M. Schnölzer and S. B. Kent, Constructing Proteins by Dovetailing Unprotected Synthetic Peptides: Backbone-Engineered HIV Protease, Science, vol.256, issue.5054, p.221, 1992.

O. Vazquez and O. Seitz, Templated Native Chemical Ligation: Peptide Chemistry beyond Protein Synthesis, J .Pept. Sci, 2014.

T. Wieland, E. Bokelmann, L. Bauer, H. U. Lang, H. Lau et al., Mitteilung Bildung von S-Haltigen Peptiden Durch Intramolekulare Wanderung von Aminoacylresten, Justus Liebigs Ann. Chem, vol.8, issue.1, p.129

F. Liu and J. P. Mayer, Protein Chemical Synthesis in Drug Discovery, Top. Curr. Chem, 2015.

D. S. Kemp and N. G. Galakatos, Peptide Synthesis by Prior Thiol Capture. 1. A Convenient Synthesis of 4-Hydroxy-6-Mercaptodibenzofuran and Novel Solid-Phase Synthesis of Peptide-Derived 4-(Acyloxy)-6-Mercaptodibenzofurans, J. Org. Chem, issue.10, p.1821, 1986.

D. S. Kemp, N. G. Galakatos, B. Bowen, and K. Tan, Peptide Synthesis by Prior Thiol Capture. 2. Design of Templates for Intramolecular O,N-Acyl Transfer. 4,6Disubstituted Dibenzofurans as Optimal Spacing Elements, J. Org. Chem, vol.1, issue.10, p.28, 1986.

P. Dawson, T. Muir, I. Clark-lewis, and S. Kent, Synthesis of Proteins by Native Chemical Ligation, Science, vol.266, p.776, 1994.

L. R. Malins and R. J. Payne, Recent Extensions to Native Chemical Ligation for the Chemical Synthesis of Peptides and Proteins, Curr. Opin. Chem. Biol, vol.22, p.70, 2014.

J. W. Bode, R. M. Fox, and K. D. Baucom, Chemoselective Amide Ligations by Decarboxylative Condensations ofN-Alkylhydroxylamines and ?-Ketoacids, Angew. Chem. Int. Ed. Engl, vol.45, issue.8, p.1248, 2006.

E. Saxon, C. R. Bertozzi, Q. Wan, and S. J. Danishefsky, Free-Radical-Based, Specific Desulfurization of Cysteine: A Powerful Advance in the Synthesis of Polypeptides and Glycopolypeptides, Angew. Chem. Int. Ed. Engl, vol.87, issue.20, p.9248, 2000.

T. W. Muir, D. Sondhi, and P. A. Cole, Expressed Protein Ligation: A General Method for Protein Engineering, Proc. Natl. Acad. Sci, vol.95, p.6705, 1998.

G. I. Tesser, Balvert-Geers, I. C. The Methylsulfonylethyloxycarbonyl Group, a New and Versatile Amino Protective Function, Int. J. Pept. Protein Res, vol.7, issue.4, p.295, 1975.

T. W. Muir, P. E. Dawson, and S. B. Kent, Protein Synthesis by Chemical Ligation of Unprotected Peptides in Aqueous Solution, Methods Enzymol, vol.289, p.266, 1997.

S. Ueda, M. Fujita, H. Tamamura, N. Fujii, A. Otaka et al., Photolabile Protection for OnePot Sequential Native Chemical Ligation, Angew. Chem. Int. Ed, vol.6, issue.11, p.7645, 1983.

S. Tsuda, A. Shigenaga, K. Bando, and A. Otaka, Transfer-Mediated Synthesis of Peptide Thioesters Using Anilide Derivatives, Org. Lett, vol.11, issue.4, p.823, 2009.

K. Sato, A. Shigenaga, K. Tsuji, S. Tsuda, Y. Sumikawa et al., Sulfanylethylanilide Peptide as a Crypto-Thioester Peptide, Chem. Bio. Chem, issue.12, p.1840, 2011.

K. Sato, A. Shigenaga, K. Kitakaze, K. Sakamoto, D. Tsuji et al., Chemical Synthesis of Biologically Active Monoglycosylated GM2-Activator Protein Analogue Using N-Sulfanylethylanilide Peptide, Angew. Chem. Int. Ed, vol.52, issue.30, p.7855, 2013.

N. Ollivier, J. Dheur, R. Mhidia, A. Blanpain, O. Melnyk et al.,

W. Hou, X. Zhang, F. Li, C. Liu, N. Peptidyl et al., Mercaptoethyl)-Amides as Thioester Precursors for Native Chemical Ligation, Org. Lett, vol.13, issue.22, p.386, 2010.

N. Ollivier, J. Vicogne, A. Vallin, H. Drobecq, R. Desmet et al., A One-Pot Three-Segment Ligation Strategy for Protein Chemical Synthesis, Angew. Chem. Int. Ed, vol.2012, issue.1, p.209

R. Yang, W. Hou, X. Zhang, C. Liu, D. Bang et al., N-to-C Sequential Ligation Using Peptidyl N,NBis(2-Mercaptoethyl)amide Building Blocks, Angew. Chem. Int. Ed, vol.2012, issue.1, p.3985, 2006.

M. T. Weinstock, M. T. Jacobsen, and M. S. Kay, Synthesis and Folding of a Mirror-Image Enzyme Reveals Ambidextrous Chaperone Activity, Proc. Natl. Acad. Sci. USA, vol.111, p.11679, 2014.

W. Xu, W. Jiang, J. Wang, L. Yu, J. Chen et al., Total Chemical Synthesis of a Thermostable Enzyme Capable of Polymerase Chain Reaction, vol.3, p.17008, 2017.

