows for OR split and joins in the notations and the notations

of EPCs are the subsets of BPMN and YAWL.

Causal nets is proposed to provide causal dependencies in the process mining

(Van der Aalst et al., 2011). The causal dependencies are defined as a relationship

between two activities where one is triggering or enabling the other one. In the

graphical representation, the nodes represent activities and the arcs represent causal

dependencies. The arcs can also be annotated with numbers which represent frequen-

cies. Each node can have a set of possible input bindings and a set of possible output

bindings. Obligation is defined like token in Petri nets which starts with start activ-

ity and ends with end activity. Input binding removes obligation and output binding

generates obligation. Valid binding sequences are conducted by the obligation. A

Causal net is a tuple C = (A, ai, ao, D, I, O) where:

� A ⊆ A is a finite set of activities.

1https://www.omg.org/spec/BPMN/2.0/About-BPMN/

25

� ai ∈ A is the start activity.

� ao ∈ A is the end activity.

� D ⊆ A× A is the dependency relation.

� P(A) = {A′|A′ ⊆ A} is the power-set of A.

� AS = {X ⊆ P(A)|X = {∅} ∨∅ /∈ X} is sets of sets of activities.

� I ∈ A→ AS defines the set of possible input bindings each activity.

� O ∈ A→ AS defines the set of possible output bindings each activity.

Causal nets is recognized as the output of the heuristic mining in section 2.3.3.3.

It fits well with the above process modeling languages. It is able to model XOR, AND

and OR without adding more modeling elements.

Process instance model (Diamantini et al., 2016), in the form of instance graph,

can be applied in the perspective of organization to generate highly variable process

instances. This model focuses on the analysis of individual process instances. Causal

relations need to be defined and inferred from the log in order to build instance

models.

2.3.3 Process Discovery Methods

In this section, we introduce four of the most relevant process discovery tech-

niques. Every technique in the process mining has its advantage but noise and in-

completeness problems always exist. Each method has an independent representation

which best explains the observed event data. α-algorithm is one of the first algorithm

which is able to discover concurrency. Two Phase Approach is selected to be used in

the D2FD method. The first part of transforming from event logs to TS is discussed

in section 3.4. And another part of transforming from TS to Petri Nets is discussed

in section 2.3.3.2. Heuristic mining has two stages which first learns a dependency

graph and then extends to a Causal nets. Genetic process mining is integrated with

genetic algorithm which uses evolution to optimize models. Fuzzy mining adaptively

simplifies the discovered process models (Günther and Van der Aalst, 2007). The

infrequent Inductive Miner (iIM) sets a noise threshold to control filtering in order to

get a simpler model. (Cameranesi et al., 2017).

26

2.3.3.1 α Algorithm

α algorithm (Van der Aalst et al., 2004) provides a basic process discovery ap-

proach. The idea of α algorithm is to discover models from event logs which can have

loops and parallel parts while guaranteeing certain properties. The inputs of this

algorithm focus on the control flow and they ignore the actual timestamps at which

the events happen, resources and other data elements. As a result, an event log is

converted to a multiset of traces and each trace is a sequence of activity names. The

same trace may appear several times. For example, we have an event log L which

contains six traces. L = [(a, b, c, d)3, (a, c, b, d)2, (a, e, d)]. The sequence (a, b, c, d)

was executed three times and the sequence (a, c, b, d) was executed two times. The

starting point of α algorithm are ordering relations. The relations are defined as

follows:

� Direct relation x > y: there was at least one case where x is directly followed

by y.

� Causality x→ y: x is followed by y but y is never followed by x.

� Parallel x||y: x is sometimes followed by y and y is sometimes followed x.

� Choice x#y: x is never directly followed by y and y is never directly followed

by x.

These relations are used to discover patterns in the process. The patterns are

explained as follows:

� sequence pattern: a→ b

� XOR-split pattern: a→ b, a→ c, and b#c

� XOR-join pattern: b→ d, c→ d and b#c

� AND-split pattern: a→ b, a→ c, and b||c

� AND-join pattern: b→ d, c→ d and b||c

In more detail, it is able to construct a matrix of footprint. Every cell of the

matrix has one of these four relationships, i.e. causality in one direction→, causality

in another direction ←, parallel || and choice #. According to the event log L1,

Table 2.3 shows an example of footprint.

27

Table 2.3: An example of matrix of footprint

a b c d e

a #L →L →L #L →L

b ←L #L ||L →L #L

c ←L ||L #L →L #L

d #L ←L ←L #L ←L

e ←L #L #L →L #L

Once we get the footprint, α algorithm follows eight lines to construct a Petri

net (Van der Aalst et al., 2004). Let L be an event log over T . α(L) is defined as

follows:

1. TL = {t ∈ T |∃σ∈Lt ∈ σ}, each activity corresponds to a transition.

2. TI = {t ∈ T |∃σ∈Lt = first(σ)}, first elements of each trace corresponds to start

activity.

3. TO = {t ∈ T |∃σ∈Lt = last(σ)}, elements that appear last in a trace corresponds

to end activity.

4. XL = {(A,B)|A ⊆ TL ∧ A 6= ∅ ∧ B ⊆ TL ∧ B 6= ∅ ∧ ∀a∈A∀b∈Ba →L b ∧
∀a1,a2∈Aa1#La2 ∧ ∀b1,b2∈Bb1#Lb2}, calculate pairs (A,B).

5. YL = {(A,B) ∈ XL|∀(A′,B′)∈XL
A ⊆ A′ ∧ B ⊆ B′ ⇒ (A,B) = (A′, B′)}, delete

non-maximal pairs (A,B).

6. PL = {p(A,B)|(A,B) ∈ YL}∪{iL, OL}, determine places p(A,B) from pairs (A,B).

7. FL = {(a, p(A,B))|(A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B), b)|(A,B) ∈ YL ∧ b ∈ B} ∪
{(iL, t)|t ∈ TI} ∪ {(t, oL)|t ∈ TO}, determine the flow relation.

8. α(L) = (PL, TL, FL), places PL, transitions TL, and arcs FL in Petri net.

As a basic approach for process discovery, α algorithm has many limitations

which is difficult to get a best model. It can have implicit places and loops of length

but can be solved through pre-processing. The discovered model is not sound and

there are deadlocks inside it. It is not able to represent dependencies and discover

transitions with duplicate or invisible labels.

28

2.3.3.2 Region-Based Mining

In general, region-based mining consists of three parts: Learning TS; Process

discovery using state-based regions; Process discovery using language-based regions.

Two Phase Approach refers to the first two parts. Since the first part of Two Phase

Approach is reused in the D2FD method in section 3.4, we focus on using state-based

regions to synthesize a Petri net from it. First we give the definition of state-based

region. Let TS = (ST , A, T) be a TS and R ⊆ ST be a subset of states. R is a region

if for each activity a ∈ A one of the following conditions hold:

� All transitions (sT1 , a, s
T
2) ∈ T enter R, i.e. sT1 /∈ R and sT2 ∈ R.

� All transitions (sT1 , a, s
T
2) ∈ T exit R, i.e. sT1 ∈ R and sT2 /∈ R.

� All transitions (sT1 , a, s
T
2) ∈ T do not cross R, i.e. sT1 , s

T
2 ∈ R or sT1 , s

T
2 /∈ R.

Since the region can consist of two small regions, we only have interests on

minimal regions. The basic idea is that each minimal region R corresponds to a place

pR in a Petri net. The activities entering the region become Petri-net transitions

having pR as output place, activities leaving the region become output transitions of

pR , and activities that do not cross the region correspond to Petri-net transitions

not connected to pR. As a result, the minimal regions fully encode a Petri net.

2.3.3.3 Heuristic Mining

Heuristic mining algorithm (Weijters and Ribeiro, 2011) takes frequencies and

sequences into account and constructs Causal nets. In the first phase, we need to get

the direct succession from the event logs and we only consider about causality which

is important. The direct succession a→ b is calculated by the number of times that a

was followed by b somewhere in the log. Dependency Method is identified as a more

sophisticated measure to discover causality. Thresholds can be set for the minimal

number of dependency. Dependency Graph can be generated while including only

arcs that meet both thresholds. Frequency and Dependency Method are explained

more in detail in section 4.2.2.

In the second phase, we extend a dependency graph with the split join semantics

and frequencies to get a Causal net. To discover the split and join, there are two main

types of approaches. The first one takes a time window before and after each activity.

Based on counting sets of input and output activities, we can determine the bindings.

The second one which is more expansive chooses a particular variant of activity that

29

has a finite number of things. And then we see whether the traces can be replayed

properly, assuming input and output bindings. At last, we use certain goal function

to choose the best bindings. The frequency indicates how often the corresponding

activity appeared in the bindings, connections and activity. The difference between

direct succession and frequency is that the bindings can have frequency which can be

bigger than direct succession.

2.3.3.4 Genetic Mining

Genetic mining (De Medeiros et al., 2007) provides a non-deterministic approach

which is different from the other process mining techniques. From an event log, we

can randomly create process models identified as the first generations. Then we can

measure the quality. If the quality is already good enough, we can stop and get the

final model. Otherwise, we look at the quality to choose the best candidates go to

the next round. The so-called crossover operator can be used to recombine multiple

candidates and create new models. Mutation can be used to change something in the

model. All these methods are random and we can get a new generation of model.

Maybe after hundreds or thousands of iterations, we end up with a model with good

quality. This algorithm can be very slow if we are dealing with a big amount of data

in a real system. But it is extremely flexible to add quality measures.

2.4 Fuzzy Logic

In the fuzzy logic, the basic concept is based on fuzzy sets. Both Possibility

Measures and Probability Measures are explained. One of the important fuzzy logic

is fuzzy control. Fuzzy control logic can be used to construct an fuzzy inference

framework which is composed of fuzzification, defuzzification and fuzzy rules. De-

fuzzification consists of different mathematical approaches. The method of fuzzy

control is discussed with the studies of discrete event modeling and simulation. At

last, fuzzy cluster is presented.

2.4.1 Fuzzy Sets

The concept of fuzzy sets, defined by Zadeh (Zadeh, 1996), can be used to change

the crisp set of the characteristic function. It provides a logical point of view to deal

with the uncertainty. A fuzzy set F̃ is equivalent to giving a reference set Ω and a

30

mapping µF : Ω→ [0, 1]. For ω ∈ Ω, µF (ω) is interpreted as the degree of membership

of ω in the fuzzy set F̃ . So the fuzzy set can be defined as:

F̃ = {(ω, µF (ω))|ω ∈ Ω, 0 6 µF (ω) 6 1} (2.5)

This fuzzy set can also be extended to the binary or n-ary. A binary fuzzy set

R̃ is equivalent to space X × Y and a membership function µR : X × Y → [0, 1]. For

x ∈ X and y ∈ Y , µR(x, y) is interpreted as the degree of membership of (x, y) in R.

In addition, an n-ary fuzzy set may be defined in the space X1 ×X2 × · · · ×Xn with

the membership function µR(x1, x2, · · · , xn), where xi ∈ Xi, i = 1, 2, · · · , n.

A fuzzy set F̃ in the space Ω can also be defined by the triplet (ω, Ã, µF) (Dubois

and Prade, 1992), where:

� ω is a subset of Ω.

� Ã is a linguistic label characterizing qualitatively part of the values of Ω.

� µF is the degree of membership of ω in the fuzzy set F̃ .

2.4.2 Possibility and Probability

Possibility measures (Dubois and Prade, 1988) can be recognized as one point of

view on a fuzzy set. It is defined as:

∀A,B,Π(A ∪B) = max(Π(A),Π(B)) (2.6)

The sets A and B in the possibility measures can be disjoint. It shows that when

concerning about the dis-junctions of the events, we choose the maximum value of

the event as the possibility. For the finite set Ω, we can also define the possibility

measures on the singletons of Ω:

∀AΠ(A) = sup{π(ω)|ω ∈ A} (2.7)

Where π(ω) = Π({ω}), ω is one set of the sets A; π is a mapping of Ω into [0, 1]

called a possibility distribution. If we consider about both ω from the space Ω and

the membership function π(ω), it will refer to a fuzzy set.

However, when we talk about possibility, we will also consider about probability.

A probability measures (Dubois et al., 2004) which is based on the occurrence of

events can be defined as:

∀A,∀B,withA ∩B = ∅, P (A ∪B) = P (A) + P (B) (2.8)

31

The sets A and B in the probability measures are disjoint. It shows that prob-

ability of an event is the percentage of the possibility from all the events and the

sum of the probability of all the events is equal to 1. When we compare between

the possibility and probability, possibility is seen as more flexible to deal with the

relationship to the real system.

2.4.3 Fuzzy Control and Related Works on DEVS

Fuzzy control (Zimmermann, 1996) is able to control a fuzzy system with the

help of human expertise. By using fuzzy control, it is able to construct a fuzzy

inference systems (FIS). This system basically consists of fuzzification, defuzzification

and fuzzy rules. FIS has been used to address the issue of incomplete knowledge in

complex systems modeling. Bisgambiglia et al. (Bisgambiglia et al., 2008) present

fuzzy modeling in a simple way to define complex system DEVS. They use interval

or linguistic variables to make simulation possible. A library of fuzzy functions was

added to DEVS formalism. Later Bisgambiglia et al. (Bisgambiglia et al., 2010)

propose FIS with DEVS formalism in order to perform the control or the learning

on systems described incompletely or with linguistic data. Santucci and Capocchi

(Santucci and Capocchi, 2014) propose an approach based on the use of Fuzzy Control

Language allowing facilitating the modeling and simulation of DEVS.

Fuzzy if-then rule (Chen and Tsao, 1989) (fuzzy rule, fuzzy implication or fuzzy

conditional statement) as one of the fuzzy rules is defined that if x is A then y is B

where A and B are linguistic values defined by fuzzy sets. Youcef and Maamar (Youcef

and Maamar, 2014) use if-then rule to fuzzy reasoning rules obtained from observers

or expert knowledge and specify a Fuzzy-DEVS model which computes this duration.

They apply the method on forest fire propagation in the simulator to specify the new

value in the model.

A fuzzy time control (Khan, 2008) is proposed for the time function in the discrete

event systems. A fuzzy inference compositional rule is identified as the main theory

for fuzzy time controller. This rule is defined as follows:

µB(y) = ∨y[µA(x) ∧ µF (x, y)] (2.9)

A is a fuzzy set of input and F is a binary fuzzy set on space X × Y . x ∈ X
and y ∈ Y , ∧ means min and ∨ means max. According to the if-then rule, we need

the inference of the input A and the implication A→ B to determine the output B.

We can consider B as the fuzzy set of time and the result can be inferred from input

32

variable and fuzzy time control. Besides, Giambiasi et al. (Giambiasi et al., 1994)

also propose logic gates with fuzzy delays for modeling and simulation.

Genetic algorithm (Mitchell, 1998) can also be used as a fuzzy rule in FIS. Zeigler

et al. (Zeigler et al., 1996) propose to integrate genetic algorithm and fuzzy inference

system with DEVS. This genetic algorithm can be extended by a multilevel resolution

search strategy in order to solve different degrees of abstracted problems (Kim and

Zeigler, 1996).

2.4.4 Defuzzification Methods and Related Works on DEVS

The main idea of defuzzification is to change fuzzy sets into crisp sets. Centroid

Method (Ross, 2009) is identified as the most prevalent and intuitively appealing of

all the defuzzification methods. It is also called center of gravity or center of area. It

is described by the following equation:

u =

n∑
i=1

αiMi

n∑
i=1

αiAi

(2.10)

Where i is the rule of fuzzy sets, Mi is the membership function, Ai is the

corresponding area and αi is the degree that the rule i is fired. In the case of a

continuous space, this method is described by:

u =

∫
U
uµU(u)du∫

U
µU(u)du

(2.11)

Moreover, the centroid method can be extended to center of largest area. If the

output fuzzy set has at least two convex sub-regions, we select the largest area to

centroid method.

Center of sum (Lee, 1990) is quite similar to the centroid technique but com-

putationally more efficient. The difference between these two techniques is that the

overlapping area is not merged in center of sum. Center of sum is described as follows:

u =

l∑
i=1

ui ·
n∑
l=1

µk(ui)

l∑
i=1

n∑
l=1

µk(ui)

(2.12)

Besides, defuzzification methods also include max-membership principal which is

similar to possibility measures as explained in equations 2.6 and 2.7. Weight average

method is calculated by the output of each functions and their maximum membership

33

functions. This method is used in the Adapted Fuzzy Time Controller in section 4.2.3

and explained in the equation 4.10. Max-mean membership is to calculate the mean

value which has the maximum membership function. First (or last) of maxima is

calculated by the smallest value which has the maximum membership function.

Bisgambiglia et al. (Bisgambiglia et al., 2008) propose to use Expected Existence

Measures method (EEM) in the DEVS atomic model. EEM is set based on fuzzy

interval. It enables to add to this deffuzification technique a coefficient decision

support. Based on different coefficient, the model can return a crisp time in different

conditions.

2.4.5 Fuzzy Cluster

Since we focus on fuzzy cluster in this thesis, we give a general introduction of

cluster analysis. The aim of cluster analysis is finding groups in data (Kaufman and

Rousseeuw, 2009). The clusters can be subsets, groups or classes. Cluster analysis is

often recognized as a branch of pattern recognition and artificial intelligence because

finding objects into groups is an important human behavior. For example, a child

needs to distinguish between men and women, between beds and chairs. Moreover,

cluster analysis is able to impose a structure on a homogeneous data set for example

dividing a country into telephone areas. The partition of clusters should have the

following properties:

� Homogeneity within the clusters, i.e. data which belongs to the same cluster

should be as similar as possible.

� Heterogeneity between the clusters, i.e. data which belongs to the different

clusters should be as different as possible.

The clusters are not defined in advance. In the past, they are defined based on

expert assumptions and judgments. For example in Figure 2.8, there are 11 objects

in the data space. These objects may describe geography, medicine, chemistry and

so on. By using human eye-brain system, we can observe two main clusters and two

intermediate points. However, this kind of partitioning is not based on objectivity

standards of modern science and there is a need to classify objects in more than two

clusters. Over the last 40 years, a big amount of algorithms has been developed for

cluster analysis. The main families of conventional clustering techniques include in-

complete or heuristic cluster analysis techniques, deterministic crisp cluster analysis

34

Figure 2.8: An example of cluster analysis.

techniques, overlapping crisp cluster analysis techniques, probabilistic cluster analy-

sis techniques, possibilistic cluster analysis techniques, hierarchical cluster analysis,

objective function based cluster analysis techniques, cluster estimation techniques.

k-means clustering is used in the process mining (Van der Aalst, 2011). The main

idea is to divide the instances into several homogeneous groups. For this reason, we

can get smaller data-sets and apply the additional process mining techniques. k

represents the number of the clusters. In the k-means, we first set the centroid which

is positioned randomly or regularly. Then we assign every instance to the closest

centroid. Once we get the corresponding clusters, we set the new position of the

centroid. Again and again, we assign every instance to the closest centroid and set

the new position of the centroid until nothing changes and the position of the centroid

remains the same. At last, the clusters are obtained.

