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Abstract

Interpretation of image contents is a very important objective in image processing
and computer vision. Wherefore, it has received much attention of researchers. Digital
image contains a lot of information such as color, shapes, edges, corners, size, orientation
and etc. Moreover, contours include the most important structures in the image. In
order to extract features contour of an object, we must detect the edges of that object.
Edge detection, remains a key point and very important step in wide range of applica-
tions such as: image restoration, enhancement, steganography, watermarking, image
retrieval, recognition, compression, and etc. An efficient boundary detection method
should create a contour image containing edges at their correct locations with a mini-
mum of misclassified pixels. However, the performance evaluation of the edge detection
results is still a challenging problem. The digital images are sometimes modified by a
legal or illegal data in order to send special or secret data. These changes modify slight
values of this image. In order to be less visible, most of the steganography methods
modify the pixel values in the edge/texture image areas. Therefore, it is important to
detect the presence of hidden data in digital images. This thesis is divided into two
main parts. The first part, deals with filtering edge detection, contours evaluation and
corners detection methods. More deeply, there are five contributions are presented in
this part: first, proposed a new normalized supervised edge map quality measure. The
strategy to normalize the evaluation enables to consider a score close to 0 as a good
edge map, whereas a score 1 translates a poor segmentation. Second, proposed a new
technique to evaluate filtering edge detection methods involving the minimum score of
the considerate measures. Moreover, build a new ground truth edge map labelled in
semi-automatic way in real images. Third, proposed a new measure takes into account
the distances of false positive points to evaluate an edge detector in an objective way.
Finally, proposed a new approach for corner detection based on the combination of
directional derivative and homogeneity kernels. The proposed approach remains more
stable and robust to noise than ten famous corner detection methods. The second
part, deals with color image steganalysis, based on a machine learning classification.
More deeply, there are three contributions are presented in this part: first, proposed a
new color image steganalysis method based on extract color features from correlations
between the gradients of red, green and blue channels. Since these features give the
cosine of angles between gradients. Second, proposed a new color steganalysis method
based on geometric measures obtained by the sine and cosine of gradient angles between
all the color channels. Finally, proposed a new approach for color image steganalysis
based on steerable Gaussian filters bank. All the three proposed methods in this part,
provide interesting and promising results by outperforming the state-of-art color image
steganalysis.

Keywords : Oriented filters, edge detection, corners detection, ground truth, supervised
evaluation, steganography, steganalysis.





Resumé

L’interprétation du contenu de l’image est un objectif très important dans le traitement
de l’image et la vision par ordinateur. Par conséquent, plusieurs chercheurs y sont
intéressés. Une image contient des informations multiples qui peuvent être étudiés,
telles que la couleur, les formes, les arêtes, les angles, la taille et l’orientation. En
outre, les contours contiennent les structures les plus importantes de l’image. Afin
d’extraire les caractéristiques du contour d’un objet, nous devons détecter les bords de
cet objet. La détection de bords est un point clédans plusieurs applications, telles que :
la restauration, l’amélioration de l’image, la stéganographie, le filigrane, la récupéra-
tion , la reconnaissance et la compression de l’image, etc. Toutefois, l’évaluation de
la performance de la méthode de détection de bordsreste un granddéfi. Les images
numériques sont parfois modifiées par une procédure légale ou illégale afin d’envoyer
des données secrètes ou spéciales. Afin d’être moins visibles, la plupart des méthodes
stéganographiques modifient les valeurs de pixels dans les bords/textures de parties de
l’image. Par conséquent, il est important de détecter la présence de données cachées
dans les images numériques. Cette thèse est divisée principalement en deux parties.
La première partie discutel’évaluation des méthodes de détection des bords du filtrage,
des contours et des angles. En effet, cinq contributions sont présentées dans cette
partie : d’abord, nous avons proposé un nouveau plan de surveillance normalisée de
mesure de la qualité. En second lieu, nous avons proposé une nouvelle technique pour
évaluer les méthodes de détection des bords de filtrage impliquant le score minimal des
mesures considérées. En plus, nous avons construit une nouvelle vérité terrain de la
carte de bords étiquetéed’une manière semi-automatique pour des images réelles. En
troisième lieu, nous avons proposé une nouvelle mesure prenant en compte les distances
de faux points positifs pour évaluer un détecteur de bordsd’une manière objective. Enfin,
nous avons proposé une nouvelle approche de détectionde bords qui combinela dérivée
directionnelle et l’homogénéité des grains. Notre approche proposée est plus stable
et robuste au bruit que dix autres méthodes célèbres de détection. La seconde partie
discute la stéganalyse de l’image en couleurs, basée sur l’apprentissage automatique
(machine learning). En effet, trois contributions sont présentées dans cette partie :
d’abord, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs,
basée sur l’extraction de caractéristiques de couleursà partirde corrélations entre les
gradients de canaux rouge, vert et bleu. En fait, ces caractéristiquesdonnent le cosinus
des angles entre les gradients. En second lieu, nous avons proposé une nouvelle méthode
de stéganalyse de l’image en couleurs, basée sur des mesures géométriques obtenues par
le sinus et le cosinus des angles de gradientsentre tous les canaux de couleurs. Enfin,
nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée
sur une banque de filtres gaussiens orientables. Toutes les trois méthodes proposées
présentent des résultats intéressants et prometteux en devançant l’état de l’art dela
stéganalyse en couleurs.

Mots clés : Filtres orientés, détection de contours, détection de coins, ground truth,
évaluation supervisée, stéganographie, stéganalyse.





Acknowledgements

Completing the PhD and writing this thesis was an amazing journey that would not
have been possible without supporting of the Iraqi Ministry of Higher Education and
Scientific Research, my family and many people too.

First and Foremost, I would like to express my special appreciation and thanks to
my supervisor Dr. Philippe Montesinos, I would like to thank you for offered me
invaluable assistance, support, guidance, knowledge and for allowing me to grow as a
research scientist throughout my thesis. I appreciate all his contributions of time and
ideas to make my PhD experience productive and stimulating. Besides my supervisor,
my gratitude is also extended to my co-supervisor Dr. Baptiste Magnier, for helpful
guidance, knowledge, effort, and support during my PhD thesis. I feel privileged for
being mentored by both my supervisors and look forward for future collaborations.

I would like to thank the jury members of my Ph.D thesis. Special thank goes to my
PhD thesis reviewers, Prof. Vincent Charvillat and Prof. Philippe Carré, who accepted
to read and evaluate my thesis and my research works. Their reports reflect the effort
and time they have devoted to it, I am very grateful. Also, I would like to express my
appreciation and thank my examination committee Prof. William Puech head of ICAR
and Prof. Krzysztof Szczypiorski for their time and efforts.

I would like to express my great thanks to, prof. Jacky Montamain head of LGI2P lab,
prof. Marianne Huchard, M. Laurent Champion, Mme. Edith Teychene, Mme. Valerie
Roman and M. Nicolas Serrurier, for their help and support for making this research a
possibility. My thanks also goes to all the members of the Ecole des Mines d’Ales and
especially LGI2P lab. It has really been a pleasure to work with you all.

I would like to express my appreciation to Dr. Marc Chaumont for helpful discussions,
valuable suggestions during my work in the steganography domain.

My greatest appreciation and gratitude goes to Iraqi Ministry of Higher Education and
Scientific Research for their trust and financial support my PhD thesis.

I would like to thank all my friends, Ibrahim Najmaldeen, Nooraldeen Fathallah,
Akram Goolam, Simko Shareef, Adel Azeez, Muaffaq Yahia, Mahmoud Khedr, Arkaan
Mohamad, Fouad Jabaar, Asmahan Ahmed, Razzaw Kamal, Salahaldeen Najmaldeen,
Ahmed Shareef, and Ali Adnan. For their confidence and for support me.

Last, but certainly not least, and most importantly, I would express my love and
gratitude to my wife Amel, my beautiful daughter Dalya, my big family my mother, my
brothers and my sisters for their distant support, care and encouragement me. Always
you all stood by me and shared with me all the great moments of my life.

Hasan ABDULRAHMAN





List of Publications
The contributions and results of this thesis have been published and presented in the
(7) international conferences, workshops and (2) journals.

• Hasan Abdulrahman, Baptiste Magnier and Philippe Montesinos. Oriented
half kernels for corner detection. In Proceedings of the 25th European
Signal Processing Conference (EUSIPCO 2017), Kos Island, Greek, 28 August - 2
September, ISBN 978-0-9928626-7-1, pages 808-812, 2017.

• Hasan Abdulrahman, Baptiste Magnier and Philippe Montesinos. A New Objec-
tive Supervised Edge Detection Assessment using Hysteresis Thresh-
olds. In the First International Workshop on Brain-Inspired Computer Vision
(WBICV 2017), held as part of the conference (ICIAP 2017), Catania, Sicily
(Italy), 11 - 15 September, Proceedings, volume 10590, 11 pages, chapter 1, of the
Lecture Notes in Computer Science Series. Springer,2017.

• Baptiste Magnier, Hasan Abdulrahman and Philippe Montesinos. Détection de
coins par combinaison de filtres asyétriques orientés. the 25th edition
(GRETSI 2017), Juan-les-Pins, France, 5-8 September,2017.

• Hasan Abdulrahman, Baptiste Magnier and Philippe Montesinos. A new nor-
malized supervised edge detection evaluation. In the 8th Iberian Interna-
tional Conference on Pattern Recognition and Image Analysis (IbPRIA 2017),
Faro, Portugal, published in the Lecture Notes in Computer Science Series, pages
203-213, 20-23 June, Springer, 2017.

• Hasan Abdulrahman, Baptiste Magnier and Philippe Montesinos. From con-
tours to ground truth: How to evaluate edge detectors by filtering. In
the 25th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG 2017), Pilsen, Czech Republic, 29
May - 2 June, 2017. Selected as one of the best papers in the conference
WSCG, Published in the Journal of WSCG, Vol. 25, No.1-2, pages 133-142,
ISSN 1213-6972, ISBN 978-80-86943-43-5, 2017.

• Hasan Abdulrahman, Marc Chaumont, Philippe Montesinos, and Baptiste Mag-
nier. Color image steganalysis based on steerable gaussian filters bank.
In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia
Security ACM(IHMMSec 2016). Acceptance rate = 36.2 %, pages 109–114, Vigo,
Galicia, Spain, 20-22 June, 2016.

• Hasan Abdulrahman, Marc Chaumont, Philippe Montesinos, and Baptiste Mag-
nier. Color images steganalysis using rgb channel geometric transfor-
mation measures. Published in the Wiley Journal on Security and Commu-
nication Networks, DOI: 10.1002/sec.1427: 12 pages, Wiley, Feb. 2016.

• Hasan Abdulrahman, Marc Chaumont, Philippe Montesinos, and Baptiste Mag-
nier. Color image steganalysis using correlations between rgb channels.
In Proceedings of the 10th International Conference on Availability, Reliability
and Security (ARES 2015), 4th International Workshop on Cyber Crime (IWCC),
Toulouse, France, pages 448–454, IEEE, 24-28 August,2015.





Contents
List of Tables xiii

List of Figures xv

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Overview on Digital Image
Analysis Concepts 7

2 Digital Image Analysis 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Digital Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Color Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 CFA Bayer Demosaicing . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Decomposition of Color Space . . . . . . . . . . . . . . . . . . . . . 14

2.3 Noise in Digital Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Models of Image Noise . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Applications of Digital Image Analysis . . . . . . . . . . . . . . . . . . . . 21
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

II Image Feature Detectors
and Evaluation 25

3 Edge Evaluation Methods and Corner Detection 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Low-level Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Global and Local Features . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Edge Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Edge Labelling process . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Non-maximum suppression technique . . . . . . . . . . . . . . . . 31
3.3.3 First and Second Order Derivative Edge Detection . . . . . . . . . . 32
3.3.4 Two-Dimensional Gaussian Derivative . . . . . . . . . . . . . . . . . 34

3.4 Traditional edge operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Sobel edge detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



x Contents

3.4.2 Canny edge detector . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Filter banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Steerable Gaussian Filter . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Anisotropic Gaussian kernels . . . . . . . . . . . . . . . . . . . . . 40
3.5.3 Half Gaussian kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 New Normalized Supervised Edge Detection Evaluation Method 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Supervised image contour evaluation . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Error measures involving the confusion matrix only . . . . . . . . . 49
4.2.2 Assessment involving distances of misplaced pixels . . . . . . . . . 50
4.2.3 Normalization of the edge detection evaluation: . . . . . . . . . . . 52

4.3 A new edge detection assessment measure . . . . . . . . . . . . . . . . . . 53
4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 From Contours to Ground Truth: How to Evaluate Edge Detectors 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Supervised error measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 How to create precise ground truth images ? . . . . . . . . . . . . . . . . . 70

5.3.1 Ground truth images . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Minimum of the measure . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.1 Synthetic images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Real images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Objective Supervised Edge Detection using Hysteresis Thresholds 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Supervised Measures for Image Contour Evaluations . . . . . . . . . . . . . 101

6.2.1 Distances of misplaced pixels . . . . . . . . . . . . . . . . . . . . . 101
6.2.2 A new objective edge detection assessment measure: . . . . . . . . . 103
6.2.3 Minimum of the measure and ground truth edge image . . . . . . . 104

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Oriented Half Kernels for Corner Detection 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.1 Corner detection techniques . . . . . . . . . . . . . . . . . . . . . . 112
7.1.2 Oriented kernels and edges directions . . . . . . . . . . . . . . . . 114

7.2 A new method of corner extraction . . . . . . . . . . . . . . . . . . . . . . 115
7.2.1 Oriented filter of grayscale homogeneity . . . . . . . . . . . . . . . 116
7.2.2 A combination of homogeneity and edge strength . . . . . . . . . . 117



Contents xi

7.2.3 Angle selection and corner extraction . . . . . . . . . . . . . . . . 117
7.3 Experiments and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

III Detection of Hidden Data
in Digital Images 127

8 Overview on Steganography and Steganalysis 129
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2 Steganography and steganalysis through these ages . . . . . . . . . . . . . 131
8.3 Cryptography, Watermarking and Steganography . . . . . . . . . . . . . . 133
8.4 The prisoner’s problem (steganography/steganalysis) . . . . . . . . . . . . 137
8.5 Digital Image Steganography . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.6 Digital Image Steganalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.6.1 Color image Steganalysis . . . . . . . . . . . . . . . . . . . . . . . . 144
8.6.2 The ensemble classifiers . . . . . . . . . . . . . . . . . . . . . . . . 147

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9 Color Channel Correlation and Geometric Steganalysis 151
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2 Methodology description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.2.1 RGB Channel Correlation . . . . . . . . . . . . . . . . . . . . . . . 153
9.2.2 Mirror transformations . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.2.3 Complete feature set . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.3 Building Image Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.4.1 Embedding methods . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10 Steganalysis Based on Steerable Gaussian Filter 165
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.2 Methodology description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.2.1 Steerable Gaussian filters . . . . . . . . . . . . . . . . . . . . . . . 167
10.2.2 Complete feature set . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.3.1 Performance of our proposed method . . . . . . . . . . . . . . . . . 171

10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



xii Contents

IV Conclusion and Perspectives 175

11 Conclusion and Perspectives 177
11.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
11.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

12 Résumé en Francais 181
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
12.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
12.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
12.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Bibliographie 189



List of Tables
2.1 The relationship between the bit depth with available number of colors. . . 11

4.1 List of error measures, k = 1 or k = 2 are the most common values. . . . . 51

5.1 List of error measures involving only statistics. . . . . . . . . . . . . . . . . 65
5.2 List of normalized error measures compared in this work, with the parameter

κ ∈ ]0; 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 List of non-normalized error measures. In the literature, the most common

values are k = 1 or k = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Comparison of scores of dissimilarity measures using a ground truth from

[MFTM01] (Fig. 5.3 (b)) image and a constructed ground truth by a
semi-automatic way. Contour images and curves for all the measures are
available in the supplementary material. . . . . . . . . . . . . . . . . . . . 84

8.1 The difference between cryptography, watermarking and steganography. . . 136

9.1 Features description with their dimmensionalities corresponding to q and T . 152
9.2 Numerical values of the average testing error P̄E and the detection rate

PD% for three steganography methods. For easier navigation the dark gray
background column presents our first method [ACMM15] and the light gray
background column presents the our second proposed method [ACMM16b]. 160

9.3 Our proposed method 2 detection rate of S-UNIWARD, WOW and Synch-
HILL steganography methods at 0.2 bpc and 0.4 bpc payload embedding
in the green channel compares with equal embedding in three channels. . 160

10.1 The probability of error P̄E to determine the efficient standard deviation
(σ) and angle step (∆θ) employed for steerable Gaussian filters using
S-UNIWARD steganography method payload 0.3 bpc. . . . . . . . . . . . . 171

10.2 Error probability P̄E and the detection rate PD% for four steganalysis
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172





List of Figures
2.1 Different version of the same image; (a) 24-bit color, (b) 8-bit color, (c)

8-bit grayscale, (d) 1-bit (black-and-white), and the histogram of each image. 11
2.2 Light beam splitting by a trichroic prism in a standard three CCD camera

sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 The CFA Bayer pattern with red-green-red-green phase in the first row,

and four corroborative CFA patterns. . . . . . . . . . . . . . . . . . . . . . 13
2.4 Representation of the RGB color space as a three-dimensional unit cube. . 15
2.5 Representation of the CMY color model as a three-dimensional unit cube. . 15
2.6 Representation of the YCbCr color model. . . . . . . . . . . . . . . . . . . 16
2.7 Representation of the HSI color model. . . . . . . . . . . . . . . . . . . . . 17
2.8 Representation of the CIEL∗a∗b∗ color model. . . . . . . . . . . . . . . . . 18
2.9 Image acquisition using a typical digital camera. . . . . . . . . . . . . . . . 19
2.10 Probability density function for: a) Gaussian noise model, b) Salt and

pepper noise model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 The different types of edges and result of a convolution with a [−1 0 1 ]
mask (absolute value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Examination if the pixel P in (b) is a local maxima of the magnitude of
the gradient in the direction of the gradient is done by interpolating the
gradient magnitude at pixels M and K in (b). . . . . . . . . . . . . . . . . 32

3.3 2D-dimensional Gaussian first and second order derivative operators give
receptive of x and y directions. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 The Sobel operator as a pair of 3× 3 convolution kernels in X and Y directions. 35
3.5 All Sobel edge detector process steps. . . . . . . . . . . . . . . . . . . . . . 36
3.6 All Canny edge detector process steps. . . . . . . . . . . . . . . . . . . . . 38
3.7 (a) Set of steerable Gaussian filters Gσ,θ with (σ=1.5, ∆θ = 10◦), starting

from upper left θ = 0◦. (b) The steerable filter banks block diagram. Figure
obtained from [Kri14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Anisotropic orientation kernel Gσx,σy (x, y) and example of orientations
G′σxσy(x, y).(a) AGK filter. (b) Anisotropic Oriented kernel by 0◦, (b)
Oriented kernel by 60◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Address the problem on Anisotropic Gaussian kernel. This figure obtained
from [MMD11a]. (a) Application of Anisotropic Gaussian kernel at the
edge and corner of an object. (b) Application of Anisotropic half Gaussian
kernel at at the edge and corner of the same object. . . . . . . . . . . . . . 41

3.10 The figures (b) and (c) obtained from [MMD11a] show the HGK with
full derivative and half smoothing. (b) example of HGK orientations. (d)
example of discrete HGK. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.11 Methodology of the Half Gaussian kernels process steps. . . . . . . . . . . 42



xvi List of Figures

3.12 Comparison between Anisotropic kernel and Half filter derivatives at dif-
ferent orientations θ, (a)Anisotropic filter with σx=1.5, σy=7.5. (b) Half
Gaussian filter with λ=1.5, µ=3.75. . . . . . . . . . . . . . . . . . . . . . 43

3.13 Example for real image: differences edge detector methods result. . . . . . 44
3.14 Comparison differences edge detector methods for blurry edge noise. . . . . 45
3.15 Comparison differences edge detector methods for blurry corner noise. . . . 45

4.1 Evaluations issued of a confusion matrix can be the same for different Dc.
For the two candidate edge images, number of FPs and number of FNs are
the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 The scores of the over-segmentation evaluations are higher for It whereas
It is more closer visually to Gt than Ic. . . . . . . . . . . . . . . . . . . . 50

4.3 Measures scores in function of the over-segmentation in the contour area. 54
4.4 Evolution of the dissimilarity measures in function of the FPs addition. . 54
4.5 Measure scores in function of the FNs addition and the edge translation. . 55
4.6 Dissimilarity measure scores in function of addition of both the FNs and

FPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 Dissimilarity measure scores in function of the size of the original square. 56
4.8 Comparison measures of different edge detections involving different edge

detectors. All the results are normalized and, compared to the ground
truth, a score close to 0 indicates a good edge map whereas a score 1
translates a poor segmentation. Our proposed measure Ψ indicate a good
measurement value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 Comparison measures of different edge detections involving different edge
detectors. All the results are normalized and, compared to the ground
truth, a score close to 0 indicates a good edge map whereas a score 1
translates a poor segmentation. Our proposed measure Ψ indicate a good
measurement value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 Comparison measures of different edge detections involving different edge
detectors. All the results are normalized and, compared to the ground
truth, a score close to 0 indicates a good edge map whereas a score 1
translates a poor segmentation. . . . . . . . . . . . . . . . . . . . . . . . . 60

4.11 Comparison measures of different edge detections involving different edge
detectors. All the results are normalized and, compared to the ground
truth, a score close to 0 indicates a good edge map whereas a score 1
translates a poor segmentation. Our proposed measure Ψ indicate a good
measurement value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Ground truth vs. desired contour. In (b), Dc is contaminated with 6 FPs
ans 4 FNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



List of Figures xvii

5.2 Evolution of dissimilarity measures in function of the the distance of the
false positive/negative points. A vertical line of false positive points (b)
or false negative points (d) is shifted by a maximum distance of 16 pixels
and the measure scores are plotted in function of the displacement of the
desired/undesired contour. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Edge detection after the non-maximum suppression [RT71] and comparison
with a ground truth image ( green cells for the minimum measure and
better edge detector filter). . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Synthetic data with a 1 pixel width gray around each shape: value of white
pixels = 1, values of black pixels = 0, values of gray pixels = 0.5. . . . . . 72

5.5 Image of our database are built after an edge detection involving a [−1 0 1]
mask and concluded by hand. . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 The most relevant edge map for a dissimilarity measure is indicated by its
minimum score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Scores of the measures depending on the threshold of the thin gradient
image [Can86a]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Synthetic images corrupted by a Gaussian noise with the associated ground
truth edge map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.9 Images of our database are built in a semi-automatic way, after an edge
detection involving [−1 0 1] masks and concluded by hand. . . . . . . . . . 77

5.10 Synthetic image SNR= 4 dB. ( The original image is available in Fig. 5.8
(a) and the ground truth as shown in 5.8(c)). Best maps for the compared
edge detection evaluations using our proposed measure Ψ. . . . . . . . . . 78

5.11 Synthetic image SNR= 3.3 dB (The original image is available in Fig. 5.8
(b) and the ground truth as shown in 5.8(c)). Best maps for the compared
edge detection evaluations using our proposed measure Ψ. . . . . . . . . . 79

5.12 Synthetic image SNR= 4 dB: Best maps for the compared edge detection
evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.13 Synthetic image SNR= 4 dB: Best maps for the compared edge detection
evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.14 Synthetic image SNR= 3.3 dB: Best maps for the compared edge detection
evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.15 Synthetic image SNR= 3.3 dB: Best maps for the compared edge detection
evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.16 Real image: Best maps for the compared edge detection filters using our
proposed measure Ψ. The ground truth edge image is computer by the
consensus from human-labellers. . . . . . . . . . . . . . . . . . . . . . . . . 86

5.17 Real image: Best maps for the compared edge detection evaluations. The
ground truth edge image is computer by the consensus from human-labellers. 87

5.18 Real image: Best maps for the compared edge detection evaluations. The
ground truth edge image is computer by the consensus from human-labellers. 88



xviii List of Figures

5.19 Real image: ( The original image is available in Fig. 5.9 and the ground
truth edge image comes from our database). Best maps for the compared
edge detection filters using our proposed measure Ψ. . . . . . . . . . . . . 89

5.20 Real image: Best maps for the compared edge detection evaluations. The
ground truth edge image comes from our database. . . . . . . . . . . . . . 90

5.21 Real image: Best maps for the compared edge detection evaluations. The
ground truth edge image comes from our database. . . . . . . . . . . . . . 91

5.22 Real image 36 ( The original image is available in Fig. 5.9 and the ground
truth edge image comes from our database). Best maps for the compared
edge detection filters using our proposed measure Ψ. . . . . . . . . . . . . 92

5.23 Real image 36: Best maps for the compared edge detection evaluations.
The ground truth edge image comes from our database. . . . . . . . . . . . 93

5.24 Real image 36: Best maps for the compared edge detection evaluations.
The ground truth edge image comes from our database. . . . . . . . . . . . 94

5.25 Real image parkingmeter ( The original image is available in Fig. 5.9
and the ground truth edge image comes from our database). Best maps for
the compared edge detection filters using our proposed measure Ψ. . . . . 95

5.26 Real image parkingmeter: Best maps for the compared edge detection
evaluations. The ground truth edge image comes from our database. . . . . 96

5.27 Real image parkingmeter: Best maps for the compared edge detection
evaluations. The ground truth edge image comes from our database. . . . . 97

6.1 Gradient magnitude and orientation computation for a scalar image I and
example of hysteresis threshold applied along a contour chain. Iθ represents
the image derivative using a first-order filter at the θ orientation (in radians).100

6.2 Different Dc: FPs and number of FNs are the same for D1 and for D2. . . 102
6.3 Results of evaluation measures and images for the experiments. . . . . . . 103
6.4 Number of FNs penalizes λ and computation of a measure minimum score. 104
6.5 Synthetic image SNR= 3.3 dB. ( The original image is available in Fig. 5.8

(b) and the ground truth as shown in 5.8(c)). Comparison of best maps
and minimum scores for different evaluation measures using our proposed
measure λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Comparison of best maps and minimum scores for different evaluation
measures. The bars legend is presented in Fig. 6.7. Gt and original image
are available in Fig. 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 Comparison of best maps and minimum scores for different evaluation
measures. Gt and the original real image are presented in Fig. 6.3. . . . . 108

7.1 Corner detected involving several methods. The standard deviation used for
the image derivatives is the same as for the structure tensor Jρ: σ = ρ = 1.
For the developed method: ση = 1 and σξ = 3, L = 3 and P = 5. . . . . . 113



List of Figures xix

7.2 Different discretized 2D derivative Gaussian kernels and representation of
the IRON filter. (b), (c) and (d) with ση = 1 and σξ = 3. The Anisotropic
endstop filter is equivalent to the derivative of the AGK along the Y
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Modulus of the energy of the different oriented kernels and their combina-
tions (in degrees and normalized signals). . . . . . . . . . . . . . . . . . . 116

7.4 Direction field. (a) Cropped image of Fig. 7.1(a). . . . . . . . . . . . . . . 117
7.5 The minimum and maximum of the signal S corresponds to the two di-

rections of the edges and β to the angular sector between the θ1 and θ2

directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.6 Comparison the RMSE as a function for the corners error detection between

our method with several corner detection methods. . . . . . . . . . . . . . 119
7.7 Corner detection using template or isotropic structure tensors obtains

mistakes or corner displacement. The standard deviation σ for the image
derivatives and for the structure tensor Jρ are the same: σ = ρ = 1. For
(h), the convolution masks a (for example k = 0.004). Note: [ True corner
= +, False corner = +, and Forget corner = + ]. . . . . . . . . . . . . . . 120

7.8 Corner detection using template or isotropic structure tensors obtains
mistakes or corner displacement. The standard deviation σ for the image
derivatives and for the structure tensor Jρ are the same: σ = ρ = 1. For
(h), the convolution masks a (for example k = 0.004). Note: [ True corner
= +, False corner = +, and Forget corner = + ]. . . . . . . . . . . . . . . 121

7.9 Comparison the Root Mean Square Error (RMSE) as a function for the
corners error detection (a) our method with different ∆θ, (b) our method
with different σ with ∆θ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.10 RMSE as a function of the noise level. (c)-(f): Corner detected involving
several methods with ση = 1 et σξ = 3. . . . . . . . . . . . . . . . . . . . . 122

7.11 Corner detected involving several methods. The standard deviation used
for the image derivatives and for the structure tensor Jρ are: σ = 1.5 and
ρ = 1. For the developed method: ση = 1.5 and σξ = 5, L = 3 and P = 5. 123

7.12 Corner detection using template or isotropic structure tensors obtains
mistakes or corner displacement. The standard deviation σ for the image
derivatives and for the structure tensor Jρ are the same: σ = ρ = 1. For
(h), the convolution masks a (for example k = 0.004) . . . . . . . . . . . . 124

8.1 The yearly count of research articles on the Google scholar the keywords
steganography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Examples of ancient steganography models. . . . . . . . . . . . . . . . . . 132
8.3 Examples of ancient steganography using Germany Microdots. . . . . . . . 132
8.4 The general classification of information hiding methods. . . . . . . . . . . 134
8.5 The general model for Simmons’ "prisoners problem". . . . . . . . . . . . . 137
8.6 Types of models based on the behavior of the prison warden Eve. . . . . . 138
8.7 The block diagram of steganography. . . . . . . . . . . . . . . . . . . . . . 139



xx List of Figures

8.8 Architecture of color image steganography by embed messages into color
images by decomposing the R, G and B channels with channel-dependent
on the same payload partition. . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.9 Block diagram of universal steganalysis approach. . . . . . . . . . . . . . . 144

9.1 Features extraction: Cosine of the gradient angles [ACMM15]. . . . . . . . 154
9.2 Rotation angle between two channel gradients cos(α1) = cos(α2) but

sin(α1) = − sin(α2) cos(θ1) = cos(θ2) but sin(θ1) = − sin(θ2). Sine is
essential to determine the direction of the rotation. . . . . . . . . . . . . . 155

9.3 Features of extraction: Sine of the gradients angles extracting information
from the direction of the local rotation. . . . . . . . . . . . . . . . . . . . . 156

9.5 The preprocessing steps for building our database depending on the CFA
idea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.6 Avarage testing error P̄E as a function of the payload for (a) S-UNIWARD,(b)
WOW and (c) WOW steganography methods, comparison between the
steganalysis methods (Color Rich Model, CFA-aware features steganalysis,
our method 1 [ACMM15] and our method 2 [ACMM16b]). . . . . . . . . . 161

9.7 ROC curves using our proposed method 2 feature set, for (a) S-UNIWARD,
(b) WOW and (c) Synch-HILL steganography methods for payloads 0.2
bpc (up) and 0.4 bpc (down), to compare the detectability when embed-
ding messages in only one channel with embedding messages spread in all
channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.8 This table obtained from [TLLH16] shown that our approach SCCRM
[ACMM15] can better detect the synchronize inter-channel steganography
than Color Rich Model CRM steganalysis method [GFC14]. . . . . . . . 162

10.1 Features extraction: the image derivatives are extracted at orientation
(θm + 90◦) [180◦] in each channel separately to compute a gradient and to
estimate precise edges directions. . . . . . . . . . . . . . . . . . . . . . . . 168

10.2 θm and η directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.3 Positions of the steerable filters at the level of the edges to build the gradient

image ‖∇I‖ and image derivative Iσ,(θm+90)[180◦](x, y). . . . . . . . . . . . . 170
10.4 Error probability P̄E as a function of the payload for three steganography

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



1
Introduction

This chapter highlights briefly the motivation and the goals of this thesis. Furthermore,
we form the main key contributions in the context of the computer vision and information
security.

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . 6



2 1. Introduction

1.1 Introduction

In computer science, all digital image systems, especially automated information pro-
cessing structures, must be evaluated before being developed, principally for industrial
applications or medical data. Image processing and analysis are areas which have been
widely investigated then there is a torrential literature covering different aspects of pro-
cessing images. The digital image processing deals with developing a digital system that
performs operations on a digital image by using a computer [GW02]. The interest in
digital image processing methods is motivated by two major application tasks. The first is
the improvement of pictorial information for the human interpretation, while the second
is data processing for autonomous machine perception [Dou09].

A digital image contains different information from the scene, such as objects, color,
and orientation. The discrimination of the objects from their background is the first
problem that is performed before any further processing. In order to extract the contour
of an object, edges forming that object must be detected, and this fact reveals the
constitutional importance of edge detection in computer vision and image processing. Edge
detection features support wide range of applications such as recognition, compression,
image enhancement, restoration, registration, retrieval, watermarking, steganography,
steganalysis and etc. [OH10].

In the literature, there is a considerable importance of research on various techniques for
performing edge detection. In general, an edge detection method can be divided into three
stages. First, a noise reduction process is performed in order to gain better performance
of edge detection. This noise reduction is usually achieved by performing a low-pass
filter because the additive noise is normally a high-frequency signal. Since, the edges
are high-frequency signals, then it can possibly be removed during the noise reduction
process. Hence, the selection of the appropriate filter with best parameter is important
to preserve the edge information. Therefore, this thesis details the source of noise in
digital image construction pipeline. In the second stage, a high-pass derivative filter such
as a oriented filter is usually performed to find the edges. Finally, an edge localization
process is performed to identify the real edges, which are distinguished from those similar
responses caused by noise.

Part of this thesis focuses on edge detectors with evaluation measure methods and corners
detection. On one hand, several reference based boundary detection evaluations are
detailed, pointing their advantages and disadvantages through concrete examples of edge
images, and applied toward an objective assessment. On the other hand, a new supervised
edge map quality measure are proposed. Also, this thesis presents and demonstrate how
to build a new ground truth edge map which is labeled as a semi-automatic way in real
images. In order to evaluate the performance of filtering step/ramp edge detectors, a
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technique is proposed to evaluate filtering edge detection methods involving the minimum
score of the consideration measures.