L. E. Canne, P. Botti, R. J. Simon, Y. Chen, E. A. Dennis et al., Chemical Protein Synthesis by Solid Phase Ligation of Unprotected Peptide Segments, J. Am. Chem. Soc, vol.121, issue.38, p.8720, 1999.

L. Raibaut, O. El-mahdi, and O. Melnyk, Solid Phase Protein Chemical Synthesis, Top. Curr. Chem, 2015.

A. Brik, E. Keinan, and P. E. Dawson, Protein Synthesis by Solid-Phase Chemical Ligation Using a Safety Catch Linker, J. Org. Chem, issue.12, p.3829, 2000.

G. J. Cotton and T. W. Muir, Generation of a Dual-Labeled Fluorescence Biosensor for Crk-II Phosphorylation Using Solid-Phase Expressed Protein Ligation, Chem. Biol, vol.7, issue.4, p.253, 2000.

E. C. Johnson and S. B. Kent, Towards the Total Chemical Synthesis of Integral Membrane Proteins: A General Method for the Synthesis of Hydrophobic Peptide?thioester Building Blocks, Tetrahedron Lett, issue.10, p.1795, 2007.

M. Jbara, M. Seenaiah, and A. Brik, Solid Phase Chemical Ligation Employing a Rink Amide Linker for the Synthesis of Histone H2B Protein, Chem. Commun, vol.50, issue.83, p.12534, 2014.

R. R. Yu, S. K. Mahto, K. Justus, M. M. Alexander, C. J. Howard et al., Hybrid Phase Ligation for Efficient Synthesis of Histone Proteins, Org. Biomol. Chem, vol.14, issue.9, p.2603, 2016.

P. W. Harris and M. A. Brimble, Toward the Total Chemical Synthesis of the Cancer Protein NY-ESO-1, Proc. Nati. Acad. Sci. USA, vol.2010, issue.4, p.5014, 2005.

S. F. Loibl, Z. Harpaz, R. Zitterbart, and O. Seitz, Total Chemical Synthesis of Proteins without HPLC Purification, Chem. Sci, vol.2016, issue.11, p.6753

L. A. Carpino and G. Y. Han, 9-Fluorenylmethoxycarbonyl Function, a New Base-Sensitive Amino-Protecting Group, J. Am. Chem. Soc, vol.92, issue.19, p.5748, 1970.

R. B. Merrifield and A. E. Bach, Sulfo)fluorenylmethyloxycarbonyl Chloride, a New Reagent for the Purification of Synthetic Peptides, J. Org. Chem, issue.9, p.4808, 1978.

H. L. Ball and P. Mascagni, Purification of Synthetic Peptides Using Reversible Chromatographic Probes Based on the Fmoc Molecule, Int. J. Pept. Protein Res, vol.40, issue.5, p.370, 1992.

T. J. Lobl, M. R. Deibel, and A. W. Yem, On-Resin Biotinylation of Chemically Synthesized Proteins for One-Step Purification, Anal. Biochem, vol.170, issue.2, p.502, 1988.

H. L. Ball, G. Bertolini, S. Levi, and P. Mascagni, Purification of Synthetic Peptides with the Aid of Reversible Chromatographic Probes, J. Chromatogr. A, vol.686, issue.1, p.73, 1994.

P. Mascagni, H. L. Ball, and G. Bertolini, Selective Purification of Synthetic Proteins by the Use of FMOC-and Biotin-Based Reversible Chromatographic Probes, Anal. Chim. Acta, vol.352, issue.1-3, p.375, 1997.

E. Bianchi, M. Sollazzo, A. Tramontano, and A. Pessi, Affinity Purification of a DifficultSequence Protein, Int. J. Pept. Protein Res, vol.42, issue.1, p.93, 1993.

S. Funakoshi, H. Fukuda, and N. Fujii, Affinity Purification Method Using a Reversible Biotinylating Reagent for Peptides Synthesized by the Solid-Phase Technique, J. Chromatogr. A, vol.638, issue.1, p.21, 1993.

H. L. Ball, G. Bertolini, and P. Mascagni, Affinity Purification of 101 Residue Rat cpn10 Using a Reversible Biotinylated Probe, J. Pept. Sci, vol.1, issue.5, p.288, 1995.

B. Kellam, W. C. Chan, S. R. Chhabra, W. Bycroft-barrie, C. Derache et al., Initial Insights into Structure-Activity Relationships of Avian Defensins, Biochem. Biophys. Res. Commun, vol.2, issue.8, p.721, 2004.

T. A. Reeks, B. G. Fry, and P. F. Alewood, Privileged Frameworks from Snake Venom, Cell. Mol. Life Sci, vol.2015, issue.10, 1939.

G. Martinez, J. Hograindleur, S. Voisin, R. Abi-nahed, T. M. Aziz et al., an La1like Peptide from the Venom of the Scorpion Scorpio Maurus Palmatus , Improves Sperm Motility and Fertilization in Different Mammalian Species, Mol. Hum. Reprod, vol.23, issue.2, p.116, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01618630

H. Terlau and B. M. Olivera, Conus Venoms: A Rich Source of Novel Ion Channel-Targeted Peptides, Physiol. Rev, vol.84, issue.1, p.41, 2004.

G. F. King, Venoms as a Platform for Human Drugs, Translating Toxins into Therapeutics. Expert Opin. Biol. Ther, vol.11, issue.11, p.1469, 2011.

R. J. Lewis and M. L. Garcia, Therapeutic Potential of Venom Peptides, Nat. Rev. Drug Discov, vol.2, issue.10, p.790, 2003.