Besides the clustering techniques above, fuzzy cluster (Höppner, 1999) applies

fuzzy set logic into cluster analysis to represent the imprecision. The reason of choos-

ing fuzzy cluster is that a deterministic cluster makes a hard partition of the data

set. Fuzzy cluster allows for some ambiguity in the data. Each data set can belong

to various clusters with a corresponding possibility. This possibility is quantified by

means of membership coefficients which range from 0 to 1. For example in Figure 2.8,

imagine that we apply the deterministic cluster and ask for two clusters. In that case,

the program needs to make a decision to put object 5 to the cluster 1, 2, 3, 4 or to

the cluster 7, 8, 9, 10, 11 since object 5 lies almost the same distance from both.

Fuzzy cluster can provide a better decision for this situation when asking for two

35

clusters. Objects 1, 2, 3, 4 which have strong relationship with cluster 1 can have

high membership coefficient (0.9) to cluster 1 and low membership coefficient (0.1) to

cluster 2. Objects 7, 8, 9, 10, 11 which are strongly associated with cluster 2 can have

high membership coefficient (0.9) to cluster 2 and low membership coefficient (0.1)

to cluster 1. Object 5 may belong for the membership coefficient of 0.7 to cluster

1, for the membership coefficient of 0.2 to cluster 2. Object 6 may belong for the

membership coefficient of 0.6 to cluster 1, for the membership coefficient of 0.3 to

cluster 2. In addition, we can get a list of membership coefficient between objects

and clusters. On the one hand, the main advantage of fuzzy cluster is to provide more

detailed information of the data. On the other hand, the disadvantage is that as the

number of objects becomes important, the amount of output information increases

very fast and it reduces the performance of data analysis.

2.5 Conclusion

Theory of modeling and simulation provides detailed description about specifica-

tions and formalisms to represent systems. Fuzzy-DEVS is selected as the simulation

model in this thesis and Fuzzy-DEVS considers about the imprecision to represent

event data. The graphical notation helps to present the internal transition and ex-

ternal transition in the visualization. SES can extend the semantic aspects of Fuzzy-

DEVS models. However, most of the studies on Fuzzy-DEVS has a limitation that

the model does not come from real data. Process mining provides some potential

methods which start from event logs and try to mine a process model. TS is iden-

tified as one of the most basic process models. In chapter 3, we will explain how to

transform event data to event logs.

There are many different process discovery techniques. α algorithm provides the

most basic process mining technique. Compared with α algorithm, heuristic mining

is able to discover causality from event logs and region-based mining can capture

complex process patterns. Region-based mining, also called Two Phase Approach, is

reused to transform event logs to TS in chapter 3. Genetic mining improves model

in a random way but it is difficult to realize on real data.

The basic concept in fuzzy logic is fuzzy sets. Fuzzy control can help to deal

with time information in chapter 4. In the fuzzy control system, the implementation

of weight average method is easier than the other deffuzification methods. When we

apply fuzzy sets in the cluster analysis, we can get fuzzy cluster. Fuzzy cluster helps

to mine coupled model from event data in chapter 4.

36

Chapter 3

Extracting Event Logs and
Transition System From Event
Data

3.1 Introduction

As soon as the event logs are available, process mining will be ready to execute.

The event logs are the starting point of process mining. It has been shown that

process mining can audit relevant information from event logs (Jans et al., 2014).

A conceptual approach is proposed in (Van der Aalst, 2015) to extract event data

from databases. Both studies provide general and abstract methods without results

from real case study. For this reason, we choose event data as the input side of

D2FD method. A rather loose definition and 16 guidelines of event data are shown in

section 3.2. Here, a toy case of an e-shopping company is used to support the whole

presentation in this chapter. A five-steps method is proposed to transform event data

to event logs in section 3.3. Two Phase Approach in the process mining is reused in

the D2FD method to transform event logs into TS in section 3.4.

3.2 Background

The starting point of D2FD method is event data observed from the real world.

The event data is recorded based on some conditions. In this section, we give the

definition of event data as well as sixteen guidelines. In addition, we introduce the

toy case study which we use to support the explanation in chapter 3 and 4.

37

Figure 3.1: Structure of the event in event data.

3.2.1 Definition of Event Data

In Figure 1.2, the real world consists of a lot of things for example people,

machines, organizations, business processes and so on. This world refers to the source

level in Figure 1.1. Information systems can be controlled or supported by the real

world. Then event data is recorded in the information system. The focus of this thesis

is on the output side of the world, i.e., event data. Events can be of various types, and

they can be recorded in various ways. Here, we give a rather loose definition of event

data: event data is made up of events which describe the things happening. The

general structure of the event is presented in Figure 3.1. Events are described by the

references and attributes. Reference has a name and refers to some object for example

person, machine, product and so on. Attribute has a name and a value. Sometimes

the value can be the activity. Attributes can contain many perspectives like time,

age, function, category and so on. Properties make identifiers for the references and

attributes. Properties are quite like a conceptual classification for all the variables.

The name of attributes can be the properties. When the event data is not stored

only in one document, the documents can be classified as start document, middle

document and end document. One principle of classification of the documents is

based on time information. The one with earlier time is selected as start document.

Another principle of classification is based on the relationship between documents.

The one with higher level properties is selected as start document. For example, the

document which records the purchase information of products is the start document.

The document with the purchase request is the middle document and the document

with invoice is the end document.

38

3.2.2 16 Guidelines of Event Data

Based on the concepts of event data we define 16 guidelines. Among the 16

guidelines, the first 12 guidelines come from the work of Van der Aalst (Van der

Aalst, 2015) and we propose four more guidelines for a proper handling of event data.

The 16 guidelines are shown as follows:

1. Reference and variable names should have clear semantics, i.e., they should have

the same meaning for all people involved in creating and analyzing event data.

Different stakeholders should interpret event data in the same way.

2. There should be a structured and managed collection of reference and variable

names.

3. References should be stable (e.g., identifiers should not be reused or rely on

the context). For example, references should not be time, region, or language

dependent.

4. Attribute values should be as precise as possible. If the value does not have the

desired precision, this should be indicated explicitly (e.g., through a qualifier).

For example, if for some events only the date is known but not the exact time-

stamp, then this should be stated explicitly.

5. Uncertainty with respect to the occurrence of the event or its references or

attributes should be captured through appropriate qualifiers. For example, due

to communication errors, some values may be less reliable than usual.

6. Events should be at least partially ordered. The ordering of events may be

stored explicitly (e.g., using a list) or implicitly through a variable denoting the

time-stamp of event.

7. If possible, also store transactional information about the event (start, complete,

abort, schedule, assign, suspend, resume, withdraw, etc.). It is recommended

to store activity references to be able to relate events belonging to the same

activity instance.

8. Perform regularly automated consistency and correctness checks to ensure the

syntactical correctness of the event log.

9. Ensure comparability of event logs over time and different groups of cases or

process variants.

39

10. Do not aggregate events in the event log used as input for the analysis process.

11. Do not remove events and ensure provenance. Reproducibility is key for process

mining.

12. Ensure privacy without losing meaningful correlations.

13. Event data at least needs to be recorded in csv or excel files.

14. The value names should be simple, precise and clear. Similar names with similar

meanings can be found in different documents. A new value name can only be

added if there is consensus on its meaning.

15. In the attributes, the start time and the finish time in the properties are manda-

tory. Each event refers to a case and instance defines a specific sequence of case.

References are often identified as a label of instance.

16. Events are ordered, firstly by instance, and secondly increasingly by start time.

The above guidelines are very general and organized for D2FD method. The

main purpose is to set a threshold of the input of D2FD method.

3.2.3 Toy Case Study

The toy case study is about an e-shopping company Peri. This company would

like to know its business process and improve it. This toy case study will support the

presentation of D2FD method in chapter 3 and 4. The event data of this toy case is

shown in Table 3.1 and Table 3.2. According to the relationship, the start document

records company request and the end document records customer orders. In Table

3.1, the e-shopping products indicate references (X1 is the name of the product). One

product can have several orders (X1 has order 1, 2, 3 and 4). Attributes have the

start time (00 : 00), the end time (00 : 10), the e-shopping shops (Peri), the product

departments (Clothing in the PD field) and the product subthemes (Women in the

PS field). Product, Order, Start Time, End Time, Shop, PD, PS are the properties.

In Table 3.2, the customers indicate references (Y1 is the name of the customer). One

customer can place several orders (Y1 has order 1 and 2). Attributes have the start

time (03 : 40), the end time (03 : 50), the e-shopping shops (Peri) and the product

departments (Electronic in the PD field). Customer, Order, Start Time, End Time,

Shop, PD are the properties.

40

Table 3.1: Start document of toy case

Product Order Start Time End Time Shop PD PS

X1 1 00:00 00:10 Peri Clothing Women
X1 2 00:20 00:30 Peri Clothing Men
X1 3 00:40 00:50 Peri Clothing Luggage
X1 4 01:00 01:10 Peri Electronic TV & video
X2 1 01:20 01:30 Peri Clothing Women
X2 2 01:40 01:50 Peri Clothing Luggage
X2 3 02:00 02:10 Peri Clothing Men
X2 4 02:20 02:30 Peri Electronic TV & video
X3 1 02:40 02:50 Peri Clothing Women
X3 2 03:00 03:10 Peri Electronic Computer
X3 3 03:20 03:30 Peri Electronic TV & video

Table 3.2: End document of toy case

Customer Order Start Time End Time Shop PD

Y1 1 03:40 03:50 Peri Sports
Y1 2 04:00 04:10 Peri Electronic
Y2 1 04:20 04:30 Peri Electronic
Y2 2 04:30 04:50 Peri Sports

According to guideline 14, the e-shopping shop (Peri) is similar in both docu-

ments as well as the Electronic in PD. According to guideline 15, in Table 3.1, the

e-shopping products indicate instances (X1). One product has several orders, each

being a case at a different time (start time and end time). In Table 3.2, the customers

are the instances (Y1). One customer has several orders, each being a case at a differ-

ent time (start time and end time). According to guideline 16, in the same instance,

the events are ordered by start time. For example the order 1 of X1 is smaller than

the order 2.

3.3 Five-Steps From Event Data to Event Logs

The event data has a very big amount which takes time to analysis them. So we

would like to focus on the important part of the event data. For this reason, we obtain

the goals by making interviews with business people and organizations. In addition,

we construct the conceptual structure to identify the underlying relationships, classify

the values between public values and private values and select the process instance

41

based on properties and documents. At last, the elements of event data are converted

into the elements of event logs.

3.3.1 Setting up of Goals

Prior to any other steps in the five-steps method is the definition of goals. Goals

are investigated from interview. They include the problem to be addressed or the

performance to evaluate. The goals can guide the process of D2FD method until the

validation of D2FD method. In the toy case, two goals are identified:

� how does the e-shopping company work?

� how does the customer choose products?

3.3.2 Identification of Relationships

One of the challenge in section 1.2.1 is event correlation. Raw data are not often

well organized, and there is more than one way to build event logs that can store them.

Identifying underlying relationships can help researchers to find analysis results. The

references in the event data may not have relationships in that they are unique and

special. However, the values in the attributes can have different relationships between

each other. Here, we propose a conceptual structure to represent the relationships of

the values. This conceptual structure is inherited from SES which keeps the function

of aspect, multi-aspect, specialization and variable. The reason to choose SES is

because SES has more functions to represent hierarchical system which is better than

Unified Model Language (UML). In SES, aspects represent ways of decomposing

entities into more detailed parts. Multi-aspects are aspects for which the components

are all of one kind. Specializations represent categories in specific forms that an entity

can assume. The difference between the new conceptual structure and SES is that

entity is replaced by value and property defines each level of the structure. When the

event data has more than one document, we propose that each document generates

one conceptual structure as well as one Fuzzy-DEVS atomic model. On the one hand,

the identification of relationships can be obtained from business interview. On the

another hand, the construction of the conceptual structure can be done by domain

experts.

In the toy case, two conceptual structures are constructed as shown in Figure

3.2. There are three properties (shop, product departments and product subthemes)

pointing out three levels of the structure. Here, we use P, CL, E, S, W, M, L, T and CO

42

Figure 3.2: The two conceptual structure of the toy case.

to represent the values in the attributes Peri, Clothing, Electronic, Sports, Women,

Men, Luggage, TV&video and Computer. These values come from the elements in

Tables 3.1 and 3.2. In Table 3.1, CL and E are the aspects of P, while W, M, and L

are the aspects of CL, and T and CO are the aspects of E. Respectively, in Table 3.2,

S and E are the aspects of P.

3.3.3 Identification of Values

Once the relationships of the values exist in one document, we use aspect, multi-

aspect, specialization and variable to describe them in the conceptual structure.

When the values relate to the ones in another document, we need to distinguish

public and private value. Hence, the relationship in this situation is similarity. The

rules of identifying public and private value can help to find modularity between

documents. The rules are shown as follows:

� If one value has a strong relationship with the value in another document, this

value is identified as public value and the children of this value as private value.

� Values which do not have relationships with any other ones, are identified as

public values.

In the toy case in Figure 3.2, the value E in the start document is similar in the

end document. There is a connection in the level of product departments. Therefore,

the children of E, i.e., T and CO, are private values, underlined in the Figure 3.2. P,

CL, E, S, W, M and L are public values.

3.3.4 Selection of Process Instance

The process instance (Mieke, 2015) is the object that one follows throughout the

business process. There are two dimensions of process instance: start, middle and

end document; property level of the conceptual level. In a document-based business

43

process, the process instance is related to at least one document. In some cases, all

relevant knowledge resides in a single document (e.g., the start document). In other

cases, the knowledge spreads among various documents. If there is only one single

entry of the process, we choose start document. If there are multiple entries of the

process, we choose start document with the purpose of efficiency and end document

with the purpose of compliance.

Based on the conceptual structure in Figure 3.2, there are different property

levels. The problem happens when the value can be either public value or private

value. For example, CL and E are possible to become private value in that P is similar

in two documents. For this reason, we propose to select one level (or we can say one

property) which involves the key and interesting values. In case of mixed levels, we

take the higher level as the process instance.

In the toy case, both the start document and the end document are involved

in the process instance selection. The key values are the leaves of the conceptual

structures built (i.e., {W, M, L, T, CO} at one side, and {S, E} at the other side).

3.3.5 Mapping Between Event Data and Event Logs

In Figure 3.3, a general mapping from event data to event logs is proposed to

convert instance to trace, case to event id, time to time extension, and values to

concept extension. The values are selected from the conceptual structure in the

property level. In the toy case, Women, Men, Luggage, TV&video, Computer are

selected as final values in the start document and Sports, Electronic are selected as

final values in the end document. The first event logs of the start document is shown

as follows:

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8” ?>
<l og xes . v e r s i on=” 1 .0 ” xes . f e a t u r e s=” nested−a t t r i b u t e s

” openxes . v e r s i on=” 1 .0RC7”>
<ex tens i on name=”Time” p r e f i x=” time ” u r i=” ht tp : //

www. xes−standard . org / time . xesext ”/>
<ex tens i on name=”Concept” p r e f i x=” concept ” u r i=”

ht tp : //www. xes−standard . org / concept . xesext ”/>
< c l a s s i f i e r name=”Event Name” keys=” concept:name ”/>
<s t r i n g key=” concept:name ” value=” Star t document .

csv ”/>
<t r a c e>

<s t r i n g key=” concept:name ” value=”X1”/>
<event>

<s t r i n g key=”End time ” value=”00 :10 ”/>

44

<s t r i n g key=” concept:name ” value=”Women”/>
<s t r i n g key=” time:t imestamp ” value=”00 :00 ”/>

</ event>
<event>

<s t r i n g key=”End time ” value=”00 :30 ”/>
<s t r i n g key=” concept:name ” value=”Men”/>
<s t r i n g key=” time:t imestamp ” value=”00 :20 ”/>

</ event>
<event>

<s t r i n g key=”End time ” value=”00 :50 ”/>
<s t r i n g key=” concept:name ” value=”Luggage”/>
<s t r i n g key=” time:t imestamp ” value=”00 :40 ”/>

</ event>
<event>

<s t r i n g key=”End time ” value=”01 :10 ”/>
<s t r i n g key=” concept:name ” value=”TV&Video”/>
<s t r i n g key=” time:t imestamp ” value=”01 :00 ”/>

</ event>
</ t r a c e>

</ log>

The event log above has only one log using XES version 1.0. All the attributes

are nested attributes. There are the extension of concept and time and one classifier.

This event log is constructed from “Start document.csv”. Here, we only show the

first trace X1 with four events. Each event has time-stamp which contains start time

(00 : 00), concept:name in the property of PS (Women) and End time (00 : 10).

Correspondingly, the second event logs of the end document is shown as follows:

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8” ?>
<l og xes . v e r s i on=” 1 .0 ” xes . f e a t u r e s=” nested−a t t r i b u t e s

” openxes . v e r s i on=” 1 .0RC7”>
<ex tens i on name=”Time” p r e f i x=” time ” u r i=” ht tp : //

www. xes−standard . org / time . xesext ”/>
<ex tens i on name=”Concept” p r e f i x=” concept ” u r i=”

ht tp : //www. xes−standard . org / concept . xesext ”/>
< c l a s s i f i e r name=”Event Name” keys=” concept:name ”/>
<s t r i n g key=” concept:name ” value=”End document . csv ”

/>
<t r a c e>

<s t r i n g key=” concept:name ” value=”Y1”/>
<event>

<s t r i n g key=”End time ” value=”03 :50 ”/>
<s t r i n g key=” concept:name ” value=” Sports ”/>
<s t r i n g key=” time:t imestamp ” value=”03 :40 ”/>

45

</ event>
<event>

<s t r i n g key=”End time ” value=”04 :10 ”/>
<s t r i n g key=” concept:name ” value=” E l e c t r o n i c ”

/>
<s t r i n g key=” time:t imestamp ” value=”04 :00 ”/>

</ event>
</ t r a c e>

</ log>

Figure 3.3: General mapping between event data, conceptual structure and XES.

The event log above is constructed from “End document.csv”. It uses XES

version 1.0 and all the attributes are nested attributes. There are the extension of

concept and time and on classifier. Here, we only show the first trace Y1 with four

events. Each event has time-stamp which contains start time (03 : 40), concept:name

in the property of PS (Sports) and End time (03 : 50).

3.4 From Event Logs to Transition System

Two Phase Approach in process mining (Van der Aalst, 2011) provides a dis-

covery technique which first transforms an event log into a low-level TS and then

synthesizes a Petri net from TS. The D2FD approach reuses the first stage of the

46

Two Phase Approach (i.e., the production of a TS). The second stage of the Two

Phase Approach is explained in section 2.3.3.2.