In this thesis, we concentrate on oriented filters such as steerable Gaussian filter, Half
Gaussian Kernel (HGK) or causal Gaussian filter. Furthermore, we proposed a new corner
detection method by combining two filters: the Half Gaussian kernel with an asymmetric
filter computing the homogeneity along edges. On one hand, the maxima responses of the
HGK indicates the directions (2π periodic) of the edges. On the other hand, the oriented
variance determines if the directions of the maxima of the HGK corresponds to edges or
other types of pixels (texture, homogeneous region etc.).

Digital image steganalysis can thus be considered as a pattern recognition process and
focuses on two class classifications: original image and stego image ( image with hidden
message), to decide which class a test image belongs to. The key issue for steganalysis
just like for pattern recognition is feature extraction. The features should be sensitive to
the data hiding process. In other words, the features should be rather different for the
image without hidden message and for the stego image.

Furthermore, we developed three color image steganalysis methods based on feature
extraction and machine learning, we devoted part of this thesis for these three methods.
The first method [ACMM15], combined features obtained on channels independently ( color
rich model [GFC14]) with features obtained from correlation between the color channels.
The second proposed method [ACMM16b], uses two types of features, computed between
color image channels. The first type of features reflects local Euclidean transformations
and the second features reflects mirror transformations. These geometric measures are
obtained by the sine and cosine of gradient angles between all the color channels. The
third proposed method [ACMM16a], uses orientation filter bank to detect hidden messages
in color image which have been carried out within extracting features from color images
and machine learning. More precisely , this method uses steerable Gaussian filter, the
Gaussian filters are angled in different directions to precisely compute the tangent of the
gradient vector. Then, the gradient magnitude and the derivative of this tangent direction
are estimated. This refined method of estimation enables us to expose the minor changes
that have occurred in the image when a message is embedded. We computed a tangent
vector of contour for each pixel and for each channel. This tangent vector corresponds
to the edge direction and is orthogonal to the gradient magnitude image of each color
channel.

1.2 Motivations

In image processing tasks, edge detection remains a key point in many applications.
Boundaries include the most important structures of the image, and an efficient boundary
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detection method should create a contour image containing edges at their correct locations
with a minimal of misclassified pixels. Edges are an example of a low-level feature, while
high-level features are defined in terms of the object in the image. The contours are
points in the projected image of an object where there is a discontinuity of depth or a
discontinuity of surface orientation on the object.

In digital images, corners and junctions constitute important landmarks because they
get affluent information like delimitation of objects. A pixel is considered as a corner
or a junction when two or more edges meet each other and it refers to the point where
several different contour orientations exist. Many successful feature extraction approaches
are based on interest points [Lap05], such as corners, to allow features to be localised in
two dimensions or in 3D dimensions [SB11]. There are different algorithms have been
developed in the past, but a few of them give an objective performance comparison.
wherefore, we presents in this thesis different comparison and proposed a new technique
to detect the corners, more stable and robust to noise than the comparative methods.

Contour feature extraction remains a very useful preprocessing step in image segmentation,
reconstruction, interpretation and tracking [BdKM+04, AMFM11]. An efficient boundary
detection method should create a contour image containing edges at their correct locations
with a minimum of misclassified pixels [BM98]. The evaluation process should produce
a result that correlates with the perceived quality of the edge image, which is relied
on human judgment. In other words, a reliable edge map should characterize all the
relevant structures of an image. On the other hand, a minimum of spurious pixels or holes
(oversights) must be created by the edge detector at the same time. Therefore, an efficient
evaluation can be used to assess and improve an algorithm, or to optimize edge detector
parameters [HSSB97].

The oriented filters have been used to analyse local feature orientation in imagery. Such
filters are typically based on directional derivatives. Edge and corner detection methods
using orientation filter bank are estimates the edges accurately. Therefore, oriented
filter bank are used in many vision and image processing approaches, such as edge
detection, texture analysis, image compression, object detection, steganography and image
enhancement [NA12]. In order to be less visible, most of the steganographic methods
modify the pixel values in the texture/edge areas [PFB10, HFD14b, LWHL14]. . .

For many years, information hiding has captured the imagination of researchers. Steganog-
raphy is one of the techniques that can be used for hiding a secret [HH03]. As an example,
in 2001, an international newspaper named USA Today, announced that steganography
was used by terrorists [Kel01], in order to plan the September 11, 2001 attack. This have
also been confined by other reports [KOL01, Tib02].

In the past, lot of people do not believe that steganography techniques was used by the
criminals and terrorists. Now this idea is accepted and understood. For this reason,
steganalysis techniques have to be developed to detect suspicious communications.
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Steganography and Steganalysis has thrived in the digital era. Many interesting ste-
ganalysis techniques have been created dealing with grayscale images, and steganalysis is
continuing its evolution. In particular, there is a need to detect hidden message in color
images [KBB+13]. One of important motivation of this thesis is to support this situation
by developing new steganalysis methods to detect hidden message in digital color image.

1.3 Key Contributions

The main key contributions of this thesis are based on feature extraction using oriented
filter. On one hand, proposed new methods for contours and corners detection and
evaluation. On the other hand, proposed steganalysis methods to detect hidden messages
in image which have been carried out within extracting features from color images and
machine learning. We can summarize contributions of this thesis in the list below:

• Proposed a novel method for corner detection based on the combination of directional
derivative and homogeneity kernels [AMM17c].

• Proposed a new technique to evaluate filtering of edge detection methods involving
the minimum score of the considerated measures. Also, demonstrate how to label
new ground truth data in a semi-automatic way, [AMM17a].

• Proposed new normalized supervised edge detection evaluation method, comparing
a ground truth contour image, the candidate contour image and their associated
spacial nearness [AMM17d].

• Several referenced-based boundary detection evaluations are detailed, pointing their
advantages and disadvantages through concrete examples of edge images [AMM17d].

• Proposed a new supervised edge detection evaluation method. Theoretically, by
varying the hysteresis thresholds of the thin edges [AMM17b].

• The development of a color image steganalysis based on color feature correlation
and machine learning. Features are extracted from the channel correlation, and
co-occurrences [ACMM15].

• Proposed a new technique to building big database for color image Portable Pixel
Map (PPM) format of size 512×512 using a demosaicking algorithm [ACMM15].

• The development of new color image steganalysis based on geometric measures
obtained by the sine and cosine of gradient angles between all the color channels
[ACMM16b].
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• The development of a new color steganalysis based on steerable Gaussian filter
banks. This approach enriches the features from the Color Rich Model by adding
new features obtained by applying steerable Gaussian filters and then computing
the co-occurrence of pixel pairs [ACMM16b].

• Intensive experiments reveal that our steganalysis approaches is able to better detect
the color adaptive steganographic approaches.

1.4 Organization of this thesis

This work has been structured in the following parts and chapters:

I. Overview on Digital Image Analysis concepts

• Chapter 2: Digital image analysis.

II. Image Feature Detectors and Evaluation

• Chapter 3: Edge detection and evaluation methods.

• Chapter 4: New normalized supervised edge detection evaluation method.

• Chapter 5: From contours to ground truth: How to evaluation edge detectors
by filtering

• Chapter 6: Objective supervised edge detection assessment using Hysteresis
thresholds.

• Chapter 7: Orientation asymmetric kernels for corner detection.

III. Detection of Hidden Data in Digital Images

• Chapter 8: Overview on steganography and steganalysis

• Chapter 9: Color channel correlation and geometric steganalysis.

• Chapter 10: Steganalysis based on steerable Gaussian filter.

IV. Conclusion and Future Work

• Chapter 11: Conclusions and Future work

• Chapter 12: Résumé en Francais



Part I
Overview on Digital Image
Analysis Concepts





2
Digital Image Analysis

This chapter focus on CFA Bayer demosaicing, decomposition of color Space, and types
of noise in digital image. Also, focus on digital image analysis that aims at detecting,
identifying, measuring, and analysing features in digital images.
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2.1 Introduction

Digital image processing can be thought of as a sequence of steps: image acquisition,
pre-processing, segmentation, feature extraction, analysis and evaluation. These steps can
also be expanded into more intermediate steps depending on the application. More deeply,
digital image analysis is an area which has been widely investigated and there is a torrential
literature covering different aspects of processing images. The digital image processing
deals with developing a digital system that performs operations on an image by using a
computer [GW02]. The interest in digital image processing methods is motivated by two
major application tasks. The first is the improvement of pictorial information for the human
interpretation, while the second is data processing for autonomous machine perception.
Normally, digital image means collection of individual pixels, to which discrete brightness
or color values are assigned. That’s made it the essential core in many applications from
our daily life.

One common example of a pre-processing step is noise reduction. Filtering in spatial
domain, performed in a controlled manner will decrease the effect of noise on images.
A meaningfully designed smoothing filter will even out the noise in an image without
blurring important information such as edges. Median filtering, that determines filter
output coefficients by the median of the neighboring pixels/voxels, is a non-linear filtering
method that preserves edges. Also, image segmentation is the process that separates the
content in an image into objects and background, and can be seen as an essential part
of many image analysis tasks. Thresholding is a popular image segmentation method
and there are a number of thresholding techniques that can by implements to thin edge
some methods uses a signal, or uses a double threshold and automated thresholding
techniques.

2.2 Digital Images

A digital image is composed of a finite number of elements called pixels, each pixel is
assigned a tonal value such as black, white, shades of gray or color and a particular
location. These pixels are stored in a sequence of bits on a computer. We can define
an image as a two-dimensional function I(x, y), where x and y are the spatial (plane)
coordinates, and I the amplitude at any pair of coordinates (x, y) is called the intensity
of the image at this point. If x, y and the amplitude values of I are finite and discrete
quantities, we call this image a digital image [GW02].
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1-bit B/W 
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Figure 2.1: Different version of the same image; (a) 24-bit color, (b) 8-bit color, (c) 8-bit
grayscale, (d) 1-bit (black-and-white), and the histogram of each image.

Each digital image have size which is the number of horizontal and vertical pixels. To
complete the basic information about the digital image we should explain the bit depth
which refers to the number of bits used to define a single pixel and determines the number
of colors of a pixel. Increasing the bit depth leads to increase the number of tones for
grayscale or color, to represent the image. Table 2.1 shows the relationship of bit depth
to the number of available colors.

Table 2.1: The relationship between the bit depth with available number of colors.

Type Bit-depth Number of Colors/Shades
Standard 1-bit bitonal (binary). Black or white.

8-bit grayscale. 256 Shades of grayscale.
24-bit RGB color (true color). 16.77 Million colors.

Professionals 10-bit grayscale. 1024 Shades.
30-bit RGB color. one Billion colors.

Professionals 12-bit grayscale. 1024 Shades.
36-bit RGB color. 68.77 Billion colors.

Professionals 16-bit grayscale. 1024 Shades.
48-bit RGB color. 281 Trillion colors.

Digital image may be produced in binary (black and white), grayscale and color. Fig. 2.1
illustrate the differences between a 1-bit (black-and-white), a 8-bit grayscale, a 8-bit color,
and a 24-bit color with regard to representing Lena image. A binary image is represented
by pixels consisting of 1 bit each, which can represent two tones (black and white), using
the values 0 for black and 1 for white or vice versa. The grayscale image is composed of
pixels represented by multiple bits of information, ranging from 2 to 8 bits or 16 bits. With
256 different gray levels, each pixel can be stored in a single byte (8 bits) of memory.
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Color image is typically represented by a bit depth ranging from 8 to 48. With a 24-bit
image, the bits are often divided into three groups: Red (R), Green (G), and Blue (B). A
24-bit color image offers 16.77 million color values, which provide significantly more color
depth. This is more than enough to accurately portray true-to-life images. A 24-bit color
is thus often referred to as "true color", if the vector components of the digitized color
image represent spectral transmission of visible light.

2.2.1 Color Images

The most common way to model color in Computer Graphics is the RGB color model,
this corresponds to the way both CRT monitors and LCD screens/projectors reproduce
color. Each pixel is represented by three values, the amount of red, green and blue. Thus
an RGB color image will use three times as much memory as a grayscle image of the same
pixel dimensions.

2.2.2 CFA Bayer Demosaicing

In general, a camera capture the image by using a single Charge-Coupled Device (CCD)
or Complementary Metal-Oxide Semiconductor (CMOS) sensor. This device is used to
sample the light intensity into sensor. Virtually, every digital sensor works by capturing
light in an array of photosites. In the same way, when we need to capture color image, the
light intensity is measured in separate color bands, usually red (R), green (G), and blue
(B). This require three separate sensors in conjunction with a beam splitter to accurately
measure each of the three primary colors at each pixel. The three images in a 3 CCD
camera can then be combined pixel by pixel to obtain a color image as shown in Fig.
2.2. This design is nevertheless very expensive and mechanically difficult to implement
[MJYR+10]. To solve this problem and make economic and non-expensive camera price,
the Color Filter Array (CFA) is introduced to capture a color image using only one sensor.
This solution was patented in 1976 by Bryce Bayer from the Kodak company, and can be
found in almost all digital camera sensors sold today [Bay76, LMY10].

A CFA pattern is a mosaic of color filters placed on top of the CCD sensor to filter out
the red, green, and blue components of light spectrum that enter the camera. A digital
image acquired by CFA filter, is stored in a single size raw image (a matrix), where each
pixel only store one channel (Red, Green, and Blue). Note that the absent channel values
are reconstructed latter, during the the CFA interpolation, also named demosaicking.

There are various CFA with different order of the mosaic of color filters. All greatly affect
on the resolution, quality of the image, and processing times. One of the most popular
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Figure 2.2: Light beam splitting by a trichroic prism in a standard three CCD camera sensor.

and successful CFA in the industry is the Bayer pattern which is a 2×2 repeating pattern
using green, red and blue [Bay76]. Each 2×2 pattern uses half green, a quarter red and a
quarter blue. When the output of the filter is read, it reads either RGGB, BGGR, GBRG
and GRBG. Fig. 2.3 provides a schematic illustration of CFA Bayer design. The ratio of
two green pixels to one red and one blue was chosen because the human eye is much more
sensitive to green light [ASH05].

Color Filter Array 

(CFA) Bayer 
RGGB BGGR GBRG GRBG 

Figure 2.3: The CFA Bayer pattern with red-green-red-green phase in the first row, and four
corroborative CFA patterns.

To resume, an image is captured into a sensor device with a Bayer filter array. It gives
the raw image, this raw image is then interpolated (demosaicking) in order to give a RGB
image. Then additional internal processing are applied in order to give the output image.
Different CFA interpolation algorithms are proposed in the literature [All04, SM05]. Each
digital camera applies one of these algorithms leading to different image quality. In general,
CFA interpolation algorithms are categorized into two major branches as follows:
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• Adaptive interpolation. With these type of demosaicking algorithm, the missing
values are sectioned using feature of surrounding pixels. These algorithms requires
lot of calculations. For example, there are : pattern matching based interpolation
algorithms, interpolation using a threshold-based variable number of gradients, and
edge sensing interpolation.

• Non-Adaptive interpolation. With these type of demosaicking algorithm, all missing
values are interpolated by a fixed pattern. These algorithms requires to low calcula-
tion cost. For example, there are nearest neighbour replication, bilinear interpolation,
median interpolation, and gradually color change interpolation.

2.2.3 Decomposition of Color Space

The color results from an interaction between light, object, and the viewer. All these
three elements must be present for color as we know it to exist. A color space is a useful
method for users to understand the color capabilities of a particular digital device or file.
Each color in the system is represented by a single dot.

A color model is a method to describe a color, numerous color models have been proposed
in the literature for various applications and purposes. We can classified the color models
into two classes: the hardware oriented, and the user oriented [GW02].

- The hardware oriented models, includes the RGB color space model, which is used in
color cameras and monitors, the CMYK(Cyan, Magenta, Yellow, Key) color model used
in color printers, the YUV, YIQ, YCbCr (Luminance - Chrominance) color models which
are used in the television transmission color spaces.

- The user oriented models, includes the Hue Saturation Intensity (HSI) color model,
the CIEL∗a∗b∗ which is based on the human perceptions of color and used for graphics
designing and editing [GW02].

More details are briefly given below:

• RGB Color Model. The RGB (R=Red, G=Green, B=Blue) is a color space where
each pixel of channel 24 bits an image is assigned a range of 0 to 255 intensity value.
The RGB color solid has the shape of unit cube with the grayscale dimension going
from 0,0,0 to 1,1,1. The colors red, green, blue, yellow, cyan, and purple are situated
at corners of the cube as shown in Fig. 2.4.

The color components are laid out in separate arrays of identical dimensions. In this
case, the color image
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Figure 2.4: Representation of the RGB color space as a three-dimensional unit cube.

• CMY(K) Color Model. The (CMY) Cyan, Magenta, and Yellow color model is
similar with the RGB color model and uses cyan, magenta, and yellow instead of
red, green, and blue, respectively. When all the three color CMY are added together
we introduce black color noted K and called key - plate. Fig 2.5 shows the CMY
color model. This model is used for printer device. The transformation between

(b)  
       Additive CMY color mixing 

(a)  

         CMY color cube  

Red 

Blue 

Green 
Yellow 

Magenta Cyan 

Figure 2.5: Representation of the CMY color model as a three-dimensional unit cube.

RGB color model and CYM color model is presented below:
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• YUV, YIQ, YCbCr (Luminance - Chrominance). The Luminance - Chrominance
systems are based on one luminance value and two chrominance values. All these
models are used in video systems. One of the main advantages of these color systems
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are that grayscale information is separated from color data, so the same signal can
be used for both color and black and white sets.

  

          YCbCr  color model 

Cb 

Cr 

Y 

Grayscale 

RGB cube 

Y=255, Cb=Cr=128 

Figure 2.6: Representation of the YCbCr color model.

The (Luminance Component,Chroma Blue difference, Chroma Red difference) YCbCr
color space model, came as a result of the evolution of a world-wide digital component
video standard. Y is the luminance component, which is defined to have a nominal
8-bit range of 16–235 and (Cb and Cr) are the blue-difference and red-difference
chroma components as shown in Fig. 2.6. The conversion equations from RGB to
YCbCr color space model is below:

Y
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• HSI Color Model. The Hue Saturation Intensity (HSI) color model reflects the
human vision. Hue defines the pure color tone out of the color spectrum, saturation
defines the mixture of the color tone with gray and finally luminance defines the
lightness of the resulting color. Fig. 2.7 illustrates how the HIS color space represents
colors. The HSI color model is very popular for graphics designing and editing,
because it gives the user a good impression about the resulting color for a certain
color value. The following formula can be used to convert RGB values to HSI values:

- First normalizing RGB values:

r = R

R +G+B
, g = G

R +G+B
, b = B

R +G+B
. (2.1)

- The H, S, and I components are obtained by the following:
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Figure 2.7: Representation of the HSI color model.

h =



cos−1
{

0.5∗[(r−g)+(r−b)]

[(r−g)2+(r−b)∗(g−b)]
1
2

}
if b ≤ g,

2π − cos−1
{

0.5∗[(r−g)+(r−b)]

[(r−g)2+(r−b)∗(g−b)]
1
2

}
if b > g.

(2.2)

s = 1− 3 ∗min (r, g, b) . (2.3)

i = (R +G+B)
(3 ∗ 255) . (2.4)

- Finally, The values h, s, and i are converted in the ranges of [0, ..., 360], [0, ..., 100],
and [0, ..., 255], respectively to obtains H, S, and I by using:

H = h× 180
π

; S = s× 100; I = i× 255.

• CIE L∗a∗b∗ Color Model. This model is compute from XYZ and hence is device
independent. For the purpose of standardization the International Commission
on Illumination (CIE) in 1931 defined a system of virtual primary three colors to
represent all visible colors by three color values (X, Y, Z) positive [GGVdWG12].
The CIE L∗a∗b∗ models the human vision and is independent of the equipment. L∗
denotes luminosity (values are always ranging from 0-100), a∗ denotes red/green
axis, and b∗ yellow/blue axis. Both a∗ and b∗ describes the hue and saturation, they
have no specific numerical limits. Fig. 2.8 illustrated this color model, positive a∗ is
red, negative a∗ is green, positive b∗ is yellow, negative b∗ is blue.
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Figure 2.8: Representation of the CIEL∗a∗b∗ color model.

2.3 Noise in Digital Image

During image acquisition many noise sources are superimposed of the acquired image.
It is possible to classify the sources of noise into two main families: the physical noise,
like the photons of natural light, and the hardware noise, due to the components and the
mechanical joint of the camera. This section focus on the noise that is created through the
different stages of the image formation process. Some of these noises are due to raw sensor
[Hyt06], and others from additional processing such as color interpolation, denoising,
color correction, and filtering. These combined noise sources are usually modelled as an
independent signal of the image content. Through image formation process, many types
of noise are created and added to the image. Fig. 2.9 illustrates a typical camera with
several different components. The different sources of noise are:

• Readout noise. This type of noise is present and inherent in every CCDs image,
sometimes abbreviated (readnoise). When a CCD image is taken, noise will appear
as well as the main CCD image, it is a result of the incomplete operation of physical
electronic devices. More clearly, readout noise is the noise of the on-chip amplifier
which converts the charge (i.e the electrons) into a change in analogue voltage. This
means the noise will produce fluctuations in the number of analog to digital units
recorded [Jan01]. Amplifier noise is one of this type of noise, and resemble to the
Gaussian noise.

• Shot noise. This type of noise is fundamentally connected to the way photons
spatially come on a detector and associated with the particle nature of light. Light
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Figure 2.9: Image acquisition using a typical digital camera.

is made up of discrete bundles of energy called photons. The type of noised is caused
by the arrival process of light photons on the sensor [Hol98].

When more light can be captured this, the shot noise will be higher than the readout
noise in the image.

• Quantization noise. All digital devices produce quantization noise. This noise is
introduced by quantization in the analogue to digital conversion. This quantization
error is unavoidable and due to the limitations of the converting from an analog signal
to a digital signal. It is independent of the signal and can be modelled as additive
noise [LBMR10]. There are two types of quantization errors: the approximation
error, and the clipping error. The approximation error is caused by the round-off
effect of the analog signal due to the lack of quantization resolution. The clipping
error is due to inadequate quantizer range limit [LBMR10].

• Dark current. This type is formed from the generated temperature inside the camera
device or due to the external temperature. This noise is also called thermal noise.

• Pattern noise. There are two components of the pattern noise: the Fixed Pattern
Noise (FPN) and the Photo-Response Non-Uniformity noise (PRNU) [LFG06]. The
(FPN) noise pattern is refers to, pixel to pixel variation when the sensor does not
take enough of light [Moo91, EGFML98]. Also this noise some times occurred by
the temperature. The (PRNU) noise pattern is refers to, Pixel Non-Uniformity
(PNU), that is caused by the physical properties of the sensor itself [Hol98]. This
type of noise has been successfully used for source camera identification as described
in [LFG05].
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2.3.1 Models of Image Noise

Noise in images, is considered to be a stationary phenomenon and influenced by several
factors, some of these factors can be controlled, and others are very difficult to control
such as the hardware noise. It is very difficult to determine a universal model for the noise.
Wherefore, there are many models for noise. In general terms, the most popular models
are: Gaussian noise or white Gaussian, impulse noise (salt and pepper noise), Rayleigh
noise, uniform noise, and gamma noise.

• Gaussian model. This model is important for modeling a natural processes, which
present noise, such as the noise that result by the conversion of the optical signal
into an electrical one a shot noise, and the noise during acquisition. The Gaussian
noise has a normal (Gaussian) probability density function (PDF):

~70 % 

~90 % 

Gaussian noise 

Grayscale 

Probabilty 

Salt and pepper noise 

Grayscale 

Probabilty 

a b 

A 

B 

(a) Gaussian noise model. (b) Salt and pepper noise.
Figure 2.10: Probability density function for: a) Gaussian noise model, b) Salt and pepper
noise model.

PDFGaussian = 1√
2πσ

e
−

(g − µ)2

2σ2 , (2.5)

Where, g= gray scale; µ=mean; and σ=standard deviation. As shown in Fig. 2.10(a)
we can observe an approximately 70% of the values are contained between µ± σ,
and 90% of the values are contained between µ± 2σ.

• Salt and pepper model. In this model, only two possible values are conceivable, a
and b. The probability of producing one of them is very small, and otherwise, the
noise would vastly dominate the image. In general, the salt & pepper noise is result
by malfunctioning camera’s sensor cells, by synchronization errors, or by memory
cell failure in the image digitizing or transmission. For an 8 bit/pixel image, the
typical intensity value for pepper noise is close to 0 and for salt noise is close to 255
in Fig. 2.10 (b), the PDF is given the Eq. 2.6 below:
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PDFSalt&pepper =

A for g=a ("pepper")
B for g = b ("salt").

(2.6)

• Gamma model. The gamma model is generally seen in the laser based images. It
obeys the Gamma distribution, which is given in the Eq. 2.7 below:

PDFGamma =


abgb−1eag

(b− 1)! for g ≥ 0,

0 for g < 0,
(2.7)

Where, µ = b

a
and variance σ2 = b

a2 are given.

• Rayleigh model. This model present in radar images. The probability density
function is given in the Eq. 2.8 below:

PDFRayleigh =


2
b

(g − a) .e
−(g−a)2

b for g ≥ 0,

0 for g < 0,
(2.8)

where, µ = a+
√
πb

4 and variance σ2 = b (4− π)
4 are given.

2.4 Applications of Digital Image Analysis

Image processing has become such a critical component in recent science and technology
that many tasks would not be attempted without it. It is a truly interdisciplinary
topic that draws from effected developments involving many disciplines and is used in
medical imaging, microscopy, astronomy, computer vision, geology and many other fields
[Dou09].

• Filtering. is a technique for modifying or enhancing an image by applying various
effects on it. For example, you can filter an image to emphasize certain features
or remove other features. Image filtering is useful for many applications, including
smoothing, sharpening, removing noise, and edge detection. Linear filtering of
an image is accomplished through an operation called convolution. Convolution
is a neighborhood operation in which each output pixel is the weighted sum of
neighboring input pixels. The matrix of weights is called the convolution kernel, also
known as the filter which is a small array applied to each pixel and its neighbors
within an image.
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• Machine vision. In the computer vision we want to make computers emulate human
vision in terms of high-level understanding, including learning and being able to
make inferences and take actions based on visual inputs (digital images or videos).
Computer vision tasks include methods for acquiring, processing, analyzing and
understanding digital images. Sometimes uses the image processing tools and
algorithms to accomplish its tasks. One other word, machine vision is the process of
applying a range of technologies and methods to provide imaging based automatic
inspection, process control and robot guidance in industrial applications. Machine
vision tends to focus on applications, mainly in manufacturing, e.g., vision based
autonomous robots and systems for vision based inspection or measurement. This
implies that image sensor technologies and control theory often are integrated with
the processing of image data to control a robot and that real-time processing is
emphasized by means of efficient implementations in hardware and software. It
also implies that the external conditions such as lighting can be and are often more
controlled in machine vision than they are in general computer vision, which can
enable the use of different algorithms.

• Medical imaging. The rapid and continuing progress in computerized medical image
reconstruction, and the associated developments in analysis methods and computer-
aided diagnosis, have induced medical imaging into one of the most important
sub-fields in scientific imaging. Medical image processing refers to the applied
technologies of image processing in medical disciplines. It represents the tools that
are used to have an internal vision of any anatomical part of the human body which
helps doctors to improve and speed up the diagnosis process. Different modes of
medical imaging exist regarding the different types of energy which used in the image
acquisition. These modes are called the modalities such that Radiography, magnetic
resonance imaging, ultrasound imaging, nuclear medicine, computed tomography
[Leo05].

• Remote sensing. is the acquisition of physical data of an object without touch or
contact. Earth observation satellites have been used for many decades in a wide
field of applications. Remote sensors can be either passive or active. Passive sensors
respond to external stimuli. Active sensors use internal stimuli to collect data
about Earth. Imaging spectrometers and thermal multi-spectral systems acquire
detailed spectroscopic information of physical properties of the earth’s surface. High-
resolution imaging allows a very detailed, three-dimensional reconstruction of the
earth surface. One particular application of digital image processing in the field
of remote sensing is to detect infrastructure damages caused by an earthquake
[FDvdM02]. Since the area effected by the earthquake is sometimes so wide, that it
is not possible to examine it with human eye in order to estimate damages. Even if
it is, then it is very hectic and time consuming procedure. So a solution to this is
found in digital image processing. An image of the effected area is captured from
the above ground and then it is analysed to detect the various types of damage done
by the earthquake.
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• Robotics humanoid. robots are machines that looks like a human being and does
activities like walking, lifting, speech, cognition, and basically anything a human
can do. Most of the robots today work by following the line and thus are called
line follower robots. This help a robot to move on its path and perform some tasks.
This has been achieved through image processing. Computer vision systems rely
on image sensors which detect electromagnetic radiation which is typically in the
form of either visible light or infra-red light. The process by which light propagates
and reflects off surfaces is explained using optics. Sophisticated image sensors even
require mechanics to provide a complete understanding of the image formation
process. These robots can also be equipped with multiple vision sensors to be better
able to compute the sense of depth in the environment. Like human eyes, robots
eyes must also be able to focus on a particular area of interest, and also adjust to
variations in light intensities. The developments of humanoid robots proceed from
building individual robots to establishing societies of robots working alongside with
humans.

• Security. Image processing plays an important role in the development of tech-
nologies for dealing with security issues especially with the increase of cyber crime.
Surveillance cameras are widely diffused as means of crime reduction, and image
analysis tools are used in forensic fields. Intelligent Gate and electronic lock are
another examples of using image processing in security issues. Verifying a digital
image integrity and authenticity is an important task in security especially consider-
ing that the images can be digitally modified by low-cost hardware and software
tools that are widely available.

2.5 Summary

To summarize this chapter, here basic concepts and principles of digital image processing
have been presented. More deeply, we started from the introduction of digital image
analysis followed by CFA Bayer Demosaicing. A CFA pattern is a mosaic of color filters
placed on top of the CCD sensor to filter out the red, green, and blue components of
light spectrum that enter the camera. Afterwards, the fundamental decomposition of
color space were presented. In addition, some commonly models of image noise have been
summarized. Finally, commonly applications of digital image analysis techniques have
been also presented.
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3
Edge Evaluation Methods and

Corner Detection
This chapter begins with background of edge and corner detection, mainly including

methods for extracting edge features and the performance evaluation for edge and corner
detection.

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Low-level Feature Extraction . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Global and Local Features . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Edge Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Edge Labelling process . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Non-maximum suppression technique . . . . . . . . . . . . . . . . 31

3.3.3 First and Second Order Derivative Edge Detection . . . . . . . . . 32

3.3.4 Two-Dimensional Gaussian Derivative . . . . . . . . . . . . . . . . 34

3.4 Traditional edge operators . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Sobel edge detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Canny edge detector . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Filter banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Steerable Gaussian Filter . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 Anisotropic Gaussian kernels . . . . . . . . . . . . . . . . . . . . . 40

3.5.3 Half Gaussian kernel . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



28 3. Edge Evaluation Methods and Corner Detection

3.1 Introduction

During the last years, image features detectors have become popular tools and one of
the most active topics for image representation in computer vision community, they
are widely used in many applications [Sze10]. Furthermore, extraction feature is an
essential pre-processing step in pattern recognition [AT13] Image feature, is referred as
the identification of interested image primitives such as points, lines, curves, and regions.
Edges and contours are much related to object boundaries. They are required and applied
in image interpretation, such object recognition, image segmentation, visual tracking,
action analysis. Whereas, corner detection is much related to gradient orientations.
traditional corner detection based the calculation of second order derivatives. Edge refers
to pixels where the image intensities change abruptly. Image pixels are discontinuous at
different sides of edges. Contour/boundary can be viewed as the generalized definition
of edge which indicates the intersection of different regions. Corner refers, to the point
at which two different edge directions occur in the local neighborhood. Generally, the
difficulties in feature detection are caused by the changes viewpoint [HS88], illumination,
scale [Lin98, Low04], image quality [WBSS04], etc.

In computer vision and image processing, edges, corners and junctions detection are
provides very important visual information about the object or image. Extracting edge
features is the main and necessary process in edge and corner detection. Edge detection
allows us to observe those features of an image where there is a more or less abrupt change
in gray level or texture indicating the end of one region in the image and the beginning of
another. However, edge detection techniques for color image presents some challenge, the
simple technique is to look for discontinuities in luminance component [ACG10]. Edges
typically occur on the boundary between two different regions in an image. The most
common types of image intensity variations are steps, lines, and junctions [RFM06]. All
these types results from different original seen, for example when one object hide another
or when there is a shadow on surface. Edge detector methods are briefly divided into
two classes differentiation based class and learning based class. Whilst, corner detector
methods are divided into three classes gradient based, contour based and template based
methods. Many edge detection techniques have been developed for extracting edges from
digital images. Differentiation based filters are convolved to identify edge points. The edge
detector techniques can be classified into two main categories, first one is gradient methods,
finds edge by gradient maxima and minima Intensity. and the second is Laplacian methods,
finds zero crossing in the second derivative of the image. More deeply, first-order derivative
based gradient kernels appear in pairs such as Sobel, Prewitt, and Roberts. The gradients
are computed at different orientation, by convolution these kernels with an image, and
finally the local maxima of the gradient magnitudes are recorded as edges. Second-order
derivative filters such as Laplacian of Gaussian (LoG) will be find the zero-crossing as the
edge positions [Har84]. In a grey level image the edge is a local feature that, with in a
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neighborhood separates regions in each of which the gray level is more or less uniform
with in different values on the two sides of the edge. For a noisy image it is difficult to
detect edges as both edge and noise contains high frequency contents which results in
blurred and distorted result. Evaluation techniques for edge detection methods are studied
in this thesis. This evaluation is difficult because of difficulties in determining the best
parameters associated with each edge techniques. We noticed in the recent years there
has been considerable interest in techniques for evaluation of computer vision applications
and methods. All systems, especially automated information processing structures, must
be evaluated before being developed, principally for industrial applications or medical
data.

The majority require ground truth, which makes the evaluation methods impractical.
Some alternatives exist; for instance, assessing the quality of image segmentation without
reference to a ground truth image, but by measuring for each region its internal homogeneity
and its contrast along its boundaries. The quality of thresholded edge maps using edge
continuity and thinness. While appealing, the problem is that these criteria do not always
reflect good results, most cases ground truth is essential for performing a quantitative
analysis of an algorithm results.

