
HAL Id: tel-01948889
https://theses.hal.science/tel-01948889

Submitted on 21 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Model-based federation of systems of modelling
Freddy Kamdem Simo

To cite this version:
Freddy Kamdem Simo. Model-based federation of systems of modelling. Systems and Control [cs.SY].
Université de Technologie Compiègne (UTC), 2017. English. �NNT : 2017COMP2374�. �tel-01948889�

https://theses.hal.science/tel-01948889
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

par Freddy Kamdem Simo

Model-based federation of systems of modelling

Thèse présentée pour l’obtention du grade

de Docteur de l’UTC

Soutenue le : 26 Septembre 2017
Spécialité : Technologies de l’Information et des Systèmes,
Informatique: Unité de recherche HeuDiaSyc (UMR 7253)

Model-based federation of systems of
modelling

Freddy Kamdem Simo

Thèse soutenue le 26 Septembre 2017 pour l'obtention du grade

de Docteur de l'UTC devant le jury composé de :

Rapporteurs:

Eric BONJOUR, Professeur des Universités, Université de Lorraine

Dominique LUZEAUX, PhD. HDR, Ecole Polytechnique

Examinateurs:

Isabelle BORNE (Présidente), Professeur des universités, Université de Bretagne-Sud

Mohamed SALLAK, PhD. HDR, Université de Technologie de Compiègne

Directeurs de Thèse:

Dominique ERNADOTE, PhD. MBSE Senior Expert chez Airbus Defence & Space

Dominique LENNE, Professeur des universités, Université de Technologie de Compiègne

Université de Technologie de Compiègne

Laboratoire Heudiasyc UMR CNRS 7253

LabEx MS2T

26 - 09 - 2017

Technologie de l'information et des systèmes, Informatique

Résumé

L'ingénierie des systèmes complexes et systèmes de systèmes conduit souvent à des

activités de modélisation (MA) complexes. Les problèmes soulevés par les MA sont

notamment : comprendre le contexte dans lequel elles sont exécutées, comprendre

l'impact sur les cycles de vie des modèles qu'elles produisent, et �nalement trouver

une approche pour les maîtriser. L'objectif principal de cette thèse est d'élaborer

une approche formelle pour adresser ce problème.

Dans cette thèse, après avoir étudié les travaux connexes en ingénierie système

et plus spéci�quement ceux qui portent sur la co-ingénierie du système à faire (le

produit) et du système pour faire (le projet), nous développons une méthodologie

nommée MODEF pour traiter ce problème. MODEF consiste en: (1) Caractériser

les MA comme un système et plus généralement une fédération de systèmes. (2)

Construire de manière itérative une architecture de ce système via la modélisation

du contenu conceptuel des modèles produits par MA et leur cycle de vie, les tâches

réalisées au sein des MA et leurs e�ets sur ces cycles de vie. (3) Spéci�er les attentes

sur ces cycles de vie. (4) Analyser les modèles (des MA) � par rapport à ces attentes

(et éventuellement les contraintes sur les tâches) pour véri�er jusqu'à quel point elles

sont atteignables � via la synthèse des points (ou états) acceptables.

D'un point de vue pratique, l'exploitation des résultats de l'analyse permet de

contrôler le déroulement des tâches de modélisation à partir de la mise en évidence de

leur impact sur les modèles qu'elles produisent. En e�et, cette exploitation fournit

des données pertinentes sur la façon dont les MA se déroulent et se dérouleraient de

bout en bout. A partir de ces informations, il est possible de prendre des mesures

préventives ou correctives. Nous illustrons cela à l'aide de deux cas d'étude (le

fonctionnement d'un supermarché et la modélisation de la couverture fonctionnelle

d'un système).

D'un point de vue théorique, les sémantiques formelles des modèles des MA et

le formalisme des attentes sont d'abord données. Ensuite, les algorithmes d'analyse

et d'exploitation sont présentés. Cette approche est brièvement comparée avec des

approches de véri�cation des modèles et de synthèse de systèmes.

v

vi

En�n, deux facilitateurs de la mise en oeuvre de MODEF sont présentés. Le

premier est une implémentation modulaire des blocs de base de MODEF. Le second

est une architecture fédérée (FA) des modèles visant à faciliter la réutilisation des

modèles formels en pratique. La formalisation de FA est faite dans le cadre de

la théorie des catégories. De ce fait, a�n de construire un lien entre abstraction et

implémentation, des structures de données et algorithmes de base sont proposés pour

utiliser FA en pratique. Di�érentes perspectives sur les composantes de MODEF

concluent ce travail.

Mots clés: Complexité, Ingénierie Système Dirigée par les Modèles; Modélisa-

tion interopérable; Architecture; Système-Exigences-Analyse; Modèles de structure,

processus et états; Sémantique des modèles; Espace d'états; Formalisme Assomp-

tion/Préférence; Réutilisation des modèles; Théorie des Catégories.

Abstract

The engineering of complex systems and systems of systems often leads to complex

modelling activities (MA). Some challenges exhibited by MA are: understanding the

context where they are carried out and their impacts on the lifecycles of models they

produce, and ultimately providing a support for mastering them. How to address

these challenges with a formal approach is the central challenge of this thesis.

In this thesis, after discussing the related works from systems engineering in

general and the co-engineering of the system to be made (product) and the system

for make (project) systems speci�cally, we position and develop a methodology

named MODEF, that aims to master the operation of MA. MODEF consists in:

(1) characterizing MA as a system (and more globally as a federation of systems)

in its own right; (2) iteratively architecting this system through: the modelling of

the conceptual content of the models produced by MA and their life cycles, the

tasks carried out within MA and their e�ects on these life cycles; (3) specifying

the expectations over these life cycles and; (4) analysing models (of MA) against

expectations (and possibly tasks constraints) � to check how far expectations are

achievable � via the synthesis of the acceptable behaviours.

On a practical perspective, the exploitation of the results of the analysis allows

�guring out what could happen with the modelling tasks and their impacts on the

whole state of models they handle. We show on two case studies (the operation of

a supermarket and the modelling of the functional coverage of a system) how this

exploitation provides insightful data on how the system is end-to-end operated and

how it can behave. Based on this information, it is possible to take some preventive

or corrective actions on how the MA are carried out.

On the foundational perspective, the formal semantics of three kinds of involved

models and the expectations formalism are �rst discussed. Then the analysis and

exploitation algorithms are presented. Finally this approach is roughly compared

with model checking and systems synthesis approaches.

Last but not least, two enablers whose �rst objectives are to ease the imple-

mentation of MODEF are presented. The �rst one is a modular implementation

vii

viii

of MODEF's buildings blocks. The second one is a federated architecture (FA) of

models which aims to ease working with formal models in practice. Despite the

fact that FA is formalised within the abstract framework of category theory, an

attempt to bridge the gap between abstraction and implementation is sketched via

some basic data structures and base algorithms. Several perspectives related to the

di�erent components of MODEF conclude this work.

Key Words: Complexity; Model-based Systems Engineering; Interoperable

Modelling; Architecture; System-Requirements-Analysis; Structure, Process and

State models; Semantics of models; State Space; Assumption/Preference formalism;

Model reuse; Category Theory.

Remerciements

Ce travail a été réalisé et �nancé dans le cadre du LabEx MS2T (Laboratoire

d'Excellence Maîtrise des Systèmes de Systèmes Technologiques) au sein du labora-

toire HeuDiaSyc (Heuristique et Diagnostic des Systèmes Complexes) UMR CNRS

7253 à l'Université de Technologie de Compiègne (UTC) et de Airbus Defence &

Space (ADS), MBSE Services. Je remercie de ce fait tous les personnels au sein de

l'UTC et ADS qui ont, d'une certaine manière, rendu possible ce travail et contribué

à son bon déroulement.

Je remercie mes directeurs de thèse Dominique Ernadote et Dominique Lenne

pour la con�ance qu'ils m'ont accordée pour réaliser ce travail, ensuite pour les

discussions que nous avons eues, tous leurs conseils et regards critiques au cours de

ce travail. Dominique Ernadote m'a accordé cette con�ance depuis mon stage de �n

d'études Ingénieur qui s'est déroulé au sein d'ADS et qui a conduit à ce travail.

Je remercie également Mohamed Sallak et Claude Moulin (à l'UTC) et David

Spivak (au MIT) pour leur disponibilité, leur regard critique et les échanges que j'ai

eus avec chacun d'entre eux au cours de ce travail.

Je remercie Messieurs Dominique Luzeaux et Eric Bonjour qui ont accepté de

rapporter sur ce travail et pour toutes les suggestions qu'ils ont émises et les échanges

que nous avons eus. Je remercie Madame Isabelle Borne qui a accepté de présider

mon jury de soutenance.

Je remercie tous les membres du Jury (en particulier, mes rapporteurs) de m'avoir

fait l'honneur d'évaluer ce travail.

Je remercie les collègues d'HeuDiaSyc et plus généralement de l'UTC et d'ADS

avec qui j'ai passé des moments agréables et chaleureux.

Je remercie celles et ceux qui ont contribué (ou contribuent) favorablement à la

construction et au fonctionnement des systèmes Humanité et Nature.

ix

Acronyms

AM Structure models

C Constraints on processes

CPM Critical Path Method

CT Category Theory

DSM Design Structure Matrix

EVM Earned Value Method

FA Federated Architecture (the proposed architecture of models)

FMI Functional Mockup Interface

HFSM Hierarchical Finite State Machine

M Models produced by the Modelling Activity

MA Modelling Activity

MBSE Model-Based Systems Engineering

MG Mappings

MODEF Model-based Federation of systems of modelling

OPM Object-Process Methodology

PA Programmatic Activity

PERT Program Evaluation and Reviewing Technique

PM Process models

R Requirements

SD System Dynamics

SE Systems Engineering

SEMP SE Management Plan

SEMS SE Master Shcedule

SM State models

SMC Symmetric Monoidal Category

SMuC Symmetric MultiCategory

SOI System-Of-Interest

SoM System of Modelling

xi

xii

SoS System of Systems

SoSoM System of Systems of Modelling

SS State Space

SSG State Space Graph

TA Technical Activity

TP Technical Processes

TMP Technical Management Processes

WBS Work Breadown Structure

WD Wiring Diagrams

List of Figures

1.1 The procedural structure of MODEF 4

1.2 The organisation of this document . 9

2.1 OPM model of the simpli�ed UAV adapted from [87] 17

2.2 27-state state diagram adapted from [100] 19

3.1 SoM . 26

3.2 SoSoM . 28

3.3 At the top left, the bottom left, the right, and the middle are a struc-

ture, state, process model and a mapping respectively of the SoM0 . . . 31

3.4 At the top left, the bottom left and the right are respectively a struc-

ture, state, process models of the SoSoM1 33

4.1 A supermarket's environment structure. 37

4.2 A process model at left and the graph equivalent to its associated

generator at right . 38

4.3 An example of an HFSM . 41

5.1 General synthesis procedure . 54

5.2 The principles of the co-exploration . 57

5.3 Tailoring of SSG . 67

5.4 The colors associated to nodes in SSG 68

5.5 The supermarket's environment structure. 69

5.6 The supermarket's entrance system state model. 69

5.7 The supermarket's entrance system process model. 70

5.8 At bottom and top the corrective and preventive maintenance actions

respectively. 71

5.9 The SSG graph for Supermarket with max-score=100, max-process-

depth=13 and b > 4 . 72

5.10 Zoom 1 . 72

5.11 The input models for the problem associated to the SoM0 74

5.12 The SSG graph for the SoM0 with max-process-depth=7 and b > 4 . . 74

6.1 Composition in a multicategory [62, Figure. 2-B] 84

xiii

xiv

6.2 A box Y composed of 2 boxes X1 and X2 85

6.3 A box Y composed of X1 ⊗X2 . 87

6.4 A box Z composed of Y , itself composed of X 90

6.5 A box Z composed of X . 90

6.6 X,X,X,X → Y . 92

7.1 Implementation's building blocks . 104

7.2 Using of MODEF . 110

Contents

Résumé v

Abstract vii

Remerciements ix

Acronyms xi

List of Figures xiii

Table of Contents xv

1 Introduction 1

1.1 Complex systems and complex modelling activity 1

1.2 Towards mastering such a complexity 2

1.3 Contributions . 5

1.4 Organisation of this document . 8

2 Approaches for mastering the Modelling Activity 11

2.1 Systems Engineering . 11

2.1.1 Overview . 11

2.1.2 SE and the Modelling Activity 13

2.2 Model-based mastering of the Modelling Activity 16

2.2.1 The OPM approach . 16

2.2.2 Coupling of TA and PA . 17

2.2.3 Other works . 20

2.3 Position of MODEF . 21

2.3.1 On the abstraction of the Modelling Activity 21

2.3.2 On the modelling of the Modelling Activity 22

2.3.3 On the analysis carried out with models 24

2.3.4 On the implementation of approaches 24

xv

xvi Contents

3 Abstraction of the Modelling Activity 25

3.1 SoM and SoSoM . 25

3.1.1 System of Modelling�SoM . 25

3.1.2 System of Systems of Modelling�SoSoM 27

3.1.3 Related research . 29

3.2 Application examples . 30

3.2.1 An SoM: Modelling the functional coverage of a SOI 30

3.2.2 Examples of SoSoM . 31

4 Modelling the Modelling Activity and its Expectations 35

4.1 Structure, Process and State models 35

4.1.1 Structure model . 36

4.1.2 Process model . 36

4.1.3 State model . 39

4.2 Relations between process and state models 42

4.3 Expectation-speci�cation . 43

4.3.1 A/G contracts equipped with a pre-order structure on G . . . 44

4.3.2 Related research . 48

4.4 Conclusion . 49

5 What is achievable and what can happen with the modelled sys-

tem? 51

5.1 Analysis of system models against expectations 51

5.1.1 General problem . 51

5.1.2 General principles for a solution 53

5.1.3 Main sub-procedures: Coexploration and a Search Algorithm . 55

5.1.4 Discussion . 62

5.2 An exploitation of MBMW . 65

5.2.1 Setting up input parameters 65

5.2.2 Exploitation of SSG . 66

5.3 Case Studies . 68

5.3.1 Maintenance of a Supermarket 68

5.3.2 A SoM: Modelling the functional coverage of a SOI 73

5.4 Conclusion . 75

Contents xvii

6 A federated architecture for plugging and exploiting domain-speci�c

models 77

6.1 Metamodels, data format and interfaces 78

6.2 What is an adequate level of abstraction? 79

6.3 Description of the proposed architecture FA 80

6.3.1 Fundamental organisation of a model 81

6.3.2 Background and Notation . 82

6.4 Components of FA . 85

6.4.1 Structure of models . 86

6.4.2 Structure interpretations . 92

6.4.3 Structure usage or real models data 93

6.5 Computational and data structures, base invariants and data format . 94

6.5.1 Data structures and base invariants 94

6.5.2 Identi�cation of an actual component 97

6.5.3 Data format's structure . 98

6.6 Related research . 99

6.6.1 FMI . 99

6.6.2 Other works . 100

6.7 Conclusion . 102

7 Setting up and using MODEF in practice 103

7.1 Implementation's building blocks . 103

7.1.1 Reuse models outside the modelling tool 103

7.1.2 Availability and exploitation of models 104

7.1.3 Analysis and exploitation algorithms 108

7.2 Use of MODEF in practice . 109

7.3 Algorithm performance and practicality 110

7.3.1 Algorithm performance . 111

7.3.2 Practicality . 111

8 Conclusion and perspectives 113

8.1 Conclusion . 113

8.2 Perspectives . 114

References 117

Section 1

Introduction

1.1 Complex systems and complex modelling activ-

ity

The social, scienti�c and technological development has led human beings to the

construction of complex systems. These systems are complex in the sense that they

are di�cult to describe, design, validate, implement, operate, repair etc. Arguably,

there are no �xed, exhaustive and a priori ways to master them. Besides, their goals,

the size and heterogeneity of their components and their components' relations and

interactions are increasingly growing.

A central approach to master the engineering of complex systems is the modelling

activity. A model is a means that enables an understanding of something for

some goal. Such an understanding, hence the associated model, is generally a

partial, sometimes incomplete, view of the actual modelled thing. One old yet

topical challenge is the assembly of heterogeneous models for a global purpose (e.g.,

veri�cation). Nonetheless, with respect to the reality they precisely represent,

models make it possible to understand, analyse, optimize and operate complex

systems. As a consequence, models are means to preserve, share and reuse knowledge

about the thing they relate to. What about the process that operates the models?

Today, models produced by the modelling activities are spread over di�erent

locations within one or several companies. Due to the complexity of engineered

systems, they often remain speci�c to a domain of study (hardware architecture,

software, electrical engineering, mechanics, etc.) that addresses a particular view of

the system. This means they are also of di�erent kinds.

At the same time, there are several projects and programs within most large

engineering companies. They evolve in parallel with di�erent modelling activities'

life cycles. The produced models are taken into account on various periods. These

periods extend on a scale of days to several months. In this context, the modelling

1

2 SECTION 1: INTRODUCTION

activities are in turn complex.

It turns out that there are two main levels of complexity: one associated to the

engineered systems and the other relating to all entities and practices that contribute

to the modelling of those systems.

In spite of the complexity of the engineered systems, once the engineering process

is carried out by multiple autonomous stakeholders and (sub-)projects evolving in

parallel, with di�erent time-scales, there is a need to ensure that the modelling

activity and subsequent activities and the resulting models are rightly operated. In

fact, this is a necessary condition to ensure that the projects and programs will

succeed. Some challenging questions which inevitably arise in practice here are:

(1) How to better understand and use models in this context? i.e. what models

are present in a particular location and what upon they stand for?

(2) How to analyse and identify the impact of their changes? i.e. what is the

current state of models and in which states are they likely to end up? What does a

state means for the project and program?

(3) How to help in mastering their evolution? i.e what is necessary to guarantee

that models might reach some expected states?

The central question here is how to to formally reason on the MA to answer the

above three issues.

1.2 Towards mastering such a complexity

This dissertation addresses these issues through the proposal of a methodology that

mainly consists in:

(a) Characterizing the modelling as a federation of Systems of Modelling�SoM:

A System of Modelling�SoM is an autonomous system where the components are

the people, processes, methods, tools and models resulting from the interaction

of these components. Roughly, a federation is a form of organisation where the

components have a certain capability and autonomy to address some problems.

Additionally, these components together de�ne interoperation mechanisms for recip-

rocal exchanges. Federation is useful in order to characterise the modelling activity

in such a way that the autonomy and capabilities of stakeholders are explicitly

recognized and observed. We named such a federation a System of System of

Modelling�SoSoM.

1.2. TOWARDS MASTERING SUCH A COMPLEXITY 3

It is at the level of the SoSoM that the interrelationships between several SoM are

studied. Fundamentally, the challenge addressed is: how to see and characterize

MA?

(b) Modelling a SoM and SoSoM via structure state and process models and

their mappings and Specifying the requirements that these models should satisfy:

Fundamentally, the models of an SoM (resp. SoSoM) answer the question: What

are the adequate levels of abstraction to study the modelling activity (resp. the

relationships between SoM)? What are the appropriate models?

In this thesis the models (M) produced by the modelling activity are abstracted at

a conceptual level. We will argue on the bene�ts expected from conceptual models

as a means to abstract away the main content of models. We call such models,

structure models. The state models are used to describe the life cycles of M and the

transitions between the states during the life cycle. Finally it is the process models

that capture the modelling tasks that bring about the changes of states of M.

Once the models of a SoM (resp. SoSoM) are described, we de�ne the require-

ments expected from the SoM (resp. SoSoM) as expectations on the states of M.

The expectations are expressions relative to the appreciations of the possible states

of M, e.g., this state is preferred to that one when another state appears. The idea

is that, an expectation is the expression of a preference over some states of M in a

speci�ed context.

(c) Analysing the models of a SoM (resp. SoSoM) with respect to its expected

properties and Providing stakeholders with some exploitations of analysis' results.

Fundamentally, the challenge here is twofold: how to reason on the models against

the requirements and what outputs should be given to the stakeholders?

The analysis algorithms are proposed to explore how far expectations are achievable

against structure, state and process models and their mappings. Such algorithms

are means to demonstrate the relevance or not of the modelling tasks, i.e. whether

some problem may occur or not. The exploitation algorithms provide stakeholders

with data that reveal such a demonstration regarding the SoM or SoSoM.

As a result, the proposed methodology aims to support the ability: to (1)

understand the current global state of the modelling activity, (2) check whether

the modelling activity is going toward a good direction, (3) assist the stakeholders

into the building of processes ensuring continuous appropriate changes of the models

4 SECTION 1: INTRODUCTION

they produce.

Therefore, we are not explicitly dealing with the internal practices of the mod-

elling activity. That is the design techniques, methods and tools involved in the

modelling activities are not explicit i.e. modelled. We deal with the conceptual con-

tents of M produced by the modelling activity. The internal practices are black boxes

for the proposed methodology. Even though the internal practices of the modelling

activity are relevant and unavoidable to obtain M, within the context mentioned

above (Section 1.1), the successive processes and their relevance for going towards a

successful state of M are necessary and mandatory from the foregoing. This latter

concern is formally addressed by the proposed six-step methodology: MODEF

which is a methodology for model-based federation of systems of modelling. The

steps of the procedural part of MODEF are summarized on Figure 1.1. These steps

are not intended to be always applied altogether and/or sequentially. At a given

step, it is possible to go backwards to another step. A return to another step for

its re-execution, can be justi�ed by a problem detected at the level of one of the six

main steps of MODEF.

Figure 1.1: The procedural structure of MODEF

1.3. CONTRIBUTIONS 5

1.3 Contributions

In order to demonstrate the soundness and feasibility of the proposed methodol-

ogy, we argue on both the theoretical and practical elements related to MODEF.

Generally, for each of the 6 main steps of MODEF, where applicable, we present

the activity carried out at this step, methods that support the carrying out of the

activity and the implementation (not prescriptive) of methods in practice.

The proposed methodology is not limited to the speci�c concern addressed in

this thesis. In fact, any system that can be understood and modelled with the

input models of the methodology, may bene�t from its outputs. In this perspective,

MODEF might be applicable for the model-driven techniques i.e., internal practices

of the modelling activity. Nonetheless, this is not the central objective of this thesis.

After reviewing the relevant related work and following the components of MODEF,

the main contributions of this thesis, which to the best of our knowledge are not

published elsewhere (apart from published ones) are:

Characterisation of the Modelling Activity: A System of Modelling

(SoM) and a System of Systems of Modelling (SoSoM)

We characterise the modelling activity (MA) in a new way: a federation of several

SoM giving rise to a SoSoM. The SoSoM is a means to understand the evolving

relationships between di�erent SoM. These SoM have a certain autonomy and ca-

pabilities. But agreements on interoperation mechanisms are required to get an

added-value at the federation level. In order to formally understand and study the

SoM and SoSoM, we then consider to model them.

Modelling the Modelling Activity: structure, state and process models

and their mappings

We newly use the structure, state and process models together with their mappings

to support a modelling of the architecture of MA from the perspective of a SoM and

SoSoM:

a) The structure models describe the structure of the studied elements. For the

SoM, the studied elements refer to the data models (resp. the modelling objectives)

that describe the main content (resp. expected goals of the modelling) of the models

(M) produced by MA. The studied elements at the federation level are typically

about the interrelationships of studied elements within several SoM.

b) The �nite-state models describe the lifecycle of studied elements via their

6 SECTION 1: INTRODUCTION

states and transitions between these states.

c) The process models represent the modelling tasks. Some events generated by

the execution of those tasks are intended to trigger the expected transitions between

the states of studied elements. For this connection to exist between state models

and process models, we de�ne the mappings from events of the latter to transitions

of the former.

In order to analyse models, it is also important to specify the requirements or

properties they should guarantee or satisfy.

Speci�cation of expectations (or requirements) of MA: Assume/Preference

formalism inspired by Assume/Guarantee contracts

An expectation consists in expressing preferences on the life cycle of a studied

elements given some context or assumption. Especially, those preferences are de�ned

on the states of the studied elements given an assumption (A). In the style of

Assume(A)/Guarantee(G) contracts, the guarantee of a contract is transformed in

preferences (P) by giving to P a pre-order structure. A pre-order structure is general

enough to describe preferences among the elements of a given set.

Both A and G (P) are de�ned on a domain (D) in which an element is a couple:

(object, state) meaning object is in state state. An assumption is theoretically a

formula of zeroth-order logic where atomic propositions are elements of D. Their

use is also motivated by the fact that they enable consistency and compatibility

veri�cation.

In the spirit, the inspiration from contracts here is close to their �rst uses

in programming where pre-conditions/assumptions and post-conditions/guarantees

are de�ned for programs (system models here). In this thesis the expectations

are exploited in the analysis procedure to synthesise the behaviours of the studied

system.

(Re) analysis of models and exploitation of analysis' outputs

The analysis mainly consists in exploring what would be the behaviours of the

system and in verifying how far the expectations from the system are achievable

with respect to the models. It is a support for providing the e�ective means for

a better (in relation to the preferences de�ned by expectations) execution of MA.

Since MA is an iterative and evolutive process, i.e. subject to continuous changes,

the analysis routine is intended to be executed whenever necessary.

1.3. CONTRIBUTIONS 7

We introduce a synthesis procedure which applies on-the-�y the uniform-cost-

search (UCS) algorithm on the state space described by the co-exploration of state

models of the studied elements and the process models both constrained by the

mappings. The novelty of this procedure lies in the fact that it exploits the expecta-

tions (and potentially constraints on processes) in UCS to guide the co-exploration

throughout the discovered state space and eventually prune some of its regions.

Moreover it is possible to replace UCS by another search algorithm or tuning it by

introducing a heuristics.

To make the results of analysis understandable by a human, some exploitation

algorithms are provided to build synthetic data. For example, it shall be possible

to �gure out i) whether from a given con�guration (combination of active states

and processes or tasks) of the system, it will be no longer improvable (in the sense

of expectations and process constraints) given the input models, ii) the successive

con�gurations necessary to reach a target con�guration, iii) critical paths, etc. Such

data will therefore help the stakeholders to operate the system, prevent issues and

take corrective actions. The analysis and exploitation are demonstrated on two case

studies.

Dealing with models in practice: A federated architecture for external

exploitation of models coming from modelling tools

We attempt to automate the use (especially for the analysis purposes) of models

coming from a given tool. This yields us to de�ne, based on the framework of

category theory, an architecture for models so that they are easily exploitable outside

the modelling tool. The devised architecture separates and naturally maps the

structure of models and their semantics and the usages (or instances) of the structure

such that any semantics of models can be operationally implemented for exploitation

purposes. This is particularly important if we are about to consider another tool for

graphically building models, then exploting them outside that tool. All models are

basically considered as composite structures a basic way to deal with heterogeneity

and complexity.

Implementation based on a modular architecture

MODEF has been set up with the support of a modelling tool: MEGA (see mega.com),

and a prototype implemented with the Scala programming language. The modelling

tool support the ability to execute Step 2, Step 3 and Step 4 of MODEF, whereas

the prototype allows via its modules, to implement Step 5 and Step 6.

8 SECTION 1: INTRODUCTION

The choice of the modelling tool and the prototype API are not prescriptive inso-

far another tool and an implementation could be considered using the speci�cations,

models and algorithms corresponding to the steps of MODEF, all presented in this

thesis. The setting up of MODEF demonstrates its implementation feasibility. The

originality and relevance of the implementation come from the fact that: i) we do

not introduce a new modelling tool or language ii) the de�nition of the exploration

semantics of models is explicitly implemented and typically has to be available as

code or library.

Despite the theoretical exponential complexity of the main algorithm involved

in MODEF, we shall argue on its advantages. Therefore, the implementation archi-

tecture and the main algorithm's performance are used as the factors to evaluate

the feasibility of MODEF .

Many applications of MODEF in real situ will be necessary to relevantly discuss

its usability i.e. its e�ectiveness, e�ciency, and satisfaction against the stakeholders

and the objectives MODEF addresses. A �rst step towards the demonstration of

the usability of MODEF has been the application examples and two case studies

considered in this thesis.

1.4 Organisation of this document

The logical organisation of this dissertation is depicted on Figure 1.2. Each box on

that �gure represents a section of this document and the main question it answers.

The arrows indicate the logical sequencing of sections i.e. the source of an arrow

supplies the target of the same arrow. The rest of this thesis is organised as follows.

In Section 2, we discuss the relevant related work that addresses the mastering of

complex modelling activity. We �rst focus on Systems Engineering body of knowl-

edge then speci�c approaches that can be compared with MODEF. We conclude

this section by positioning MODEF. Speci�c related research is also discussed in

di�erent sections.

In Section 3, the SoM and SoSoM are presented. We �rst argue on the char-

acterization of MA as SoM and SoSoM. Then, some application examples that

illustrate the SoM and SoSoM are presented. The application examples are used

in the following sections to illustrate the concepts.