In order to construct a TS, we need to determine the set of states. Every po-

sition in a trace of an event log corresponds to a state of a TS. In the toy case,

the event log Lstart is extracted from start document with three traces and the

event log Lend is extracted from end document with two traces. Event log Lstart =

[(W,M,L, T), (W,L,M, T), (W,CO, T)]. Event log Lend = [(S,E), (E, S)]. We take

the first trace in Lstart as the example (W,M,L, T). When the current state is be-

tween M and L, the partial trace σpast = W,M describes the past of the corresponding

case and the partial trace σfuture = L, T describes the future of the corresponding

case.

Figure 3.4: TS model from the start document of the toy case.

Figure 3.5: TS model from the end document of the toy case.

Different methods are used to capture states, i.e., past or future; set abstraction

or multi-sets abstraction; k-tail method. Past or future means both order and fre-

quency matter. Set abstraction means neither order nor frequency matter. Multi-sets

abstraction means only frequency matters. K-tail method proposes to focus on the

last one or more activities to capture state or focus on the next one or more activities

to capture state. By organizing different methods, we can get different kinds of TSs.

47

In the toy case, the state is represented by the multi-sets abstraction in the start doc-

ument. The first three activities (W , M , L), (W , L, M), (W , CO, T) are considered

as the multi-sets. Then they add T at the end of first two traces. The TS from the

start document is shown in Figure 3.4. The label of each state has all the activities

instead of the process of all the activities for example [W,M,L], it has three activities

but there are two processes (W , M , L) and (W , L, M). The transition is represented

by arc and the label of the transition shows the activity. There are one initial state

([]) and two final state ([W,M,L, T] and [W,CO, T]). In the end document, the

state is represented by the set abstraction. The TS from the end document is shown

in Figure 3.5. There is one initial state ([]) and one final state ([S,E]).

3.5 Conclusion

In this chapter, we propose a five-steps method to extract event logs from event

data. This method tries to solve the challenge in section 1.2.1. The event data is

defined at first as the input side of D2FD method. Four more guidelines are proposed

to improve the efficiency and quality of mining event data. We extract event logs from

data source like CSV file. Once the event data is observed, goals are investigated from

the business interview. Some underlying relationships can be observed between values.

The conceptual framework is used to build a modular and hierarchical abstraction

from the data collected, in order to structure the event log that will be extracted.

The event correlation is discovered by the conceptual framework. The identification

of public value and private value not only makes connections between documents, but

also observes the modularity to construct internal transitions and external transitions

in DEVS. In order to reduce the scope of event data, we put the emphasis on the

interesting values, properties and documents. At the end, a corresponding mapping

realizes the transformation from event data to event logs. Two Phase Approach helps

to transform event logs to TS. Two TS models are obtained in Figures 3.4 and 3.5 in

the toy case study. In the following chapter, as the main part of D2FD method, we

continue to construct a Fuzzy-DEVS model from TS.

48

Chapter 4

Mining Fuzzy-DEVS Model From
Transition System

4.1 Introduction

In the process mining, the resulting process model is usually a Petri net model

(Peterson, 1977). Two techniques exist to discover the Petri net model: the α-

algorithm and the Two Phase Approach. The α-algorithm is able to discover concur-

rency but is unable to take frequencies into account. Two Phase Approach first learns

a TS from event logs and then uses region-based approach to construct a Petri net

from TS. A major drawback of this approach is that the discovered Petri net cannot

represent the timing aspects. Also, there is a lack of modularity, making the design of

hierarchical models difficult to realize. Therefore, process mining shows limitations in

inferring complex systems. D2FD method is proposed to overcome these limitations,

which is rooted in the system-theoretic power of the DEVS formalism. Compare with

Petri net, DEVS is able to provide more accurate model due to the following facts:

� DEVS gives a more general framework for modeling and simulation of complex

systems.

� DEVS integrates naturally the notion of time contrary to Petri nets which

require an extension of the formalism.

� DEVS offers a formal (and separated from model) definition of the simulator.

Fuzzy-DEVS adds to DEVS capabilities to take frequency of events and imprecise

knowledge into account by applying fuzzy sets theory. Another candidate of the

formalism for providing similar advantages is Stochastic DEVS model, yet Fuzzy-

DEVS is more convenient than Stochastic DEVS for the following reasons:

49

� the concept of possibility used in Fuzzy-DEVS emphasizes the likelihood of an

event in the system in a more objective manner than the concept of probability

used in Stochastic DEVS.

� the concept of possibility allows users to focus only on the mainstream behavior

of the business process.

� Fuzzy-DEVS can provide more semantics by integrating subjective data and

linguistics.

Based on the general structure of D2FD method in Figure 1.2, we will explain

the most important part from TS to Fuzzy-DEVS in section 4.2. The toy case of the

e-shopping company in section 3.2.3 continues to be used in this chapter.

4.2 From Transition System to Fuzzy-DEVS Model

Since Fuzzy-DEVS model can be distinguished between atomic model and cou-

pled model and DEVS can be extended to Fuzzy-DEVS, different methods are inte-

grated together in the D2FD method. The transformation of all the functions in the

original DEVS formalism is based on improved region-based approach. The core idea

is to discover regions that correspond to states of Fuzzy-DEVS. A region is a set of

states that all activities in the TS “agree” on the region. It can also detect the con-

currency. All the behavior of the regions will be transformed to the state of DEVS. So

from a big transition system, we can get a smaller Fuzzy-DEVS model. Dependency

Method is used for producing the fuzzy internal transition, fuzzy external transition

and fuzzy output function; AFTC is used for obtaining fuzzy time advance func-

tion. To execute the Fuzzy-DEVS model, Possibility Measures and the final output

of AFTC are applied. The final output of AFTC is inferred by the weighted average

method from defuzzification methods. Fuzzy cluster is applied for the functions of

Fuzzy-DEVS coupled model.

4.2.1 Improved Region-Based Approach

After transforming the event logs into the low level process model TS, we can

mine a Fuzzy-DEVS atomic model from it. In turn, this Fuzzy-DEVS atomic model

can be coupled together to form the entire Fuzzy-DEVS model. According to the

section 2.3.3.2, we propose an improved region-based approach to realize the transfor-

mation of Fuzzy-DEVS. Before starting introducing improved region-based approach,

50

we first define the concept of regions. The definition of regions is a set of states in

the TSs based on some criteria. Let TS = (ST , A, T) be a TS where ST is the set of

the states, A is the set of the activities, T is the set of the transitions. Pa is the mean

period time duration for each activity a ∈ A. R is a region and R ⊆ ST is a subset

of the states. For each activity a ∈ A, there are four following criteria:

� All transitions (sT1 , a, s
T
2 , Pa) ∈ T enter R and Pa1 ∈ Pa, Pa2 ∈ Pa, ..., Pan ∈ Pa,

i.e. sT1 /∈ R and sT2 ∈ R and Pa1 ≈ Pa2 ≈ ... ≈ Pan .

� All transitions (sT1 , a, s
T
2) ∈ T exit R, i.e. sT1 ∈ R and sT2 /∈ R.

� All transitions (sT1 , a, s
T
2) ∈ T do not cross R, i.e. sT1 , s

T
2 ∈ R or sT1 , s

T
2 /∈ R.

Since there is no time function in the TS, more information are extracted from the

event logs for example Pa is calculated by AFTC in section 4.2.3. For region R, there

are three kinds of classification of the activities such as entering the region, leaving

the region and non-crossing. The classification of non-crossing can be distinguished

between the activity inside the region and outside the region. In other words, non-

crossing activities always connect two states inside the region or outside the region.

The conditions of the region can not be met when an activity enters in one side of

this region and goes out in another side of this region. Since the region can have more

than one activities, these activities need to have the approximated time duration each

other. If these activities do not have approximated time, the regions will be split into

smaller regions. Therefore, we are only interested in minimal regions. Figure 4.1

shows an example of defining regions. The dashed rectangle describes a region R

which contains seven states in the TS. The label of the transition represents the

activity so different transition may have same activity. All a-labeled transitions enter

the region as well as b-labeled transition. If there is an a-labeled transition with two

states outside or inside the region, R cannot be a region. All c-labeled transitions

leave the region as well as d-labeled transition. All e-labeled transitions do not cross

the region both inside the region and outside the region. The f -labeled transition

and the g-labeled transition do not cross inside and outside the region respectively.

Inside the region, the periods of activity Pa and Pb are approximated each other.

The advantage of this approach is to narrow a large TS into a smaller Fuzzy-

DEVS model. However, the disadvantage of this approach is that there can be more

than one way to demarcate the regions in the TS when the numbers of the states

increase. This costs a lot to calculate in the computer system. For this reason, we

propose a c-groups method where c is a performance coefficient. The coefficient c is

51

Figure 4.1: An example of improved region-based approach.

calculated based on the experiments on the computer. When testing the improved

region-based approach, we choose the number of the states as much as possible in a

TS model. If the time of computer operation is not over 30 minutes, we give this

number of the states to c. Sometimes, c is smaller than the whole number of the

states of TS. The group of the set of the states ŜTi in the TS is defined as follows:

∀sT ∈ ST ,∃i = 0, 1, 2, ..., ŜTi =

{
{sTg×c, sTg×c+1, ..., s

T
g×c+c} for i < n

c

{sTg×c, sTg×c+1, ..., s
T
n} for i = n

c

(4.1)

Where n is the number of the states in the TS. The number n
c

represents the

number of the states in each group. The advantage of this c-groups method is to

improve the efficiency of the improved region-based approach. The shortcoming is

that the state in one group and the state in another group cannot be put together in

the same region. So we are not sure that the regions are the optimum by c-groups

method.

The original region-based approach has an inability to discover particular process

constructs. This can be handled through the extension which is so-called “forward

closure” property. Once we have TS, we check certain properties. If this property

does not hold, the labels need to be split. The activities are renamed into more values.

Once the regions are obtained, the functions of TS are transformed into the

functions of Fuzzy-DEVS. Some information are extracted from event logs to complete

this transformation. In the event logs, let pv be the private value and uv be the public

value. This transformation follows the rules:

R→ S (4.2)

Where the state of Fuzzy-DEVS atomic model s ∈ S.

uv → x
⋃

y (4.3)

52

Where the input value x ∈ X and the output value y ∈ Y .

ta =


0 ∃s0 ∈ S
T F

Infinite @S = SI1

(4.4)

Where s0 is the initial state, T F comes from AFTC in section 4.2.3, SI1 is the

input states of all internal transition.

T → δ̃int
(sT1 , uv, s

T
2)→ (s1, s2, µint)

(4.5)

Where s1 ∈ R1 and s2 ∈ R2, µint comes from Dependency Method in section

4.2.2.

λ̃ : (y, µint) (4.6)

T → δ̃ext
(sT1 , pv, s

T
2)→ (s1, e, x, s2, µext)

(4.7)

Where the elapsed time e : 0 5 e 5 ta, µext comes from Dependency Method in

section 4.2.2.

The regions are related to the states of Fuzzy-DEVS in equation 4.2. Public

values uv in the event logs are always used as either input event or output event, as

suggested by equation 4.3. In equation 4.4, the fuzzy time advance t̃a is defuzzed

into a crisp value ta. If the state is the initial state, the time is 0. If the state does

not belong to the input states of all internal transition (in another words, the state

has no internal transition to the next state), the time is infinite. Otherwise, the time

is calculated from AFTC in section 4.2.3. The transition in the TS is transformed

into internal transition if the activity is public value illustrated in equation 4.5. The

possibility of the output function µint in equation 4.6 is the same as the internal

transition. µint is calculated by Dependency Method in section 4.2.2. In equation

4.7, the transition in the TS is transformed into external transition if the activity is

private value. If the elapsed time e is smaller than time ta, this external transition

can be executed. The possibility of the external transition µext is different from µint

but calculated from the same method.

To illustrate the improved region-based approach, we use the same toy case which

starts from Table 3.1 and Table 3.2. Figure 4.2 shows how the transition system

(upper level of the figure) of the toy case results in its corresponding Fuzzy-DEVS

atomic model (lower level of the figure). This TS relates to the start document of

the toy case and is same as Figure 3.4. The states of TS are split into six regions

53

Figure 4.2: First toy case from TS to Fuzzy-DEVS atomic model.

because PW , PM , PL are not approximated each other. The region which contains

[W,CO] and [W,M,L] stays as PCO is approximated. The states of Fuzzy-DEVS are

converted from these six regions according to equation 4.2. The labels of the states

in Fuzzy-DEVS are unique such as S0, S1, S2, S3, S4, S5. The activities in the label

of the states show that the ones have approximated time duration. The initial state

[] is transformed into S0. As we know, P, CL, E, S, W, M and L are public values.

T and CO, are private values. According to equation 4.5 and 4.7, the transitions

which contains W, M and L are converted to internal transition and the transitions

which contain CO and T are converted into external transition. The labels of these

transitions are using the graphical notation in section 2.2.2.2. There are Port1 and

Port2 in the box of Fuzzy-DEVS box. As illustrated in equation 4.3, public values W,

M, L represent the output events. The mother of private values CO and T, which is

also public value E, represents the input event. The internal transition is depicted as

dotted arc with the corresponding output event such as Port1!W , Port1!M , Port1!L.

As S0 is the initial state, based on equation 4.4, the time taS0 is 0. The internal

transition is executed immediately with empty output event Port1![]. The external

transition is depicted as solid arc with the corresponding input event Port2?E. Since

S4 and S5 have no internal transition, the time taS4 and taS5 are infinite. The time

taS1, taS2 and taS3 come from AFTC. The simulation of this Fuzzy-DEVS atomic

model is based on its state, its transition and its time. For example, the state is s1

54

Figure 4.3: Second toy case from TS to Fuzzy-DEVS atomic model.

now. If the elapsed time e is less than taS1 and the input event E comes from Port2,

the external transition is executed. States change from S1 to S4. If the elapsed time

e reaches taS1, the internal transition is executed. States change from S1 to either

S2 or S3. The output event W is sent to Port1.

The TS is able to solve the problem of concurrency. The concurrency summarizes

the situation that at least two activities are existing and occurring simultaneously or

side by side. After transforming from TS, Fuzzy-DEVS is able to keep this concur-

rency. For example in Figure 4.2, the activities L and M are concurrent. The regions

of these two activities are converted into S2 and S3 respectively. The states S2 and

S3 are concurrent. Moreover, the internal transitions δ̃int(S1, S2) and δ̃int(S1, S3)

have the corresponding possibilities. These possibilities provide more information

than concurrency.

Figure 4.3 shows the second toy case from TS to Fuzzy-DEVS atomic model.

This TS relates to the end document of the toy case and is same as Figure 3.5. Since

PS and PE are not approximated each other, the four states of TS are split into four

regions themselves then become the four states of Fuzzy-DEVS atomic model, i.e. S6,

S7, S8, S9. S6 is the initial state. As S and E are public values, the transitions in

TS are converted to internal transitions in Fuzzy-DEVS. Meanwhile, there is only one

port Port3. The internal transition is depicted as dotted arc with the corresponding

output event such as Port3!S and Port3!E. The time taS6 is 0 and taS9 is infinite.

The other time taS7 and taS8 are calculated by AFTC. The state starts from S6 and

executes the internal transition immediately. If the state is S7, the output event S

55

will send to Port3 after taS7. If the state is S8, the output event E will send to Port3

after taS8.

4.2.2 Dependency Method with Possibility Measures

Dependency Method in the heuristic mining in section 2.3.3.3 is used to get

frequency between any pair of activities and the value of the dependency relation.

We propose to use Dependency Method to generalize internal transition, external

transition and output function into fuzzy sets. Since the transition and the activity

are strongly linked together in TS, the frequency of the transition can obtain from

the frequency of the activity. There are two steps in this method. The first step is to

calculate the frequency of each transition from the instances of event logs. Then we

use the following equation 4.8 to calculate the possibility of every transition.

µ(Si → Sj) =

{
| F (Si→Sj)−F (Sj→Si)

F (Si→Sj)+F (Sj→Si)+1
| ∃i 6= j

F (Si→Sj)

F (Si→Sj)+1
i = j

(4.8)

In equation 4.8, µ and F respectively defines the possibility and the frequency of

a transition from one state to another state. → means internal or external transition

between two states, while i and j are the state numbers. The value of the dependency

is between -1 and 1 in the heuristic mining. We take the absolute value which is be-

tween 0 and 1 to be able to apply in fuzzy sets. Since this value of the dependency

comes from the frequency of the transitions in TS, it is given to the membership

function of the internal transition and external transition in Fuzzy-DEVS. The possi-

bility of the output function is designed to be equal to the possibility of the internal

transition. In the graphical notation, we put this possibility at the end of the label of

internal and external transitions. In the toy case, we can have a look at the control

flow of the event logs. An event log can be converted to a multiset of traces and same

trace may appear multiple times. Imagine that we get a longer set of event logs, for ex-

ample there are two event logs Lstart = [(W,M,L, T)10, (W,L,M, T)15, (W,CO, T)3]

and Lend = [(S,E)5, (E, S)8] where the numbers in exponent indicate the times of

the corresponding traces. Table 4.1 presents the value of frequency and dependency

of the model in Figure 4.2. Among them, the transitions S1→ S4 and S4→ S5 are

external transitions and all other transitions are internal transitions. If the state

has no internal transition or external transition, the possibility is 0 for example

µint(S1 → S4) = 0, µext(S0 → S1) = 0. The internal transition has the same

possibility in output function for example µint(S0 → S1) = 0.97 is the possibility

of λ̃(S0). Table 4.2 presents the value of frequency and dependency of the model

56

Figure 4.4: Two Fuzzy-DEVS atomic models using Dependency Method in the toy
case.

in Figure 4.3. As all the transitions are internal transitions, all the possibilities

are for internal transitions and output functions. All the possibilities in Table 4.1

and Table 4.2 are integrated with the graphical notation in Figure 4.4 for example

δ̃int(S3, 0.91) = S4, λ̃(S3, 0.91) = Port1!M , δ̃ext(S1, Port2?E, 0.75) = S4.

Table 4.1: Frequency and possibility of first toy case

S0→ S1 S1→ S2 S1→ S3 S1→ S4 S2→ S4 S3→ S4 S4→ S5

F 28 15 10 3 15 10 28
µint 0.97 0.94 0.91 0 0.94 0.91 0
µext 0 0 0 0.75 0 0 0.97

Table 4.2: Frequency and possibility of second toy case

S6→ S7 S6→ S8 S7→ S9 S8→ S9

F 5 8 5 8
µint 0.83 0.89 0.83 0.89

Possibility Measures are used to execute the Fuzzy-DEVS model for simulation

because Possibility Measures can focus on the mainstream of the process. It is defined

in section 2.4.2. This method is similar to a defuzzification method which changes

57

fuzzy sets into crisp value. When concerning about the disjunctions of the events, we

choose the maximum value of the event as the possibility. For the internal transition

and output function, if the elapsed time reaches ta, the one with the maximum

possibility is chosen. For the external transition, if the elapsed time does not reach

ta and input events X come, the one with the maximum possibility is chosen. In

the toy case, for example the upper model in Figure 4.4, the state starts from S0

and goes immediately to S1 by δ̃int(S0, 0.97) and λ̃(S0, 0.97) = Port1![]. If the

input event Port2?E comes before taS1, the external transition is triggered and state

goes to S4 (i.e. δ̃ext(S1, Port2?E, 0.75) = S4). Otherwise, the internal transition

δ̃int(S1, 0.94) = S2 is executed with λ̃(S1, 0.94) = Port1!W as 0.94 is bigger than

0.91. Continually, after taS2, δ̃int(S2, 0.94) = S4 is executed with λ̃(S1, 0.94) =

Port1!L. In the end, if the state is S4, it waits until Port2?E comes to trigger the

external transition δ̃ext(S4, Port2?E, 0.97) = S5.

