. , 2.2.1 Méthodologie de détection et surveillance de phénomènes particuliers, IV.2 Détection d'une localisation et définition du niveau de résolution "j"

. , Illustration de la méthode de détection sur la poutre étudiée du chapitre II

. , .3.1 Méthodologie de définition du niveau de résolu

, 2 Illustration de la méthode de définition du niveau de résolution sur la poutre étudiée du chapitre II, vol.4, p.139

. , Résolution de la méthode éléments finis via la méthode de Newton avec un support de discrétisation hybride

, Étapes de résolution via la méthode de Newton

, Méthodes adaptatives, cas bidimensionnel

, Processus multi-grilles, images extraites de la thèse de H

, Représentation des méthodes pour le traitement des effets de bords, p.32

. , Évolution de la fonction d'échelle et fonction ondelette de l'ondelette de Daubechies D6

, Évolution de la fonction dérivée (x) via l'interpolation fonction d'échelle, p.71

. , Évolution de la fonction dérivée (cos(2?x)) via l'interpolation fonction d'échelle

, Évolution de la fonction dérivée (x 2 ) via l'interpolation fonction d'échelle, p.72

. , Évolution de la fonction dérivée en dent de scie (sawtooth) via l'interpolation fonction d'échelle

. , Évolution zoomé de la fonction dérivée en dent de scie (sawtooth) via l'interpolation fonction d'échelle

, Évolution des fonctions avec des singularités au niveau de résolution "j=6, p.89

. , Poutres soumises à un essai de traction uniaxial

. , Poutres discrétisées, interpolation à l'aide d'une fonction d'échelle de l'ondelette, niveau de résolution "j=3"

I. I. , Évolution de la déformation avec la méthode WFEM

. , Évolution de la contrainte avec la méthode WFEM

. , II.12 Évolution du résidu avec la méthode WFEM

. , Évolution des déformations virtuelles, avec imposition des conditions particulières

, Évolution de la fonction dérivée (x) via l'interpolation polynomiale-ondelettes, vol.120

, Liste des tableaux

. , Valeurs initiales des fonctions d'échelle de l'ondelette de Daubechies d'ordre 4, vol.6

. , Valeurs initiales des fonctions d'échelle dérivées premières de l'ondelette de Daubechies d'ordre 4, 6, 8 et 10

. , Valeurs initiales des fonctions d'échelle intégrées au premier degré de l'ondelette de Daubechies d'ordre 4, 6, 8 et 10

, Intégration de fonctions à l'aide de l'intégration fonction d'échelle, p.73

. , Intégration du produit de fonctions dérivées par intégration approchée fonction d'échelle

. , Intégration du produit de 2 fonctions en dents de scie par intégration approchée fonction d'échelle

. , Intégration du produit de 4 fonctions en dents de scie par intégration approchée fonction d'échelle

. , II.5 Intégration du produit de 2 fonctions porte par intégration approchée fonction d'échelle

. , II.6 Intégration du produit de 3 fonctions porte par intégration approchée fonction d'échelle

. , Intégration de fonctions à l'aide de l'intégration polynomiale-fonction d'échelle, p.126

. , Intégration du produit de fonctions dérivées par intégration approchée polynomialefonction d'échelle

. , Intégration du produit de 2 fonctions en dent de scie par intégration approchée polynomiale-fonction échelle

A. , Valeurs des coefficients h i du filtre passe-bas de l'ondelette de Daubechies d'ordre 6

, Valeurs des coefficients p i de l'ondelette de Daubechies d'ordre 6, p.171

. , A.3 Valeurs propres de la matrice M

. , A.4 Valeurs propres de la matrice M

, A.5 Valeurs initiales de la fonction d'échelle de l'ondelette de Daubechies d'ordre 6, vol.172, p.181

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

. , Valeurs propres de la matrice M (1)

. , Valeurs propres de la matrice M (1)

. , Valeurs initiales de la fonction d'échelle dérivée au premier degré de l'ondelette de Daubechies d'ordre 6

C. , Valeurs initiales de la fonction d'échelle intégrée au premier degré de l'ondelette de Daubechies d'ordre 6

D. , Moments translatés de l'ondelette de Daubechies d'ordre 6 en fonction du degré du polynôme "z" et du facteur de translation "k"

, Valeurs de l'intégrale du produit de deux fonctions d'échelle de l'ondelette de Daubechies d'ordre 6 en fonction des facteurs de translation "k" et "l

, Valeurs de l'intégrale du produit de deux fonctions d'échelle dérivées de l'ondelette de Daubechies d'ordre 6 en fonction des facteurs de translation "k" et "l

.. .. , , vol.178, p.182

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

. Bibliographie,

M. A. Alves, P. Cruz, A. Mendes, F. D. Magalhaes, F. Pinho et al., Adaptive multiresolution approach for solution of hyperbolic pdes. Computers methods in applied mechanics and engineering, vol.191, pp.3909-3928, 2002.