In Section 4, the principles and semantics of three kinds of models (structure,

process, state) and their mappings, considered to model the SoM and SoSoM,

are �rst introduced. Then, the formalism that supports the speci�cation of the

1.4. ORGANISATION OF THIS DOCUMENT 9

Figure 1.2: The organisation of this document

expectations that models should ensure is described.

In Section 5, the analysis procedure to exploring and verifying models against

the expectations (and potentially constraints of process models) is discussed. Then

an exploitation of the analysis procedure is presented following by two case studies.

Sections 6 and 7 can be seen as the enablers of MODEF.

In Section 6, the devised architecture that allows to deal (for analysis purposes)

with models in practice is discussed. We present the components of this architecture

and their relations, a categorical de�nition that we motivate and the data structures

to take advantage of this architecture in practice.

In Section 7, the implementation architecture and its qualities are presented. We

present the components (that are not prescriptive) involved to setting up MODEF

in practice. Then some qualities that could be considered in an evaluation or

comparison of MODEF are presented.

In Section 8, we �nally present the conclusions and perspectives of this work.

Section 2

Approaches for mastering the

Modelling Activity

In this section, we discuss the relevant related work that addresses the mastering of

complex modelling activities. We �rst focus on Systems Engineering body of knowl-

edge (Section 2.1) then model-based approaches (Section 2.2) that can be compared

with MODEF. The speci�c related research related to the di�erent components of

MODEF is also discussed in the other sections.

2.1 Systems Engineering

2.1.1 Overview

Systems Engineering�SE has been considered for nearly eighty years (see e.g., [52]

for the evolution and de�nitions of SE) to manage the complexity of both the

engineered systems and their engineering process.

A system is a set of interrelated elements that accomplishes a function within

an environment. A system is also (ISO/IEC/IEEE 15288 [85]) "a combination of

interacting elements organized to achieve one or more stated purposes."

SE has been building on two signi�cant disciplines [64]: "the technical knowledge

domain in which the systems engineer operates, and systems engineering man-

agement." The former is generally related to technical activities (requirement en-

gineering, architecting, design, etc.) where as the latter is concerned with the

planning and management of the former. Note that, SE management is di�erent

yet complementary to general project management (and to a large extent business

processes) since it focuses on technical and engineering aspects [85] [82] [11].

It can also be said that SE is concerned with two main systems: the engineered,

developed or studied system and the system that enables the engineering of the

studied system. These two systems are also called the "system to be made" and the

11

12 SECTION 2: APPROACHES FOR MASTERING THE MODELLING ACTIVITY

"system for making" respectively [40]. Since a system is by de�nition located within

an environment, it is also surrounded by other systems that may contribute to its

existence. The "system to be made" also refers to the System-Of-Interest�SOI.

As a result, it is worth emphasizing here that SE is mainly built on technical and

programmatic interrelated activities. Basically, the former answers the question: are

we rightly engineering the right SOI? And the latter answers the question: are we

rightly engineering and operating the right "system for making"? The programmatic

activities might generally refers to SE management.

Since the outputs directly correlated to the SOI in the engineering process

are produced by the technical activities (TA), they are unavoidable. Obviously,

without TA no tangible artefact related to the SOI is going to be produced. The

programmatic activities (PA) are useful for mastering the development of complex

TA. PA are unavoidable and critical if the engineering is spread over a long period

(from a scale of weeks or years), and, is composed of several autonomous and

distributed stakeholders, as it is the case for many large engineering programs. By

programs we mean a set of projects contributing to the engineering or development

of (a) complex system(s), (see [40] for more details on programs). In this situation

or in presence of complex TA, successful PA is largely, if not inevitably, a necessary

condition to the success of TA. Likewise, PA aims to guarantee and enforce that the

engineering of an SOI could eventually succeed or not. Finally, PA and TA in�uence

mutually.

SE is a well-documented discipline and practice by the means of standards

and handbooks [52] [64] [85] [82] [40] [11]. One approach to e�ciently deal with

SE has been the use of models and modelling instead of documents as the main

support of the SE application. This does not mean that documents are no longer

used, they are rather generated from models. Such an approach refers to Model-

Based SE�MBSE [52] and to a large extent model-driven engineeering�MDE [101]

[10] [84] [60]. The e�ciency comes from the ability of models and modelling to

improve communications among the stakeholders of a SE approach, to improve the

representations of systems and to enhance preservation, share and reuse of knowledge

related to the SE processes. This means that models and modelling are central in

an MBSE approach.

2.1. SYSTEMS ENGINEERING 13

2.1.2 SE and the Modelling Activity

Now, we analyse how SE aims to support the mastering of MA, a core activity in

MBSE.

One of the main standard related to SE is ISO/IEC/IEEE 15288 [52] which

de�nes the SE processes and life cycles. The four main types of processes identi�ed

in ISO/IEC/IEEE 15288:2015 are: Agreement processes, Organizational project-

enabling processes, Technical processes and Technical management processes. Of

all of these processes, 14 are technical and 16 are non-technical (in the sense that,

they are not TA). For each type of process, Purpose, Description, Inputs/Outputs,

Process activities and Process elaboration have been identi�ed [52]. This identi�ca-

tion is a way to perform the SE process. Typically, TA and PA are mainly located

within TPs and TMPs respectively.

Technical processes are used to design the system and consist of several processes

from the business analysis process to the disposal process.

Technical management processes are [52]: "... used to establish and evolve plans,

to execute plans, to assess actual achievement and progress against the plans and

to control the execution through to ful�lment."

Agreement processes are upstream and downstream processes for acquiring (by

an acquirer) a system and setting up the contracts and environment within which

TPs, TMPs, and OEPs will be carried out by the supplier.

Organizational project-enabling processes deal with organisational (infrastruc-

tures and resources) aspects related to the support of other processes throughout

the system's life cycle.

To accommodate to a particular situation or circumstance, the Tailoring process

enables the selection of relevant processes (generally artefacts) or parts thereof for

their application such that too much unnecessary (perhaps formal) processes are

avoided [52].

The results of Technical management processes are speci�ed in the SE Man-

agement Plan (SEMP). The SEMP is a top-level plan and outcome in planning,

organising, and controlling SE activities [52]. Examples of entries of the SEMP are:

the SE Master Schedule (SEMS) that describes the overall project schedule, the

Work Breakdown Structure (WBS) that contains the hierarchy of all work packages

and associated SE processes and their control, for the project.

Among the Technical management processes, there is a Measurement process

which is a process of elicitation and provision of data. It enables to �guring out

14 SECTION 2: APPROACHES FOR MASTERING THE MODELLING ACTIVITY

and demonstrating the quality of products, services and processes involved during

the engineering of a system [52] ISO/IEC/IEEE 15288. Therefore, a measurement

would be typically tailored for a given need, the problem at stake and the available

data. There are several approaches and standards that deal with the measurement

process. One standard is ISO/IEC/IEEE 15939 Systems and software engineering�

Measurement process. One approach is the SE leading indicators [77].

In [77], 13 leading indicators for evaluating (via their implementation, analysis

and interpretation) the e�ectiveness of SE activities are discussed. "[...] leading

indicators are intended to provide insight into the probable future state, allowing

projects to improve the management and performance of complex programs before

problems arise." [77] As a result, leading indicators are predictive by nature. They

are based on historical trend data. As indicated in [77], the indicators have to be

used appropriately, for instance regarding their scope and the frequency of measures

to avoid pitfalls in using leading indicators and measures in general. The authors

�nally argue that trend data are neither always easily available nor stored in central

repository. As argued in [52] , a measure itself does not improve process performance.

Even a model like CMMI [94] which is useful for process improvement, states what

is necessary to reach a level of maturity, but not how to implement it.

Some other useful standards, materials [58], [82] and models related to SE and

particularly PA are described in [52]. The standard IEEE Std 1220-2005 (ISO/IEC

26702) provides guidances on the application and management of a SEMP; the

standards EIA/IS 731.1 (Systems Engineering Capability Model), ISO/IEC 15504

(Information Technology - Process Assessment) and the model CMMI (Capability

Maturity Model Integration) [94] provide guidances in SE processes implementation,

assessment and improvement. The standards ANSI/EIA 632 (Processes for Engi-

neering a System) and ISO/IEC/IEEE 42010 (Architecture Description) deal with

the description of artefacts related to processes and systems.

To summarize the foregoing, ISO/IEC/IEEE 15288 aims to support SE process

via a description of processes involved in a SE approach. The SEMP captures the

artefacts (SEMS, WBS) necessary for mastering such processes via (their planning

and control). Other standards (ANSI/EIA-632, ISO/IEC 15504:2004, IEEE Std

1220-2005, etc.) provide guidance for dealing (i.e., describing, improving, assessing)

with such processes. It follows that the SE body of knowledge does contribute to

the mastering of the SE processes regardless of how they are actually implemented.

Although the aforementioned materials and standards are clearly useful, they

2.1. SYSTEMS ENGINEERING 15

often remain documents and generally deal with rules and best practices. They

generally address the What (description) To Make but not the How (prescription)

to Make the What. Even though the Tailoring process allows to adapt to a particular

situation, it nonetheless does not provide the "How to Make" the selected artefacts;

furthermore it is not intended to that. As a consequence, they are not su�cient

in the perspective of a model-based mastering of MA. In fact, in an attempt to

solely and directly use them, one is going to face the problems encountered with

document-based SE. Those problems are: analysis, consistency, traceability, sharing,

reuse etc. Moreover, the diversity and autonomy of di�erent stakeholders of the MA

might prevent such an attempt and simply might not make it possible. And if this

happens, it would likely lead to uncontrolled, non-optimal, endless and unsuccessful

programs. Besides, in this situation, even with models, one may encounter the same

problems as those encountered with documents. Nonetheless models o�er several

advantages (reuse, share, analysis etc.) over documents if they are well operated.

By considering PA as a system or the "system for making", SE (MBSE) is applicable

for its engineering and exploitation [40].

Model-based techniques have been advocated and introduced to engineer the

programmatic aspect of the SE process [87] [44] [100] [42]. We come back to the

latter in Section 2.2.

While over the years SE has been documented, many times successfully applied,

particularly in defence and aerospace industry, today it is still based on heuristics

and informal practices as argued in [53]. Despite the evolution of SE and its rich

available body of knowledge, there have been many large engineering projects which

failed: see e.g., in [7] for a list of past projects, this work concludes failures are to be

attributed to the complexity of the projects themselves; see also the story in [43] of

some recent failed projects based on a waterfall lifecycle where agile approach was

called for help subsequently.

Meanwhile, it is expected that SE application will expand across other industries

[53]. For this expansion and the future of SE to be successful, formal supports of SE

process are necessary by taking advantage of the current SE's body of knowledge.

In this dissertation, PA (in tandem with TA) are considered as a proper system that

needs to be engineered with the support of models.

16 SECTION 2: APPROACHES FOR MASTERING THE MODELLING ACTIVITY

2.2 Model-based mastering of the Modelling Activ-

ity

In this section we start by presenting some relevant model-based approaches to the

mastering of a modelling activity then we conclude by given the position of MODEF

with respect to these approaches.

2.2.1 The OPM approach

In [87], the tandem (project-product dimension) composed of the project (the pro-

grammatic aspect) and the product (the technical aspect) and their speci�city is

�rstly emphasised. The authors compare the methods of project management that

are common in SE management together with the Object-Process methodology

OPM [30] used for project planning and product modelling and design. Some

of these methods are: Earned Value Method (EVM) for project control, Critical

Path Method (CPM), Program Evaluation and Reviewing Technique (PERT) and

Gantt Chart for project planning and scheduling, System Dynamics (SD) for project

planning and dynamic modelling, and Design Structure Matrix (DSM) for project

planing and product design.

Using a simpli�ed unmanned aerial vehicle (UAV) as a system use case, it turns

out from their empirical comparaison that some methods are relevant with respect

to particular product and project factors. Some factors are: Budget/Schedule

measurement/tracking, Stakeholders/agents tracking, Performance quality, Product

measurement/tracking. Moreover only SD, DSM and OPM methods were found to

handle the project-product dimension. SD is a way to correlate factors (schedule,

budget) related to project planning in way that can be plotted. DSM represents

the interactions among elements (components, tasks, teams) of both the project

and product. They �nally conclude that OPM is the only suited for the function-

structure-behaviour modelling (i.e. Project-Product Model-Based [88]) of both the

project and the product inside an integrated conceptual model.

All the compared methods except OPM ought to be derived from models that

represent the product and project, since they address a particular and speci�c

concern. The OPM approach is required for both TA and PA. The authors claim

that such a choice is particularly suitable to combine PA and TA within the single

and same foundation: OPM. It follows from this choice that the structure, function

and behaviour OPM models respectively, describe the structure the function and

2.2. MODEL-BASED MASTERING OF THE MODELLING ACTIVITY 17

behaviour of both the product and the project. The structure models together with

their states are the possible inputs and outputs of the project's processes. The OPM

model of the simpli�ed UAV use case is depicted on Figure 2.1. On Figure 2.1 is

an Object-Process Diagram, a graphical representation of an OPM model. Ellipses

and rectangles correspond to processes and deliverables. The links correspond to

whole-part (black triangles), and characterization like relations.

Figure 2.1: OPM model of the simpli�ed UAV adapted from [87]

2.2.2 Coupling of TA and PA

In [100], a model and rules for the management of the multi-level interaction between

system design processes (typically TA) and project planning processes (typically PA)

are discussed. The rules have been integrated in the ATLAS IT platform. After

the failures of the A380 Program and OlKiluoto Nuclear Power Plant projects,

which were executed within a concurrent engineering environment, and based on

their empirical survey, the authors �rst argue on the vital need to formalise the

interactions between the design of a system and its design project. Further, they

highlighted there has been no work that formally addressed such a need from the

18 SECTION 2: APPROACHES FOR MASTERING THE MODELLING ACTIVITY

perspective of planning and controlling of design activities. However few works made

explicit these interactions.

Then they establish a bijective link at a structural level between a System

S and a project P, system requirements SR and the requirement task de�nition

PR, and system alternative SA and alternative developement task PA. At the

behavioural level, the two processes (TA and PA) are interrelated via their so-

called feasibility and veri�cation attributes of elements at the structural level. A

meta-model supports the realization of links.

The feasibility attributes are equipped with 3 states: undetermined UD, feasible

OK, and unfeasible KO. The state of an attribute is computed by a design manager

and a planning manager based on requirements, constraints, risks and schedule,

resources. Based on those states, precedence rules are established between structural

elements and their states. As an example: it is not possible to start working on a

solution SA if SR are KO.

The veri�cation attributes are equipped with 3 states: undetermined UD, veri�ed

OK, unveri�ed KO. The same way as feasibility, precedence rules are established.

An example: it is not possible to verify PA before PR.

Based on the two kinds of attributes and their states, 9 synchronisation (for S and

P) rules are �nally de�ned to guarantee the consistent evolution of system design

and project design. This yields to a 27-state state diagram (see Figure 2.2) which

supports the synchronisation of S and P. A state in this diagram is a seven-tuple

(SR.Fa, SA.Fa, SA.V e, PR.Fa, PR.V e, PA.Fa, PA.V e) where V e and Fa are

related to veri�cation and feasibility attributes respectively. The initial state is

given by (UD,UD,UD,UD,UD,UD,UD). The transitions between states are logically

determined from rules.

Finally, as a use case, a landing gear system decomposed in a wheel and brake

subsystem and associated projects is considered. This system has 1 SR related to

the weight of the system and 1 PR related to the duration of the project. Other

works in the same spirit are: [1] [23].

In [44], the use of MBSE as the foundation of SE management for planning, re-

viewing and measuring the development process is discussed. The authors claim the

approach is supported by a metamodel implemented by the software tool: Mecha-

tronic Modeller. This tool allows to de�ne the abstract and concrete syntax and the

static and dynamics semantics for the proposed models. These models are those of

i) the system of objectives about processes, products and objects

ii) the operation system which transforms the product objectives into objects

2.2. MODEL-BASED MASTERING OF THE MODELLING ACTIVITY 19

Figure 2.2: 27-state state diagram adapted from [100]

under the constraints of time and cost objectives. Examples of the components of

the operation system are: engineers, methods and tools.

iii) the system of objects which is the output (CAD-models, test results, etc.) of

the development process.

Together these systems yield the system of product development. These models

are then the basis for planning (allocation of resources), monitoring and controlling

(time, cost and quality) and alignments on technical and organizational interfaces

of the development progress. This approach is mainly about quantitative insights

for TA and PA.

In [56], some modelling activities have been tailored following two perspectives:

what must be modelled, and how far this modelling must be performed against

modelling objectives. This has been possible with the support of a Modelling

Management Plan fed by a Modelling Planning Process (MPP) [35], itself auto-

mated to ease modelling operations. The MPP enables the alignment of the design

tasks on the projects' needs. The MPP ensures the de�nition and prioritization

of modelling objectives, their association with di�erent modelling artefacts (project

20 SECTION 2: APPROACHES FOR MASTERING THE MODELLING ACTIVITY

concepts, standards and deliverables) and the evaluation of the modelling activity

progress. The authors conclude on the necessity to federate the modelling since the

proposed approach does not consider the autonomous and distributed nature of MA.

Models do target speci�c purposes, are involved in di�erent MBSE projects in large

engineering companies such as Airbus Defence & Space.

2.2.3 Other works

To a large extent, other works in the �elds of product (and process) design develop-

ment and even production see e.g., [3, 15, 4, 17, 44, 21, 69, 16, 73, 103, 27, 75, 93]

and [1, 33, 104] for surveys, have addressed the association, integration or coupling

(explicitly or not) of the two systems: "system to be made" or the product and the

"system for making" or the project, the development system; by di�erent means

and for di�erent purposes.

Such a necessity has been introduced for software development projects [93]. The

functional requirements and design parameters of the product are mapped into tasks

of a Gantt chart project plan following an Axiomatic Design paradigm [93]. The

authors claim that such an association between tasks and design enables the rapid

delivery of product. [3], [4] and [17] deal with product/process models con�guration

using constraint-based frameworks. [15] addresses the coupling (via a matrix) to

co-evolve the product architecture and the conception project given by DSM and to

optimize the organisation of the conception project. [1] provides a summary of few

approaches that associate design and planing after which the author concludes that

these approaches are little used in the industrial world because their tooling is quite

limited. Furthermore they do not take into account the dynamic of design process.

[33] discusses some approaches to the integration of product and process mod-

els in engineering design from the points of view of the purposes (Visualisation,

Planning, Execution, Synthesis, Analysis etc.) of the Project/Product models and

modelling formalisms (Design Structure Matrices, IDEF (Integrated De�nition),

etc.) and their level of integration (Isolated, coupled, integrated). It is mentioned

that few works address the integration of product and process domains. It is also

mentioned that, to bring approaches that seem theoretical closer to the industrial

context, challenges regarding the scope, focus, development and visualisation of

models need to be overcome.

[104] provides a survey on process models and modelling approaches for design

and development process (DDP). The authors �rstly argue on three features (nov-

2.3. POSITION OF MODEF 21

elty, complexity and iteration) of DDP. DDP are di�erent from business (typically

also production and manufacturing) processes since they call to creativity; they

are iterative by nature. They are carried out in large-scale concurrent evolving

engineering environments. These features also apply for MA. They discuss the

di�erent approaches following two axes: the model scope (micro, meso and macro

levels) and the approach type (procedural, analytic, abstract and management

science/operations research techniques). ([104, Fig. 1] provides a positioning of

the surveyed approaches.) Models are indeed used for di�erent objectives and with

di�erent requirements.

Some issues related to the iterative, complex and creative nature of DDP are

also pointed out. A central challenge that one may take out from these issues is:

how models are/should be exploited against this iterative, complex and creative

nature of DDP to solve product/project development challenges in practice? For

instance, tooling issues (modelling notations and tools) should be addressed. Finally,

they argue on the one hand that DDP modelling is a challenging task of which

practitioners should understand the importance. On the other hand, "models should

be easy to understand and deliver clear bene�t."

2.3 Position of MODEF

In this section we position the methodology (MODEF) proposed in thesis in relation

to the presented related work.

2.3.1 On the abstraction of the Modelling Activity

All the above approaches do not explicitly deal with the concurrent nature of the

engineering environments (built of autonomous and even independent, stakeholders).

Although [100] clearly recognizes the in�uence of such a nature, the presented multi-

level approach does not explicitly consider it. Note also that integrated approaches

may not be e�ective in such a context with regard to capability and autonomy

of di�erent stakeholders. This is even more true with engineering activities of

Systems of Systems�SoS [55]. Generally, all traditional approaches for SE and

management ought to be reviewed to cope with SoS engineering concerns. Indeed,

[81] discusses evolutionary principles and implications of the federalism concept

for SE and management of SoS. This federalism is important because engineering

development alliances have been clearly taking the form of virtual organizations [81]

22 SECTION 2: APPROACHES FOR MASTERING THE MODELLING ACTIVITY

[46]. It encourages autonomy and loosely coupled systems but requires well de�ned

interfaces between autonomous systems. It is argued that the components of those

system may be: "locally managed and optimized independently". It is also argued

that such a federation of engineering development projects should be considered as

Complex Adaptive Systems. The need to deeply understand federated organisations

is outlined. Request for modelling, simulations and analyses are �nally pointed out.

Unlike the approaches developed in [100] and [87], we do not focus on a partic-

ular methodology within the TA; we do not make any assumption on the content

(paradigms, methods, languages, tools etc.) necessary to the internal means of

TA. We abstract away details and concentrate on the relevant content of models

(M) produced by MA. We believe such assumptions do not take into account the

diversity of approaches in MBSE. For instance, by considering that the SOI or the

"system to be made" should be also modelled with a function structure behaviour

approach [88] [87], this might be restrictive, since TA are generally characterize by

several model-based domain-speci�c practices.

The approach in [100] (and even [88] [87]) imposes a structure for TA and PA. In

doing so, it also imposes, an a priori interesting dynamic for TA and PA. However,

this mitigates the �exibility of the approach. However, while MODEF is intended

to deal with PA of MA, it might be applicable for TA that address the engineering

of a speci�c SOI (see Section 1.3). We believe a bijective link between the system S

and and the project P is a too strong assumption and might not be always relevant

given the structure of S and its granularity. From the PA side, we only consider the

scheduling of MA and their impacts on the state of M. The link between PA and

TA is therefore modelled via the mappings (see Section 1.2).

On the other hand, the veri�cation and validation attributes [100] are interesting

since they emanate from quantitative data that provide insights on the states of

elements they relate to. In our proposed methodology, we believe such insights

could be considered either as constraints for processes or useful to corroborate the

states of M in practice. In the approach [100], these attributes are use for both TA

and PA.

2.3.2 On the modelling of the Modelling Activity

The models we consider for representing the abstraction of MA (see Section 4) have

to enable the modelling of concurrent MA. We also make the choice of explicitly

modelling the expected states (and transitions between states) of the conceptual

2.3. POSITION OF MODEF 23

content of M, something which is rarely considered in the literature. The conceptual

content of M is considered because, again, we do not consider any internal content

(methodology, paradigms, methods, languages, tools etc.) of TA as necessary to

run TA. On the other hand, the models of those states are not integrated with the

process models representing modelling tasks. We argue on the bene�ts expected

from this latter choice in Section 4. Indeed there is a trade-o� between loosely and

deeply coupled models as indicated in [33].

Regarding models themselves, a similarity with [87], is that we use structure and

behaviour (process) models. But in our methodology, as argued before, the structure

models are not used for the same purpose OPM structure models are used. Likewise,

in the OPM-based approach the structure models and their states are the possible

mandatory inputs and outputs of process models, in our proposed methodology the

processes bring about changes of states of M.

Just like the OPM-based approach, the methodology developed in this thesis is

rather general in the sense that it is not tailored for particular techniques (Critical

Path Method�CPM, Program Evaluation and Reviewing Technique�PERT, etc.)

and factors (Budget measurement, Schedule tracking etc.) studied and compared

in [87]. The latter ought to be either derived from the models and their analysis or

considered as constraints for models. For instance, like speci�c approaches focusing

on quantitative insights (such as leading indicators), they could help determining the

constraints of MA, insofar particular insights need to be considered in an analysis

procedure. Indicators are generally quantitative insights. We believe they should

be used in conjunction with the models that describe the processes. Indeed the

processes give procedural insights that may be useful to anticipate the bad states

or deviation of thresholds. More interestingly, it could be possible to specify the

required actions to remedy or adjust afterwards.

Unlike the previous approaches, we do not assume a modelling notation or tool to

obtain and manipulate the models of MA. We rather provide the formal semantics

(of models) which can be mapped to some modelling notations implemented by

modelling tools. This choice aims to tackle the challenge related to the tooling of

approaches in practice pointed out by [1] [33] [104].

The way (see later Sections 4 and 6) we use models and their purposes are

di�erent from all the above approaches. We rely on state-of-the-art standard models

languages and notations for a structure-state-process modelling of the modelling

activity.

24 SECTION 2: APPROACHES FOR MASTERING THE MODELLING ACTIVITY

2.3.3 On the analysis carried out with models

From the above approaches, we could not �nd an evidence of an explicit formal

analysis of involved models against some expected formalised requirements. Except

perhaps the work [100] where the analysis emanates from the synchronisation rules

and the OPM approach [88] [87] where the simulation of OPMmodels are intended to

be exploited to detect various problems (product and project parameters feasibility,

deviations and impacts) and take appropriate actions in turn. Indeed the question:

what are the properties (or requirements) expected from the system (MA here)? is

not formally addressed for MA and more generally in the �eld of process (and

product) design development like (see e.g., [6] [74]) in the model-checking and

systems synthesis �elds.

Regarding the analysis algorithm itself, the UCS algorithm we use (see Section

5) to guide the exploration of models against requirements might be replaced by

another algorithm from operations research and arti�cial intelligence �elds. There-

fore, the analysis is dissociated of the provenance of models and can be tailored for

a speci�c concern (see Sections 5 and 8). This contributes to the building a �exible

methodology while dealing with the tooling issues.

2.3.4 On the implementation of approaches

It follows from the foregoing that the methodology presented in this dissertation is

not intended to be speci�cally built for a modelling tool or a modelling language.

Instead all principles, foundations and algorithms are given. Nonetheless, modelling

tools are at least necessary to build models. Therefore, to make the connection

with tools in order to reuse models for analysis concerns, we specify (see Sections

6 and 7) an architecture and means for its implementation for exploiting models

coming from a modelling tool. We could not �nd such an implementation choice

from the aforementioned approaches. We believe such a choice is very useful for the

practicality of the methodology. This could also holistically contribute to tackle the

tooling issues in practice. We will show that this architecture might be useful to

deal with model reuse (for analysis purposes) in model-driven engineering.

Section 3

Abstraction of the Modelling

Activity

This section elaborates the �rst step of MODEF(see Figure 1.1). We present the

System of Modelling (SoM) and the System of Systems of Modelling SoSoM (Sections

3.1.1 and 3.1.2). The application examples (Section 3.2) are presented to illustrate

the concepts and ground the ideas for the next sections.

3.1 SoM and SoSoM

For many current complex systems and even more for systems-of-systems�SoS, it

is not possible for an individual even a domain-speci�c community to understand

all aspects of these systems. Di�erent stakeholders tend to be expert in their

domain. It is a reason why the shift has been continuously operated from the

document-based to the model-based approaches [51]. Arguably, even with model-

based engineering, other issues (namely representation, computation and utilisation)

relating to model arise. The growing complexity of the modelling environment

is characterized by autonomous stakeholders with di�erent practices (paradigms,

methods, tools, standards, etc.). Finally, several projects and programs are common

in most large companies. They often evolve in parallel, addressing di�erent issues

or views related to a given problem, �nally they have each their own life cycle. To

characterize the modelling activity (MA) in such a context, we clarify in the following

the SoM then we follow [81] on the New Federalism [19] principle to describe the

SoSoM.

3.1.1 System of Modelling�SoM

The SoM depicted on Figure 3.1, is to a large extent a set of stakeholders and their

practices which are autonomous with their own capability. It is roughly a system

25

26 SECTION 3: ABSTRACTION OF THE MODELLING ACTIVITY

Figure 3.1: SoM

of people, methods, tools, processes, standards and models (M) in interaction that

addresses the engineering/modelling of a system-of-interest. We selected System of

Modelling instead of System of Engineering to stress on the fact that we are in a

MBSE framework. Let us now discuss on which elements of SoM we will focus to

study it.

On Figure 3.1, we have three main blocks.

• At the top of Figure 3.1, we have people and a scheduling of tasks (Step A,

Step B, etc.) they carry out. This block (B1) represents the scheduling of

MA.

• The block B2 contains three boxes seen as conceptual models that represent

the level where M are abstracted.

