G. List-of-publications-journal, A. Guitton, M. Mangla, F. Chalkiadaki, T. Fadhuile et al., Design of ultra low-power RF oscillators based on the inversion coefficient methodology using BSIM6 model, International Journal of Circuit Theory and Applications, vol.44, issue.2, pp.382-397, 2016.

G. Guitton, M. Souza, A. Mariano, and T. Taris, Design Methodology based on the Inversion Coefficient and its Application to Inductorless LNA Implementations

G. Conferences and . Guitton, Méthodologie de Conception d'Oscillateurs LC RF basée sur le Coefficient d'Inversion, XIXème Journées Nationales Microonde (JNM), 2015.

F. Fadhuile, G. Guitton, Y. Deval, D. Belot, C. C. Enz et al., Méthode de conception d'amplificateur faible bruit à base de FOM et de coefficient d'inversion pour des applications RF à faible consommation, XIXème Journées Nationales Microonde (JNM), 2015.

G. Guitton, M. Souza, A. Mariano, T. Taris-;-taris, F. Fadhuile et al., Reconfigurable Inductorless Low-Noise Amplifier for a Low Power Application in CMOS 28 nm FDSOI, submitted at ISCAS, RF CMOS Design with the Inversion Coefficient, 2016.

T. Taris, F. Fadhuile, G. Guitton, A. Hossein, H. Kraïmia et al., Design Guide for Low Power RF Building Blocks, Tutorial at ISCAS, 2016.

. Digikey, Lower-Cost Integrated Solutions Enable New NFC Wireless Apps, 2013.

L. Zhou, Architecture d'amplificateur faible bruit large bande multistandard avec gestion optimale de la consommation, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01362329

A. Zanella, N. Bui, and A. Castellani, Internet of things for smart cities, IEEE Internet of Things journal, vol.1, issue.1, pp.22-32, 2014.

F. Xia, L. T. Yang, and L. Wang, Internet of things, International Journal of Communication Systems, vol.25, p.1101, 2012.

L. Wellstone, Internet of Things révolutionne les usages de l'immeuble

E. , Haehsen in La tribune, Les nanosatellites décollent tous azimuts, 2014.

C. and J. , Des satellites pas chers, performants... mais pour quels usages et quelles missions?, Journée des nanosatellites, 2017.

R. G. Zencik and K. Kohlhepp, GPS micro navigation and communication system for clusters of micro and nanosatellites, Aerospace Conference, pp.2515-2522, 2001.

J. L. Tresvig, Design of a prototype communication system for the CubeSTAR nano-satellite, 2010.

S. Horan, The potential for using LEO telecommunications constellations to support nanosatellite formation flying, International Journal of Satellite Communications and Networking, vol.20, issue.5, pp.347-361, 2002.

C. Fu, G. Ko, and C. Kuo, A 2.4 to 5.4 GHz low power CMOS reconfigurable LNA for multistandard wireless receiver, In : Radio Frequency Integrated Circuits (RFIC) Symposium, IEEE, pp.65-68, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00805251

A. Slimane and S. A. Tedjini, A 0.6-V/1.2-V low power single ended CMOS LNA for multistandard RF front-ends, 26th International Conference on. IEEE, pp.68-71, 2014.

J. Zaini, F. Hameau, and T. Taris, A tunable Ultra Low Power inductorless Low Noise Amplifier exploiting body biasing of 28 nm FDSOI technology, Low Power Electronics and Design, pp.1-6, 2017.

J. J. Liou, F. Schwierz, and R. F. Mosfet, recent advances, current status and future trends, vol.47, pp.1881-1895, 2003.

A. Mangla, Modeling nanoscale quasi-ballistic MOS transistors, 2014.

P. Vancorenland, G. Van-der-plas, and M. Steyaert, A layout-aware synthesis methodology for RF circuits, IEEE/ACM International Conference on. IEEE, pp.358-362, 2001.

D. Ham and A. Hajimiri, Concepts and methods in optimization of integrated LC VCOs, IEEE journal of solid-state circuits, vol.36, issue.6, pp.896-909, 2001.

S. P. Voinigescu, M. C. Maliepaard, and J. L. Showell, A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design, IEEE journal of solid-state circuits, vol.32, pp.1430-1439, 1997.

P. Ma, M. Racanelli, and J. Zheng, A novel bipolar-MOSFET low-noise amplifier (BiFET LNA), circuit configuration, design methodology, and chip implementation, IEEE Transactions on Microwave Theory and Techniques, vol.51, issue.11, pp.2175-2180, 2003.

T. Yao, M. Q. Gordon, and K. Tang, Algorithmic design of CMOS LNAs and PAs for 60-GHz radio, IEEE Journal of Solid-State Circuits, vol.42, issue.5, pp.1044-1057, 2007.

F. Fadhuile, Méthodologie de conception de circuits analogiques pour des applications radiofréquence à faible consommation de puissance, 2014.