H. Antes, Bicubic fundamental splines in plate bending, International journal for numerical methods in engineering, vol.8, pp.503-511, 1974.

M. R. Arruda and L. M. Castro, Structural dynamic analysis using hybrid and mixed finite element models. Finite Elements in, Analysis and Design, vol.57, pp.43-54, 2012.

H. Askes and A. Rodriguez-ferran, A combined rh-adaptive scheme based on domain subdivision. formulation and linear examples, International journal for numerical methods in engineering, vol.51, pp.253-273, 2001.

I. Babuska, T. Strouboulis, A. Mathur, and C. S. Upadhyay, Pollution-error in the h-version of the finite-element method and the local quality of a-posteriori error estimators, Finite Elements in Analysis and Design, vol.17, pp.273-321, 1994.

I. Babuska and M. Suri, The h-p version of the finite element method with quasiuniform meshes. Mathematical, modelling and numerical analysis, vol.21, pp.199-238, 1987.

I. Babuska and M. Suri, The optimal convergence rate of the p-version of the finite element method, SIAM Journal on Numerical Analysis, vol.24, issue.4, pp.750-776, 1987.

I. Babuska and B. Szabo, On the rates of convergence of the finite element method, International journal for numerical methods in engineering, vol.18, pp.323-341, 1982.

G. Bao, G. Hu, and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, Journal of computational Physics, vol.231, pp.4967-4979, 2012.

L. Barbié, Raffinement de maillage multi-grille local en vue de la simulation 3D du combustible nucléaire des Réacteurs à Eau sous Pression. Mécanique, physique, micro et nanoélectronique, 2013.

F. B. Barros, S. P. Proenca, and C. S. De-barcellos, Generalized finite element method in structural nonlinear analysis-a p-adaptive strategy, Computational Mechanics, vol.33, pp.95-107, 2004.

G. Beckett, J. A. Mackenzie, and M. L. Robertson, A moving mesh finite element method for the solution of two-dimensional strefan problems, Journal of computational Physics, vol.168, pp.500-518, 2001.

T. Belytschko and M. Tabbara, H-adaptive finite element methods for dynamic problems, with emphasis on localization, International journal for numerical methods in engineering, vol.36, pp.4245-4265, 1993.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

M. J. Berger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of computational Physics, vol.53, pp.484-512, 1984.

J. Bigot, Analyse par ondelettes, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00003344

E. Biotteau, A. Gravouil, A. A. Lubrecht, and A. Combescure, Multigrid solver with automatic mesh refinement for transient elastoplastic dynamic problems. International journal for numerical methods in engineering, vol.84, pp.947-971, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525956

A. Boersma and P. Wriggers, An algebraic multigrid solver for finite element computations in solid mechanics, Engineering computations, vol.14, issue.2, pp.202-215, 1997.

M. Borrel, J. Ryan, G. Billet, ;. Wesseling, E. Onate et al., A generalized patch amr platform that uses cell centered or cell vertex solvers, European Conference on Computational Fluid Dynamics, 2006.

A. Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of computation, vol.31, issue.138, pp.333-390, 1977.

A. Brandt, Rigorous quantitative analysis of multigrid, i : Constant coefficients twolevel cycle with l2-norm, SIAM Journal on Numerical Analysis, vol.31, issue.6, pp.1695-1730, 1994.

C. M. Brislawn, Classification of nonexpansive symmetric extension transform for multirate filter banks, Applied and Computational harmonic analysis, vol.3, issue.0026, pp.337-357, 1996.

W. Cao, W. Huang, and R. D. , Comparison of two-dimensional r-adaptive finite element methods using various error indicators, Mathematics and computers in simulation, vol.56, pp.127-143, 2001.

G. Carré and A. Dervieux, On the application of fmg to variational approximation of flow problems, International journal of computational fluid dynamics, vol.12, issue.2, pp.99-117, 1999.