C. Mollay, C. Wechselberger, G. Mignogna, L. Negri, P. Melchiorri et al., , p.96

A. Schmidtko, J. Lötsch, R. Freynhagen, G. Geisslinger, J. Spafford et al., Group, for the Z. 98-022 S. Ziconotide for Treatment of Severe Chronic Pain, Eur. J. Pharmacol, vol.374, issue.2, p.1569, 1999.

D. J. Craik and D. J. Adams, Chemical Modification of Conotoxins to Improve Stability and Activity, ACS Chem. Biol, vol.2, issue.7, p.457, 2007.

A. C. Conibear and D. J. Craik, Chemical Synthesis of Naturally-Occurring Cyclic MiniProteins from Plants and Animals, Isr. J. Chem, p.908, 2011.

C. M. Kourra, N. Cramer, A. K. Sato, M. Viswanathan, R. B. Kent et al., Converting Disulfide Bridges in Native Peptides to Stable Methylene Thioacetals, Chem. Sci, vol.2016, issue.12, p.7007

D. J. Craik, N. L. Daly, T. Bond, and C. Waine, Plant Cyclotides: A Unique Family of Cyclic and Knotted Proteins That Defines the Cyclic Cystine Knot Structural Motif, J. Mol. Biol, vol.294, issue.5, p.1327, 1999.

C. W. Gruber, M. M. ?ema?ar, M. A. Anderson, and D. J. Craik, Insecticidal Plant Cyclotides and Related Cystine Knot Toxins, Toxicon, vol.49, issue.4, p.561, 2007.

S. E. Ackerman, N. Currier, J. M. V;-bergen, and J. R. Cochran, Cystine-Knot Peptides: Emerging Tools for Cancer Imaging and Therapy, Expert Rev. Proteomics, vol.11, issue.5, p.561, 2014.

N. Terrett, Drugs in Middle Space, Med. Chem. Comm, vol.2013, issue.3, p.474

K. Fosgerau and T. Hoffmann, Peptide Therapeutics: Current Status and Future Directions, Drug Discov. Today, vol.20, issue.1, p.122, 2015.

D. T. Barkan, X. Cheng, H. Celino, T. T. Tran, A. Bhandari et al., Clustering of Disulfide-Rich Peptides Provides Scaffolds for Hit Discovery by Phage Display: Application to Interleukin-23, BMC Bioinformatics, vol.17, issue.1, p.481, 2016.

T. M. Postma and F. Albericio, Disulfide Formation Strategies in Peptide Synthesis, European J. Org. Chem, issue.17, p.3519, 2014.

E. Prommer, Ziconotide: A New Option for Refractory Pain, Drugs of Today, vol.42, issue.6, p.369, 2006.

B. E. Lacy, J. M. Levenick, M. D. Crowell, P. B. Linaclotide-;-miner, W. D. Koltun et al., A Randomized Phase III Clinical Trial of Plecanatide, a Uroguanylin Analog, in Patients with Chronic Idiopathic Constipation, 653. b), vol.2012, p.613, 2017.

D. J. Craik, D. P. Fairlie, S. Liras, and D. Price, The Future of Peptide-Based Drugs, Chem. Biol. Drug. Des, vol.81, issue.1, p.97, 2013.

C. T. Wong, D. K. Rowlands, C. Wong, T. W. Lo, G. K. Nguyen et al., Orally Active Peptidic Bradykinin B1 Receptor Antagonists Engineered from a Cyclotide Scaffold for Inflammatory Pain Treatment, Angew. Chem. Int. Ed, vol.2012, issue.23

L. Canne, S. B. Kent, and S. Reyna, Solid Phase Native Chemical Ligation of Unprotected or N-Terminal Cysteine Protected Peptides in Aqueous Solution, U. S. Patent, vol.6, 1998.

A. K. Galande, J. O. Trent, and A. F. Spatola, Understanding Base-Assisted Desulfurization Using a Variety of Disulfide-Bridged Peptides, Biopolymers, vol.71, issue.5, p.534, 2003.

T. Hara, A. Tainosho, K. Nakamura, T. Sato, T. Kawakami et al., Peptide Purification by Affinity Chromatography Based on Alpha-Ketoacyl Group Chemistry, J. Pept. Sci, vol.15, issue.5, p.369, 2009.

B. Kellam, W. C. Chan, S. R. Chhabra, and B. W. Bycroft, Transient Affinity Tags Based on the Dde Protection/deprotection Strategy: Synthesis and Application of 2-Biotinyl-and 2-Hexanoyldimedone, Tetrahedron Lett, vol.38, issue.30, p.5391, 1997.

M. Galibert, V. Piller, F. Piller, V. Aucagne, and A. F. Delmas, Combining Triazole Ligation and Enzymatic Glycosylation on Solid Phase Simplifies the Synthesis of Very Long Glycoprotein Analogues, Chem. Sci, vol.6, p.3617, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01178852

P. Dawson, T. Muir, I. Clark-lewis, and S. Kent, Synthesis of Proteins by Native Chemical Ligation, Science, vol.266, p.776, 1994.

A. Sharma, Y. Jad, H. Ghabbour, B. De-la-torre, H. Kruger et al., Crystal Structure and DFT Studies, vol.1, issue.1, p.31, 2017.

C. N. Pace, F. Vajdos, L. Fee, G. Grimsley, and T. Gray, How to Measure and Predict the Molar Absorption Coefficient of a Protein, Protein Sci, vol.1995, issue.11, p.2411

S. Nath and P. Mukherjee, MUC1: A Multifaceted Oncoprotein with a Key Role in Cancer Progression, Trends Mol. Med, vol.20, issue.6, p.332, 2014.