J. Bouwmeester and J. Guo, Survey of worldwide pico-and nanosatellite missions, distributions and subsystem technology, Acta Astronautica, vol.67, pp.854-862, 2010.

T. Taris, Bilan de liaison et spécifications radio, Course for Bordeaux INP, 2016.

V. P. Ipatov, Spread spectrum and CDMA: principles and applications, 2005.

M. Detratti, E. Lopez, and E. Perez, Dual-band RF front-end solution for hybrid Galileo/GPS mass market receivers, Consumer Communications and Networking Conference, pp.603-607, 2008.

H. Hashemi and A. Hajimiri, Concurrent Dual-Band CMOS Low Noise Amplifiers and Receiver Architectures, Symposium on VLSI Circuits Digest of Technical Papers, pp.247-250, 2001.

C. P. Moreira, Conception et Réalisation d'Amplificateurs Faible Bruit (LNA) Multistandard en Technologie BiCMOS SiGe Pour Applications Mobiles Sans Fil, 22 décembre, 2006.

S. Thombre, H. Hurskainen, and J. Nurmi, Advanced satellite multimedia systems conference (asma) and the 11th signal processing for space communications workshop (spsc), pp.349-354, 2010.

C. C. Enz, Impedance Matching, Course for EPFL, 2011.

R. Gawande and R. Bradley, Low-Noise Amplifier at 2.45 GHz [TC Contests, IEEE Microwave Magazine, vol.11, pp.122-126, 2010.

A. F. Osman and N. M. Noh, Wideband LNA design for SDR radio using balanced amplifier topology, Quality Electronic Design (ASQED), 2012 4th Asia Symposium on, pp.86-90, 2012.

D. Longstreet and B. Baker, Low-noise amplifier for statistical multiband and multistandard applications IEEE Microwave Magazine, vol.16, pp.116-121, 2015.

C. C. Enz, F. Krummenacher, and E. A. Vittoz, An Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications, Analog Integrated Circuits and Signal Processing Journal on Low-Voltage and Low-Power Design, vol.8, pp.83-114, 1995.

C. C. Enz and E. A. Vittoz, Charge-Based MOS Transistor Modeling: The EKV Model for LowPower and RF IC Design, 2006.

A. Mangla, C. Enz, and J. Sallese, Figure-of-Merit for Optimizing the Current Efficiency of Low-Power RF Circuits, Mixed design of integrated circuits and systems (MIXDES), Proceedings of the 18th International conference, pp.85-89, 2011.

A. Mangla, M. Chalkiadaki, F. Fadhuile, T. Taris, Y. Deval et al., Design methodology for ultra low-power analog circuits using next generation BSIM6 MOSFET compact model, Microelectronics Journal, vol.44, pp.570-575, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00840358

A. Antonopoulos, CMOS Small-Signal and Thermal Noise Modeling at High Frequencies, IEEE transaction on electron devices, vol.60, issue.11, pp.3726-3733, 2013.

H. Wang, L. Zang, and Z. Yu, A wideband inductorless LNA with local feedback and noise canceling for low-power low-voltage applications, IEEE Trans. Circuits Syst. I Regul. Pap, vol.59, issue.2, pp.305-314, 2012.

D. Bierbuesse, P. Bousseaud, and R. Negra, Inductorless and cross-coupled wideband LNA with high linearity, Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium on System-on-Chip (SoC), pp.1-4, 2015.

E. A. Sobhy, A 2.8-mW Sub-2-dB noise-figure inductorless wideband CMOS LNA employing multiple feedback, IEEE Trans. Microw. Theory Tech, vol.59, issue.12, pp.3154-3161, 2011.

H. Liu and Z. Zhao-feng, An Ultra-Low Power CMOS LNA for WPAN Applications, IEEE Microwave and Wireless Components Letters, vol.27, issue.2, pp.174-176, 2017.

F. Belmas, F. Hameau, and J. Fournier, Power Inductorless LNA With Double G m Enhancement in 130 nm CMOS, IEEE Journal of Solid-State Circuits, vol.47, issue.5, pp.1094-1103, 2012.

A. Pandey, M. Pusalkar, and P. Dwaramwar, A 0.1-3 GHz, 90nm CMOS wideband LNA employing positive negative feedback for gain, NF and linearity improvement, Advanced Communication Control and Computing Technologies (ICACCCT), pp.147-152, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00020365

M. Souza, Digitally controlled CMOS low noise amplifier for adaptive radio, 2016.

K. Chen and S. Liu, Inductorless Wideband CMOS Low-Noise Amplifiers Using NoiseCancelling Technique, IEEE Trans. Circuits Syst. I Regul. Pap, vol.59, issue.2, pp.305-314, 2012.

O. E. Najari, T. Arnborg, and A. Alvandpour, Wideband inductorless LNA employing simultaneous 2 nd and 3 rd order distortion cancellation, NORCHIP, pp.1-4, 2010.