L. M. Castro, Polynomial wavelets in hybrid-mixed stress finite element models. International journal for numerical methods in biomedical engineering, vol.26, pp.1293-1312, 2010.

L. M. Castro and J. , Teixeira de Freitas. Wavelets in hybrid-mixed stress elements, Computers methods in applied mechanics and engineering, vol.190, pp.3977-3998, 2001.

L. M. Santos-castro and A. R. Barbosa, Implementation of an hybrid-mixed stress model based on the use of wavelets, Computers and structures, vol.84, pp.718-731, 2006.

P. Cavin, Methode éléments finis avec raffinement spatial et temporel adaptatif et automatique : "Star-method" (Space time automatic refinement). Mecanique, INSA Lyon, 2006.

P. Cavin, A. Gravouil, A. A. Lubrecht, and A. Combescure, Efficient fem calculation with predefined precision through automatic grid refinement, Finite Elements in Analysis and Design, vol.41, pp.1043-1055, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00373832

L. Champaney and L. Gendre, Ecole normale supérieure paris-saclay, 2012.

C. Chauvin, Les ondelettes comme fonctions de base dans le calcul de structures eletroniques. Mathématiques, sciences et technologies de l'information, informatique, 2005.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

J. Chen, W. Tang, and M. Xu, A mesh-free analysis of the ship structures based on daubechies wavelet basis theory, Journal of information and computational science, vol.12, issue.5, pp.1675-1684, 2015.

M. Q. Chen, C. Hwang, and Y. P. Shih, The computation of wavelet-galerkin approximation on a bounded interval, International journal for numerical methods in engineering, vol.39, pp.2921-2944, 1996.

M. Q. Chen, C. Hwang, and Y. P. Shih, A wavelet-galerkin method for solving population balance equations, Computers and Chemical Engineering, vol.20, issue.2, pp.131-145, 1996.

X. Chen, J. Xiang, B. Li, and Z. He, A study of multiscale wavelet-based elements for adaptive finite element analysis. Advances in Engineering software, vol.41, pp.196-205, 2010.

X. Chen, S. Yang, J. Ma, and Z. He, The construction of wavelet finite element and its application, Finite Elements in Analysis and Design, vol.40, pp.541-554, 2004.

C. K. Chui and J. Z. Wang, A cardinal spline approach to wavelets, Proceedings of the American Mathematical Society, vol.113, issue.3, pp.785-793, 1991.

A. Cohen, Construction de bases d'ondelettes a holdériennes, Revista Matematica Iberoamericana, vol.6, issue.3-4, pp.91-108, 1990.

C. , Ondelettes pour la détection de caratéristiques en traitement d'images. Mathématiques, sciences et technologies de l'information, informatique, 2008.

T. B. Dang, Calcul multi-échelle de singularités et applications en mécanique de la rupture, 2013.

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.XLI, pp.909-996, 1988.

I. Daubechies, Ten lectures on wavelets, 1992.

L. Demkowicz, . Ph, J. T. Devloo, and . Oden, On an h-type mesh-refinement strategy based on minimization of interpolation errors, Computers methods in applied mechanics and engineering, vol.53, pp.67-89, 1985.

L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy, Toward a universal h-p adaptive finite element strategy, part 1 constrained approximation and data structure, Computers methods in applied mechanics and engineering, vol.77, pp.79-112, 1989.

L. A. Diaz, M. T. Martin, and V. Vampa, Daubechies wavelet beam and plate finite elements. Finite Elements in Analysis and Design, vol.45, pp.200-209, 2008.

P. Diez and A. Huerta, A unified approach to remeshing strategies for finite element h-adaptivity, Computers methods in applied mechanics and engineering, vol.176, pp.215-229, 1999.

H. B. Dong, X. F. Chen, B. Li, K. Y. Qi, and Z. J. He, Rotor crack detection based on high-precision modal parameter identification method and wavelet finite element model. Mechanical Systems and Signal Processing, vol.23, pp.869-883, 2009.

C. Ducottet, Ondelettes, analyse de singularités lissées et traitement d'hologrammes numériques de micro-particules. Hdr, 2003.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

A. Duster, A. Niggl, and E. Rank, Applying the hp-d version of the fem to locally enhance dimensionally reduced models, Computers methods in applied mechanics and engineering, vol.196, pp.3524-3533, 2007.