J. S. Harding, L. N. Owen, and . Dithiols, Part XIII. The Alkaline Hydrolysis of Acetylated Vicinal Hydroxy-Thiols, J. Chem. Soc, issue.0, p.1528, 1954.

Z. P. Gates, J. R. Stephan, D. J. Lee, S. B. Kent, and J. Li, Rapid Formal Hydrolysis of Peptide-? Thioesters, Chem. Commun, issue.8, p.786, 2013.

C. C. Lechner, C. F. Becker, K. Shiba, E. Dong, X. Yang et al., Immobilising Proteins on Silica with Site-Specifically Attached Modified Silaffin Peptides. Biomater. Sci, vol.2015, issue.2, p.288

J. O. Edwards and R. G. Pearson, The Factors Determining Nucleophilic Reactivities, J. Am. Chem. Soc, vol.84, issue.1, p.16, 1962.

W. P. Jencks and J. Carriuolo, Reactivity of Nucleophilic Reagents toward Esters, J. Am. Chem. Soc, vol.82, issue.7, p.1778, 1960.

L. E. Canne, P. Botti, R. J. Simon, Y. Chen, E. A. Dennis et al., Chemical Protein Synthesis by Solid Phase Ligation of Unprotected Peptide Segments, J. Am. Chem. Soc, vol.121, issue.38, p.8720, 1999.

A. Brik, E. Keinan, and P. E. Dawson, Protein Synthesis by Solid-Phase Chemical Ligation Using a Safety Catch Linker, J. Org. Chem, issue.12, p.3829, 2000.

S. F. Loibl, Z. Harpaz, R. Zitterbart, and O. Seitz, Total Chemical Synthesis of Proteins without HPLC Purification, Chem. Sci, vol.2016, issue.11, p.6753

E. C. Johnson, T. Durek, S. B. Kent, J. Rademann, M. Grøtli et al., Highly Efficient Solid Phase Synthesis of Large Polypeptides by Iterative Ligations of bis(2Sulfanylethyl)amido (SEA) Peptide Segments, Total Chemical Synthesis, vol.45, issue.20, p.135, 1999.

V. Aucagne, I. E. Valverde, P. Marceau, M. Galibert, N. Dendane et al., Towards the Simplification of Protein Synthesis: Iterative Solid-Supported Ligations with Concomitant Purifications, Angew. Chem. Int. Ed, vol.2012, issue.45, p.11320
URL : https://hal.archives-ouvertes.fr/hal-00748170

M. Galibert, V. Piller, F. Piller, V. Aucagne, A. F. Delmas et al., Combining Triazole Ligation and Enzymatic Glycosylation on Solid Phase Simplifies the Synthesis of Very Long Glycoprotein Analogues, Chem. Sci, vol.2015, issue.6, p.3617
URL : https://hal.archives-ouvertes.fr/hal-01178852

M. Meldal and . Pega, A Flow Stable Polyethylene Glycol Dimethyl Acrylamide Copolymer for Solid Phase Synthesis, Tetrahedron Lett, issue.21, p.3077, 1992.

M. Renil, M. Ferreras, J. M. Delaisse, N. T. Foged, and M. Meldal, PEGA Supports for Combinatorial Peptide Synthesis and Solid-Phase Enzymatic Library Assays, J. Pept. Sci, vol.4, issue.3, p.195, 1998.

Z. Kutnjak, S. Kralj, G. Lahajnar, and S. ?umer, Influence of Finite Size and Wetting on Nematic and Smectic Phase Behavior of Liquid Crystal Confined to Controlled-Pore Matrices, Phys. Rev. E, vol.70, issue.5, p.110, 2004.

J. Kang, N. L. Reynolds, C. Tyrrell, J. R. Dorin, and D. Macmillan, Peptide Thioester Synthesis through N->S Acyl-Transfer: Application to the Synthesis of a Beta-Defensin, Org. Biomol. Chem, vol.7, issue.23, p.4918, 2009.

D. A. Stetsenko and M. J. Gait, Efficient Conjugation of Peptides to Oligonucleotides by "Native Ligation, J. Org. Chem, p.4900, 2000.

S. Tsuda, T. Yoshiya, M. Mochizuki, and Y. Nishiuchi, Synthesis of Cysteine-Rich Peptides by Native Chemical Ligation without Use of Exogenous Thiols, Org. Lett, issue.7, p.1806, 2015.

G. J. Bernardes, E. J. Grayson, S. Thompson, J. M. Chalker, J. C. Errey et al., From Disulfide-to Thioether-Linked Glycoproteins, Angew. Chem. Int. Ed. Engl, vol.47, issue.12, p.2244, 2008.

R. L. Danheiser, R. F. Miller, R. G. Brisbois, and S. Z. Park, An Improved Method for the Synthesis of .alpha.-Diazo Ketones, J. Org. Chem, issue.6, p.1959, 1990.

A. Dijk, E. J. Veldhuizen, H. P. Haagsman, and . Defensins, Vet. Immunol. Immunopathol, vol.124, issue.1-2, p.1, 2008.

D. Ma, R. Wang, W. Liao, Z. Han, S. Liu et al., Identification and Characterization of a Novel Antibacterial Peptide, Avian ?-Defensin 2 from Ducks, Biochem. Biophys. Res. Commun, vol.47, issue.5, p.721, 2004.

M. Yang, C. Zhang, X. Zhang, M. Z. Zhang, G. E. Rottinghaus et al., StructureFunction Analysis of Avian ?-Defensin-6 and ?-Defensin-12: Role of Charge and Disulfide Bridges, BMC Microbiol, vol.16, issue.1, p.210, 2016.