3.2 Low-level Feature Extraction

Low-level features are defined as basic features that can be extracted automatically from an
image without any shape information. As such, thresholding is actually a form of low-level
feature extraction performed as a point operation. Difference methods find features by
calculating the derivative values of an image and then analysing them. In general, several
computer vision systems are used two types of features global image features, which is
describe an image as a whole or used the local image features representing local image
patches [NA12]. Global texture features and local features provide different information
about the image because the support over which texture is computed varies.

3.2.1 Global and Local Features

These features concerning the search on the whole image like the color histograms, contour
representations, texture, shape form, ... etc. The system based solely on global features
can not give the desired results. Either an image composed of several objects with very
different characteristics, colors and textures, the global feature vector extracted from the
entire image loses local information (objects) and produces only a rough average of the
content of this image [LMB+05]. Local features concerning the precise search on a part of
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the image using regional segmentation, detection of points of interest, etc. Analysis based
solely on local characteristics risks losing the overall sense of the image by submerging it
in a stream of unnecessary little details.

3.3 Edge Definition

Typically, edges occur on the boundary between two different regions in an image. In
other words, an edge is the boundary between an object and the background. In one
dimension, ideal edge may be viewed as a step change in intensity. In real signals, the
step change is likely to be mixed with noise caused by sensor as explained in chapter two,
surface, or light variations. Detection ideal step edges with noise is difficult and many
times is deficiency since both the noise and the edges contain high-frequency content,
while ideal edges without noise detected very easy and simple. Therefore, in the literature
on techniques for edge detection there are many methods uses ground truth image or
synthetic image to measure the error detection rate to evaluate the efficiency of the method
[SMB00, AMFM09, LMDBB16].

There exist different types of edges in images such as: peak, roof, ramp, step, small blur
and step with blur edges, Fig. 3.1 illustrated the signal of these types of edges after
convolution the image with [−1 0 1 ] mask. In real images, step edges are localized at
the inflection points of the image. Accordingly, the step edges are localized as positive
maxima or negative minima of the first-order derivative. While, the zero-crossings of the
second-order derivative are used to find an image edges. In the gray image the first-order
derivative is defined by the gradient filter while the second-order derivative is defined by
the second derivative along the gradient direction or by Laplacian filter. There are many
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Figure 3.1: The different types of edges and result of a convolution with a [−1 0 1 ] mask
(absolute value).
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methods to make edge detection, but the most common method for edge detection is to
calculate the differentiation of an image.

3.3.1 Edge Labelling process

Edge labelling process include localizing the edges and increasing signal-to-noise ratio by
suppressing the false edges. The localization step is based on the applied differentiation
operator. The edge detector methods based on used the gradient, the edges are localized
by applying a threshold to the gradient magnitude. The edges resulting in these type of
methods are dispersed. Therefore, needs additional process to lead up to final results with
uniform edges [ZT+98b]. Non-maximum suppression (NMS) procedure is used to improve
the performance of threshold based edge detection. The basic idea for Non-maximum
suppression is to extract local maxima of the gradient magnitude along the direction of
the gradient vector, then a specific pixel is a local maximum, if the gradient magnitude at
this pixel is greater than the gradient of two neighbouring points situated at the distance
on either side of the given pixel along the gradient direction. Whilst, edge labelling in
zero-crossing methods compare the result of a second-order derivative at a given pixel
with the neighbour pixels to the left and down, if these three pixels do not have the same
signs, than the horizontal and vertical direction improves the localization [ZT+98b].

3.3.2 Non-maximum suppression technique

Non-maximum suppression (NMS), has been widely used in several computer vision
applications, it is considered as an intermediate part of many approaches in detection,
might it be edge, corner or object detection [RT71, DT05, GDDM14]. Furthermore, this
post-preprocessing is named an edge thinning technique, applied to thin the edges after
compute gradient. More deeply, the image is scanned along the image gradient direction,
and if pixels are not part of the local maxima they are set to zero. This has the effect
of suppressing all image information that is not part of local maxima. Non-maximum
suppression consists of the following:

a) Let the location of a point (x, y) ,where x and y are integers and f(x, y) the intensity
of pixel at the location (x, y).

b) Compute the gradient of image intensity with he magnitude in location (x, y).

c) Assessment the magnitude of the gradient over the direction of the gradient in some
neighborhood around (x, y).
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d) If pixel in the location (x, y) is not a local maximum of the magnitude of the gradient
along the direction of the gradient then we can know that it is not an edge point.
In other word, if a pixel is not part of the local maximum we set this pixel to zero.

In General, for step (d) the neighborhood is taken to be 3 × 3 and the values of the
magnitude are linearly interpolated between the closest points in the neighborhood, Fig.
3.2 shown that the value at pixel K is interpolated between the values at the pixels P7 and
P8 and the values at the pixel M between those at the pixels P3 and P4. In other word,

- If the rounded gradient angle is 0◦ then the point will be considered to be on the
edge if its gradient magnitude is greater than the magnitudes at pixels in the east
and west directions.

- If the rounded gradient angle is 90◦ the point will be considered to be on the edge if
its gradient magnitude is greater than the magnitudes at pixels in the north and
south directions.

- If the rounded gradient angle is 135◦ the point will be considered to be on the edge
if its gradient magnitude is greater than the magnitudes at pixels in the north west
and south east directions.

- If the rounded gradient angle is 45◦ the point will be considered to be on the edge if
its gradient magnitude is greater than the magnitudes at pixels in the north east
and south west directions.

Figure 3.2: Examination if the pixel P in (b) is a local maxima of the magnitude of the gradient
in the direction of the gradient is done by interpolating the gradient magnitude at pixels M and
K in (b).

3.3.3 First and Second Order Derivative Edge Detection

The first derivative of the function f (x), is the slope of the tangent line to the function at
the point x. he first derivative tells us whether a function is increasing or decreasing, and
by how much it is increasing or decreasing. This information is reflected in the graph of
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a function by the slope of the tangent line to a point on the graph, which is sometimes
describe as the slope of the function. Positive slope tells us that, as x increases, f (x) also
increases. Negative slope tells us that, as x increases, f (x) decrease. Zero slope does not
tell us anything in particular: the function may be increasing, decreasing, or at a local
maximum or a local minimum at that point [Pra13]. The first-order derivative in image
processing is the gradient defined, and computation of the gradient of an image is based
on obtaining the partial derivatives of ∂f

∂x
and ∂f

∂y
at every pixel location.

5 f =
[
Gx

Gy

]
=
[
∂f
∂x
∂f
∂y

]
. (3.1)

An important quantity in edge detection is the magnitude of this vector, denoted 5f . As
with any vector, we can compute its magnitude and orientation Θ (5f) where:

|5f | =
√
G2
x +G2

y. (3.2)

The gradient magnitude gives the amount of the difference between pixels in the neigh-
borhood (the strength of the edge), while the gradient orientation gives the direction of
the greatest change, which presumably is the direction across the edge normal. Another
important quantity is angle of 5f the direction of the gradient vector:

angle of 5 f withxaxis = tan−1
(
Gy

Gx

)
. (3.3)

The second order derivative of a function is the derivative of the derivative of that function.
Graphically, the first order derivative represents the slope of the function at a point and
second order derivative describes how the slope changes over the independent variable
in the graph. If the second derivative is positive, then the first derivative is increasing,
so that the slope of the tangent line to the function is increasing as x increases. A basic
definition of the second-order derivative as the difference ∂2f

∂2x
[Pra13]. Second derivative

have a stronger response to fine detail, such as thin lines and isolated points, its response
is stronger to a line than to a step, and to a point than to a line and produce a double
edge response at ramp and step transition in intensity. One of popular edge detection
method of second-order derivative used the zero-crossings of the Laplacian ∆f which is
correspond to the contours given by Eq. 3.4. The Laplacian filter highlights edges in all
directions, it supports estimation of the edge strength regardless of edge orientation.

∆f = ∂2f

∂x2 + ∂2f

∂y2 (3.4)

Most edge detecting operators can be thought of as gradient calculation. Since derivatives
are linear and shift invariant, gradient calculation is most often done by convolution.
Numerous kernels have been proposed to find the edges and contours, some of these kernels
are basis of our work and will be explained in this chapter more deeply.
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3.3.4 Two-Dimensional Gaussian Derivative

Gaussian filters are designed to give no overshoot to a step function input while minimizing
the rise and reduce time. This behavior is closely connected to the fact that the Gaussian
filter has the minimum possible group delay. It is considered the ideal time domain filter.
The two-dimensional Gaussian filter has an impulse response. Fig. 3.3 (a) illustrates the
Gaussian distribution and given by Eq.3.5.

f (x, y, σ) = 1
2πσ2 e

−
(x2+y2)

2σ2 (3.5)

Where x is the distance from the origin of horizontal axis, y is the distance from the origin
of vertical axis, and σ is the standard deviation of the Gaussian distribution representing
the width of the Gaussian. In two dimensional Gaussian first order derivative, it is the
product of two such Gaussian is one per direction Gaussian distribution are shown in the
Fig. 3.3(b) and given by Eq. 3.6 and Eq. 3.7 .

∂f (x, y, σ)
∂x

= − x

2πσ4 e
−

(x2+y2)
2σ2 (3.6)

∂f (x, y, σ)
∂y

= − y

2πσ4 e
−

(x2+y2)
2σ2 (3.7)

In two dimensional Gaussian second order derivative, it is the product of two such
Gaussians is one per direction given by Eq. 3.8 and Eq.3.9 and Gaussian distribution are
shown in the Fig. 3.3(c).

∂2f (x, y, σ)
∂2x

=
(
−1 + x2

σ2

)
e−

(x2+y2)
2σ2

2πσ4 (3.8)

∂2f (x, y, σ)
∂2y

=
(
−1 + y2

σ2

)
e−

(x2+y2)
2σ2

2πσ4 (3.9)

x  direction y  direction x  direction y  direction 

(a) Gaussian derivatives (b) 1st Gaussian derivatives x and y directions (c) 2st Gaussian derivatives x and y directions

Figure 3.3: 2D-dimensional Gaussian first and second order derivative operators give receptive
of x and y directions.
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There are many properties and advantages of Gaussian filters like removes the noise from
an image, blurs the edges, also with using larger σ more details maybe are removed
and the good advantage is separable for example Gaussian can be separated into x and
y components, thus increasing the speed of convolution the image with Gaussian filter
[Low04, BETVG08].

3.4 Traditional edge operators

In the literature, there are numerous edge detection operators available for image segmenta-
tion and object boundary to extract the edges features of digital color or gray-scale images.
The traditional popular works deals with this group such as: the methods developed by
Sobel [Sob70], Prewitt [Pre70], Canny [Can86b] and Shen-Castan [SC92]. These methods
compute gradient and look for local maxima to find step edges. In general, all these
methods are simple in computation and capable to detect the edges and their orientation.
In this section, a study is made to review some of the traditional edge detection techniques
that are based on discontinuity intensity levels. In general, each filter is designed to be
sensitive to certain types of edges.

3.4.1 Sobel edge detector

The Sobel operator [Sob70] is one of classic first order edge detector operator. In general,
it is used as a standard gradient computation method to retrieve the image gradient and
edges. More deeply, this operator only considers the two orientations which are 0◦ and
90◦ degrees convolution kernels uses the masks as shown in Fig. 3.4. The operator uses
two 3×3 kernels which are convolved with the original image to calculate approximations
of the first derivatives for horizontal changes (Gx), and another for vertical (Gy), means
the gradient component in each orientation.

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

(a) Gx for the derivative in x (b) Gy for the derivative in y

Figure 3.4: The Sobel operator as a pair of 3× 3 convolution kernels in X and Y directions.

Then combined these component together to find the absolute magnitude of the gradient
at each point and the orientation of this gradient.
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|G| =
√
G2
x +G2

y, (3.10)

|G| = |Gx|+ |Gy| , (3.11)

While the angle of orientation of the edge can be computed by the Eq. 3.12

Θ = arctan (Gy/Gx) . (3.12)

This operator detects edges are where the gradient magnitude is high, this makes the
Sobel edge detector more sensitive to diagonal edge than horizontal and vertical edges.
Fig. 3.5 illustrates the process steps for Sobel edge detection.

(a) Original image: 340×380 (b) Gx Gradient in x direction (c) Gy Gradient in y direction

(d) Gradient image (e) Max of Gradient image (f) Sobel edge result, threshold=0.2

Figure 3.5: All Sobel edge detector process steps.

3.4.2 Canny edge detector

The Canny edge detector [Can86b], is one of the optimal edge detection method. This
filter works in a multi-step process. First step, smooths the image with Gaussian filter to
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reduce and eliminate the image noise.

g(x, y) = 1
2πσ2 e

− (x2+y2)
2σ2 (3.13)

The second steps computes the horizontal and vertical gradient. the gradient is the
first-order derivative of the image for each direction to find the regions with high spatial
derivatives. The next step, is non-maximal suppression, this process results in a one
pixel wide. More deeply, passes along all the regions and suppresses any pixel that is not
at the maximum value, thin edges by applying(non–maximum suppression described in
previous section 3.3.2 ) to the gradient magnitude. If the pixel value is not greater than its
neighbourhood pixels, then this pixel is not the edge. Important point, this process needs
to know the direction of the gradient vectors in order to find two neighbour pixels on the
same direction. The edge direction is grouped into eight directions. Finally, edge tracking
by hysteresis threshold. The gradient array reduced by using hysteresis thresholds. This
hysteresis helps to remove the weak edges and set them to zero. To construct or connect
edges, starting from the pixel which is greater than high threshold and search all the eight
adjacent neighbors pixels. Also, if the neighbour pixel is greater than low threshold, then
it will be an edge too. The range of the hysteresis threshold is ( 0 < Tlow < Thigh < 1). Fig.
3.6 illustrates the complete Canny edge detection process on the Lena image including all
the intermediate results with σ=3, Thigh=0.3 and Tlow=0.1.

3.5 Filter banks

In the domain of image analysis, the estimation of a precise gradient is crucial, and is often
based on the computation of local derivatives. When using filters with image derivatives
in only two directions, the x and y (i.e 0◦ and 90◦), the gradient estimation is not accurate
enough to describe the geometrical structures in the image. Using an orientation filter
bank can improve the quality of the gradient estimation; indeed, its orientation and its
magnitude are far more accurate. Filter banks, are a general framework where the output
results from the combination of a set of filters sharing some properties. In general, the
filter banks designed for curvilinear structures are oriented, i.e. each filter of the bank is
sensitive to a different orientation. By combining all the oriented filters, filter banks are
able to detect structures in arbitrary orientations. Even if some filter banks are derivative
based, the unifying idea remains the combination of oriented filters. the goal in choosing
the various filter bank parameters is to minimize the error. Due to multiple orientations,
a filter bank allows to detect several image features such as contours, edges, corners.
There are popular filters bank used in successful approaches for processing images, such
as steerable Gaussian filter [FA91] and Gabor filter bank [MM96] Filter orientation banks,
can be used in many applications such as biometric systems, image retrieval and medical
imaging.
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(a) Original Lena image (b) Lena grayscale image (c) Smoothing with Gaussian σ=1

(d) X direction gradient (e) Y direction gradient (f) Gradient magnitude

(g) Gradient directions (h) Non-Maxima suppression (i) Hysteresis threshold T1=0.1, T2=0.3

Figure 3.6: All Canny edge detector process steps.

3.5.1 Steerable Gaussian Filter

One of the most popular filter banks is the steerable filters. As a solution to the above
stated problem, Freeman and Adelson [FA91] introduced an elegant way for steerable
filters that can be directed at specific angles using a linear combination of isotropic filters
like Gaussian derivatives. Let us note the basic derivatives of Gaussian filters ∂Gσ/∂x and
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Figure 3.7: (a) Set of steerable Gaussian filters Gσ,θ with (σ=1.5, ∆θ = 10◦), starting from
upper left θ = 0◦. (b) The steerable filter banks block diagram. Figure obtained from [Kri14].

∂Gσ/∂y along the x-axis and y-axis respectively, for example:
∂Gσ(x, y)

∂x
= −x

2πσ4 · e
−
x2 + y2

2σ2

∂Gσ(x, y)
∂y

= −y
2πσ4 · e

−
x2 + y2

2σ2 ,

(3.14)

with σ the standard-deviation of the Gaussian filter. Freeman and Adelson have shown
that the first order directional Gaussian derivative Gσ,θ at an angle θ can be generated
by a linear combination of a rotation of the basic derivatives of isotropic Gaussian filters
illustrated in Fig. 3.7 and Fig. 10.1 shown how features extraction by using steerable
filter banks [ACMM16a]:

Gσ,θ(x, y, σ) = cos(θ) · ∂Gσ
∂x

(x, y) + sin(θ) · ∂Gσ
∂y

(x, y). (3.15)

The image derivative Iσ,θ is obtained by convolving the original grayscale image I with
the oriented Gaussian kernels Gσ,θ:

Iσ,θ(x,y) = (I ∗ Gσ,θ) (x, y). (3.16)

Finally, the gradient magnitude ‖∇I(x, y)‖ is calculated as the maximum absolute value
response to the oriented operator Gσ,θ:

‖∇I(x, y)‖ = max
θ∈[0,180[

(|Iσ,θ(x, y)|). (3.17)
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3.5.2 Anisotropic Gaussian kernels

Anisotropic Gaussian kernels (AGK), can be used in many applications, one of its most
important use is image smoothing and for edge detection. The anisotropic Gaussian kernel
Gσx,σy(x, y) can given by:

Gσxσy(x, y) = 1
2πσxσy

e
−x2

2σ2
x e
−y2

2σ2
y . (3.18)

Perona et al. [GSvdW02] used the function Gσx,σy (x, y) to obtained higher smoothing in
the direction of the filter, by use the ratio σx

σy
=3. Fig. 3.8 show the anisotropic oriented

kernel with sample example of orientated kernel. More deeply, the edges are detected by
computing the 1st derivative of the anisotropic kernels as in Eq. 3.19 and by rotating the
filter in different orientations and retaining the orientation which produces the maximum
of energy. Fig. 3.12 (a) illustrates the (AGK) derivatives at different orientations θ.

G′σxσy(x, y) = ∂Gσxσy

∂x
(x, y) = −x

πσxσy
e
−x2

2σ2
x e
−y2

2σ2
y , (3.19)
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Figure 3.8: Anisotropic orientation kernel Gσx,σy (x, y) and example of orientations
G′σxσy(x, y).(a) AGK filter. (b) Anisotropic Oriented kernel by 0◦, (b) Oriented kernel by
60◦.

3.5.3 Half Gaussian kernel

We can describe problems with the anisotropic filter. Suppose we have application of
anisotropic kernel with the outline of an object as shown in Fig.3.9(a) In general, the filter
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Object

Object
contour

Anisotropic Gaussian full derivative kernelAnisotropic Gaussian kernel Half Gaussian kernel

(a) (b)

Figure 3.9: Address the problem on Anisotropic Gaussian kernel. This figure obtained from
[MMD11a]. (a) Application of Anisotropic Gaussian kernel at the edge and corner of an object.
(b) Application of Anisotropic half Gaussian kernel at at the edge and corner of the same object.

is applied at two locations, one on the horizontal line of the edge where the response of
the anisotropic filter is high and work very good and the second location, is applied at the
corner of the an object. Here, we address the problem as shown in the Fig.3.9 (a) only
small part of the anisotropic filter takes into account the information. Therefore, the filter
response is greatly reduced where the results are particularly affected by noise.

Wherefore, the solution for anisotropic kernel problem is solve by the Half Gaussian kernel
(HGK) as shown in the Fig.3.9 (b), which is one of anisotropic filters family able to
detecting the difficult edges, corners and junctions in the image. This new filter produced
by Magnier et al. [MMD11a]. The equation of the Half Gaussian Kernels (HGK) derivative
is given by the Eq. 3.20:

HGKσξ,ση(x, y) = −H(y) · x
ση
·Gσξ,ση(x, y), (3.20)

Where H corresponds to the Heaviside function, it helps in the recursive implementation
of the (HGK), (x, y) ∈ R2 represent the pixel coordinates, ση and σξ are referred to the
Gaussian scale. Fig. 3.10 show the important parameters that controls the size of the
HGK filter.

θ
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(a) HGK (b) HGK with orientation angle 4θ (c) discreteized HGK.

Figure 3.10: The figures (b) and (c) obtained from [MMD11a] show the HGK with full derivative
and half smoothing. (b) example of HGK orientations. (d) example of discrete HGK.
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First step rotating the image at some discretized orientations from 0 to 360 degrees and
convolving the image with the oriented kernels. In a second step, they apply an inverse
rotation of the smoothed image and obtain a bank of 360/M θ images. maxima of the
filter responses indicate the directions of the edges from 0 to 2π [MMD11a, MM14a].
The methodology is shown in Fig. 3.11 to clearly all these process. The Half Gaussian

Figure 3.11: Methodology of the Half Gaussian kernels process steps.

kernels have been used in many applications such as edges detection in color images
[MM10], anisotropic diffusion [MM14b] enhancement image or texture removal in color
image by pixel classification [MMD11b, MMD11c], medical imaging approach [MMD13]
and for Image deblurring and Regularization [MXM13]. Moreover, have been used in the
new approaches of image descriptors [VMDM15a, VMDM15b] and in corner detection
approach [AMM17c]. Fig. 3.12 (a) and (b) illustrates the comparison between anisotropic
kernel and Half Gaussian kernel derivatives at different orientations θ, as shown in this
figure the edges in each θ is more clear and good localization, while the detector used
an anisotropic kernel the edges are more blurring for each orientations. As an example,
for real image, illustrated in Fig. 3.13 to compare eight edge detectors still has scope
and achieved that Half Gaussian kernel is best detector than other detector methods.
Furthermore experiments, illustrates in Fig. 3.14 and Fig. 3.15 Half Gaussian kernel
(HGK) remains more stable and robust to blur and noise than the comparative methods.
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Figure 3.12: Comparison between Anisotropic kernel and Half filter derivatives at different
orientations θ, (a)Anisotropic filter with σx=1.5, σy=7.5. (b) Half Gaussian filter with λ=1.5,
µ=3.75.
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(a) Original image (b) Sobel filter (c) Canny filter σ=1

(d) Deriche filter (e) Shen-Castan filter [SC92] (f) Steerable Gaussian filter [FA91]

(g) Perona filter [GSvdW02] (h) Jacob filter [JU04a] (i) Half Gaussian filter [MMD11a]

Figure 3.13: Example for real image: differences edge detector methods result.
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(a) Original image (b) Sobel filter (c) Canny filter σ=1 (d) Deriche filter

(e) Shen-Castan [SC92] (f) Steerable Gaussian filter [FA91] (g) Perona [GSvdW02] (i) Half Gaussian filter [MMD11a]

Figure 3.14: Comparison differences edge detector methods for blurry edge noise.

(a) Original image (b) Sobel filter (c) Canny filter σ=1 (d) Deriche filter

(e) Shen-Castan filter [SC92] (f) Steerable Gaussian filter [FA91] (g) Perona filter [GSvdW02] (i) Half Gaussian filter [MMD11a]

Figure 3.15: Comparison differences edge detector methods for blurry corner noise.
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3.6 Summary

In this chapter, we begins with background of edges and corners detection, mainly including
methods for extracting edge features and the performance evaluation for edge and corner
detection methods. here different traditional edge operators based on gradient group,
intensity and filter response are presented. we explained about the post processing steps
for each operator. More deeply, we focused more on the filters in the particular about the
filter banks, steerable Gaussian filers, Anisotropic kernels, Half Gaussian kernels, which
forms the basis of this thesis. In the rest of the chapter we refer to Anisotropic Gaussian
kernels as (AGK), Half Gaussian Kernel as (HGK). Here, we have also presented the
advantage of splitting the Anisotropic Gaussian kernel to constructing the(HGK) filter.
Finally, in this chapter different experiments have been presented to highlight the results
of the edge detector filters with real and synthetic images, also with noise and without
noise.
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4.1 Introduction

In image processing tasks, edge detection remains a key point in many applications.
Boundaries include the most important structures of the image, and an efficient boundary
detection method should create a contour image containing edges at their correct locations
with a minimal of misclassified pixels. Different algorithms have been developed in the
past, but few of them give an objective performance comparison. The evaluation process
should produce a result that correlates with the perceived quality of the edge image, which
is relied on human judgment. In other words, a reliable edge map should characterize all
the relevant structures of an image. On the other hand, a minimum of spurious pixels or
holes (oversights) must be created by the edge detector at the same time. Therefore, an
efficient evaluation can be used to assess and improve an algorithm, or to optimize edge
detector parameters [HSSB97].

The measurement process can be classified into either supervised or unsupervised evaluation
criteria. The first class of methods exploits only the input contour image and gives a
score of coherence that qualifies the result given by the algorithm [HSSB97]. The second
class computes a dissimilarity measure between a segmentation result and a ground
truth obtained from synthetic data or an expert judgment (i.e. manual segmentation)
[DJ94, CLRE08, LMDBB13]. This work focusses on comparisons of supervised assessment
of edge detection evaluations. Furthermore, a new supervised edge map quality measure
based on the distances of misplaced pixels is presented and compared to the others,
using synthetic and real images. In digital images, edges characterize object boundaries,
then their detection remains a crucial stage in numerous applications. To achieve this
task, many edge detectors have been designed, producing different results, with different
qualities. Evaluating the response obtained by these detectors has become a crucial task.

In this chapter, several referenced-based boundary detection evaluations are detailed,
pointing their advantages and disadvantages through concrete examples of edge images.
Then, a new supervised edge map quality measure is proposed, comparing to a ground
truth contour image, the candidate contour image and their associated spacial nearness.
Compared to other boundary detection assessments, this new method has the advantage
to be normalized and remains more reliable edge map quality measure.

4.2 Supervised image contour evaluation

As introduced above, a supervised evaluation process estimates scores between a ground
truth and a candidate edge map. In image processing, the Structural Similarity Index
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Measure(SSIM) corresponds to an image quality evaluation, which estimates the visual
impact of gray scale shifts in an image [WBSS04]. Otherwise, contours (binary images)
could be evaluated counting the number of erroneous pixels, but also throughout spatial
distances of misplaced or oversights contours.

4.2.1 Error measures involving the confusion matrix only

Let Gt be the reference contour map corresponding to ground truth and Dc the detected
contour map of an image I. Comparing pixel per pixel Gt and Dc, common positive
or negative presence of points is the first criterion to be assessed. A basic evaluation
is compounded of statistics issued of a confusion matrix. To that effect, Gt and Dc are
combined. Afterward, denoting | · | the cardinality of a set, all points are partitioned into
four sets:

• True Positive points (TPs), common points of Gt and Dc: TP = |Dc ∩Gt|,

• False Positive points (FPs), spurious detected edges of Dc: FP = |Dc ∩ ¬Gt|,
• False Negative points (FNs), missing boundary points of Dc: FN = |¬Dc ∩Gt|,
• True Negative points (TNs), common non-edge points: TN = |¬Dc ∩ ¬Gt|.

In one hand, let us consider boundary detection of images, FPs appear in the presence of
noise, texture or other contours influencing the filter used by the edge detection operator.
In the other hand, FNs represent holes in a contour of Dc. Finally, a wrong threshold
of the segmentation could generate both FPs and FNs. Computing only FPs and FNs
enables a segmentation assessment [MMD11a, MAB+14], and a reliable edge detection
should minimize the following indicators [CLRE08]:

Over-detection error : Over(Gt, Dc) = FP
|I|+|Gt| ,

Under-detection error : Under(Gt, Dc) = FN
|Gt| ,

Localization-error : Loc(Gt, Dc) = FP+FN
|I| .

Additionally, the Performance measure (P ∗m) presented in Table 4.1 considers directly at
the same time the three entities TP , FP and FN to assess a binary image. The obtained
score reflects the percentage of statistical errors.

(a) Gt, |Gt| = 68. (b) D1, FP = 54, (c) D2, FP = 54,
D1 ∩Gt = ∅. D2 ∩Gt = ∅.

Over(Gt, D{1,2}) = 0.1224
Under(Gt, D{1,2}) = 1
Loc(Gt, D{1,2}) = 0.2449
P ∗m(Gt, D{1,2}) = 1
Φ∗(Gt, D{1,2}) = 1

χ2∗(Gt, D{1,2}) = 0.983
F ∗α=0.5(Gt, D{1,2}) = 1

FoM(Gt, D1) = 0.22
FoM(Gt, D2) = 0.60
H(Gt, D1) = 1.41
H(Gt, D2) = 7.67
∆k
w(Gt, D1) = 0.96

∆k
w(Gt, D2) = 2.31

Figure 4.1: Evaluations issued of a confusion matrix can be the same for different Dc. For the
two candidate edge images, number of FPs and number of FNs are the same.
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Another way to display evaluations are Receiver Operating Characteristic (ROC) [BKD01]
curves or Precision-Recall (PR) [MFM04], involving True Positive Rates (TPR = TP

TP+FN )
and False Positive Rates (FPR = FP

FP+TN ). Derived from TPR and FPR, the three
measures Φ, χ2 and Fα (see Table 4.1) are frequently used in edge detection assessment.

P ∗m, Φ, χ2 and Fα measures are normalized and decrease with the quality of the detection; a
score equal to 0 qualifies a perfect segmentation. These measures evaluate the comparison
of two edge images, pixel per pixel, tending to penalize severely a misplaced contour
(even weak). So they do not indicate significant variations of the desired contour shapes
through an evaluation (as illustrated in Fig. 4.1). As this penalization tends to be too
severe, some evaluations issued from the confusion matrix recommend a spatial tolerance,
particularly for assimilation of TPs [BKD01, MFM04]. This inclusion could be carried by
a distance threshold or a dilation of Dc and/or Gt. A such strategy of assimilation leads
to counting several near contours as parallel stripes to the desired boundary. Tolerating a
distance from the true contour and integrating several TPs for one detected contour are
opposite to the principle of unicity in edge detection expressed by the 3rd Canny criteria:
an optimal edge detector must produce a single response for one contour [Can86a]. Finally,
to perform an edge evaluation, the assessment should penalize a misplaced edge point
proportionally to the distance to its true location.

4.2.2 Assessment involving distances of misplaced pixels

A reference-based edge map quality measure requires that a displaced edge expects to be
penalized in function not only of the FPs and/or FNs but also in function of the distance
to the position they should be located at. Table 4.1 reviews the most relevant existing
measures. The common feature between these evaluators corresponds to the error distance
dGt(p) or dDc(p). Indeed, for a pixel p∈Dc, dGt (p) represents the minimal distance between
p and Gt, whereas if p∈Gt, dDc(p) corresponds to the minimal distance between p and Dc.
This distance refers to the Euclidean distance, even though some authors involve others,
see [LMDBB13]. Thus, a measure computing an error distance only in function of dGt
estimates the divergence of FPs, which corresponds to an over-segmentation (cases Υ, Dk,

(a) Gt (b) Ic (b) It

Measure It Ic
FoM 0.63 0.17
F 0.72 0.18
d4 0.62 0.15

SFoM 0.64 0.17
MFoM 0.82 0.58
DP 0.33 0.007
Υ 1.14 3.30
H 109 130
H5% 10.39 11.01

Measure It Ic
Dk
k=2 0.39 0.47

θδTH=1 2.74 9.07
θδTH=5 0.37 3.35
ΩδTH=1 7.91 0

∆k 6.05 1.20
f2d6 5.79 1.60
Skk=2 5.97 2.84

Γ 0.19 0.12
Ψ 0.94 0.12

Figure 4.2: The scores of the over-segmentation evaluations are higher for It whereas It is more
closer visually to Gt than Ic.
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Table 4.1: List of error measures, k = 1 or k = 2 are the most common values.