A. Duster and E. Rank, The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity, Computers methods in applied mechanics and engineering, vol.190, 1925.

M. G. Edwards, J. T. Oden, and L. Demkowicz, An h-r-adaptive approximate riemann solver for the euler equations in two dimensions, SIAM Journal on scientific computing, vol.14, issue.1, pp.185-217, 1993.

W. Ehlers, M. Ammann, and S. Diebels, h-adaptive fe methods applied to single-and multiphase problems, International journal for numerical methods in engineering, vol.54, pp.219-239, 2002.

T. O. Espelid and A. Genz, Decuhr : an algorithm for automatic integration of singular functions over a hyperrectangular region, Numerical algorithms, vol.8, issue.2, pp.201-220, 1994.

R. P. Fedorenko, A relaxation method for solving elliptic difference equations, USSR Computational Mathematics and Mathematical Physics, pp.1092-1096, 1961.

P. J. Ferket, The finite difference based fast adaptive composite grid method. Numerical linear algebra with applications, vol.3, pp.391-411, 1996.

P. J. Ferket, The finite difference based fast adaptive composite grid method. Numerical linear algebra with applications, vol.3, pp.391-411, 1996.

P. J. Ferket and A. A. Reusken, Further analysis of the local defect correction method, Computing, vol.56, pp.114-139, 1996.

M. Ferreti and D. Rizzo, Handling borders in systolic architectures for 1d discrete wavelet transform for perfect reconstruction, IEEE Transactions on signal processing, vol.48, issue.5, pp.1365-1378, 2000.

J. Fish, The s-version of the finite element method. Computers and structures, vol.43, pp.539-547, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01842172

J. Fish and R. Guttal, The s-version of finite element method for laminated composites, International journal for numerical methods in engineering, vol.39, pp.3641-3662, 1996.

J. Fish and S. Markolefas, The s-version of the finite element method for multilayer laminates, International journal for numerical methods in engineering, vol.33, pp.1081-1105, 1992.

J. Fish and S. Markolefas, Adaptive s-method for linear elastostatics, Computers methods in applied mechanics and engineering, vol.104, pp.363-396, 1993.

J. Fish and S. Markolefas, Adaptive global-local refinement strategy based on the interir error estimates of the h-method, International journal for numerical methods in engineering, vol.37, pp.827-838, 1994.

D. Fournier, R. L. Tellier, and C. Suteau, Analysis of an a posteriori error estimator for the transport equation with sn and discontinuous galerkin discretizations, Annals of Nuclear Energy, vol.38, pp.221-231, 2011.

J. Frohlich and M. Uhlmann, Orthonormal polynomial wavelets on the interval and applications to the analysis of turbulent, SIAM Journal on Applied Mathematics, vol.63, issue.5, pp.1789-1830, 2003.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

D. Gabor, Journal of the Institution of Electrical Engineers-Part III : Radio and Communication Engineering, vol.93, pp.429-441, 1946.

S. Geniaut, Approche X-FEM pour la fissuration sous contact des structures industrielles, 2006.

S. Ghosh and S. K. Manna, R-adapted arbitrary lagrangian-eulerian finite-element method in metal-forming simulation, Journal of materials Engineering and Performance, vol.2, pp.271-282, 1993.

J. C. Goswami, A. K. Chan, and C. K. Chui, On solving first-kind integral equations using wavelets on a bounded interval, IEEE Transactions on antennas and propagation, vol.43, issue.6, pp.614-622, 1995.

A. Grossmann and J. Morlet, Decomposition of hardy functions into square integrable wavelets of constant shape, SISIAM journal on mathematical analysis, vol.15, issue.4, pp.723-736, 1984.

B. Guo and I. Babuska, The h-p version of the finite element method, Computational Mechanics, vol.1, issue.1, pp.21-41, 1986.

W. Hackbusch, Local defect correction method and domain decomposition techniques. Computing Suppl, vol.5, pp.89-113, 1984.

W. Hackbusch, of Springer series in computational mathematics, Multi-Grid Methods and Applications, vol.4, 1985.

C. S. Han and P. Wriggers, An h-adaptive method for elasto-plastic-shell-problems, Computers methods in applied mechanics and engineering, vol.189, pp.651-671, 2000.

J. G. Han, W. Ren, and Y. Huang, A multivariable wavelet-based finite element method and its application to thick plates, Finite Elements in Analysis and Design, vol.41, pp.821-833, 2005.