C. Derache, V. Labas, V. Aucagne, H. Meudal, C. Landon et al., Primary Structure and Antibacterial Activity of Chicken Bone Marrow-Derived Beta-Defensins, Antimicrob. Agents Chemother, vol.53, issue.11, p.7746, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00522326

S. B. Kent, M. Paradís-bas, J. Tulla-puche, and F. Albericio, The Road to the Synthesis of 'difficult Peptides, Annu. Rev. Biochem, vol.57, issue.1, p.631, 1988.

R. C. Milton, L. De, S. C. Milton, P. A. Adams, M. Gongora-benitez et al., Prediction of Difficult Sequences in Solid-Phase Peptide Synthesis, J. Am. Chem. Soc, vol.112, issue.16, p.217, 1990.

W. R. Sampson, H. Patsiouras, and N. J. Ede, The Synthesis of 'difficult' Peptides Using 2Hydroxy-4-Methoxybenzyl or Pseudoproline Amino Acid Building Blocks: A Comparative Study, J. Pept. Sci, vol.5, issue.9, p.403, 1999.

A. M. Abdel-aal, G. Papageorgiou, R. Raz, M. Quibell, F. Burlina et al., A Backbone Amide Protecting Group for Overcoming Difficult Sequences and Suppressing Aspartimide Formation, J. Pept. Sci, vol.2016, issue.5, p.360
URL : https://hal.archives-ouvertes.fr/hal-01304373

F. Weygand, W. Steglich, and J. Bjarnason, Leicht Abspaltbare Schutzgruppen Für Die Säureamidfunktion, 3. Derivate Des Asparagins Und Glutamins Mit 2.4-DimethoxyBenzyl-Und 2.4.6-Trimethoxy-Benzyl-Geschützten Amidgruppen, Chem. Ber, vol.101, issue.10, p.3642, 1968.

S. Zahariev, C. Guarnaccia, F. Zanuttin, A. Pintar, G. Esposito et al.,

N. Arginine, N?-Dimethylarginine Forms of the Human Nucleolin Glycine/arginine Rich Domain, J. Pept. Sci, vol.11, issue.1, p.17, 2005.

C. Hyde, T. Johnson, D. Owen, M. Quibell, and R. C. Sheppard, Some 'Difficult Sequences' Made Easy. A Study of Interchain Association in Solid-Phase Peptide Synthesis, Int. J. Pept. Protein Res, vol.43, issue.5, p.431, 1994.

W. D. Meutermans, S. W. Golding, G. T. Bourne, P. Les, M. Dooley et al., Synthesis of Difficult Cyclic Peptides by Inclusion of a Novel Photolabile Auxiliary in a Ring Contraction Strategy, J. Am. Chem. Soc, p.9790, 1999.

T. Haack and M. Mutter, Serine Derived Oxazolidines as Secondary Structure Disrupting, Solubilizing Building Blocks in Peptide Synthesis, Tetrahedron Lett, issue.12, p.1589, 1992.

M. Mutter, H. Oppliger, and A. Zier, Solubilizing Protecting Groups in Peptide Synthesis. Effect of Side-chain-attached Poly(ethylene Glycol) Derivatives upon ?-sheet Formation of Model Peptides. Die Makromol. Chemie, Rapid Commun, vol.13, issue.3, p.151, 1992.

M. Mutter, T. Wohr, S. Gioria, and M. Keller, Pseudo-Prolines: Induction of Cis/transConformational Interconversion by Decreased Transition State Barriers, Biopolymers, vol.51, issue.2, p.121, 1999.

T. Wöhr, F. Wahl, A. Nefzi, B. Rohwedder, T. Sato et al., PseudoProlines as a Solubilizing, Structure-Disrupting Protection Technique in Peptide Synthesis, J. Am. Chem. Soc, vol.118, issue.39, p.9218, 1996.

G. Cremer, H. Tariq, and A. F. Delmas, Combining a Polar Resin and a Pseudo-Proline to Optimize the Solid-Phase Synthesis of a 'difficult Sequence, J. Pept. Sci, vol.12, issue.6, p.437, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00088839

F. García-martín, M. Quintanar-audelo, Y. García-ramos, L. J. Cruz, C. Gravel et al., ChemMatrix, a Poly(ethylene Glycol)-Based Support for the Solid-Phase Synthesis of Complex Peptides, J. Comb. Chem, vol.8, issue.2, p.213, 2006.

T. K. Tiefenbrunn, J. Blanco-canosa, and P. E. Dawson, Alternative Chemistries for the Synthesis of Thrombospondin-1 Type 1 Repeats, Biopolymers, vol.94, issue.4, p.405, 2010.

E. Bayer, B. ;. Hemmasi, A. , K. Rapp, W. Dengler et al., Immobilized Polyoxyethylene, A New Support for Peptide Synthesis, Pept. Struct. Funct. Proc, vol.8

F. García-martín, P. White, R. Steinauer, S. Côté, J. Tulla-puche et al., The Synergy of ChemMatrix Resin® and Pseudoproline Building Blocks Renders Rantes, a Complex Aggregated Chemokine, Biopolymers, vol.84, issue.6, p.566, 2006.

S. A. Camperi and M. Marani,

S. Côté, F. Albericio, and O. Cascone, An Efficient Strategy for the Preparation of One-Bead-One-Peptide Libraries

. Biocompatible-solid and . Support, Tetrahedron Lett, vol.46, issue.9, p.1561, 2005.

J. D. Wade, J. Bedford, R. C. Sheppard, and G. W. Tregear, DBU as an N AlphaDeprotecting Reagent for the Fluorenylmethoxycarbonyl Group in Continuous Flow Solid-Phase Peptide Synthesis, Pept. Res, vol.4, issue.3, p.194, 1991.