Error measure
name Formulation Parameters

Performance
measure
[GPW03]

P ∗m (Gt, Dc) = 1− TP

TP + FP + FN
None

Complemented Φ
measure [VR95] Φ∗ (Gt, Dc) = 1− TPR · TN

TN+FP None

Complemented χ2

measure [YP03] χ2∗ (Gt, Dc) = 1− TPR−TP−FP
1−TP−FP · TP+FP+FPR

TP+FP None

Complemented
Fα measure
[MFM04]

F ∗α (Gt, Dc) = 1− PREC · TPR
α · TPR+(1−α) ·PREC

, with PREC = TP
TP+FP α ∈]0; 1]

Pratt’s FoM
[AP79] FoM (Gt, Dc) = 1− 1

max (|Gt| , |Dc|)
·
∑
p∈Dc

1
1 + κ · d2

Gt(p)
κ ∈ ]0; 1]

FoM revisited
[PA95] F (Gt, Dc) = 1− 1

|Gt|+β ·FP ·
∑
p∈Gt

1
1 + κ · d2

Dc(p)
κ ∈ ]0; 1]
and β ∈ R+

Combination
of FoM and
statistics [BG09]

d4 (Gt, Dc) = 1
2 ·

√√√√(TP −max (|Gt| , |Dc|))2 + FN2 + FP 2

(max (|Gt| , |Dc|))2 + FoM (Gt, Dc)
κ ∈ ]0; 1]
and β ∈ R+

Yasnoff measure
[YGB78] Υ (Gt, Dc) = 100

|I| ·
√ ∑
p∈Dc

d2
Gt (p) None

Hausdorff dis-
tance [HR93] H (Gt, Dc) = max

(
max
p∈Dc

(dGt(p)),max
p∈Gt

(dDc(p))
)

None

Maximum dis-
tance [DJ94] f2d6 (Gt, Dc) = max

 1
|Dc|
·
∑
p∈Dc

dGt (p), 1
|Gt|
·
∑
p∈Gt

dDc (p)
 None

Distance to
Gt [PM82,
LMDBB13]

Dk (Gt, Dc) = 1
|Dc| · k

√ ∑
p∈Dc

dkGt (p), k = 1 for [PM82] k ∈ R+

Oversegmentation
[Har84, OBBC02] Θ (Gt, Dc) = 1

FP
· ∑
p∈Dc

(
dGt (p)
δTH

)k
, k = δTH = 1 for [Har84]

for
[OBBC02]:
k ∈ R+ and
δTH ∈ R∗+

Undersegmentation
[Har84, OBBC02] Ω (Gt, Dc) = 1

FN
· ∑
p∈Gt

(
dDc (p)
δTH

)k
, k = δTH = 1 for [Har84]

for
[OBBC02]:
k ∈ R+ and
δTH ∈ R∗+

Symmetric dis-
tance [DJ94,
LMDBB13]

Sk (Gt, Dc) =
k

√√√√√
∑
p∈Dc

dkGt (p)) + ∑
p∈Gt

dkDc (p)

|Dc ∪Gt|
, k = 1 for [DJ94] k ∈ R+

Baddeley’s Delta
Metric [Bad92] ∆k(Gt, Dc) = k

√
1
|I| ·

∑
p∈I
|w(dGt(p))− w(dDc(p))|k

k ∈ R+

and a convex
function w :
R 7→ R

Edge map qual-
ity measure
[PGAN16]

Dp (Gt, Dc) = 1/2
|I|−|Gt| ·

∑
p∈Dc

(
1− 1

1 + α·d2
Gt(p)

)
+ 1/2
|Gt| ·

∑
p∈Gt

(
1− 1

1 + α·d2
Gt∩Dc(p)

)
α ∈ ]0; 1]

Magnier et al.
measure [MLZ16] Γ(Gt, Dc) = FP+FN

|Gt|2 ·
√ ∑
p∈Dc

d2
Gt(p) None

Θ, FoM and Γ). On the contrary, the sole use of a distance dDc enables an estimation
of the FNs divergence, representing an under-segmentation, as Ω distance measure. A
measure widely computed in matching techniques is represented by the Hausdorff distance
H which estimates the mismatch of two sets of points [HR93]. This max-min distance
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could be strongly deviated by only one pixel which can be positioned sufficiently far from
the pattern (illustrated in Fig. 4.2); so the measured distance becomes that between the
pattern and the (erroneous) point, disturbing in that case the score of H. To improve H
such that it becomes less sensitive to outliers, an idea is to compute H with a proportion
of the maximum distances (for example 5% of the values [HR93]); let us note Hn% this
measurement for n% of values (n ∈ R+

∗ ). One of the most popular descriptor corresponds
to Figure of Merit (FoM). This distance measure ranges from 0 to 1, where 0 corresponds
to a perfect segmentation [AP79], but computes only distances of the FPs [Bad92]. Thus,
some improvements have been developed as F and d4. Furthermore, as concluded in
[CLRE08], a complete and optimum edge detection evaluation measure should combine
assessments of both over- and under-segmentation, as in Sk, ∆k

w and Dp. As an example,
inspired by f2d6 [DJ94], another way is to consider the combination of both FoM (Gt, Dc)
and FoM (Dc, Gt), as the two following formulas:

Symmetric FoM: SFoM (Gt, Dc) = 1
2 ·FoM (Gt, Dc) + 1

2 ·FoM (Dc, Gt) (4.1)

Maximum FoM: MFoM (Gt, Dc) = max (FoM (Gt, Dc) , FoM (Dc, Gt)) . (4.2)

Finally, SFoM and MFoM take into account both distances of FNs (i.e. dDc) and FPs
(i.e. dGt), so they can compute a global evaluation of a contour image.

Another way to compute a global measure is presented in [PGAN16] with the normalized
edge map quality measure Dp. In fact, this distance measure seems similar to SFoM
with different coefficients. However, both the left and the right terms are composed of a 1

2
coefficient, so in the presence of only a pure under- or over-segmentation, the score of Dp

does not attain over 1
2 .

4.2.3 Normalization of the edge detection evaluation:

In order to compare each boundary detection assessments, all measures must be normalized,
but also indicate the same information: an error measure close to 1 means a poor
segmentation whereas a value close to 0 indicates a good segmentation. Thereby, the
values of FoM , F , d4 and Dp belongs to [0, 1]. However, concerning other distance
measures of table 4.1, a normalization is required. Introduced in [MLZ16], a formula
called Key Performance Indicator (KPI) gives value close to 1 for a poor segmentation;
alternatively, a KPI value close to 0 translates a good segmentation:

KPIu : [0;∞[ 7→ [0; 1[
u → 1− 1

1 + uh
.

(4.3)

where the parameter u represents a distance error and h a constant (h ∈ R+
∗ ).

An undeniable parameter of KPI formula is the power of the denominator term called h.
Inasmuch as KPI depends on its value, it evolves more or less quickly around 0.5 and
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embodies a range of observable cases. The advice to choose values between 1 and 2 can be
easily checked. Otherwise, the more KPI evolution will be abrupt, the less the transition
between 0.5 and 1 will be marked. As a compromise, fixing the power at the golden
ratio φ ' 1.6180339887, the measurement becomes not too strong in the presence a small
measure score, but increases to 1 for a high score of the distance measure [MLZ16].

4.3 A new edge detection assessment measure

In [MLZ16] is developed a normalized measure of the edge detection assessment, denoted
Γ. This function represents an over-segmentation measure which depends also of FN
and FP . As this measure is not sufficiently efficient concerning FNs because it does
not consider dDc for false negative points (see Fig. 4.7). Thus, inspired by Sk, the new
measure Ψ holds different coefficients changing the behavior of the measure:

Ψ(Gt, Dc) = FP + FN

|Gt|2
·
√∑
p∈Gt

d2
Dc

(p) +
∑
p∈Dc

d2
Gt

(p) (4.4)

Compared to Γ, Ψ improves the measurement by combining both dGt and dDc (illustrated
in Fig. 4.7). Authors of Γ have studied the influence of the coefficient in different concrete
cases [MLZ16]. They concluded that such a formulation must take into consideration
all observable cases and theoretically observable. In fact, a performing measure has
to take into account all the following input parameters |Gt|, FN and FP whereas the
image dimensions should not be considered. Thus, the parameter FP+FN

|Gt|2 seems a good
compromise and has been introduced to the new formula of assessment Ψ.

4.4 Experimental results

Experiments realized in this part aim to be the most accomplished, thus the more close
and realistic of the reality. In respect of these directives, in a first time, considering
a synthetic edge model (i.e. ground truth) the edge detection evaluation measures are
subject to the following studies:

• Addition of false positive points close to the true contour,

• Addition of false negative points (under-segmentation),

• Addition of false positive points (over-segmentation),

• Addition of both false negatives and false positive points,
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• Translation of the boundary.

Thus, 24 measures and the new proposed method are tested and compared together. The
KPI in eq. 4.3 is computed for the non-normalized algorithms in Table 4.1.

The first experiment is to create an over-segmentation at a maximal distance of 5 pixels,
as illustrated in Fig. 4.3 (100% of over-segmentation represents a dilatation of the vertical
line with a structural element of size 1×6, corresponding of a total saturation of the
contour, see Fig. 4.3(d)). Curves presented here show that Fα, d4, F , MFoM , H, H5%,
∆k, Dk, f2d6, and Sk are very sensitive to FPs, whereas SSIM , Dp, Φ and Dk (which
is not homogeneous) do not penalize enough Dc. Ω remains constant at 0 because it
corresponds to an under-segmentation measure. Moreover, Υ and FoM are not too abrupt,
even though they stagnate, like Dk, SFoM , f2d6, and Sk. Finally, Γ and Ψ are not too
abrupt and penalize strongly Dc in the presence of many FPs.

(a) Gt: Line (b) Legend

(c) 30% of FPs (d) 100% of FPs
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Figure 4.3: Measures scores in function of the over-segmentation in the contour area.
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Figure 4.4: Evolution of the dissimilarity measures in function of the FPs addition.
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The second test is to add random undesirable pixels to Gt until 100 FPs, as represented
in Fig. 4.4 top left. Globally, the curves in Fig. 4.4 illustrates that the measures using
KPI behave like the previous experiment; only Γ and Ψ are not too sensitive to FPs. The
normalized evaluation measures increase correctly, but seem stagnant, excepted Φ and Dp

which stay close to 0.

Concerning the addition of FNs, Fig. 4.5 (left) illustrates that H, H5% and ΩδTH=1 are
very sensitive to the presence of FNs. Also, Dp attains only the score of 1

2 . The over-
segmentation methods Υ, Dk, Ω and Γ remain constant at 0. On the other hand, the score
of the KPI of Ψ attains 0.5 for 50% of FNs. Afterward, contrary to the addition of FPs
or FNs, error measures without distance measures obtains a score of 1 after one pixel of
translation and the score of Dp stays constant at 1

2 (Fig. 4.5 (right)). Only FoM , SFoM ,
MFoM , the KPI of ΩδTH=5, the KPI of Γ and the KPI of Ψ behave correctly.

Concerning the line, the last experiment corresponds to an addition of both FPs and
FNs. Thus, Fig. 4.6 shows that the normalized measures, excepted Dp and SSIM behave
correctly. Concerning other measures, the KPI scores of ΩδTH=5, Γ and Ψ are not too
abrupt for few number or errors and penalize strongly Dc in the presence of many FPs and
FNs (but ΩδTH=5 is not homogeneous). For example, Fig. 4.6 (bottom right) illustrates
the line where both 50% of the pixels are missing and 50 FPs are added, corresponding to
33% of TPs. In this precise case, the KPI score of new measure Ψ is close to 0.7, thus,
reflecting the reality.
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Figure 4.5: Measure scores in function of the FNs addition and the edge translation.
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Figure 4.6: Dissimilarity measure scores in function of addition of both the FNs and FPs.

(a) Gt (b) C1 (c) Gt vs. C1 (d) C2 (e) GtvsC2
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(f) Gt vs. C1 (g) Gt vs. C1
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(h) Gt vs. C2 (i) Gt vs. C2

Figure 4.7: Dissimilarity measure scores in function of the size of the original square.

Another experiment in Fig. 4.7, two different shapes are compared to a square (Gt),
illustrating the importance to consider both dDc and dGt . Furthermore, all the shapes are
growing at the same time, keeping the same percentage of FPs and FNs with Gt. The
more Gt grows, the more C1 is visually closer to Gt whereas FNs deviate strongly in the
case of C2. Despite these tow different evolutions, statistical measures, FoM , F , d4, Dp,
Υ and Γ obtain close the same measurements for C1 and C2. On the contrary, the KPI
of Ψ grows around 0.5 for C2, whereas it converges towards 0 for C1, since C1 becomes
visually closer to Gt with the enlargement (note that MFoM behaves identically).

To conclude experimental evaluations, Fig. 4.8 reports different assessments for five edge
detection methods on a real image: Sobel, Canny [Can86a], Steerable Filters of order
1 (SF1) [FA91], Steerable Filters of order 5 (SF5) [JU04a] and Half Gaussian Kernels
(HK) [MMD11a]. Even though the problem of hand-made ground truth on real images is
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discussed by some researchers [HYK13], only the comparison of Dc with a Gt is studied
here. Compared to Gt (Fig. 4.8 (a)), the well known Sobel edge detector generates
more FPs than the other three methods while SF5 and HK are less sensitive to noise
or texture. Furthermore, HK captures easier straight contours and corners closest to
their true positions [MMD11a]. So, the measurements in tables of Fig. 4.8 must be close
to 1 for Sobel and a little less for Canny, but decrease with reasonable error for HK
(scores involving KPI for non-normalized algorithms, eq. 4.3). Thus, Γ and Ψ respect
this evolution and indicate a good measurement value. FoM , F , d4, SFoM , MFoM and
Υ evolve similarly, but the score for the HK remains too elevated. Also, Φ∗, χ2∗, P ∗m, F ∗α
and Dp do not indicate a significant difference between all the segmentations. Further,
other non normalized methods are not adapted to give a score between 0 and 1 using a
KPI. Eventually, given the segmented images, Γ and Ψ indicate a good measurement
value. Other results involving other edge images Figs. 4.9 to 4.11: Assessment of edge
detection evaluations concerning real images, shows that our proposed measure Ψ indicate
a good measurement value.
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(a) Original [HSSB97] / Gt images

Measure Score Measure Score Measure Score
Φ∗ 0.519 SFoM 0.702 θδTH=5 0.993
χ2∗ 0.946 MFoM 0.814 ΩδTH=1 0.587
P ∗m 0.883 DP 0.117 ∆k 0.995
F ∗α 0.790 Υ 0.618 f2d6 0.987

SSIM 0.355 H 0.999 Skk=1 0.982
FoM 0.629 H5% 0.999 Skk=2 0.992
F 0.800 Dk

k=2 0.049 Γ 0.812
d4 0.690 θδTH=1 0.989 Ψ 0.814

Measure Score Measure Score Measure Score
Φ∗ 0.563 SFoM 0.601 θδTH=5 0.995
χ2∗ 0.928 MFoM 0.770 ΩδTH=1 0.799
P ∗m 0.847 DP 0.139 ∆k 0.995
F ∗α 0.775 Υ 0.527 f2d6 0.986

SSIM 0.282 H 0.999 Skk=1 0.978
FoM 0.540 H5% 0.999 Skk=2 0.992
F 0.723 Dk

k=2 0.0714 Γ 0.597
d4 0.645 θδTH=1 0.989 Ψ 0.602

(b) Sobel (c) Canny [Can86a]

Measure Score Measure Score Measure Score
Φ∗ 0.571 SFoM 0.574 θδTH=5 0.995
χ2∗ 0.920 MFoM 0.762 ΩδTH=1 0.814
P ∗m 0.835 DP 0.143 ∆k 0.995
F ∗α 0.717 Υ 0.509 f2d6 0.986

SSIM 0.274 H 0.999 Skk=1 0.977
FoM 0.523 H5% 0.999 Skk=2 0.992
F 0.701 Dk

k=2 0.081 Γ 0.532
d4 0.632 θδTH=1 0.990 Ψ 0.539

Measure Score Measure Score Measure Score
Φ∗ 0.625 SFoM 0.468 θδTH=5 0.996
χ2∗ 0.907 MFoM 0.715 ΩδTH=1 0.979
P ∗m 0.812 DP 0.187 ∆k 0.995
F ∗α 0.683 Υ 0.421 f2d6 0.983

SSIM 0.219 H 0.999 Skk=1 0.974
FoM 0.431 H5% 0.999 Skk=2 0.992
F 0.654 Dk

k=2 0.108 Γ 0.326
d4 0.599 θδTH=1 0.989 Ψ 0.363

Measure Score Measure Score Measure Score
Φ∗ 0.669 SFoM 0.378 θδTH=5 0.995
χ2∗ 0.903 MFoM 0.686 ΩδTH=1 0.986
P ∗m 0.805 DP 0.211 ∆k 0.996
F ∗α 0.673 Υ 0.338 f2d6 0.978

SSIM 0.198 H 0.999 Skk=1 0.970
FoM 0.371 H5% 0.999 Skk=2 0.991
F 0.622 Dk

k=2 0.120 Γ 0.203
d4 0.604 θδTH=1 0.988 Ψ 0.260

(d) Steerable filters [FA91] (e) Steerable filters [JU04a] (f) Half Gaussian kernels [MMD11a]

Figure 4.8: Comparison measures of different edge detections involving different edge detectors.
All the results are normalized and, compared to the ground truth, a score close to 0 indicates
a good edge map whereas a score 1 translates a poor segmentation. Our proposed measure Ψ
indicate a good measurement value.
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(a) Original [HSSB97] / Gt images

Measure Score Measure Score Measure Score
Φ∗ 0.424 SFoM 0.430 θδTH=5 0.999
χ2∗ 0.825 MFoM 0.684 ΩδTH=1 0.681
P ∗m 0.733 DP 0.075 ∆k 0.996
F ∗α 0.579 Υ 0.618 f2d6 0.989

SSIM 0.274 H 0.689 Skk=1 0.979
FoM 0.368 H5% 1.000 Skk=2 0.996
F 0.583 Dk

k=2 1.000 Γ 0.452
d4 0.523 θδTH=1 0.994 Ψ 0.452

Measure Score Measure Score Measure Score
Φ∗ 0.449 SFoM 0.376 θδTH=5 0.999
χ2∗ 0.821 MFoM 0.658 ΩδTH=1 0.678
P ∗m 0.725 DP 0.081 ∆k 0.995
F ∗α 0.569 Υ 0.653 f2d6 0.986

SSIM 0.246 H 1.000 Skk=1 0.972
FoM 0.316 H5% 1.000 Skk=2 0.995
F 0.552 Dk

k=2 0.123 Γ 0.377
d4 0.505 θδTH=1 0.993 Ψ 0.377

(b) Sobel (c) Canny [Can86a]

Measure Score Measure Score Measure Score
Φ∗ 0.450 SFoM 0.372 θδTH=5 0.999
χ2∗ 0.817 MFoM 0.663 ΩδTH=1 0.672
P ∗m 0.721 DP 0.081 ∆k 0.995
F ∗α 0.563 Υ 0.648 f2d6 0.987

SSIM 0.250 H 1.000 Skk=1 0.973
FoM 0.326 H5% 1.000 Skk=2 0.995
F 0.542 Dk

k=2 0.125 Γ 0.363
d4 0.503 θδTH=1 0.993 Ψ 0.363

Measure Score Measure Score Measure Score
Φ∗ 0.453 SFoM 0.357 θδTH=5 0.999
χ2∗ 0.813 MFoM 0.656 ΩδTH=1 0.671
P ∗m 0.716 DP 0.082 ∆k 0.995
F ∗α 0.558 Υ 0.641 f2d6 0.986

SSIM 0.238 H 1.000 Skk=1 0.970
FoM 0.312 H5% 1.000 Skk=2 0.995
F 0.533 Dk

k=2 0.127 Γ 0.345
d4 0.497 θδTH=1 0.993 Ψ 0.345

Measure Score Measure Score Measure Score
Φ∗ 0.503 SFoM 0.190 θδTH=5 0.991
χ2∗ 0.792 MFoM 0.579 ΩδTH=1 0.734
P ∗m 0.961 DP 0.101 ∆k 0.992
F ∗α 0.528 Υ 0.294 f2d6 0.912

SSIM 0.181 H 1.000 Skk=1 0.832
FoM 0.157 H5% 1.998 Skk=2 0.982
F 0.456 Dk

k=2 0.053 Γ 0.078
d4 0.456 θδTH=1 0.964 Ψ 0.079

(d) Steerable filters [FA91] (e) Steerable filters [JU04a] (f) Half Gaussian filters [MMD11a]

Figure 4.9: Comparison measures of different edge detections involving different edge detectors.
All the results are normalized and, compared to the ground truth, a score close to 0 indicates
a good edge map whereas a score 1 translates a poor segmentation. Our proposed measure Ψ
indicate a good measurement value.
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(a) Original [HSSB97] / Gt images

Measure Score Measure Score Measure Score
Φ∗ 0.638 SFoM 0.350 θδTH=5 0.990
χ2∗ 0.897 MFoM 0.657 ΩδTH=1 0.983
P ∗m 0.789 DP 0.186 ∆k 0.996
F ∗α 0.651 Υ 0.315 f2d6 0.965

SSIM 0.276 H 0.999 Skk=1 0.964
FoM 0.315 H5% 0.999 Skk=2 0.991
F 0.603 Dk

k=2 0.014 Γ 0.082
d4 0.571 θδTH=1 0.980 Ψ 0.144

Measure Score Measure Score Measure Score
Φ∗ 0.683 SFoM 0.326 θδTH=5 0.917
χ2∗ 0.896 MFoM 0.659 ΩδTH=1 0.983
P ∗m 0.791 DP 0.211 ∆k 0.996
F ∗α 0.654 Υ 0.103 f2d6 0.968

SSIM 0.257 H 0.999 Skk=1 0.946
FoM 0.318 H5% 0.999 Skk=2 0.989
F 0.569 Dk

k=2 0.016 Γ 0.018
d4 0.574 θδTH=1 0.929 Ψ 0.087

(b) Sobel (c) Canny [Can86a]

Measure Score Measure Score Measure Score
Φ∗ 0.675 SFoM 0.316 θδTH=5 0.976
χ2∗ 0.900 MFoM 0.654 ΩδTH=1 0.977
P ∗m 0.794 DP 0.204 ∆k 0.993
F ∗α 0.658 Υ 0.194 f2d6 0.957

SSIM 0.270 H 0.999 Skk=1 0.948
FoM 0.309 H5% 0.999 Skk=2 0.987
F 0.582 Dk

k=2 0.029 Γ 0.080
d4 0.584 θδTH=1 0.965 Ψ 0.085

Measure Score Measure Score Measure Score
Φ∗ 0.672 SFoM 0.315 θδTH=5 0.919
χ2∗ 0.894 MFoM 0.654 ΩδTH=1 0.983
P ∗m 0.788 DP 0.201 ∆k 0.996
F ∗α 0.650 Υ 0.108 f2d6 0.967

SSIM 0.259 H 0.999 Skk=1 0.947
FoM 0.307 H5% 0.999 Skk=2 0.989
F 0.572 Dk

k=2 0.016 Γ 0.019
d4 0.573 θδTH=1 0.941 Ψ 0.089

Measure Score Measure Score Measure Score
Φ∗ 0.671 SFoM 0.305 θδTH=5 0.905
χ2∗ 0.879 MFoM 0.636 ΩδTH=1 0.939
P ∗m 0.774 DP 0.191 ∆k 0.974
F ∗α 0.632 Υ 0.088 f2d6 0.888

SSIM 0.248 H 0.998 Skk=1 0.875
FoM 0.339 H5% 0.996 Skk=2 0.965
F 0.510 Dk

k=2 0.015 Γ 0.014
d4 0.556 θδTH=1 0.932 Ψ 0.026

(d) Steerable filters [FA91] (e) Steerable filters [JU04a] (f) Half Gaussian filters [MMD11a]

Figure 4.10: Comparison measures of different edge detections involving different edge detectors.
All the results are normalized and, compared to the ground truth, a score close to 0 indicates a
good edge map whereas a score 1 translates a poor segmentation.
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(a) Original [HSSB97] / Gt images

Measure Score Measure Score Measure Score
Φ∗ 0.599 SFoM 0.605 θδTH=5 0.960
χ2∗ 0.953 MFoM 0.751 ΩδTH=1 0.767
P ∗m 0.883 DP 0.127 ∆k 0.995
F ∗α 0.791 Υ 0.282 f2d6 0.962

SSIM 0.276 H 0.999 Skk=1 0.946
FoM 0.501 H5% 0.997 Skk=2 0.979
F 0.754 Dk

k=2 0.021 Γ 0.457
d4 0.665 θδTH=1 0.970 Ψ 0.461

Measure Score Measure Score Measure Score
Φ∗ 0.617 SFoM 0.353 θδTH=5 0.833
χ2∗ 0.910 MFoM 0.634 ΩδTH=1 0.833
P ∗m 0.817 DP 0.149 ∆k 0.976
F ∗α 0.691 Υ 0.083 f2d6 0.863

SSIM 0.188 H 0.998 Skk=1 0.818
FoM 0.268 H5% 0.995 Skk=2 0.950
F 0.597 Dk

k=2 0.015 Γ 0.088
d4 0.578 θδTH=1 0.910 Ψ 0.080

(b) Sobel (c) Canny [Can86a]

Measure Score Measure Score Measure Score
Φ∗ 0.633 SFoM 0.385 θδTH=5 0.923
χ2∗ 0.921 MFoM 0.656 ΩδTH=1 0.848
P ∗m 0.829 DP 0.152 ∆k 0.983
F ∗α 0.708 Υ 0.128 f2d6 0.912

SSIM 0.200 H 0.999 Skk=1 0.873
FoM 0.311 H5% 0.996 Skk=2 0.966
F 0.611 Dk

k=2 0.022 Γ 0.133
d4 0.594 θδTH=1 0.941 Ψ 0.126

Measure Score Measure Score Measure Score
Φ∗ 0.618 SFoM 0.421 θδTH=5 0.969
χ2∗ 0.923 MFoM 0.674 ΩδTH=1 0.776
P ∗m 0.833 DP 0.147 ∆k 0.979
F ∗α 0.715 Υ 0.208 f2d6 0.947

SSIM 0.207 H 0.999 Skk=1 0.912
FoM 0.348 H5% 0.998 Skk=2 0.978
F 0.624 Dk

k=2 0.033 Γ 0.203
d4 0.601 θδTH=1 0.964 Ψ 0.200

Measure Score Measure Score Measure Score
Φ∗ 0.651 SFoM 0.281 θδTH=5 0.791
χ2∗ 0.910 MFoM 0.617 ΩδTH=1 0.826
P ∗m 0.813 DP 0.174 ∆k 0.971
F ∗α 0.686 Υ 0.062 f2d6 0.850

SSIM 0.177 H 0.997 Skk=1 0.803
FoM 0.233 H5% 0.994 Skk=2 0.942
F 0.555 Dk

k=2 0.014 Γ 0.042
d4 0.580 θδTH=1 0.906 Ψ 0.035

(d) Steerable filters [FA91] (e) Steerable filters [JU04a] (f) Half Gaussian filters [MMD11a]

Figure 4.11: Comparison measures of different edge detections involving different edge detectors.
All the results are normalized and, compared to the ground truth, a score close to 0 indicates
a good edge map whereas a score 1 translates a poor segmentation. Our proposed measure Ψ
indicate a good measurement value.
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4.5 Summary

In this chapter, several referenced-based boundary detection evaluations are detailed,
pointing their advantages and disadvantages through concrete examples of edge images.
A new normalized supervised edge map quality measure is proposed, comparing a ground
truth contour image, the candidate contour image and their associated spacial nearness.
This methodology forms our contribution and resulted in the publication [AMM17d]. The
strategy to normalize the evaluation enables to consider a score close to 0 as a good edge
map, whereas a score 1 translates a poor segmentation. Eventually, compared to other
edge evaluation assessments, the score of the new evaluation indicates confidently the
quality of a segmentation.



5
From Contours to Ground Truth:
How to Evaluate Edge Detectors

This chapter focus on several edge dissimilarity measures and present how to evaluate
filtering edge detection technique involving these considerate measures.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Supervised error measures . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 How to create precise ground truth images ? . . . . . . . . . . . . 70

5.3.1 Ground truth images . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.2 Minimum of the measure . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Synthetic images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Real images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



64 5. From Contours to Ground Truth: How to Evaluate Edge Detectors

5.1 Introduction

Over the last decades, edge detection remains a crucial role in the computer vision
community [ZT98a]. This segmentation is considered as a fundamental step in many
image processing applications or analysis, pattern recognition, as well as in human vision.
Moreover, contours include the most important structures in the image. Typically, edges
occur on the boundary between two different regions in an image. In other words, an
edge is the boundary between an object and the background or between two different
objects. There exist many different edge detection methods. Nevertheless, an important
problem in image processing remains an efficient edge detector comparison and which
parameter(s) correspond(s) to the best setting to obtain an accurate edge detection
results. Indeed, a robust boundary detection method should create a contour image
containing edges at their correct locations with a minimum of misclassified pixels. In
order to objectively quantify the performance of an edge detector, a supervised measure
computes a similarity/dissimilarity between a segmentation result and a ground truth
obtained from synthetic data or a human judgment [MFTM01]. In this chapter , we detail
several edge dissimilarity measures and present how to evaluate filtering edge detection
technique involving these considerate measures. In a second time, we demonstrated how
to build a new ground truth database which can be used in supervised contour detection
evaluation. Indeed, results presented show the importance of the choice of the ground truth.
Finally, considering these new ground truth images, results obtained by the measures are
exposed.

(a) Gt (b) Dc (c) Gt ∪Dc (d) Legend for (c)

Figure 5.1: Ground truth vs. desired contour. In (b), Dc is contaminated with 6 FPs ans 4
FNs.
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5.2 Supervised error measures

To assess an edge detector, the confusion matrix remains a cornerstone in boundary
detection evaluation methods. Let Gt be the reference contour map corresponding to
ground truth and Dc the detected contour map of an original image I. Comparing pixel
per pixel Gt and Dc, the first criterion to be assessed is the common presence of edge/non-
edge points, as illustrated in Fig. 5.1. A basic evaluation is compounded from statistics;
to that effect, Gt and Dc are combined. Afterwards, denoting | · | as the cardinality of
a set, all points are divided into four sets: TPs, FPs, FNs and TNs ( as described in
previous chapter 4).Computing only FPs and FNs enables a segmentation assessment
to be performed [MMD11a]. The complemented Performance measure P ∗m presented in
Table 5.1 considers directly and simultaneously the three entities TP , FP and FN to
assess a binary image [GPW03]. The measure is normalized and decreases with improved
quality of detection, with P ∗m = 0 qualifying perfect segmentation.

By combining FP , FN , TP and TN , another way to display evaluations is to create Re-
ceiver Operating Characteristic (ROC) [BKD01] curves or Precision-Recall (PR) [MFM04],
involving True Positive Rates (TPR) and False Positive Rates (FPR): TPR = TP

TP+FN
and FPR = FP

FP+TN .

Derived from TPR and FPR, the three measures Φ, χ2 and Fα (detailed in Table 5.1) are
frequently used in edge detection assessment. Using the complement of these measures,
a score close to 1 indicates a poor segmentation, whereas a value close to 0 a good
segmentation. Among these three measures, Fα remains the most stable because it does
not consider the TNs, which are dominant in edge maps. Indeed, taking into consideration
TN in Φ and χ2 influences solely the measurement (as is the case in huge images).

Table 5.1: List of error measures involving only statistics.

Complemented Performance measure [GPW03]
P ∗m (Gt, Dc) = 1− TP

TP + FP + FN
Complemented Φ measure [VR95]

Φ∗ (Gt, Dc) = 1− TPR · TN
TN + FP

Complemented χ2 measure [YP03]
χ2∗ (Gt, Dc) = 1− TPR− TP − FP

1− TP − FP · TP + FP + FPR

TP + FP
Complemented Fα measure [MFM04]

F ∗α (Gt, Dc) = 1− PREC · TPR
α · TPR + (1− α) ·PREC ,

with PREC = TP

TP + FP
and α ∈]0; 1]
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Table 5.2: List of normalized error measures compared in this work, with the parameter
κ ∈ ]0; 1].

Figure of Merit (FoM) [AP79]
FoM (Gt, Dc) = 1− 1

max (|Gt| , |Dc|)
·
∑
p∈Dc

1
1 + κ · d2

Gt
(p)

FoM of over-segmentation [SG91]
FoMe (Gt, Dc) = 1− 1

max (e−FP , FP ) ·
∑

p∈Dc∩¬Gt

1
1 + κ · d2

Gt
(p)

FoM revisited [PA95]
F (Gt, Dc) = 1− 1

|Gt∪Dc| ·
∑
p∈Gt

1
1 + κ · d2

Dc
(p)

Combination of FoM and statistics [BG09]
d4 (Gt, Dc) = 1

2 ·
√
S + FoM (Gt, Dc)

with S = (TP −max (|Gt| , |Dc|))2 + FN2 + FP 2

(max (|Gt| , |Dc|))2

Symmetric Figure of Merit [AMM17d]
SFoM (Gt, Dc) = 1

2 ·FoM (Gt, Dc) + 1
2 ·FoM (Dc, Gt)

Maximum Figure of Merit [AMM17d]
MFoM (Gt, Dc) = max (FoM (Gt, Dc) , FoM (Dc, Gt))

Edge map quality measure [PGAN16]
Dp (Gt, Dc) = 1/2

|I|−|Gt| ·L + 1/2
|Gt| ·R

L =
∑
p∈Dc

1− 1
1 + κ·d2

Gt
(p) and R =

∑
p∈Gt

1− 1
1 + κ·d2

Gt∩Dc(p)

These measures evaluate the comparison of two edge images, pixel per pixel, tending to
severely penalize a (even slightly) misplaced contour, as illustrated in Fig. 5.2 (g) and
(h). Thus, to perform an edge evaluation, the assessment should penalize a misplaced
edge point proportionally to the distance from its true location. A reference-based edge
map quality measure requires that a displaced edge should be penalized in function not
only of FPs and/or FNs but also of the distance from the position where it should be
located. Tables 5.2 and 5.3 review the most relevant measures in the literature. The
common feature between these evaluators corresponds to the error distance dGt(p) or/and
dDc(p). Indeed, for a pixel belonging to the desired contour p ∈ Dc, dGt(p) represents the
minimal euclidian distance between p and Gt. On the contrary, if a pixel p belongs to the
ground truth Gt, dDc(p) is the minimal euclidian distance between p and Dc. On the one
hand, some distance measures are specified in the evaluation of over-segmentation (i.e.
presence of FPs), like: FoMe, Υ, Dk, Θ and Γ. On the other hand, Ω measure assesses
an edge detection by computing only an under segmentation (i.e. missing ground truth
points). Other edge detection evaluation measures consider both FPs and FNs. First,
to achieve a quantitative index of edge detector performance, one of the most popular
descriptors is the Figure of Merit (FoM). This distance measure ranges from 0 to 1,
where 0 corresponds to a perfect segmentation [AP79]. Widely utilized for comparing
several different segmentation methods, in particular thanks to its normalization criterion,
this assessment approach nonetheless suffers from a main drawback. Whenever FNs are
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Table 5.3: List of non-normalized error measures. In the literature, the most common values
are k = 1 or k = 2.