J. G. Han, W. Ren, and Y. Huang, A wavelet-based stochastic finite element method of thin plate bending, Applied mathematical modelling, vol.31, pp.181-193, 2005.

J. G. Han, W. X. Ren, and Y. Huang, A spline wavelet finite-element method in structural mechanics, International journal for numerical methods in engineering, vol.66, pp.166-190, 2006.

J. G. Han, W. X. Ren, and Y. Huang, A spline wavelet finite element formulation of thin plate bending, Engineering with Computers, vol.25, pp.319-326, 2009.

L. Hart, S. F. Mccormick, and A. O'gallagher, The fast adaptive composite grid (fa) : Algorithms for advanced computers, Applied Mathematics and Computation, vol.19, pp.103-125, 1986.

H. Hashish, S. H. Behiry, and N. A. El-shamy, Numerical integration using wavelets. Applied Mathematics and Computation, vol.211, pp.480-487, 2009.

Y. He, X. Chen, J. Xiang, and Z. He, Adaptive multiresolution finite element method based on second generation wavelets, Finite Elements in Analysis and Design, vol.43, pp.566-579, 2007.
DOI : 10.1016/j.finel.2006.12.009

Y. He, X. Chen, J. Xiang, and Z. He, Multiresolution analysis for finite element method using interpolating wavelet and lifting scheme, Communications in numerical methods in engineering, vol.24, pp.1045-1066, 2008.
DOI : 10.1002/cnm.1011

Y. He, J. Ye, X. Chen, and Z. He, Discussion on calculation of the local flexibility due to the crack in a pipe, Mechanical Systems and Signal Processing, vol.23, pp.804-810, 2009.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

S. L. Ho and S. Y. Yang, Wavelet-galerkin method for solving parabolic equations in finite domains. Finite Elements in Analysis and Design, vol.37, pp.1023-1037, 2001.

W. Huang and R. D. , Adaptive moving mesh methods, vol.174, pp.66-5452, 2010.

B. Jawerth and W. Sweldens, An overview of wavelet based multiresolution analyses, Siam review, vol.36, issue.3, pp.377-412, 1994.

R. Q. Jia and S. T. Liu, Wavelet bases of hermite cubic splines on the interval, Advances in Computational Mathematics, vol.25, pp.23-29, 2006.

M. E. Jimenez and N. G. Prelcic, Linear boundary extensions for finite length signals and paraunitary two channel filterbanks, IEEE Transactions on signal processing, vol.52, issue.11, pp.3213-3226, 2004.

J. Jin, P. Xue, Y. Xu, and Y. Zhu, Compactly supported non-tensor product form two-dimension wavelet finite element, Applied Mathematics and Mechanics, vol.27, issue.12, pp.1673-1686, 2006.

J. R. Williams and K. Amaratunga, Introduction to wavelets in Engineering, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01311772

J. R. Williams and K. Amaratunga, A discrete wavelet transform without edge effects using wavelet extrapolation. The journal of fourier analysis and applications, vol.3, pp.435-449, 1997.

K. Khadra, . Ph, J. P. Angot, P. Caltagirone, and . Morel, Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes l.d.c.,f.a.c. et f.i.c. Mathematical, modelling and numerical analysis, vol.30, pp.39-82, 1996.

J. Ko, A. J. Kurdilla, and M. S. Pilant, A class of finite element methods based on orthonormal, compactly supported wavelets, Computational Mechanics, vol.16, pp.235-244, 1995.

E. J. Kubatko, S. Bunya, C. Dawson, and J. J. Westerink, Dynamic p-adaptive rungekutta discontinuous galerkin methods for the shallow water equations, Computers methods in applied mechanics and engineering, vol.198, pp.1766-1774, 2009.

P. Ladevèze and J. P. Pelle, Mastering calculations in linear and nonlinear mechanics, vol.171, 2005.

P. Ladevèze, J. P. Pelle, and P. H. Rougeot, Error estimation and mesh optimization for classical finite elements. Engineering computations, vol.8, pp.69-80, 1991.

F. Lebon, Two-grid method for regularized frictional elastostatics problems. Engineering computations, vol.12, pp.657-664, 1995.