M. Parvizi, K. Allidina, and M. N. El-gamal, A sub-mw, ultra-low-voltage, wideband lownoise amplifier design technique, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.23, pp.1111-1122, 2015.

M. Parvizi, K. Allidina, and M. N. El-gamal, An Ultra-Low-Power Wideband Inductorless CMOS LNA With Tunable Active Shunt-Feedback, IEEE Transactions on Microwave Theory and Techniques, vol.64, pp.1843-1853, 2016.

Z. Pan, A Low Power Inductorless Wideband LNA With Gm Enhancement and Noise Cancellation, IEEE Microwave and Wireless Components Letters, vol.27, issue.1, pp.58-60, 2017.

S. V. Bonehi, A. Ruder, and S. Aghaie, Design of ultra low power cascaded inductorless LNA for Wireless Sensor Network application, pp.1-4, 2016.

P. Bousseaud, M. A. Khan, and R. Negra, Inductorless wideband LNA with improved input matching using feedforward technique, Microwave Conference (EuMC), pp.1027-1030, 2016.

J. Borremans, Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS, IEEE journal of solid-state circuit, vol.43, pp.2422-2433, 2008.

M. D. Souza, A. Mariano, and T. Taris, Reconfigurable Inductorless Wideband CMOS LNA for Wireless Communications, IEEE Transactions on Circuits and Systems I: Regular Paper, vol.64, pp.675-685, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552988

H. Zhang and E. Sanchez-sinencio, Linearization techniques for CMOS low noise amplifiers: A tutorial, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.58, issue.1, pp.22-36, 2011.

P. Wambacq and W. Sansen, Distortion analysis of analog integrated circuits, 2013.

P. Wambacq, G. Gielen, and P. R. Kinget, High-frequency distortion analysis of analog integrated circuits, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.46, pp.335-345, 1999.

F. Maloberti, Layout of analog CMOS integrated circuit

V. A. Pedroni, Digital electronics and design with VHDL, 2008.

B. Razavi and T. Circuits, , vol.8, pp.8-13, 2016.

H. Busignies and M. Dishal, Some relations between speed of indication, bandwidth, and signal-to-random-noise ratio in radio navigation and direction finding, Proceedings of the IRE, vol.37, issue.5, pp.478-488, 1949.

B. D. Smith, Analysis of commutated networks Transactions of the IRE Professional Group on Aeronautical and Navigational Electronics, pp.21-26, 1953.

L. Franks and I. W. Sandberg, An Alternative Approach to the Realization of Network Transfer Functions: The N-Path Filter, Bell Labs Technical Journal, vol.39, issue.5, pp.1321-1350, 1960.

E. Klumperkink, M. Soer, and R. Struiksma, Towards low power N-Path filters for flexible RF-Channel selection, Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems, pp.255-274, 2016.

M. Darvishi, Active N-path filters: theory and design, 2013.

M. Darvishi, R. Van-der-zee, and B. Nauta, Design of active N-path filters, IEEE journal of solid-state circuits, vol.48, pp.2962-2976, 2013.

A. E. Oualkadi, M. E. Kaamouchi, and J. Paillot, Fully integrated high-Q switched capacitor bandpass filter with center frequency and bandwidth tuning, Radio Frequency Integrated Circuits (RFIC) Symposium, IEEE, pp.681-684, 2007.

A. Ghaffari, E. Klumperink, and B. Nauta, Tunable N-path notch filters for blocker suppression: Modeling and verification, IEEE journal of solid-state circuits, vol.48, pp.1370-1382, 2013.

B. Razavi, The future of radios, Circuits and Systems (ISCAS), IEEE International Symposium on. IEEE, pp.1-8, 2015.

J. Zhu, H. Krishnaswamy, and P. R. Kinget, Field-programmable LNAs with interferer-reflecting loop for input linearity enhancement, IEEE Journal of Solid-State Circuits, vol.50, issue.2, pp.556-572, 2015.

K. B. Östman, M. Englund, and O. Viitala, Analysis and design of N-path filter offset tuning in a 0.7-2.7-GHz receiver front-end, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.62, issue.1, pp.234-243, 2015.

C. M. Thomas and L. E. Larson, Broadband synthetic transmission-line N-path filter design, IEEE Transactions on Microwave Theory and Techniques, vol.63, pp.3525-3536, 2015.

H. Hedayati, W. A. Lau, and N. Kim, A 1.8 dB NF blocker-filtering noise-canceling wideband receiver with shared TIA in 40 nm CMOS, IEEE Journal of Solid-State Circuits, vol.50, issue.5, pp.1148-1164, 2015.

R. Chen and H. Hashemi, Analysis and synthesis of passive coupled-switched-capacitorresonator-based RF filters, Circuits and Systems (ISCAS), 2016 IEEE International Symposium on, IEEE, pp.2771-2774, 2016.

R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to spread-spectrum communications, 1995.