• The block B3 contains the actual models (M) that represent the SOI that is

being modelled. The blue arrow on Figure 3.1 indicates the connection between

M and the conceptual models. Such a connection, its de�nition and implemen-

tation, applications are partly reported in [35] [36] [56] [37]. Apart from the

fact that conceptual models are abstractions of M, they are useful as a means

to involve di�erent stakeholders in the modelling process and ease it typically

via an approach that combines metamodels and ontologies [36]. For instance,

3.1. SOM AND SOSOM 27

the stakeholders that are unfamiliar with speci�c metamodels concepts are

involved via domain speci�c concepts related to their view points. The two

kinds of concepts are therefore related via the combination of metamodels and

ontolgies.

In order to study the SoM, we focus on scheduling of modelling tasks, the

conceptual (or structure) models that capture the main content of M. To understand

the impacts of modelling tasks on M, we associate on the one hand, the conceptual

models to state models that characterise the expected (or lifecyle) states of M. On

the other hand, the events from the tasks' execution are be mapped on the transitions

of state models to indicate the e�ects of these tasks on states. Therefore, the SoM

is studied at these three architectural views of a modelling project.

Actually, several modelling projects are run in parallel. Indeed, many engineering

programs involve several organisations located on multiple sites (geographically

distributed). Regardless of the geographical distribution, the engineering projects

often address concerns that overlap. At the same time the SoM are generally

autonomous. The question which arises here is: how to understand these SoM

and their evolution?

3.1.2 System of Systems of Modelling�SoSoM

The SoSoM, depicted on Figure 3.2, is built of di�erent SoM that could together

participate to several projects and programs. The SoSoM is a way to understand

the evolving relationships between several SoM. Therefore it is more than just the

sum of SoM. In fact, on Figure 3.2, the dashed line (with arrows directed towards

the SoM) means that there are interactions or commonalities between SoM. The

added-value of the SoSoM emerges from those interactions. With the autonomy and

the proper operational capabilities of SoM, it is di�cult to impose an integrated

approach. Instead, we argue in the following that the federation is adequate to

characterize the SoSoM. We eventually recall that Federation has been considered

as a type of System of Systems by [61] [81].

Following [81], the federation can be de�ned as an organisation form that meet

the federalism principles. The federalism principles indicate, on the �rst hand, the

autonomy and leadership of SoM are recognized and unavoidable. On the other

hand, shared interfaces and agreements on some interoperation mechanisms are

required to get an added-value at the federation level. The federalism principles

are of particular importance because engineering development alliances have been

28 SECTION 3: ABSTRACTION OF THE MODELLING ACTIVITY

clearly taking the form of virtual organizations [81] [46]. Federalism encourages

autonomy and loosely coupled systems but requires well de�ned interfaces between

autonomous systems. Federalism is based on �ve principles de�ned by [19] and

summarized by [81] in the perspective of SE and management:

1 Subsidiarity�This means that the power is distributed throughout the lower

levels of the federation of SoM where there is some assumed responsibility.

2 Interdependence�This means that services are combined whenever and wher-

ever necessary.

3 Uniform and Standardized Way of Doing Business�The interdependence is

possible only if there are agreements with interoperation protocols.

4 Separation of Powers�Management, monitoring and governance aspects of

Federation of SoM should be considered as distinct functions.

5 Dual Citizenship�This means that parts of SoM are both in their local SoM

and in the Federation of SoM.

It follows from the foregoing that, the federation is adequate to qualify the SoSoM.

That is, the SoSoM level is obtained by the federation of several SoM. To study the

Figure 3.2: SoSoM

SoSoM, we consider the same views as with the SoM: structure, state and process

of MA related several SoM. The actual content of these views will depend on the

problem at hand at the SoSoM level. But the relations between the di�erent models

remain the same: we have elements of the structure view that have states that evolve

under the e�ects of processes.

3.1. SOM AND SOSOM 29

3.1.3 Related research

Federation of systems has been considered as a type of Systems of Systems�SoS [61]

[81]. In this kind of SoS, there is no central authority, but the components of the

SoS collaborate and cooperate to meet the objectives of the federation [61].

Regarding the SoS themselves, there has been a huge literature for SoS de�nition

without a globally accepted de�nition. The �ve principle characteristics of an SoS

are [68] :

(a) Operational independence of the component systems � The SoS is composed or

assembled of systems which are initially independent and useful in their own

right.

(b) Managerial independence of the component systems � They can operate inde-

pendently outside the SoS or participate in several SoSs without losing their

operational identity.

(c) Evolutionary development � The con�guration of the SoS and its design evolve

continuously.

(d) Emergent behavior � It is the result of the dynamic assembly of components

systems which is not observable in any of them.

(e) Geographic distribution � the component systems are geographically distributed.

It is worth emphasising here that in the case of the SoSoM, although the

geographic distribution is unavoidable, what really matters in MODEF are the

three views on which we focus: the modelling activity, the produced models

and their expected states and transitions.

The discussions of those characteristics, other de�nitions of SoS and the challenges

(mainly related to TA) in the model-based engineering of SoS can be found, e.g., in

[83] [81] [55] [66] [18] and [41].

We addressed the necessity to consider MA or models produced by the MA as a

federation in [56]. The SoM and SoSoM as representations of MA are introduced in

[57]. The SoSoM might be also considered as a multi-agent system (MAS) [89]. But,

since we do not focus on issues related to organisation and communication which

are central in MAS, we prefer to stay at system level which is more generic and to

focus on some architecture views relevant to the objective of MODEF.

30 SECTION 3: ABSTRACTION OF THE MODELLING ACTIVITY

3.2 Application examples

In this section we introduce some application examples to illustrate the concepts and

ground the ideas for the following sections. We start by presenting actual elements

that constitute a SoM (Section 3.2.1), then we discuss the problems one may need

to address at the SoSoM level (Section 3.2.2) that comprises several SoM.

3.2.1 An SoM: Modelling the functional coverage of a SOI

Di�erent aspects of the SOI are generally modelled by di�erent stakeholders. And

it might be required that at some stage in the development process, models satisfy

some criteria for veri�cation, test or integration purposes for example. Suppose we

are only interested in the functional architecture whose objective is to ensure that

the modelled SOI covers the functional needs. We need to �gure out what are the

elements allowing to de�ne this modelling project as an SoM say SoM0.

Following the main elements (see Section 3.1.1) considered to study an SoM, one

needs to identify

• the sequencing of modelling tasks at stake to carry out this modelling project

• the conceptual models that abstract away the main contents of models (M)

• the expected states of M and transitions between them represented by elements

of the conceptual models

• the e�ects (mappings) of modelling tasks on these states.

Figure 3.3 is an illustration of such elements. We can observe on that �gure the

following data:

• At the right of Figure 3.3, is a process model (PM) that represents a high level

view of the tasks carried out in the SoM0. This process model contains six tasks

starting with the the task named "Model high level functions" and ending with the

task named "Validate Re�nedFunctions".

• At the top left of Figure 3.3, is a conceptual model (AM) that represents the

entities (named "System Component" and "System Function") and their relation

taken into account in the SoM0.

• At the bottom left of Figure 3.3, is a state model (SM) that has 3 states. The

initial state is named "Maturity<30". Typically, a state in this model describes the

maturity level of something that should be known after a mapping.

3.2. APPLICATION EXAMPLES 31

Figure 3.3: At the top left, the bottom left, the right, and the middle are a structure, state,
process model and a mapping respectively of the SoM0

• At the middle of Figure 3.3, is a mapping (MG) which roughly means: once

the task named "Validate DetailedFunctions" is �nished, the state of a model

abstracted away by the entity "System Function" remains "30<Maturity<60" if

it was "30<Maturity<60". Such a mapping typically indicates in practice that, the

outcomes of the task "Validate DetailledFunctions" do not allow to evolve the state

of some models (M) to the "60<Maturity<100".

Given the presentation of these models of the SoM0, it is clear that they might

be obtained separately, but must be connected via the mappings to get the whole

view of the SoM0.

Other SoM could be de�ned the same way. For instance, a modelling project

regarding a di�erent viewpoint of the SOI.

3.2.2 Examples of SoSoM

The SoSoM is about the relationships of at least two SoMs. The local view of the

SoSoM is characterized by the di�erent SoM whereas the global view depends upon

the SoSoM's objective. Suppose the di�erent objectives at the SoSoM level are as

follows.

• Objective 1: We want to harmonize the models (M) produced by several SoM.

32 SECTION 3: ABSTRACTION OF THE MODELLING ACTIVITY

By harmonization we mean to correlate and explicitly identify the relationships

among di�erent entities (of the conceptual models) within several SoM. The

bene�ts expected afterwards are to minimize redundant information or models,

enable model reuse where possible, detect con�icting models and possibly ease

their reconciliation procedure.

• Objective 2: Following the SoSoM1, another objective one might want to

address at the SoSoM level is the capitalisation of (the knowledge about) the

modelling. By capitalization we mean the backup of models (M) shared or

agreed among a set of SoM.

• Objective 3: Suppose now, we are interested in the co-evolution of the mod-

elling within the SoM for addressing some higher goal. This will mean, al-

though SoM are autonomous, there might be the need to agree at some points

in their respective life cycle. Such agreements will be necessary to ensure that

the two SoM could together, reach some expected states at desired time in the

future.

Now, we discuss how a SoSoM and the three kinds (see Section 3.1.2) of models

that represent it allow to deal with each of these three objectives.

• Modelling Harmonization�SoSoM1 Figure 3.4 contains the possible data

related to SoSoM1. These data are as follows. � At the right of Figure 3.4,

is a process model (PM) that represents a high level view of the tasks carried

out in the SoSoM1. This model indicates the tasks to run at the SoSoM level.

� At the top left of Figure 3.4, are the entities ("System Component" and

"System Function") of the conceptual model (AM) that are relevant at the

SoSoM level.

� At the bottom left of Figure 3.4, is a state model (SM) that has 3 states.

Each state characterizes a possible state of models within SoM.

� The mappings are partially performed on SM. Indeed the transitions of

the state model are labelled with transitions between the tasks in the process

model. It remains to indicate to which entity this state model applies. It

typically applies for the two entities.

Let us now discuss a possible working scenario of SoSoM1. Suppose SoSoM1

comprises 3 SoM namely: three modelling projects that each addresses, the ar-

chitecture description of a transportation system by plane (SoM1), car (SoM2)

3.2. APPLICATION EXAMPLES 33

Figure 3.4: At the top left, the bottom left and the right are respectively a structure, state,
process models of the SoSoM1

and ship (SoM3) respectively. As indicated by entities of the conceptual model

of SoSoM1, the focus is on "System Function" and "System Component".

Suppose the 3 SoM also expose these entities (or equivalent) in their conceptual

models. As the second task (named "Match instances") of the process model

of SoSoM1 indicates, the instances (i.e. models (M)) associated to each entity

in the SoM are matched at some point in the process carried out in SoSoM1.

Depending on the executed tasks, the states of instances related to "System

Component" are possibly updated. If for instance, all the 3 SoM deal with a

GPS (Global Positioning System), a link will be created at the SoSoM level

to indicate such a dependence.

It follows from this scenario that SoSoM1 could be a �rst step towards the

mastering of the replication of models (M) and model reuse.

It is worth emphasising here that the process model at the SoSoM level (and

even the SoM level) does not say how tasks are technically run. Instead, it

allows to �gure out how tasks are scheduled and then, with the mappings,

their e�ects on states of studied elements. The way to compute the equality

and equivalence between concepts of conceptual models has been addressed

for instance in [37]. Nonetheless such technical concerns are beyond the scope

34 SECTION 3: ABSTRACTION OF THE MODELLING ACTIVITY

of this dissertation. Besides they are speci�c to the SoSoM's objective.

The SoSoM1 above does not consider the state and process models of its con-

stituent SoM, but only their conceptual models. Depending on the objectives

of the SoSoM, such models should be considered; see the following two SoSoM.

• Modelling Capitalisation�SoSoM2 If the capitalisation process occurs

during project development, the state models of SoM would be relevant. For

instance, if the state models of SoM address, like with the SoM0, the maturity

level of models; they have to be taken into account in the SoSoM2. As models

of the SoSoM2, we could have the same conceptual model like the one of

SoSoM1. Its state models will correspond to the expected states of entities of

the conceptual models. Its process models will correspond to the description of

the tasks necessary to deal with the modelling capitalisation process. Finally

the mappings must be speci�ed.

• Modelling Evolution�SoSoM3 In this scenario, the structure, state and

process models of the SoSoM will combine the relevant subsets of SoM models.

In this section we characterised the SoM and SoSoM and we gave some appli-

cation examples. It is now necessary to discuss how the models of these systems

might be usefully exploited in practice. We start by presenting in the next section

the underlined principles and semantics of the considered models. Then we specify

the formalism to specify the requirements or expectations on these models.

Section 4

Modelling the Modelling Activity

and its Expectations

This section elaborates the second step (Represent structure, state and process

models), third step (Specify structure-state-process mappings) and the fourth step

(Specify expectations) of MODEF(see Figure 1.1). In order to reason with the 3

considered kinds of models, we now introduce their underlined principles and seman-

tics (Section 4.1) considered in this dissertation and their mappings (Section 4.2).

Then we present the expectation-speci�cation formalism (Section 4.3) necessary to

de�ne system's requirements or speci�cally the expectations from the system.

4.1 Structure, Process and State models

The de�nition of the principles of models is especially important in MODEF for

automating the analysis of models. This enables to decouple the implementation of

the step 5 (Analysis of models) of MODEF from the logic of a particular modelling

tool used to draw models. These models are mainly descriptive models. The formal

and federated use of these models is discussed in Section 6 under a categorical

architecture.

Let us call the structure (abstract syntax) of a model of the system, a non-

empty �nite set of disjoint components. A component is either basic (i.e. without

constituent components) or composite (i.e. with a non-empty �nite set of constituent

components). Since all models are composite structures, suppose a component c is,

for the purpose of this section, basically given by

G = 〈V,E〉 (4.1)

where V := {c1, . . . cn} is the set of internal components of c, E := {l1, . . . lm} is the
set of directed links/connections between elements of V and c itself (when connection

35

36 SECTION 4: MODELLING THE MODELLING ACTIVITY AND ITS EXPECTATIONS

ports are considered). n and m are positive integers.

From the structure of a model, we aim at obtaining its interpretation in a domain

of interest. The interpretation is derived from the structure of a component. Indeed,

to model the physical aspect of the system, a component (an element of V) might

be interpreted as a physical element and the corresponding E a set of physical, or

logical connections, whereas to model the states (and the transitions between them)

of the system, a component might be interpreted as a state and the corresponding

E the set of transition between its states. The semantics or the formal de�nition of

an interpretation must be de�ned and perhaps should be algorithmically available

in order to automatically use an interpretation in algorithms (e.g. an analysis

algorithm).

Note that, although the concrete syntax (graphical symbols used to render the

models) is important for the end user, it does not matter in MODEF. Since we aim

to decouple MODEF from the logic of a particular tool. It is useful only for the

user who will draw and/or visualise the models.

Now, we discuss the formal de�nitions of the semantics of the three kinds of

models considered.

4.1.1 Structure model

The semantics of structure models will depend on the system at stake. For example

for the SoM, we interpret the structure models as conceptual models while for a

physical system they might be interpreted as computing, physical or human compo-

nents. Generally, the structure of structure models will be su�cient for the purpose

of MODEF. For example, Figure 4.1 is the structure model that describes the

Resource Architecture (a combination of physical assets and organization con�gured

to provide a capability) of a supermarket. The structure of this model is a component

that has 4 constituent components (Customer, Maintenance Operator, Supermarket

Director and Supermarket Entrance System) and 3 links.

4.1.2 Process model

The semantics of process models is characterized as generators in the sense of [76].

Roughly, the exploration or execution of a process model should generate a language

where the alphabet (Σ) is the �nite set of events and the words are the event-traces or

the sequences of events. This yields a non-deterministic automaton where accepting

states correspond to the end of a possible execution of the process model. The set

4.1. STRUCTURE, PROCESS AND STATE MODELS 37

Figure 4.1: A supermarket's environment structure.

of words that bring the automaton from the its initial state to an accepting state is

called the language recognized (or "marked") by the automaton.

Such a choice is motivated by the fact that modelling tasks can be indeed

considered as discrete-event processes. Also, the class (principal features: discrete,

asynchronous and possibly non deterministic) of processes considered in [76] is well-

suited because we mainly focus of planning of tasks rather than data processing.

Finally we are interested by words with a �nite length i.e., �nite execution of

processes.

Adapted from [76], such an automaton is formally de�ned as follows. A generator

is a 5-tuple

G = (Q,Σ, δ, q0, Qm) (4.2)

where Q is the set of states q, Σ is the alphabet or �nite set of output symbols

σ, δ : Σ × Q → Q the transition function; a partial function, q0 ∈ Q the initial

state and Qm a subset of Q called marker states or �nal states. G is equivalent

to a directed graph with node set Q and an edge q → q′ labelled σ for each triple

(σ, q, q′) such that q′ = δ(σ, q). This edge or state transition is called an event.

Events are considered to occur spontaneously, asynchronously and instantaneously.

Furthermore an event is recognizable via its label σ by an outside observer. Distinct

events at a given node always carry distinct labels.

If Σ∗ denote the set of all �nite strings s of elements of Σ including the empty

38 SECTION 4: MODELLING THE MODELLING ACTIVITY AND ITS EXPECTATIONS

or identity string 1. The extended transition function is given by δ : Σ∗ × Q → Q,

δ(1, q) = q, q ∈ Q and δ(sσ, q) = δ(σ, δ(s, q)) whenever q′ = δ(s, q) and δ(σ, q′) are

both de�ned.

The language generated by G is

L(G) = {w : w ∈ Σ∗ and δ(σ, q0) is de�ned}. (4.3)

It is also the set of all possible �nite sequences of events that can occur.

The language marked or recognized by G is

Lm(G) = {w : w ∈ L(G) and δ(w, q0) ∈ Qm)}. (4.4)

Example: At the left of Figure 4.2 is the process model of the SoM0 (see Section

3.2.1) while at right is the graph equivalent to the generator associated to this

process model.

Figure 4.2: A process model at left and the graph equivalent to its associated generator at
right

The structure of this process model is a component that has 7 constituent

components (named "Start", ... ,"End") and 8 links. To obtain the generator

(G0 = (Q,Σ, δ, q0, Qm)) associated to this model, we �rst need to understand the

interpretation of components and links. Therefore, the implementation of the seman-

tics of a process model must explicitly expose the functions necessary to compute the

4.1. STRUCTURE, PROCESS AND STATE MODELS 39

states and transitions of such an automaton. We present such functions in Section

7. The reason is that since this process model is a BPMN (Business Process Model

Notation)-like model, i.e., an application/implementation detail, these functions will

be speci�c to the BPMN syntax. But here, we give the main ingredients to obtain

the associated generator.

A component of a BPMN model is a node of a given type (Event, Gateway,

Task, etc.). A link between two components is generally called a "sequence �ow".

In the graph equivalent to the generator, the vertices or states will correspond to

the sequence �ows and the edges or state transitions the ends of the execution of an

executable node. The initial state will correspond to the sequence �ow whose the

source node is the outermost (in hierarchy structure) "Start" node. The accepting

states will correspond to the sequence �ows whose the target node is an outermost

"End" node.

Therefore, at the right of Figure 4.2, the states i.e. the set Q (the circles) are

linked (via blue lines) to the corresponding sequence �ows. δ and Σ are straightfor-

wardly obtained from the same �gure. The initial and accepting states (q0 and Qm

respectively) are "1 I" and {"6 F", "7 F", "8 F"} respectively. It is also easy to see

that the language recognized by G0 contains 3 words.

Finally, note that, in the generation or exploration of the graph equivalent to the

generator, the graph should not need to be entirely computed. This is due to the

mappings (and possibly constraints on processes) that will constrain the exploration

of processes.

4.1.3 State model

The semantics of state models is characterized as an hierarchical �nite state model

(HFSM). The de�nition of such HFSM is as follows.

If a component c is such that V and E are both empty sets, c is called a basic state,

otherwise, c is a composite state. If c is composite, every element of V is interpreted

either as a basic state or a composite state. E is the set of transitions between

states. By transitions between states, we do not mean the actual set of events that

will e�ectively trigger those transitions. An HFSM is structurally (syntactically) a

composite component. At the semantics level, this composite component is equipped

with an initial state and a state-transition-relation de�ned in the following:

Current state�The current state of an HFSM c0, is given by the stack [c0, c1, . . . ck],

40 SECTION 4: MODELLING THE MODELLING ACTIVITY AND ITS EXPECTATIONS

where ci is a constituent component of ci−1, i = 1...k, ck is a basic component.

Base state-transition relation�Let δ : E×V×V , the base state-transition relation

associated to c. (l1, c1, c2) ∈ δ means that there is a link l1 from c1 to c2. The actual

label or event that will �re the link or semantically the transition, is obtained via a

binary relation EV ENT ⊆ Σ× E that associates to a link the trigger event.

Base initial state�Let c0, c0 ∈ V the base initial state, a particular state which

indicates from which constituent component of c, c is locally initialised. "locally"

here means that the notion of hierarchy is not considered.

HFSM�Let c0 an HFSM and s([c0, c1, . . . ck]) a given state of c0

• s is the initial state of c0 if and only if ci+1 is the base initial state of ci for all

i = 0...k − 1.

• the state-transition relation of c0 consists, given a current state s([c0, c1, . . . ck]),

in determining a next state s′.

Suppose δp is the base state-transition relation of cp, p = 0..k− 1 respectively.

s′ is given by

− s′([c0, cy1 . . . , cyj , cm1 . . . , cmx]) if cyj is an HFSM and s′′([cyj , cm1 . . . , cmx])

is the initial state of cyj , j > 0

− s′([c0, cy1 . . . , cyj]) if cyj is a basic state

where cy0 := c0, cy1 := c1, ..., cyj−1 := cj−1 such that whenever (ljyj , c
j, cyj) ∈

δj−1, j ∈ 1..k, we do not have (liyi , c
i, cyi) ∈ δi−1 i.e. the transition liyi is not

�reable, i 6= 0 and i ∈ 1..j − 1.

This means that given a current state s([c0, c1, . . . ck]), the �ring of a transition

corresponds to the application of one and only one base state-transition relation

of a component ci, i ∈ 0..k− 1 provided that the base state-transition relation

of cj, for all j = 0..i− 1, i 6= 0 are not applicable for cj+1.

Example: Consider the HFSM on Figure 4.3. c0 is such that V := {1, 2, 3} and
E := {t1, t2, t3, t4, t5}. Suppose also that EV ENT is given by couples (ei, ti),

i = 1..5, ei ∈ Σ. The HFSM c1 associated to the component c1 is such that

V := {5, 6} and E := {t6, t7}. The base initial states of c0 and c1 are 2 and

5 respectively. The initial state of c0 and c1 are s0 := [c0, c2] and s1 := [c1, c5]

respectively. The base state-transition relations of c0 and c1 are straightforwardly

obtained from Figure 4.3. We are now ready to give the state-transition relation

of c0. For the sake of simplicity and without loss of generality, we assume at a

4.1. STRUCTURE, PROCESS AND STATE MODELS 41

given moment, only one event in {ei,i=1..5}, is active i.e., at most one transition of

c0 is �reable. The state-transition relation of c0 is therefore given by (s, t, s′) ∈
{([c0, c2], t2, [c

0, c3]), ([c0, c3], t3, [c
0, c2]), ([c0, c3], t4, [c

0, c1, c5]),

([c0, c1, c5], t5, [c
0, c1, c5]), ([c0, c1, c5], t6, [c

0, c1, c6]), ([c0, c1, c5], t1, [c
0, c2]),

([c0, c1, c6], t7, [c
0, c1, c5]), ([c0, c1, c6], t5, [c

0, c1, c5]), ([c0, c1, c6], t1, [c
0, c2])}

Figure 4.3: An example of an HFSM

The values of elements of E are fully determined after the association of the

events from processes on the transitions of the state models via EV ENT (see the

following Section4.2). In the spirit, this association typically leads us to consider

an HFSM as a named/labelled transition system [59]. That is, the transitions of

an HFSM are labelled or named with actions or events belonging to the set of the

events of processes. An HFSM is deterministic if and only if δ′ : Σ × E × V × V
is a partial function δ′ : Σ × E × V → V such that (e, l, s1, s2) ∈ δ′ if and only if

(l, s1, s2) ∈ δ and (e, l) ∈ EV ENT
An HFSM can be compared to (hierarchical) �nite-state machines such as Harel

statecharts. [47]. It is written in [47]:

"statecharts=state-diagrams+depth+orthogonality+broadcast-communication."

The similarity stems from the fact that, like statecharts, we deal with the depth of

states via the composite structure of states. Unlike Statecharts, orthogonality and

broadcast-communication are not considered in an HFSM. Indeed, in an HFSM,

the transitions are only de�ned inside a composite component equipped with only

one initial state. Orthogonality could be managed with the parallel composition

of HFSMs as described in Section 5. Contrary to Statecharts which are a visual

42 SECTION 4: MODELLING THE MODELLING ACTIVITY AND ITS EXPECTATIONS

modelling technique for which several semantics exist [38], there is only one semantics

for an HFSM.

An HFSM only de�nes an initial state and a state-transition relation.

4.2 Relations between process and state models

Following the descriptions of the three kinds of models and their exploration se-

mantics, here we aim to map the events from processes P on the transitions of state

models of components of structure models. Therefore, by the relations (or mappings)

of models, we mean the speci�cation of the expected the e�ects of process models

on state models.

We have assumed that the events or more precisely their labels or values (ΣP)

generated by P are available to an outside observer (see Section 4.1.2). In addition,

they correspond to the (spontaneous, asynchronous and instantaneous) transitions

between executable nodes during which no change is assumed to occur in the process.

Suppose also that to the structure, process and state models, we associate the

structure (de�ned by (4.1)) Ga = 〈Va, Ea〉, Gp = 〈Vp, Ep〉 and Gs = 〈Vs, Es〉
respectively.

Let PHY , TRANS and EV ENT be the union of all structure components, the

union of all sets of Es and the union of all sets of Ep respectively.

TRIGGER is the set of associations of events on the transitions of state models

of structure components. TRIGGER is introduced in Section 3.2 via the associations

(or mappings) exempli�ed. TRIGGER is formally de�ned by

TRIGGER : PHY × TRANS → 2EV ENT (4.5)

where (a, t, e) ∈ TRIGGER means: the transition t of (the state model associated

to) the structure component a is possibly triggered by consuming the set e of the

events, and conversely, since e is explicitly involved in TRIGGER, it has to be

consumed. This latter requirement is rather a business one and directly in�uences

the exploration semantics of models. Besides, note that the mappings allow to

preserve the autonomy and speci�city of each kind of model. The autonomy is

preserved because each kind of model can be developed separately. Whereas the

speci�city stems from the fact that the meaning of each kind of model is not

altered when it (or part thereof) is involved in an interconnection speci�ed via

(4.5). By no means does the interconnection in�uence the development of these

4.3. EXPECTATION-SPECIFICATION 43

models. Nonetheless, changes in these models would result in necessary changes in

TRIGGER.

Every element of the triplet (e, a, t) must be actually de�ned as a stack (see

the de�nition of a state of an HFSM in Section 4.1.3 and more generally Section

6) in order to have TRIGGER well de�ned as a function. Composite structures

also permit to avoid to systematically �atten all the models before running an

exploration.

In this thesis we do not address the same problem as the one addressed in [76].

[76] is concerned with the control of the generator (object to be controlled) by a

supervisor (the controller) via a control pattern (the set of all binary assignments

to the elements of a subset of Σ which an element is called a controlled event ; or a

speci�cation). Such a problem refers in the literature to the synthesis of a model of a

supervisor from the models of object to be controlled or the plant and requirements.

See for example [5] on the integration of supervisory control in MBSE. But there

are similarities between the approach followed in this thesis with the supervisory

control. These similarities are as follows.

The process and state models are rather seen as the models of the master (asso-

ciated to a generator) instead of a controller and object to be mastered respectively.

In this thesis, the master is a reactive and autonomous process for which we require

its full speci�cation. The e�ects (speci�ed via TRIGGER) of this process on the

object to be mastered contributes to the speci�cation of the latter. In turn, the

object to be mastered will constrain the master's behaviour.

After these models are speci�ed, we want to answer the question: given some

expectations on the states of the object to be mastered, how far does the master

support the satisfaction of those expectations? We address this question in Section

5. Let us now present the formalism to the speci�cation of the expectations.

4.3 Expectation-speci�cation

The expectation-speci�cation is the formal modelling of system requirements/expectations.

It answers the question: how to describe the expectations over the life cycle of the

modelling activity?