4.2.3 Adapted Fuzzy Time Controller (AFTC)

AFTC is developed from fuzzy discrete event controller system (FDECS) (Khan,

2008). Since the same activity or value can have different time intervals which consist

of start time and finish time recorded in the event logs, we propose to use fuzzy

control to get a crisp time from these time intervals. The general structure of AFTC

is shown in Figure 4.5. The time duration and the remaining time are the input

side of AFTC. The reason of choosing remaining time as the control to activate the

specific fuzzy rule in the AFTC is that the remaining lifetime can be used to get

sample measurements for predictions. According to section 3.2.1, each event has a

start time and a finish time and each event relates to an activity or a value. Hence,

a multi-set of start time and finish time can be derived from event logs. The time

duration is calculated by subtraction of finish time and start time in the same case.

The remaining time is calculated by subtraction of the finish time of the last case

and the finish time of the current case in the same instance. For example in Table

3.1, the time duration of the value “Men” in product X1 is 00 : 30 − 00 : 20 = 10

minutes, in product X2 is 02 : 10 − 02 : 00 = 10 minutes. The remaining time of

the value “Men” in product X1 is 01 : 10 − 00 : 30 = 40 minutes, in product X2 is

02 : 30− 02 : 10 = 20 minutes.

In Figure 4.5, the inputs of time duration and remaining time are converted

into linguistic variables through fuzzifier. The fuzzifier compares the inputs crisp

values with certain levels and generates linguistic values of each input variable for

inference kernel connected with knowledge base. The knowledge base includes two

58

Figure 4.5: The general structure of AFTC.

parts: membership function, which defines the relations between linguistic variables

and time variables; rule base, which characterizes the control of remaining time with

a set of linguistic control rules. The inference kernel allows human decision to inte-

grate with fuzzy concepts, membership function and inference rules. The defuzzifier

converts the fuzzy sets into crisp value. There are two defuzzifiers in this system:

time duration and time speed. Five fuzzy time are defuzzified into five crisp time.

Five fuzzy speeds are defuzzified into one crisp speed. The defuzzifier is based on the

weighted average method. Speed control interprets the crisp speed value and acti-

vates one of the crisp time values. Table 4.3 and Table 4.4 show an example of the

membership functions for the time duration and remaining time. Table 4.5 presents

another example of the rule base to select crisp time. These three tables are designed

and proposed to be appropriate in D2FD method.

Table 4.3: Membership functions of input fuzzy time duration

Membership Function - MF Time Duration

Very Small - VS 0 - 20%
Small - S 20% - 40%

Medium - M 40% - 60%
Big - B 60% - 80%

Very Big - VB 80% - 100%

Based on Table 4.3 and Table 4.4, the set of time is split averagely into five parts.

The percentage is calculated based on maximum time (time duration and remaining

59

Table 4.4: Membership functions of input fuzzy remaining time

Membership Function - MF Remaining Time

Very Low - VL 0 - 20%
Low - L 20% - 40%

Adequate - A 40% - 60%
High - H 60% - 80%

Very High - VH 80% - 100%

Table 4.5: Illustration of rules applied for time selection

NO Range of S Selection of speed Selection of time T F

1 0 - 20% Very Fast T1
2 20% - 40% Fast T2
3 40% - 60% Medium T3
4 60% - 80% Slow T4
5 80% - 100% Very Slow T5

time) and minimum time (time duration and remaining time). TV S, TS, TM , TB, TV B

represent five sets of time duration based on the percentage. TV L, TL, TA, TH , TV H

represent five sets of remaining time based on the percentage. The possibility of each

set of time is calculated by the frequency of the set and the whole set in equation 4.9.

µi =
Fi
F

(4.9)

Where µ is the possibility, F is the frequency of time and i represents the set of

time. i can represent V S, S, M , B, V B and V L, L, A, H, V H. Once the possibilities

are obtained, the ten sets of time are fuzzed. Moreover, the inference kernel divides

the input fuzzy time duration into five groups. Fuzzy time sets are classified as {T̃V S,

T̃S, T̃M), (T̃V S, T̃S, T̃M , T̃B), (T̃V S, T̃S, T̃M , T̃B, T̃V B), (T̃S, T̃M , T̃B, T̃V B), (T̃M , T̃B,

T̃V B)}. Fuzzy speed sets include {(T̃V L, T̃L, T̃A, T̃H , T̃V H)}. The weighted average

method is used to transform these fuzzy sets into crisp values. The weighted average

method is defined by the following equation:

Z =

∑
µ(z) • z∑
µ(z)

(4.10)

Where z is the mean value in the set of Z and µ represents the possibility.

The fuzzy time sets are converted into crisp time values {T1, T2, T3, T4, T5}.
Correspondingly, the fuzzy speed sets are converted into crisp speed value {S}. Based

60

on the rule base in Table 4.5, the time T F can be finally selected as the time of the

state in Fuzzy-DEVS atomic model.

In the toy case, imagine that we not only get time duration and remaining time

of the value “Men” in product X1 and X2, we get a set of time duration {10, 10, 15,

31, 13, 17, 21, 11, 25, 9} and a set of remaining time {30, 10, 35, 25, 19, 12, 38, 28,

41, 25}. The maximum time is 31 and 41 and the minimum time is 9 and 10. Then

we get the mean values: zV S = 11.2, zS = 15.6, zM = 20, zB = 24.4, zV B = 28.8,

zV L = 13.1, zL = 19.3, zA = 25.5, zH = 31.7, zV H = 37.9. The possibility can also be

obtained: µV S = 0.5, µS = 0.2, µM = 0.1, µB = 0.1, µV B = 0.1, µV L = 0.2, µL = 0.1,

µA = 0.3, µH = 0.1, µV H = 0.3. Based on weighted average method, the crisp time

values T1 = 13.4, T2 = 14.6, T3 = 16, T4 = 17.4, T5 = 21.1, S = 26.7. The speed is

“Medium” in Table 4.5 so T F = T3 = 16.

4.2.4 Applying Fuzzy Cluster for Fuzzy-DEVS Coupled Model

As the Fuzzy-DEVS atomic model generalizes four functions into fuzzy sets,

the Fuzzy-DEVS coupled model also needs to apply fuzzy sets. The problem is the

mismatch of the input events and the output events between models or components.

Fuzzy cluster, introduced in section 2.4.5, not only forms groups in such a way that

data in the same group are similar to each other, but also extends more information

which allows for some ambiguity in the data. Here, we propose a new Fuzzy-DEVS

coupled model. This model applies fuzzy cluster to generalize three functions into

fuzzy sets, i.e. external input coupling, external output coupling, internal coupling.

The data can be organized in an n-by-k matrix, where the rows correspond to the

objects (or cases) and the columns correspond to the variables. In the data, the

variables can be identified as clusters. We propose to use membership coefficients

to assign these variables. Here, we do not consider about the human analysis or

ontological alignment. Hence, if two variables have the same name or one belongs to

one part of another, they can be aligned as a cluster. Moreover, a new select function

is proposed appropriate to this new model. This new Fuzzy-DEVS coupled model Ñ

is defined as follows:

Ñ =< X, Y, D̃, ẼIC, ẼOC, ĨC, SELECT ′ > (4.11)

Where

� X: input event sets.

� Y : output event sets.

61

� D̃: Fuzzy-DEVS component sets.

� ẼIC ⊆ {((Ñ , ipÑ), (d̃, ipd̃), (µEIC , e)) | ipÑ ∈ IPorts, d̃ ∈ D̃, ipd̃ ∈ IPortsd̃},
fuzzy external input coupling.

� ẼOC ⊆ {((d̃, opd̃), (Ñ , opÑ), (µEOC , e)) | opÑ ∈ OPorts, d̃ ∈ D̃, opd̃ ∈ OPortsd̃},
fuzzy external output coupling.

� ĨC ⊆ {((ã, opã), (̃b, ipb̃), (µIC , e)) | ã, b̃ ∈ D̃, opã ∈ OPortsã, ipb̃ ∈ IPortsb̃},
fuzzy internal coupling.

� SELECT ′ : (d̃,max(MÑ)) | d̃ ∈ D̃, µEIC , µEOC , µIC ∈MÑ .

In this new Fuzzy-DEVS coupled model Ñ , Fuzzy-DEVS component sets D̃

represent Fuzzy-DEVS atomic models in the equation 2.4. X and Y are the sets of

input events and output events from all these components. Three functions EIC,

EOC, IC are converted into fuzzy sets. In the ẼIC, the coupled model Ñ has a

corresponding input port ipÑ . The component d̃ has a corresponding input port ipd̃.

The coupling between these two ports has a membership coefficient µEIC (between 0

and 1) with the elapsed time e. In the ẼOC, the coupled model Ñ has a corresponding

output port opÑ . The component d̃ has a corresponding output port opd̃. The

coupling between these two ports has a membership coefficient µEOC (between 0

and 1) with the elapsed time e. In the ĨC, opã represents the output port of the

component ã and ipb̃ represents the input port of the component b̃. Between these

two ports, there is a membership coefficient µIC (between 0 and 1) with the elapsed

time e. All the three membership coefficients µEIC , µEOC , µIC are calculated by the

Dependency Method. The membership coefficient comes from the possibility of the

corresponding output function. Meanwhile, these membership coefficients are also

related to the state and the time. The similar activities or values perhaps happen

in different models or components. Hence, the corresponding transitions and output

functions probably have different possibilities. Therefore, the membership coefficients

may change with the change of the elapsed time e. The original function SELECT

is no more suitable for this new Fuzzy-DEVS coupled model. The new SELECT ′

proposes to make a selection of the component d̃ which has the maximum membership

coefficient. If there are multiple input events triggered, the maximum membership

coefficient refers to µEIC and µIC . If there are multiple output events triggered, the

maximum membership coefficient refers to µEOC .

In the toy case, we can finally construct a Fuzzy-DEVS coupled model depicted in

Figure 4.6. This coupled model is represented by a big box with two ports IPort and

62

Figure 4.6: Fuzzy-DEVS coupled model in the toy case.

OPort. It consists of two Fuzzy-DEVS atomic model as same as the ones in Figure 4.4.

In the upper atomic model, the input events have Port2?E, the output events include

Port1![], Port1!W , Port1!M , Port1!L. In the atomic model below, there is no input

events and the output events include Port3!S, Port3!E. When considering about ĨC

between two components, the situations can be distinguished by the state and time.

In order for explanation, we assume that the Fuzzy-DEVS atomic model in Figure 4.7

is inside the Fuzzy-DEVS coupled model in Figure 4.6. For the state, if the state is

S7, the membership coefficient of Port2?E and Port3!E is 0. If the state is S8, the

membership coefficient of Port2?E and Port3!E is 0.89. It means that the customer

who likes electric prefers TV&Video. For the time, if the elapsed time reaches taS11

and the state is S11, the membership coefficient of Port2?E and Port4!E is 0.92.

When the elapsed time reaches to taS11 + taS12 + taS13 and the state goes to S13, the

membership coefficient of Port2?E and Port4!E is 0.94. As a result, µIC changes

from 0.92 to 0.94. When considering about ẼOC, the membership coefficients are

related to all the output events for example the membership coefficient of OPort!M is

0.91, OPort!L is 0.94, OPort!S is 0.83. Since there is only one Fuzzy-DEVS coupled

model, ĨC is related to ẼOC in the other coupled models. SELECT ′ is triggered

when the output functions occur from the atomic model below in Figure 4.6 and in

Figure 4.7. If the state is S8 and S11 at the same time, Port2?E selects Port4!E to

be connected with each other instead of Port3!E because the membership coefficient

0.92 is the maximum.

63

Figure 4.7: The hypothetical Fuzzy-DEVS atomic model in Figure 4.6.

4.3 Conclusion

This section presents the important part of the D2FD method. The approach

from TS to Fuzzy-DEVS consists of several methods. An improved region-based ap-

proach is proposed to discover the regions in TS associated with a c-groups method.

The c-groups method is able to improve the performance of this approach. Several

rules are proposed to transform the elements of event logs and TS into Fuzzy-DEVS.

Dependency method is proposed to convert three functions of DEVS into fuzzy sets.

Possibility Measure defuzzifies these fuzzy sets into crisp values for simulation. AFTC

is proposed to first fuzzify the time duration and the remaining time and then de-

fuzzify into crisp time value. A new formalism of Fuzzy-DEVS coupled model is

proposed which extends the original Fuzzy-DEVS formalism. Fuzzy cluster is applied

to connect the components to form the entire Fuzzy-DEVS coupled model. In the

toy case, we finally construct a Fuzzy-DEVS coupled model depicted in Figure 4.6.

The simulation results of this model are able to realize the goals in section 3.3.1.

After explain the whole methodology of D2FD method, we continue to present the

implementation of this method on the computer in chapter 5.

64

Chapter 5

Implementation of D2FD Method

5.1 Introduction

Chapter 3 and chapter 4 have described the D2FD method from event data to

Fuzzy-DEVS model. This method is implemented as a plugin in the process mining

framework (ProM). According to Figure 1.2, the simulation tool SimStudio is used for

the simulation of the Fuzzy-DEVS model. In order to evaluate the implementation

of D2FD method, two real case studies are provided coming from Dutch Employee

Insurance Agency and Rabobank Group ICT (Information and Communication Tech-

nologies) respectively. This chapter is organized as follows. Section 5.2 introduces the

development environments ProM and SimStudio. Section 5.3 presents the applica-

tion of the whole process from event data to Fuzzy-DEVS models and its simulation.

The plugin is proposed based on D2FD method and implemented on ProM. The case

study of Dutch Employee Insurance Agency is used to support the explanation of the

application. The case study of Rabobank Group ICT gives some other modeling and

simulation results. Section 5.4 concludes this chapter.

5.2 Development Environment

D2FD method is implemented based on the plugin of ProM. On ProM, there are a

lot of plugins which can provide different kinds of process mining techniques. Besides,

there are also a big amount of process mining tools. The simulation of D2FD method

is based on the integration of SimStudio. There are also a lot of DEVS simulators

currently available for different kinds of DEVS extensions. In this section, we present

the other process mining tools and DEVS simulators to make a comparison.

65

5.2.1 Process Mining Framework (ProM)

Most of the existing Business Intelligence (BI) software products are data-centric

and limited by rather simple forms of analysis. Some other process mining tools are

developed based on the expert assumption and special enterprise requirements. For

this reason, ProM (Van der Aalst, 2011) is proposed as a “plug-able” environment

for process mining using XES as input format. It provides many kinds of analysis

and supports many different types of models. The basic idea of ProM is to provide

a basic framework to allow for all kinds of process mining techniques. When people

develop new process discovery algorithms, they do not need to worry about extracting,

converting and loading event data. This event data is based on XES standard as

explained in section 2.3.1. Moreover, ProM can also provide the standards of model

types for example TS and Petri Net. ProM is extremely powerful and it develops new

functionality every day.

Table 5.1: Some of the process mining plug-ins in ProM 6.7

Plug-in Description

Alpha miner
Discovers a Petri net using the α-algorithm, see
Section 2.3.3.1

Heuristic miner
Discovers a C-net using heuristic mining, see Sec-
tion 2.3.3.3

Transition system miner
Discovers a transition system based on a state
representation function and a log, see Section 3.4

Transition system to Petri net
Uses state-based regions to create a Petri net
based on a transition system, see Section 2.3.3.2

Convert CSV to XES
Transforms the CSV file into the event logs, see
Section 5.3.2

The current version of ProM is 6.71. It is implemented in Java and can be

downloaded free of charge. ProM 6.7 is distributed as a package. This package consists

of four parts which are framework, plugins, contexts and models. The framework

is based on the GNU Public License (GPL) open source license. The plugins are

distributed as separate packages using the Lesser GNU Public License (L-GPL) open

source license. This means that the software which uses the core needs to follow

the GPL license. However, if a plug-in is built based on a changed version, it is

required to distribute this changed plug-in under the L-GPL license as well. The

contexts are used for collecting process mining algorithms. The models are used for

1http://www.promtools.org/doku.php

66

its construction and visualization. On ProM 6, hundreds of plugins are implemented

for the techniques of process mining. Table 5.1 presents some of the plugins which

are explained in this thesis. The algorithms of these plugins have been explained in

this thesis. Later in section 5.3, the interface of ProM 6 will be shown together with

the implementation of D2FD method.

5.2.2 Other Process Mining Tools

ProM provides a lot of plugins which develop different kinds of process mining

techniques. Besides, there are also several research groups developing process dis-

covery tools. Table 5.2 presents some of the process mining tools currently available

(Van der Aalst, 2011).

Table 5.2: Examples of process mining tools

Product name Organization

ARIS Process Performance
Manager

Software AG (www.softwareag.com)

Enterprise Visualization Suite Businesscape (www.businesscape.no)
Disco Fluxicon (www.fluxicon.com)
Interstage BPME Fujitsu (www.fujitsu.com)
OKT Process Mining suite Exeura s.r.l. (www.exeura.com)
ProcessAnalyzer QPR (www.qpr.com)
Reflect—one Pallas Athena (www.pallas-athena.com)
Reflect Futura Process Intelligence (www.futuratech.nl)

The ARIS Process Performance Manager by Software AG can provide some pro-

cess mining techniques and it focuses mainly on performance analysis (drilling down

to instance level, bench marking and dashboards) (Scheps, 2011). The Enterprise

Visualization Suite by Businesscape puts emphasis on the analysis of SAP (Systems

Applications and Products) supported business processes. Disco by Fluxicon is a

stand-alone process mining tool. The fuzzy mining approach is applied in this tool

with a high performance (Günther and Van der Aalst, 2007). Interstage BPME

(Business Process Management through Evidence) by Fujitsu provides a service for

Interstage Automated Process Discovery. The OKT Process Mining suite by Exeura

uses the process discovery approach based on the clustering of log traces (Greco et al.,

2006). QPR ProcessAnalyzer uses a process discovery algorithm inspired by the α-

algorithm and heuristic mining. Several Finish hospitals have already applied this

tool. Reflect—one by Pallas Athena and Reflect by Futura Process Intelligence are

67

essentially the same product. They are used as mature and stand-alone tools for pro-

cess mining. The genetic mining approach and the filtering of infrequent behavior are

used as two different discover algorithm. Moreover, Reflect can create social networks

based on handover of work.