Yasnoff measure [YGB78]
Υ (Gt, Dc) = 100

|I| ·
√ ∑
p∈Dc

d2
Gt

(p)

Hausdorff distance [HR93]
H (Gt, Dc) = max

(
max
p∈Dc

dGt(p),max
p∈Gt

dDc(p)
)

Distance to Gt [PM82] [HR93][DJ94][LMDBB13]
Dk (Gt, Dc) = 1

|Dc| · k
√ ∑
p∈Dc

dkGt (p),

k ∈ R+, k = 1 for [PM82]

Maximum distance [DJ94]

f2d6 (Gt, Dc) = max

 1
|Dc|
·
∑
p∈Dc

dGt (p), 1
|Gt|
·
∑
p∈Gt

dDc (p)


Oversegmentation [Har84][OBBC02]

Θ (Gt, Dc) = 1
FP ·

∑
p∈Dc

(
dGt (p)
δTH

)k
,

k ∈ R+ and δTH ∈ R+
∗ [OBBC02], k = δTH = 1 for [Har84]

Undersegmentation [Har84][OBBC02]
Ω (Gt, Dc) = 1

FN ·
∑
p∈Gt

(
dDc (p)
δTH

)k
,

k ∈ R+ and δTH ∈ R+
∗ [OBBC02], k = δTH = 1 for [Har84]

Baddeley’s Delta Metric [Bad92]
∆k(Gt, Dc) = k

√
1
|I| ·

∑
p∈I
|w(dGt(p))− w(dDc(p))|k,

k ∈ R+ and a convex function w : R 7→ R
Symmetric distance [DJ94][LMDBB13]

Sk (Gt, Dc) =
k

√√√√ ∑
p∈Dc

dkGt (p)) +
∑
p∈Gt

dkDc (p)

|Dc ∪Gt|
,

k ∈ R+, k = 1 for [DJ94]

Magnier et al. measure [MLZ16]
Γ(Gt, Dc) = FP + FN

|Gt|2
·
√ ∑
p∈Dc

d2
Gt

(p)

Symmetric distance measure [AMM17d]
Ψ(Gt, Dc) = FP + FN

|Gt|2
·
√ ∑
p∈Gt

d2
Dc

(p) +
∑
p∈Dc

d2
Gt

(p)

created, the distance of FNs (dDc(p)) are not recorded. Indeed, FoM can be rewritten
as:

FoM (Gt, Dc) = 1−

∑
p∈Dc∩Gt

1
1 + κ · d2

Gt(p)
+

∑
p∈Dc∩¬Gt

1
1 + κ · d2

Gt(p)
max (|Gt| , |Dc|)

= 1−
TP +

∑
p∈Dc∩¬Gt

1
1 + κ · d2

Gt(p)
max(|Gt|,|Dc|) ,

(5.1)
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because, for p∈Dc ∩Gt, d2
Gt(p) = 0 and 1

1+κ · d2
Gt

(p) = 1. Knowing that TP = |Gt| − FN ,
for the extreme cases, the FoM measures takes the following values:

if ÊFP = 0 : FoM (Gt, Dc) = 1− TP

|Gt|
,

if ÊÊFN = 0 : FoM (Gt, Dc) = 1− 1
max(|Gt|,|Dc|) ·

∑
p∈Dc∩¬Gt

1
1 + κ · d2

Gt(p)
.

(5.2)

When FP = 0, FoM behaves like matrix-based error assessments. Moreover, for FP > 0,
as 1

1+κ · d2
Gt

(p) < 1, the FoM measure penalizes the over-detection very low compared to the
under-detection. The curve in Fig. 5.2 shows that the penalization of missing points (FNs)
becomes higher whereas it is weaker concerning FP . On the contrary, the F measure
computes the distances of FNs:

F (Gt, Dc) = 1−
TP +

∑
p∈¬Dc∩Gt

1
1 + κ · d2

Dc(p)
|Gt ∪Dc|

. (5.3)

F behaves inversely to FoM :
if ÊFP = 0 : F (Gt, Dc) = 1−

Ê |Dc|+
∑

p∈¬Dc∩Gt

1
1 + κ · d2

Dc(p)
|Gt|

,

if ÊÊFN = 0 : F (Gt, Dc) = 1− |Gt||Dc| .

(5.4)

Also, d4 r measure depends particularly on TP , FP , FN and FoM . Nonetheless, this
measure penalizes FNs like the FoM measure, as shown in Fig. 5.2 (j). SFoM and
MFoM take into account both distances of FNS and FPs, so they can compute a global
evaluation of a contour image, but as illustrated in Figs. 5.2 (i) and (j), MFoM does not
considers FPs and FNs a the same time, contrary to SFoM . Another way to compute a
global measure is presented in [PGAN16] with the edge map quality measure Dp. The
over-segmentation measure (left term) evaluates dDc , the distances between the FPs and
Gt. The under-segmentation measure (right term) computes the distances of the FNs
between the closest correctly detected edge pixel, i.e. Gt ∩Dc. That means that FNs and
their distances are not counted without the presence of TP(s), and Dp is more sensitive to
FNs than FPs, see Figs. 5.2 (i) and (j).



5.2. Supervised error measures 69

distance
 

of  FPs

(a) G1 (b) D1 (c) G1 vs. D1

distance
 

of  FNs

(d) G2 (e) D2 (f) G2 vs. D2

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 distance of the FP points

 M
ea

su
re

 

 

 *

 2*

 Pm
*

 F* ,  =  0.5

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 distance of the FN points

 M
ea

su
re

 

 

 *

 2*

 Pm
*

 F* ,  =  0.5

(g) G1 vs. D1: Evolution of the (h) G2 vs. D2: Evolution of the confusion

confusion matrix-based error assessments matrix-based error assessments in function of

in function of the distances of the FPs. the distances of the FNs. Φ∗ and P ∗m overlap.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 distance of the FP points

 M
ea

su
re

 

 

 FoM,   =  0.1
 FoMe,   =  0.1
 F,   =  0.1
 d4,   =  0.1
 SFoM,   =  0.1
 MFOM,   =  0.1
 Dp,   =  0.1

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 distance of the FN points

 M
ea

su
re

 

 

 FoM,   =  0.1
 FoMe,   =  0.1
 F,   =  0.1
 d4,   =  0.1
 SFoM,   =  0.1
 MFOM,   =  0.1
 Dp,   =  0.1

(i) G1 vs. D1: Evolution of the normalized (j) G2 vs. D2: Evolution of the normalized

dissimilarity measures in function of the dissimilarity measures in function of the distances

distances of the FPs. F and MFoM overlap. of the FNs. FoMe = 0. FoM and MFoM overlap.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 distance of the FP points

 M
ea

su
re

 

 

 
 H
 H5%

 Dk, k =  2
 , TH = k = 1
 , TH = k = 1
 , TH =  5, k =  2
 , TH =  5, k =  2

 k, k =  2
 f2d6

 Sk, k =  1
 Sk, k =  2
 
 

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 distance of the FN points

 M
ea

su
re

 

 

 
 H
 H5%

 Dk, k =  2
 , TH = k = 1
 , TH = k = 1
 , TH =  5, k =  2
 , TH =  5, k =  2

 k, k =  2
 f2d6

 Sk, k =  1
 Sk, k =  2
 
 

(k) G1 vs. D1: Evolution of the non-normalized (l) G2 vs. D2: Evolution of the non-normalized
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Figure 5.2: Evolution of dissimilarity measures in function of the the distance of the false
positive/negative points. A vertical line of false positive points (b) or false negative points (d) is
shifted by a maximum distance of 16 pixels and the measure scores are plotted in function of
the displacement of the desired/undesired contour.
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A second measure widely computed in matching techniques is represented by the Hausdorff
distance H, which measures the mismatch of two sets of points [HR93]. This max-min
distance could be strongly deviated by only one pixel which can be positioned sufficiently
far from the pattern. To improve the measure, one idea is to compute H with a proportion
of the maximum distances (for example 5% of the values [HR93]); let us note H5% this
measure. Nevertheless, as pointed out in [DJ94], an average distance from the edge pixels
in the candidate image to those in the ground truth is more appropriate for matching
purposes than H and Hn%. To achieve this task, Dk, Υ, Θ and Γ which represent errors
of distance only in function of dGt , they correspond to a measure of over-segmentation
(only FPs), as indicated by the curves in Figs. 5.2 (l) where the curves stagnate at 0. On
the contrary, the sole use of a distance dDc instead of dGt enables an estimation of the FN
divergences, representing an under-segmentation (as in Ω). Nevertheless, as concluded in
[CLRE08], a complete and optimum edge detection evaluation measure should combine
assessments of both over- and under-segmentation, as f2d6, Sk and Ψ. Also, combining
both dDc and dGt , Baddeley’s Delta Metric (∆k) [Bad92] is a measure derived from the
Hausdorff distance which is intended to estimate the dissimilarity between each element
of two binary images. Finally, curves in Figs. 5.2 (k) and (l) illustrate that H, H5%, ∆k,
f2d6 and Sk behave similarly in function of the FPs or FNs distances. Note that the Ψ
measure is more sensitive to the distance of the FPs. The scores of the non-normalized
measures in Figs. 5.2 (k) and (l) are normalized using the following equation for easy
visual comparison. Denoting by f ∈ [0; +∞[ the score vectors of a distance measure such
that: {

m = min ( min(f(G1, D1)), min(f(G2, D2))),
M = max(max(f(G1, D1)),max(f(G2, D2)));

then the normalization N of a measure is computed by:

N (f) =



0 if M = m = 0
1 if M = m 6= 0

f −m
M −m

if M > 1 and m 6= 0

f otherwise.

(5.5)

5.3 How to create precise ground truth images ?

An edge detector is considered as robust when the evaluation score of the dissimilarity
with a given Gt is close to 0. Table in Fig.5.3 reports different assessments for four edge
detection methods on a real image (color): Sobel [Sob70], Canny [Can86a], Steerable
Filters (S-F) [FA91] and Half Gaussian Kernels (H-K) [MMD11a]. Only the comparison
of Dc with a Gt is studied here. Segmentations are classified together by comparing the
scores of the dissimilarity measures and the smallest score for a given measure indicates the
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best segmentation. Indeed, for example, Sobel corresponds to the best edge detector for Υ,
Canny for ∆k, S-F for Ω and H-F for FoM . However, this assessment suffers from two main
drawbacks. Firstly, segmentations are compared using the threshold (voluntary) chosen
by the user, this evaluation is very subjective and not reproducible [AMM17d]. Secondly,
some deficiencies appear in real ground truth contour maps, which could disturb the
evaluation of efficient segmentation methods, or, on the contrary, advantage weak/biased
edge detectors. Thus, according to the used measure or threshold any detector is classified
the first one or the last one.
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(a) Color real image, 240×160 [MFTM01] (c) Sobel edge detection [Sob70] (e) Steerable edge detection [FA91]
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(b) Gt, weak consensus image [LMDBB16] (d) Canny edge detection [Can86a] (f) Half Gaussian Filters [MMD11a]

Measure Sobel Canny [Can86b] S-F [FA91] H-K [MMD11a]
P ∗m 0.908 0.908 0.988 0.893
Φ∗ 0.766 0.777 0.799 0.779
χ2∗ 0.987 0.986 0.988 0.979
F ∗α 0.831 0.831 0.838 0.807
FoM 0.399 0.381 0.408 0.344
F 0.705 0.679 0.649 0.6148
Υ 1.007 1.041 1.058 1.025
ΘδTH=1 4.323 4.369 4.852 4.577
ΩδTH=1 2.783 1.721 1.410 1.640
H5% 19.76 18.45 19.56 20.89
∆k 9.454 7.019 8.517 11.13
Skk=2 5.799 5.421 5.626 5.776
Γ 0.499 0.486 0.465 0.393
Ψ 0.584 0.499 0.471 0.402

Figure 5.3: Edge detection after the non-maximum suppression [RT71] and comparison with a
ground truth image ( green cells for the minimum measure and better edge detector filter).
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5.3.1 Ground truth images

In edge detection assessment, the ground truth is considered as a perfect segmentation.
The most common method for ground-truth definition in natural images remains manual
labeling by humans [MFTM01] [HSSB97]. These data sets are not optimal in the context
of the definition of low-level segmentation. Firstly, labelers have marked mainly edges of
salient objects, whereas equally strong edges in the background or around less important
objects are missing. Moreover, errors may be created by human labels (oversights or supple-
ments); indeed, an inaccurate ground truth contour map in terms of localization penalizes
precise edge detectors and/or advantages the rough algorithms. Finally, in [HYK13], the
question is raised concerning the reliability of the datasets regarded as ground truths for
novel edge detection methods. Thus, an incomplete ground truth penalizes an algorithm
detecting true boundaries and efficient edge detection algorithms obtain between 30% and
40% of errors. Furthermore, when Gt maps are built from a consensus which consists in
the combination of several human-labelled images [FGCPMCMC08][CLRE08][LMDBB16],
the deficiencies recalled above remain present. These reasons accentuate the importance
of the relevant development of the ground truth labeling.

In real digital images, various profile edge types determine contours such as: step, ramp,
roof of peaks. Pure step edges are seldom present in real image scenes, but they can be
created in synthetic data. For a 2D signal, pixels of contours are measured having the
higher slope and are localized in the perpendicular direction of the slope of the image
function. Considering synthetic data, true edges are positioned between two different
colors/gray levels. Nevertheless, the edge position of an object could be interpreted in
different ways: for a vertical step edge, an edge can be located either on the left, or on
the right. In Fig. 5.4, several white shapes are immersed in a black background, creating
step edges. To avoid the problem of edge pixel placements, a blur must be voluntary
created by adding a 1 pixel width of gray around each shape. Thus, the ground truth
corresponds to the points where the slope of the image surface is maximum, i.e. to this

(a) Image 270×238 (b) Zoom in (a) (c) Position of the detected contour

Figure 5.4: Synthetic data with a 1 pixel width gray around each shape: value of white pixels
= 1, values of black pixels = 0, values of gray pixels = 0.5.
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gray. These points could be extracted involving odd filters (derivative filters of order 1).
In the one hand, a [−1 0 1 ] mask allows to extract the edges at the correct position, i.e.
the gray pixels in Fig. 5.4, contrary to edge detector involving smoothing parameters
which delocalize edge positions (especially corners and small objects [ZT98a]). The new
database of contour images issued of real images takes into account all these properties.
This section presents ground truth edge maps which are labeled in a semi-automatic way
in order to evaluate the performance of filtering step/ramp edge detectors. Therefore, the
motivations to create new ground truth edge images are:
1. To obtain contours accurately localized,
2. To extract edges of the secondary objects or in the background,
3. To exclude boundaries inside noisy/textured regions.
In fact, this new label processes in return to hand made ground truth. Indeed, in a first
time, the contours are detected involving the convolution of the image with [−1 0 1 ]
vertical and horizontal masks followed by a computation of a gradient magnitude and
a suppression of local non-maxima in the gradient direction [RT71]. Concerning color
images, [−1 0 1 ] vertical and horizontal masks are applied to each channel of the image
followed by a structure tensor [DZ86]. In a second time, undesirable edges are deleted
while missing points are added both by hand.

Fig. 5.5 illustrates the steps to obtain new ground truth images. Using the [−1 0 1 ]
mask enables to capture the majority of edge points and corners without deforming small
objects, contrary to edge detectors involving Gaussian filters (see for example Fig. 6 in

(a) Original image (b) Thin edges with [−1 0 1] mask

(c) Adjustment by hand (d) Image in (b) vs image in (c) (e) Legend

Figure 5.5: Image of our database are built after an edge detection involving a [−1 0 1] mask
and concluded by hand.
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[PM90]). Moreover, this process enables to detect the good positions of the contours while
avoiding the addition of too much imprecise ground truth points, as shown in Fig. 5.4.

5.3.2 Minimum of the measure

Instead of thresholding manually or automatically [Ots75][Ros01] and then comparing the
segmentation of several edge detectors, as in Fig. 5.7 (c) and (d), the dissimilarity measures
are used for an objective assessment. Indeed, the purpose is to compute the minimal value
of a dissimilarity measure by varying the threshold Th of the thin edges computed by an
edge detector (thin edges are created after the non-maximum suppression of the absolute
gradient [RT71]). Indeed, compared to a ground truth contour map, the ideal edge map for
a measure corresponds to the desired contour at which the evaluation obtains the minimum
score for the considered measure among the thresholded gradient images. Theoretically,
this score corresponds to the threshold at which the edge detection represents the best
edge map, compared to the ground truth contour map [FGMCCP+04][CLRE08]. Fig. 5.6
illustrates all this process. Since a small threshold leads to heavy over-segmentation and a
strong threshold may create numerous false negative pixels, the minimum score of an edge
detection evaluation should be a compromise between under- and over-segmentation. As
illustrated in Fig. 5.7 (e) the best score for the under-segmentation evaluation corresponds
to Th = 0, because false negative points penalize the Ω measure. On the contrary, false
positive points penalize over-segmentation dissimilarity measures, as FoMe, Υ, Dk, Θ and
Γ measures, see Fig. 5.7 (g). Consequently, the best score concerning an over-segmentation
measure corresponds to Th ≈ 1. As Gt are not the same for the evaluation in Fig. 5.7 (g)
and (h), the two curves are different.

Original image

Gradient image

Gradient angle 
image

Normalized thin edges,
after non-maximum 
suppression of the 

absolute gradient and
before thresholding.

Scores of a measure

Best edge map for 
the considerated 
edge map quality 

measure, with
Th = 0.4.

Ground truth edge map

Edges, Th = 0.1

 
Research of the ideal 

edge map for a measure 
corresponings to the 

segmentation at which 
the evaluation obtains the 

minimum score among 
the thresholded images,
compared to the ground 

truth image.

}  
Minimum score  
of the measure

Edges, Th = 0.5 Edges, Th = 0.9

Edges, Th = 0.3 Edges, Th = 0.7

Figure 5.6: The most relevant edge map for a dissimilarity measure is indicated by its minimum
score.
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(a) Original image (b) Thin gradient [RT71] (c) Otsu [Ots75] (d) Rosin [Ros01]
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δTH=1 scores with Gt in Fig.5.3 (h) Contours, Th = 1
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(i) FoM scores with Gt in Fig.5.3 (j) Contours, Th = 0.03 (k) FoM scores with Gt in Fig. 5.5 (l) Contours, Th = 0.01

Figure 5.7: Scores of the measures depending on the threshold of the thin gradient image
[Can86a].

5.4 Experimental results

The purpose of the experiments presented here is to obtain the best edge map in a
supervised way. In order to study the performance of the contour detection evaluation
measures, each measure is compared by varying the threshold of the thin edges computed
by until six edge detectors: Sobel [Sob70], Canny [Can86a], Steerable Filters of order 1
(SF1) [FA91], Steerable Filters of order 5 (SF5) [JU04a], Anisotropic Gaussian Kernels
(AGK) [GSvdW02] and Half Gaussian Kernels (HK) [MMD11a]. In one hand, experiments
are led on two synthetic noisy images. In other hand, contour detection evaluations are
compared on seven real images where Gt edge maps are labelled by a semi-automatic way
(section 5.3.1). Finally, compared to a ground truth contour map, the ideal edge map for a
measure corresponds to the desired contour at which the evaluation obtains the minimum
score for the considered measure among the thresholded gradient images.

5.4.1 Synthetic images

To evaluate the performances of the dissimilarity measures, the original image in Fig.
5.4(a) is disturbed with random Gaussian noise and edges are extracted from the noisy
images (4 dB and 3.3 dB ):
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(a) Synthetic image (b) Synthetic image (c) Ground truth

SNR =4 dB SNR =3.3 dB of synthetic image

Figure 5.8: Synthetic images corrupted by a Gaussian noise with the associated ground truth
edge map.

• The minimum score for several dissimilarity measures and several edge detection
methods for a noisy synthetic image ( SNR= 4 dB) are presented for our proposed
measure Ψ [AMM17d] in Fig. 5.10 and in Fig. 5.12 and Fig. 5.13 for all the
state-of-art measures methods. The original image is available in Fig. 5.8 (a) and
the ground truth as shown in 5.8(c).

• The minimum score for several dissimilarity measures and several edge detection
methods for a noisy synthetic image ( SNR= 3.3 dB) are presented for our proposed
measure Ψ [AMM17d] in Fig. 5.11 and in Fig. 5.14 and Fig. 5.15. The original
image is available in Fig. 5.8 (b) and the ground truth as shown in Fig. 5.8(c).

Generally, the scores of Φ∗, d4 and Dp measures allow to correctly extract the edges at the
price of numerous FPs. Moreover, ∆k is more sensitive to FPs than the other dissimilarity
measures and the best score corresponds to a contour edge map with many discontinuous
contours. As pointed out in section 5.2, concerning the image corrupted by a noise at a
level of 4dB, FoM penalizes strongly FNs to the detriment of FPs apparitions, and it
considers that anisotropic edge detectors are less performant than the Canny edge detector
[Can86b]. Other measures classify the Sobel method [Sob70] as the less efficient one and
the H-K as the best one.

Images of our database are built after an edge detection involving [−1 0 1] masks and
concluded by hand. Fig. 5.9 presents some examples of ground truth contour images.
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Original Thin edges with Adjustment Ground truth
image [−1 0 1] mask by hand Gt image

Figure 5.9: Images of our database are built in a semi-automatic way, after an edge detection
involving [−1 0 1] masks and concluded by hand.
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Sobel [Sob70] Canny [Can86b] SF1 [FA91]
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SF5[JU04a] AGK [GSvdW02] H-K [MMD11a]
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Figure 5.10: Synthetic image SNR= 4 dB. ( The original image is available in Fig. 5.8 (a) and
the ground truth as shown in 5.8(c)). Best maps for the compared edge detection evaluations
using our proposed measure Ψ.
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Sobel [Sob70] Canny [Can86b] SF1 [FA91]
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Figure 5.11: Synthetic image SNR= 3.3 dB (The original image is available in Fig. 5.8 (b) and
the ground truth as shown in 5.8(c)). Best maps for the compared edge detection evaluations
using our proposed measure Ψ.
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Measure Sobel [Sob70] Canny [Can86b] SF1 [FA91] SF5[JU04a] AGK [GSvdW02] H-K [MMD11a]
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Figure 5.12: Synthetic image SNR= 4 dB: Best maps for the compared edge detection evalua-
tions.
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Figure 5.13: Synthetic image SNR= 4 dB: Best maps for the compared edge detection evalua-
tions.
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Measure Sobel [Sob70] Canny [Can86b] SF1 [FA91] SF5[JU04a] AGK [GSvdW02] H-K [MMD11a]
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Figure 5.14: Synthetic image SNR= 3.3 dB: Best maps for the compared edge detection
evaluations.
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Measure Sobel [Sob70] Canny [Can86b] SF1 [FA91] SF5[JU04a] AGK [GSvdW02] H-K [MMD11a]
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Figure 5.15: Synthetic image SNR= 3.3 dB: Best maps for the compared edge detection
evaluations.
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5.4.2 Real images

To evaluate the performances of the dissimilarity measures, by using first the ground truth
image built with human-labelled and second by using the ground truth images of our
database. Table 5.4 mentions scores involving the two different Gt: by human-labelled,
and our Gt a semi-automatic. It is important to note that the scores for each measure
is smaller concerning Gt built in a semi-automatic way (our Gt), than Gt built with
human-labelled.

5.4.2.1 Real images results with Gt built with human-labelled

This experiment concerns a real image presented in Fig. 5.5(a); Gt is available in Fig.
5.5(c).

• Edge images associated to the minimum score for several dissimilarity measures
and several edge detection methods concerning a real image are presented in Fig.
5.17 and Fig. 5.18. To compare with our ground truth, here, the ground truth
is computed by a consensus from human labellers with the method [set11]. The
consensus image is build involving the human-labelled contour images 1105_126007,
1113_126007, 1114_126007, 1115_126007 and 1119_126007 from a real image.
With the method in [LMDBB16].

Table 5.4: Comparison of scores of dissimilarity measures using a ground truth from [MFTM01]
(Fig. 5.3 (b)) image and a constructed ground truth by a semi-automatic way. Contour images
and curves for all the measures are available in the supplementary material.

Meas. Sobel [Sob70] Canny [Can86b] SF1 [FA91] AGK [GSvdW02] H-K [MMD11a]
Berkeley Gt Our Gt Berkeley Gt Our Gt Berkeley Gt Our Gt Berkeley Gt Our Gt Berkeley Gt Our Gt

Φ∗ 0.738 0.298 0.757 0.430 0.971 0.447 0.813 0.496 0.761 0.504
χ2∗ 0.979 0.635 0.975 0.725 0.983 0.712 0.982 0.759 0.973 0.502
P ∗m 0.901 0.530 0.901 0.603 0.909 0.594 0.917 0.637 0.893 0.778
F ∗α 0.820 0.360 0.819 0.432 0.834 0.422 0.847 0.468 0.808 0.483
FoM 0.303 0.168 0.310 0.147 0.309 0.164 0.299 0.154 0.277 0.146
F 0.592 0.346 0.579 0.352 0.572 0.310 0.589 0.337 0.589 0.367
d4 0.675 0.333 0.671 0.379 0.687 0.375 0.695 0.412 0.667 0.424

SFoM 0.297 0.145 0.289 0.134 0.270 0.111 0.271 0.119 0.268 0.128
DP 0.173 0.036 0.184 0.058 0.193 0.056 0.208 0.065 0.183 0.072
H 40.02 29.52 19.41 15.175 18.97 18.02 35.35 14.76 36.87 15.03
H5% 13.72 9.406 11.89 9.142 11.53 6.781 14.18 6.048 14.56 7.165
∆k 6.632 4.094 5.039 3.000 4.844 2.462 6.044 2.040 6.562 2.576
f2d6 2.851 1.066 2.498 1.294 2.467 0.900 2.625 0.895 2.582 0.983
Skk=1 2.584 1.005 2.315 0.990 2.316 0.877 2.471 0.866 2.432 0.966
Skk=2 4.270 2.323 3.725 2.361 3.690 1.819 4.172 1.667 4.281 2.029

Ψ 0.213 0.041 0.181 0.044 0.173 0.032 0.224 0.032 0.222 0.038
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Our Gt and Gt of Berkeley segmentation image (Fig. 5.3(b)). Excepted for Φ∗, d4

and Dp measures, the best edge map for all the other measures contains many holes
in the contour chains and it is clearly impossible to conclude which edge detector is
the most efficient.

Statistical measures and d4 consider that Sobel is the best edge detector for this
image because edges are well localized. Even though edge maps are different, the
scores obtained by FoM and F are similar for the different filtering techniques.
Oriented kernels, however, are qualified as reliable by distance measures and edge
maps corresponding to the minimum scores are less noisy.

5.4.2.2 Real images results with Gt from our new database

• Figs. 5.19, 5.22 and 5.25 shows a comparison of best maps and minimum scores
for different edge detector filters using our proposed measure ψ. We can clearly
determine which filter is better than the other filter. Plus, our measurement gave
a good result with HGK filter. Figs. 5.20 to 5.27: Assessment of edge detection
evaluations concerning real images. Processing steps are the same as in Fig. 5.17
and Fig. 5.18. Ground truth edge maps are available in the database presented in
Fig. 5.9.

When objects appear clear, like in image 56 and buildings, most of the measure
scores indicate that the edge detectors are equivalent. By contrast, as soon as
images contain blur or/and noise, as in image 109 and parkingmeter, the evaluation
measures involving error distances considerate that oriented and anisotropic filters
produce better-defined contours. Finally, image 109 is a noisy image, however ∆k

and Dp evaluate that Sobel detects better edge, whereas it creates many undesirable
contour points, contrary to filtering techniques involving smoothing effects.

Numerous experiments show that Skk = 1 or k = 2 and Ψ dissimilarity measures are
best suited for the problem of supervised edge evaluation. Indeed, the minimum
evaluation scores are coherent and the edge detectors are qualified as best when
the filtering technique is adapted to the image structure (blur, noise, small objects).
Moreover, the edge map corresponding to the minimum score delimit correctly the
object with a majority of continuous contours points without much undesirable
points.
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Figure 5.16: Real image: Best maps for the compared edge detection filters using our proposed
measure Ψ. The ground truth edge image is computer by the consensus from human-labellers.
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Figure 5.17: Real image: Best maps for the compared edge detection evaluations. The ground
truth edge image is computer by the consensus from human-labellers.
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Figure 5.18: Real image: Best maps for the compared edge detection evaluations. The ground
truth edge image is computer by the consensus from human-labellers.
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Figure 5.19: Real image: ( The original image is available in Fig. 5.9 and the ground truth
edge image comes from our database). Best maps for the compared edge detection filters using
our proposed measure Ψ.
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Figure 5.20: Real image: Best maps for the compared edge detection evaluations. The ground
truth edge image comes from our database.
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Figure 5.21: Real image: Best maps for the compared edge detection evaluations. The ground
truth edge image comes from our database.
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Figure 5.22: Real image 36 ( The original image is available in Fig. 5.9 and the ground truth
edge image comes from our database). Best maps for the compared edge detection filters using
our proposed measure Ψ.
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Figure 5.23: Real image 36: Best maps for the compared edge detection evaluations. The
ground truth edge image comes from our database.
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Measure Sobel [Sob70] Canny [Can86b] SF1 [FA91] SF5[JU04a] AGK [GSvdW02] H-K [MMD11a]
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Figure 5.24: Real image 36: Best maps for the compared edge detection evaluations. The
ground truth edge image comes from our database.
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Figure 5.25: Real image parkingmeter ( The original image is available in Fig. 5.9 and the
ground truth edge image comes from our database). Best maps for the compared edge detection
filters using our proposed measure Ψ.
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Figure 5.26: Real image parkingmeter: Best maps for the compared edge detection evalua-
tions. The ground truth edge image comes from our database.
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Figure 5.27: Real image parkingmeter: Best maps for the compared edge detection evalua-
tions. The ground truth edge image comes from our database.
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5.5 Summary

To summarize this chapter, here a study presents a review of supervised edge detection
assessment methods in details. Moreover, based on the theory of these dissimilarity
evaluations, a technique is proposed to evaluate filtering edge detection methods involving
the minimum score of the considerate measures. Indeed, to evaluate an edge detection
technique, the result which obtains the minimum score of a measure is considerate as
the best one and represents an objective evaluation. Theoretically and with the backing
of many experiments is demonstrated that the minimum score of the Skk = 1 or k = 2 and Ψ
dissimilarity measures correspond to the best edge quality map evaluations. These two
measures take into account both the distances of false positive and false negative points.
Many experiments of edge detection on synthetic and real images involving several edge
detectors illustrate this conclusion. Experiments show the significance of the ground truth
map choice: an inaccurate ground truth contour map in terms of localization penalizes
precise edge detectors and/or advantages the rough algorithms. That is the reason why
is described in this conversation how to build a new ground truth edge map labelled
in semi-automatic way in real images. Firstly, the contours are detected involving the
convolution of the image with [−1 0 1 ] masks. Secondly, undesirable edges are removed
while missing points are added both by hand, thus a more accuracy ground truth edge
map image is built and can be used for supervised contour detection evaluation. By
comparison with a real image where contours points are not precisely labelled, experiments
illustrate that the new ground truth database allows to evaluate the performance of edge
detectors by filtering. Finally, the advantage to compute the minimum score of a measure
involving this new ground truth database is that it does not require tuning parameters.
This methodology forms one of our contribution and resulted in the Journal publication
[AMM17a].



6
Objective Supervised Edge
Detection using Hysteresis

Thresholds
This chapter describes a novel technique to compare edge detection techniques by using
hysteresis thresholds in a supervised way.
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6.1 Introduction

Edge detection is an important field in image processing because this process frequently
attempts to capture the most important structures in the image. Hence, edge detection
represents a fundamental step concerning computer vision approaches. Furthermore, edge
detection itself could be used to qualify a region segmentation technique. Additionally,
the edge detection assessment remains very useful in image segmentation, registration,
reconstruction or interpretation. Hence, it is hard to design an edge detector which is
able to extract the exact edge with good localization and orientation from an image.
In the literature, different techniques have emerged and, due to its importance, edge
detection continues to be an active research area [AMFM11]. The best-known and useful
edge detection methods are based on gradient computing first-order fixed operators
[Sob70, Can86a]. Oriented operators compute the maximum energy in an orientation
[FA91, JU04a, GSvdW02] or two directions [MMD11a]. Typically, these methods are
composed of three steps:

1. Computation of the gradient magnitude and its orientation η, see Fig. 6.1.

2. Non-maximum suppression to obtain thin edges: the selected pixels are those having gradient
magnitude at a local maximum along the gradient direction η which is perpendicular to the edge
orientation.

3. Thresholding of the thin contours to obtain an edge map.

Thus, Fig. 6.1 exposes the different possibilities of gradient and its associated orientations
involving several edge detection algorithms compared in this chapter.

The final step remains a difficult stage in image processing, however it represents a crucial
operation to compare several segmentation algorithms. In edge detection, the hysteresis
process uses the connectivity information of the pixels belonging to thin contours and
thus remains a more elaborated method than binary thresholding. Simply, this technique
determines a contour image that has been thresholded at different levels (low: τL and high:
τH). The low threshold τL determines which pixels are considered as edge points if at
least one point higher than τH exists in a contour chain where all the pixel values are also
higher than τL, as represented with a signal in Fig. 6.1. Thus, the lower the thresholds
are, the more the undesirable pixels are preserved. Usually, in order to compare several

Type of operator Fixed operator [Sob70, Can86a] Oriented Filters [FA91, JU04a, GSvdW02] Half Gaussian Kernels [MMD11a]
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Figure 6.1: Gradient magnitude and orientation computation for a scalar image I and example
of hysteresis threshold applied along a contour chain. Iθ represents the image derivative using a
first-order filter at the θ orientation (in radians).
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edge detection methods, the user has to try some thresholds to select the ones that appear
visually as the best edge maps in quality. However, this assessment suffers from a main
drawback: segmentations are compared using the threshold (deliberately) chosen by the
user, this evaluation is very subjective and not reproducible. Hence, the purpose is to
use the dissimilarity measures without any user intervention for an objective assessment.
Finally, to consider a valuable edge detection assessment, the evaluation process should
produce a result that correlates with the perceived quality of the edge image, which relies
on human judgment [HSSB97, MFTM01, AMM17a]. In other words, a reliable edge map
should characterize all the relevant structures of an image as closely as possible, without
any disappearance of desired contours. Nevertheless, a minimum of spurious pixels can be
created by the edge detector, disturbing at the same time the visibility of the main/desired
objects to detect.

In this chapter, a novel technique is presented to compare edge detection techniques by
using hysteresis thresholds in a supervised way, being consistent with the visual perception
of a human [AMM17b]. Indeed, by comparing a ground truth contour map with an ideal
edge map, several assessments can be compared by varying the parameters of the hysteresis
thresholds. This study shows the importance to penalize stronger the false negative points,
compared to the false positive points, leading to a new edge detection evaluation algorithm.
The experiment using synthetic and real images demonstrated that the proposed method
[AMM17b] obtains contours maps closer to the ground truth without requiring tuning
parameters and outperforms other assessment methods in an objective way.