F. Lebon, M. Raous, and L. Rosu, Multigrid methods for unilateral contact problems with friction, IUTAM-Symposium on Computational Methods in Contact Mechanics, pp.1-16, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00476788

D. Lebrun-grandié, J. Ragusa, and B. Turcksin, Adaptive multimesh hp-fem for a coupled neutronics and nonlinear heat conduction problem, International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, 2011.

P. G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Revista Matematica Iberoamericana, vol.2, issue.1-2, pp.1-18, 1986.

M. Lemke and D. Quinlan, Fast adaptive composite grid methods on distributed parallel achitectures, International Journal for Numerical Methods in Biomedical Engineering, vol.8, issue.9, pp.609-619, 1992.
DOI : 10.1002/cnm.1630080908

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

B. Li and X. Chen, Wavelet-based numerical analysis : A review and classification. Finite Elements in Analysis and Design, vol.81, pp.14-31, 2013.
DOI : 10.1016/j.finel.2013.11.001

B. Li, C. Hongrui, and Z. He, 686. the construction of one-dimensional daubechies wavelet-based finite elements for structural response analysis, Journal of Vibroengineering, vol.13, issue.4, 2011.

L. Y. Li, J. W. Bull, T. Bond, and I. Applegarth, Theoretical formulations for adaptive finite element computations, Communications in numerical methods in engineering, vol.11, pp.857-868, 1995.
DOI : 10.1002/cnm.1640111010

E. B. Lin and X. Zhou, Connection coefficients on an interval and wavelet solutions of burgers equation, Journal of computational and applied mathematics, vol.135, pp.63-78, 2000.
DOI : 10.1016/s0377-0427(00)00562-8

URL : https://doi.org/10.1016/s0377-0427(00)00562-8

W. Lin, N. Kovvali, and L. Carin, Direct algorithm for computation of derivatives of the daubechies basis functions, Applied Mathematics and Computation, vol.170, pp.1006-1013, 2005.

H. Liu, Stratégie de raffinement automatique de maillage et méthodes multigrilles locales pour le contact : application à l'interaction mécanique Pastille-Gaine. Sciences pour l'ingénieur : mécanique, physique, micro et nanoélectronique, 2016.

J. Ma, J. Xue, S. Yang, and Z. He, A study of the construction and application of a daubechies wavelet-based beam element, Finite Elements in Analysis and Design, vol.39, pp.965-975, 2002.

S. G. Mallat, A theory for multiresolution signal decomposition : the wavelet representation, 1987.

S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of l 2, Transactions of the American mathematical society, vol.315, issue.1, pp.69-87, 1989.
DOI : 10.2307/2001373

S. G. Mallat, A theory for multiresolution signal decomposition : the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, vol.11, pp.674-693, 1989.
DOI : 10.1515/9781400827268.494

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1703&context=cis_reports

S. G. Mallat, A wavelet tour of signal processing, 2009.

S. G. Mallat and W. Hwang, Singularity detection and processing with wavelets, IEEE Transactions on information theory, vol.38, issue.2, pp.617-643, 1992.
DOI : 10.1109/18.119727

S. F. Mccormick, Fast adaptive composite grid (fac) methods : Theory for the variational case, Defect correction methods, pp.115-121, 1984.

S. F. Mccormick and J. Thomas, The fast adaptive composite grid (fac) method for elliptic equations, Mathematics of computation, vol.46, issue.174, pp.439-456, 1986.

J. M. Melenk and I. Babuska, The partition of unity finite element method : basic theory and applications. Computers methods in applied mechanics and engineering, vol.139, pp.289-314, 1996.

Y. Meyer, Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs. Séminaire Bourbaki, vol.28, pp.209-223, 1985.

Y. Meyer, Ondelettes et opérateurs i : ondelettes, 1990.

Y. Meyer, S. Jaffard, and O. Rioul, L'analyse par ondelettes, Pour la science, vol.119, pp.28-37, 1987.

M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, Les ondelettes et leurs applications. Hermès science publications, 2003.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

M. J. Anthonissen, B. Van't-hof, and A. A. Reusken, A finite volume scheme for solving elliptic boundary value problems on composite grids, Computing, vol.61, pp.285-305, 1998.

N. Moës and T. Belytschko, X-fem, de nouvelles frontières pour les éléments finis, vol.11, pp.305-318, 2002.

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International journal for numerical methods in engineering, vol.46, issue.1, pp.131-150, 1999.

J. Morlet, G. Arens, E. Fourgeau, and D. Giard, Wave propagation and sampling theory-part 1 : Complex signal and scattering in multilayered media, Geophysics, vol.47, issue.2, pp.203-221, 1982.