5.2.3 Simulation Engine SimStudio

The SimStudio (Traoré, 2008) is used as a simulator, implemented in Java pro-

gramming language, that manages the communications between models and manage

time. The specifications of models in SimStudio is based on either the Classic DEVS

or the Parallel DEVS formalisms. Figure 5.1 presents a DEVS meta-model using

UML diagram in SimStudio that offers a Model abstract class, from which derive an

Atomic Model abstract class and a Coupled Model abstract class and a Port abstract

class which is extended by Input and Output. The models of user must derive from

these sub-classes and override the abstract methods. While the Port abstract class

is composed of Model abstract class, the coupled model aggregates the Model. In

the Model class, there are attributes of sim (simulator that drives the model), name

(name of the model), id (identify of the model), X (list of inputs) and Y (list of out-

puts). The operations are based on adding, setting and getting of these attributes.

In the Atomic Model sub-class, there is state attribute (current state of the model).

The operations of addStateV ariable, getV ar and setV ar are used for the adding,

setting and getting of the state of the model. lambda generates outputs, deltaInt

determines the next state of the model when an internal transition occurs, deltaExt

determines the next state of the model when an external transition occurs, ta deter-

mines the duration of the current state. In the Coupled Model sub-class, there are the

attributes of subModels (list of sub-models), EIC (list of external input coupling),

EOC (list of external output coupling) and IC (list of internal coupling). The op-

erations include the adding of these attributes. Besides, getLinkedOutput gets the

linked outputs, getLinkedInput gets the linked inputs, getLinkedInernalPort gets

the internal linked port for a given port, getLinkedPort gets all the linked ports for

a given port. In the Port class, the attributes are model, value and name. The

operations focus on setting and getting these attributes.

The models in Figure 5.1 are then executed by predefined engines. In order to

communicate between models, the Message abstract class defines some specifications

of the various types of messages. The types of messages consist of I Messages (the

initialization message), S Message (the internal transition message), X Message

(the external transition message) and Y Message (the output message). Figure 5.2

68

Figure 5.1: The UML diagram of Model and Port in SimStudio.

presents the UML diagram of Simulator Engines in SimStudio. The Simulator class

drives an atomic models. model is its attribute. init initializes the simulation,

getModel returns the driven atomic model, internalTransition handles an internal

transition and externalTransition handles an external transition. The Coordinator

class drives a coupled model and it is a specific simulator. There are two attributes:

model represents the driven coupled model and subjects represents list of the sons

(simulators). getModel returns the model of the coordinator, addSubject adds a

son to the simulator, init initializes the coordinator and sends messages to all the

sons, internalTransition handles an internal transition, externalTransition sends

the messages to EIC, transfert sends the messages to EOC and IC and updateTn

calculates the date of the next event. The Simulator and Coordinator are inherited

from the AbstractSimulator class which contains the basis of them. In the Abstract-

Simulator class, there are the attributes of tn (date of next event), tl (date of last

event), e (elapsed time since last event) and parent (parent simulator). The opera-

tions are based on handling of these attributes. Especially, handleMessage handles

69

the incoming four types of messages. The RootCoordinator class is identified as the

central manager to trigger the simulation. The attribute sim represents the triggered

simulator. init initializes the simulator and run launches the simulation. Moreover,

the DEVS type abstract class defines the types of input and output. The types in-

clude integer, character, interval of real numbers or integers, string, real number and

enumeration of objects.

Figure 5.2: The UML diagram of Simulator Engines in SimStudio.

5.2.4 Other DEVS Simulators

DEVS simulator is able to improve the performance of DEVS modeling and

simulation for the model users. Here we give some other DEVS simulators. Each

simulator has a certain functionality to make it more efficient in the certain problem

areas. These simulators all conforms to the DEVS specification.

ADEVS2 is a simulator which focuses on performance and lightweightness. The

code language is based on C++. The simulator is specialized to the models due to

2https://web.ornl.gov/∼nutarojj/adevs/

70

the extensive use of templates. This tool has been developed by the group of Zeigler

in the University of Arizona.

CD++3 is written in C++ and is focused on the Cell-DEVS formalism (Wainer

and Giambiasi, 2001). This tool is built as a hierarchy of models, each of them

related to a simulation entity. This tool also allows for some graph-based notations.

In addition, Jacques and Wainer (Jacques and Wainer, 2002) propose an approach

of mapping of the Petri Net modeling formalism into the DEVS modeling formalism

using CD++.

DEVS-Suite4 (Kim et al., 2009) is developed by the language JAVA. This tool

contains an additional simulation viewer and a tracking environment. It shows a high

portability for both the model and the simulator.

MS4 ME (Seo et al., 2013) is written in Java on the platform Eclipse. This tool

is not open source and free. However, several important functions are not available

such as hierarchical coupled models.

Python DEVS (Van Tendeloo and Vangheluwe, 2014) is a simulator written in

Python. This tool has a small code base but it is extremely lightweight. It has been

developed by Modeling, Simulation and Design Lab (MSDL) in the University of

McGill.

VLE5 (Virtual Laboratory Environment) (Quesnel et al., 2009) is used a com-

plete and powerful simulator to analysis complex systems. This tool connects the

heterogeneous models and simulates them based on a formal basis. It also defines

experimental schemes for loading simulation data and saving models in XML. The

provided libraries allow the people to develop personal programs. This tool is devel-

oped by the computer science lab in the University of the Littoral Opal Coast.

XSY6is written in Python. The main feature is the verification engine. This tool

uses a scanning list as scheduler. It is developed by Moon Ho Hwang and current

version is 1.0.0.

Van Tendeloo (Van Tendeloo, 2013) has made a test of performance for all the

above simulators except SimStudio. The test is based on several criteria to compare

the efficiency and functionality of these simulators. We apply the same test of traffic

model on SimStudio and get some results of performance. Table 5.3 and Table 5.4 have

shown the general results of the comparison. IDE represents Integrated Development

Environment. GUI represents Graphical User Interface. CLI represents Commend

3http://cell-devs.sce.carleton.ca/mediawiki/index.php/Main Page
4http://devs-suitesim.sourceforge.net/
5http://www.vle-project.org/
6https://code.google.com/archive/p/x-s-y/

71

Line Interface. The test of traffic model on SimStudio takes 0.03 seconds which is close

to ADEVS so the performance of SimStudio is fast. As a result, as ProM provides

general interface for kinds of model, SimStudio is easy to be planted in the plugin on

ProM and be adapted to Fuzzy-DEVS.

Table 5.3: General comparison of first part of DEVS simulator

ADEVS CD++ DEVS-Suite MS4 ME

Formalism DynDEVS Cell-DEVS PDEVS PDEVS
IDE no optional no yes
GUI no optional yes yes

Parallel yes yes no no
Distributed no yes no no

Stop condition time time steps tiem/steps
Performance fast medium slow medium
Interactivity no file GUI GUI
Debugging medium medium medium medium

Enforcement no no no partial

Table 5.4: General comparison of second part of DEVS simulator

PyDEVS VLE XSY SimStudio

Formalism CDEVS DSDE CDEVS PDEVS
IDE no optional no optional
GUI no optional no no

Parallel no no no no
Distributed no yes no yes

Stop condition function time time time
Performance slow fast slow fast
Interactivity no no CLI no
Debugging easy easy medium easy

Enforcement no yes no no

5.3 Application of the D2FD Method

As explained, ProM is used as the platform to implement D2FD method. A new

plugin called Convert to Fuzzy −DEV S using Regions is designed on ProM. This

plugin7 is synchronized on the server managed by the Architecture of Information

7https://svn.win.tue.nl/repos/prom/Packages/TS2DEVS

72

Systems (AIS) group at Eindhoven University of Technology (Tu/e). SimStudio as

the simulation engine is integrated with this plugin. The main function of this plugin

is to convert TS into Fuzzy-DEVS model and simulate this model. Moreover, plugin

Convert CSV to XES and plugin Transition system miner in Table 5.1 are used to

transform from CSV to event logs and from event logs to TS respectively. According

to D2FD method explained in Chapter 3 and 4, we use a real case study of Dutch

Employee Insurance Agency to explain how to get Fuzzy-DEVS model with simulation

results from CSV files.

5.3.1 Case Study of Dutch Employee Insurance Agency

The case study is conducted on real event data collected from an employee insur-

ance agency in Netherlands. This agency is the merger of two former organizations

that were responsible for respectively financial support of unemployed and the brokers

function on the labor market. Now these two functions are combined. The unem-

ployed gets help of finding a new job and UWV also checks if sufficient efforts are

made to get another job. From the description8, the agency is interested in insight

and recommendations of event data and two main goals can be captured:

1. How the channels are being used?

2. When are customers moving from one contact channel to the next?

Five CSV files are given to measure different aspects of customers behavior:

� Question.csv records the behavior of customers when asking questions.

� Werkmap −message.csv records the behavior of customers sending messages

through a digital channel.

� Clicks Logged In.csv records the behavior of known customers when using the

website.

� Clicks NOT Logged In.csv records the behavior of unknown customers when

using the website.

� Complaints.csv records the behavior of customers when complaining.

These files are also defined by the following nine dimensions (Jalali, 2016):

8https://data.4tu.nl/repository/collection:event logs real

73

� Date: to capture the calendar information. This dimension has a hierarchy of

the following levels: Year → Half Year → Quarter → Month → Week → Day..

� ComplainType: to capture the complain information. This dimension has a

hierarchy of the following levels: Complain 1 → Theme → Subtheme → Topic.

� Question: to capture the question information. This dimension has a hierarchy

of the following levels: Question 1 → Theme → Subtheme → Topic.

� Page: to capture the visited page information. This dimension has a hierarchy

of the following levels: WebSite 1 → vhost (host address) → (Page) Name.

� Channel: to capture the available channels for communication.

� Customer: to capture customer information.

� Session: to capture the session information.

� IP : to capture the IP information.

� Message: to capture the Message information.

Heidari and Assy (Heidari and Assy, 2016) take these data for process mining

analysis. They propose a new methodology with three major phases before analysis

and present the analysis of the result on the click data. Most of studies make a

complete analysis for data but the underlying relationships between data are not

identified. In another words, the modularity is not taken into account.

For this reason, we propose to use D2FD method with three plugins on ProM to

achieve these two goals. Two CSV files Question.csv and Werkmap−message.csv
are selected. These two files can be opened by Microsoft Excel. Figure 5.3 shows

part of event data in Question.csv. There are 123,404 events. Each event has a

reference of CustomerID and 16 attributes. Figure 5.4 shows part of event data in

Werkmap − message.csv. There are 66059 events. Each event has a reference of

CustomerID and 7 attributes.

Figure 5.3: The screen-shot of Question.csv.

74

Figure 5.4: The screen-shot of Werkmap−message.csv.

5.3.2 Convert CSV to XES

According to guideline 15 and 16 in section 3.2.2, both of two event data have the

start time and the finish time. The instance is identified by CustomerID. The events

are first ordered by instance and then ordered by start time. From Question.csv, we

construct the conceptual structure shown in Figure 5.5. All the words in the figures

are translated from Dutch language to English language. Here, we only give the

useful part of the structure. WN represents the Netherlands agency and WW rep-

resents the human resource. Internet Helpdesk and WW belong to the property of

QuestionTheme. Each one has several values on the property of QuestionSubtheme.

Figure 5.5: The conceptual structure of Question.csv.

From Werkmap − message.csv, we construct the conceptual structure shown

75

in Figure 5.6. There is only one Internet Helpdesk with one EventType property

of Workbook : message. Workbook : message has a variable Channel between 1

and 2. Channel is the property and 1 and 2 are the values. When we look at these

two conceptual structures, Workbook : message has a stronger relationship with

Workbook : general, Workbook : application, Workbook : taken and Workbook :

disturbance. Hence, the child of Workbook : message which is the variable Channel

is identified as private value. All the other values are identified as public values.

Figure 5.6: The conceptual structure of Werkmap−message.csv.

In order to select process instance, the interesting level of two conceptual struc-

tures are QuestionSubtheme property and Channel property. As a result, the final

selected public values are: Registration general, Registration disturbance, Other

general, Other disturbance, Request distribution : general, Request distribution :

disturbance, Workbook : general, Workbook : application, Workbook : taken,

Workbook : disturbance, Workbook. Registerandlogin, CV and Extra services

are not interesting so they are not selected. The final selected private values are:

Channel 1, Channel 2.

The plugin Convert CSV to XES9 on ProM is used to transform event data

to event logs. This plugin is designed by Mannhardt F., Tax N. and Schunselaar

D.M.M. from Tu/e. Figure 5.7 presents the initial screen of ProM 6 if ProM is

started. From this screen, we can load logs and models through the button “import”.

The Question.csv and Werkmap − message.csv are loaded in this screen. If an

event log is loaded, we can also view the underlying data in different ways. Another

operation is to apply a plugin and start doing all kinds of analysis. By pressing

the triangle button, we go to the plugin screen as shown in Figure 5.8. All the

available plugins are shown in the middle chart and Convert CSV to XES is shown

9https://svn.win.tue.nl/repos/prom/Packages/CSVImporter/

76

Figure 5.7: The initial screen of ProM 6.

Figure 5.8: The plugin screen of Convert CSV to XES on ProM 6.

in the screen. The left side is the input where we put Question.csv. The right

side is the output where we get the corresponding event logs. The bottom side

describes the selected plugin. Once we press the button “play”, Question.csv is

transformed through the screen as shown in Figure 5.9. Customer ID is converted

to trace in event logs. ContactT imeStart is converted to the extension of start

timestamp and ContactT imeEnd is converted to the extension of end timestamp.

The interesting level is found in the QuestionSubtheme property and it is transformed

into the extension of concept name in event logs. Same for Werkmap−message.csv,

Customer ID is converted to trace in event logs. EventT imeStart is converted to the

extension of start timestamp and EventT imeEnd is converted to the extension of end

timestamp. Eventtype property is transformed into the extension of concept name in

77

Figure 5.9: The screen of the plugin Convert CSV to XES.

event logs. At last, we get two event logs Question.xes and Werkmap−message.xes.

5.3.3 Mine Transition System

Two event logs Question.xes and Werkmap −message.xes are obtained from

Question.csv and Werkmap −message.csv. In order to get TS models from event

logs, the plugin Transition system miner10 designed by Verbeek H.M.W. at Tu/e is

chosen. Figure 5.10 presents the screen of choosing this plugin. The event log from

Question.xes is added in the input side. The plugin is chosen in the middle. There

are four output objects: Mined Transition System represents the generated TS model;

Weights represent the weight of the transition in TS calculated by the frequency of

events; Start states represent the initial start in TS; Accept states represent the final

state in TS. The description of this plugin is on the bottom side. In the configuration

of this plugin, we choose the set abstraction so each set represents one activity or one

value. In TS, there is a “state explosion” problem. A simple process which has 10

parallel activities can construct a TS model with 210 = 1024 states and 10 × 2101 =

5120 transitions. For this reason, we set the collection size limit to 1 in order to get

the minimum number of the states.

Once we press the “start” button, a TS model is generated on ProM 6. Fig-

ure 5.11 presents the TS model from Question.csv. The initial state is at the top of

the model depicted by the dotted circle. The other states represent the 11 selected

public values depicted by the solid circle. The arcs connecting the circles represent

the transitions. The thickness of the arcs represents the weight of the transition.

10https://svn.win.tue.nl/repos/prom/Packages/StreamTransitionSystemsMiner/

78

Figure 5.10: The screen of the plugin Transition system miner.

Figure 5.11: The TS model from Question.csv on ProM 6.

By using the same procedure, the TS model from Werkmap −message.csv can be

mined. Here, we do not describe two TS models in detail. Later in the Fuzzy-DEVS

79

atomic model, a more detailed explanation is shown.

5.3.4 Convert to Fuzzy-DEVS From TS

Followed by the two TS models, we apply the proposed plugin Convert to Fuzzy−
DEV S using Regions7. The interface of this plugin is presented in Figure 5.12. In

the input side, the event logs and TS model from Question.csv are added. The reason

to put the event logs is to extract more information including time and frequency,

which TS model does not have. In the middle, we select the proposed plugin. In

output side, Fuzzy-DEVS represents the model and state represents the label of the

state. In the bottom, the author and its contact information are given.

Figure 5.12: The screen of the plugin Convert to Fuzzy −DEV S using Regions.

After pressing on the button “start”, the Fuzzy-DEVS atomic model is con-

structed automatically. Figure 5.13 presents the first Fuzzy-DEVS atomic model

generated from Question.csv. Figure 5.14 shows the corresponding scheme, accord-

ing to simulation results. As all the activities are the public values in the conceptual

structure, all the transitions are converted into the internal transitions defined as

the combination of wm, ! and the output event, represented as classical arrow. wm

represents the output port of this atomic model. Behind the graphical notation, the

possibility is added. The states are represented by the circle. Every state has a unique

identity number. The initial state is converted into the state with label of 1. The

output event of the initial state is []. The business process starts from the initial

state and continues the transitions automatically until it reaches the desired state.

80

Figure 5.13: Fuzzy-DEVS atomic model generated from Question.csv.

Figure 5.14: Represented scheme from Figure 5.13.

Through the same procedure, we can get the Fuzzy-DEVS atomic model from

Werkmap−message.csv. The second Fuzzy-DEVS atomic model is generated from

Werkmap −message.csv and presented in Figure 5.15. All the transitions are con-

verted into the external transitions defined as the combination of wm, ? and input

event, represented as diamond arrow. wm represents the input port of this atomic

model. The initial state is labeled as 1. Every external transition is related to a pos-

sibility at the end of the graphical notation. As all the activities are private activities,

all the states are set by the infinite time.

The first atomic model is like a generator which is consistently sending outputs.

The second atomic model is like a processor which is waiting for events. In order to

81

Figure 5.15: Fuzzy-DEVS atomic model generated from Werkmap−message.csv.

generate the coupled model, we consider about the port wm for the function ĨC, to

connect two atomic models. Nevertheless, as there is only one function ĨC in this

case study, ẼIC, ẼOC and SELECT ′ are not triggered.

Each state of atomic model in Figure 5.13 with a leaving internal transition is

given a time life function. This time life function is calculated by AFTC. Figure 5.16

presents one part of the results of the time duration. The initial state is set as

the time of 0. This state will immediately go to the next state. In the second

state [Uitkeringaanvragen : V erstoring] (Request distribution : disturbance), time

duration and remaining time are considered as inputs. By applying membership

functions, the fuzzy time with five linguistics V S, S, M , B, V B and the fuzzy speed

with five linguistics V L, L, A, H, V H are shown. Based on the weighted average

method, we get five crisp time and one crisp speed. According to the rule base,

the speed is very fast, the final time of Request distribution : disturbance is 1122.3

seconds. Through the same calculation of AFTC, we get the final time of [Werkmap]

(Workbook) is 2397.69 seconds.