44 SECTION 4: MODELLING THE MODELLING ACTIVITY AND ITS EXPECTATIONS

4.3.1 A/G contracts equipped with a pre-order structure on

G

The inspiration from contracts lies on two main facts. On the �rst hand, they �t

well as a basis to model expectations of a system. On the other hand they are easy

to describe as rules yet they are supported by formal conceptual frameworks such as

[9]. It turns out that they should enable to easily involve stakeholders while allowing

to formally deal with expectations in the analysis.

The expectations are grounded on Assume/Guarantee (A/G) contracts. We

follow [9] on a meta-theory of contracts.

A contract con for a system or a model is de�ned by con(A,G) where

• A is the assumptions or the "valid environments" for the system or a part of

the system.

• G is the guarantees or "the commitments of the component (the system or

part of it) itself, when put in interaction with a valid environment.".

• A and G are built on the set of behaviours related to the system over a domain

D not explicit in con.

Example: A system that realises a real division of x by y and assigns the result to z

might conform to a contract con_div((x, y ∈ R and y 6= 0),(z := x/y)). Meaning: if

the system receives as inputs two real numbers x and y such that y 6= 0, it guarantees

that z will be equal to x/y.

According to the meta-theory of contracts [9], con is consistent, if there exists

a model that e�ectively implements con (satis�es G) for the assumptions A of con.

con is compatible if there exists a non empty environment for con. See [9, Section

VII] for more details on A/G contracts de�nitions and operations.

Continuing with the example of the real division, con_div is consistent because

there exists a system that e�ectively takes 2 real inputs x and y, y 6= 0 and computes

z := x/y. con_div is compatible because there exists 2 real numbers x and y, and

y 6= 0.

Note that, a contract con(A,G) for a system (respectively system models here)

does not provide any information on how the system is implemented (respectively

is modelled) but how it is expected to behave.

An expectation consists in expressing preferences on the states of the system

given an assumption (A). Preferences are modelled by equipping a guarantee (G)

4.3. EXPECTATION-SPECIFICATION 45

with a pre-order (i.e. a relation that is re�exive and transitive) structure. Since

in A/G contracts [9], G is a set, we are no longer formally dealing with an A/G

contract. Therefore, the term preferences (P) is more adequate here. Whence the

extension of A/G contract to an A/P expectation.

Formally, an expectation consists of a couple

exp(A,P) (4.6)

where both A and P are de�ned from a domain D. A is theoretically a formula of

zeroth-order logic where atomic propositions are elements of D. P is a pre-order

which the binary relation is de�ned on D. An element of D is a couple: (object,

state) meaning the component object is in state state. Given m = (o1, s1), we call

s1 the underlined state of m.

Example: Suppose m1, m2, m3, m4, m5, m6 and m7 are elements of D. The table

below gives two expectations.

Expectations

Id A P

1 m1 m2 4 m3,m2 4 m4

2 m5 ∧m6 m7

.

In practice, the expectations with Ids 1 and 2 stand for the following. When m1

occurs or is true, the occurrence of the situations (or the propositions) m4 and m3,

are preferred tom2. And whenm5∧m6 is true, the occurrence ofm7 is preferred (m7

should be true). It is clear that, the truth value of elements of D is obtained from the

behaviour of the system they relate to. Whenever A is not given for an expectation,

we suppose it is a tautology or it corresponds to all possible assumptions with regard

to the behaviour of the system.

For the sake of simplicity, we consider that A only consists of atomic propositions

in the following.

A basic question which arise is: do operations on contracts apply for expecta-

tions? The answer is certainly no, given the structure of P. Indeed the interpretation

of the operations on a set (G) are not directly translatable on a relation (P). But

we discuss the relevance of these operations for expectations and eventually de�ne

the relevant ones. In the following, we start by discussing the compatibility and

consistency of expectations or requirements.

Compatibility�A basic way to check the compatibility of an expectation, like

46 SECTION 4: MODELLING THE MODELLING ACTIVITY AND ITS EXPECTATIONS

in the spirit of a contract, is to verify that its assumption is valid according to

the de�nitions of the state models it is related to. Statically, one must ensure

that A is well-de�ned as a proposition. However, checking the consistency of some

requirements would require to explore the state space (of the behaviour of the

system) to check if some states are all reachable together. Indeed, if two situations

(or propositions) are not de�ned from the same state model, the validity of an

assumption that involves those situations might yield a reachability problem. For

example, for the expectation with Id=2, A = m5 ∧m6, compatibility means: is it

possible for the system to be simultaneously in the state(s) underlined by m5 and

m6?

As a result, an expectation exp(A,P) is compatible if there exists a valid envi-

ronment (i.e. that makes A true) for exp.

Consistency�In the spirit of contracts, we might ask ourselves the question:

what does "a model that e�ectively implements exp(A,P) (satis�es P)" mean? i.e.,

what does the satisfaction of the preferences mean? Before answering this question,

it is important to check that P is well-de�ned.

Statically, one must ensure that P is a pre order and that P is not contradictory.

P is contradictory if given m2,m4 ∈ D and m2 6= m4 whenever m2 4 m4 is

de�ned for an expectation exp1 we also have m4 4 m2 de�ned for exp1 (or another

expectation exp2 such that the assumptions related to both exp1 and exp2 might be

simultaneously true for the system they relate to).

Using the underlined directed graph of P, one only has to check that it is an acyclic

graph or more precisely it does not contain a cycle of length greater than 1. Formally,

P is "not contradictory" syntactically means that the pre-order P is antisymmetric

i.e a partial order.

However, even if P is statically or syntactically well-de�ned, it might be the case

that it is not possible, according to the behaviour of the system, to leave from the

situation m4 to m2. This is rather a problem of feasibility of the expectations.

Now suppose P is well-de�ned, checking its satisfaction is clearly not a boolean

question, unless one requires that all preferences are satis�ed. But this latter

requirement is a too strong assumption. Therefore, with respect to an utility

function that allows to quantitatively evaluate the preferences, it would be possible

to compute how far preferences are satis�ed. This concern is addressed in Section

5.

As a result, an expectation exp(A,P) is consistent if P is not contradictory and

4.3. EXPECTATION-SPECIFICATION 47

there exists a model for the assumption A, that e�ectively implements or achieves

P at a given level of satisfaction with respect to a quantitative understanding of P.

In A/G contracts, it is possible to compute a global contract resulting from the

combination of a set of contracts, by using, for example, either the conjunction or

the composition of contracts [9, Section VII]. Let coni = (Ai, Gi) a contract and

Con a set of contracts.

The conjunction of contracts coni ∈ Con noted
∧
i coni is de�ned by:

∧
i coni =

(A,G) such that:

A =
∨
i

Ai and G =
∧
i

Gi (4.7)

The composition of contracts coni noted
⊗

i coni is de�ned by
⊗

i coni = (A,G)

such that

A = (
∧
i

Ai) ∨ ¬(
∧
i

Gi) and G =
∧
i

Gi (4.8)

Suppose the requirements of the system are de�ned in terms of contracts instead of

expectations. The resulting guarantee (
∧
iGi) for the conjunction and composition

of all contracts is de facto not necessarily equivalent to the guarantee expected from

the system. In fact, the conjunction of non-compatible guarantees (i.e., that could

not together simultaneously be satis�ed) does not make sense and should not be

de�ned. This again yields a reachability problem.

Coming back to the expectations, the same problem might arise with the def-

initions of the conjunction and composition of expectations. Indeed, suppose we

attempt to de�ne the conjunction of expectations and we take the resulting prefer-

ence to be a kind of conjunction of preferences. Following the previous paragraph

it clear that such a resulting preference will not make sense.

The operations on expectations should be interesting if expectations were used

in a compositional fashion for instance. Since it is not the case in this thesis, we

do not deal with operations on expectations in this thesis. Anyway, it would be

possible to de�ne some operations on expectations by considering the operations

(union, intersection and composition) on binary relations.

The fact that a contract (respectively an expectation) does not provide any

information on how the the system is implemented, but how it is (preferably)

expected to behave has central consequences.

As a �rst consequence, the feasibility, i.e. the answer to the question: "does it

48 SECTION 4: MODELLING THE MODELLING ACTIVITY AND ITS EXPECTATIONS

exist some system models which satisfy the expectations?" is not easy to answer. On

the other side, with the mapping of multiple models and their respective autonomy

and possibly constraints on some models, it would be hard to think of realizability i.e.

the existence of models and certain mappings that allow to satisfy the expectations.

In addition, this could raise the question of completeness of expectations.

It turns out that feasibility is a trade-o� problem which could imply either

limbering up the expectations or changing the system models and their mappings.

Furthermore if we assume we are in presence of autonomous processes, trade-o�s

are not always possible. In this situation, feasibility would be mainly de�ned up

to process models and their e�ects on state models. Since satis�ability is su�cient

but not necessary to deduce feasibility, undesirable behaviours might help in dealing

with such trade-o�s once they are allowed.

4.3.2 Related research

Contracts theories have been used for component-based design, layered design and

platform design [9]. In particular they have been identi�ed as suitable for open

systems for which the context of operation is not fully known in advance. In this

thesis, we equip guarantees with a preorder structure making them preferences and

we de�ne the notion of Expectation instead of Contract. Additionally, this pre-order

is exploited by the analysis procedure, by introducing an utility function that makes

the qualitative preferences quantitative (see Section 5.1).

The way the expectations are used in MODEF is di�erent from the traditional

use of contracts in system design. In fact, in system design, contracts are generally

used to specify the interactions between (heterogeneous) components or di�erent

viewpoints [8] [72] [26] and this, essentially for software and cyber-physical systems.

We use expectations to map or correlate system expectations on system models. In

the spirit, the use of contracts here is close to the �rst uses in programming where

preconditions (assumptions here) and postconditions (preferences here) are de�ned

for programs (system models here) see e.g., [49] [70].

In the �eld of model checking [22] [6], requirements are generally expressed as

temporal properties. In fact, one advantage of temporal properties is that they

are both formally and informally understandable in the sense that natural language

(informal requirements) could be translated to temporal logic [97]. A/G contracts

(then expectations) are also formally and intuitively understandable. Their consis-

tency and compatibility can be veri�ed. We will come back on model checking in

4.4. CONCLUSION 49

the next Section.

4.4 Conclusion

In this section we presented the principles and exploration semantics of models, then

how models are related via a mapping. Finally we present a formalism to specify the

requirements or expectations on the models. We now need to analyse those models

against the requirements i.e. the expectations. More importantly, the results of the

analysis have to be exploited to provide stakeholders with relevant data: we address

this concern in the next section.

Section 5

What is achievable and what can

happen with the modelled system?

This section elaborates the �fth (Analysis of models) and sixth (Providing useful

feedbacks to the stakeholders) steps of MODEF (see Figure 1.1). Therefore, we

present the analysis algorithms (Section 5.1) for the analysis of system models

against the expectations. Finally, we discuss the possible exploitations of analysis'

outputs (Section 5.2) and present two cases studies (Section 5.3).

5.1 Analysis of system models against expectations

The fourth step of the MODEF aims via its results to provide the means to e�ectively

improve the way the system is operated. Given the models of the system and its

requirements and the changes thereof, the stakeholders of the system should be able

to permanently �gure out the better ways to operate the system. What do we mean

by better ways to operate the system? To answer this question, we �rst clearly

state the challenge at stake, then we elaborate on the procedure to solve it and the

expected bene�ts.

5.1.1 General problem

A system (S) and its environment (E) are modelled by structure models (AM) and

deterministic state models (SM) for S, and process models (PM) for the behaviours

of S and E. S is subject to some expectations (R). A mapping (MG) captures the

actions (or the e�ects) of PM on SM of AM. The models AM, SM, PM, R and MG

are characterised and de�ned in Sections 4.1; 4.3 and 4.2 respectively. Additionally

PM might be subject to some constraints (C) for example the cost of the tasks

within processes.

51

52 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

So far we have not talked about the "environment" (E) of the system. We

introduce the environment of the system to be [2]: "a set of elements and their

relevant properties, which elements are not part of the system but a change in

any of which can produce a change in the state of the system. Thus a system's

environment consists of all variables which can a�ect its state. External elements

which a�ect irrelevant properties of a system are not part of its environment."

It is also argued in [2] that a system and its environment are relative to an observer,

consequently they can be conceptualized in di�erent ways.

Therefore, we split what we have so far called the system into a proper system

(henceforth called system) and its environment which together with the system yield

the closed system. The environment is autonomous and almost not controllable part.

This choice is consistent with the fact that, while models might be expected

to reach some predetermined states, di�erent modelling tasks and their scheduling

are possible to reach those states. Therefore, the proper system here becomes the

structure models (AM) and their states while its environment is the modelling tasks.

As a result, the closed system is the modelling activity abstracted and modelled by

AM, SM, PM, MG, R and C.

The global state, henceforth called a point, of the closed system or its state space

is basically given by pt(cst, cev). cst is an array of states of concurrent structure

components of S. cev is an array of events of concurrent process components of E

(and possibly S). Each event in cev is additionally annotated with a chronological

ordering and a status. The status is either proposed or accepted. We come back

below on how this status is determined and evolves.

We call the initial point and we note InitialPoint a point from which the closed

system is initialised.

We want to generate the future possible points up to a given stop criterion noted

StopCriterion.

The general problem is given by Pb(AM, SM, PM, MG, R, C, InitialPoint, StopCri-

terion). The main question Pb helps to formulate is:

Q1: How to generate the possible future points starting at InitialPoint up to

StopCriterion? Which points are, with respect to R and C, admissible and less

admissible ones?

5.1. ANALYSIS OF SYSTEM MODELS AGAINST EXPECTATIONS 53

5.1.2 General principles for a solution

The answer to the question Q1 basically requires computing the possible behaviours

(starting from InitialPoint) of the closed system. Furthermore, by speaking of the

admissibility of the behaviours, we basically need to compute the "distance" between

behaviours in the state space of the system. This concern raises a second question:

Q2: How to de�ne and compute that distance?

The general synthesis procedure to solve the question Q1 is summarized on Figure

5.1. Before we present this procedure, let us discuss the question Q2 whose the

answer is necessary to address the question Q1.

The answer to the question Q2 is a means to evaluate these behaviours in order to

�gure out the preferable ones. Indeed the behaviours that best match expectations

(R) and follow constraints (C) have to be preferred than those that do not. In order

to exploit the expectations (R) in the exploration procedure, we need to translate the

qualitative preferences into quantitative values. Indeed, the preferences are rather

relative to the pre-ordering of atomic propositions.

Suppose we have an appreciation (or utility) function u that allows to map qual-

itative preferences to a domain with numerical values. u is such that, whenever

m4 ≤ m5 and m5 ≤ m6 for a given assumption A, then u(m4) ≤ u(m5) and u(m5) ≤
u(m6) and u(m4) ≤ u(m6) i.e., u preserves the preorder structure of preferences.

Such an appreciation function is therefore used in the synthesis procedure as the

basis to compute an aggregated appreciation of a given point in the state space.

Furthermore, since we require the (HFSM of the) system to be deterministic, a

transition from a source point to a target point in the state space is evaluated with

the aggregated appreciation of the target point. In fact, this target point must be

uniquely determined by that source point and the outgoing arrow corresponding to

the transition.

Similarly, by using the constraints (C) related on PM, a cost could be associated

with an arrow from a point Pt1 to a point Pt2 in the state space of the system.

Returning to the question Q1, the aim of an answer thereof is to synthesize the

behaviours of the closed system given the input models. The synthesis procedure

basically involves the parallel explorations of both PM and SM of AM. These explo-

rations in�uence mutually via MG (see Section 4.2). Therefore, the co-exploration

corresponds to the parallel explorations that in�uence mutually. Although there is

54 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

an interplay between PM and SM, as indicated in Section 4.2, the processes related

to PM mainly play the role of a "master" whereas the HFSMs related to SM (of

AM) mainly play the role "the object to be mastered" (see Section 4.2).

On the other hand, an answer to the question Q2 will be used to compute the

distance between behaviours and to eventually select some acceptable behaviours

among the reachable ones. The acceptable behaviours are the ones that do not

violate StopCriterion.

The general synthesis procedure depicted on Figure 5.1 works as follows. The

rectangles with a white background are inputs and outputs of the procedure and

its sub-procedures. The rectangles with a blue background are sub-procedures

that transform inputs into outputs. The rectangles with a dashed border are

(intermediary) inputs and outputs generated by the sub-procedures. The arrows

indicate the dependencies among inputs, outputs and sub-procedures.

In the following, by speaking of the content of a rectangle, we refer to a representa-

tion of that content. The meaning of rectangles from the top to the bottom of the

Figure 5.1: General synthesis procedure

Figure 5.1 is:

• The �rst 3 rectangles are the basic inputs: structure models (AM) and state

models (SM), mappings of models (MG) and process models (PM).

• It is necessary to explore the models to compute the behaviours of the system

5.1. ANALYSIS OF SYSTEM MODELS AGAINST EXPECTATIONS 55

they represent, whence the upper two blue rectangles (numbered 1 and 2).

The �rst at left consists in the primitives for exploration of SM (of AM) under

a deterministic hierarchical �nite state model�HFSM (see Section 4.1.3). The

second at right consists in the primitives for exploration of the generator (a

non-deterministic state automaton) associated to PM (see Section 4.1.2).

• Having the primitives mentioned above and given SM and PM and the map-

pings (M), it is possible to generate the possible behaviours of the system

from an initial state (either at the �rst iteration using InitialPoint or at other

iterations via NextPoints), whence the next blue rectangle (entitled 3 Co-

exploration) and its dependencies.

• Among the reachable or possible behaviours, those that do not make StopCri-

terion true are acceptable. Indeed, the next blue rectangle (entitled 4 Search

Algorithm) takes as input the possible behaviours, a stop criterion, R and C.

Note that the answer (e.g., the appreciation function u) to the question Q2 is

intended to be problem-dependent and has to be used in the Search algorithm

to di�erentiate and compare the research directions in state space of the

behaviours. On the other hand, StopCriterion allows to prune some possible

behaviours.

Search Algorithm produces an output (NextPoints) that is the next possible

starting points of the procedure Co-exploration. At the same time, NextPoints

belong to the acceptable behaviours. Co-exploration can be therefore resumes

if the set NextPoints is not empty.

Now we need to instantiate the main sub-procedures: Search Algorithm and Co-

exploration. Other primitives for the exploration of SM and PM, are discussed in

Sections 4 (their principles and exploration semantics), 5 (their use independently

of a modelling tool with the support of a categorical architecture), 6 (their imple-

mentation).

5.1.3 Main sub-procedures: Coexploration and a Search Al-

gorithm

Suppose the primitives for the exploration of SM (of AM) and PM are available

through the interfaces smInt and pmInt respectively. In the following, by speaking

of smInt and pmInt we refer to the boxes labelled "1 Exploration → Deterministic

HFSM" and "2 Exploration → Non-Deterministic FSA" respectively on Figure 5.1.

56 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

As described above (Section 5.1.2), the two main sub-procedures interact in a closed

loop in the general synthesis procedure. We named the Search algorithm MinBest

to MinWorst�MBMW. MBMW selects on the �y the behaviours (whatever their

appreciation) that are at a minimal (against R and C, using an answer to the

question Q2) distance (throughout the directed arrows between points) of Initial-

Point. We present in the following the algorithms Coexploration (Algorithm 1) and

MBMW (Algorithm 2) corresponding to the Co-exploration and Search Algorithm

sub-procedures respectively on Figure 5.1.

5.1.3.1 CoExploration

We have already introduced above the inputs MG, smInt and, pmInt of the

coExploration algorithm. CurPoint is either the InitialPoint or one of the points in

NextPoints both visible on Figure 5.1.

We recall that smInt and pmInt are the interfaces that allow to explore a set of

concurrent independent process models and a set of concurrent independent state

models respectively. The exploration semantics of those models (or components) are

presented in Section 4; but only for one component and not for a set of components.

That exploration yields for each component an automaton that is equivalent to a

directed graph. The automaton is equivalent, in the case of the process model, to

the generator associated to the process model. In the case of the state model, the

automaton is equivalent to the corresponding �attened part of the HFSM generated

by its exploration. Note however for instance that, although an HFSM is translated

to a �attened �nite state machine, it is convenient to deal with the composite

structure in the exploration since not all states would be necessarily enumerated.

The directed graph (henceforth called the exploration graph) corresponding to

the exploration of a set of concurrent independent components is given by the

asynchronous composition of automatons underlying the exploration of each com-

ponent. Formally, given n (n ∈ N+, let n = 2 for convenience) automatons

G1(Q1,Σ1, δ1, q01 , Qm1) and G2(Q2,Σ2, δ2, q02 , Qm2) as de�ned by (4.2), the result

G(Q,Σ, δ, q0, Qm) of the asynchronous composition of G1 and G2 is such that Q =

Q1 × Q2, Σ = (Σ1 × Σ2) + Σ1 + Σ2, Qm = Qm1 × Qm2 , q0 = (q01 , q02), if (q1, q2),

(q1 ∈ Q1, q2 ∈ Q2) is a node or state in Q then δ is given by:

• (q′1, q
′
2) = δ((q1, q2)) if q

′
1 = δ1(q1) and q

′
2 = δ2(q2) are both de�ned

• (q1, q
′
2) = δ((q1, q2)) if δ1(q1) is not de�ned and q′2 = δ2(q2) is de�ned

5.1. ANALYSIS OF SYSTEM MODELS AGAINST EXPECTATIONS 57

• (q′1, q2) = δ((q1, q2)) if δ2(q2) is not de�ned and q′1 = δ1(q1) is de�ned

It is easy to extend the composition with n > 2. Now we present the principles

of the co-exploration semantics before commenting the lines of the CoExploration

algorithm.

Given an initial point pt(cst, cev), cev is generated by pmInt, cev is the current

state of SM of AM available from smInt. pt is passed through the co-exploration

module (the box with a grey background on Figure 5.2). This module works as

follows.

The generated events (arrow (1) on Figure 5.2) get the status proposed. The

status proposed means: something might happen in the process.

The events that have the status proposed and that are involved in MG are

proposed (arrow (2) on Figure 5.2) to smInt to trigger the �reable transitions.

After the (possible) �ring of transitions, the events not used or rejected by smInt

are reconsidered (arrow (3) on Figure 5.2) and the ones that were used get the status

accepted. Whenever an event is not involved in MG it gets the status accepted.

The status accepted means: something happens in the process.

Then, the events that have the status accepted are the only valid ones considered

(arrow (4) on Figure 5.2) to try to evolve the processes in pmInt.

The events that are not used by smInt and pmInt after arrows (2) and (3) and

(1) and (4) respectively on Figure 5.2 maintain their status.

Figure 5.2: The principles of the co-exploration

We now are ready to comment the co-exploration algorithm (Algorithm 1).

Line 1: Given the active states and events in CurPoint,MG and smInt are used

to compute the �reable transitions from the state cst. These �reable transitions are

involved in mappings such that mapped events belong to the set of current events

in cev with the status proposed.

Lines 2, 3: If no transition is �reable, CurPoint, pmInt and M are used for

possibly evolving the processes. evolveProcesses uses the accepted events in cev to

try to generate (using pmInt) new alternative ones i.e. some adjacent nodes to cev

in the exploration graph generated by PM.

58 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

Algorithm 1 coExploration
Inputs : MG, CurPoint, smInt, pmInt
Output: PossibleBehaviours

1: Fireable_Trans← fireableTrans(smInt,MG,CurPoint)
2: if Fireable_Trans = ∅ then
3: PossibleBehaviours← evolveProcesses(pmInt,MG,CurPoint)
4: else
5: PossibleBehaviours← fireTrans(Fireable_Trans, amInt, CurPoint)
6: if isDeterministic(CurPoint, PossibleBehaviours) is false then
7: Report on non-determinism from CurPoint
8: PossibleBehaviours← ∅
9: return PossibleBehaviours
10: end if
11: end if
12: if PossibleBehaviours = ∅ then
13: Report on CurPoint //End, Deadlock etc.
14: end if
15: return PossibleBehaviours

Lines 4, 5: If some transitions (Fireable_Trans) are �reable, they are used in

fireTrans to evolve (via smInt) the active states i.e. by moving on the exploration

graph generated by SM of AM.

Lines 6, 7, 8, 9: Whenever new transitions are �red, they should lead the

system to a single state otherwise the system is not deterministic. Following a non-

deterministic nature of the system computed by isDeterministic, an empty set is

returned.

Lines 12, 13: If it is not possible to generate new points, CurPoint is either a

�nal point (process end) or deadlock point (process blocked or sink state).

5.1.3.2 A Search algorithm: MBMW

We assume the general synthesis procedure substitutes to MBMW (Algorithm 2) by

making CoExploration algorithm and its input parameters the input parameters of

MBMW. The additional input parameters of MBMW are:

• nodeScore is a function which takes as input a point in the state space and R

(the expectations) then computes an aggregated score associated to that point.

Recall from the answer of Q2 in Section 5.1.2 that, using the deterministic

nature of HFSMs, such a score can be associated to all incoming arrows of

that point.

• edgeCost a function which takes as input an edge in the state space and C (the

5.1. ANALYSIS OF SYSTEM MODELS AGAINST EXPECTATIONS 59

constraints on processes) and computes a cost process to go from the source

point to the target point of the edge.

Therefore, the cost or costs of an edge in the state space is given the applications

of nodeScore and edgeCost resulting in a cost vector of Rn
+, n ∈ N, n > 0. The value

of the �rst component of this vector is the result of an application of nodeScore and

the value of its other component(s) is the result of an application of edgeCost.

Indeed, on the �rst hand, from an algorithmic point of view, the nodeScore can be

understood as a cost. On the other hand, the cost obtained from edgeCost might

be composed of values (time, money, etc.) with di�erent units.

The interest of this vector is to be able to compute a path cost in the state space

to eventually obtain the distance sought after with Q2.

The outputs of MBMW are:

• SSG is the directed state space graph of the acceptable behaviours.

• ScoreAndCost is the map of points' scores and edges' costs from InitialPoint.

MBMW implements an Uniform-Cost Search (UCS) algorithm [80]. It is an

algorithm similar to the Dijkstra's shortest path algorithm [28]. It is a special case

of the A∗ algorithm introduced in [48], itself a special case of a branch-and-bound

algorithm [71]. The e�ect of the UCS algorithm here is to always select (based on

scores' values and possibly processes' costs) the best (minimal) point(s) at the next

iteration in the discovering of SSG. We discuss UCS in Section 5.1.3.3.

We now are ready to comment the main lines of MBMW (Algorithm 2) we add

compared to a basic UCS algorithm.

Line 2, 3: These lines are about the initialisation of the map ScoreAndCost

which associates to each explored point, the smallest path cost necessary to reach

it. This cost is
−→
0 at the initial point and at the initialisation. Since at initialisation

InitialPoint has no incoming arrows, the value of nodeScore on InitialPoint does not

matter at initialisation.

Lines 9, 10, 11: Whenever at a given point, the stopCriterion is true, the point

is no further expanded towards discovering of SSG or the algorithm has to stop. At

this line, the consistency and compatibility of R is also computed (see Section 4.3).

Lines 12: The call of coExploration is the means to generate the CurPoint's

neighbors i.e. its successors in SSG.

Line 24: A test to check if Cur (see Line 23 of Algorithm 1) dominates Alt (see

Line 17 of Algorithm 1). Such a dominance relation must be de�ned.

60 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

Algorithm 2 MBMW

Inputs : smInt, pmInt, MG, coExploration, InitialPoint, R, C, StopCriterion,
nodeScore, edgeCost
Outputs: SSG, ScoreAndCost

1: Add InitialPoint in SSG
2: Score← nodeScore(InitialPoint, R)

3: ScoreAndCost← (InitialPoint 7→ (Score,
−→
0))

4: add_withPriority(InitialPoint, ScoreAndCost, ToV isit)
5: V isitedPoints← ∅
6: while ToV isit 6= ∅ do
7: CurPoint ← extract_min(ToV isit, ScoreAndCost) //Note that

CurPoint ∈ NextPoints
8: V isitedPoints← V isitedPoints+ {CurPoint}
9: if satisfy(CurPoint, StopCriterion) is true then
10: report on CurPoint; goto 7:
11: end if
12: PossibleBehaviours← coExploration(CurPoint, smInt, pmInt,MG)
13: for Each NextPoint in PossibleBehaviours do
14: Score← nodeScore(NextPoint, R)
15: EdgeCost← edgeCost(CurPoint,NextPoint, C)
16: PreviousScoreAndCost← ScoreAndCost(CurPoint)
17: Alt← PreviousScoreAndCost+ (Score, EdgeCost)
18: if NextPoint /∈ V isitedPoints+ ToV isit then
19: ScoreAndCost← ScoreAndCost+ {NextPoint 7→ Alt}
20: add_withPriority(NextPoint, ScoreAndCost, ToV isit)
21: else
22: if NextPoint ∈ ToV isit then
23: Cur ← ScoreAndCost(NextPoint)
24: if Cur > Alt then
25: ScoreAndCost← ScoreAndCost+ {NextPoint 7→ Alt}
26: change_Priority(NextPoint, ScoreAndCost, ToV isit)
27: end if
28: end if
29: end if
30: updateSSG(CurPoint,NextPoint, ScoreAndCost, SSG)
31: end for
32: end while
33:

34: return SSG

5.1. ANALYSIS OF SYSTEM MODELS AGAINST EXPECTATIONS 61

Line 30: SSG is updated every time a new point or a new edge is discovered.