A. K. Tickler, C. J. Barrow, and J. D. Wade, Improved Preparation of Amyloid-? Peptides Using DBU as N?-Fmoc Deprotection Reagent, J. Pept. Sci, vol.7, issue.9, p.488, 2001.

J. E. Sheppeck, H. Kar, and H. Hong, A Convenient and Scaleable Procedure for Removing the Fmoc Group in Solution, Tetrahedron Lett, issue.28, p.5329, 2000.

D. S. King, C. G. Fields, and G. B. Fields, A Cleavage Method Which Minimizes Side Reactions Following Fmoc Solid Phase Peptide Synthesis, Int. J. Pept. Protein Res, vol.36, issue.3, p.255, 2009.

B. F. Lundt, N. L. Johansen, and J. Markussen, Formation and Synthesis of 3-TertButyltyrosine, Int. J. Pept. Protein Res, vol.14, issue.4, p.344, 2009.

J. B. Blanco-canosa, B. Nardone, F. Albericio, and P. E. Dawson, Chemical Protein Synthesis Using a Second-Generation N-Acylurea Linker for the Preparation of Peptide-Thioester Precursors, J. Am. Chem. Soc, vol.137, issue.22, p.7197, 2015.

S. Gunasekera, T. L. Aboye, W. A. Madian, H. R. El-seedi, and U. Göransson, Making Ends Meet: Microwave-Accelerated Synthesis of Cyclic and Disulfide Rich Proteins Via In Situ Thioesterification and Native Chemical Ligation, Int. J. Pept. Res. Ther, vol.19, issue.1, p.43, 2013.

P. W. Harris, R. Kowalczyk, S. H. Yang, G. M. Williams, and M. A. Brimble, An Important Side Reaction Using the Thiol, 3,6-Dioxa-1,8-Octanedithiol (DODT), in 9Fluorenylmethoxycarbonyl-Based Solid Phase Peptide Synthesis, J. Pept. Sci, vol.2014, issue.3, p.186

A. Teixeira, W. Benckhuijsen, P. De-koning, A. Valentijn, and J. Drijfhout, The Use of Dodt as a Non-Malodorous Scavenger in Fmoc-Based Peptide Synthesis, Protein Pept. Lett, vol.9, issue.5, p.379, 2002.

M. Góngora-benítez, J. Tulla-puche, and F. Albericio, Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics, Chem. Rev, vol.114, issue.2, p.901, 2014.

A. Irbäck and S. Mohanty, Folding Thermodynamics of Peptides, Biophys. J, vol.88, issue.3, p.1560, 2005.

T. M. Postma and F. Albericio, Disulfide Formation Strategies in Peptide Synthesis, European J. Org. Chem, issue.17, p.3519, 2014.

M. Okumura, S. Shimamoto, and Y. Hidaka, A Chemical Method for Investigating Disulfide-Coupled Peptide and Protein Folding, FEBS J, vol.2012, issue.13, p.2283

B. P. Tu and J. S. Weissman, Oxidative Protein Folding in Eukaryotes: Mechanisms and Chapter

, Consequences. J. Cell Biol, vol.164, issue.3, p.341, 2004.

E. C. Johnson, T. Durek, and S. B. Kent, Total Chemical Synthesis, Folding, and Assay of a Small Protein on a Water-Compatible Solid Support, Angew. Chem. Int. Ed, vol.45, issue.20, p.3283, 2006.

P. Jayalekshmy and S. Mazur, Pseudodilution, the Solid-Phase Immobilization of Benzyne, J. Am. Chem. Soc, vol.98, issue.21, p.6710, 1976.

A. Jalali, F. Bosmans, M. Amininasab, E. Clynen, E. Cuypers et al., OD1, the First Toxin Isolated from the Venom of the Scorpion Odonthobuthus Doriae Active on Voltage-Gated Na+ Channels, FEBS Lett, issue.19, p.4181, 2005.

T. Durek, I. Vetter, C. A. Wang, L. Motin, O. Knapp et al., Chemical Engineering and Structural and Pharmacological Characterization of the ?-Scorpion Toxin OD1, ACS Chem. Biol, vol.8, issue.6, p.1215, 2013.

G. Martinez, J. Hograindleur, S. Voisin, R. Abi-nahed, T. M. Aziz et al., an La1like Peptide from the Venom of the Scorpion Scorpio Maurus Palmatus , Improves Sperm Motility and Fertilization in Different Mammalian Species, Mol. Hum. Reprod, vol.23, issue.2, p.339, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01618630

Y. T. Birk, . Bowman-birk, . Inhibitor, G. Song, M. Zhou et al., Divergent Protein Synthesis of Bowman-Birk Protease Inhibitors, Their Hydrodynamic Behavior and Co-Crystallization with, Biochem. Biophys. Res. Commun, vol.25, issue.2, p.191, 1901.

R. A. Morales, N. L. Daly, I. Vetter, M. Mobli, I. A. Napier et al., Chemical Synthesis and Structure of the Prokineticin Bv8, Chem. Bio. Chem, issue.13, p.1882, 2010.

C. Mollay, C. Wechselberger, G. Mignogna, L. Negri, P. Melchiorri et al., Bv8, a Small Protein from Frog Skin and Its Homologue from Snake Venom Induce Hyperalgesia in Rats, Eur. J. Pharmacol, vol.374, issue.2, p.189, 1999.

J. P. Tam, M. W. Riemen, and R. B. Merrifield, Mechanisms of Aspartimide Formation: The Effects of Protecting Groups, Acid, Base, Temperature and Time, Pept. Res, vol.1, issue.1, p.6, 1988.