6.2 Supervised Measures for Image Contour Evaluations

A supervised evaluation criterion computes a dissimilarity measure between a segmentation
result and a ground truth obtained from synthetic data or an expert judgment (i.e. manual
segmentation) [DJ94, CLRE08, LMDBB13, AMM17d]. In this chapter, the closer to 0
the score of the evaluation is, the more the segmentation is qualified as good. This work
focusses on comparisons of supervised edge detection evaluations and proposes a new
measure, aiming at an objective assessment.

6.2.1 Distances of misplaced pixels

A reference-based edge map quality measure requires that a displaced edge should be
penalized in function not only of FPs and/or FNs but also of the distance from the
position where it should be located. In the chapter 4, Table 4.1 reviews the most relevant
measures involving distances. Thus, for a pixel p belonging to the desired contour Dc,
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dGt(p) represents the minimal Euclidian distance between p and Gt. If p belongs to the
ground truth Gt, dDc(p) is the minimal distance between p and Dc. On the one hand, some
distance measures are specified in the evaluation of over-segmentation (i.e. presence of
FPs), like: Υ, Dk, Θ and Γ. On the other hand, Ω measure assesses an edge detection by
computing only an under segmentation (FNs). Other edge detection evaluation measures
consider both distances of FPs and FNs [AMM17a]. A perfect segmentation using an
over-segmentation measure could be an image including no edge points and an image
having most undesirable edge points (FPs) concerning under-segmentation evaluations
(see Fig. 6.3). Also, another limitation of only over and under-segmentation evaluations
are that several binary images can produce the same result (Fig. 6.2). Therefore, as
demonstrated in [AMM17a], a complete and optimum edge detection evaluation measure
should combine assessments of both over- and under-segmentation.

Among the distance measures between two contours, one of the most popular descriptors
is named the Figure of Merit (FoM). Nonetheless, for FoM , the distance of the FNs is
not recorded and are strongly penalized as statistic measures (see above). For example, in
Fig.3, FoM(Gt, C) > FoM(Gt,M), whereas M contains both FPs and FNs and C only
FNs. Further, for the extreme cases:
• if ÊFP = 0: FoM (Gt, Dc) = 1− TP/|Gt| = 1− (|Gt| − FN)/|Gt|,

• if FN = 0: FoM (Gt, Dc) = 1− 1
max(|Gt|,|Dc|) ·

∑
p∈Dc∩¬Gt

1
1+κ · d2

Gt
(p) .

When FN>0 and FP constant, it behaves like matrix-based error assessments (Fig.6.2).
Moreover, for FP>0, the FoM penalizes the over-detection very low compared to the
under-detection. On the contrary, the F measure computes the distances of FNs but not
of the FPs, so F behaves inversely to FoM . Also, d4 measure depends particularly on
TP , FP , FN and FoM but penalizes FNs like the FoM measure. SFoM and MFoM

take into account both distances of FNs and FPs, so they can compute a global evaluation
of a contour image. However, MFoM does not consider FPs and FNs at the same time,
contrary to SFoM . Another way to compute a global measure is presented in [PGAN16]
with the edge map quality measure Dp. The right term computes the distances of the
FNs between the closest correctly detected edge pixel, i.e. Gt ∩Dc. Finally, Dp is more
sensitive to FNs than FPs because of the coefficient 1

|I|−|Gt| .

A second measure widely computed in matching techniques is represented by the Hausdorff
distance H, which measures the mismatch of two sets of points [HR93]. This max-min
distance could be strongly deviated by only one pixel which can be positioned sufficiently
far from the pattern (Fig. 6.3). To improve the measure, one idea is to compute H with
a proportion of the maximum distances; let us note H15% this measure for 15% of the
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Figure 6.2: Different Dc: FPs and number of FNs are the same for D1 and for D2.
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Figure 6.3: Results of evaluation measures and images for the experiments.

values [HR93]. Nevertheless, as pointed out in [DJ94], an average distance from the edge
pixels in the candidate image to those in the ground truth is more appropriate, like Sk or
Ψ. Eventually, Delta Metric (∆k) [Bad92] intends to estimate the dissimilarity between
each element of two binary images, but is highly sensitive to distances of misplaced points
[AMM17d, AMM17a].

6.2.2 A new objective edge detection assessment measure:

In [AMM17d] a measure of the edge detection assessment is developed: it is denoted Ψ
and improvemes the over-segmentation measure Γ, by combining both dGt and dDc , see
Fig. 6.3. Ψ gives the same weight for dGt and dDc in its assessment of errors. Thus, using
Ψ, a missing edge remains not enough penalized contrary to the distance of FPs which
could be too important. Another example, in Fig. 6.3, Ψ(Gt, C) < Ψ(Gt, T ) whereas C
must be more penalized because of FNs which does not allow to identify the object (also
Fig. 6.6). The solution proposed here is to penalize stronger the distances of the FNs
depending on the number of TPs:

λ(Gt, Dc) = FP + FN

|Gt|2
·

√√√√∑
p∈Dc

d2
Gt

(p) + min
(
|Gt|2,

|Gt|2
TP 2

)
·
∑
p∈Gt

d2
Dc

(p) (6.1)

The term influencing the penalization of FN distances can be rewritten as: |Gt|2
TP 2 =(

FN+TP
TP

)2
=
(
1 + FN

TP

)2
> 1, ensuring a stronger penalty for d2

Dc , compared to d2
Gt . When

TP = 0, the min function avoids the multiplication by infinity; moreover, the number
of FNs is large, corresponding to a strong penalty with the weight term |Gt|2 (see Fig.
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6.4 left). When |Gt| = TP , λ is equivalent to Ψ and Γ (see Fig. 6.3, image T ). Also,
compared to Ψ , λ penalizes more Dc having FNs, than Dc with only FPs, as illustrated
in Fig. 6.3 (images C and T). Finally, the weight |Gt|

2

TP 2 tunes the λ measure by considering
an edge map of better quality when FNs points are localized close to the desired contours
Dc.

The next subsection details the way to evaluate an edge detector in an objective way.
Results presented in this communication show the importance to penalize stronger the
false negative points, compared to the false positive points because the desired objects are
not always completely visible by using ill-suited evaluation measure, and, λ provides a
reliable edge detection assessment.

6.2.3 Minimum of the measure and ground truth edge image

Dissimilarity measures are used for an objective assessment using binary images. Instead
of choosing manually a threshold to obtain a binary image (see Fig. 3 in [AMM17a]),
the purpose is to compute the minimal value of a dissimilarity measure by varying the
thresholds (double loop: loop over τL and loop over τH) of the thin edges (see the table in
Fig. 6.1). Thus, compared to a ground truth contour map, the ideal edge map for a measure
corresponds to the desired contour at which the evaluation obtains the minimum score for
the considered measure among the thresholded (binary) images. Theoretically, this score
corresponds to the thresholds at which the edge detection represents the best edge map,
compared to the ground truth contour map [FGMCCP+04, CLRE08, AMM17a]. Fig. 6.4
right illustrates the choice of a contour map in function of τL and τH . Since small thresholds
lead to heavy over-segmentation and strong thresholds may create numerous false negative
pixels, the minimum score of an edge detection evaluation should be a compromise between
under- and over-segmentation (detailed and illustrated in [AMM17a]). As demonstrated in
[AMM17a], the significance of the ground truth map choice influences on the dissimilarity
evaluations. Indeed, if not reliable [HYK13], an inaccurate ground truth contour map
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in terms of localization penalizes precise edge detectors and/or advantages the rough
algorithms as edge maps presented in [HSSB97, MFTM01]. For these reasons, the ground
truth edge map concerning the real image in our experiments is built in a semi-automatic
way detailed in [AMM17a].

6.3 Experimental results

In these experiments, the importance of an assessment to penalize stronger the false
negative points is enlightened, compared to the false positive points. In order to study
the performance of the contour detection evaluation measures, the hysteresis thresholds
vary and the minimum score of the studied measure corresponds to the best edge map.
The thin edges of both synthetic and real noisy images are computed by five or six edge
detectors: Sobel [Sob70], Canny [Can86a], Steerable Filters of order 1 (SF1) [FA91] or
order 5 (SF5)[JU04a], Anisotropic Gaussian Kernels (AGK)[GSvdW02] and Half Gaussian
Kernels (H-K)[MMD11a]. Fig. 6.5 shows a comparison of best maps and minimum scores
for different evaluation measures using our proposed measure λ. We can clearly determine
which filter is better than the other filter. Plus, our measure gave a good result with HGK
filter. Fig. 6.6 presents the results for 14 measures with their associated scores (bars)
according to the hysteresis parameters. In the one hand, we must take into account the
obtained edge map, and on the other hand the measure score. Generally, the optimal
edge map for FoM , SFoM , f2d6, Ψ and λ measures allows to distinct the majority of
the desired edges for each contour detection operator (except Sobel), whereas for the
other assessments, contours are too disturbed by undesirable points or distinguished with
high difficulty (especially Ψ which does not penalizes enough FNs). Note that SFoM
measure does not classify the Sobel algorithm as less efficient. Concerning the experiment
with a real image in Fig. 6.7, 8 measures are compared together. For FoM , H, ∆k

and Sk, the ideal edge maps concerning Sobel edge detector are highly corrupted by
undesirable contours, the main objects are not recognizable. The other segmentations are
also disturbed by undesirable pixels for FoM , H and ∆k. Moreover, the higher score for
∆k (AGK) does not represent the more disturbed map. Ultimately, using λ, the essential
structures are visible in the optimal contour map for each edge detector (objects are easily
recognizable). Moreover, contrary to H, FoM , d4, ∆k and Sk measures, the scores of λ
are coherent, in relation to the obtained segmentations (Sobel and H-K results).
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Figure 6.5: Synthetic image SNR= 3.3 dB. ( The original image is available in Fig. 5.8 (b)
and the ground truth as shown in 5.8(c)). Comparison of best maps and minimum scores for
different evaluation measures using our proposed measure λ.
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Figure 6.6: Comparison of best maps and minimum scores for different evaluation measures.
The bars legend is presented in Fig. 6.7. Gt and original image are available in Fig. 6.3.
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Figure 6.7: Comparison of best maps and minimum scores for different evaluation measures.
Gt and the original real image are presented in Fig. 6.3.
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6.4 Summary

This chapter, presents a new supervised edge detection assessment method λ which enables
to assess a contour map in an objective way. Based on the theory of the dissimilarity
evaluation measures, the objective evaluation allows to evaluate 1st-order edge detectors.
Indeed, the segmentation which obtains the minimum score of a measure is considered
as the best one. Theory and experiments prove that the minimum score of the new
dissimilarity measure λ corresponds to the best edge quality map evaluations, which is
similarly closer to the ground truth, compared to the other methods. On the one hand, this
new measure takes into account the distances of false positive points, in the other hand,
it considers the distance of false negative points tuned by a weight. This methodology
forms our contribution and resulted in the publication [AMM17b] This weight depends on
the number of false negative points: the more it is elevated, the more the segmentation
is penalized. Thus, this enables to obtain objectively an edge map containing the main
structures, similar to the ground truth, concerning a reliable edge detector. Finally, the
computation of the minimum score of a measure does not require tuning parameters,
which represents a huge advantage.
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Oriented Half Kernels for

Corner Detection
This chapter describes our proposed method using oriented half kernels for corner detec-
tion.
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7.1 Introduction

Corners and junctions play an important role in many image analysis applications. However,
these features extracted by the majority of the proposed algorithms in the literature do
not correspond to the exact position of the corners. In this chapter, an approach for
corner detection based on the combination of different asymmetric kernels is proposed.
Informations captured by the directional kernels enable to describe precisely all the
grayscale variations and the directions of the crossing edges around the considered pixel.
Comparing to other corner detection algorithms on synthetic and real images, our proposed
approach remains more stable and robust to noise than the comparative methods.

In digital images, corners and junctions constitute important landmarks because they get
affluent information like delimitation of objects. A pixel is considered as a corner or a
junction when two or more edges meet each other and it refers to the point where several
different contour orientations exist. These orientations could be estimated using structure
tensors, voting tensors or oriented kernels. In this chapter, a non exhaustive review of
corner detection methods is presented. Then, oriented kernels are described. Finally, a
new corner detection method based only on oriented kernels is described.

7.1.1 Corner detection techniques

In the literature, several approaches have been developed to detect corners and junctions:
(i) involving contour chains, (ii) using templates or, (iii) by image filtering techniques.

Traditional contour based corners methods focus on the processing of binary edges, by
searching points having curvature in contour chains or in line segment intersections
[XDG14, SZ13]. This approach might be insufficient for applications in natural images
because the accuracy of corner localization relies on edge detection performance (filtering,
threshold(s)).

Another way to extract these feature points involves templates by compared all pixel values
with the of center pixel(s) of the shape template. In the well known SUSAN (Smallest
Univalue Segment Assimilating Nucleus [SB97]), a corner is extracted in comparing every
pixel inside a circular mask with the central pixel. On the contrary, for the FAST (Features
from Accelerated Segment Test [RPD10]) method, a point is considered as a corner only if
there are several pixels in the path of a circular template which are higher or smaller than
the value determined by the central pixel. These corner detection methods do not require
any spatial derivatives; however, they do not lead directly to the position of the corner (i.e.
the pixel having several local orientations as in Fig. 7.1 (d) and (e)). Concerning image



7.1. Introduction 113

(a) Original image 63×44 (b) Contour-based [XDG14] (c) Contour-based [SZ13] (d) SUSAN [SB97]

(e) FAST [RPD10] (f) Kitchen-Rosenfeld [KR80] (g) λ2, Shi-Tomasi [ST94] (h) c1, Förstner [För86]

(i) c2, Harris [HS88] (j) Köthe [Köt03] (k) Aach et al. [AMS+06] (l) Proposed method [AMM17c]

Figure 7.1: Corner detected involving several methods. The standard deviation used for the
image derivatives is the same as for the structure tensor Jρ: σ = ρ = 1. For the developed
method: ση = 1 and σξ = 3, L = 3 and P = 5.

filtering, the feature detectors operate directly on image intensities. Corners are defined by
the combination of the gradient magnitude and points having maximum curvature of the
image surface. A pioneer work in this domain remains Kitchen-Rosenfeld algorithm which
involves first and second order image derivatives in the cornerness computation [KR80].
Methods using the second derivative are more sensitive to noise then introduces false.
Indeed, the computation of only the first image derivatives informs on the local structure at
a pixel by examining also the data in the neighborhood. Moreover, integrating the gradient
information in the neighborhood of the pixel (i.e. the correlation) brings indications about
whether the pixel must be considered as an edge or as a corner. This selection is given
by involving a 2×2 symmetrical structure tensor. The derivation of a scalar image I is
called the image gradient and is noted by ∇I = (Ix, Iy) t in which Ix and Iy represent
the image derivatives in x and y directions respectively (usually calculated by means of
Gaussian derivative filters with a standard deviation of σ ∈ R+, see Fig. 7.2(a)). Involving
a smoothing Gaussian kernel Gρ of standard deviation ρ, the first-order structure tensor
Jρ is given by Jρ(∇I) = Gρ ∗∇I · ∇I t. The scale of the neighborhood information is given
by Gρ. When Jρ possesses two positive eigenvalues, then the pixel is considered having
at least two distinguished orientations, therefore a corner or a junction. This isotropic
cornerness measurement is given by the second eigenvalue denoted λ2 [ST94, BWBM06] or
could be estimated by c1 = det(Jρ)

tr(Jρ)+k [För86] or c2 = det(Jρ)− k · tr(Jρ) [HS88], with k>0.
Feature detection using the linear structure tensor Jρ is insufficient in the presence of
more than one dominant direction. Depending on its smoothing parameter ρ, this tensor
representation is robust under noise, but generally the localization of the detected corner
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misses precision. Indeed, according to the scale ρ and the image derivatives estimated by
convolution with Gaussian kernels, the detected location of a corner tends to shift as ρ
increases [DG93], as illustrated Figs. 7.1(g), (h) and (i). To bypass this weakness, several
solutions have been proposed in the literature as nonlinear structure tensors [BWBM06]
or tensor voting [MPB+12]. In [Köt03], the cornerness measurement λ2 is propagated
using oriented filters that are shaped like hour-glass instead of the Gaussian mask for
data-adaptive smoothing at the crossing edge position.

Finally, in [AMS+06], double local orientations for corners and junctions are extracted by:
(1) involving Jρ to detect regions containing double orientations and (2) the computation
and combinations of the eigenvalues of a 3×3 tensor. This method is more precise than
previous mentioned approaches, as shown in Fig. 7.1(k).

In this work, corners and junctions are directly extracted involving only a combination of
asymmetric oriented kernels.

7.1.2 Oriented kernels and edges directions

Oriented filters were designed to capture multidirectional gray intensity variations [FA91,
JU04b]. Indeed, they consist in finding the orientation where the derivative corresponds
to the maximum response. The concept was generalized in [Per92] by decomposing a
given filter kernel optimally in a set of basis filters which approximates an Anisotropic
Gaussian Kernel (AGK): Anisotropic Gaussian kernel for (smoothing) Eq. 7.1:

G(x,y,ση ,σξ) = 1
2πση, σξ

.e
− 1

2

(
x2
σ2
η

+ y2

σ2
ξ

)
. (7.1)

AGK(x,y,ση ,σξ) = −1
2 ·
(2x
σ2

)
.G(x,y,ση ,σξ) = −x

σ2 ·G(x,y,ση ,σξ) (7.2)

= −x
2πσ3

ησξ
· e
− 1

2

(
x2
σ2
η

+ y2

σ2
ξ

)

where (x, y)∈R2 represent the pixel coordinates, ση and σξ are referred to the Gaussian
scale and to the anisotropic factor respectively (Fig. 7.2(b)). The AGK can be oriented
[SZ13] but, possesses a common shortcoming, as a matter of fact, only one π-periodic
orientation is extracted efficiently [Per92], so the impossibility of these filters to estimate
in a relevant way several coexisting orientations at the same pixel (see Fig. 7.1 (c)).

Contrary to the templates mentioned above, wedge [SF96][MDA07] or asymmetric oriented
filters [MMD11a][MDCL+07] sound better suited for a purpose like multiple edge directions
detection or modelling a template. Thus, corner analysis requires finding maxima in filter
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Figure 7.2: Different discretized 2D derivative Gaussian kernels and representation of the IRON
filter. (b), (c) and (d) with ση = 1 and σξ = 3. The Anisotropic endstop filter is equivalent to
the derivative of the AGK along the Y direction.

responses when these 2π-periodic filters are successively steered in different directions.
The equation of the anisotropic edge detector based on Half Gaussian Kernels (HGK)
derivative is given by:

HGKση ,σξ(x, y) = H(y) ·AGKση ,σξ(x, y). (7.3)

where H corresponds to the Heaviside function, illustrated in Fig. 7.2(d). By rotating
the image [MMD11a], maxima of the filter responses indicate the directions of the edges
from 0 to 2π [MMD11a, MM14a]. In addition, HGK and wedge steerable filters responses
caracterize easily corners and junctions. Nevertheless, inside homogeneous/noisy regions,
due to the , isophotes i.e. curves of the image surface of constant intensity, these directions
become unpredictable. Perona shows in [Per92] that the combination of the endstop kernel
(see Fig.7.2 (c)) with the HGK enables a junction and corner characterization. Indeed,
the response of the combination is null along a straight contour whereas the response has
maxima along the directions of the contours forming a junction or a corner (illustrated
in Fig. 7.3). In order to avoid false corners or junctions, another solution proposed in
[MM14a] is to align the directions of the HGK when the gradient value is weak. However,
near edges, the gradient generated by the HGK remains not so weak and disturbs the
corner detection by creating a halo of acute angles around the contours (note that this
remains the same problem using the endstop kernel). Fig. 7.3 (bottom) and Fig. 7.4 (c)
illustrate this phenomenon, corners are correctly localized, however, close to the edge,
HGK creates an angle which can be considered as a corner.

7.2 A new method of corner extraction

The main idea of this new approach is to combine the HGK with an asymmetric filter
computing the homogeneity along edges. On one hand, the maxima responses of the
HGK indicate the directions (2π periodic) of the edges. On the other hand, the oriented
variance determines if the directions of the maxima of the HGK corresponds to edges or
other types of pixels (texture, homogeneous region etc.).
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7.2.1 Oriented filter of grayscale homogeneity

The asymmetric IRON (Isotropic and Recursive Oriented Network) filter estimates the
homogeneity in multiple local directions [MDCL+07]. This filter consists of a network of
several parallel lines in which a homogeneity is computed and enables an estimation of
edge directions modulo 2π. The variance for a pixel located at (x, y) on the network is
computed by:

IRON(x, y) = 1
L

L∑
j=0

 1
P

P∑
i=0

(
I(i, j)2

)
−
(

1
P

P∑
i=0

I(i, j)
)2. (7.4)

Here, L represents the number of lines where the variance is computed and P the number
of points per line. Fig. 7.2(e) represents an example of an asymmetric IRON filter.
Computationally, the rotation of the image is applied at some discretized orientations
from 0 to 2π before applying the IRON filters. Some examples of IRON filter signals are
available in Fig. 7.3 fifth column, values of the IRON are close to 0 in the edges directions
and it is shown in [MDCL+07] that the detections of edges directions stay precise in the
presence of noise.

0.5

1

90270

180

0
HGK

0.5

1

90270

180

0
endstop

0.5

1

90270

180

0
 * endstop

0.5

1

90270

180

0
IRON

0.5

1

90270

180

0
SHGK

0.5

1

90270

180

0
HGK

0.5

1

90270

180

0
endstop

0.5

1

90270

180

0
HGK * endstop

0.5

1

90270

180

0
IRON

0.5

1

90270

180

0
S

0.5

1

90270

180

0
HGK

0.5

1

90270

180

0
endstop

0.5

1

90270

180

0
HGK * endstop

0.5

1

90270

180

0
IRON

0.5

1

90270

180

0
S

0.5

1

90270

180

0
HGK

0.5

1

90270

180

0
endstop

0.5

1

90270

180

0
 * endstop

0.5

1

90270

180

0
IRON

0.5

1

90270

180

0
SHGK

Figure 7.3: Modulus of the energy of the different oriented kernels and their combinations (in
degrees and normalized signals).
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(a) Original image 13×21 (b) Image of C (Eq. 7.6) (c) Image of π3 6β6
2π
3

(d) Directions of the extrema of HGK (e) θ1 (blue) and θ2 (green) directions

Figure 7.4: Direction field. (a) Cropped image of Fig. 7.1(a).

7.2.2 A combination of homogeneity and edge strength

The HGK and the asymmetric IRON are 1-side kernels, so they are steered in 2π directions.
Moreover, the response of the HGK corresponds to maxima along the directions of the
edges while the response of the IRON has minima along these same directions. Hence, the
combination at the orientation θ∈ [0; 2π[ between the HGK and IRON is straightforward:

S(x, y, θ) = HGK(x, y, θ)
ε+ IRON(x, y, θ) , with ε ∈ R+

∗, (7.5)

where HGK(x, y, θ) and IRON(x, y, θ) represent, respectively the HGK and IRON re-
sponses in a rotated image of angle θ. Finally, ε corresponds to a small constant avoiding
a division by 0, generally is taken as ε= 0.001. The corner detection is equivalent to
analyze the resulting signal S for each pixel. The polar curves in Fig. 7.3 indicate the
modulus of the different kernels responses. Moreover, the extrema of S indicate the precise
directions of the edges for contour and corner points. As illustrated in Fig. 7.4 (d), at a
distance between 1 and 2ση pixels, the extrema of S correspond to directions which are
parallel to the edge directions. Finally, in order to compute the variance and the oriented
derivative on the same neighborhood, the spacial influence of the IRON filter is inserted
in the support of the HGK, i.e. 3P 6σξ and 3L6ση.

7.2.3 Angle selection and corner extraction

The IRON energy is always positive while the HGK filter corresponds to an oriented
derivative, so its responses are either positive, or negative. Consequently, the signal S
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possesses positive/negative values when HGK is positive/negative (see Fig. 7.5). To obtain
the cornerness measure C as in Fig. 7.4 (b), the global extrema of S are combined:

C(x, y) = max
θ∈[0,2π[

S(x, y, θ)− min
θ∈[0,2π[

S(x, y, θ)

θ1(x, y)= argmax
θ∈[0,2π[

(S(x, y, θ))

θ2(x, y)= argmin
θ∈[0,2π[

(S(x, y, θ))

β(x, y) =
{
|θ1(x, y)−θ2(x, y)|, if |θ1(x, y)−θ2(x, y)|6π
2π − |θ1(x, y)− θ2(x, y)| elsewhere.

(7.6)

Once C, θ1 and θ2 have been obtained, the comers can be easily extracted in two steps: (i)
by selecting pixels where β, the angle formed by θ1 and θ2, corresponds to a desired angular
sector followed by (ii) thresholding the local maxima of C. Finally, for a pixel belonging to
a straight contour, the value of C is high (see Fig. 7.4 (b)) while β corresponds to an open
angle ≈ π ((illustrated in Fig. 7.5 and 7.4(c)); so it it not considered as a corner point.

7.3 Experiments and evaluation

The experiments are carried out on synthetic images and real images to compare the
corner detectors methods with our proposed corner detection method. First, the 31 "best"
corners are extracted from the synthetic image by corner detectors. These corners are
composed of acute and obtuse angles. Then, the Root-Mean-Square Error (RMSE) is
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Figure 7.5: The minimum and maximum of the signal S corresponds to the two directions of
the edges and β to the angular sector between the θ1 and θ2 directions.
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computed between the 31 true corners and the extracted features. Considering Gt and Dc

the set of true and detected corners respectively:

RMSE =

√√√√√ 1
card(Gt)+card(Dc)

·

∑
p∈Dc

d2
Gt

(p)+
∑
p∈Gt

d2
Dc

(p)

.
For a pixel p∈Dc, dGt(p) represents the minimal Euclidean distance between p and Gt,
whereas if p∈Gt, dDc(p) corresponds to the minimal distance between p and Dc. Thus, ten
corner detection approaches are compared in terms of the noise level, which is indicated by
the Signal-to-Noise Ratio (SNR), as illustrated in Figs. 7.6 (a), (b), (c) and (d). Another
experiment illustrated in Figs. 7.10 (c), (d), (e) and (f), show that our approach is more
robust to noise since the RMSE error is always better than the others methods.

The curve in Fig. 7.6 (e) shows the RMSE in function of the SNR when the standard
deviation for the Gaussian derivative is the same for all methods excepted FAST (ση=1
in our case). Indeed, the standard deviation is the same for all detectors in order to
compare them together, even for the contour based methods [XDG14][SZ13]. Our method
achieves the best results in term of RMSE for all the noise levels. The shape of the
considered filters enables to locate the corners at the correct position even though the
noise is strong (see Fig. 7.6(d) with SNR= 4dB). The same evaluation is led by changing
the standard deviation for the Gaussian derivative (σ = ση = 2) for all tested methods.
The curve in Fig. 7.6 (f) illustrates the error measures. As pointed out in Section 7.1.1,
the scale of isotropic detectors affects the localization of detected corners. Note that the
contour based on anisotropic Gaussian kernels is not robust to the detection of acute
corners because these kernels delocalize strongly the corner points in the edge detection
stage (see [MMD11a]). On the contrary, our proposed method [AMM17c] remains stable
(less than 1 pixel RMSE measure compared to ση=1 in the previous case). Concerning
acute angles, the half kernels are able to select the two directions of the edges and then
qualify these pixels as corners. Finally, the performance of the new method is due to the
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Figure 7.6: Comparison the RMSE as a function for the corners error detection between our
method with several corner detection methods.
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Figure 7.7: Corner detection using template or isotropic structure tensors obtains mistakes or
corner displacement. The standard deviation σ for the image derivatives and for the structure
tensor Jρ are the same: σ = ρ = 1. For (h), the convolution masks a (for example k = 0.004).
Note: [ True corner = +, False corner = +, and Forget corner = + ].

HGK combined with the IRON filter which corresponds to thin filters, allowing a precise
direction of contours, and thus of corners.

The first real image in Fig. 7.1(a) is composed of thin structures with a blur. Despite
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Figure 7.8: Corner detection using template or isotropic structure tensors obtains mistakes or
corner displacement. The standard deviation σ for the image derivatives and for the structure
tensor Jρ are the same: σ = ρ = 1. For (h), the convolution masks a (for example k = 0.004).
Note: [ True corner = +, False corner = +, and Forget corner = + ].

that, Fig. 7.1(l) illustrates very clearly that the new corner detection method has better
accuracy than the ten other corner detectors. The last experiment presented in this
study concerns the ’lab’ image in Fig. 7.11(a). This image contains several corners of
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Figure 7.9: Comparison the Root Mean Square Error (RMSE) as a function for the corners
error detection (a) our method with different ∆θ, (b) our method with different σ with ∆θ = 5.

(a) Original image (c) Harris [HS88] (e) Kitchen [KR80]

(b) PSNR= 14 dB. (d) Aach et al. [AMS+06] (f) Proposed method [AMM17c]

Figure 7.10: RMSE as a function of the noise level. (c)-(f): Corner detected involving several
methods with ση = 1 et σξ = 3.

different type of angles and blurred edges. To make the comparison easier, the 280 best
interest points are extracted for each algorithm. The contour-based methods [XDG14]
and the tensorial approaches [HS88][Köt03][AMS+06] fail to detect the majority of corners
of obtuse angle (e.g. carpets on the floor) while they detect a lot of features concerning
small objects as in the top right part of the image. On the other hand, Fig. 7.11 (f)
shows that the performance of our proposed method [AMM17c] is more efficient to detect
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the features. In order to capture acute and obtuse corner, the angular sector belongs to[
π
6 ,

5π
6

]
. Such an angular sector is enough to detect only desired features. These results

using the combination of oriented half kernels and IRON filter illustrate reliable and
promising results, even when dealing with blurred images. Other experiments are carried
out real image to compare corner detectors. Fig. 7.12 shows that the performance of the
our method is more efficient to detect the corners.

(a) Original image 512×484 (b) Contour-based [XDG14]

(c) c2, Harris [HS88] (d) Koethe [Köt03]

(e) Aach et al. [AMS+06] (f) Proposed method [AMM17c]

Figure 7.11: Corner detected involving several methods. The standard deviation used for the
image derivatives and for the structure tensor Jρ are: σ = 1.5 and ρ = 1. For the developed
method: ση = 1.5 and σξ = 5, L = 3 and P = 5.



124 7. Oriented Half Kernels for Corner Detection

(a) Original image 256×256 (b) Forstner [För86] (c) c2, Harris [HS88]

(d) Koethe [Köt03] (e) Aach et al. [AMS+06] (f) Shui [SZ13]

(g) Kitchen [KR80] (h) Shi-tomasi [XDG14] (i) Xia [XDG14]

(j) Fast [RPD10] (k) Proposed method [AMM17c]

Figure 7.12: Corner detection using template or isotropic structure tensors obtains mistakes or
corner displacement. The standard deviation σ for the image derivatives and for the structure
tensor Jρ are the same: σ = ρ = 1. For (h), the convolution masks a (for example k = 0.004)
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7.4 Summary

In this chapter an approach for corner detection based on the combination of different
asymmetric kernels has been presents. Informations captured by the directional kernels
enable to describe precisely all the grayscale variations and the directions of the crossing
edges around the considered pixel. This methodology forms our contribution and resulted
in the publication [AMM17c]. The half Gaussian kernels (HGK) allow to detect a relevant
strength of a corner while the IRON indicates the more homogeneous directions. A such
combination enables to remove undesirable corners near contour areas which could be
considered as a ideal feature by the HGK. Moreover, due to the shape and the functionality
of the considered filters, corners are located at the correct position of the corners, even in
the presence of a strong noise. Compared to other corner detection methods on synthetic
and real images, our proposed approach remains more stable and robust to blur and noise
than the comparative methods.
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Overview on Steganography and

Steganalysis
This chapter focus on digital image steganography and steganalysis methods.
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8.1 Introduction

Since long time, steganography techniques are known and widely used [Fri09]. Steganog-
raphy is a technique to hide a secret message in a digital media and communicate secretly.
In modern-day digital steganography works by modifying bits within various digital media
files (for example text, image, video, audio) to avoid the detection of the secret message
and doing that a manner that it is difficult for an adversary to detect and at the same
time difficult for an adversary to remove too. The message remains secret such that it is
only known by the sender and receiver and an adversary does not recognize its existence
visually. Based on this objective, there are important principles must be used to measure
the performance of a given steganography method:

• Quantity of data: relates to more data you can hide, the better the method.

• Hardness of detection: suggests to how easy it is, for anyone to detect the hidden
message. Indeed, there is great relationship between quantity of data that can be
hidden and how much it is easy for anyone. Increase the hidden data, greater the
probability of change the image quality with

• Difficulty of removal: involves the principle that someone intercepting your file
should not be able to remove the hidden data easily.

Today, the challenge is to design a digital steganography method which has reliable security
of the hidden communication, along with minimum size of the payload and provides good
robustness against attacks. On the other hand, detecting steganography methods belongs
to the field of steganalysis. This field is constantly evolving its techniques, methods and
theories in parallel line with the development of steganography techniques, to detect
hidden communication.

In reality, the steganography can be used for legal and illegal purpose, but in recently it
has received a great attention from national security seasons.

Eventually, modern steganography emerged with the advent of digital media, personal
computers, communication networks, and the Internet.

We carried out a sample search query with keyword steganography at scholar.google.fr,
combining conference and journals papers from 1990 to 2015 year. Fig. 8.1 shows the
yearly count of research articles on the steganography domain founded by Google Scholar.
This bring to light, the importance of steganography domain and how the researchers
proposed different methods during the period (1990-2015 ), certainly, the request for using
steganography methods increasing bewildering, during 25 last years and this raises several
questions about this domain.
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8.2 Steganography and steganalysis through these ages

The use of information hiding methods dates back to several millennia. Considered the
steganography method is one of the most ancient and famous method. Steganography
literally means, "Covered writing" which is derived from the Greek language steganos-
graphy, steganos means (covered or secret) and graphy means (writing or drawing).