Indeed, the update either consists in adding a node in SSG, creating a edge or, both.

Now we need to show that at the end of MBMW, i.e. the end of the general

procedure regarding: the problem P(AM, SM, BM, MG, R, C, InitialPoint, StopCri-

terion), the following statement holds:

SSG stores all the minimal paths from InitialPoint to all acceptable points i.e.

the points that are reachable and whose predecessors do not make StopCriterion

true.

Before we go through the proof which is straightforward, note that a judicious

choice of the termination criterion StopCriterion (max-depth, max-score, max-cost,

computing time, etc.) ensures that MBMW eventually will stop.

5.1.3.3 Proof and complexity of MBMW

The state space generated by the co-exploration is a directed graph (SS) possibly

in�nite but gradually discovered. In SSG, nodes are points and edges are character-

ized by the scheduling (or the paths of execution) of events from PM with associated

states of SM of AM.

In fact, the procedure MBMW applies the UCS algorihtm on-the-�y while SS is

discovered. Note that MBMW has no e�ect on SS. It allows to rather select a

subgraph i.e. SSG of SS based on R and C and StopCriterion.

The UCS algorihtm is an optimal, uninformed (or blind) search algorithm [80].

Therefore, the minimality (given completeness) of saved paths (in SSG) is guar-

anteed by UCS which always expands the node with the smallest path cost in the

exploration of nodes in SSG.

Completeness means: if the maximum total path cost reached for a path in SSG

is C∗ then all acceptable nodes that have a path cost Cx, Cx ≤ C∗ will be discovered

by MBMW after a �nite number of iterations, provided that: the branching factor

bf of SSG is �nite and every edge cost in SSG is superior than ε > 0.

The branching factor of SSG is the (average) out-degree of each node.

ε is the minimum value of an edge cost to avoid the algorithm deadlocks in

an in�nite loop which implies lack of completeness. The input functions edgeCost

and nodeScore of MBMW and therefore the map ScoreAndCost has as codomain

positive real vectors should guarantee that minimum. This concludes the proof.

As a result, the complexity (time and space) of MBMW is the complexity of

UCS with the input parameter SS. This complexity is given by O(bf 1+bC∗/εc) [80].

62 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

This complexity of MBMW is, in the worst case, the one necessary to generate

SS. It is not possible to do better without introducing an heuristic (thus making the

algorithm informed) that systematically guarantees the optimality and completeness

of the generated graph (SSG) with respect to the explored region of SS. In this latter

case, the worst case complexity remains exponential. Suboptimal solutions would

become relevant depending on the application domains.

As argued earlier (see Sections 1, 3) in this dissertation, the SoSoM is built of

autonomous and possibly partly independent stakeholders. This makes the evolu-

tions or changes of behaviours of E unpredictable although continuously speci�ed

via PM. In turn, the system's behaviour is never de�nitely �xed.

Insofar we assume a long-term critical system whose evolution is typically over

periods of several days to months (see Sections 1, 3) with creative, iterative and

almost non-automatable behaviours, we �nd it better to guarantee optimality on

short-term periods. This amounts in repeatedly executing MBMW throughout the

life cycle of the system. Moreover, although the SoM and SoSoM are complex, the

size of the state space of their behaviours should typically be reasonable compared

to that of other kinds of systems, e.g., cyber physical systems.

Henceforth, C∗/ε could be considered here as the value that de�nes the level and

cost of agility for the operation of S. A theoretical understanding of C∗ might be:

the higher C∗ is, the lower agility will be.

5.1.4 Discussion

The problem formulated in Section 5.1.1 and the subsequent proposed solution in

Section 5.1.2 could be compared or at least have similarities with model checking

[22] [6] and systems synthesis [76] [74].

Model-checking�State space analysis is generally carried out for verifying �nite-

state concurrent systems. Techniques for veri�cation are mainly: simulation, testing,

deductive reasoning and model checking. Model checking is one technique for

automatic veri�cation of �nite-state concurrent systems. A model-checking process

could consist in three main steps [6]. (1) Model the system (S) with a description

language and express system's properties, requirements or speci�cations (R) with a

property speci�cation language. (2) Check the validity of P systematically in S. (3)

Analyse a violated property or an out of computer memory.

The basic description of S is a state-transition model whereas that of R is a temporal

logic formula. Although model checking is automatic, it usually faces the state

5.1. ANALYSIS OF SYSTEM MODELS AGAINST EXPECTATIONS 63

explosion problem and the problems of computation cost and computer memory.

Advanced techniques such as abstraction, binary decision diagrams, partial order

reduction, compositional reasoning and, probabilistic exploration have been de-

veloped for addressing such problems even though the memory problem remains

[6]. However, model-checking is well-suited when analytic methods are di�cult or

impossible to apply in practice [97]. It has several advantages compared to the latter,

namely, it is fast, executable with partial requirements, it provides counterexamples

and does not require proof. Nonetheless, the more there are data variables, the

challenging model checking will be.

Systems synthesis�The standard synthesis ("Be Correct" [14]) consists in re-

stricting the actions of the system so that when the environment of the system is

known (making the system closed), the system will always satisfy a given property.

Depending on the hypothesis on the environment (controllable or not controllable)

and on the system (complete or incomplete speci�cation), the synthesis can be

reduced to veri�cation or model-checking [95, Chapter 9]. On the one hand, when the

speci�cation of the system is �xed independently of its environment the synthesis

can be reduced to veri�cation of the closed system. On the other hand, when

the speci�cation of the system is fully determined only up to de�nition of its

environment, the synthesis can be reduced to model-checking. However, when

neither is the environment fully determined nor is the speci�cation of the system

complete, one rather seeks for strategies such that the closed system anyway satis�es

a given property [95, Chapter 9].

With respect to the assumptions we made for S and E, which are close to the

assumptions made in [14], especially with the involvement of a human operator in

the functionality of the system, the operation of the system is not likely to be always

optimal. We believe that "Be correct" (i.e. "everything must be ok") in this latter

situation is a too strong assumption.

Since some pioneering works [76] [74] on system synthesis, there is an active research

on the synthesis of reactive systems (systems that react as the result of the actions of

their environment on them); the Reactive Synthesis Competition [54] is an example

of that manifestation.

Two usually encountered invariants of synthesis algorithms are: the use of tempo-

ral logics as the property speci�cation language, and the search of a wining strategy

or a counter strategy. It is also the case in the �eld of model checking [22] [6]. Fur-

thermore, their application mainly targets the software and cyber-physical systems

64 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

while we are mainly concerned with systems where the role of human operators is

important. In this thesis, requirements are speci�ed via Assumption/Preferences

expectations. We compared A/P expectations and a boolean property based on

temporal logics in Section 4.3.2.

Recently, quantitative objectives, i.e. the adoption of a non-binary satisfaction

of a speci�cation have been introduced in [13]. Moreover, the proposed approach

aims to synthesize a system with respect to a boolean speci�cation complemented

with quantitative aspects given by a weighted automata. As argued in [13], the

satisfaction of a speci�cation could be evaluated on a scale with various degrees

instead of a binary one.

In MBMW the measure of "goodness", i.e., how good an implementation (behaviours

of the system here) is with respect to a given speci�cation corresponds to the cost

(determined by R and C) of a path here. Indeed, MBMW computes points (from

bad to good) that are reachable at a minimal distance of the initial point until the

stop criterion becomes true. Unlike [13] and almost all the approaches inspired by

the latter, in this thesis, a speci�cation is de�ned with A/P expectations instead of

a temporal property or automata. Furthermore, the quantitative nature of objec-

tives (preferences here), is derived from qualitative objectives and the appreciation

function and possibly constraints (cost, time, etc.) on processes. Additionally, this

quantitative aspect is taken into account via MBMW (which could be replaced by

another search algorithm from operations research) applied on the discoverable state

space of the closed system.

We do not deal with quantitative languages [20], weighted automata [31], simulation

distances [78] [39]. In addition, we do not consider games (in the sense of Game

theory) where the environment is opposed to the system like encountered in most

popular synthesis approaches [14]. Our consideration is surely justi�ed by the fact

that we do not deal with "a controller" and "an object to be controlled" in the

sense of controller synthesis, but instead we deal with "a master" and "an object

to be mastered" see Section 4.2 for the explanation. Finally, the general synthesis

procedure substituted to MBMW, synthesises the behaviours of the closed system.

We could also argue that the closed system is veri�ed against expectations.

As we have seen in the MBMW algorithm, some input parameters apart the

input models, need to be con�gured or set up before a run of MBMW. We discuss

an exploitation of MBMW in the next section.

5.2. AN EXPLOITATION OF MBMW 65

5.2 An exploitation of MBMW

In this section, we discuss some input parameters and the exploitation of SSG

necessary to take advantage of MBMW in practice. These parameters are: u,

edgeCost, nodeScore, StopCriterion. Some of them will be used in the case studies

in Section 5.3.

5.2.1 Setting up input parameters

These input parameters are given as follows.

• StopCriterion: It corresponds to a maximal path cost and/or a maximal depth

in SSG and/or a maximal number of cycles authorized during the co-exploration.

• edgeCost: It gives the total process cost related to the resources consumed

by an arrow in SSG. In this thesis, this cost is assumed to be a single business

value. But it is not considered in the exploitation of MBMW because we did not

especially de�ne the resources allocated to the tasks inside processes. We assumed

this business value is the same for all tasks, making therefore this cost irrelevant

in the exploitation of MBMW. Indeed, for such a cost to be relevant, aggregation

and addition operators related to it must be de�ned. Nonetheless, we discuss the

expected impacts of edgeCost on MBMW in Section 8.

• u: This appreciation function maps preferences P of expectations on a numeri-

cal domain. In this thesis, u maps each proposition of P to the set {0, 1, 2, 3, 4, 5} (or
generally j...j + 5, j ∈ Z). The elements of this set qualitatively mean in ascending

order: the worst (0) to the best (5). This choice of u reduces the diameter of an

underlined directed graph of a preference to a maximun of 5. Such a reduction also

translates via u, the preorder structure of P into a structure of order. Finally, this

amounts to rank atomic propositions used to de�ne P. As a result, the highest level

of preferences corresponds to 5 (or j + 5).

• nodeScore: It de�nes the magnitude of each rank and the aggregation of their

corresponding values using u. We therefore de�ne nodeScore as follows. Assume

for a given R, and a point pt in SSG, there are atomic propositions associated to A

(Assumption) that are possibly true (with respect to pt). And let N0, N1, N2, N3, N4

and N5 the corresponding numbers of atomic propositions in P (related to A via an

expectation) mapped to 0...5 respectively. Let POINTS be the set of nodes in the

graph SSG. Then nodeScore is de�ned as follows.

66 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

nodeScore : POINTS × 2R → N5 aggr−−→ R (5.1)

given by (pt, req) 7→ NS(N0, N1, N2, N3, N4, N5) 7→ s, where aggr : N5 → R is an

aggregation function.

s and NS are scores. The former is an aggregated score and the latter a per

rank score, where Nj corresponds to the rank j. We recall from Section 5.1.3.3 that,

s must be such that s ≥ ε > 0 for all function aggr.

The importance of aggr and s is as follows. We want to associate to each path

in SSG, a cumulative score in order to obtain a priority for each node, which allows

to de�ne a total ordering (≤) among the candidate nodes to explore. The lower is

the cumulated score of the nodes along a path in SSG, the higher is the priority of

the nodes on that path (see the line 7 of the Algorithm 2). Eventually, all nodes

where the cumulative score overcomes a given max score are pruned.

Arguably, the question of how aggr is de�ned is important and must be tailored

with respect to the application case. For example, there exists several possibilities

to scalarize (max, min, min-max, a mean, etc.) the vector NS. Another possibility

is to avoid scalarization and directly deal with vectors or rather a combination of

both. Besides, the way (by counting) Nj are obtained might also be questioned

since di�erent components of a system could have di�erent importances. But this

is not relevant with respect to the input models considered in MODEF, indeed no

importance factor is de�ned for the components.

5.2.2 Exploitation of SSG

The exploitation of SSG aims at extracting from SSG the relevant data related to

the behaviour of the closed system. We discuss how we currently exploit this rooted

directed graph.

We de�ne the color of a node in this graph as follows. Suppose given the

aggregated score (N0, N1, N2, N3, N4, N5), of a node pt in SSG, the color of pt is

an integer a de�ned as follows: if N0 6= 0 a := 0 else if ... else if N5 6= 0 a := 5.

For each node pt in SSG, we additionally associate another color b which is the

highest color from the successors of pt in SSG. As a result, we can associate to each

node in SSG a couple (a, b). This allows us to tailor SSG as follows. Whenever at

a given node pt, b is not greater than a given value, say x, it might not be useful to

look throughout the rooted sub-graph that has as root the node pt. This allows to

prune SSG to get an exploitable graph.

5.2. AN EXPLOITATION OF MBMW 67

Example. Suppose given the graph on Figure 5.3. A node in this graph is labelled

a|b. The rooted sub-graphs represented by the four triangles on Figure 5.3 are such

that, at their root node, we have a ≤ b.

Figure 5.3: Tailoring of SSG

As a result, it is easy to say after the aforementioned calculations, whether from

InitialPoint up to the leaf nodes reached in SSG, it will be possible or not to leave a

node with a given color. And if it is not possible, the paths going from InitialPoint

to the nodes where no improvement is no longer possible are extracted from the

tailored SSG.

Just like the information the data (a, b) convey for each node in SSG, other data

might be computable (using graph algorithms) to extract relevant information from

SSG. For instance, the minimum value of the colors of nodes in a path in SSG.

It follows from the foregoing that, we can provide stakeholders with two kinds

of data or results: (R1) either everything would be ok or (R2) something might

not be ok during the operation of the system modelled with the input models. For

instance, by using the data a of the leaf nodes in SSG or the tailored SSG, if all the

colors (i.e. a) are greater than a given value x then provide (R1) else provide (R2).

Apart from the exploitation carried out with SSG, the �attened automatons

generated by the exploration of the process and state models are available separately.

They might be useful for diagnostics purposes.

68 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

5.3 Case Studies

In order to make the principles concrete, we start with a �rst case study dealing

with a common system: a Supermarket Entrance System. Then, we will look at a

SoM, which is analogue by the principles but relates to the System of Modelling.

In both cases, we present the general problem Pb(AM, SM, PM, MG, R, C,

InitialPoint, StopCriterion) (see Section 5.1.1) and present the exploitation of the

analysis. The �rst case study will be mainly about to demonstrate how the com-

plexity could be e�ectively mastered with MODEF whereas the second case study

will focus on a detailed exploitation of analysis. Indeed, the �rst case study is not

the main kind of systems considered in this thesis (i.e. SoM and SoSoM), but it is

useful for demonstration purposes.

For both cases, we de�ne aggr(N0, ..., N5) to be equal to Σ5
i=0Ni ∗ 105−i/Σ5

i=0Ni.

The idea is to give a high priority to the points with good preferences while at the

same time being able to control the maximum score authorized along a path.

As mentioned earlier, C is not taken into account. We also associate (see Figure

5.4) the usual colors to the color of the nodes in SSG: green to 5, yellow to 4, orange

to 3, red to 2, black to 1 and grey to 0.

Figure 5.4: The colors associated to nodes in SSG

5.3.1 Maintenance of a Supermarket

The �rst case study is about the maintenance of a Supermarket, where one wants

to be sure that it will be possible to well maintain the supermarket during its

lifecycle. "Well" in the sense that expectations on the states of the components

of the supermarket could be met. For example, it could be expected that during

the carrying-out of a maintenance procedure, some states of the supermarket occur

rather that other states in some situations.

Following the steps 1, 2 and 3 of MODEF, we come up with the data AM, SM,

PM, MG, R where some illustrative examples are as follows.

The structure (an element of AM) of the supermarket's environment is depicted

on Figure 5.5. The state and process models (elements of SM and PM) of the su-

permarket's entrance system are depicted on Figure 5.6 and Figure 5.7 respectively.

5.3. CASE STUDIES 69

Some of the components of these models decompose into sub-components. For

example, the supermarket's entrance system decomposes into 4 Entrance Systems,

a Fire Detection System and a Water Distribution. The decompositions of the tasks

Execute preventive maintenance actions and Execute corrective maintenance actions

in Figure 5.7 are given on Figure 5.8. Some of the mappings (MG) are already

Figure 5.5: The supermarket's environment structure.

Figure 5.6: The supermarket's entrance system state model.

visible on Figure 5.6 where one can see the elements of PM on the transitions of

70 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

Figure 5.7: The supermarket's entrance system process model.

the depicted state model. For example, the transition between the states Normal

operations and Test is involved in a trigger where the associated event is Weekly

check. One expectation (an element of R) de�ned for the supermarket is: When

the Supermarket Entrance System is in state Safety, the system Emergency Exit

in the state Unlocked and Locked is ranked 2 and 5 respectively. This means that

Emergency Exit is a subcomponent of the Entrance System and its state model

contains the states Locked and Unlocked.

Therefore given the problem Pb(AM, SM, PM, MG, R, C, InitialPoint, StopCri-

terion) where the InitialPoint is the couple of initial states of SM of AM and the

initial events of PM. A global view of PM is depicted on Figure 5.7.

Given those data, by setting the StopCriterion to max-score equals to 102 (roughly

equivalent to the fact that, some points with a color less that 3 are not acceptable)

and the max process depth equals to 13, and b is such that b > 4 one obtains the

graph SSG depicted on Figure 5.9. A zoom around the root of this graph is shown

on Figure 5.10. It should be noticed that the total number of explored nodes in SS

is 742 while SSG contains 162 nodes. We recall that a node in this graph stores the

current states and events of the system and additionally the computed metrics. All

these data are not displayed for convenience. For instance, some data at the root of

this graph are:

Event=[Start�>Supervise Maintenance & Start�>(Start)Manage Entrance &

Start�>Execute preventive maintenance actions & Start�>Go In]

State=[Closing time ||Closed ||Closed ||Closed ||Closed ||Safe& Stopped ||Safe &

Stopped ||Safe & Stopped ||Safe & Stopped ||O� & Cold ||O� & Cold ||O� & Cold

5.3. CASE STUDIES 71

Figure 5.8: At bottom and top the corrective and preventive maintenance actions respec-
tively.

72 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

Figure 5.9: The SSG graph for Supermarket with max-score=100, max-process-depth=13
and b > 4

Figure 5.10: Zoom 1

||O� & Cold ||O� & Cold]

The �rst information that can be provided to the stakeholders is (R2) i.e. some-

thing might not be ok during the operation of the system for the input parameters

considered. Second, each node that is not green should be subject to study. Indeed,

not all nodes that are not green are problematic since, depending on the current

operation of the system and its future operation, some behaviours are not going to

be executed. The execution of system simply follows a path in SSG. Therefore the

nodes provide an understanding of what will happen if some actions are executed.

For the nodes that are problematic, the paths from the root are available where

critical nodes are highlighted. A critical node is shared by a subset of paths yielding

5.3. CASE STUDIES 73

to the problematic nodes. Such information are useful to either to redesign the

processes or review the expectations on the system. On the other hand, MBMW

could be resumed from a given point in SSG.

It is clear from this case study that given the size of the system and the di�erent

processes necessary to ensure its operation with respect to expectations, MODEF is

insightful in providing an understanding of the impacts of such processes a posteriori

i.e., before their execution.

But, MODEF is more interesting when the processes and expectations might

be subject to continuous changes, i.e., when it is di�cult to compute the de�nitive

behaviour of the system over a long period.

5.3.2 A SoM: Modelling the functional coverage of a SOI

We continue with the SoM (SoM0) presented in Section 3.2.1 and for which the

corresponding models are depicted in Figure 3.3. For the convenience of the reader

we display again these models on Figure 5.11. The SoM0 focuses on the modelling

of the functional coverage of a SOI whose objective is to ensure that the SOI covers

the functional needs.

We additionally add at the bottom left on Figure 5.11, the speci�cation of

expectations (R) as done in a modelling tool. This expectation means: regardless of

the assumption (A) (therefore considered as a tautology, see Section 4.3), a System

Function in state Maturity<30 is less preferred than in state 30<Maturity<60 in

turn less preferred than in state 60<Maturity<100. The rank of preferences is

materialized with colors and some qualitative words (Unsatisfactory, Operational

etc.) in the tool. For the readability of the �gure, the mappings (MG) are indicated

with tk, k = 1..5 ((tk, System Function) 7→ {{tk}}), the one corresponding to t3 is

illustrated with the dashed blue arrows.

Therefore, except the data InitialPoint and StopCriterion, all the other data of

the problem Pb(AM, SM, PM, MG, R, C, InitialPoint, StopCriterion) are depicted

on Figure 5.11.

Let InitialPoint be (state:=Maturity<30, event:=Start).

Although the PM at right of the Figure 5.11 is not complex, its state space is

possibly in�nite since there are cycles in the scheduling of its sub-processes or tasks.

Therefore we set StopCriterion as: max-process-depth:= 7. One can remark from

the PM at right of the Figure 5.11 that at least 7 events or six tasks are necessary

to reach the end of a possible execution of SoM0. Since PM is not complex, we do

74 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

Figure 5.11: The input models for the problem associated to the SoM0

not set a value for max-score. For the exploitation, we also consider b > 4.

The total number of nodes enumerated by MBMW is 22 in SS while SSG contains

10 nodes. SSG is depicted on Figure 5.12.

Figure 5.12: The SSG graph for the SoM0 with max-process-depth=7 and b > 4

Again the data associated to the nodes are not displayed for the readability of

the graph. The states and events associated to leftmost (the root), the red, the

orange, and the rightmost nodes on Figure 5.12 are:

(Event=[Start�>Model high level functions],State=[Maturity<30]),

(Event=[Validate HighLevelFunctions�>Model high level functions] State=[Maturity<30]),

(Event=[Validate DetailledFunctions�>Model detailed functions] State=[30<Maturity<60]),

(Event=[Re�ne functions�>Validate Re�nedFunctions] State=[60<Maturity<100])

5.4. CONCLUSION 75

respectively.

It is not hard to apply the MBMW algorithm on this case study to e�ectively

check that the resulting graph SSG is the one depicted on Figure 5.12.

The �rst information that can be provided to the stakeholders is (R2) i.e. some-

thing might not be ok during the operation of the SoM0 for the input parameters

considered. Indeed, there are red and orange nodes which correspond to the cases

where after the tasks ValidateHigLevelFunctions and ValidateDetailedFunctions, it

is the tasks that directly precede them that should be executed again. In practice,

such scenarios could typically lead to the need of additional resources if the allocated

ones were totally used. Thus, by having the process models of modelling activities

to be carried out and their impacts (expectations and mappings) on the states of

produced models (M), MODEF makes it possible to anticipate problems that might

arise.

5.4 Conclusion

In this section, we presented the analysis and exploitation algorithms. We started

by de�ning the problem that the analysis addresses. Then we presented the main

algorithms related to the co-exploration of models and the analysis of the generated

state space. We also presented an exploitation of the analysis algorithm and its

main output. Finally we presented two cases studies to illustrate the algorithms

and demonstrate the interest of MODEF. Further work is discussed in Section 8.

Let us say a word about the results of the exploitation that are perhaps a critical

part of MODEF in providing feedback to stakeholders.

Suppose the stakeholders are already capable to build models necessary to run the

analysis and exploitation. This is a step to formalise the thing to which models relate

and to take advantage of some bene�ts expected of models such as: understanding,

preservation, share and reuse of knowledge about that thing.

On an operational point of view, we saw with the �rst case study (Section 5.3.1),

how MODEF is insightful in providing synthetic and intuitive graph-based data

related to the behaviours expected during the maintenance of a Supermarket. With

the second case study (Section 5.3.2), we presented how the exploitation allows to

get details on a SoM. These details relate to what would be the execution of this

SoM. They are a �rst support to optimize how the system will e�ectively work in:

providing the "path" to follow, taking preventive and corrective actions, or simply

modelling new actions. These actions can be again considered in MODEF to obtain

76 SECTION 5: WHAT IS ACHIEVABLE AND WHAT CAN HAPPEN WITH THE

MODELLED SYSTEM?

new feedbacks.

It turns out that, if models are accompanied with appropriate analysis and

exploitation means, they are going to powerfully support the formal end-to-end

operation of the thing to which they relate. They will eventually support the

optimization of the operation of that thing. It is clear that, such a statement does

apply to a class of systems.

A question not addressed so far is: how are the process, state and structure

models produced, obtained and e�ectively manipulated? In fact, as we saw in Section

2, the way models are considered may hamper the adoption of an approach. The

next sections deal with this question.

Section 6

A federated architecture for

plugging and exploiting

domain-speci�c models

This section is concerned with the exploitation of models in practice. The question

it aims to answer is: how to reuse models coming from modelling tool for analysis

purposes? Is it possible to decouple the reuse of models from the logic of a partic-

ular modelling tool? To reach that goal, in the following, we present a federated

architecture (FA) that aims to make models (from model-based systems engineering)

transparent to the tools used to build or generate them.

FA is intended to promote reuse and exploitation of the semantics of models.

One objective is to make models available to any entity that can read the structure

of models, and an interpretation of this structure so that models are automatically

exploited in practice for engineering concerns such as system analysis e.g., the one

presented in Section 5.

FA is federated because, on the �rst hand, it uni�es models on their structure.

On the other hand, it enables the de�nition of a particular semantics via an inter-

pretation of the structure, therefore ful�lling the speci�city of models.

Thereby, we argue on the de�nition of the structure of models within a category-

theoretic framework. CT was created to unify and simplify mathematical systems

[67]. This gave rise to some universal constructions based on a relational view-

point. Indeed, any mathematical object (independently of its internal structure) is

described in term of relationships with other objects and this description is generally

stated by the diagrams (objects, arrows, equivalence between paths (sequences of

arrows)). In this perspective, CT is the mathematics of FA. Such a framework

enables to abstract away details related to a particular interpretation of the structure

of models. At the same time, it enables to specify a formal link (ideally de�ned as

a functor) between the structure of models and various interpretations.

77

78 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

On the other hand, computational and data structures and data format are

presented to manipulate the mathematical objects i.e., to take advantage of FA in

practice. They also demonstrate the feasibility of FA.

We pursue this section by �rst stating the problem and challenges it addresses

(Section 6.1). After that, the proposed approach and its scope are described (Section

6.2). Then we give the description of the proposed federated architecture (FA)

(Section 6.3). Next, the data and computational structures corresponding to the

mathematical description of FA are given (Section 6.5).

6.1 Metamodels, data format and interfaces

In the engineering of complex systems, system modelling is often a descriptive

activity that is complemented by system speci�cation, veri�cation and simulation

activities. Current tools are in general, each specialized to enable a part or all of

those activities for some kinds of models.

Unless there exists a translation mechanism that enables the reuse of the models

produced by a �rst tool T1 (e.g., the modelling tool Mega1 for System architecture),

by a second tool T2 (e.g., a model-checking tool : AltaRica2 tools for safety analysis),

it is not always obvious to retrieve or call models from T1 and operate them

automatically with T2. T1 and T2 are specialized in system modelling and system

analysis respectively with di�erent modelling formalisms. Moreover, it would not

be convenient to de�ne (bidirectional) translation mechanisms between a set (ST)

of tools that need to communicate models, this because of the iterative nature of

the modelling activity. Besides for n tools we would need n ∗ (n − 1) bidirectional

translation mechanisms. Furthermore, it could be impossible (since di�erent tools

specialize in di�erent domains) or inappropriate (e.g. too expensive) to build a

direct translation from T1 to T2.

To remedy this issue, a common solution is to consider (not exclusively):

• a common metamodel

• a common data format

• a common interface

1mega.com
2https://altarica.labri.fr/wp/

mega.com
https://altarica.labri.fr/wp/

6.2. WHAT IS AN ADEQUATE LEVEL OF ABSTRACTION? 79

for the models coming from any tool belonging to ST.

For this solution to work automatically, the meaning (independently of its im-

plementation) of data representing the same kinds of models must be exactly the

same for any tool in ST.