R. Subirós-funosas, A. El-faham, F. Albericio, M. Mergler, F. Dick et al., Aspartimide Formation in Peptide Chemistry: Occurrence, Prevention Strategies and the Role of N-Hydroxylamines, J. Pept. Sci, vol.67, issue.45, p.36, 2003.

R. Behrendt, S. Huber, and P. White, Preventing Aspartimide Formation in Fmoc SPPS of Asp-Gly Containing Peptides-Practical Aspects of New Trialkylcarbinol Based Protecting Groups, J. Pept. Sci, vol.2016, issue.2, p.92

D. S. King, C. G. Fields, and G. B. Fields, A Cleavage Method Which Minimizes Side Reactions Following Fmoc Solid Phase Peptide Synthesis, Int. J. Pept. Protein Res, vol.36, issue.3, p.255, 2009.

B. F. Lundt, N. L. Johansen, and J. Markussen, Formation and Synthesis of 3-TertButyltyrosine, Int. J. Pept. Protein Res, vol.14, issue.4, p.344, 2009.

J. B. Blanco-canosa, B. Nardone, F. Albericio, and P. E. Dawson, Chemical Protein Synthesis Using a Second-Generation N-Acylurea Linker for the Preparation of Peptide-Thioester Precursors, J. Am. Chem. Soc, vol.137, issue.22, p.7197, 2015.

S. Gunasekera, T. L. Aboye, W. A. Madian, H. R. El-seedi, and U. Göransson, Making Ends Meet: Microwave-Accelerated Synthesis of Cyclic and Disulfide Rich Proteins Via In Situ Thioesterification and Native Chemical Ligation, Int. J. Pept. Res. Ther, vol.19, issue.1, p.43, 2013.

D. .. , Preparation of Cys-Dtph-containing peptides, Preparation of the model linker-containing peptides

. , Native chemical ligation of 8a-c with 16

, Stability study of the linker-containing peptides 8a, 8b and 8c under selected conditions, vol.201

.. .. Study-of-cleavage-kinetics, 202 6. Functionalization of the solid support with thioester 16

. .. Peptides, 209 7.1. Influence of the resin. Synthesis of peptidyl resin 23A-C and Cys-Dtph-containing peptides 24A-C, Synthesis of peptidyl resin 23B, 23D-G and Cys-Dtph-containing peptides 24B

C. .. Avbd2, 230 8.1. Fmoc-SPPS synthesis of AvBD2[1-36] 26F-2, for comparative studies

. , 238 10. Catch-and-release purification of Bv8 peptide, Synthesis of Cys-Dtph-containing peptides, p.251

, Protected amino acids, Rink´s linker, Spheritide TM resin, amino-PEGA resin, HBTU and HCTU were purchased from

, Controlled pore glass beads (TRISOPERL®, pore size: 100 nm, bead diameter: 100-200 ?m, lot number: PG L 14/04 AMINO 225) was obtained from VitraBio

. Biomatrix and . Inc, 10trioxatridecan-succinamic acid (Fmoc-TTDS-OH) and Fmoc-NH-PEG-COOH (3000 Da) were purchased from Iris Biotech GmbH, Fmoc-Ala-methylphenoxypropionic acid (Fmoc-L-Ala-MPAA-OH was obtained from Interchim, vol.7

, All other chemicals were from Sigma Aldrich (St-Quentin-Fallavier, France) and solvents from SDS-Carlo Erba, PyAOP was obtained from aapptec

. Torviq, ) and were equipped with PTFE stopcock bought from Chromoptic

, High resolution ESI-MS analyses were performed on a MaXis TM ultra-high-resolution QTOF mass spectrometer (Bruker Daltonics

, LC/MS analyses were performed on a 6120B single Quadrupole LC/MS system (Agilent Technologies

, HighResolution RP-18e (130 Å, 10 × 4.6 mm, 3 mL/min flow rate) and Jupiter C4 (300 Å, p.5

, × 10 mm, 3 mL/min flow rate)

, 250 × 10 mm, 3 mL/min flow rate) or Jupiter C4 (300 Å, 5 ?m, 250 × 10 and B are 0.1% TFA in H2O and 0.1% TFA in MeCN, respectively. Each gradient was followed by a washing step (up to 95% B/A) to elute any compound not eluted during the gradient. LC/HRMS and LC/MS analyses were carried out respectively on an Ultimate ® 3000 RSLC HPLC system, Hitachi L-2455 diode array detector and a Hitachi L-2200 auto sampler. Nucleosil C18 (300 Å, 5 ?m

, Infinity HPLC system, coupled with the Agilent 6120 mass spectrometer, and fitted with an

, Aeris Widepore XB-C18 2 (3.6 ?m, 150 × 2.1 mm, 0.5 mL/min flow rate, 40°C) column

A. Solvents, 1% formic acid in H2O and 0.08% formic acid in MeCN, respectively. Kiesegel C60 (Merck, Germany) as the stationary phase, and thin layer chromatography analyses were performed on precoated silica gel plates (0.25 mm thick, 60 F254

. Spot-ii-flash, , p.40

, Preparation of the model linker-containing peptides 3.1. Synthesis of Boc-Cys(Trt)-Dtph-Xaa-OH Supplementary figure 1 Synthesis of Boc-Cys(Trt)-Dtph-OH , overall yield 64% Compound 1

, A solution of methyl-6-aminohexanoate hydrochloride (250 mg, 1.6 equiv.) and iPr2EtN (256.2 µL, 1.7 equiv.) in CH2Cl2 (20 mL) was cooled in an ice bath, Then Boc-Cys