We can define steganography as the art and science of covert communications between
two parties. The secret messages are communicated by hiding them in a cover.

The first known steganography technique was implemented in ancient Greece around 440
B.C. Herodotus [Her96] reports an interesting story of Histaeus the Greek ruler, that
decided to send a secret message to his son in law Aristagoras in Miletus, to tell him that
it is the time to start a revolt. He shaved the head of a slave, then tattooed a message
on the slave scalp, he waited for the growth of hair to disclose the message, and sent the
slave on his way to deliver the message as shown in Figure 8.2 (a). Indeed, the message
was arrived to his son and the revolt was successful.

Another story reported by Herodotus, from Ancient Greece is to write a secret message on
a tablet underlying wood and then cover the tablet with wax as shown in Figure 8.2 (b).
The tablet appeared to be blank and unused so they can passed on inspectors. Ancient
Romans used to write between the lines of text the invisible inks and to display the hidden
messages required heat. Aeneas the Tactician [Tac90] proposed many steganography
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(a) Hidden message on the head of a slave. (b) Hidden message in wax tablet.

Figure 8.2: Examples of ancient steganography models.

techniques by hiding messages in women’s earrings or using pigeons to deliver a messages.
He also described many simple methods for hiding in text, by modifying the height of
letter strokes and sometimes he marked the letters in a text by using small holes, or by
signs, or symbols. Throughout the history, there has always been an urgent need to use
of some steganography. As an example, the text steganography proposed by Brassil et
al.[BLMO95] use the shifting lines of the text up or down by 1/300 of an inch to encode
zeros and ones, which is not visually perceptible and robust against multi-generation
photocopying. This small changes are very strong to survive photocopying. During World
War I, Brewster’s idea became real by the Germans introduced microdots as shown in
Figure 8.3. The microdots hidden in corners of postcard were complete documents, photo,
and plans reduced in size to the size of a period and attached to common paperwork.
The invisible inks have always been a popular method of steganography. Used in the

Figure 8.3: Examples of ancient steganography using Germany Microdots.

World War II, the sources for invisible inks are fruit juices, milk, vinegar. With the
growth of technology, more advanced inks were developed which react to diverse chemicals
[Kah96].
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8.3 Cryptography, Watermarking and Steganography

Many techniques have been developed to hidden the secret messages within the image
like digital watermarking, visual cryptography, and image steganography [PTC+12, KL14,
AMY10]. The fields of detecting hidden information in digital medium is called steganalysis
methods.

Cryptography, watermarking and steganography are popular techniques for available
security. Each technique is different from the other one and are used depending on the
purpose. Cryptography is the science of protecting information by transforming it into an
unreadable format. Only the use of a secret key can convert the cipher text back into a
human readable-tent. The main goal is to ensure privacy of data in communication and
the ability to send information between participants in a way that prevents others from
reading it.

Predominantly, when the cryptographic made the cipher, he depended on the adversary
have no any knowledge about the the encryption algorithm. With the great increasing
power of computer systems and mathematical theories, some applications become less
protection as time passes. Wherefore, some popular algorithms are now considerably less
effective, and other methods are developed to use very complex encryption algorithms such
as encryption system in banks [Sma03], selective encryption [PBR13] and hash function
[SNMM15].

We can divided encryption into two classes based on the key type as shown in Figure 8.4.
The first class is symmetric algorithms, also called secret key application where the same
key for encryption and decryption is used. This class allows very rapidly quick, it can be
use to encrypt small or large data and does not need intensive resource. The problem is
that the key must be send to the receiver. The more popular algorithm from this class are
the Data Encryption Algorithm (DEA) and Data Encryption Standard (DES) [BS12].

The second class corresponds to asymmetric methods also called public key encryption is
a special class, a pair of related by independent keys can be used to perform asymmetric
encryption and decryption. This means not need to send over the key to receiver, can be
use for encryption and validation. However, it is use for small data and very intensive
resource [TG03]. Some of this type of algorithms provide for digital signatures and some
others provide key distribution, and some provide both such as the Rivest Shamir Adleman
(RSA) algorithm [RSA78], which is the most popular used in electronic commerce.

In fact, steganography methods can be a good way for secret communication when the use
of cryptography was forbidden. There is a possibility of using cryptography method as a
preprocessing for steganography, by encrypting the message before embedding it inside
the cover [AOAKOA12, PTP16].
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Digital watermarking scenario is the act of hiding an information called watermark,
signature, or a tag into a digital media content. The hidden information is often related
to the digital media content. For example, we can embed an image [Ber97, WPD99],
an audio [LI03] a video [LLG05, SCP13, KJZC14] and a text [HW04] within the signal
itself.

There are four brand applications that can use digital watermarking:

• Copyright protection: This objective is to protect the content of the digital media
[BLM99, NMCHGU+15].

• Authentication: This objective is to prove the authenticity of printed materials,
such as personal checks, identity cards, passports and proof of identity [WL98,
NMCHGU+15].

• Broadcast monitoring: The objective is to put a unique watermark in each video
or sound clip prior to broadcast. Automated monitoring stations can then receive
broadcasts and look for these watermarks, identify when and where each clip appears
[KDHM99].

• Media enrichment: This objective is to enrichment the data by embedding additional
information to the data [MP10].

There are two main types of watermarking: visible watermarking and invisible watermark-
ing, as shown in Figure 8.4.

• Visible watermarking. The information is visible on the digital media. For example,
visible image watermarking is a secondary translucent image overlaid into the primary
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Figure 8.4: The general classification of information hiding methods.
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image and appears visible to a viewer on a careful inspection. However, these type
of watermarking can be easily corrupted or removed using simple image processing
techniques.

• Invisible watermarking. A message is hidden in digital media in imperceptible way.
The main goal for using this type of watermarking is to copyright protection systems,
which is intended to prevent or deter unauthorized copying of digital media. Invisible
watermarks can be classified into robust, fragile and reversible watermarking. Robust
watermarks are those which are difficult to remove from the object in which they are
embedded, despite various attacks they might be subjected to. Fragile watermarks
are those that are easily destroyed by any attempt to tamper with them [CMB+07].
Reversible watermarking this techniques was appeared in literature during the last
ten years approximately, and are also named as invertible or lossless [Tia02]. These
techniques are applied mainly in a way where the authenticity of a digital image has
to be granted and the original content is peremptorily needed at the decoding side
[CFB10].

Digital steganography is the art and science of hiding messages inside a digital media in
a way such that no one, except the sender and receiver, can suspect the presence of the
hidden message.

There are four main classifications for steganography techniques according to the con-
struction rules, as shown in Figure 8.4:

• Steganography by cover selection. In this type of steganography the sender selects
an image from a large set of available images and applies to it a message. These
images always a signification that can be selected by the receiver. Furthermore,
the sender can be use a hash function, with a shared secret key between him and
the receiver, to transmit his message. In this case, the sender runs its imagery
base until it falls on an image whose fingerprint coincides with the desired message.
[KJ05, KSM06, SJ09, SL10]. Selection of a suitable cover plays an important role
to achieve the goals of steganography. For example, increasing the payload and
decreasing detectability. The advantage of this type is that the cover is always seems
very natural. On other hand, the disadvantage of this methods are dealing with low
payload [Fri09].

• Steganography by cover synthesis, In this type of steganography the sender creates
the cover that communicates the desired message [WM08]. We can combined
this type of steganography with steganography by cover selection to relieve the
exponential complexity of embedding [PKSM05]. The advantage of this type is good
security, and the disadvantage is low payload.

• Steganography by cover modification, In this type of steganography the sender
modifies an existing cover in order to embed a message, then convey the required
message [Fri09]. This method can be used to embed payloads that are large enough
in order to make the steganography system very practical [FK13]. There are
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two main branches for this technique: adaptive and non-adaptive steganography.
Adaptive steganography allows to embed a message into a cover by selecting the
most secure embedding positions mostly selecting texture pixels.[PFB10, KCP13,
HFD14b, SCF16]. Non-Adaptive steganography allows to embed a message into
cover by randomly select the pixels . In other word, the modifications to the
cover image are uncorrelated with image features. We can consider that adaptive
steganography is an interesting problem of steganography and steganalysis. In this
thesis, we used steganography methods by cover modification.

• Steganography by cover supraliminal. In this type of steganography, the sender
encodes a message in the sementic content of the digital cover. The basic tenets of
this types are that, they must be robust in that making small changes to the cover
will not destroy the message [MSC+13].

Digital watermarking techniques are very close to steganogaphy techniques. However,
we can distinguishes between steganography from digital watermarking, by their major
goal. As explain before the main goal of watermarking is to hide a message in digital
media, in such a way that an eavesdropper cannot remove or replace the hidden message.
While the main goal of steganography is to hide a message in digital media, in such a way
that an eavesdropper cannot detect the presence of the hidden message. We summarized
important issue in Table 8.1.

Table 8.1: The difference between cryptography, watermarking and steganography.

Cryptography Watermarking Steganography
• Encrypted message can
be seen look like unmean-
ing mix of characters.

• Hides a message inside
a media with or not.

• Hide a message inside
media with undetectabil-
ity.

• Not require cover ob-
jects, message is ciphered.

• Require cover objects,
message is ciphered and
embed into a host.

• Require cover objects,
message is ciphered and
embed into a cover.

• The cipher is the impor-
tant information.

• The host media is the
important information.

• The hidden message
is the important informa-
tion.

• Can encrypt any size of
data.

• Can hide small amount
of data.

• Can hide a large
amount of data.

• Encrypt data. No chan-
nel concept.

• Communication over a
noisy channel. Concept
of robustness.

• Communication on a se-
cret channel. Concept of
undetectability.

• There are some laws
that ban cryptography.

• There are some laws
that ban watermarking.

• There are no laws as-
sociated with steganogra-
phy.
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8.4 The prisoner’s problem (steganography/steganalysis)

In 1983, Simmons’ proposed the first formulation of the steganography [Sim83] for se-
cret (straightforward) communication. Three characters are necessary to explain this
formulation, Alice and Bob two criminal imprisoned in separate cells, far at distance from
each other. They can communicate together and they know that this communication is
monitored by Eve, the prison warden. They decide to put an escape plan from jail and
communicate by covered their messages without getting noticed by Eve. Indeed, if Eve
notice about the secret messages, she can decide to remove communication, therefore the
escape plan will fail. Figure 8.5 illustrate the general model for the Simmons’ prisoners’
problem.

Steganography Steganalysis 
Alice 

Bob 

Eve 

Figure 8.5: The general model for Simmons’ "prisoners problem".

From Simmons’ model, we can start to explain the roles and the goals for each player.
Firstly, Alice and Bob have to use a steganography method. Their goal is communicate
together in a highly confidential way and without be suspected by Eve. The goal of
steganography is to hide messages inside a cover medium in a way such that no one, except
the sender and the receiver, can suspect the presence of a hidden messages. Eve have to
use a steganalysis method, his main goal is to monitor the communication. There are
three types of models based on the behavior of Eve, the prison warden:

• The passive warden model: In this case, the warden can only prevent or authorize
to deliver the message. Eve is restricted from modifying the messages sent by Alice
or Bob as shown in Figure 8.6 (a). Eve will analyze the messages. If the test is
negative, the message will be delivery and if she detect a secret message, she will
block this message [AP98].

• The active warden model: In this case, the warden modify the messages before
sending to the other prisoner [Ett98, Cac98], Eve can intentionally modify the
messages sent by Alice to Bob or conversely sent by Bob to Alice (as illustrated in
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Figure 8.6 (b)). With this procedure, Eve hopes that the secret message will be
destroyed. This type of action is interesting for the Internet monitoring where it is
very difficult to know the steganography method used by Alice and Bob [FFPN03].

• The malicious warden model: In this case the warden will try to catch the prisoners’
communicating and manages the communication as shown in Figure 8.6 (c). Eve
will try to modify a large portions of the messages or even produce new messages by
impersonating one of the prisoners, Alice or Bob [FIG06].

Alice Bob 

Eve 

Alice Bob 

Eve 

Alice Bob 

Eve 

(a) Passive warden (b) Active warden (c) Malicious warden

Figure 8.6: Types of models based on the behavior of the prison warden Eve.

8.5 Digital Image Steganography

Image steganography is the concept of embedding a message into digital image content
and doing that a manner that it is difficult for an adversary to detect and at the same
time difficult for an adversary to remove too.

The security of any digital image steganography method depends on the selection of an
image pixels for embedding. More deeply image pixels in textured and noisy area are
best choice for embedding secret data, because they are more difficult to detect by the
steganalysis methods. Furthermore, Pixels in edges can be seen as noisy pixels because
their intensities are either higher or lower than their neighboring pixels due to sudden
change in the coefficient gradient. Due to these sharp changes in the visible and statistical
characteristics or features, edges are more difficult to detect than the pixels in smoother
area. Therefore, edges make an excellent option to embedding messages than any other
region of an image where a small distortion is much more noticeable.

We can mathematically notation a steganography scheme. Let as notation Ks denote
a key of stego that is generated from a set, K, of all secret stego keys, and M is the
set of all embedded messages, and C is the set of all covers. More deeply, Fig. 8.7
illustrate the block diagram of steganography. The steganography scheme is formed by
two mappings, the embedding mapping (Eembed) to hidden messages, and the extraction
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Data ExtractionData Embedding

Secret Message

Stego ImageCover Image

Secret Message

Embedding Process Extraction Process

Alice Bob

Channel

Stego Image

Steganalysis

Figure 8.7: The block diagram of steganography.

mapping (Eextract) to extract the messages:

Eembed :C ×K ×M →C
Eextract :C ×K →M.

Steganography techniques can used for almost all digital file formats, but the formats
those are with a high degree of redundancy are more suitable. Redundancy can be defined
as the bits of an object that provide accuracy far greater than necessary for the object’s
use and display. The redundant bits of an object are those bits that can be altered without
the alteration being detected easily. There are different types of steganography based on
the medium that uses to hide the messages (Text, Audio, Video, Image and protocol). In
digital world, images are the more popular cover medium for steganography. For several
reasons, easy handling, large amount of redundant bits present in it, and great proliferation
of digital images in the Internet and social media [HDSG15].

There exist several image steganography techniques to hidden data securely. We can
classified into two main categories:

• Based on using the key: There are several branches but the more popular are:

- Pure steganography: Embedding the messages into the cover medium without
using any private keys. This method less security [HLVA02, VAH04].

- Public key Steganography: uses two types of keys one for embedded messages
and another for extract the messages [Cra98].

- Secret key steganography: The keys are deployed for embedding the data into
the digital cover medium [TC05]. This method is similar to a symmetric cipher,
where the sender chooses a cover and embeds the secret message into the cover using
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a secret key. If the secret key used in the embedding process is known to the receiver,
he can reverse the process and extract the secret message.

• Based on embedding domain: image steganography methods can be classified into
four main types of steganography methods, steganography techniques that modify
image files for hiding information include the following:

- Spatial-domain methods : In these methods the messages are embedded in
intensity of pixels directly. More deeply, directly manipulation of the pixels in the
cover image [KBB+13].

- Transform domain methods: These types are based on the manipulation of
the orthogonal transform of the image rather than the image itself. The frequency
image transformations include Discrete Fourier Transform (DFT), Discrete Cosine
Transform (DCT) or Discrete Wavelet Transform (DWT). The orthogonal transform
of the image has two components: one one hand, the magnitude consists of the
frequency content of the image. On the other hand, The phase is used to restore the
image back to the spatial domain [CCCMK10].

- Statistical algorithm: This methods depends on the existence of 1-bits, which
embed one bit of information in a digital image. This is done by modifying the
original image in a way that some statistical characteristics change significantly.
Always the steganographic tries to change a little bit the characteristics of an image
[PH03].

- Distortion algorithm: This algorithms require the knowledge of original cover
in the decoding process. More deeply, store information by signal distortion and
measure the deviation from the original cover in the decoding step. The total
distortion is a sum of individual pixel distortions computed from the cover image
[FJF11]. The sender applies a series of modifications to a cover in order to get the
stego image. The sequence of modifications corresponds to a specific secret message
the sender wants to transmit. The recipient measures the differences to the original
image in order to reconstruct the sequence of modifications and this corresponds to
the secret message [KDR06, SKZ09, KCP13] are examples of this philosophy.

In general, hidden message is considered as an encrypted data, where bits of encrypted
message are embedded in pixels of the cover image. One of simplest steganography
technique is based on hidden message it the least significant bit (LSB). One of simplest
steganography technique is based on hidden message in the least significant bit (LSB),
by modified the LSB of the color or gray image pixels to embed the secret message. The
following example shows how the letter G has an ASCII code of 071, it will need three
consecutive pixels for a 24-bit color image:
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Image pixels before hidden: 10010101 00001101 11001001

10010110 00001111 11001011

10011111 00010000 11001011

Secret message is G: 01000111

Image pixels after hidden: 10010100 00001101 11001000

10010110 00001110 11001011

10011111 00010001 11001011

This technique has evolved

and produced two types of LSB steganography: First type, is LSB matching which is as
follows steps. First, convert the secret message into a stream of bits. Then, take each
pixel of the clean image (cover), it is possible to use a pseudo-random order generated
by a shared secret key: if the LSB of the next cover pixel matches the next bit of secret
data,do nothing; otherwise, choose to add or subtract one from the cover pixel value, at
random [Ker05]. The second types, is LSB replacement it is very similar, except that the
LSBs of the cover pixels are simply overwritten by the secret bit stream [CC04, Ker04].
In this thesis, we used three steganography methods The first method is the Wavelet
Obtained Weights (WOW i) steganography algorithm [HF12a]. The second method is
the Spatial-UNIversal WAvelet Relative Distortion (S-UNIWARDii) steganography algo-
rithm [HFD14b]. Finally, the third method is the Synchronizing the Selection Channel
(Synch-HILLiii) steganography algorithm [DF15].

The WOW method proposed by [HF12b], used directional filters for calculating the
detectability map. This method is deal with defining additive steganographic distortion
in the spatial domain. More specifically, by employ a bank of directional high-pass filters
to obtain the directional residuals, which are related to the predictability of the pixel in a
certain direction. First, calculates the weighted difference between the residual wavelet
coefficients of the cover image and the residual wavelet coefficients of the stego image
and then aggregates the result obtained for Build a detectability map. WOW force the
embedding cost to be high where the content is predictable in at least one direction
(smooth areas and along edges) and low where the content is unpredictable in every
direction (e.g., in textured or noisy areas).

The S-UNIWARD method proposed by [HFD14b], is in the form of a sum of relative
iWOW steganography method is available at http://dde.binghamton.edu/download/stego_

algorithms/.
iiS-UNIWARD steganography method is available at http://dde.binghamton.edu/download/stego_

algorithms/.
iiiSynch-HILL steganography method is available at http://dde.binghamton.edu/download/stego_

algorithms/.

http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
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Figure 8.8: Architecture of color image steganography by embed messages into color images by
decomposing the R, G and B channels with channel-dependent on the same payload partition.

changes between the stego and cover images represented in the wavelet domain like the
WOW. Although WOW and S-UNIWORD have exploited more pixels in texture areas for
hiding data.

Synchronizing the Selection Channel Synch-HILL method proposed by [DF15], The cost
function of HILL securing all pixels within textural regions have relatively low costs, and
is realized by using a high-pass filter and two low-pass filters, making more embedding
changes concentrated in textural areas.

As explained in [MBL+09], the steganography methods have an important impact on the
performance of the general methodology. These algorithms are used to embed messages
into color images by decomposing the R, G and B channels like three gray-scale images
and embedding the same proportion payload into each channel as shown in Fig. 8.8.
Finally, 10, 000 color images were used to test each of the seven different payload sizes:
{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} Bit Per Channel (BPC).

8.6 Digital Image Steganalysis

Steganalysis is the art of detecting hidden information in a digital image, has received a
great deal of attention in recent years. There are many researchers working on solutions
ensuring the detection of hidden messages inside digital media. As a result, there are
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many techniques and methods that are currently used in the field of steganography and
steganalysis. In general, image steganalysis can be classified on the basis of the techniques
used into two major categories, specific steganalysis and universal or Generic or Blind
steganalysis techniques. The specific steganalysis is designed for a particular steanography
algorithm means that the steganalyser knows the functioning and the properties of the
steganography technique that used to hide the date. Usually, specific techniques look
up for particular distortions. These steganalysis algorithms could be used with other
steganography methods. but many times they cannot detect successfully the embedded
message.

The universal steganalysis has two important components these are feature extraction and
feature classification. In feature extraction, a set of distinguishing statistics are obtained
from a data set of images. The second component, feature classification, hold in two
classes. First class, is obtained by distinguishing statistics from both stego and cover
images are used to train a classifier. The second class, is the trained classifier is used to
classify an input image as either being a no hidden image or carrying a hidden message.
This part of thesis is deals with universal color image steganalysis Fig. 8.9 illustrated the
block diagram of steganalysis system. Many of the image steganalysis methods in the
state-of-the-art use image feature based steganalysis and machine learning classification
[FK12, PBF10, SLY+15].

Extracting features from an image gives a large vector composed of real values charac-
terizing the image. In order to implement this methodology, the steganalyzer needs to
extract a set of features from a training data set to train a classifier. Then the classifier
which decides whether or not the image contains a message using a testing data set
and, if the results are satisfactory, the classifier is considered successful. The models
used in image steganalysis are usually obtained by representing images using a set of
numerical features. Each image, X ∈ C, is mapped to a d-dimensional feature vector
f = (f1(x), ..., fd(x)) ∈ R, where each fi : C → R. Any steganalysis algorithm is a
detector, which can be described by a map F: Rd → {0, 1}, where F(x) = 0 means that x is
detected as cover, while F(x) = 1 means that x is detected as stego [Fri09]. Imagine, if the
similar cover image is used, the feature extraction process provides data sets with similar
features and, therefore, the machine learning tools work properly and the classification
results are clean image. While, if different cover image is used, the data sets obtained by
feature extraction are also different [WFHP16]. This methodology is widely adopted in
classification tasks.

The most widely used classifier of the state-of-the-art is the ensemble classifier [KFH12a].
Steganalysis can be broadly classified into two classes: signature steganalysis and statistical
steganalysis.
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Figure 8.9: Block diagram of universal steganalysis approach.

8.6.1 Color image Steganalysis

In 2015, color image steganalysis has been studied by integrating the modern adaptive
embedding method in an experimental evaluation. Previous steganalysis methods did not
use recent grey-level embedding algorithms [FL00b, WP00, KB14, LSR+08] or did not
use a machine learning approach with Rich-Model features [HP03, TAV12].

8.6.1.1 Color Spatial Rich Model Steganalysis

As it is well known, embedding a message in an image modifies some pixel values. Indeed,
this modification provides slight changes to the pixel values where the message is embedded.
It is a difficult task to detect and extract the sensitive features. Many methods apply
high-pass filters to the target image, and then compute high order statistics on the filtered
images. Goljan et al. [GFC14] have introduced efficient color image features which are an
extension of the Spatial Rich Model [FK12], produced from two different sets of features.
First of all, this method extracts the noise residual from each color channel separately.
Let us note that Xij is a pixel value of an 8-bit grayscale cover image. We can specify the
red, green and blue channel of color images by the following formula:

Rij = X̂ij(Nij)− c ·Xij, (8.1)

where:
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• c ∈ N, is the residual order,

• Nij, is a local neighborhood of pixel Xij

at coordinates (i, j),

• X̂ij( · ) is a predictor of c ·Xij , Xij 6∈ Nij,
Xij ∈ {0, ...., 255}.

Many diverse submodels built from the differences between neighboring pixels are combined
in the rich model, all of the submodels (Rij) ∈ Rn1×n2 are formed from noise residual
images of size n1× n2 computed using high pass filters of the following form:

Rij ← trancT

(
round

(
Rij

q

))
, (8.2)

where:

• Rij =

trancT (x) = x for x ∈ [−T, T ] ,
trancT (x) = T · sign(x) otherwise.

• q is the quantization step,

• round is a function for rounding
to an integer value.

The Spatio-Color Rich Model consists of two different components. On one hand, the
Spatial Rich Model (SRMQ1) [FK12] with a fixed quantization q = 1 and truncation
T = 2 yields a dimensionality of 12753 features. These features are computed from each
R, G and B color channel separately. Finally, the three dimensionality features are added
together to keep the same dimensionality as for grayscale images. On the other hand,
from the same noise residuals (i.e. SRMQ1), the CRMQ1 builds a collection of 3D
color co-occurrence matrices, taking three color values at the same position (across the
three channels of each pixel). Thus, with fixed truncation T = 3 and quantization q = 1,
CRMQ1 produces 5404 features per image.

8.6.1.2 CFA-aware features steganalysis

Digital cameras capture color images using a single sensor in conjunction with a Color
Filter Array (CFA) interpolation. The CFA allows us to capture only one part of the
spectrum though the sensor so that only one color is measured at each pixel (red, blue
or green) and so the resulting images are called mosaic images. To construct a color
image, a demosaicking algorithm is used in order to interpolate each color plane (i.e. CFA
interpolations). Several patterns exist for the color filter array, with the most common
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being Bayer CFA [Bay76]. During this process, the green color channel is the most
important factor which determines the luminance of the color image, 50% of the pixels in
the Bayer CFA structure are assigned to the green channel, while 25% are assigned to
the red channel and 25% to the blue color channel [WZH11].

Goljan et al. introduced in [GF15] the CFA-aware CRM for color image steganalysis. The
features are made from two parts, the first one is the Color Rich Model CRMQ1 explained
in section 8.6.1.1 with T ∈ {2, 3}. The second part is the CFA-aware feature, which
consists of three combinations: RB/GG split, R/B/GG split and NII/INI split.

Let us note, if X has a true-color image size of n1×n2, where n1 and n2 are even numbers,
(0 ≤ i < n1, 0 ≤ j < n2). Considering a typical Bayer mosaic, the G sub-image has twice
as many pixels as the R and B sub-images. We must mention that, all the color images
used in this method are cropped from one pixel position which is the upper left pixel
corresponding to a non-interpolated blue in the Bayer CFA. The color noise residuals
Z=(z(R)

ij , z(G)
ij , z(B)

ij ) is computed as Eq.8.1, corresponding to CFA used map. First of all,
the following four index sets must be generated:

XB = {(i, j)|i even, j even},
XG1 = {(i, j)|i odd, j even},
XG2 = {(i, j)|i even, j odd},
XR = {(i, j)|i odd, j odd}.

Four 3D co-occurrence matrices are computed from residual samples due to the above
index sets.

C
(B)
d1d2d3 =

∑
(i,j)∈XB

[
(z(R)
ij , z

(G)
ij , z

(B)
ij ) = (d1, d2, d3)

]
, (8.3)

C
(G1)
d1d2d3 =

∑
(i,j)∈XG1

[
(z(R)
ij , z

(G)
ij , z

(B)
ij ) = (d1, d2, d3)

]
, (8.4)

C
(G2)
d1d2d3 =

∑
(i,j)∈XG2

[
(z(R)
ij , z

(G)
ij , z

(B)
ij ) = (d1, d2, d3)

]
, (8.5)

C
(R)
d1d2d3 =

∑
(i,j)∈XR

[
(z(R)
ij , z

(G)
ij , z

(B)
ij ) = (d1, d2, d3)

]
. (8.6)

From the above four co-occurrence matrices, three combinations of features are generated
to form the total number of features with the CRMQ1 set:

The first combination is called RB/GGsplit which generates 4146 features. C(R)
d1d2d3 and

C
(B)
d1d2d3 are treated and added together, the same thing is applied to C(G1)

d1d2d3 and C(G2)
d1d2d3
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as in Eq.’s 8.5 and 8.6.

C
(RB)
d1d2d3 = C

(B)
d1d2d3 + C

(B)
d3d2d1 + C

(R)
d1d2d3 + C

(R)
d3d2d1 , (8.7)

C
(GG)
d1d2d3 = C

(G1)
d1d2d3 + C

(G1)
d3d2d1 + C

(G2)
d1d2d3 + C

(G2)
d3d2d1 . (8.8)

R/B/GG split represents the second set and produces 10323 features. This part can be
considered as an important component in this method, because it gives a considerable
number of features. It can be generated from the concatenation of C(R)

d1d2d3 , C
(B)
d1d2d3 , and

C
(G1)
d1d2d3 + C

(G2)
d1d2d3 .

The third set corresponds to the NII/INI split; ’N’ meaning non-interpolated and ’I’
interpolated respectively, in the RGB triple. The ’NII’ pixels correspond to the same set
as RB but the two co-occurrence matrices are directionally symmetrized differently. This
set generates 5514 features from two co-occurrence matrices:

C
(NII)
d1d2d3 = C

(B)
d3d2d1 + C

(R)
d1d2d3 , (8.9)

C
(INI)
d1d2d3 = C

(GG)
d1d2d3 . (8.10)

All these features are gathered in a one dimensional vector, while all detectors are trained as
binary classifiers implemented using Kodovsky ensemble classifiers [KFH12a], as explained
in the following Section 8.6.2.

8.6.2 The ensemble classifiers

An ensemble of classifiers [Die00] is a set of classifiers whose individual decisions are
combined and organized into weighted or unweighted votes to classify the data sets (in
this work, features represent these data sets, as detailed in the previous sub-section).
Modern steganalysis methods for digital images are based on feature extraction. These
methods need machine learning techniques to detect if the media contains hidden messages
or not. In our work, we choose ensemble classifiers [KFH12a] because of their efficient
classification performance for large scale learning.

Kodovsky et al. [KFH12a] proposed ensemble classifiersiv which is a machine learning tool
for steganalysis, consisting of many classifier L independently trained (Bl) designed to
keep complexity to a minimum and make the overall process simple.

Each base learner is trained on randomly selected subspaces dsub-dimensionals of the
original feature space, from the entire full d-dimension feature space. The authors use
Ficher Linear Discriminants (FLD) as base learners and the final decision is made by
ivEnsemble classifier is available at http://dde.binghamton.edu/download/ensemble.

http://dde.binghamton.edu/download/ensemble
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aggregating the decision of individual base learners. Let d be a full dimensional feature
space, N trn and N tst the number of training and testing samples from each class. First,
the classifiers construct a number L of FLD base learners (Bl) with l ∈ {1, ..., L}. Each
one performs its learning on a subspace of dsub dimension, where dsub << d. From the
ith image, a feature vector, fi ∈ Rd, is extracted, and then mapped, such as Rd → {0, 1},
where ′0′ stands for cover and ′1′ for stego.

In the learning phase, each classifier learns to map a feature vector fi, to the correct class
number:

FLDl : Rd →{0, 1}
fi →FLDl (fi) .

Each classifier uses the training database to compute the orthogonal vector to the hy-
perplane separating the two classes. For a test feature, the lth base learner reaches its
decision by computing a projection and comparing it to a threshold. After collecting all L
decisions, the final classifier selects the class which has received the most votes. Then, the
decision threshold of each base learner is adjusted to minimize the total detection error
under an equal prior on the training data [KFH12a]:

PE = minP
FA

1
2 [PFA + PMD (PFA)] , (8.11)

where PFA represents the false alarm probability and PMD the missed detection probabil-
ity.

8.7 Summary

In this chapter, we presented the different concepts of steganography, wherein we give an
overview of the steganography and steganalysis methods. Also, the history of steganography
and steganalysis through these ages are presented. The important difference points
between the three highly linked disciplines: cryptography, watermarking and steganography
techniques. Each technique is different from the other one and are used depending on
the purpose. A review of each technique has been given. In reality, the steganography
can be used for legal and illegal purpose, but in recently it has received a great attention
from national security seasons. Throughout the history, there has always been an urgent
need to use of some steganography. Image steganography is the concept of embedding
a message into digital image content and doing that a manner that it is difficult for an
adversary to detect and at the same time difficult for an adversary to remove too. The
security of any digital image steganography method depends on the selection of an image
pixels for embedding. More deeply, image pixels in textured and edge area are best choice
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for embedding secret data, because they are more difficult to detect by the steganalysis
methods. There exist several image steganography techniques to hidden data securely. We
can classified into two main categories: based on using the key and based on embedding
domain. We describes the latest recent methods in color image steganalysis by recalling
the color rich model method (CRM) [GFC14], the features are computed from each R, G
and B color channel separately. and CFA-aware features steganalysis (CFARM) [GF15].
The features are made from two parts, the first one is the Color Rich Model CRMQ1
explained in section 8.6.1.1 with T ∈ {2, 3}. The second part is the CFA-aware feature,
which consists of three combinations: RB/GG split, R/B/GG split and NII/INI split.
Finally, modern steganalysis methods for digital images are based on feature extraction.
These methods need machine learning techniques to detect if the media contains hidden
messages or not. In our work, we choose ensemble classifiers [KFH12a] because of their
efficient classification performance for large scale learning.





9
Color Channel Correlation and

Geometric Steganalysis
This chapter describes our steganalysis method for color images by extracting features using
color channel correlation and geometric mirror transformations.
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9.1 Introduction

Digital color images have became a good medium for digital steganography due to their
easy manipulation as carriers via Internet, e-mails, or used on websites. As a result, there
are many techniques and methods that are currently used in the field of steganography and
steganalysis [RO13]. Although, the real-world uses significantly more color images than
grayscale images, there is a lot of research in steganalysis of grayscale images compared to
color images [FL00a]. The main goal of steganalysis is to detect the presence of hidden
messages in a digital media. For this reason, a new method for color image steganalysis
using RGB color channels correlation is proposed and discussed in this chapter.

Our method uses two types of features computed between color image channels. The
first type of feature reflects local Euclidean transformations [ACMM15] and the second
one reflects mirror transformations [ACMM16b]. These geometric measures are obtained
by the sine and cosine of gradient angles between all the color channels. Features are
extracted from co-occurrence correlation matrices of measures. Fusing our features with
those obtained from Color-Rich Models [GFC14] allows increasing the detectability of
hidden messages in the color images.

9.2 Methodology description

Our proposition is to enrich the Spatial Color Rich Model SCRMQ1 with an inter-channel
correlation which is composed of three sets of features. The first set, produced by [GFC14],
gives 18157 features. The second set, produced by our first method [ACMM15], gives 3000
features. Additionally, the third set, produced by a second method, gives 3000 features;
they are obtained from the new correlation of different R,G and B channel gradients, as
shown in Table 9.1.