5.3.5 Integrated SimStudio and Its Simulation Results

SimStudio is integrated with the plugin Convert to Fuzzy − DEV S using

Regions. Both of them use JAVA as the programming language. As explained

before, SimStudio focuses on either CDEVS or PDEVS. In order to adapt to Fuzzy-

DEVS, the possibility and membership coefficient µ is sent to SimStudio. In the

atomic model, based on Possibility Measures, SimStudio collects all the internal tran-

sitions δ̃int and the external transitions δ̃ext in the same state and selects the one with

82

Figure 5.16: Part of fuzzy time results from Question.csv by using AFTC.

maximum possibility µ. In the coupled model, based on the function SELCET ′, Sim-

Studio collects all the external input couplings ẼIC, the external output couplings

ẼOC and the internal coupling ĨC and selects the one with maximum membership

coefficient µ. The crisp final time from AFTC is given to SimStudio for simulation.

Figure 5.17: Part of simulation results from Question.csv and Werkmap −
message.csv by SimStudio.

In the case study, part of the simulation results of the coupled model is shown

in Figure 5.17. The number before colon represents the time series of minute. The

activities or values after colon are output function in the first atomic model and state

in the second atomic model. The state shows the number of the channel which is being

83

used. The time between two time series corresponds to the final crisp time of the state

in the first atomic model. When the elapsed time is equal to the time, the internal

transition with the maximum possibility executes and sends the output function to

the corresponding port wm. The second atomic model receives this output function

and execute the external transition with the maximum membership function. Then

the state moves to a new state. Based on fuzzy cluster, five values in the first atomic

model have membership coefficients with external event Workbook : message. In

Figure 5.17, the fuzzy time of Werkmap (Workbook) is around 39 minutes. After

39 minutes and at the time series of 40, the output function Workbook is sent to the

second atomic model to execute the external transition. The membership coefficient

µĨC between Workbook and Workbook : message is 0.9995915. The state goes to

channel 1 with the maximum membership function of external transition 0.9999772 in

Figure 5.15. This proves that the activity of Workbook is using channel 1. Table 5.5

summarizes the membership coefficient µĨC . This µĨC changes when the elapsed time

e changes. The process of the simulation reveals the critical activities and handles

the two goals of this case study.

Table 5.5: The membership coefficient µĨC with the elapsed time e

Workbook : message Workbook : message

e 1-40 40-58
Workbook 0.9995915 0
Workbook : general 0.99519235 0.8436912
Workbook : application 0.9897959 0.9233792
Workbook : taken 0.98 0.9603524
Workbook : disturbance 0.9944444 0.8633422

5.3.6 Case Study of Rabobank Group ICT

In this section, we present the second case study about Rabobank Group ICT.

From the description11, it covers two parts of an IT Service Management (ITSM).

These parts are Change Management and Incident Management from the ITIL (In-

formation Technology Infrastructure Library) framework. Rabobank is looking for

fact-based insight into sub-questions, concerning the impact of changes in the past,

to predict the workload when future changes. One of the goals is to design a pre-

dictive model to support Incident Management with less impact of workload at the

11https://data.4tu.nl/repository/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

84

Service Desk and/or IT operations. Thaler et al. (Thaler et al., 2014) take this data

and propose an integrated solution to make a detailed analysis of data. The relevant

processes (Interaction Management, Incident Management and Change Management)

at Rabobank are summarized as follows:

� Interaction Management. In order to manage calls or mails from customers

(Rabobank colleagues) at the Service Desk concerning disruptions of ICT ser-

vices, a Service Desk Agent (SDA) records them in an Interaction and relates

them to an Affected Configuration Item (CI). The SDA can either resolve the

issue for the customer directly or resolve the service disruption by creating an

incident record to assign the issue to an Assignment Group with more technical

knowledge. If similar calls/mails are received by the Service Desk, a SDA can

decide to relate multiple Interaction records to one Incident record. Then fur-

ther logging of Activities is done to resolve the service disruption in the Incident

record.

� Incident Management. Based on an estimated Impact and Urgency, graded by

the SDA, an Incident record is prioritized and limited to resolve the service

disruption. A Team Leader within the Assignment Group assigns the records

to an Operator. The Operator either resolves the issue for the customer, or

reassigns the record to a colleague if some more knowledge are needed. After

solving the issue for the customer, the Operator relates the Incident record to

the Configuration Item which is caused by the service disruption (Caused By

CI). After closing the Incident record, the customer receives an email to be

informed that the issue is resolved.

� Change Management. If particular service disruptions happen more often than

usual, a problem of investigation is found, conducting an analysis to prevent the

happening of the service disruption. The improvement plan leads to a Request

for Change (RfC) on the Caused By CI. All CIs are related to a Service Com-

ponent, Risk Impact Analysis is done by an Implementation Manager assigned

to changes which are related to the specific Service Component.

In order to develop corresponding predictive and analysis models, the Rabobank

provides four CSV files (interaction.csv, incident.csv, incident activity.csv, change.csv)

related to these processes. The incident.csv and incident activity.csv correspond to

the goal. Table 5.6 shows the attributes of the two files.

The corresponding descriptions of selected fields are shown as follows:

85

Table 5.6: The attributes of incident.csv and incident activity.csv.

Incident Incident activity

CI Name (aff) Incident ID
CI Type (aff) DateStamp
CI Subtype (aff) IncidentActivityNumber
Service Comp (aff) IncidentActivity Type
Incident ID Interaction ID
Status Assignment Group

KM number

� CI Name (aff): Configuration Item (CI) where describes an ICT Service. A

Service Desk Agent always uses questions in a Knowledge Document (identified

by a KM number) to find the correct CI in the Configuration Item Database

(CMDB).

� CI Type (aff): Every CI in the CMDB is related to an Entity Type.

� CI Subtype (aff): Every CI in the CMDB is related to a Subtype, which is

related to a CI Type.

� Service Comp (aff): Every CI in the CMDB is related to one Service Component,

in order to identify the responsible Product Manager. A Service Component is

equal to a product in the Bill of Material and is part of Services.

� KM number: A Knowledge Document contains default attribute values for the

Interaction record. There are also a set of questions for a Service Desk Agent to

derive Configuration Item. This document can determine Impact and Urgency

for the customer.

The relationship of these two files is that incident activity.csv is the aspect of

incident.csv so we focus on the previous one. IncidentID is identified as the ref-

erence of the event data. We also create a new attribute named DataStampStart

which is taken from the OpenT ime as the first time of each incident and we iden-

tity DateStamp as the next time of each incident. The conceptual structure of

incident activity.csv is shown in Figure 5.18. The incident has several attributes but

we focus on the property of IncidentActivity Type. Moreover, the valuesAssignment,

Communication with customer, Communication with vendor, External vendor

assignment, External vendor reassignment and Resolved are selected as the inter-

esting public values. The attributes of DataStampStart and DataStamp are selected

86

as start timestamp and end timestamp. IncidentID is selected as trace in the event

logs.

Figure 5.18: The conceptual structure of incident activity.csv.

Figure 5.19: Fuzzy-DEVS atomic model generated from incident activity.csv.

By following the application of D2FD method and executing three plugins, a

Fuzzy-DEVS model is mined as shown in Figure 5.19. The state starts from the ini-

tial state 1 until it reaches the end state 3. All the transitions are internal transitions

represented as classical arrow. The graphical notation of the internal transition is

87

Figure 5.20: Part of simulation results from incident activity.csv by SimStudio.

combined with output port wm, !, output function and membership function. Every

state has a final crisp time which is calculated from AFTC. Figure 5.20 presents the

simulation results of this model. The number before colon represents the time series of

hours. The activities after colon are output function. The time between two time se-

ries corresponds to the final crisp time of the state. When the elapsed time is equal to

this time, the internal transition with the maximum membership function is triggered

and sends the output function to the output port wm. For example, the first output

function is [] which has a time of 0. The internal transition from [] to Assignment

has the maximum membership function. After the time of Assignment 784 hours,

the output function Assignment is sent to the port wm at the time series of 785.

Again after the time 654 hours, the output function External vendor reassignment

is sent to the port wm at the time series of 1439. The simulation results illustrate

the critical workload based on goals.

5.4 Conclusion

The D2FD method is implemented by the plugin on ProM. ProM is extremely

strong which is composed by hundreds of plugins. It is easy for process mining users

to implement their own plugin with algorithm and techniques on the platform of

88

ProM. Compared with other process mining tools, ProM provides more functionality

than some of the less mature tools. The simulation of Fuzzy-DEVS model in the

D2FD method is implemented by SimStudio. SimStudio is easy to be integrated

in the plugin on ProM. The simulation results can be visualized by the support of

ProM. Two case studies illustrate the feasibility of this tool. Although the data of two

case studies are quite big and are not completely analyzed, the interesting simulation

results by using the proposed plugin are able to solve business problem and reveal

optimal business processes. This plugin is able to identify the underlying relationships

and make model visual. The identified relationships and the fuzzy cluster can make

the complex and separated data connected each other.

From the results of two case studies, we can get only one result with list of events

from the simulation of each models. Some more information, for example membership

function, are still displayed on the model but cannot be observed by simulation. In

the following chapter, a replicative method and a predictive method are proposed

for the validation of Fuzzy-DEVS model in the D2FD method. These method can

provide more simulation results from the same models.

89

Chapter 6

Validation of D2FD Method

6.1 Introduction

Model verification is often defined as ensuring that the computer program of the

computerized model and its implementation are correct. Model validation is usually

defined as substantiation that a computerized model within its domain of applicability

possesses a satisfactory range of accuracy consistent with the intended application of

the model (Schlesinger, 1979). Model validation is important as the last step of

D2FD method. However, the discovered Fuzzy-DEVS model in the D2FD method

can get only one simulation result, and this result is not always validated based

on different enterprise requirements. In this chapter, we propose a morphism-based

model approximation method and a predictive method using Granger Causality for

the validation of D2FD method. This chapter is organized as follows. Section 6.2 gives

the background of Model Morphism (MoMo), verification and validation methods in

the modeling and simulation and the algorithm of Granger Causality. Section 6.3

explains the two proposed methods. Later we continue to use the real case study of

dutch employee insurance agency to support these two methods. The results of this

case study is validated by comparing to other models. The conclusion is given in

section 6.5.

6.2 Background

Morphism-based model approximation and the predictive method are based on

the use of MoMo and the algorithm of Granger Causality. In this section, we give

the background of these two parts. In addition, the verification and validation meth-

ods in the theory of modeling and simulation are reviewed. These methods can be

90

applied after generating a new model from the two proposed methods. The two pro-

posed methods are also related to replicative and predictive validation methods. A

new paradigm of inferring models and simulation between the real world and the

simulation world is proposed.

6.2.1 Model Morphism(MoMo)

In the mathematical field, morphism is defined as a structure-preserving map

between two mathematical structures. When applying this term in the modeling and

simulation, MoMo proposes a terminology and adapts it into the structure of mod-

els. According to the hierarchy of system specification in Table 2.2, a morphism is a

relation which connects the pair of systems at each level of the hierarchy. It speci-

fies the relationships between two or more models described in the same or different

languages. The term morphism is only used in the information and communication

technologies. Agostinho et al. (Agostinho et al., 2007) propose a model driven ar-

chitecture and MoMo method to solve the enterprise interoperability problem. The

morphism is used to transform the model from one language to another. Agostinho et

al. (Agostinho et al., 2011) also propose the integration of trace ability functionalities

to solve the problem of sustainability in enterprise interoperability.

Figure 6.1: The classification of MoMo.

The morphism can be seen as the operator and the model as the operand. Ac-

cording to the operation, MoMo can be distinguished between model-altering and

non-altering (InterOP, 2005). Model-altering modifies the operand. Conversely, non-

altering does not modify the operand. As depicted in Figure 6.1 (a), the source model

A identified as the operand is transformed by some functions into the target model

B. These functions identified as operators apply several rules for the transformation.

The MoMo group of the InterOp project1 makes a formal definition of model-altering:

Let MOD be the set of all multi-graphs that are the representation of some

models in some language. If there is a model A ∈MOD and a function τ : MOD →
MOD, a model-altering morphism is τ , having τ(A) = B, and B ∈MOD.

1www.interop-noe.org

91

As depicted in Figure 6.1 (b), non-altering morphism is close to the tradition

concept of model mappings. Compared with model-altering, there is no changes

between the source model A and the target model B. The relationship for example

similarity (1 to 1) and composition (1 to n) is identified between these two models.

The MoMo group of the InterOp project also makes a formal definition of non-altering:

Let MOD be the set of all multi-graphs that are the representation of some

models in some language. If there are at least two models A,B ∈ MOD, a non-

altering morphism is a relation τ ′, having τ ′ ⊆ Sub(A)× Sub(B), where Sub(X) is a

sub-graph of X.

In addition, MoMo can be extended by the ontology to describe the manipulation

of models. As the ontology provides a valuable knowledge-based techniques about

methods, decisions and suggestions, MoMo ontology is able to provide more solutions

for enterprise interoperability problems.

6.2.2 Verification and Validation of Modeling and Simulation

In general, the process of developing models and simulations are based on a set

of fundamental assumptions (Pace, 2000). Conversely, D2FD method proposes a pro-

cess of inferring models and simulations. Compared with the paradigm of Sargent

(Sargent, 2009), a corresponding paradigm is shown in Figure 6.2. There are a Real

World and a Simulation World. In the Real World, there exist some systems or prob-

lems. System problem refers to the data level of system knowledge. System data

is obtained by conducting experiments on the system. In the simulation world, the

inference model is the mathematical discipline to represent the system. It is mined

from system in the real world. The simulation model is the inference model running

on the computer system like ProM and applying simulation model specification. The

simulation model data and results are the data and results from experiments con-

ducted on the simulation model. Specification verification is used to check whether

the software design is adapted on the specified computer system. Implementation

verification is defined as assuring that the simulation model conforms to the specifi-

cation. Operational validation is defined as determining that the output behavior of

the model has sufficient accuracy for the intended purpose of the model. In this the-

sis, assuming that the verification of specification and implementation are completed,

we focus on the validation between the simulation model results and real world.

The operational validation is important for D2FD method. The design of a

model that appeared complete and robust can become incoherent, incomplete and

potentially invalid during simulation implementation. Sargent (Sargent, 2009) not

92

Figure 6.2: The structure of the inferring process with verification and validation.

only proposes a paradigm that relates verification and validation to the model devel-

opment process but also presents various techniques for building valid and credible

simulation models. A combination of these techniques is generally used. These tech-

niques are shown as follows:

� Animation: As the time elapse, the behavior of the model is displayed graphi-

cally.

� Comparison to Other Models: Make a comparison between the models which

have already been validated and the models which are anticipated to be vali-

dated.

� Degenerate Tests: The degeneracy of the behavior of the model is tested by

selecting appropriate of the input and internal parameters.

� Event Validity: Make a comparison of the occurrences of events between the

simulation model and the real system.

� Extreme Condition Test: For any extreme and unlikely combination of levels of

factors in the system, the model structure and outputs should be plausible.

93

� Face Validity: Make validation of the model and its behavior directly from

individuals who know about the system.

� Historical Data Validity: If the part of the historical data is used to build

the model, the other part of historical data can be used to check whether the

behaviors of model are validated.

� Historical Methods: There are three historical methods of validation which

are rationalism, empiricism, and positive economics. Rationalism requires the

model to be validated by using logic deduction from the assumptions which

everyone knows. Empiricism requires every assumption and outcome of the

model to be empirically validated. Positive economics requires the model which

can only predict the future.

� Multistage Validity: The three historical methods of rationalism, empiricism,

and positive economic are combined together for validation.

� Internal Validity: Several replications (runs) of a stochastic model are validated

by the amount of (internal) stochastic variability in the model.

� Operational Graphics: Values of various performance measures are shown graph-

ically as the time elapse.

� Parameter Variability - Sensitivity Analysis: The behavior and output of the

model are validated by changing the values of the input and internal parameters.

� Predictive Validation: Make a comparison between the system model and the

predicted model.

� Traces: The logic and accuracy of the model are validated by tracing the be-

havior of different types of specific entities.

� Turing Tests: Individuals who know about the operations of the system models

make tests of discriminating between system and model outputs.

Some more validation methods in the theory of modeling and simulation were

studied. Elzas (Elzas, 1984) starts to talk about two kind of modeling ways top-

down and bottom-up. In addition, a system analysis validation framework and a

system design validation framework are shown. Law et al. (Law, 2008) propose the

whole steps for building valid and credible simulation models. They also discuss the

difficulties in using these techniques for validation. Gore et al. (Gore and Diallo,

94

2013) provide the approach used in practice with a formal specification languages.

They force attention to mathematical details. There are also some other verification

techniques in modeling and simulation areas (Gajski et al., 2009; Harbola et al., 2012).

Validity corresponds to the replicative, predictive and structural validity (Zeigler

et al., 2000). The experimental frame is critical for validation because it provides the

conditions to make experiments with both the model and the system. Replicative

refers to quantitative comparison and qualitative comparison. This comparison is

using trajectories under this experimental frame. Quantitative comparison requires

a metric and a tolerance. The metric provides a numerical basis which calculates the

goodness of fit. The tolerance makes a examination whether the fit is good enough.

If the fit is over the tolerance, the model is not enough to be qualified as valid. The

qualitative comparison contains two methods which are visualization and animation.

The visualization tries to translate complex data into graphical structure that human

can understand. Animation simulates the behavior of the model as the model moves

through time. In the predictive validation, the initial state of the model can be

inferred from the past system observations. Structural validity refers to cross-model

validation for example between models at different levels of resolution.

6.2.3 Granger Causality

The general philosophical definition of Causality(Bunge, 2017) is “the natural or

worldly agency or efficacy that connects one process (the cause) with another process

or state (the effect), where the first is partly responsible for the second, and the

second is partly dependent on the first.” Granger Causality (G-causality) as one of the

causality measures is proposed by Granger in 1969 (Granger, 1969). In terms of linear

regression modeling, Granger Causality as a statistical formalization is defined that a

time series X Granger-causes Y if the inclusion of past observations of X helps reduce

the prediction error of Y . The information of X is better than the information already

in the past of Y as well as in the past of other variables Z. G-causality is mostly

implemented via linear vector autoregressive modelling of timeseries data (Geweke,

1984; Seth, 2010a). Some other G-causality can use nonlinear, time-varying, and

non-parametric models (Roebroeck et al., 2011; Dhamala et al., 2008). To illustrate

G-causality, we use two time series X1(t) and X2(t) (both of length T) which can be

described by a bivariate autoregressive model (Seth, 2010b):

X1(t) =

p∑
j=1

A11,jX1(t− j) +

p∑
j=1

A12,jX2(t− j) + ξ1(t) (6.1)

95

X2(t) =

p∑
j=1

A21,jX1(t− j) +

p∑
j=1

A22,jX2(t− j) + ξ2(t) (6.2)

Where p is the maximum number of lagged observations in the model and p < T ,

A represents the coefficients of the model, ξ1, ξ2 are the prediction errors for each

time series. If the variance of ξ1 (or ξ2) is reduced by the inclusion of the X2 (or X1)

terms in the equation 6.1 (or 6.2), then it is said that X2 (or X1) G-causes X1 (or X2).