, HOBt (0.116 g, 1 equiv.) and DCC (0.213 flash column chromatography (eluent: petroleum ether/ EtOAc, vol.6

H. Nmr, 600 MHz, CDCl3): ? 7.37-7.32 (m, 6H, HTrt), 7.22-7.18 (m, 6H, HTrt), 7.19-7.12 (m, 3H, HTrt), 5.91 (bt, J = 5.9 Hz, 1H, H4), 4.72 (bs, 1H, H1)

2. Hz,

C. Nmr, , vol.174

E. ,

, To a solution of 1 (442 mg, 0.71 mmol, 1 equiv.) in MeOH (16 mL) was added a solution of

, NaOH (120 mg, 4 equiv.) in water (5 mL) and the resulting mixture was heating at 50 °C for 5

H. Nmr, 600 MHz, CDCl3): ? 7.37-7.31 (m, 6H, HTrt), 7.25-7.18 (m, 6H, HTrt), 7.17-7.11 (m, 3H, HTrt), 6.03-5.93 (m, 1H, H4)

2. Hz,

C. Nmr,

E. ,

, A solution of 1,3-dimethylbarbituric acid (115 mg, 1.2 equiv.), compound 2 (355 mg, p.61

, DMAP (90 mg, 1.2 equiv.) in CH2Cl2 (30 mL) were cooled in an ice bath

, EDCI (142 mg, 1.2 equiv.by flash column chromatography (eluent: CH2Cl2/MeOH, vol.99

H. Nmr, 600 MHz, CDCl3): ? 7.48-7.36 (m, 6H, HTrt), 7.35-7.28 (m, 6H, HTrt), 7.26-7.12 (m, 3H, HTrt), vol.6

1. Hz and . H3a,

C. Nmr,

E. , , p.172

, General protocol for the preparation of Boc-Cys(Trt)-Dtph-Xaa-OH: compounds 4a-e A solution of compound 3 (1 equiv.), amino acid (Gly, Ala or Ser(OtBu)

/. Meoh, :2:9) to afford compound 4a-c Compound 4a

H. Nmr, 400 MHz, CDCl3, 55°C): ? 12.89 (s, 1H, H10), 7.36-7.31 (m, 6H, HTrt), 7.22-7.18 (m, 6H, HTrt)

C. Nmr, MHz, issue.150

E. ,

, Boc-Cys(Trt)-Dtph, vol.4

H. Nmr, 400 MHz, CDCl3, 55°C): ? 13.0 (bs, 1H, H10) 7.33-7.31 (m, 6H, HTrt), 7.24-7.19 (m, 6H, HTrt), 7.14-7.11 (m, 3H, HTrt), vol.6

C. Nmr,

E. ,

, Boc-Cys(Trt)-Dtph, vol.4

H. Nmr, 400 MHz, CDCl3, 55°C): ? 12.91 (m, 1H, H10), 7.44-7.26 (m, 6H, HTrt), 7.24-7.16 (m, 6H, HTrt), 7.16-7.05 (m, 3H, HTrt), vol.6, pp.33-39

. Hz,

C. Nmr, MHz, issue.150

E. ,

, Boc-Cys(Trt)-Dtph, vol.4

H. Nmr, 400 MHz, CDCl3, 55°C): ? 7.48-7.34 (m, 6H, HTrt), 7.33-7.26 (m, 6H, HTrt), 7.267.17 (m, 3H, HTrt), vol.12, pp.167-168

C. Nmr, MHz, issue.150

E. ,

, Boc-Cys(Trt)-Dtph-Ser, vol.4

H. Nmr, 400 MHz, CDCl3, 55°C): ? 7.47-7.36 (m, 6H, HTrt), 7.34-7.26 (m, 6H, HTrt), 7.267.16 (m, 3H, HTrt), 6.22 (bt, J = 5.7 Hz, 1H, H4), vol.5, pp.23-513

C. Nmr, MHz, CDCl3): ? 176, vol.9

E. ,

E. Calcd,

, HPLC purification: retention time: 8.05 min (Nucleosil

, ESI-HRMS (m/z): [M+H] + calcd. for C106H160N32O32S: 2426.1597, found: 2426.1666. HPLC analysis: retention time: 2.88 min

, HPLC purification: retention time: 2.1min (Nucleosil, gradient: 24-36 % B/A over 20 min, vol.9

, HPLC analysis: retention time: 2.88 min (Chromolith, gradient: 20-50 % B/A over 5 min), ESI-HRMS (m/z): [M+H] + calcd. for C107H162N32O32S: 2440.1754

, HPLC purification: retention time: 14.29 min (Nucleosil, gradient: 24-36 % B/A over 20 min, 11: ESI-HRMS mass spectrum of 6c

, Supplementary figure 12: Synthesis of 14

, Benzyl mercaptan (2.6 mL, 22 mmol, 1.1 equiv.) was added under argon to a stirred solution of succinic anhydride (2.0 g, 20 mmol, 1 equiv.) and 4-(dimethylamino)-pyridine (122 mg, p.1

D. A. Stetsenko and M. J. Gait, J Org Chem, vol.65, p.4900, 2000.

, M HCl solution, followed by ice-cold water, and then dissolved in powder (854 mg, 19%)

H. Nmr, 600 MHz, DMSO-d6): ? 12.28 (s, 1H, H1), 7.37-7.17 (m, 5H, HAr

, Supplementary figure 13: synthesis of 16, overall yield 40%

G. J. Bernardes, E. J. Grayson, S. Thompson, J. M. Chalker, J. C. Errey et al., Angew. Chem. Int. Ed. Engl, vol.47, issue.12, p.37, 2008.