Generally, metamodels support the graphical representation of models, and de-

scription of their semantics. However, when models are used outside of the tool

from where they have been built, some assumptions of the metamodels might be

missing. For instance, Statecharts [47], a visual modelling technique, have a plethora

of existing semantics (implemented within tools) which can be summarized in three

main variants [38]. In this situation, in the way the tool implements those semantics,

either a missing assumption related a semantics is implicit in the metamodel or it is

explicit but rather proper to the modelling tool. In fact, it has also been argued in

[86] that even for the same modelling formalism (a mathematical object), multiple

concrete implementations (via an abstract syntax and a semantics) may exist. This

means that even if one assumes the use of the same modelling formalism, nothing

does guarantee the implementation of the same semantics. The resulting gaps would

even become worse (e.g., in an attempt to integrate several models) with complex

metamodels and the multiplicity of proprietary tools.

As for the data format, it is intrinsically related to the structure of models. It

mainly serves as a way to persist the models. But it is relevant only if the underlined

structure of models is agreed among ST. Although the data format is useful, it does

not in�uence the semantics of a model.

An interface is of interest if it exposes and provides all the relevant elements

necessary to precisely (i.e., explicitly and formally) and automatically deal with

models described under it.

6.2 What is an adequate level of abstraction?

It turns out that, whatever the common interface, metamodel and data format which

are used among ST, a key element here is the underlined structure of the models,

how it could be used to e�ectively reuse and exploit the models in practice. We

believe such a concern would be better addressed at the level of the architecture of

models.

80 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

We follow the ISO/IEC/IEEE 420103 standard on the de�nition of the archi-

tecture of a system. It is de�ned as the abstract description or the fundamental

organization of a system (a model here), embodied in its components, their relation-

ships to each other and to the environment, and the principles governing its design

and evolution.

The proposed architecture (FA) is federated in the sense that, while it is based on

a speci�c structure, it aims to enable, via the instantiations and the interpretations

of the structure, the plugging and exploitation of domain speci�c-models. In the

spirit, we refer to plug-and-play devices. FA enables to plug models in the sense that

it supports the ability to precisely specify them. Once plugged, FA also supports the

ability to automatically use models for exploitation (again, for analysis purposes,

we are not dealing graphical concerns). Note that, a tool that exploits a model is

not necessarily a the same tool used to build that model. It is for instance, a tool

tailored for a speci�c analysis of models.

As a result, in the following, we deal with the fundamental organisation and

principles governing the de�nition of a descriptive model. Towards achieving those

goals, FA is devised from a theoretical and practical point of view.

Let us note that we are not primarily concerned with the graphical representa-

tions of models, nor the description of a new (modelling or analysis) tool, even less

a new modelling language. As reported above, the architecture of a system is not

about the e�ective implementation or de�nition of the system. Last, we do not deal

with (inter-) relations between heterogeneous or multi-domain models. Nevertheless,

how a model is considered alone would typically in�uence such (inter-) relations.

6.3 Description of the proposed architecture FA

In this section, we start by informally motivating our viewpoint on the fundamental

organisation of models (Section6.3.1). Then, we argue on the adequacy of category

theory to formalise this view point (Section 6.3.2). We also present the necessary

background and notation. Finally, the formal description of FA is given (Section

6.4).

3http://ieeexplore.ieee.org/document/6129467/

http://ieeexplore.ieee.org/document/6129467/

6.3. DESCRIPTION OF THE PROPOSED ARCHITECTURE FA 81

6.3.1 Fundamental organisation of a model

6.3.1.1 Structure

We are mainly interested by descriptive models that look like UML (Uni�ed Mod-

elling Language) and SysML (System Modeling Language) models. The structure of

descriptive models is often composed of boxes that are linked with wires. In order to

distinguish incoming and outgoing wires, boxes are generally equipped with input

and output ports. An incoming wire comes into an input port of a box, while

an outgoing wire leaves from an output port of a box. Generally, a port allows a

box to interact with its surrounding environment. A box is either basic (a black

box) or composite i.e. a structure built of inner constituent box(es). It allows to

manage a complex representation of a system by hierarchical decompositions and re-

compositions. Indeed, the structure of a complex system might be obtained from the

interconnection of simpler subsystems. The hierarchical decomposition applies to

subsystems until a given level of granularity is reached. This leads to an hierarchy of

boxes where one can distinguish composite boxes and non-composite or basic boxes.

This explicit composite structure makes it possible to zoom in and out the structure

of a box.

6.3.1.2 Structure's interpretations

Since complex systems are generally studied from several views or aspects, namely,

physical, electrical, computing, etc., di�erent interpretations of their structure are

possible. At the level of models, these interpretations yield domain-speci�c lan-

guages or semantics. As a result, the structure constrains the de�nition of its

interpretation, even if the structure does not make it possible to guess one of

its possible interpretations. This means: while the structure of a model is not

su�cient to reason with the model, it is nevertheless the source of the de�nition of

an interpretation i.e. a semantics.

In this vein, it is di�cult and perhaps impossible to impose or foresee all the

possible interpretations of the structure of models. It is rather interesting to provide

means that enable a proper exploitation of this structure, that is to say, the use of

a structure that is explicitly and formally de�ned. This would then facilitate a

de�nition of an interpretation of the structure.

82 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

6.3.1.3 Structure's usages

Last, but not least, the data of the model that represents the actual system is nothing

but an instantiation of the model's structure together with its interpretations.

Example. Suppose the model of a paper is structurally built of 3 main sections.

The data of a model of a paper can be given by: a title of each of these 3 sections

and an assignment of each section's length. Typically, the meanings of a section's

length and a section's title have to be de�ned as interpretations of the structure i.e.,

understanding the meaning of a section from some given points of view, the length

and the title in this case.

The foregoing gives the main components of FA. They are: (a) the model's

structure, (b) the interpretation of the structure (c) the corresponding instances

of the structure. The structure and the interpretation can also be called abstract

syntax and semantics of the model. Nonetheless, it is more convenient to see the

semantics as the target of the interpretation.

The architecture needs to support the ability to de�ne various interpretations of

boxes. To that end, it does not model a concrete interpretation of them, however,

principles to build such an interpretation will be given. In order to support the

semantics of any model, FA will separate the structure and the possible interpreta-

tions thereof. The data/instances corresponding to models will simply be the set of

usages of the structure and a related semantics.

We are interested in providing a formal description of the model's structure to

ease the de�nition of its interpretations in practice. A data format will be also

necessary for serializing the corresponding instances of the structure. The question

which arises now is: how to formalise those elements? The ultimate goal is to

automate the plugging and exploitation of models. (See Section 6.2, for the precise

meaning of "plugging" and "exploitation" of models)

6.3.2 Background and Notation

One might think of graphs to formalise the structure of models. Although graphs

are very powerful ways to describe interconnected objects, they lack a basic intrinsic

feature to deal with the hierarchical composite structure of vertices (i.e. boxes) we

need. To get such a structure, the graph must be equipped with additional data

which might complicate the formalisation. Instead of considering a graph, we argue

that the notion of "category" is well suited to deal naturally with the formalisation.

6.3. DESCRIPTION OF THE PROPOSED ARCHITECTURE FA 83

A category can be seen as a directed graph where the vertices are called the

objects and edges are called the arrows of the category. Additionally, in a category,

"new edges" are obtained from: either a new edge (id) from each vertex (v) to itself

i.e., an arrow v
id−→ v; or a pair of consecutive edges i.e., if v1

a−→ v2 and v2
b−→ v3 are

two edges, in the category there is an arrow v1
ab−→ v3. In the category, it is required

that, if v3
c−→ v4 is an edge in the graph, then the path a(bc) is equivalent to the path

(ab)c i.e., parentheses are removable. Finally it is required that a◦idv1 = a = idv2 ◦a
whenever a is an arrow v1

a−→ v2.

The major contribution of a category here, is that, although objects can have an

internal structure, their relations with other objects are put forward and given by

arrows. Furthermore, the category itself can be enriched with an internal structure

allowing to combine objects together. Such an internal structure, together with the

requirement on paths of consecutive edges in the category, will formally enable the

zooming in and out of boxes (seen as objects).

The change of perspective, i.e., understanding, instantiating, interpreting or

mapping a source category into a target category, consists of de�ning an arrow

between 2 objects that have the structure of a category. For the mapping to make

sense, it is required that the structure of the source object is preserved in the target

object. Such a mapping is called a functor. The enrichment of the structure of

the objects and the mappings between them give rise to new structures and related

concepts studied by Category Theory (CT).

To be able to de�ne the structure of a model as a category, the objects will be

the boxes and the arrows will explicit how boxes are linked to bring about composite

boxes. The structure of the category considered in this section and its formalisation

are inspired and related to works [91] [90] [79], [99] [92] [65]. We will come back to

some of them in the following to avoid any confusion.

The categorical concepts and their notations for de�ning the architecture are

mainly brought from [63]. These are only necessary for understanding the under-

lying mathematics of FA and so its possible canonical extensions (see Section 6.7).

Additional background can be found e.g., on basic CT [91], CT in general [67],

multicategories [63].

Now, we recall the de�nition of a multicategory from which the one of a category

is straightforwardly obtained. Then we argue on the necessity of a symmetric

multicategory (SMuC) that underlies a symmetric monoidal category (SMC) as the

e�ective structure of models.

A multicategory C [62, De�nition 2.1.1] consists of

84 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

• a class C0, whose elements are called the objects of C

• for each n ∈ N and a1, ..., an, a ∈ C0, a class C(a1, ..., an; a) whose elements θ

are called arrows or maps and depicted [...] as a1, ..., an
θ−→ a

• for each n, k1, ..., kn ∈ N and a, ai, a
j
i ∈ C0, a function (see Fig.6.1)

C(a1, ..., an; a)× C(a11, ..., a
k1
1 ; a1)× · · · × C(a1n, ..., a

kn
n ; an)→

C(a11, ..., a
k1
1 , ..., a

1
n, ..., a

kn
n ; a),

called composition and written (θ, θ1, ..., θn) 7−→ θ ◦ (θ1, ..., θn)

for each a ∈ C0 an element 1a ∈ C(a; a), called identity on a satisfying

• associativity:

θ ◦
(
θ1 ◦ (θ11, ..., θ

k1
1), ..., θn ◦ (θ1n, ..., θ

kn
n)
)

=

(θ ◦ (θ1, ..., θn)) ◦ (θ11, ..., θ
k1
1 , ..., θ

1
n, ..., θ

kn
n)

whenever θ, θi, θ
j
i are arrows for which these composites make sense

Figure 6.1: Composition in a multicategory [62, Figure. 2-B]

• identity: θ ◦ (1a1 ,, 1an) = θ = 1a ◦ (θ) whenever θ : a1, ..., an → a is an

arrow.

A category C is then a multicategory in which every arrow, also called mor-

phism, is unary (n = 1) [62, Example 2.1.2]. There are some classical categories

like: Set; the category whose objects are sets and whose morphisms are functions,

Mon; the category whose objects are monoids (a monoid is a tuple (M, id, ∗) where
M is a set, ∗ the multiplication formula and id ∈M the identity element such that

identity and associativity laws hold) and whose morphisms are homomorphisms of

monoids.

6.4. COMPONENTS OF FA 85

Figure 6.2: A box Y composed of 2 boxes X1 and X2

6.4 Components of FA

We start by the informal motivations of the concepts and eventually give the formal

de�nitions.

Consider the box Y on Figure 6.2. It is composed of 2 boxes X1 and X2. The

input and output ports of a box are respectively at left and right sides of the box.

They are identi�ed with alphabetic letters. For instance, the box Y has 2 input

ports: h and i and 2 output ports j and k.

We note Msc the category that describes the structure of models. The formal

de�nition of Msc is given in Section 6.4.1. If we consider the box on Figure 6.2 as the

model, then, the objects of Msc are Y , X1 and X2. There is an arrow X1, X2 → Y .

Msc in this case will be a multicategory. If, instead, we write X → Y , where the

"combination" of X1 and X2 yields a new object X, thenMsc in this case will be a

category. In the latter case, informally speaking, the combination of two objects is

possible via the de�nition of an internal operator (called the tensor and written ⊗)
to the category that is associative with right and left units 0 or 1 depending . This

operator equips Msc with a monoidal structure. (See e.g., [62, de�nition 1.2.5] for

the formal de�nition of a monoidal category.)

When ⊗ is commutative up to isomorphism, (Msc,⊗, 0) becomes a symmetrical

monoidal category. The commutativity of ⊗ allows to indi�erently write X1 ⊗ X2

or X2 ⊗X1.

Finally, we know from [62], that any symmetric monoidal category is naturally

a symmetric multicategory, via the symmetry map σ · − : aσ(1)⊗ · · · ⊗ aσ(n) −̃→ a1⊗
· · · ⊗ an. This means that ai in the sequence a1, . . . , an are commutative up to σ.

86 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

6.4.1 Structure of models

We consider Msc to be a symmetric multicategory (SMuC).

We continue with the example of the structure of a model on Figure 6.2.

We basically follow [90] [92] [99] on the de�nition of wiring diagrams (WD). The

diagram on Figure 6.2 looks like a WD but, in fact it is di�erent from a WD: as it

will be clearly explained hereinafter.

In this diagram, we authorise: unconnected ports i.e., ports without incoming

or outgoing wires (or links); converging wires i.e., wires whose the target port is

the same; and diverging wires i.e., wires whose the source port is the same. These

authorisations, apart the last, are forbidden in WD. In this diagram it will also be

possible to have several links between a source port and a target port. WD could

therefore be considered as special cases of this diagram where these authorisations

are forbidden.

The primary objective of such authorisations is to encompass as many as possible

wiring patterns occurring in practice. For instance, it might be the case that,

structurally, while a real component is working, it is not branched on one of its

interface with its surrounding environment. See for instance a simple Ptolemy model

[98, Figure 9] where these authorisations are graphically visible.

A WD is a symmetric monoidal category (SMC) underlying a symmetric multi-

category (SMuC). The relation between the SMC and its underlined SMuC for WD

is formally written down in [90] [92] [99]. More interestingly, graphically, a SMuC

is more convenient than its SMC. While SMC is more convenient than SMuC in

notation in avoiding subscripts. For example, the arrow X1 ⊗ X2 → Y in a SMC

is depicted on Figure 6.3. One can observe on that �gure that the modularity (i.e.

the easy distinction of X1 and X2 in Y) is no longer available graphically. The SMC

will be adopted for de�ning arrows and the composition in Msc. Let Mscm the

SMC that Msc underlies.

We provide in the following the objects, arrows, composition formula and iden-

tities of Msc and prove that they satisfy the identity and associativity laws.

• Objects of Msc, the set Msc0. An object a ∈Msc0 is a box and consists of a

tuple (in(a), out(a)) where in(a) and out(a) are the sets of input and output ports

of a respectively such that in(a) ∩ out(a) = ∅. For instance, the object Y is given

by ({h, i},{j, k}). The objects of Mscm are same as those of Msc.

• Arrows of Msc, the set Msc(a1, . . . , an; a). An arrow a1, ..., an
θ−→ a says how

a box a is built from boxes a1, ..., an. Let b := a1 ⊗ · · · ⊗ an, the arrow in Mscm is

6.4. COMPONENTS OF FA 87

Figure 6.3: A box Y composed of X1 ⊗X2

given by b
θ−→ a. (b and a are called the domain and the codomain respectively of

θ.) It consists of a tuple (θin, θout)

θin : Lin → in(b) × (out(b) t in(a))

θout : Lout → out(a) × out(b)
(6.1)

where in(b) and out(b) are given by
∐

j=1..n

in(aj) and
∐

j=1..n

out(aj) respectively.
∐

is

the disjoint union on sets.

Lin and Lout are the abstract sets of links coming into an input port and into an

output port of one of a1, ..., an and a boxes respectively.

Note that (6.1) forbids a link to go from an output port of a to one of its input

ports. Doing this will rather result in a new arrow (e.g. a→ a′ that models a kind

of self-feedback). This requirement is highly important to avoid ill-de�ned arrows

(composite boxes) in the sense of (6.1). It also forbids a link to go directly from an

input port of a to an output one. If such a latter link should be existing, it will

su�ce to create a basic box with one input port and one output port and linked

them to the input port and output ports respectively of a.

Example. The arrow X1, X2 → Y is given by ({l1, l2, l3},{l4, l5}). l1, l2, l3, l4 and

l5 are associated to (h, b), (g, b), (f, c), (e, j) and (g, k) respectively.

We will eventually de�ne θin and θout as matrices where columns and rows will

correspond to the source and target of links. Lin and Lout will be useful to ease the

understanding of the composition of arrows.

• Identities of Msc, Msc(a; a). An identity a
1a−→ a consists of θin and θout

and given by the coproduct inclusion and identity respectively, i.e. links connect

identical (input to input and output to output respectively) ports from the domain

88 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

(a) to the codomain (a) of 1a.

• Composition formula of Msc. The composition enables the substitution of the

constituents of a composite box to get a more detailed one. For each n, k1, ..., kn ∈ N
and boxes a, ai, a

j
i ∈ Msc0, we have a function ◦:

Msc(a1, ..., an; a)×Msc(a11, ..., a
k1
1 ; a1)× · · · ×Msc(a1n, ..., a

kn
n ; an)→

Msc(a11, ..., a
k1
1 , ..., a

1
n, ..., a

kn
n ; a).

We must de�ne an arrow a11, ..., a
k1
1 , ..., a

1
n, ..., a

kn
n

θ◦(θ1,...,θn)−−−−−−→ a. This amounts to

�nding a function θ0 := θ ◦ (θ1, ..., θn), i.e. θin0 and θout0 following (6.1). The data

(6.1) of an arrow can be rewritten as follows.

We de�ne two matrices M out, M in as functions

M out : Y in × (Y out t Zin) → 2L
in

M in : Zout × Y out → 2L
out

(6.2)

where Y in = in(b), Y out = out(b), Zin = in(a) and Zout = out(a). 2X is the

powerset.

In the following, we start by giving the semiring on which matrices and their

operation will be associated and the connection with boxes, and then we end up

with arrow composition. Note that if a matrix M is de�ned by M : I × J → K,

where I and J are �nite sets with n and m elements, we often write M(n,m) where

n and m positive integers are the number of rows and columns of M respectively.

A total order on I and J enables to write M = aij, aij ∈ K, i = 1..n, j = 1..m.

(K,+,×, 0, 1) a semiring.

Let K the power set of the set of strings of �nite lengths, (K,∪, ·, ∅, {ε}) is

a semiring [32] where × := · is the product induced by the string concatenation

operator, + := ∪ is the addition given by union of sets of strings of �nite lengths,

0 := ∅ is the zero given by the empty set and 1 := {ε} is the unit given by the

singleton set containing the empty string.

We note ∅M the matrix with ∅'s everywhere and IM the square matrix with {ε}'s
on the main diagonal and ∅'s elsewhere.

In order to multiply two matrices X and Y, additionally to the requirement that

the number of columns in X must equal the number of rows in Y, the total orders

that labelled these columns and rows must also equal i.e. they must have the same

base set and the same total ordering between the elements of this set.

Example: Let us consider fA : I1 × S → K, and fB : S × I2 → K where

I1 = {a, b}, S = {c, d} and I2 = {e, f}. Let also consider the total orders on I1, S

6.4. COMPONENTS OF FA 89

and I2 are given by a ≤I1 b, c ≤S d and e ≤I2 f respectively. Suppose given

fA := {(a, c) 7→ {w1}, (a, d) 7→ ∅, (b, c) 7→ {w2, w3}, (b, d) 7→ ∅}
fB := {(c, e) 7→ {w5}, (c, f) 7→ ∅, (d, e) 7→ ∅, (d, f) 7→ ∅}

The matrices A and B associated to the function fA and fB are as follows.

A =

c d()
a {w1} ∅
b {w2, w3} ∅

B =

e f()
c {w5} ∅
d ∅ ∅

The matrix A will mean in practice: there is a link or wire (w1) which supplies the

port a and which comes from the port c. There are also two links (w2 and w3) which

supply the port b and that come from the port c. The product A×B given by

A×B =

e f()
a {w1w5} ∅
b {w2w5, w3w5} ∅

shows that in practice there is also link (w1w5) that supplies the port a and which

comes from the port e. Typically, a port will be either an input or output port of a

box.

Given (6.2) and the aforementioned notations, we are now ready to de�ne arrow

composition.

Let c = a11⊗· · ·⊗a
k1
1 ⊗· · ·⊗a1n⊗· · ·⊗aknn and b = a1⊗· · ·⊗an. Let alsoX in = in(c),

Xout = out(c), Y in = in(b), Y out = out(b), and Zin = in(a), Zout = out(a).

The map θ ◦ (θ1, ..., θn) (i.e., c
θ0−→ a in Mscm) following the data (6.2) of an

arrow via 2 matrices, is: (Oin, Oout) given by the dashed arrows on the following

diagrams.

X in

N in

��

Oin
// Zin tXout

Y in tXout

M ′in
// Zin t Y out tXout

N ′out

OO Zout Oout
//

Mout

��

Xout

Y out

Nout

99

An arrow I
M−→ J in this diagram de�nes the matrix M(≤I ,≤J), where ≤S is a

total order on S, (we recall that the elements of S will be the ports of boxes).

For convenience, we abuse the notation and identify ≤S to the sequence of ordered

elements of S.

90 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

Oout = M out ×N out

Oin = N in ×M ′in ×N ′out
(6.3)

where

N in, N ′out, M ′in are respectively given by:

≤Y intXout()
≤Xin N in

≤Zin ≤Xout
≤Zin IM ∅M

≤Y out ∅M N out

≤Xout ∅M IM

≤ZintY out ≤Xout()
≤Y in M in ∅M
≤Xout ∅M IM

and M out, N out are respectively given by:

≤Y out()
≤Zout M out

≤Xout()
≤Y out N out

Figure 6.4: A box Z composed of Y , itself composed of X

Figure 6.5: A box Z composed of X

Example. Figure 6.4 is the representation of two arrows X
θ1−→ Y and Y

θ−→ Z. The

6.4. COMPONENTS OF FA 91

arrow X
θ◦θ1−−→ Z is given by the matrices Oin and Oout computed as follows. The

matrices M out, N out, N in, N ′out and M ′in are the following.

M out =

g h()
k {l1} ∅
l ∅ {l2}

N out =

c d()
g {l3} ∅
h ∅ {l4}

N in =

e f c d()
a ∅ ∅ {l5} ∅
b {l6} ∅ ∅ ∅

N ′out =

i j c d



i {ε} ∅ ∅ ∅
j ∅ {ε} ∅ ∅
g ∅ ∅ {l3} ∅
h ∅ ∅ ∅ {l4}
c ∅ ∅ {ε} ∅
d ∅ ∅ ∅ {ε}

M ′in =

i j g h c d


e {l7} {l8} ∅ ∅ ∅ ∅
f ∅ ∅ ∅ {l9} ∅ ∅
c ∅ ∅ ∅ ∅ {ε} ∅
d ∅ ∅ ∅ ∅ ∅ {ε}

It is easy to check that Oout = M out × N out and Oin = N in ×M ′in×N ′out are

given by the following matrices:

Oout =

c d()
k {l1l3} ∅
l ∅ {l2l4}

Oin =

i j c d()
a ∅ ∅ {l5} ∅
b {l6l7} {l6l8} ∅ ∅

The composition in this example enables to zoom in Z. After the composition,

one can remark that the link (on Figure 6.4) from the port h of Y to its port f

de�ned by the arrow Y
θ−→ Z, disappears (on Figure 6.5) in the arrow (X

θ◦θ1−−→ Z)

resulting of the composition. This, because the port f is not connected in X
θ1−→ Y

and the e�ect of × in the semiring (K,∪,×, ∅, 1). In practice, this could mean,

although f seems connected, actually it is not.

• Associativity and identity laws of Msc. The associativity law follows from the

associativity of matrix multiplication. The identity law follows from the fact that

the functions of the couple (1ina , 1
out
a) = 1a are identities of their domain.

We now need to proof that the tensor ⊗ in Mscm is e�ectively a monoidal

commutative product. Let us de�ne the unit as the empty box (∅, ∅) = 0 and set

the tensor to be the disjoint union (t) on sets (of input and output ports of boxes).

It is easy to check that ⊗ is e�ectively a monoidal commutative product.

Finally, Msc is the underlying SMuC of the SMC (Mscm,t,0).

92 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

6.4.2 Structure interpretations

The question this section answers is: how to bridge the gap between a possible

semantics (interpretation of the structure) and its implementation in practice? Note

that a semantics of the structure might be formally de�ned di�erently (denotational,

axiomatic, or operational) and implemented in many ways. In this respect, we are

not trying to de�ne a particular semantics of models nor its implementation. In-

stead, principles for formally connecting both the semantics and its implementation,

whatever they may be, are given.

Relying on the structure of models, it is possible to expose the speci�cation of

an interpretation of boxes such that their semantics can be recovered. Therefore,

an actual interpretation could be independently developed, by accommodating the

structure of models.

The speci�cation of the interpretation is ideally given by a functor F : Msc →
Msin, whereMsin is the category where the structure is interpreted. We say ideally

because it may not be always obvious to de�ne a functorial semantics.

Example. (i) Consider again the model as the box depicted on Figure 6.2. A

meaning of this model is only known up to the de�nition of an interpretation of

its structure. Suppose this box models a physical structure and we want to study

some of its physical properties. This could amount to de�ning F : Msc → Msin

as follows. Msin is Set with objects sets of real numbers and arrows functions

that de�ned the relationships between the physical properties. Suppose the physical

property is the mass. F is therefore de�ned by F0 : {X1, X2, Y } → R and the image

of X1, X2 → Y is the function F0(X1)×F0(X2)→ F0(Y) given by the sum of masses.

Note that another interpretation can be done for another physical property.

(ii) Consider the arrow on Figure 6.6. By de�ning X, as a two-digit adder which

Figure 6.6: X,X,X,X → Y

returns the result and the carry out on the top and bottom output ports of X, we

can de�ne Y as two-digit numbers adder (a1a0 + b1b0 = c2c1c0), i.e. a category

(Msin) with 2 objects and 1 arrow.

6.4. COMPONENTS OF FA 93

In the two examples (i) and (ii) above, the concepts of (mass) and (two-digit

adder) and (two-digit numbers adder) respectively must be exposed by F ; no matter

how they are de�ned in Msin and implemented in practice. However, and more

generally, these data must be machine-accessible. As a consequence, we discuss the

computational and data structures in Section 6.5.1. Note that functorial semantics

of wiring diagrams (i.e. special cases of Msc) are de�ned in [79], [90], [99] and [92]

which are concerned with the interconnections of discrete-time processes, databases

and plug-and-play circuits, di�erential equations of open dynamical systems, and

mode-dependent networks respectively. In each case, a particular algebra is devised.

These algebra could be implemented as de�nitions of interpretations of the structure

of models. For now, we continue to discuss how to obtain the actual models with

respect to the structure.

6.4.3 Structure usage or real models data

Like the de�nition of a structure interpretation, for real models data to be automat-

ically exchangeable, those data must be machine-accessible. As a result, we need a

means to specify what is an actual model data with regard to the structure.

We will suppose thatMsc is representable (see, the formal de�nition in [62, De�ni-

tion 3.3.1]), which roughly means: any composite box decomposes uniquely through

its constituent boxes. The real models data are de�ned by a Set-valued functor

I : Msc→ Set. It associates an object a ∈Msc0 to the set of its usage I0(a) and any

arrow a1, ..., an
θ−→ a ∈ C(a1, ..., an; a) to the function I0(a1)× ...× I0(an)

I(θ)−−→ I0(a).

Example. Consider the box depicted on Figure 6.6. I for this model is de�ned

by I0 : {X, Y } → Set and the image of X,X,X,X → Y is the function I0(X) ×
I0(X)× I0(X)× I0(X)× → I0(Y) given by x1, x2, x3, x4 7→ y. Where xi,i=1..4 and y

are the instances of X and Y respectively. The possible semantics of X and Y have

been de�ned to be a two-digit adder and a two-digit numbers adder respectively via

F .

Like the structure's interpretation, we discuss the data structures and format

structure in Sections 6.5.1 and 6.5.3.

The summary of this section, that elaborates the informal and formal under-

standing of the proposed architecture FA, is as follows. For reading models (their

data) it is necessary to have at least the speci�cation of I : Msc→ Set, whereas for

exploiting models (their semantics) it is necessary to have at least the speci�cation

of F : Msc→Msin.

94 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

Finally, for plugging and exploiting models through a given automated routine, it is

necessary to specify

Msin
F←−Msc

I−→ Set (6.4)

and make the interpretation's de�nition machine-accessible.

6.5 Computational and data structures, base invari-

ants and data format

The data structures along with some base invariants (described as functions) for

implementing the speci�cation Msin
F←−Msc

I−→ Set are discussed in Section 6.5.1.

Finally, in Section 6.5.3, a possible data format for serializing the data associated

to the speci�cation is proposed.

6.5.1 Data structures and base invariants

We recall that a box a in the structure consists in a tuple (in(a), out(a)) and a

composite box is described by an arrow which consists in a tuple (θin, θout).