I. V. Nicolae, P. T. Nicolae, and D. C. Purcaru, Computational issues related to the discrete wavelet analysis of power systems, 2011.

O. M. Nielsen, Wavelets in scientific computing, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00803835

J. T. Oden and L. Demkowicz, h-p adaptive finite element methods in computational fluid dynamics. Computers methods in applied mechanics and engineering, vol.89, pp.11-40, 1991.

E. Onate and G. Bugeda, A study of mesh optimality criteria in adaptive finite element analysis. Engineering computations, vol.10, pp.307-321, 1993.

R. D. Patton and P. C. Marks, One-dimensional finite elements based on the daubechies family of wavelets, AIAA Journal, vol.34, issue.8, pp.1696-1698, 1996.

T. H. Pian and D. P. Chen, Alternative ways for simulation of hybrid stress elements, International journal for numerical methods in engineering, vol.18, pp.1679-1684, 1982.

T. H. Pian and K. Sumihara, Rational approach for assumed stress finite elements, International journal for numerical methods in engineering, vol.20, pp.1685-1695, 1984.

L. Quarta, Une introduction élémentaire à la théorie des ondelettes. Cahier pédagogique, vol.2, p.22, 2001.

S. M. Quraishi and K. Sandeep, A second generation wavelet based finite elements, Computational Mechanics, vol.48, pp.163-174, 2011.

W. Rachowicz, An anisotropic h-adpative finite element method for compressible navier-stokes equations, Computers methods in applied mechanics and engineering, vol.146, pp.231-252, 1997.

W. Rachowicz and A. Zdunek, An hp-adaptive finite element method for scattering problems in computational electromagnetics, International journal for numerical methods in engineering, vol.62, pp.1226-1249, 2005.

D. Ritter, M. Sturmer, and U. Rude, A fast-adaptive composite grid algorithm for solving the free-space poisson problem on the cell broadband engine. Numerical linear algebra with applications, vol.17, pp.291-305, 2010.

C. H. Romine and B. W. Peyton, Computing connection coefficients of compactly supported wavelets on bounded intervals, Computer Science and Mathamatics Division, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01321539

A. Sbitti, Propagation des fissures 2D et 3D planes sous chargement thermomécanique à amplitudes variables, p.190, 2009.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

J. A. Sethian, Level set methods and fast marching methods : evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol.3, 1999.

M. Siavelis, Modélisation numérique X-FEM de grands glissements avec frottement le long d'un réseau de discontinuités, 2011.

P. Solin, J. Cerveny, L. Dubcova, and D. Andrs, Monolithic discretization of linear thermoeslasticity problems via adaptive multimesh hp-fem, Journal of computational and applied mathematics, vol.234, pp.2350-2357, 2010.

G. Strang and T. Nguyen, Wavelets and filterbanks, 1996.

T. Strouboulis and K. A. Haque, Recent expreriences with error estimation and adaptivity, part ii : error estimation for h-adaptive approximations on grids of triangles and quadrilaterals, Computers methods in applied mechanics and engineering, vol.100, pp.359-430, 1992.

H. Su, Q. Liu, and J. Li, Boundary effects reduction in wavelet transform for timefrequency analysis, Wseas transactions on signal processing, vol.8, pp.169-179, 2012.

N. Sukumar, N. Moës, B. Moran, and T. Belytschko, Extended finite element method for three-dimensional crack modeling, International journal for numerical methods in engineering, vol.48, pp.1549-1570, 2000.

W. Sun and N. G. Zamani, An adaptive h-r boundary element algorithm for the laplace equation, International journal for numerical methods in engineering, vol.33, pp.537-552, 1992.

W. Sweldens, The lifting scheme : A custom-design construction of biorthogonal wavelets, Applied and Computational harmonic analysis, vol.3, pp.186-200, 1996.

W. Sweldens, The lifting scheme : A construction of second generation wavelets, SIAM journal on mathematical analysis, vol.29, issue.2, pp.511-546, 1998.

C. Taswell and K. C. Mcgill, Algorithm 735 : Wavelet transform algorithms for finite duration discrete time signals, ACM Transactions on Mathematical Software, vol.20, issue.3, pp.398-412, 1994.

A. Tezuka and O. Okuda, An adaptive mesh refinement for the finite element method (trial by the r-method), JSME International Journal, vol.31, issue.1, pp.50-55, 1988.