Assuming that X1 and X2 are covariance stationarity for example mean and variance

are fixed, the magnitude of the interaction between them can be measured by the log

ratio of the prediction error variances based on the restricted R and unrestricted U

models as well as G-causality (Seth, 2007):

gc2→1 = log
var(ξ1R(12))

var(ξ1U)
(6.3)

Where ξ1R(12) id derived from the model omitting all the A12,j coefficients in the

equation 6.1, and ξ1U is derived from the full model. In addition, G-causality can be

extended to the multivariate case by a Taylor expansion in which the G-causality of

X1 is tested in the context of multiple variables X1, ..., XN(Seth, 2007).

In addition, G-causality can extend one of the variables based on the quantifica-

tion of the statistical autonomy. In this case, a variable X1 is G-autonomous in which

the prediction error of X1 is reduced by the inclusion of its own past. According to

equation 6.1 and 6.2, the G-autonomous of X1 is given by:

gaX1|X2 = log
var(ξ1R(11))

var(ξ1U)
(6.4)

Where ξ1R(11) id derived from the model omitting all the A11,j coefficients in the

equation 6.1, and ξ1U is derived from the full model.

By combining G-causality and G-autonomy, G-emergence is proposed in terms

of weak emergence (Seth, 2010b). An emergent property is somehow “more than the

sum” of its component parts. Weak emergence defines that a macro-level property is

weakly derived from the interaction of micro-level components. A macro-variable M

is G-emergent from a set of micro-variables m so G-emergence can be defined as:

geM |m = gaM |m(
1

N

N∑
i=1

gcmi→M) (6.5)

Where M is both G-autonomous with respect to m and G-caused by m. Espe-

cially, geM |m will be zero either if M is independent of m or if M is fully predicted

by m.

96

6.3 Two Proposed Methods for Model Validation

D2FD method provides a system inference method which mines always the same

Fuzzy-DEVS model from one event logs. For this reason, we propose two methods to

improve the interoperablity of the D2FD method. Morphism-based model approxi-

mation provides a model-altering morphism with the modification of functions. The

predictive method is integrated with G-causality. These two methods are evaluated

by the case study of dutch employee insurance agency and validated by comparing to

other models.

6.3.1 Morphism-Based Model Approximation Method

In first stage of the D2FD method, the main idea of identifying process instance

is to select one final property among several ones then the values corresponding to

this property can be transformed in the event logs as explained in section 3.3.4. How-

ever, sometimes the selected process instances cannot meet the requirements and

the discovered model is too complicated to validate. In the AFTC as explained in

section 4.2.3, the form of membership functions and rule base is designed based on

assumptions or hypothesis which are disconnected to real system. The discovered

Fuzzy-DEVS model, in which each transition and coupling has a corresponding pos-

sibility, provides more information than the classical DEVS.

The enterprise can have different requirements. On the one hand, the model

needs to be simple and visible so it is easy to be analyzed and validated. On the

another hand, single model cannot satisfy different enterprise requirements. Hence,

morphism-based model approximation is proposed to reconstruct a new model closer

to the enterprise requirements. According to the problem in section 1.2.3, there

is a technological barrier caused by the use of different methods and techniques to

represent information. Morphism-based model approximation is able to provide an

integrated approach for validation. In the D2FD method, this integrated method

can be applied on reducing the scope of the functions. Based on requirements, an

appropriate percentage is given to the reduction rate. This method provides a model-

altering way which modifies three functions:

� The amount of references related to events in event data.

� All the possibilities µ in Fuzzy-DEVS atomic model D̃.

� The membership functions and rule base in AFTC.

97

The events are described by references. If the amount of references is reduced

by the reduction rate, the quantity of events decreases. The possibility µ consists

of fuzzy internal transition µint, fuzzy external transition µext, fuzzy external input

coupling µEIC , fuzzy external output coupling µEOC , fuzzy internal coupling µIC . µ

is always between 0 and 1. A threshold from the reduction rate can be set on this

possibility. The percentage in the membership functions and rule base can also be

changed from reduction rate.

6.3.2 Predictive Method Using Granger Causality

Recall the G-causality, a time series X Granger-causes Y if the inclusion of

past observations of X helps reduce the prediction error of Y . Moreover, Y can be

G-autonomous by its own variable. Both G-causality and G-autonomy compose G-

emergence. If we apply this in the process model, the trigger of each transition can

be G-caused by the past transitions and states and G-autonomous by itself. In the

D2FD method, the trigger of fuzzy internal transition and fuzzy external transition

depends on the possibility µint and µext. These possibilities are calculated by the

frequency F in the equation 4.8. On the one hand, Dependency Method illustrates

that the possibility of the transition can be G-autonomous by its own frequency. On

the another hand, as the model simulates through the time, the possibility of each

transition can be predicted by the past frequencies. This predictive method is shown

by the following equation:

µp(F) = a1
1

N

N∑
i=1

µ(Fi) + a2µ(F) (6.6)

Where N is the memory depth and a1, a2 are the memory effects. F measures

the frequency of the transition from event logs. Fi measures the frequency of the

existing simulated transitions in the depth of i. The memory depth defines the number

of simulated states from the current to the past. It is important to set a smaller

number for the memory depth when there is a big amount of the states in the model.

The memory effects can be tested in three conditions. The condition M defines the

predicted possibility µp(F) is both based on G-causality and G-autonomous (aM =

[0.5, 0.5]). The condition H defines µp(F) focuses more on the past observations of

frequencies (aH = [0.8, 0.2]). The condition L defines µp(F) focuses more on the

current frequency (aL = [0.2, 0.8]).

In order to better explain Fi in equation 6.6, we use a small example here.

Imagine that we have a set of states s0, s1, ..., sn, the simulation process is s0 → s1 →

98

s2 → s3 → s4 → s5. If the current state is s4 and we want to calculate the possibility

of µp(s4 → s5), F1 is the frequency which contains only s0 → s1 → s2 → s3, F2 is the

frequency which contains only s0 → s1 → s2, F3 is the frequency which contains only

s0 → s1, F4 is the same as F so the maximum memory depth N is 3.

6.3.3 Case Study Relevant to Two Methods

In this section, we continue to use the case study in section 5.3.1. As explained

in the Figure 5.14, SimStudio can figure out a sequence of simulation results. These

simulation results are used to solve the two main goals and they can be repre-

sented as a statistical graph as shown in Figure 6.3. This sequence is shown as

follows: Workbook takes 40 minutes, Request distribution : disturbance takes 18

minutes, Workbook : general takes 44 minutes, Other disturbance takes 10 min-

utes, Workbook : application takes 40 minutes, Other general takes 44 minutes,

Workbook : taken takes 40 minutes.

Figure 6.3: Represented statistical graph from the simulation results in Figure 5.14.

Since we can get only one simulation result from the case study, we use morphism-

based model approximation to obtain a new model and capture some other simulation

results. As an example to apply morphism-based model approximation, we change

the threshold of possibility from 1 to 0.9995. Therefore, there are less transitions

than the transitions in the model as shown in Figure 5.13. Figure 6.4 shows the

corresponding simulation results with the new threshold. Other general takes 44

minutes, Workbook takes 40 minutes, Request distribution : disturbance takes 18

minutes, Registration general takes 43 minutes.

99

Figure 6.4: Represented scheme of simulation results by reducing the possibility from
1 to 0.9995.

Moreover, we can use G-causality method to get some predictive simulation re-

sults. According to equation 6.6, we set the memory depth N as 2 and the memory

effects a1 as 1 and a2 as 2. The condition is H. Figure 6.5 presents the new sim-

ulation results based on memory depth of 2. Request distribution : disturbance

takes 18 minutes, Request distribution : general takes 43 minutes. If we change the

memory depth N to 4, we are able to get another simulation results as shown in

Figure 6.6. Other general takes 44 minutes, Workbook : general takes 44 minutes,

Workbook : disturbance takes 40 minutes. As a result, we can find out that both

memory depth and memory effects influence the final simulation results.

Figure 6.5: Represented scheme of simulation results by setting memory depth as 2
and setting the condition H.

100

Figure 6.6: Represented scheme of simulation results by setting memory depth as 4
and setting the condition H.

6.3.4 Validation of Case Study of Dutch Employee Insurance
Agency

According to section 6.2.2, it is difficult to make face validation. So we choose

to compare with other models for the validation of the case study of Dutch employee

insurance agency. The compared models come from the study of Jalali (Jalali, 2016).

Figure 6.7 shows the compared model generated from Question.csv. This model

is constructed by using another process mining tool Disco (Van der Aalst, 2011).

As it can be seen from this process, there are three pages including the home page

which customer visits more than others. Then customers visit both mijn werkmap

and taken pages represent workbook and taken pages. The two pages have bigger

frequency of 5,887 and 13,696 than others. Compared between the model in Figure

5.14 and in Figure 6.7, both models have the mainstream process from Workbook

to Workbook : taken. Moreover, Fuzzy-DEVS model gives more simulation results

between Workbook and Workbook : taken.

Another comparison happens based on Werkmap − message.csv. Figure 6.8

shows the compared model by Disco. The channel has no hierarchy, so the members

are appeared in the mined model, i.e. channel 1 and channel 2. The Complain Type

hierarchy is explored at its highest level of granularity. In this process, channel 1

and 2 are used to issue a complain. The channel 1 is used more than the other one.

There are also some cases illustrating that a user switched between these channels.

When comparing with the Fuzzy-DEVS model in Figure 5.15, these two models show

almost the same process between the channels. However, from the simulation results

101

Figure 6.7: Compared model from Question.csv.

of Fuzzy-DEVS model, we are able to get the connection between activity and channel.

For example, the activity of Workbook is using channel 1 in Figure 5.17.

Figure 6.8: Compared model from Werkmap−message.csv.

102

6.4 Conclusion

Validation is very important for discrete event simulation models. The aim is to

prove the coherence of the model, to ensure the correct use of the modeling methods

and account for the description of the requirements that prevailed in the existence

of models. Morphism-based model approximation proposes a model-altering method.

Three functions in the D2FD methods provides flexible solutions to handle the prob-

lems based on enterprise requirements. Model Morphism is able to specify the rela-

tionships between two or more model described in the same or different languages.

Predictive method proposes to integrate G-causality with the possibility of fuzzy in-

ternal transition and fuzzy external transition. The original Dependency Method is

extended with G-causality to be G-emergency. A new nonlinear predictive model is

generated by applying this G-emergency method. The proposed integrated methods

applies the concept of MoMo and the algorithm of Granger Causality to modify the

functions in D2FD method. By applying these two methods, the case study is able to

get some new and interesting model and simulation results. Compared with the other

model in the previous studies, the model from D2FD method is validated. Later in

the conclusion, the limitations of D2FD method are discussed, and the perspectives

are proposed based on these limitations.

103

General Conclusion

Conclusion We propose a D2FD method, as presented in Figure 1.2, an integrated

approach to the discovery of discrete event simulation model from real data. In

particular, we mine a Fuzzy-DEVS model from event data. This method provides a

relatively complete solution for system inference. The process discovery techniques

are extended in process mining. Thanks to fuzzy logic, D2FD method is able to

represent imprecision from event data and distinguish the discovered model what is

important and what is not. Compared with the state of the art, D2FD method has

better performance as follows:

� Five-step method is proposed to extract event logs from event data;

� Frequency is taken into account by using dependency method;

� AFTC is proposed to handle time aspects;

� Fuzzy cluster is applied to discover coupled model, to handle modularity.

The five-step method deals with the challenge of collecting data in process min-

ing. The conceptual structure inherited from SES is used to build a modular and

hierarchical abstraction from the collected data. The underlying relationships can be

observed from this structure. These relationships help to focus on the interesting part

of event data and discover the connections between documents. The general mapping

connects event data to event logs. D2FD method proposes an improved region-based

approach which is more appropriate to discover the timing function of Fuzzy-DEVS

model. The underlying relationships help to discover internal transition and external

transition of Fuzzy-DEVS model. The discovered Fuzzy-DEVS can be the extension

of process model in process mining, which provides modularity. And D2FD method

takes frequency and time into consideration. The Dependency Method is used to

extract the frequency of events from event logs, and the AFTC is used to extract the

timing aspects. These methods expand rough approximations into fuzzy environment

and solve issue of imprecision. Thanks to fuzzy cluster, Fuzzy-DEVS atomic models

104

are coupled together to represent hierarchical structure of complex system. In order

to validate the final mined model, two approaches are proposed:

� Morphism-based model approximation is proposed to handle replicative validity;

� Granger causality is applied to handle predictive validity.

Morphism-based model approximation can rebuild a new model and makes the

simulation results closer to accuracy. In the simulation process, the execution of

transitions not only can be predicted by themselves using dependency method, but

also can be predicted by their previous transitions using G-Causality. Two proposed

methods provide integrated approaches concerning processes to overcome the techno-

logical barriers. The new mined model is able to obtain different simulations results

associated with enterprise requirements.

The D2FD method is implemented as plugin on ProM, which is practical, visible,

automatic and available. The resulting model is simulated by using SimStudio. There

are two case studies discussed in this thesis, which illustrates the feasibility of the

plugin of D2FD method. In particular, the results of the first case study from dutch

employee insurance agency not only evaluates two validation approaches but also can

be validated by comparing to other studies. Although the data of two case studies

are quite big and are not completely analyzed, the interesting simulation results by

using the proposed plugin are able to solve business problem and reveal optimal

business processes. This plugin of D2FD method is able to identify the underlying

variables relationships and make model visual. The identified relationships and the

fuzzy cluster can make the complex and separated data connected each other.

Limitations D2FD method provides a system inference method using process min-

ing techniques. This method is able to discover a Fuzzy-DEVS model from the event

data. In addition, two methods are proposed for the validation of D2FD method in

chapter 6. However, there are still some limitations and shortcomings in this method.

In general, there are four main limitations in the D2FD method as follows:

� Threshold of Event Data: The definition of event data is explained in section

3.2 with the 16 guidelines. They make a general standard for the event data to

be selected. However, according to section 1.2.1, only part of problem has been

solved. Until now, how to get event data coming from ERP, internet of events

and so on is still a big challenge in the process mining.

105

� Over-fitting: In the second phase of region-based approach, we construct re-

gions from TS while we are discovering concurrency. TS and Fuzzy-DEVS are

equivalent from a behavioral point of view. So this may lead to over-fitting and

Fuzzy-DEVS is not generalizing. An over-fitting model is defined that the next

trace which we will observe will actually not fit into the model. The model has

a poor predictive power.

� Last activity: The execution of last activity (value) is not taken into account

in the D2FD method. In the toy case of Figure 4.6, in terms of Lend =

[(S,E)5, (E, S)8], S and E as public values in the state S9 cannot be trig-

gered. The state of S9 is infinite so there is no output function sent to other

models. When the events in event logs are messy and complex, the last state

can have internal transitions. The problem happens when there is no internal

transitions and the value inside is public value.

� Ontological Alignment: As explained in section 4.2.4, the conditions to form

clusters depend on two variables which have the same name or one belongs to

one part of another. Ontological alignment which provides some methods in

the level of knowledge and semantic can make a better choice for the clusters.

Besides, there are some other limitations when applying D2FD method in the

case study. The case studies in section 5.3.1 and 5.3.6 do not consider about the

whole problems from enterprises. It is necessary to provide a detailed analysis of two

case studies on ProM.

Perspectives According to the limitations of D2FD method discussed above, we

present some perspectives. To extract event logs, we always focus on a single view

from the source of data. If we want to change a view and generate a new event

log to gain more knowledge, it is necessary to build models between process and

data (De Murillas et al., 2016). Based on this model, the general approach would

be “scope, bind and classify” to create a new event log, where scope determines the

relevant events, bind relates events to process instances and classify relates process

instances to processes (Van der Aalst, 2015); Over-fitting problem can be solved in

the stage of TS model to make sure that the initial TS is general enough. We can also

design a aggregation and abstraction method to merge and remove the states or ac-

tivities which contain low-level detail information (Günther and Van der Aalst, 2007);

Last activity problem happens because an initial state is created in the Fuzzy-DEVS

model. Same as other process modeling languages, a new Fuzzy-DEVS formalism

106

appropriate to process modeling needs to propose two new functions which repre-

sent initial state and end state respectively; The ontology alignment can be realized

through an integration model in which semantic heterogeneity provides semantic map-

ping of heterogeneous data in the cluster environment. The results provide references

for decision-making (Zhou, 2016). A pattern-based core word algorithm (Song et al.,

2013) can also help to measure the semantic similarity between a pair of compound

words; We also anticipate to present a detailed analysis of case studies and make

validation directly with enterprises.

Publications The essential ideas and results in this thesis have been validated by

publications cited below. The first idea of transforming from event logs to DEVS

is explained in C1. Then this idea is extended to get a Fuzzy-DEVS model using

dependency method in C2. The D2FD method is proposed in the journal paper

J1 which extends the analysis of event data and AFTC. J1 presents the method

from event data to event logs and the methods from TS to Fuzzy-DEVS atomic

model. Fuzzy cluster is proposed to construct a Fuzzy-DEVS coupled model in C4.

A corresponding case study with the complete D2FD method is shown in C5. In C3,

the validation methods associated with theory of modeling and simulation is referred

and a new paradigm of inferring models and simulations is proposed. The idea of

integrating Granger Causality is first discussed in C6.

J1 Wang Yan and Zacharewicz Grégory and Traoré Mamadou Kaba and Chen

David. An integrative approach to simulation model discovery: Combining

system theory, process mining and fuzzy logic. Journal of Intelligent & Fuzzy

Systems (Impact Factor 2017: 1.261), 34(1): 477-490, 2018.

C1 Wang Yan and Zacharewicz Grégory and Traoré Mamadou Kaba and Chen

David. A proposal of using DEVS model for process mining. 27th Euro-

pean Modeling & Simulation Symposium (Simulation in Industry). 403-409,

Bergeggi, Italy, 2015.

C2 Wang Yan and Zacharewicz Grégory and Traoré Mamadou Kaba and Chen

David. Integrating dependency with DEVS in the process mining. New Infor-

mation Communication Sciences and Technology for Sustainable Development

International France-China Workshop, Bordeaux, France, 2015.

107

C3 Wang Yan and Zacharewicz Grégory and Traoré Mamadou Kaba and Chen

David. Verification and validation of D2FD method. New Information Com-

munication Sciences and Technology for Sustainable Development International

France-China Workshop, Clermond Ferrand, France, 2017.

C4 Wang Yan and Zacharewicz Grégory and Traoré Mamadou Kaba and Chen

David. Use fuzzy clustering for discrete event simulation model construction.