Notation. We write A(p1:T (p1), ...,pn:T (pk)) to de�ne an object or a class (in a

programming sense). A has the property pi of a type T (pi), i = 1..k. We will

sometimes omit the type of properties of an object, e.g., by writing A(p1, ..., pn).

We also write A[X]() to mean that X is a parametric parameter. Let li:List[R] be

a list li of elements of type R. We also write li.map(f) where f is a function to say

that f applies on each element of li and returns the new list.

We note _ the type that represents any type. Finally let props: String→_ be the

function that maps a string to any object.

It is perhaps worth noticing here that this notation is tightly linked to the Scala4

programming language syntax. Indeed we used Scala to implement the mathematical

objects.

One question one might ask here is: what are data structures useful for? It is not

clear whether there are well established data structures and basic algorithms to deal

with category theory objects in practice see e.g., the summary of the discussions at

a NIST (National Institute for Standards and Technology) Computational Category

Theory (CCT) Workshop [102].

Therefore, the data structures we present in the following are also an attempt to

address this concern.

4https://www.scala-lang.org/

https://www.scala-lang.org/

6.5. COMPUTATIONAL AND DATA STRUCTURES, BASE INVARIANTS AND DATA

FORMAT 95

We need to de�ne an object corresponding to the representation of Msc. We

start by de�ning a generic representation of a symmetric multicategory as follows.

GenericSMultiCategory[Obj,Arr](

dom:Arr→List[Obj], cod:Arr→Obj, id:Obj→Arr,
compose:(Arr, List[Arr])→Arr,
identityOnComposition:Arr→Bool,
associativityOnComposition:(Arr,List[Arr],List[List[Arr]])→Bool,
symmetry:(Arr,Arr)→Bool)

where dom, cod, id, compose, identityOnComposition, and associativityOnCom-

position are the maps that give the boxes in the domain of an arrow, the box in the

codomain of an arrow, for an object the corresponding identity arrow, the compos-

tion of arrows, the identity law, and the associativity law respectively. symmetry is

a map that veri�es if 2 arrows are equivalent i.e.: they have the same codomain and

the domain (a list) of one might be a permutation of the domain of the other.

Note that identityOnComposition and associativityOnComposition are invari-

able or static in the sense that they do not depend on a particular value of (Obj,Arr).

e.g. identityOnComposition is given by identityOnComposition(f) 7→ com-

pose(f, dom(f).map(id)) == compose(id(cod(f)),List(f)).

Both maps should always return true for well-de�ned calls. Others should be

rede�ned for every instantiations of type parameters (Obj,Arr). Hence, we provide

the data structures corresponding to Obj and Arr i.e., objects (boxes) and arrows

(how a composite box is built) respectively of Msc. We follow the data provided in

Section 6.4.1 to describe Obj and Arr. We start by de�ning the following objects

where id is the identi�er of any object.

BoxPort(id,props), a port of a box.

Box(id, inPortIDs, outPortIDs,props), a box where inPortIDs and outPortIDs

are its set of input and output ports ids.

BoxLink (id, idsrcBox, idsrcPort, posSrcBox, idtgtBox, idtgtPort, posT-

gtBox,props), a link or wire, where idsrcBox, idsrcPort, posSrcBox and idtgtBox,

idtgtPort, posTgtBox are the source box of the link, the position this source box in

a domain of an arrow, the source port of the link and the target box of the link id,

its position in a domain of an arrow, the target port of the link id respectively.

BoxArrow (id, domBoxesIds, codBoxId, linksIds,

props), an arrow, where domBoxesIds, codBoxId, linksIds are the list of ids of

boxes in the domain of the arrow, the set of internal links of the composite box of

96 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

id codBoxId respectively.

Now the object corresponding to the representation of Msc is : SMultiCat-

egoryBox := GenericSMultiCategory[Box,BoxArrow]. The de�nitions of

algorithms corresponding to the maps dom, cod, id and compose are deduced from

the data of Msc (see Section 6.4.1) and the objects BoxPort, BoxLink plus the

parameters Box and BoxArrow.

To specify I and F we need to de�ne an object corresponding to those functor

or map of multicategories. A generic de�nition of the representation of such a map

is de�ned by the object

MultiCategoryMap[Obj,Arr,Obj2,Arr2](
sourceCat:GenericSMultiCategory[Obj,Arr],

targetCat:GenericSMultiCategory[Obj2,Arr2],

fmap0:Obj→Obj2,
fmap1:Arr→ Arr2,

identitiesPreservation:Obj→Bool,
compositionPreservation:(Arr,List[Arr])→Bool)

where sourceCat, targetCat are the source and target multicategories respectively.

fmap0, fmap1, map (in a CT sense) objects to objects, arrows to sequences of arrows

respectively. identitiesPreservation and compositionPreservation de�ne the identi-

ties preservation and the composition preservation respectively. The latter are invari-

able in the sense that they do not depend on a particular value of (Obj,Arr,Obj2,Arr2).

They are given by:

identitiesPreservation(ob) 7→ fmap1(sourceCat.id(ob))==

targetCat.id(fmap0(ob)) and

compositionPreservation(f,�) 7→ fmap1(sourceCat.compose(f, �))==

targetCat.compose(fmap1(f),�.map(fmap1)) respectively.

To specify I, we need to de�ne the multicategory Set. Similarly to Msc, we

start by de�ning the object (in a CT sense) SetBoxUsage(id,setU), a set setU.

Then Set is given by the object BoxUsageMultiCategory :=

GenericSMultiCategory[SetBoxUsage, List[SetBoxUsage]→SetBoxUsage]
and the map I : Msc→ Set by

MultiCategoryMap[Box,BoxArrow,SetBoxUsage, List[SetBoxUsage] →
SetBoxUsage]

Given GenericSMultiCategory[Box,BoxArrow] and

GenericSMultiCategory[SetBoxUsage,

6.5. COMPUTATIONAL AND DATA STRUCTURES, BASE INVARIANTS AND DATA

FORMAT 97

List[SetBoxUsage]→SetBoxUsage] we only need to de�ne the maps fmap0 and

and fmap1.

To specify F , we will consider the functor corresponding to the objectMultiCat-

egoryMap[Box,BoxArrow,Box,BoxArrow]. This MultiCategoryMap maps the

boxes and arrows in the structure to boxes and arrows in FMsc. The exploitation of

models at this stage amounts to making the semantics of models available either as

an API or via executable libraries (like in programming with code reuse or web

services). It is the reason why we say in Section 6.4.2 that a de�nition of an

interpretation of the structure has to be machine-accessible. An API, a library

or a code that implements an interpretation of the structure has to take advantage

of MultiCategoryMap, i.e. to de�ne the data FMsc or Msin.

A key point here, is that the presented data structures encapsulate the data of

Msc, F and I. They ought to be used to access the actual internal structure of a box

and an arrow. Finally, the implementations corresponding to a given interpretation

of the structure could take any form provided that the required concepts necessary

to operate (the semantics of) models are exposed. The data and computational

structures and, invariants presented in this section aim to operationalize the the-

oretical concepts supporting the proposed architecture. Nonetheless, they are not

prescriptive since other choices of data structures might be considered.

6.5.2 Identi�cation of an actual component

A box a, does not refer to an actual component. Indeed an actual component is

speci�ed via the given of Msc → Set. This means that a can be understood as a

type of component rather than just a box. When this type of component is used more

than one time for building other type components in Msc, there are many actual

components that are not explicitly named. As a consequence, to specify an actual

component by avoiding to �atten types of components, we need an ordered set of

types of components (boxes) going from the initial considered type of component to

the outermost upper type of component that embeds it. Through this order, when a

type of component it at least two times used for the next upper type of component,

its position in the domain must be speci�ed. We call such a speci�cation, a vertical

path on the structure of types of components. And it is de�ned as follows.

vpath : V P → Usage

h = [(a0, p0), . . . (ak−1, pk−1), (ak, pk)] 7→ u
(6.5)

98 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

such that if a1i , ..., a
mi
i → ai is an arrow, we have ai−1 ∈ {a1i , ..., a

mi
i }, i ≥ 1. Where

V P , Usage, and a1i , ..., a
m
i → ai are the set of all possible vertical paths, the set of

all actual components, and an arrow in Msc.

This identi�cation could be very suitable when analyses are done on the topo-

logical properties of models, for instance when exploring an HFSM (see Section

4.1.3).

6.5.3 Data format's structure

The data are representations of models and therefore their structure. The represen-

tation is also accompanied by other elements referring to the architecture such as

the corresponding boxes and possibly the data referring to an interpretation of the

structure of models. The resulting format, de�ned with the aforementioned object

notation is as follows.
dataOfModels(components:Set[Component],other:Props)

Component(ID,ports:Set[Port],links:set[Link], constituents:Set[Constituent],

typeComponent:_,other:Props)

Constituent(ID,type:Component,other:Props)

Link(ID,source:Component,sourcePos:Int,sourcePort:Port,target:Component,

targetPos:Int,targetPort:Port, typeLink:_,other:Props)

Port(ID,nature:_,other:Props)

Props(String → _)

Data published under this format enable populating the speci�cation (6.4) that

characterises FA. In particular, the objects Constituent and Component enable

to build Set and Msc respectively. Whereas the property typeComponent of

Component and the property typeLink of LinK enable to build the objects of Msin.

The data of functors F and I are implicitly embedded in the object Component and

Constituent respectively.

Example. The data corresponding to the model whose the structure is the box

on Figure 6.2 are given as follows.

dataOfModels0=({X1,X2,Y},nil)

X1=(1,{a, b, e, f},{},{},nil,nil), X2=(2,{c, d, g},{},{},nil,nil),

Y=(3,{h, i, j, k},{l1, l2, l3, l4, l5},{u1,u2},nil,nil)

a=(a,IN,nil), b=(b,IN,nil), ... k=(k,OUT,nil)

l1=(l1,Y,-1,h,X1,0,b,nil,nil), ... l5=(l5,X1,0,e,Y ,-1,j,nil,nil)

u1=(u1,X1,nil), u2=(u2,X2,nil)

6.6. RELATED RESEARCH 99

We discuss the implementation details of FA in Section 7.

6.6 Related research

In this section, we start in Section 6.6.1, by discussing the FMI5 (Functional Mockup

Interface) standard which attempts to really solve the problem stated in Section

6.1. Then in Section 6.6.2, other relevant related works correlated to FA are also

discussed.

6.6.1 FMI

FMI is a tool-independent interface that aims to enable the exchange of models and

their interoperation (cosimulation). Indeed, FMI describes two modes of operation:

FMI for model exchange and FMI for co-simulation. An FMU (Functional Mock-up

Unit), a component in FMI, must implement via xml-�les and C-code the FMI API.

That is, following FMI, a model is described under an FMU, generated by di�erent

tools. The kinds of models considered by FMI are simulation models (see, e.g. [12]

for more details). Although the co-simulation/operation of models is important

almost unavoidable in the engineering of complex systems, it is not the primary

goal of this section to deal with the co-operation of models. Nevertheless, the way

(like an FMU) governing the de�nition of a model will in�uence its reuse.

An FMU separates the description of interface data (via an xml-�le) and its

functionality via a C-code.

The interface data describes the static elements of the model such as type de�nitions

(Real, Integer etc.); model variables; model structure which is an ordered list of

outputs (Outputs) states (Derivatives) and some initial unknown data (InitialUn-

knowns); units etc.

The C-code and header �les de�ne the functions that an FMU must implement.

These functions are used to simulate a model described under an FMU. Roughly,

the functions allow to initialise an FMU, assign values to an input variable, get the

value of an output variable, evolve the state of an FMU, etc. More information

about the speci�cation of the FMI standard and the supported tools can be found

on the FMI website.

Although the FMI standard provides an interface that FMUs must implement,

there exist several semantic gaps (studied in [96] [25]) between di�erent model

5 https://www.fmi-standard.org/

100 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

semantics (e.g, discrete events, data�ow models) or modelling languages and the

target interface [97]. The semantics of the target interface has been considered as a

timed Mealy machine [96]. Another concern is to what extent the interface can be

used to capture the semantics of di�erent kinds of models [97]. It turns out that the

speci�cation and de�nition of the common interface are crucial. Moreover the FMI

standard is mainly concerned with the exchange of models and their simulation as

black boxes.

We have followed the FMI standard on the separation of concerns (structure

and function). But, unlike FMI, we gave a formal de�nition of FA. The structure

of models were considered as composite components de�ned within a category-

theoretic framework. Furthermore, we do not impose a prede�ned interface for the

implementation of the function. Rather, such an implementation has to be derived

from an interpretation (or semantics) of the structure of models. The code associated

to such implementation must expose the functions whose inputs and outputs are

solely correlated to an interpretation of the structure. The data corresponding to

the instantiations (i.e. actual serialized models) of the structure are elements that

are persisted as a �le.

6.6.2 Other works

The mathematical object, a symmetric multicategory (see Section 6.3) corresponding

to the de�nition of the structure of models presented in this section is tightly linked

to the "wiring diagrams" structure developed in a series of recent papers by Spivak

et al. [79], [90], [99] and [92]. The di�erences are:

(i) the one presented in this thesis is a more general construction supported by the

"wiring" or connection pattern, i.e. almost all ways of connecting sub-components

of a composite component are allowed (see Section 6.4.1 on what is not permitted

in WD). A WD is basically given by

(X in +Xout) −→ (Y in +Xout)←− (Y in + Y out) (6.6)

or precisely

(X in + Y out) −→ (Y in +Xout) (6.7)

which can be decomposed into two functions

φin : X in → Y in +Xout

φout : Y out → Xout
(6.8)

6.6. RELATED RESEARCH 101

In this thesis, to obtain (6.1) from (6.8), we basically associate elements of φin and

φout to the abstract sets of links or wires Lin and Lout. To get (6.8) from (6.1) it is

su�cient to have θin and θout of (6.1) that are injective. The elements of Lin and

Lout can be seen as the labels of wires.

(ii) we are not mainly interested in a particular interpretation (semantics) of the

structure. We rather provide data and computational structures and their imple-

mentation for dealing with the categorical objects and therefore the architecture in

practice.

A theoretical framework where the structures of models are symmetric monoidal

and compact closed categories, speci�ed or interpreted with linear logics and veri�ed

with proof theories all bound by functors, has been also discussed in [65]. Further-

more, the framework is considered as a possible foundation of systems engineering;

since it is adapted to current modelling languages and tools and encompasses existing

formalisms such as UML, SysML, etc. We follow this framework on the base category

for the structure of models. However, unlike this framework, we focused on the

structure of models, means to de�ne and implement it and its interpretations.

Mathematical approaches from Model theory [50], Institution theory [45], and

Category theory [67] deal with syntax, structure, algebra and logic of models.

But they often remain too theoretical (but not useless), insofar they are not di-

rectly applicable/implementable in practice (e.g., what is the right data structure?).

Moreover, for applicable ones, although models are formal (based on a speci�c

theory) and built with tools, they might lack an interchangeable and �exible reuse

support. On the other hand, it has been pointed out in [29], that it is hard to

mathematically classify the numerous modelling languages and techniques and that

several MDE (Model-Driven Engineering) approaches are not grounded on formal

semantics. Furthermore, formal or semi-formal ones are not necessarily built on an

optimal architecture that will ease their reuse and exploitation. So there is a need

to bridge the gap between theory and practice. We address this challenge for the

architecture of models.

From a more practical yet formal point of view, a box can be compared to the

concept of actor [98]. In [98], boxes are encoded following the logic of the modelling

tool Ptolemy and the Java programming language. This may hamper the reuse of

models. Contrary to [98], we do not associate a particular semantics (i.e. the target

of an interpretation of the structure) to a box. In [98], boxes or actors are seen as

extended timed state machines since these actors model behavioural models. This

semantics is also called the actor interface. The de�nition of this interface mixes

102 SECTION 6: A FEDERATED ARCHITECTURE FOR PLUGGING AND EXPLOITING

DOMAIN-SPECIFIC MODELS

the structure and the semantics of the box. However, the actors interface can be

considered as the target of an interpretation of the structure of boxes since the

input and output ports of a box are explicit in this interface. Composite actors are

basically considered as a set of actors while a composite box is an arrow in Msc in

this work. Let us stress that [98] is mainly concerned with an uni�ed description

of the behavioural semantics of the composition of several actors resulting in a

composite actor.

Let us recall that we do not deal with a particular semantics of models nor a

particular implementation of this semantics. Instead, we provide the principles (via

6.4 and the corresponding data structures) governing the de�nition of a semantics.

Just like a complex system, models do have an architecture and they are complex

systems in their own right. The role of architecture is paramount since it a�ects

how systems are built and evolve [24]. In particular, architecture is central in the

management of complexity, emergent behavior, function behavior and the so-called

"ilities" (extra properties such as �exibility, reliability, scalability, safety etc.) [24].

Finally, note that many successful e-business and software are built on the

loosely-coupled architecture so-called SOA�Service Oriented Architecture, which is

independent of any implementation, tool or technology. Following the spirit of SOA

(see e.g. OSLC6(Open Services for Lifecyle Collaboration)), we believe the function

of models has to be exposed as as functions/services/libraries that are formally

correlated to an interpretation of the structure of models.

6.7 Conclusion

In this section, we presented FA from theoretical to practical perspectives. FA

is formalised via the speci�cation: Msin
F←− Msc

I−→ Set (6.4).The aim was to

provide a formal and �exible architecture for models so that they are pluggable

(explicitly and formally understood) and exploitable (for system analysis concerns).

Categorical settings are useful to abstract away from details, di�erentiate and cor-

relate the structure of models and their interpretations. On a practical perspective,

data and computational structures, invariants, and data format corresponding to

mathematical (category-theoretic) objects are presented. Setting up this framework

makes it possible to plug and exploit di�erent models independently or transparently

to the tool used to build them. A part of this setting up that is not prescriptive, is

presented in Section 7. Further work is discussed in Section 8.

6https://open-services.net/

https://open-services.net/

Section 7

Setting up and using MODEF in

practice

The foundations of the proposed methodology have been discussed so far. We are

now ready to describe how we make things work together in practice. We start by

presenting (Section 7.1) the elements that did not exist before MODEF and that

we implemented to be able to run MODEF. Then we present (Section 7.2) how they

are associated to the di�erent steps of MODEF, i.e., its use. Finally, we discuss

(Section 7.3) some qualities associated the setting up and use of MODEF.

7.1 Implementation's building blocks

The main implemented elements are depicted on Figure 7.1. Almost all of the

elements related to implementation are not prescriptive in the sense that other

implementation choices could be done. But in the following we argue on the ap-

propriateness of the selected elements. In the following we discuss each of these

elements in turn.

7.1.1 Reuse models outside the modelling tool

A modelling tool is necessary to build the three considered kind of models. Once

models are built, it is necessary to exploit them in the analysis procedure outside the

modelling tool. As a consequence, a �rst step towards their exploitation is to export

(or at least make them available) outside the modelling tool. On the other hand, a

semantics to incrementally exploring them must be available: either universally or

provided by the modelling tool. Here we face a challenge: how to export the relevant

(for analysis purposes) data related to models and use their exploration semantics

in the analysis code. The second element that comes into play is therefore a way

103

104 SECTION 7: SETTING UP AND USING MODEF IN PRACTICE

Figure 7.1: Implementation's building blocks

that enables an exploitation of the models outside the modelling tool for analysis

purposes.

7.1.2 Availability and exploitation of models

The availability and exploitation of models are addressed under the architecture

speci�ed by Msin
F←− Msc

I−→ Set in Section 6 represented by the box "FA

for M" on Figure 7.1. We argued in Section 6 on the bene�ts expected from

such a function-structure-data oriented architecture. Speci�cally, it supports the

ability to implement the functions (related to the semantics of models) necessary

to incrementally explore models. This means that such functions could be available

as libraries/services/code because their implementation is independent of the logic

of a particular tool. The independence also supposes that the data related to the

speci�cation of the architecture are all available.

The data structures and base invariants (see Section 6.5.1), corresponding to

the speci�cation Msin
F←− Msc

I−→ Set, have been implemented using the Scala1

programming language. They are encapsulated in the scala module/package: mod-

elling.base. Scala is very useful here since it encompasses the object and functional

programming paradigms. The functional aspect is close to the theoretical founda-

1https://www.scala-lang.org/

7.1. IMPLEMENTATION'S BUILDING BLOCKS 105

tions' considerations of the speci�cation while the object oriented aspect allows to

bene�t from its principles such as encapsulation and polymorphism.

The persistence of data related to the speci�cation via a data format (See Section

6.5.3) is realised with JSON2 (JavaScript Object Notation). JSON which is a

strongly and simple data-oriented formalism, has been indeed used to serialize the

models projected on the devised architecture. At the code level, the unmarshalling

of these data is managed by a module: modelling.persistence.

In practice, a tool that needs to explicitly expose models on the speci�ed ar-

chitecture must �rst, project the models on the devised speci�cation (6.4), second

translate (export) them into the proposed data format. Indeed we have built a

connector (a script) from the side of the selected tool (Mega, see below) to achieve

this. If the models are not physically exportable, the functions that describe the

exploration semantics must be nonetheless (e.g., remotely) accessible and executable.

Thanks to the data associated to Msin, F and Msc, one can implement the

primitives necessary to explore the models. The interface that allows to deal with

that implementation is the box labelled "Interface for de�nitions of operational

semantics of M" on Figure 7.1.

We have presented the operational, procedural, computational or functional

semantics of state and process models that we consider in Section 4.1. Since we

are not primarily interested by a semantics of structure models, in the following,

we present the primitives corresponding to the state and process models. At the

code level, these primitives are implemented in the modelling.analysis.Semantics

object. Note that, whether models are physically exportable or not, the description

of such functions might be universally available. Note also that we have presented

the abstract syntax of the three kinds models in Section 4.

7.1.2.1 State models

For convenience, we recall from Section 4.1.3, that the procedural semantics of state

models is de�ned under an HFSM. An HFSM de�nes an initial state, a current state

and a state-transition relation. At the primitives level, these data translate into

two main functions: initialState and nextPossibleStates. initialState is such that

given a state model (or an HFSM), it returns its initial state. nextPossibleStates

takes as inputs a state model and a current state and returns the next possible

states and associated transitions by applying the relevant state-transition relation.

2http://www.json.org/

106 SECTION 7: SETTING UP AND USING MODEF IN PRACTICE

Whence the implemented Scala signature of the function nextPossibleStates:

nextPossibleStates(
curState : List[Tuple2[Long, Int]],

smId : Long,

smStructure : SMultiCategoryBox,

struToSem : SMultiCategoryMap[Box,BoxArrow,Box,BoxArrow]

loader : Long => Object => Any) :

Map[Long, List[Tuple2[Long, Int]]]

curState is the current state, a given state of the state model with the iden-

ti�er smId. smStructure is the object that encapsulates the description of the

structure of the model. struToSem is the object that functionally determines for

each element of the structure of the model, its meaning, function or interpretation.

For instance, with struToSem, it is possible to know if a box in the structure of a

model is simply a "state" or "the initial state". loader is an utility function that

allows to load any object from its identi�er. Recall that SMultiCategoryBox and

SMultiCategoryMap are de�ned in Section 6.5.1.

7.1.2.2 Process models

We recall from Section 4.1.2, that the procedural semantics of process models is

de�ned under a non-deterministic �nite state automaton�FSA. Such an automaton

is obtained throughout the exploration of process models. Indeed, the exploration of

a process model generates a language where the alphabet is the �nite set of possible

events from the input model. The words of this language are event-traces or the

sequences of events. Accepting words or states are the ones that indicate the end

of a branch of execution of the process. Therefore, one needs to implement at least

the primitives to compute: (i) given a current state of the generated FSA, if it is

accepting or not (ii) given a current state of the generated FSA, the possible next

states with associated actions. It is worth noticing here that the notion of event

refers to the end of an action, task or process and should not be confound with

event in a BPMN models.

Since process models are built under the BPMN notation, one needs to specify for

each considered construct, building block or BPMN element (event, task, gateway,

etc.) how it behaves, such that one can explore the state space of the process models;

i.e. implement the primitives mentioned above. The Business Process Model and

7.1. IMPLEMENTATION'S BUILDING BLOCKS 107

Notation�BPMN3 is high level modelling notation.

We do not attempt to fully capture the semantics of a BPMN-like model, rather,

we focus on a subset of building blocks that are su�cient for the objectives of

this thesis. Especially, we mainly focus on the scheduling of tasks i.e. their �ow

rather than the data processed and shared between those tasks. The syntactic

elements of BPMN are available at http://www.omg.org/spec/BPMN/. We ex-

ploited their textual semantics to derive the primitives necessary to explore pro-

cess models. The main implemented primitives are: (a)nextPossibleEventsByNode,

(b)isNodeFranchisable, (c)usedEventsOfAFranchisableNode, (d)initialEventOfAProcess

and (e)isFinalNode. (a), (b), (c), (d) and (e) compute respectively: the next

possible events of an active node, whether a node is franchisable or not, the events

consumed when a node is crossed, the �rst events of a process, whether a node is

�nal i.e. the process is �nished after it or not. For instance, the Scala signature of

nextPossibleEvents is as follows.

nextPossibleEvents(
node : List[Tuple2[Long, Int]],

pmStructure : SMultiCategoryBox,

struToSem : SMultiCategoryMap[Box,BoxArrow,Box,BoxArrow],

loader : Long => Object => Any) : Set[Set[SeqF low]]

node is a node (or an internal box) of the process model with the structure

encapsulated in pmStructure. struToSem has the same role as the one mentioned

for the state model. For instance, it is possible to know if a box in the structure of a

model is a "kind of Gateway", an "Event" etc. SeqF low is an object that represents

a transition between 2 nodes or boxes.

Note that, whenever one wants to deal with a model projected on the speci�ed

architecture, at the code level, they are mainly accessible via the data structures:

SMultiCategoryBox and SMultiCategoryMap.

Once models are available and exploitable, it is now possible to implement

analysis and exploitation algorithms; the next elements that come into play. Note

that, other input models/data (Mappings (MG), Expectations (R), etc.) are also

easily serialized under a JSON format. At the code level, they are managed with

the objects: modelling.Analysis.Mapping and modelling.Analysis.Constraints.

3 BPMN�http://www.omg.org/spec/BPMN/

http://www.omg.org/spec/BPMN/

108 SECTION 7: SETTING UP AND USING MODEF IN PRACTICE

7.1.3 Analysis and exploitation algorithms

The analysis and exploitation algorithms correspond to the boxes "Analysis proce-

dure" and "Exploitation procedure" respectively, on Figure 7.1. In the following we

discuss each in turn.

7.1.3.1 Analysis algorithms

The general analysis procedure (Section 5.1.2) is depicted on Figure 5.1. This general

procedure involves two main algorithms: CoExploration (1) and MBMW (2). In the

coExploration algorithm implementation, the exploration semantics of process and

state models are exposed each, via an interface. Such an interface encapsulates, from

a high level point of view, the resulting semantics (i.e., resulting from the application

of primitives describing the semantics of a model) graph of the exploration of models.

This encapsulation is such that the calls to the exploration primitives of process and

state models are easily managed in the co-exploration of models. The interface is

mainly equipped with the operations on a graph such as the successors of a node.

The interface is initialised with the functions (based on primitives available from

Section 7.1.2) necessary for an exploration of a model and some initial values. It

de�nes three main functions: reset, init, next which resets all the internal variables

to default values; initialises with initial parameters; returns the next possibles points

given the current one.

The two interfaces smInt and pmInt, that are input parameters of the algorithm

CoExploration (1)) are implemented within the object: modelling.Analysis.Exploration.

Note that smInt and pmInt are such that they can be executed each alone to

compute a reachable state space of a model.

MBMW and CoExploration have been implemented together in the same object:

modelling.Analysis.CoExploration. However, the portions of code corresponding

to the di�erent algorithms are identi�able. Indeed, CoExploration is an input

parameter of MBMW. As a consequence, in the sequel, we substitute the general

analysis procedure to MBMW.

As soon as we can coexplore state models and process models connected by

mappings, MBMW is straightforwardly implemented. The input parameters of

MBMW are then: AM, SM, PM, MG, Coexploration, InitialPoint, StopCriterion,

Expectations (R) and possibly Process constraints (C). MBMW computes a directed

graph (SSG) that contains the points reachable at a minimal "distance" from the

InitialPoint up to the stop criterion. With this graph, we now need to implement the

7.2. USE OF MODEF IN PRACTICE 109

exploitation algorithms to provide stakeholders with e�ective feedbacks or simply,

we need to make results understandable by a human.

7.1.3.2 Exploitation algorithms

Since it is possible to explore process and state models separately, the implemented

interfaces smInt and pmInt can be used to generate the �attened graph correspond-

ing to an execution or exploration of one of this model. All generated graphs are

saved under a GraphML4 �le. The exploitation algorithms are all implemented in

the Scala object: modelling.analysis.utils. The main exploitation algorithms and the

output data are discussed in Section 5.2. Basically, they involve graph algorithms

format to produce new customized graphs.