J. W. Thomas, R. Schweitzer, M. Heroux, S. F. Mccormick, and A. M. Thomas, Application of the fast adaptive composite grid method to computational fluid dynamics, Tenth International Conference on Numerical Methods in Fluid Dynamics, pp.606-611, 1986.

F. Truchetet, Ondelettes pour le signal numérique. Collection "Traitement du signal, 1998.

Y. Wang, X. Chen, and Z. He, Adaptive multiwavelet-hierarchical method for multiscale computation, International Journal for Multiscale Computational Engineering, vol.8, issue.4, 2010.

Y. Wang, X. Chen, and Z. He, An adaptive inverse iteration algorithm using interpolating multiwavelets for structural eigenvalue problems, Mechanical Systems and Signal Processing, vol.25, pp.591-600, 2011.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

Y. Wang, X. Chen, and Z. He, A second-generation wavelet-based finite element method for the solution of partial differential equations, Applied Mathematics Letters, vol.25, pp.1608-1613, 2012.

J. U. Wappler, Die lokale Defektkorrekturmethode zur adaptiven Diskretisierung elliptischer Differentialgleichungen mit finiten Elementen. dissertation. de, 1999.

B. Watremetz, M. C. Baietto-dubourg, and A. A. Lubrecht, 2d thermo-mechanical contact simulations in a functionally graded material : A multigrid-based approach, Tribology international, vol.40, pp.754-762, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00507274

P. Wriggers and A. Boersma, A parallel algebraic multigrid solver for problems in solid mechanics discretisized by finite elements. Computers and structures, vol.69, pp.129-137, 1998.

J. Xiang, X. Chen, Z. He, and Y. Zhang, A new wavelet-based thin plate element using b-spline wavelet on the interval, Computational Mechanics, issue.41, pp.243-255, 2007.

J. Xiang, X. Chen, and X. Li, Numerical solution of poisson equations with wavelet bases of hermite cubic splines on the interval, Applied Mathematics and Mechanics, vol.30, issue.10, pp.1325-1334, 2009.

J. W. Xiang, X. F. Chen, B. Li, Y. M. He, and Z. J. He, Identification of a crack in a beam based on the finite element method of a b-spline wavelet on the interval, Journal of sound and vibration, vol.296, pp.1046-1052, 2006.

J. W. Xiang, T. Matsumoto, J. Q. Long, and G. Ma, Identification of damage locations based on operating deflection shape. Nondestructive testing and evaluation, vol.28, pp.166-180, 2013.

Z. Yang, X. Chen, X. Zhang, and Z. He, Free vibration and buckling analysis of plates using b-spline wavelet on the interval mindlin element, Applied mathematical modelling, vol.37, pp.3449-3466, 2013.

Z. Yue and D. H. Robbins, Adaptive superposition of finite element meshes in elastodynamic problems, International journal for numerical methods in engineering, vol.63, pp.1604-1635, 2005.

Z. Yue and D. H. Robbins, Adaptive superposition of finite element meshes in non-linear transient solid mechanics problems, International journal for numerical methods in engineering, vol.72, pp.1063-1094, 2007.

X. Zhang, X. Chen, Z. He, and Z. Yang, The analysis of shallow shells based on multivariable wavelet finite element method. Acta mechanica solida sinica, vol.24, pp.450-460, 2011.

Y. Zhong and J. Xiang, Construction of wavelet-based elements for static and stability analysis of elastic problems. Acta mechanica solida sinica, vol.24, pp.355-364, 2011.

X. Zhou and W. Zhang, The evaluation of connection coefficients on an interval, Communications in Nonlinear Science and Numerical Simulation, vol.3, issue.4, pp.252-255, 1998.

Y. Zhou and J. Zhou, A modified wavelet approximation of deflections for solving pdes of beams and square thin plates. Finite Elements in Analysis and Design, vol.44, pp.773-783, 2006.

O. C. Zienkiewicz, J. P. De, S. R. Gago, and D. W. Kelly, The hierarchical concept in finite element analysis. Computers and structures, vol.16, pp.53-65, 1983.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

K. Erwan and . Bibliographie,

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, International journal for numerical methods in engineering, vol.24, pp.337-357, 1987.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.

, Éléments finis en transformations finies, à base d'ondelettes Erwan Kergourlay, 2017.