IFAC 2017 World Congress, The 20th World Congress of the International Fed-

eration of Automatic Control, Toulouse, France, 2017.

C5 Wang Yan and Zacharewicz Grégory and Traoré Mamadou Kaba and Chen

David. A tool for mining discrete event simulation model. Winter Simulation

Conference (WSC), 2017 Winter. IEEE, 3066-3077. Las Vegas, United States,

2017.

C6 Wang Yan and Zacharewicz Grégory and Traoré Mamadou Kaba and Chen

David. A predictive validation method for discovering discrete event simulation

models. Les journées DEVS francophones applications de la théorie de la

modélisation et de la simulation (JDF). Cépaduès, 19-20. Cargèse, France,

2018.

108

References

Agostinho, C., J. Sarraipa, F. D’Antonio, and R. Jardim-Gonçalves (2007). Enhanc-

ing step-based interoperabity using model morphisms. In Enterprise Interoperability

II, pp. 817–828. Springer.

Agostinho, C., J. Sarraipa, D. Goncalves, and R. Jardim-Goncalves (2011). Tuple-

based semantic and structural mapping for a sustainable interoperability. In

Doctoral Conference on Computing, Electrical and Industrial Systems, pp. 45–56.

Springer.

Barros, F. J. (1995). Dynamic structure discrete event system specification: a new

formalism for dynamic structure modeling and simulation. In Proceedings of the

27th conference on Winter simulation, pp. 781–785. IEEE Computer Society.

Barros, F. J. (1997). Modeling formalisms for dynamic structure systems. ACM

Transactions on Modeling and Computer Simulation (TOMACS) 7 (4), 501–515.

Bazoun, H., G. Zacharewicz, Y. Ducq, and H. Boye (2014). Business process simula-

tion: Transformation of bpmn 2.0 to devs models. In Proceedings of the Symposium

on Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, pp. 13–

16.

Bender, E. A. (2012). An introduction to mathematical modeling. Courier Corpora-

tion.

Bisgambiglia, P. A. (2008). Approche de modélisation approximative pour des systèmes

à événements discrets: Application à l’étude de propagation de feux de forêt. Ph.

D. thesis, Université Pascal Paoli.

Bisgambiglia, P. A., L. Capocchi, P. Bisgambiglia, and S. Garredu (2010). Fuzzy

inference models for discrete event systems. In Fuzzy Systems (FUZZ), 2010 IEEE

International Conference on, pp. 1–8. IEEE.

109

Bisgambiglia, P. A., E. De Gentili, P. Bisgambiglia, and J.-F. Santucci (2008). Dis-

crete events system simulation-based defuzzification method. In Electrotechnical

Conference, 2008. MELECON 2008. The 14th IEEE Mediterranean, pp. 132–138.

IEEE.

Bisgambiglia, P. A., E. d. Gentili, P. Bisgambiglia, and J. F. Santucci (2008, May).

Fuzzy modeling for discrete events systems. In MELECON 2008 - The 14th IEEE

Mediterranean Electrotechnical Conference, pp. 151–157.

Bouanan, Y., M. B. El Alaoui, G. Zacharewicz, and B. Vallespir (2014). Using devs

and cell-devs for modelling of information impact on individuals in social network.

In IFIP International Conference on Advances in Production Management Systems,

pp. 409–416. Springer.

Bunge, M. (2017). Causality and modern science. Routledge.

Cameranesi, M., C. Diamantini, L. Genga, and D. Potena (2017). Students’ careers

analysis: a process mining approach. In Proceedings of the 7th International Con-

ference on Web Intelligence, Mining and Semantics, pp. 26. ACM.

Castro, R., E. Kofman, and G. Wainer (2008). A formal framework for stochas-

tic devs modeling and simulation. In Proceedings of the 2008 Spring simulation

multiconference, pp. 421–428. Society for Computer Simulation International.

Chen, Y. Y. and T. C. Tsao (1989). A description of the dynamic behavior of fuzzy

systems. IEEE Transactions on Systems, Man, and Cybernetics 19 (4), 745–755.

Cho, S. M. and T. G. Kim (1998). Real-time devs simulation: Concurrent, time-

selective execution of combined rt-devs model and interactive environment. In

Proceeding of 1998 Summer Simulation Conference, Reno, Nevada, pp. 90.

Chow, A. C. H. and B. P. Zeigler (1994). Parallel devs: A parallel, hierarchical,

modular modeling formalism. In Simulation Conference Proceedings, 1994. Winter,

pp. 716–722. IEEE.

D’Aquin, M. and A. Gangemi (2011). Is there beauty in ontologies? Applied Ontol-

ogy 6 (3), 165–175.

De Medeiros, A. K. A., A. J. Weijters, and W. M. Van der Aalst (2007). Genetic

process mining: an experimental evaluation. Data Mining and Knowledge Discov-

ery 14 (2), 245–304.

110

De Murillas, E. G. L., H. A. Reijers, and W. M. Van der Aalst (2016). Connecting

databases with process mining: a meta model and toolset. In Enterprise, Business-

Process and Information Systems Modeling, pp. 231–249. Springer.

Dhamala, M., G. Rangarajan, and M. Ding (2008). Analyzing information flow in

brain networks with nonparametric granger causality. Neuroimage 41 (2), 354–362.

Diamantini, C., L. Genga, D. Potena, and W. M. Van der Aalst (2016). Building

instance graphs for highly variable processes. Expert Systems with Applications 59,

101–118.

Dubois, D., L. Foulloy, G. Mauris, and H. Prade (2004). Probability-possibility trans-

formations, triangular fuzzy sets, and probabilistic inequalities. Reliable comput-

ing 10 (4), 273–297.

Dubois, D. and H. Prade (1988). Theory of possibility an approach to computerized

processing of uncertainty.

Dubois, D. and H. Prade (1992). Putting rough sets and fuzzy sets together. In

Intelligent Decision Support, pp. 203–232. Springer.

Elzas, M. S. (1984). System paradigms as reality mappings. In Simulation and

Model-Based Methodologies: An Integrative View, pp. 41–67. Springer.

Gajski, D. D., S. Abdi, A. Gerstlauer, and G. Schirner (2009). Embedded system

design: modeling, synthesis and verification. Springer Science & Business Media.

Geweke, J. F. (1984). Measures of conditional linear dependence and feedback be-

tween time series. Journal of the American Statistical Association 79 (388), 907–

915.

Giambiasi, N., B. Escude, and S. Ghosh (2001). Gdevs: A generalized discrete event

specification for accurate modeling of dynamic systems. In 5th International Sym-

posium on Autonomous Decentralized Systems., pp. 464–469. IEEE.

Giambiasi, N., M. Smaili, and C. Frydman (1994). Discrete event simulation with

fuzzy times. In European Simulation Symposium, Turkey.

Gore, R. and S. Diallo (2013). The need for usable formal methods in verification

and validation. In Winter Simulation Conference (WSC), pp. 1257–1268. IEEE.

111

Granger, C. W. (1969). Investigating causal relations by econometric models and

cross-spectral methods. Econometrica: Journal of the Econometric Society , 424–

438.

Greco, G., A. Guzzo, L. Pontieri, and D. Sacca (2006). Discovering expressive pro-

cess models by clustering log traces. IEEE Transactions on Knowledge and Data

Engineering 18 (8), 1010–1027.

Günther, C. W. and W. M. Van der Aalst (2007). Fuzzy mining–adaptive process

simplification based on multi-perspective metrics. In International Conference on

Business Process Management, pp. 328–343. Springer.

Günther, C. W. and E. Verbeek (2009). Xes standard definition. Fluxicon Process

Laboratories 13, 14.

Hamri, M. E.-A., N. Giambiasi, and C. Frydman (2006). Min–max-devs modeling

and simulation. Simulation Modelling Practice and Theory 14 (7), 909–929.

Hand, D. J. (2007). Principles of data mining. Drug safety 30 (7), 621–622.

Harbola, A., D. Negi, and D. Harbola (2012). Infinite automata and formal verifica-

tion. International Journal 2 (3).

Heidari, F. and N. Assy (2016). Usage analytics using process mining. In 12th

International Workshop on Business Process Intelligence (BPI). Key Findings for

the Dutch Employee Insurance Agency.

Höppner, F. (1999). Fuzzy cluster analysis: methods for classification, data analysis

and image recognition. John Wiley & Sons.

Hu, X. (2004). A simulation-based software development methodology for distributed

real-time systems.

InterOP, N. (2005). consortium, deliverable dtg3. 2: Tg momo roadmap. Google

Scholar .

Jacques, C. J. and G. A. Wainer (2002). Using the cd++ devs toolkit to develop

petri nets. In Summer Computer Simulation Conference, pp. 51–56. Society for

Computer Simulation International; 1998.

112

Jalali, A. (2016). Exploring different aspects of users behaviours in the dutch au-

tonomous administrative authority through process cubes. Business Process Intel-

ligence (BPI) Challenge.

Jans, M., M. G. Alles, and M. A. Vasarhelyi (2014). A field study on the use of

process mining of event logs as an analytical procedure in auditing. The Accounting

Review 89 (5), 1751–1773.

Kaufman, L. and P. J. Rousseeuw (2009). Finding groups in data: an introduction to

cluster analysis, Volume 344. John Wiley & Sons.

Keller, R. M. (1976). Formal verification of parallel programs. Communications of

the ACM 19 (7), 371–384.

Khan, M. S. (2008). Fuzzy time control modeling of discrete event systems. ICIAR-51,

WCECS , 683–688.

Kim, J. and B. P. Zeigler (1996). Designing fuzzy logic controllers using a multireso-

lutional search paradigm. IEEE Transactions on Fuzzy Systems 4 (3), 213–226.

Kim, S., H. S. Sarjoughian, and V. Elamvazhuthi (2009). Devs-suite: a component-

based simulation tool for rapid experimentation and evaluation. In Spring Simula-

tion Multi-conference, San Diego, CA, USA.

Klir, G. J. (2013). Architecture of systems problem solving. Springer Science &

Business Media.

Koč́ı, R. and V. Janoušek (2009). Simulation based design of control systems using

devs and petri nets. In International Conference on Computer Aided Systems

Theory, pp. 849–856. Springer.

Kutz, O. and J. Hois (2012). Modularity in ontologies.

Kwon, Y. W., H. C. Park, S. H. Jung, and T. G. Kim (1996). Fuzzy-devs formalism:

concepts, realization and applications. In Proceedings AIS, pp. 227–234.

Law, A. M. (2008). How to build valid and credible simulation models. In Winter

Simulation Conference (WSC), pp. 39–47. IEEE.

Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller. i. IEEE

Transactions on systems, man, and cybernetics 20 (2), 404–418.

113

Lee, J. and S. Chi (2005). Using symbolic devs simulation to generate optimal traffic

signal timings. Simulation 81 (2), 153–170.

Michiardi, P. and R. Molva (2002). Core: a collaborative reputation mechanism to

enforce node cooperation in mobile ad hoc networks. In Advanced communications

and multimedia security, pp. 107–121. Springer.

Mieke, J. (2015). From data to event log. Process Mining Camp.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. Cambridge, MA, USA:

MIT Press.

Oren, T. (1987). Taxonomy of simulation model processing.

Pace, D. K. (2000). Ideas about simulation conceptual model development. Johns

Hopkins APL technical digest 21 (3), 327–336.

Peterson, J. L. (1977). Petri nets. ACM Computing Surveys (CSUR) 9 (3), 223–252.

Petri, C. A. and W. Reisig (2008). Petri net. Scholarpedia 3 (4), 6477.

Piu, C. (2010). Simulation games: Ontology. Simulation and Gaming for Mathemat-

ical Education: Epistemology and Teaching Strategies , 25.

Quesnel, G., R. Duboz, and É. Ramat (2009). The virtual laboratory environment–

an operational framework for multi-modelling, simulation and analysis of complex

dynamical systems. Simulation Modelling Practice and Theory 17 (4), 641–653.

Roebroeck, A., E. Formisano, and R. Goebel (2011). The identification of interacting

networks in the brain using fmri: model selection, causality and deconvolution.

Neuroimage 58 (2), 296–302.

Ross, T. J. (2009). Fuzzy logic with engineering applications. John Wiley & Sons.

Santucci, J. F. and L. Capocchi (2014). Fuzzy discrete-event systems modeling and

simulation with fuzzy control language and devs formalism. In Sixth International

Conference on Advances in System Simulation (SIMUL2014), pp. 250–255. Cite-

seer.

Sargent, R. G. (2009). Verification and validation of simulation models. In Winter

Simulation Conference (WSC), pp. 162–176. IEEE.

114

Scheer, A. W. (1998). Business Process Engineering: Reference Models for Industrial

Enterprises. Business process engineering / August-Wilhelm Scheer. Springer.

Scheps, S. (2011). Business intelligence for dummies. John Wiley & Sons.

Schlesinger, S. (1979). Terminology for model credibility. Simulation 32 (3), 103–104.

Seo, C., B. P. Zeigler, R. Coop, and D. Kim (2013). Devs modeling and simulation

methodology with ms4 me software tool. In Proceedings of the Symposium on

Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, pp. 33.

Society for Computer Simulation International.

Seth, A. K. (2007). Granger causality. Scholarpedia 2 (7), 1667.

Seth, A. K. (2010a). A matlab toolbox for granger causal connectivity analysis.

Journal of neuroscience methods 186 (2), 262–273.

Seth, A. K. (2010b). Measuring autonomy and emergence via granger causality.

Artificial life 16 (2), 179–196.

Simon, H. A. (1991). The architecture of complexity. In Facets of systems science,

pp. 457–476. Springer.

Song, F., G. Zacharewicz, and D. Chen (2013). Pattern-based core word recogni-

tion to support ontology matching. International Journal of Knowledge-based and

Intelligent Engineering Systems 17 (2), 167–176.

Song, H. S. and T. G. Kim (1994). The devs framework for discrete event systems

control. In AI, Simulation, and Planning in High Autonomy Systems. Distributed

Interactive Simulation Environments., Proceedings of the Fifth Annual Conference

on, pp. 228–234. IEEE.

Ter Hofstede, A. H., W. M. Van der Aalst, M. Adams, and N. Russell (2009). Mod-

ern Business Process Automation: YAWL and its support environment. Springer

Science & Business Media.

Thaler, T., S. Knoch, N. Krivograd, P. Fettke, and P. Loos (2014). Itil process and

impact analysis at rabobank ict. BPI Challenge.

Tolk, A. (2012). Ontology, epistemology, and teleology for modeling and simulation:

Philosophical foundations for intelligent M&S applications, Volume 44. Springer.

115

Traoré, M. K. (2008). A next generation modeling and simulation framework. In

Proceedings of the International Conference on Simulation Tools and Techniques

for Communications, Networks and Systems.

Uhrmacher, A. M. (2001). Dynamic structures in modeling and simulation: a

reflective approach. ACM Transactions on Modeling and Computer Simulation

(TOMACS) 11 (2), 206–232.

Van der Aalst, W. M. (1998). The application of petri nets to workflow management.

Journal of circuits, systems, and computers 8 (01), 21–66.

Van der Aalst, W. M. (2011). Process Mining - Discovery, Conformance and En-

hancement of Business Processes. Springer.

Van der Aalst, W. M. (2015). Extracting event data from databases to unleash process

mining. In BPM-Driving innovation in a digital world, pp. 105–128. Springer.

Van der Aalst, W. M. (2016). Process mining: data science in action. Springer.

Van der Aalst, W. M., A. Adriansyah, and B. Van Dongen (2011). Causal nets: a

modeling language tailored towards process discovery. In International conference

on concurrency theory, pp. 28–42. Springer.

Van der Aalst, W. M., T. Weijters, and L. Maruster (2004). Workflow mining: Dis-

covering process models from event logs. IEEE Transactions on Knowledge and

Data Engineering 16 (9), 1128–1142.

Van Tendeloo, Y. (2013). Research internship i: Efficient devs simulation.

Van Tendeloo, Y. and H. Vangheluwe (2014). The modular architecture of the python

(p) devs simulation kernel: work in progress paper. In Proceedings of the Sympo-

sium on Theory of Modeling & Simulation-DEVS Integrative, pp. 14. Society for

Computer Simulation International.

Wagner, F. (2005). Moore or mealy model. States works, Technical notes

http://stateworks. com.

Wainer, G. and N. Giambiasi (2001). Timed cell-devs: modeling and simulation of

cell spaces. In Discrete event modeling and simulation technologies, pp. 187–214.

Springer.

116

Weijters, A. and J. Ribeiro (2011). Flexible heuristics miner (fhm). In Computational

Intelligence and Data Mining (CIDM), 2011 IEEE Symposium on, pp. 310–317.

IEEE.

Weske, M. (2012). Business process management architectures. In Business Process

Management, pp. 333–371. Springer.

Willems, J. C. (1989). Models for dynamics. In Dynamics reported, pp. 171–269.

Springer.

Youcef, D. and H. Maamar (2014). Specification of the state lifetime in the devs

formalism by fuzzy controller. arXiv preprint arXiv:1401.5638 .

Zacharewicz, G. (2006). Un environnement G-DEVS/HLA: Application à la

modélisation et simulation distribuée de workflow. Ph. D. thesis, Université de

droit, d’économie et des sciences-Aix-Marseille III.

Zacharewicz, G., C. Frydman, and N. Giambiasi (2008). G-devs/hla environment for

distributed simulations of workflows. Simulation 84 (5), 197–213.

Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems:

Selected Papers by Lotfi A Zadeh, pp. 394–432. World Scientific.

Zeigler, B. P., G. Ball, H. Cho, J. Lee, and H. Sarjoughian (1999). Implementation

of the devs formalism over the hla/rti: Problems and solutions. In Simulation

Interoperation Workshop (SIW), Volume 99.

Zeigler, B. P. and P. E. Hammonds (2007). Modeling & simulation-based data en-

gineering: introducing pragmatics into ontologies for net-centric information ex-

change. Elsevier.

Zeigler, B. P., Y. Moon, V. L. Lopes, and J. Kim (1996). Devs approximation of

infiltration using genetic algorithm optimization of a fuzzy system. Mathematical

and Computer Modelling 23 (11-12), 215–228.

Zeigler, B. P., H. Praehofer, and T. G. Kim (2000). Theory of modeling and simula-

tion: integrating discrete event and continuous complex dynamic systems. Academic

press.

Zeigler, B. P. and H. S. Sarjoughian (2003). Introduction to devs modeling and

simulation with java: Developing component-based simulation models. Technical

Document, University of Arizona.

117

Zeigler, B. P. and H. S. Sarjoughian (2013). Devs integrated development environ-

ments. In Guide to Modeling and Simulation of Systems of Systems, pp. 11–26.

Springer.

Zhou, Q. (2016). Research on heterogeneous data integration model of group enter-

prise based on cluster computing. Cluster Computing 19 (3), 1275–1282.

Zimmermann, H. J. (1996). Fuzzy control. In Fuzzy Set Theoryand Its Applications,

pp. 203–240. Springer.

118