The originality and relevance of the implementation come from the fact that:

i) we do not introduce a new modelling tool or language ii) the de�nition of the

exploration semantics of models is explicitly implemented and decoupled from anal-

ysis and exploitation algorithms and typically could be reused as code or library. It

follows that some parts of the implementation might be used for other purposes.

7.2 Use of MODEF in practice

The global picture of the structure an usage of MODEF is depicted on Figure 7.2.

Figure 7.2 shows the �ow of execution of MODEF. At the left of Figure 7.2 are the

steps of MODEF. At the right of the di�erent steps are either the results of the

activity carried out at that corresponding step, or the tools necessary to carry out

the step.

The boxes with the blue background represent the input models of MODEF.

The box with a grey background represents the speci�cations, algorithms and their

implementations respectively. It corresponds to the aforementioned building blocks

of the implementation.This box allows to almost automatically transform its inputs

into its output: the box with a green background. This latter box mainly represents

the data that are supplied to stakeholders.

Since we have discussed before almost all of the elements of this usage, it remains

to say a word about the selected tool: Mega5. MEGA has been the tool used during

this thesis to specify models. In fact, it is one modelling tool used at the Airbus

4GraphML�http://graphml.graphdrawing.org/
5Mega�http://www.mega.com/

110 SECTION 7: SETTING UP AND USING MODEF IN PRACTICE

Figure 7.2: Using of MODEF

Defence & Space company. It is also freely available under an academic licence.

Mega can support di�erent modelling notations and languages. Indeed the models

(M) are built under the standards: Uni�ed Modelling Langage�UML6 and BPMN.

We have also customized the tool to ease the description of Expectations (R) and

Mappings (MG). Mega also has a user-friendly graphical interface.

7.3 Algorithm performance and practicality

Despite the theoretical exponential complexity (see Section 5.1.3) of the main

algorithm (MBMW) involved in MODEF, we argue on its advantages. Regarding the

practicality, we will partly rely on implementation architecture to give an evaluation.

6UML�http://www.omg.org/spec/UML/

7.3. ALGORITHM PERFORMANCE AND PRACTICALITY 111

7.3.1 Algorithm performance

Despite the exponential theoretical complexity of UCS (which could be characterized

as the theoretical understanding of the agility in the operation of modelling activities

(MA)), signi�cant depths are reachable in the state space in practice thanks to the

e�ect of the cost function. This function allows to prune sub-regions of state space

which is exponential in the size of state and process models. Besides, MA being

essentially iterative and evolutive (and to a large extent a non-automatable task),

a de�nitive behaviour is not necessarily relevant at a given point in the life cycle.

What is necessary is a locally optimal behaviour which UCS allows to compute.

Furthermore, we argued in Section 5 that the size of SoM and SoSoM are reasonable

compared to other complex systems. Nonetheless, in the worst case, one might be

interested in advanced techniques such as those used in model-checking (abstraction,

partial order reduction etc.) to combat the state explosion problem.

The e�ciency of data structures and implementation of algorithms is also im-

portant to discuss. Since we are now dealing with a prototype, we do not discuss

it.

7.3.2 Practicality

By practicality, we mean how good, appropriate, MODEF is usable in practice

independently of the techniques involved in MODEF.

In fact, the kinds of models considered in this thesis might be generated by

several tools and modelling languages supporting the ability to model system ar-

chitecture. Therefore, we think that an ad hoc implementation relative to a single

modelling tool or language would not be relevant for the involvement of di�erent

stakeholders and application of MODEF. Nonetheless, in order to automatically and

semi-formally dealing with models in practice, we require the projection of models on

a function-structure-data oriented architecture of models. This architecture enables

to explicitly and totally implement the exploration semantics of models, once for

all. Therefore, the counterpart of the preservation of the speci�cities of di�erent

stakeholders is the necessity to build a connector that translates (not transforms)

models on the proposed federated architecture.

Second, although obtaining the input models of MODEF requires a modelling

expertise, the current considered exploitation algorithms produce the outputs that

are understandable and exploitable by a non-expert. Besides, other exploitation and

112 SECTION 7: SETTING UP AND USING MODEF IN PRACTICE

analysis algorithms might be carried out since the architecture of the implementation

of MODEF separates concerns.

Finally several applications of MODEF in real situ will be necessary to relevantly

discuss its usability i.e. its e�ciency, and satisfaction against the stakeholders and

the objectives MODEF addresses.

A �rst step towards the demonstration of the usability of MODEF was the

application examples and case studies that we presented before. The case study

Maintenance of a Supermarket shows that the application of MODEF would not be

limited to the Modelling Activity.

Section 8

Conclusion and perspectives

8.1 Conclusion

In this work, we addressed the mastering of the modelling activity carried out in a

model-based systems engineering framework built of autonomous yet collaborating

stakeholders. The central question was: how to formally reason on the operation of

the modelling activities?

The challenges identi�ed and enumerated were:

(1) How to better understand and use models in the context of concurrent and

autonomous development of the modelling activities?

(2) How to analyse and identify the impact of their changes? i.e. what is the

current state of models and in which states are they likely to end up?

(3) How to help in mastering their evolution? i.e what is necessary to guarantee

that models might reach some expected states?

To tackle these challenges, we have proposed a methodology: MODEF. In this

methodology, the modelling activity is �rstly characterized as a system (and feder-

ation of systems) in its own right. At the level of the architecture of this system, a

class of discrete-event processes models, structure models and a class of �nite state

models are considered respectively to model the tasks carried out in a modelling

activity, the conceptual content of the models (M) and their expected life cycles

respectively. The e�ects of the tasks on the life cycles are also modelled via some

triggers. We introduced the expectations (or assumption-preference) formalism to

formalise the requirements related to the life cycles. An analysis procedure that

exploits the co-exploration of process and state models constrained by the triggers

was de�ned to both check how far requirements are achievable and to synthesize the

expected behaviours of the system. An exploitation of the results of the analysis

procedure enables to �gure out what could happen with the modelling tasks and their

impact on the whole state of M. We showed on 2 case studies how this exploitation

provides insightful data on how the system is operated and how it can behave. Based

113

114 SECTION 8: CONCLUSION AND PERSPECTIVES

on this information, it is possible to take some preventive or corrective actions on

how the modelling activity is carried out. As a result, the proof-of-concept of the

proposed methodology is demonstrated on the 2 case studies.

To support the e�ectiveness of our methodology, we devised enablers to formally

and modularly deal with models and algorithms involved in the methodology. At the

conceptual level, we introduced a federated architecture to exploit models outside of

the modelling tools used to produce them. At the practical level, a modular imple-

mentation that separates the di�erent concerns (models, analysis and exploitation)

is presented and set up. While these enablers are mainly intended to support our

methodology, we argued that they might be useful for model-driven engineering

from a broader perspective. Finally, the two case studies also demonstrate the

applicability of these enablers.

Upstream and downstream of the proposed methodology, we highlighted the sim-

ilarities, the di�erences and then the novelties of theoretical and practical elements

related to MODEF with respect to the related work and the challenges addressed

in this work.

8.2 Perspectives

The perspectives of this work are given for the components of MODEF, taken

separately, and MODEF in its entirety. We present each of them in the following.

• On Expectations: We argued in Section 4 that it could be interesting to

study the operations on Expectations (A/P). Indeed if Expectations were to be

exploited in a compositional fashion, operations on expectations such as composition

and conjunction would be relevant. Since preferences are based on relations (in a

mathematical sense), the operations on relations could be helpful in this regard.

• On the exploitation of analysis algorithms: The exploitation of the

analysis algorithms in Section 5 currently considers a single cost (related to node

score) and a total ordering of the cumulated costs. Another exploitation that deals

with constraints (time, etc.) on processes and a partial ordering of cumulated costs

will be suitable. Indeed, a total ordering is not always easy to set up and becomes

impossible to set up when objectives are con�icting. In this perspective, other

aggregation techniques (bipolar evaluation, stochastic ordering, etc.), the Pareto

dominance and other comparison criteria that induce a partial order could be helpful.

• On the proposed federated architecture of models: One question not

addressed in Section 6 is the internal structure's change and evolution of models. It

8.2. PERSPECTIVES 115

could be canonically manageable with the structure of models. One could introduce

an initial (zero) object (to model a destroyed box) in the structure, yielding an new

structure K. Using this structure, one de�nes again a functor from a category Kt

at a time t to the same category Kt′ at a time t′ > t. By taking the time as objects

in a category T equipped with some order, and de�ning a functor from T to K,

we obtain the change and evolution of the internal structure of models having as

structure K[34].

Another direction may consist in using the proposed architecture FA to imple-

ment some kinds of descriptive model semantics that are well-known and/or formally

written down (see, e.g., [79], [90], [99] and [92] for algebraic ones; or atomic actors

in [98]). More importantly, these implementations have to be available universally,

in a tool-independent way.

• On the entirety of MODEF: Our future work includes the exploitation

of the proposed methodology on real modelling projects to empirically discuss its

e�ciency. Therefore, an optimization of the implementation prototype might be

necessary. For instance, although the implementation is modular, some algorithms

and data structures are probably not optimally implemented. The exploitation of

MODEF will also provide feedbacks to improve its di�erent parts.

References

[1] Joël Abeille. Vers un couplage des processus de conception de systèmes et de
plani�cation de projets: formalisation de connaissances méthodologiques et de
connaissances métier. PhD thesis, 2011.

[2] Russell L Acko�. Towards a system of systems concepts. Management science,
17(11):661�671, 1971.

[3] Michel Aldanondo and Elise Vareilles. Con�guration for mass customization:
how to extend product con�guration towards requirements and process
con�guration. Journal of Intelligent Manufacturing, 19(5):521�535, 2008.

[4] Michel Aldanondo, Elise Vareilles, and Meriem Djefel. Towards an association
of product con�guration with production planning. International Journal of
Mass Customisation, 3(4):316�332, 2010.

[5] Jos CM Baeten, Joanna M van de Mortel-Fronczak, and Jacobus E Rooda. In-
tegration of supervisory control synthesis in model-based systems engineering.
In Complex Systems, pages 39�58. Springer, 2016.

[6] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles
of model checking. MIT press, 2008.

[7] Yaneer Bar-Yam. When systems engineering fails-toward complex systems
engineering. In Systems, Man and Cybernetics, 2003. IEEE International
Conference on, volume 2, pages 2021�2028. IEEE, 2003.

[8] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca,
Roberto Passerone, and Christos Sofronis. Multiple viewpoint contract-based
speci�cation and design. In International Symposium on Formal Methods for
Components and Objects, pages 200�225. Springer, 2007.

[9] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone,
Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli,
Werner Damm, Thomas Henzinger, and Kim G Larsen. Contracts for system
design. 2012.

[10] Jean Bézivin. Model driven engineering: An emerging technical space. Lecture
Notes in Computer Science, 4143:36, 2006.

[11] Benjamin S Blanchard. System engineering management. John Wiley & Sons,
2004.

117

118 References

[12] Torsten Blochwitz, Martin Otter, Johan Akesson, Martin Arnold, Christoph
Clauss, Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob
Mauss, Dietmar Neumerkel, et al. Functional mockup interface 2.0: The
standard for tool independent exchange of simulation models. In Proceedings of
the 9th International MODELICA Conference; September 3-5; 2012; Munich;
Germany, number 076, pages 173�184. Linköping University Electronic Press,
2012.

[13] Roderick Bloem, Krishnendu Chatterjee, Thomas A Henzinger, and Barbara
Jobstmann. Better quality in synthesis through quantitative objectives. In
International Conference on Computer Aided Veri�cation, pages 140�156.
Springer, 2009.

[14] Roderick Bloem, Rüdiger Ehlers, Swen Jacobs, and Robert Könighofer. How
to handle assumptions in synthesis. arXiv preprint arXiv:1407.5395, 2014.

[15] Eric Bonjour. Contributions à l'instrumentation du métier d'architecte
système: de l'architecture modulaire du produit à l'organisation du système
de conception., 2008.

[16] Tyson R Browning and Steven D Eppinger. Modeling impacts of process
architecture on cost and schedule risk in product development. IEEE
transactions on engineering management, 49(4):428�442, 2002.

[17] Dario Campagna and Andrea Formisano. Product and production process
modeling and con�guration. Fundamenta Informaticae, 124(4):403�425, 2013.

[18] Pascal Cantot and Dominique Luzeaux. Simulation and Modeling of Systems
of Systems. John Wiley & Sons, 2013.

[19] Handy Charles. Balancing corporate power: A new federalist paper. Harvard
Business Review, 70(6), 1992.

[20] Krishnendu Chatterjee, Laurent Doyen, and Thomas A Henzinger. Expressive-
ness and closure properties for quantitative languages. In Logic In Computer
Science, 2009. LICS'09. 24th Annual IEEE Symposium on, pages 199�208.
IEEE, 2009.

[21] Soo-Haeng Cho and Steven Eppinger. Product development process modeling
using advanced simulation. 2001.

[22] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. 2000,
2000.

[23] Thierry Coudert. Formalisation et exploitation de connaissances et
d'expériences pour l'aide à la décision dans les processus d'ingénierie système.
2014.

[24] Edward Crawley, Olivier De Weck, Christopher Magee, Joel Moses, Warren
Seering, Joel Schindall, David Wallace, Daniel Whitney, et al. The in�uence
of architecture in engineering systems (monograph). 2004.

References 119

[25] Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher Brooks, and
Edward A Lee. Fide: an fmi integrated development environment. In
Proceedings of the 31st Annual ACM Symposium on Applied Computing, pages
1759�1766. ACM, 2016.

[26] Werner Damm, Hardi Hungar, Bernhard Josko, Thomas Peikenkamp, and
Ingo Stierand. Using contract-based component speci�cations for virtual
integration testing and architecture design. In Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2011, pages 1�6. IEEE, 2011.

[27] Frédéric Demoly, Xiu-Tian Yan, Benoît Eynard, Samuel Gomes, and Dimitris
Kiritsis. Integrated product relationships management: a model to enable
concurrent product design and assembly sequence planning. Journal of
Engineering Design, 23(7):544�561, 2012.

[28] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269�271, 1959.

[29] Zinovy Diskin and Tom Maibaum. Category theory and model-driven
engineering: from formal semantics to design patterns and beyond. Model-
Driven Engineering of Information Systems: Principles, Techniques, and
Practice, page 173, 2014.

[30] Dov Dori. Object-process methodology: A holistic systems paradigm. Springer-
Verlag Berlin Heidelberg, 2002.

[31] Manfred Droste and Paul Gastin. Weighted automata and weighted logics.
Theoretical Computer Science, 380(1-2):69�86, 2007.

[32] Manfred Droste and Werner Kuich. Semirings and Formal Power Series, pages
3�28. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[33] Claudia M Eckert, David C Wynn, Jakob F Maier, Albert Albers, Nikola
Bursac, Hilario L Xin Chen, P John Clarkson, Kilian Gericke, Bartosz Gladysz,
and Daniel Shapiro. On the integration of product and process models in
engineering design. Design Science, 3, 2017.

[34] Andrée C Ehresmann and J-P Vanbremeersch. Hierarchical evolutive systems:
A mathematical model for complex systems. Bulletin of Mathematical Biology,
49(1):13�50, 1987.

[35] Dominique Ernadote. An automated objective-driven approach to drive the
usage of the naf framework. Information Systems Technology Panel (IST)
Symposium, 2013. Accessed October 2013.

[36] Dominique Ernadote. An ontology mindset for system engineering. In Systems
Engineering (ISSE), 2015 IEEE International Symposium on, pages 454�460.
IEEE, 2015.

[37] Dominique Ernadote. Ontology reconciliation for system engineering. In
Systems Engineering (ISSE), 2016 IEEE International Symposium on, pages
1�8. IEEE, 2016.

120 References

[38] Rik Eshuis. Reconciling statechart semantics. Science of Computer Program-
ming, 74(3):65�99, 2009.

[39] Uli Fahrenberg and Axel Legay. The quantitative linear-time�branching-time
spectrum. Theoretical Computer Science, 538:54�69, 2014.

[40] Serge Fiorèse and Jean-Pierre Meinadier. Découvrir et comprendre l'ingénierie
système. CEPADUES Editions, ISBN, 978(36493.005):6, 2012.

[41] John Fitzgerald, Peter Gorm Larsen, and Jim Woodcock. Foundations for
model-based engineering of systems of systems. In Complex Systems Design
& Management, pages 1�19. Springer, 2014.

[42] Kevin Forsberg, Hal Mooz, and Howard Cotterman. Visualizing project
management: models and frameworks for mastering complex systems. John
Wiley & Sons, 2005.

[43] Thomas Friend. Agile Project Success and Failure (The Story of the FBI
Sentinel Program), 2017. Last access May 2017.

[44] Jürgen Gausemeier, Tobias Gaukstern, and Christian Tschirner. Systems en-
gineering management based on a discipline-spanning system model. Procedia
Computer Science, 16:303�312, 2013.

[45] Joseph A Goguen and Rod M Burstall. Institutions: Abstract model theory for
speci�cation and programming. Journal of the ACM (JACM), 39(1):95�146,
1992.

[46] Charles Handy. Trust and the virtual organization. Harvard business review,
73(3):40, 1995.

[47] David Harel. Statecharts: A visual formalism for complex systems. Science
of computer programming, 8(3):231�274, 1987.

[48] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100�107, 1968.

[49] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576�580, 1969.

[50] Wilfrid Hodges. Model theory, volume 42. Cambridge University Press, 1993.

[51] Thomas O. Holland. Modeling and Simulation in the Systems Engineering
Life Cycle: Core Concepts and Accompanying Lectures, chapter Model-Based
Systems Engineering, pages 299�306. Springer London, London, 2015.

[52] INCOSE. Systems Engineering Handbook: A Guide for System Life Cycle
Process and Activities. John Wiley & Sons, Inc., 4th edition, 2015.

References 121

[53] INCOSE. Systems engineering vision 2025, http://www.incose.org/docs/
default-source/aboutse/se-vision-2025.pdf, 2015. Last access August
2015.

[54] Swen Jacobs and Roderick Bloem. The reactive synthesis competition:
Syntcomp 2016 and beyond. arXiv preprint arXiv:1611.07626, 2016.

[55] MO Jamshidi. System of systems engineering-new challenges for the 21st
century. Aerospace and Electronic Systems Magazine, IEEE, 23(5):4�19, 2008.

[56] Freddy Kamdem Simo, Dominique Lenne, and Dominique Ernadote. Mas-
tering SoS complexity through a methodical tailoring of modeling: Bene�ts
and new issues. In Systems Conference (SysCon), 2015 9th Annual IEEE
International, pages 516�520. IEEE, 2015.

[57] Freddy Kamdem Simo, Dominique Lenne, and Dominique Ernadote. Towards
Modelling of Modelling in SE. In 2016 IEEE International Symposium on
Systems Engineering (ISSE), Edinburgh, United Kingdom, oct 2016.

[58] Stephen J Kapurch. NASA Systems Engineering Handbook. DIANE Publish-
ing, 2010.

[59] Robert M Keller. Formal veri�cation of parallel programs. Communications
of the ACM, 19(7):371�384, 1976.

[60] Stuart Kent. Model driven engineering. In Integrated formal methods, pages
286�298. Springer, 2002.

[61] Annette J Krygiel. Behind the wizard's curtain. an integration environment
for a system of systems. Technical report, DTIC Document, 1999.

[62] Tom Leinster. Higher operads, higher categories. arXiv preprint math0305049,
2003.

[63] Tom Leinster. Higher operads, higher categories, volume 298. Cambridge
University Press, 2004.

[64] John Leonard. Systems engineering fundamentals. Technical report, DTIC
Document, 1999.

[65] Dominique Luzeaux. A formal foundation of systems engineering. In Complex
Systems Design& Management, pages 133�148. Springer, 2015.

[66] Dominique Luzeaux and Jean-René Ruault. Systèmes de systèmes: concepts
et illustrations pratiques. Hermès science publications-Lavoisier, 2008.

[67] Saunders Mac Lane. Categories for the working mathematician. 2nd ed. New
York, NY: Springer, 2nd ed edition, 1998.

[68] Mark W Maier. Architecting principles for systems-of-systems. In INCOSE
International Symposium, volume 6, pages 565�573. Wiley Online Library,
1996.

http://www.incose.org/docs/default-source/aboutse/se-vision-2025.pdf
http://www.incose.org/docs/default-source/aboutse/se-vision-2025.pdf

122 References

[69] Andres Felipe Melo. A state-action model for design process planning. PhD
thesis, Department of Engineering, University of Cambridge, 2002.

[70] Bertrand Meyer. Applying 'design by contract'. Computer, 25(10):40�51,
1992.

[71] Dana S Nau, Vipin Kumar, and Laveen Kanal. General branch and bound,
and its relation to a* and ao*. Arti�cial Intelligence, 23(1):29�58, 1984.

[72] Pierluigi Nuzzo, Huan Xu, Necmiye Ozay, John B Finn, Alberto L
Sangiovanni-Vincentelli, Richard M Murray, Alexandre Donzé, and Sanjit A
Seshia. A contract-based methodology for aircraft electric power system
design. IEEE Access, 2:1�25, 2014.

[73] Brendan Donal O'Donovan. Modelling and simulation of engineering design
processes. PhD thesis, University of Cambridge, 2004.

[74] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 179�190. ACM, 1989.

[75] G. Pol, C. Merlo, J. Legardeur, and G. Jared. Analysing collaborative practices
in design to support project managers. International Journal of Computer
Integrated Manufacturing, 20(7):654�668, 2007.

[76] Peter J Ramadge and W Murray Wonham. Supervisory control of a class of
discrete event processes. SIAM journal on control and optimization, 25(1):206�
230, 1987.

[77] Donna H Rhodes, Ricardo Valerdi, and Garry J Roedler. Systems engineering
leading indicators for assessing program and technical e�ectiveness. Systems
Engineering, 12(1):21�35, 2009.

[78] David Romero-Hernández and David de Frutos Escrig. Coinductive de�nition
of distances between processes: beyond bisimulation distances. In Interna-
tional Conference on Formal Techniques for Distributed Objects, Components,
and Systems, pages 249�265. Springer, 2014.

[79] Dylan Rupel and David I Spivak. The operad of temporal wiring diagrams:
formalizing a graphical language for discrete-time processes. arXiv preprint
arXiv:1307.6894, 2013.

[80] Stuart Russell and Peter Norvig. A modern approach. Arti�cial Intelligence.
Prentice-Hall, Egnlewood Cli�s, 25:27, 1995.

[81] Andrew P Sage and Christopher D Cuppan. On the systems engineering and
management of systems of systems and federations of systems. Information,
Knowledge, Systems Management, 2(4):325�345, 2001.

[82] Andrew P Sage and William B Rouse. Handbook of systems engineering and
management. John Wiley & Sons, 2009.

References 123

[83] Brian Sauser, John Boardman, and Alex Gorod. System of Systems Manage-
ment, pages 191�217. John Wiley & Sons, Inc., 2008.

[84] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY-, 39(2):25, 2006.

[85] INCOSE SEBoK. SEBok Guide to the Systems Engineering Body of
Knowledge, http://sebokwiki.org, 2016. Last access June 2017.

[86] Sanjit A Seshia, Natasha Sharygina, and Stavros Tripakis. Modeling for
veri�cation. Handbook of Model Checking, EM Clarke, T. Henzinger, and
H. Veith, Eds. Springer, 2014.

[87] Amira Sharon, Olivier L de Weck, and Dov Dori. Project management vs.
systems engineering management: A practitioners' view on integrating the
project and product domains. Systems Engineering, 14(4):427�440, 2011.

[88] Amira Sharon, Valeria Perelman, and Dov Dori. A project-product lifecycle
management approach for improved systems engineering practices. In INCOSE
International Symposium, volume 18, pages 942�957. Wiley Online Library,
2008.

[89] Weiming Shen, Douglas H Norrie, and Jean-Paul Barthès. Multi-agent systems
for concurrent intelligent design and manufacturing. CRC press, 2003.

[90] David I Spivak. The operad of wiring diagrams: Formalizing a graphical
language for databases, recursion, and plug-and-play circuits. arXiv preprint
arXiv:1305.0297, 2013.

[91] David I Spivak. Category theory for the sciences. MIT Press, 2014.

[92] David I Spivak. Nesting of dynamic systems and mode-dependent networks.
arXiv preprint arXiv:1502.07380, 2015.

[93] Duane Steward and Derrick Tate. Integration of axiomatic design and project
planning. In Proceedings of ICAD2000, First International Conference on
Axiomatic Design, MA-June, pages 21�23, 2000.

[94] CMMI Product Team. Cmmi for development, version 1.2. 2006.

[95] Stavros Tripakis. L'analyse formelle des systèmes temporisés en pratique. PhD
thesis, Université Joseph-Fourier-Grenoble I, 1998.

[96] Stavros Tripakis. Bridging the semantic gap between heterogeneous modeling
formalisms and FMI. In Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), 2015 International Conference on, pages
60�69. IEEE, 2015.

[97] Stavros Tripakis. Compositionality in the science of system design. Proceedings
of the IEEE, 104(5):960�972, 2016.

http://sebokwiki.org

124 References

[98] Stavros Tripakis, Christos Stergiou, Chris Shaver, and Edward A Lee. A
modular formal semantics for ptolemy. Mathematical Structures in Computer
Science, 23(04):834�881, 2013.

[99] Dmitry Vagner, David I Spivak, and Eugene Lerman. Algebras of open
dynamical systems on the operad of wiring diagrams. Theory and Applications
of Categories, 30(51):1793�1822, 2015.

[100] Elise Vareilles, Thierry Coudert, Michel Aldanondo, Laurent Geneste, and Joel
Abeille. System design and project planning: Model and rules to manage their
interactions. Integrated Computer-Aided Engineering, 22(4):327�342, 2015.

[101] Jon Whittle, John Hutchinson, and Mark Rounce�eld. The state of practice
in model-driven engineering. IEEE software, 31(3):79�85, 2014.

[102] NIST CCT Workshop. Computational Category Theory Workshop at NIST
on Sept. 28-29, http://www.appliedcategorytheory.org/?p=10, 2015. Last
accessed December 2016.

[103] David C Wynn. Model-based approaches to support process improvement in
complex product development. PhD thesis, University of Cambridge, 2007.

[104] David C. Wynn and P. John Clarkson. Process models in design and
development. Research in Engineering Design, Jul 2017.

http://www.appliedcategorytheory.org/?p=10

	Résumé
	Abstract
	Remerciements
	Acronyms
	List of Figures
	Table of Contents
	Introduction
	Complex systems and complex modelling activity
	Towards mastering such a complexity
	Contributions
	Organisation of this document

	Approaches for mastering the Modelling Activity
	Systems Engineering
	Overview
	SE and the Modelling Activity

	Model-based mastering of the Modelling Activity
	The OPM approach
	Coupling of TA and PA
	Other works

	Position of MODEF
	On the abstraction of the Modelling Activity
	On the modelling of the Modelling Activity
	On the analysis carried out with models
	On the implementation of approaches

	Abstraction of the Modelling Activity
	SoM and SoSoM
	System of Modelling–SoM
	System of Systems of Modelling–SoSoM
	Related research

	Application examples
	An SoM: Modelling the functional coverage of a SOI
	Examples of SoSoM

	Modelling the Modelling Activity and its Expectations
	Structure, Process and State models
	Structure model
	Process model
	State model

	Relations between process and state models
	Expectation-specification
	A/G contracts equipped with a pre-order structure on G
	Related research

	Conclusion

	What is achievable and what can happen with the modelled system?
	Analysis of system models against expectations
	General problem
	General principles for a solution
	Main sub-procedures: Coexploration and a Search Algorithm
	Discussion

	An exploitation of MBMW
	Setting up input parameters
	Exploitation of SSG

	Case Studies
	Maintenance of a Supermarket
	A SoM: Modelling the functional coverage of a SOI

	Conclusion

	A federated architecture for plugging and exploiting domain-specific models
	Metamodels, data format and interfaces
	What is an adequate level of abstraction?
	Description of the proposed architecture FA
	Fundamental organisation of a model
	Background and Notation

	Components of FA
	Structure of models
	Structure interpretations
	Structure usage or real models data

	Computational and data structures, base invariants and data format
	Data structures and base invariants
	Identification of an actual component
	Data format's structure

	Related research
	FMI
	Other works

	Conclusion

	Setting up and using MODEF in practice
	Implementation's building blocks
	Reuse models outside the modelling tool
	Availability and exploitation of models
	Analysis and exploitation algorithms

	Use of MODEF in practice
	Algorithm performance and practicality
	Algorithm performance
	Practicality

	Conclusion and perspectives
	Conclusion
	Perspectives

	References