Table 9.1: Features description with their dimmensionalities corresponding to q and T .

Feature set SCRMQ1 C
RG
/C

RB
S
RG
/S

RB

Dim. Symmetry yes yes yes
Dimension 18157 3000 3000

The following section recalls the RGB Channel Correlations which gives an explanation to
our proposition.
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9.2.1 RGB Channel Correlation

In this section, we introduce an inter-channel correlation measure, and demonstrate that
it can be linked to first order Euclidean invariants [Hil93]. Such invariants have mainly
been used for stereo-matching [GMP98]. In our method, we show that the information
provided can enhance steganography detection. The underlying idea here, is that if one
channel has been affected by steganography, the inter channel correlation will measure
the local modifications. As a result, we can easily detect the modification in the color
image.

Starting from the local correlation of red and green channels (similarly for the correlation
of red and blue channels)is defined as:

Corr
R,G

(i, j, k, l) =
∑

(i′,j′)∈Wi,j

X
(R)

i′,j′ ·X
(G)

k+i′,l+j′ (9.1)

with:

• X (R)
i′,j′ ∈ [0, 255], being a pixel value at position (i′, j′) in the red channel,

• X (G)
k,l ∈ [0, 255], being a pixel value at position (k, l) in the green channel,

• Wi,j, representing a small window centered in (i, j).

Considering (k, l) = (0, 0) and a limited development of X (R) and X
(G) around (i, j),

then:

Corr
R,G

(i, j, 0, 0) =∑
h = (i′−i, j′−j)

(i′, j′) ∈ Wi,j

(
X

(R)

i,j +∇X (R)

i,j ·h
) (
X

(G)

i,j +∇X (G)

i,j ·h
)
. (9.2)

Developing this equation leads to four terms, three of them are constant or not informative,
then there is only one informative term :

∇X (R)

i,j · ∇X
(G)

i,j . (9.3)

If only one channel has been altered locally, the gradient in this channel is modified.
Consequently, the scalar product of two channel gradients reflects the change in the cosine
of the difference between the two gradient angles.

Similarly, we can apply the same computation for the red and blue channel and then
obtain :
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∇X (R)

i,j · ∇X
(B)

i,j . (9.4)

As stated by Gouet et al. [GMP98] (and following the Hilbert theory [Hil93]), it is
unnecessary to investigate the ∇X (G)

i,j · ∇X
(B)
i,j term, as it is already implicitly contained in

the first two expressions (Eq. 9.3 and 9.4).

Normalizing these expressions, we obtain the cosine of rotation angles, between channel
gradients:

C
RG

=
∇X (R)

i,j · ∇X
(G)
i,j

|∇X (R)
i,j | |∇X

(G)
i,j |

, (9.5)

C
RB

=
∇X (R)

i,j · ∇X
(B)
i,j

|∇X (R)
i,j | |∇X

(B)
i,j |

. (9.6)

Fig. 9.1 illustrates our preprocessing steps [ACMM15] to obtain the cosine of rotation
angles, between channel gradient. We recall that the gradients derivatives of each channel
are estimated by a convolution with a [-1; 1] mask (horizontal and vertical).

9.2.2 Mirror transformations

In the preceding section, we have seen that the inter-channel correlation is linked with the
scalar product of gradients (i.e. Euclidean invariants). This means that if we are able to
measure the absolute value of a rotation angle between two channel gradients, we still

Cover / Stego 

Red channel

Green channel

Blue channel

Figure 9.1: Features extraction: Cosine of the gradient angles [ACMM15].
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need the direction of the rotation, which is linked this time to Mirror transformations (as
illustrated in Fig. 9.2).

Figure 9.2: Rotation angle between two channel gradients
cos(α1) = cos(α2) but sin(α1) = − sin(α2)
cos(θ1) = cos(θ2) but sin(θ1) = − sin(θ2).
Sine is essential to determine the direction of the rotation.

Our proposition is to add two new features sets based on the determinants of channel
gradients. Similar to that applied in previous subsection, the features are directly linked
to the correlation in order to obtain new features of Sine of the gradients angle. Finally,
as illustrated in Fig. 9.3, we normalize these determinants by gradient norms to obtain
the sine of the rotations:

S
RG

=
∇X (R)

i,j [0] · ∇X (G)
i,j [1]−∇X (R)

i,j [1] · ∇X (G)
i,j [0]

|∇X (R)
i,j | |∇X

(G)
i,j |

, (9.7)

S
RB

=
∇X (R)

i,j [0] · ∇X (B)
i,j [1]−∇X (R)

i,j [1] · ∇X (B)
i,j [0]

|∇X (R)
i,j | |∇X

(B)
i,j |

, (9.8)

Where ∇X[0] (resp. ∇X[1]) is the first (resp. second) component of the vector ∇X i.e.
corresponding to the horizontal and the vertical derivatives (see Fig. 9.3).

9.2.3 Complete feature set

Our features, are computed from C
RG

, C
RB

, S
RG

and S
RB

correlations by computing the
co-occurrence matrices as in the Rich Model [FK12]. We used different values of the
quantization q ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1} with fixed truncation T=1. The reason for using
these different values of quantization q is that G

RG
, G

RB
, S

RG
and S

RB
belong to [−1, 1].

Moreover, the use of these values gives more accurate features and avoids the generation
of too many zero values caused by the truncation step in the co-occurrence vector. For
each quantization, we obtain 12 submodels from methods 1 [ACMM15] and 12 submodels
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Cover/ Stego
_

_Red channel

Green channel

Blue channel

Figure 9.3: Features of extraction: Sine of the gradients angles extracting information from
the direction of the local rotation.

from the new proposed method 2 i The submodels from the Color Rich Models [GFC14]
give 18157 features, those of the method 1 [ACMM15] give 3000 features, and those of
our proposed method 2 give 3000 features. Accordingly, the final feature vector collects a
final set of 24157 features as shown in Table 9.1.

9.3 Building Image Dataset

A raw image is a class of computer file containing untouched pixel information coming
from the digital camera sensor (i.e. the pure information). These files hold a large amount
of meta-information about the image generated by the camera [YS11].

In our work, the color image database is very carefully built depending on the CFA idea.
We collected raw images from two subsets which are the most standard, and have the
highest number of images captured (i.e. the Dresden Image Database’s [GB10] 3500
full-resolution Nikon digital camera raw color images and the Break Our Steganographic
System (BOSSbaseii), with 1000 Canon digital camera raw color images).

In order to obtain color images in Portable Pixel Map (PPM) format of size 512×512,
all images take the same CFA map layout, as illustrated in Fig.9.5. For this process, two
steps are required. The first step consists of using a demosaicking algorithm to convert
raw images into demosaicked images. The second step consists of cropping five areas from
one image. Fig. 9.4 shows sample images produced by the cropping step.

i For method 1 (resp. method 2) we use one symmetrized spam14h and one spam14v submodel, with
25 features each. We also use the minmax22h, minmax22v, minmax24, minmax34h, minmax34v,
minmax41, minmax34, minmax48h, minmax48v, and minmax54 submodels with 45 features for each.
All submodels are gathered in a one dimension vector to erect a dimensionality of (2×25+10×45)×6 =
3000 features. For more details on submodels construction, the reader is invited to look at article
[FK12].

iiBOSSbase can be accessed at http://www.agents.cz/boss/BOSSFinal.

http://www.agents.cz/boss/BOSSFinal
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a) Original Raw image b) Crop 1 c) Crop 2

d) Crop 3 e) Crop 4 f) Crop 5

Figure 9.4: Sample images of our database built by random cropping from locations of red
channel pixels (even position) in
a Bayer pattern :

a) Original raw image 3906×2602, b)] crop 1 position x=2116, y=1928,

c) crop 2 position x=902, y=1182, d)] crop 3 position x=3080, y=436,

e) crop 4 position x=1866, y=1778, f)] crop 5 position x=650, y=1032.

First we used the demosaicking algorithm Patterned Pixel Grouping (PPG) from the
dcraw softwareiii to convert raw images into RGB images. As illustrated in Fig.9.5, the
obtained images are such that the Bayer Pattern is always of the type RGBG (red channel
pixel is placed at an even position). We wrote a spatial code to start the crop from the
red channel position. Indeed, from one image, this code randomly selected the red channel
position and cropped five images using a size of 512×512 pixels, so that all blocks share
the same CFA map layout. The final number of images is 10000 RGB color images with
a size of 512×512.

dcraw 
code

Raw
image Raw image

database 

CFA Bayer
pattern

O
u

r 
cr

op
 c

od
e } PPM  

color 
image 

database

Figure 9.5: The preprocessing steps for building our database depending on the CFA idea.

iiidcraw code is available at http://www.cybercom.net/defin/dcraw.

http://www.cybercom.net/defin/dcraw
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9.4 Experimental results

All our features are calculated and formed in a one dimensional vector from 10000 color
covers and 10000 color stego images for each payload of steganography methods. These
features are ready to enter in the classifier. The classifiers were implemented using the
ensemble classifier [KFH12a] with many FLD as a base learner as discussed in Chapter
8, Section 8.6.2. In this experiment, the detection accuracy is measured by the total
probability of the average of testing errors under equal priors as in Eq. 8.11. 5000 images
from a database are randomly chosen for the training sets and 5000 for the testing sets.
The ensemble classifiers apply a vote to estimate the error of detection. This process is
repeated 10 times to obtain P̄E, the average of testing errors. P̄E quantify the detectability
and are collected for each method and payload to evaluate the steganalysis method. Given
the decision values, ROC curves are obtained. As illustrated in Fig. 9.7, the area under
the ROC curves is calculated as the accuracy of the ensemble classifiers.

9.4.1 Embedding methods

The stego images are obtained using three spatial-domain steganography algorithms.
The first method is the Spatial-UNIversal WAvelet Relative Distortion (S-UNIWARDiv)
steganography algorithm [HFD14a]. The second method is the Wavelet Obtained Weights
(WOWv) steganography algorithm [HF12a]. Finally, the third method is the Synchronizing
the Selection Channel (Synch-HILLvi) steganography algorithm [DF15].

These algorithms are used to embed messages into color images by decomposing the R,G
and B channels as three grayscale images and embedding the same proportion payload into
each channel. Also, different tested payload sizes are used {0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5}
Bit Per Channel (BPC).

ivS-UNIWARD steganography method is available at http://dde.binghamton.edu/download/stego_
algorithms/.

vWOW steganography method is available at http://dde.binghamton.edu/download/stego_
algorithms/.

viSynch-HILL steganography method is available at http://dde.binghamton.edu/download/stego_
algorithms/.

http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
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9.4.2 Results and Discussion

This section contains the experimental results of our proposed method. We illustrate these
results in Table 9.2. S-UNIWARD, WOW and Synch-HILL methods were tested with
different relative payloads {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} (bpc) against three approaches:
method 1 [ACMM15], the Color Rich Model [GFC14] and the CFA-aware features ste-
ganalysis [GF15]. We used the same set of payload values with the same embedding
methods. Our proposed second method, that uses both the sine and cosine of the gradients
angle, achieved higher performance by registering 88.76%, 87.93% and 88.07% detection
rates for S-UNIWARD, WOW and Synch-HILL respectively (with the payload 0.5 bpc).
The Color Rich Model method [GFC14] is less efficient because it achieved respectively
86.14%, 85.27% and 85.25% detection. Also, the CFA-aware features method [GF15] is
less efficient because it achieved respectively 87.61%, 87.04% and 87.42% detection rates.
Close to the CFA-aware features method, our method 1 [ACMM15] is less efficient because
it achieved respectively 87.54%, 86.63% and 86.77% detection rates. We noted the same
trend with the rest of the payload values, as shown in Table 9.2.

Additionally, as shown in Table 9.2, our method 1 [ACMM15], that use the cosine of the
gradients angle, achieved higher performance than Color Rich Model method [GFC14];
by registering 87.54%, 86.63% and 86.77% detection rates for S-UNIWARD, WOW and
synch-HILL respectively with the payload 0.5 bpc. For the same payloads range, the
Color Rich Model method [GFC14] is less efficient because it achieved respectively 86.14%,
85.27% and 85.25% detection rates on the same test samples. Also, as shown in Table
9.2, our proposed second method, that uses the sine and cosine of the gradients angle,
achieved higher performance than CFA-aware features steganalysis method [GF15]; by
registering 88.76%, 87.93% and 88.07% detection rates for S-UNIWARD, WOW and
synch-HILL respectively with the payload 0.5 bpc. The CFA-aware features steganalysis
method [GF15] is less efficient because it achieved respectively 87.61%, 87.04% and 87.42%
detection rates on the same test samples.

Moreover, curves in Fig.9.6 (a) S-UNIWARD, (b) WOW and (c) synch-HILL steganography
methods, illustrate the comparison between the proposed second method and the compared
methods. As a result, the average testing error of the proposed second method is less than
the first proposition, the Color Rich Model and CFA-aware features method. That proves
the importance of the additional 3000 features proposed by the second method.

Another experiment involved embedding the entire payload in only one channel of the
color image, i.e. with payload 0.2 bpc and 0.4 bpc in the green channel only. In this case,
the detection rate becomes higher than the same payload distributed equally between
the three color channels. Table 9.3 illustrates the comparison of detection rates between
the S-UNIWARD, WOW and synch-HILL methods with payloads 0.2 bpc and 0.4 bpc
embedded in one channel only and in the three channels separately. Fig. 9.7 (a), (b) and
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Table 9.2: Numerical values of the average testing error P̄E and the detection rate PD% for
three steganography methods. For easier navigation the dark gray background column presents
our first method [ACMM15] and the light gray background column presents the our second
proposed method [ACMM16b].

Color Rich CFA-Aware Method 1 Method 2

payload P̄E PD% P̄E PD% P̄E PD% P̄E PD%

S-UNIWARD
0.01 0.4841 51.59 0.4863 51.37 0.4830 51.70 0.4680 53.20
0.05 0.4045 59.55 0.4072 59.28 0.4010 59.90 0.3859 61.41
0.1 0.3298 67.02 0.3194 68.06 0.3203 67.97 0.3037 69.63
0.2 0.2498 75.02 0.2317 76.83 0.2370 76.30 0.2191 78.09
0.3 0.1947 80.53 0.1806 81.94 0.1808 81.92 0.1623 83.77
0.4 0.1599 84.01 0.1429 85.71 0.1470 85.30 0.1289 87.11
0.5 0.1386 86.14 0.1239 87.61 0.1246 87.54 0.1124 88.76

WOW
0.01 0.4850 51.50 0.4875 51.25 0.4836 51.64 0.4753 52.47
0.05 0.4092 59.08 0.4174 58.26 0.4042 59.58 0.3906 60.94
0.1 0.3397 66.03 0.3275 67.25 0.3317 66.83 0.3161 68.39
0.2 0.2654 73.46 0.2440 75.60 0.2502 74.98 0.2381 76.19
0.3 0.2081 79.19 0.1895 81.05 0.1918 80.82 0.1793 82.07
0.4 0.1783 82.17 0.1487 85.13 0.1574 84.26 0.1384 86.16
0.5 0.1473 85.27 0.1296 87.04 0.1307 86.63 0.1207 87.93

Synch-HILL
0.01 0.4893 51.07 0.4843 51.57 0.4814 51.83 0.4687 53.13
0.05 0.3991 60.09 0.4030 59.70 0.3879 61.21 0.3720 62.80
0.1 0.3311 66.89 0.3189 68.11 0.3258 67.42 0.3086 69.14
0.2 0.2595 74.05 0.2394 76.06 0.2438 75.62 0.2269 77.31
0.3 0.1997 80.03 0.1753 82.47 0.1829 81.71 0.1607 83.93
0.4 0.1684 83.16 0.1478 85.22 0.1540 84.60 0.1311 86.89
0.5 0.1475 85.25 0.1258 87.42 0.1323 86.77 0.1193 88.07

Table 9.3: Our proposed method 2 detection rate of S-UNIWARD, WOW and Synch-HILL
steganography methods at 0.2 bpc and 0.4 bpc payload embedding in the green channel compares
with equal embedding in three channels.

S-UNIWARD WOW Synch-HILL
Payload G% RGB% G% RGB% G% RGB%

0.2 90.02 78.09 88.51 76.19 89.23 77.31
0.4 96.77 87.11 94.83 86.16 94.87 86.89

(c) show the ROC curves, illustrating the performance of our method 2. Finally, this
experiment revealed that it is easier to detect a hidden message in only one channel than
a message that is spread across all channels.
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Figure 9.6: Avarage testing error P̄E as a function of the payload for (a) S-UNIWARD,(b)
WOW and (c) WOW steganography methods, comparison between the steganalysis methods
(Color Rich Model, CFA-aware features steganalysis, our method 1 [ACMM15] and our method
2 [ACMM16b]).
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Figure 9.7: ROC curves using our proposed method 2 feature set, for (a) S-UNIWARD, (b)
WOW and (c) Synch-HILL steganography methods for payloads 0.2 bpc (up) and 0.4 bpc (down),
to compare the detectability when embedding messages in only one channel with embedding
messages spread in all channels.
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9.5 Summary

In this chapter, we have explained two new color image steganalysis methods the first
method is based on color channel correlation and the second method is based on RGB
channel geometric transformation measures. Starting from the Color Rich Model proposed
by Goljan et al. [GFC14], we have shown that this method could be greatly enhanced by
considering local deformation between channels. We have proposed to add to the Color
Rich Model a new set of features based on local Euclidean and mirror transformation.
The euclidean transformation, proposed by Abdulrahman et al. [ACMM15], is estimated
by a first set of features derived from correlations between the gradients of red, green and
blue channels. Since these features give the cosine of angles between gradients, we still
do not know the direction of the rotation between two channel gradients. Then, we have
shown that by taking into account mirror transformations, we can obtain the missing
information of the direction of the local rotation. According to this analysis, we add a
new set of features based on the sine of local rotation angles. These two sets of features
are then incorporated in the Rich Model using co-occurrence matrices in order to obtain
6000 features. The first and second set gives 3000 features each [ACMM15]. The total
feature set is formed from the Color Rich Model, plus the two new sets demonstrated in
this work, in order to build a vector of a total of 24157 features. We used a quantization
step with a set of values that differs from the Color Rich Models. All feature vectors
are fed to the ensemble classifier. This methodology forms one of our contribution and
resulted in the Journal publication [ACMM16b]. The ensemble classifier is used to detect
the presence of hidden messages. Eventually, multiple steganalysis comparisons have
been achieved between the proposed method and the initial Color Rich Model [GFC14]
and CFA-aware features steganalysis method [GF15]. We have used three steganography
methods ( S-UNIWARD, WOW and Synch-HILL ) with seven different payloads. All
the experiments show that our new method outperforms the Color Rich Model and the
CFA-aware feature steganalysis. Furthermore, in 2016 Tang et al. [TLLH16] has shown
that our proposed methods [ACMM15] was the must reliable method in every case, even
when the algorithm was embedding adaptively with a synchronization of the embedding
between the color channels. Fig. 9.8 shown that our approach [ACMM15] can better

 

Figure 9.8: This table obtained from [TLLH16] shown that our approach SCCRM [ACMM15]
can better detect the synchronize inter-channel steganography than Color Rich Model CRM
steganalysis method [GFC14].
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detect the synchronize inter-channel than Color Rich Model method [GFC14]. We also
see that the BOSS-NN base is the hardest to detect than the (BOSS, demosaicking with
Photoshop CS6, down-sampling with Nearest Neighbours).





10
Steganalysis Based on Steerable

Gaussian Filter
This chapter description the proposed method digital image steganalysis based on steerable
Gaussian filter.
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10.1 Introduction

Three color image steganalysis methods, based on a machine learning approach fed with
rich model features are now well established. For these three methods, the machine learning
algorithm is the Ensemble Classifier [KFH12b], and the rich features are: the Spatial
Color Rich Model abbreviated to CRM [GFC14], the CFA-aware Rich Model abbreviated
to CFARM [GF15], and the RGB Geometric Color Rich Model abbreviated to GCRM
(RGB for the Red, Green and Blue channels) [ACMM16b]. Note that among these three
features, the GCRM which is an extension of the CCRM (Correlation Color Rich Model
[ACMM15]) seems to be the equivalent or better than the CRM and CFARM when recent
adaptive grey-level embedding algorithms are used for embedding independently in each
color channel. Additionally, note that a recent independent study has shown that CCRM
was the most reliable method in every case, even when the algorithm was embedding
adaptively with a synchronization of the embedding between the color channels [TLLH16].
At the beginning of 2016, GCRM is the natural choice for computing features that will
be used for a color steganalysis (machine learning approach) for modern color embedding
algorithms. Our method [ACMM16a] deals with color images steganalysis based on
machine learning. The proposed approach enriches the features from the Color Rich Model
by adding new features obtained by applying steerable Gaussian filters and then computing
the co-occurrence of pixel pairs. Adding these new features to those obtained from Color
Rich Models allows us to increase the detectability of hidden messages in color images.
The Gaussian filters are angled in different directions to precisely compute the tangent
of the gradient vector. Then, the gradient magnitude and the derivative of this tangent
direction are estimated. This refined method of estimation enables us to unearth the minor
changes that have occurred in the image when a message is embedded. The efficiency of
the proposed framework is demonstrated on three stenographic algorithms designed to
hide messages in images: S-UNIWARD, WOW, and Synch-HILL. Each algorithm is tested
using different payload sizes. The proposed approach is compared to three color image
steganalysis methods based on computation features and Ensemble Classifier classification:
the Spatial Color Rich Model, the CFA-aware Rich Model and the RGB Geometric Color
Rich Model.

10.2 Methodology description

In order to be less visible, most of the steganographic methods modify the pixel values
in the texture/edge areas [PFB10, HFD14b, LWHL14]. . . Our method is to enrich the
CRM method by introducing new sets of features obtained by applying steerable Gaussian
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filters and then computing the co-occurrence of pixel pairs in eight different directions.
The proposed features are composed of two distinctive sets. The first set, produced by
Goljan et al. [GFC14], is made of 18, 157 features. The second derivatives is made of 4406
features. In the first step, we computed a tangent vector of contour for each pixel and for
each channel. This tangent vector corresponds to the edge direction and is orthogonal to
the gradient magnitude image of each channel (R, G, B) ; it gives 2808 features. Then, in
the second step, the co-occurrence matrices are computed, firstly, on the three gradient
magnitude images and afterwards, on the three derivative images related to the tangent
vectors for each channel (R, G, B); it gives 1598 features. The co-occurences matrices
are computed with triplets which means that co-occurences have (2×T+1)3 bins. Four
matrices are computed ( horizontal right, and left, and vertical right, and left) and then
summed. and four others matrices are computed (horizontal right, and left, and vertical
right and left) and then summed. The two matrices are then concatenated in a feature
vector. For each T values (except for the derivative image with T=3), the feature vectors
of each channel are concatenated.

• For the gradient magnitude, T ∈ {2, 3}. This leads to a dimension = 3×(2 ×53) +
3×(2×73) = 3×250 + 3×686 = 2808 features,

• For the derivative image, T is equal to 1, 2 or 3. This leads to a dimension =
3×(2×33) + 3×(2×53) + (2×73) = 3×54+3×250+686 = 1598 features.

• Note that for T=3, we sum the three co-occurrences matrices ( R, G, B) channels
instead of concatenate them (indeed, otherwise, bins values are too small for T=3).

This method is published in ACM Workshop on Information Hiding and Multimedia
Security (IHMMSEC) 2016 [ACMM16b].

10.2.1 Steerable Gaussian filters

Due to multiple orientations, a filter bank allows us to better detect image features such
as edges. One of the most popular filter banks is the steerable filters. As a solution
to the above stated problem, Freeman and Adelson [FA91] introduced an elegant way
for steerable filters that can be directed at specific angles using a linear combination of
isotropic filters like Gaussian derivatives as discussed in the Section 3.5.1.

Let us note the basic derivatives of Gaussian filters ∂Gσ/∂x and ∂Gσ/∂y along the x-axis
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Figure 10.1: Features extraction: the image derivatives are extracted at orientation (θm +
90◦) [180◦] in each channel separately to compute a gradient and to estimate precise edges
directions.

and y-axis respectively, for example:
∂Gσ(x, y)

∂x
= −x

2πσ4 · e
−
x2 + y2

2σ2

∂Gσ(x, y)
∂y

= −y
2πσ4 · e

−
x2 + y2

2σ2 ,

(10.1)

with σ the standard-deviation of the Gaussian filter.

Freeman and Adelson have shown that the first order directional Gaussian derivative
Gσ,θ at an angle θ can be generated by a linear combination of a rotation of the basic
derivatives of isotropic Gaussian filters illustrated in Fig. 10.1:

Gσ,θ(x, y, σ) = cos(θ) · ∂Gσ
∂x

(x, y) + sin(θ) · ∂Gσ
∂y

(x, y). (10.2)

The image derivative Iσ,θ is obtained by convolving the original grayscale image I with
the oriented Gaussian kernels Gσ,θ:

Iσ,θ(x,y) = (I ∗ Gσ,θ) (x, y). (10.3)

Finally, the gradient magnitude ‖∇I(x, y)‖ is calculated as the maximum absolute value
response to the oriented operator Gσ,θ:

‖∇I(x, y)‖ = max
θ∈[0,180[

(|Iσ,θ(x, y)|), (10.4)

θm = argmax
θ∈[0,180[

(|Iσ,θ(x, y)|) . (10.5)
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Note that θm, represents the kernel angle and it differs from the gradient angle which is
equal to (θm + 90◦) [180◦].

In this work, the Gaussian filters are angled in different directions to compute the
more precise gradient magnitude ‖∇I‖ and its associated kernel angle θm. Thus, ‖∇I‖
corresponds to the absolute value of the image derivative for the kernel angled at θm, as
illustrated in Fig. 10.2. Note that ‖∇I‖ and θm are different for each pixel of I. These
techniques are applied to the three color channels R, G and B to obtain three gradient
magnitude images ‖∇R‖, ‖∇G‖ and ‖∇B‖ (see Fig. 10.1)). As pointed out previously,
the steganographic methods essentially modifies the pixel values in the textures and edge
areas. For the edge areas, the embedding modifications have to be detected along the
"isophote" lines i.e. along the curves of constant intensity when considering an image
as a surface. This led us to consider the orthogonal vector to the gradient named the
tangent vector, instead of the gradient; this means that the derivative along the edge must
be computed. This derivative corresponds to the result of the convolution of the image
with the steerable kernel angled at (θm + 90◦) [180◦] and is orthogonal to the kernel used
for the gradient estimation (as illustrated in Fig. 10.3). The derivative image is named
Iσ,(θm+90)[180◦].

y

xO
Image coordinates

Figure 10.2: θm and η directions.

For a color image, each channel is considered separately. The tangent derivativesi, as
illustrated in Fig. 10.1, are respectively computed for each pixel at position (x, y) of each
channel and named: Rσ,(θm+90)[180◦](x, y) for the red , Gσ,(θm+90)[180◦](x, y) for the green, and
Bσ,(θm+90)[180◦](x, y) for the blue channel. Fig. 10.1 shows an example of steerable Gaussian
filters used to compute these new features. In this method, the Gaussian filters are angled
in different directions to compute a precise gradient and a precise derivative along isophote
lines. In order to detect the slight changes in the images, our experiments (see Section
10.3.1) leads to a σ = 0.7, with a filter support for the size 3×3 pixels, a rotation step for
the filters bank ∆θ = 10◦, and a rotation range such as θ ∈ {0◦, ..., 180◦ −∆θ} (it leads
to 18 filter orientations as represented in Fig. 3.7).

iAs these three images are derivatives, pixel values can be positives or negatives.
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Figure 10.3: Positions of the steerable filters at the level of the edges to build the gradient
image ‖∇I‖ and image derivative Iσ,(θm+90)[180◦](x, y).

10.2.2 Complete feature set

As explained in Fig.10.1, Eq.10.4 and detailed above, the co-occurrence matrices are
completed from the three gradient magnitude images and also the three derivative images
using their edge directions: ‖∇R‖, ‖∇G‖, ‖∇B‖,

Rσ,(θm+90)[180◦], Gσ,(θm+90)[180◦], Bσ,(θm+90)[180◦].

Before we make the co-occurrence computation, different truncations are applied. For
the gradient magnitude images, the truncation T ∈ {2, 3}, and for the derivative images,
T ∈ {1, 2, 3}. Thus this leads to 2 triplets of quantized-truncated gradient magnitude
images, and 3 triplets of quantized-truncated derivative images. Then, the pairs co-
occurrence matrices are computed, like the Subtractive Pixel Adjacency Model (SPAM)
[PBF10], with eight directions for the scan images. These direction feature subsets are
as follows: F→h , F←h , F ↑v , F ↓v , F

↗
d , F↙d , F↖md and F↘md. 2808 features are created by the

gradient magnitude and 1598 by the derivative images. All features are gathered in to
a one dimension vector to erect a dimensionality of 4406 features. As a final set for the
proposed method, 22, 563 features are obtained, by concatenating these features with
those obtained from CRM [GFC14].

10.3 Experimental results

All the experiments were carried out on 10, 000 color images of size 512×512. All detectors
were trained as binary classifiers implemented using the ensemble classifierii [KFH12b]
with default settings.

iiThe Ensemble classifier is available at http://dde.binghamton.edu/download/ensemble.

http://dde.binghamton.edu/download/ensemble
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Three spatial domain steganography algorithms are used to produce stego images:
• Spatial UNIversal WAvelet Relative Distortion
(S-UNIWARDiii) [HFD14b],
• Wavelet Obtained Weights (WOWiv) [HF12b],
• Synchronizing Selection Channel (Synch-HILLv) [DF15].
As explained in [MBL+09], the steganography methods have an important impact on the
performance of the general methodology. These algorithms are used to embed messages
into color images by decomposing the R, G and B channels like three gray-scale images
and embedding the same proportion payload into each channel. Finally, 10, 000 color
images were used to test each of the seven different payload sizes: {0.01, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5} Bit Per Channel (BPC).

10.3.1 Performance of our proposed method

To evaluate the performance of the proposed method, all steganalyzers were implemented
as binary classifiers using the ensemble classifier [KFH12b]. In this method, the detection
accuracy is measured by using the average of testing errors under equal priors: P̄E =
minP

FA

1
2 [PFA + PMD (PFA)], where, PFA represents the false alarm probability and PMD

the missed detection probability. 5000 cover images are randomly chosen from the database
iiiThe Matlab version of S-UNIWARD is available at http://dde.binghamton.edu/download/stego_

algorithms.
ivThe Matlab version of WOW is available at http://dde.binghamton.edu/download/stego_

algorithms.
vThe Matlab version of Synch-HILL is available at http://dde.binghamton.edu/download/stego_

algorithms.

Table 10.1: The probability of error P̄E to determine the efficient standard deviation (σ)
and angle step (∆θ) employed for steerable Gaussian filters using S-UNIWARD steganography
method payload 0.3 bpc.

∆θ σ Mask size P̄E Detection rate
10◦ 0.7 3×3 0.1559 ± 0.0022 84.41 %
10◦ 1 5×5 0.1896 ± 0.0031 81.04 %
10◦ 2 10×10 0.2028 ± 0.0037 79.72 %
10◦ 3 15×15 0.2539 ± 0.0036 76.41 %
5◦ 0.7 3×3 0.1768 ± 0.0026 82.32 %
10◦ 0.7 3×3 0.1559 ± 0.0022 84.41 %
15◦ 0.7 3×3 0.1602 ± 0.0026 83.98 %
20◦ 0.7 3×3 0.1653 ± 0.0019 83.47 %
30◦ 0.7 3×3 0.1854 ± 0.0027 81.46 %
45◦ 0.7 3×3 0.1893 ± 0.0012 81.07 %
90◦ 0.7 3×3 0.1996 ± 0.0031 80.04 %

http://dde.binghamton.edu/download/stego_algorithms
http://dde.binghamton.edu/download/stego_algorithms
http://dde.binghamton.edu/download/stego_algorithms
http://dde.binghamton.edu/download/stego_algorithms
http://dde.binghamton.edu/download/stego_algorithms
http://dde.binghamton.edu/download/stego_algorithms
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Table 10.2: Error probability P̄E and the detection rate PD% for four steganalysis methods.

Steganography Payload Proposed 22,563 Dim CRM 18,157 Dim CFARM 27,460 Dim GCRM 24,157 Dim

Method (bpc) Method P̄E PD% P̄E PD% P̄E PD% P̄E PD%
0.01 0.4664 53.36 0.4841 51.59 0.4863 51.37 0.4680 53.20
0.05 0.3835 61.65 0.4045 59.55 0.4072 59.28 0.3859 61.41
0.1 0.2984 70.16 0.3298 67.02 0.3194 68.06 0.3037 69.63

S-UNIWARD 0.2 0.2164 78.36 0.2498 75.02 0.2317 67.83 0.2191 78.09
0.3 0.1559 84.41 0.1947 80.53 0.1806 81.94 0.1623 83.77
0.4 0.1202 87.98 0.1599 84.01 0.1429 85.71 0.1289 87.11
0.5 0.1117 88.83 0.1386 86.14 0.1239 87.61 0.1124 88.76
0.01 0.4687 53.13 0.4850 51.50 0.4875 51.25 0.4753 52.47
0.05 0.3854 61.46 0.4092 59.08 0.4174 58.26 0.3906 60.94
0.1 0.3091 69.09 0.3397 66.03 0.3275 67.25 0.3161 68.39

WOW 0.2 0.2269 77.31 0.2654 73.46 0.2440 75.60 0.2381 76.19
0.3 0.1685 83.15 0.2081 79.19 0.1895 81.05 0.1793 82.07
0.4 0.1377 86.23 0.1783 82.17 0.1487 85.13 0.1384 86.16
0.5 0.1206 87.94 0.1473 85.27 0.1296 87.04 0.1207 87.93
0.01 0.4651 53.49 0.4893 51.07 0.4843 51.57 0.4687 53.13
0.05 0.3647 63.53 0.3991 60.09 0.4030 59.70 0.3720 62.80
0.1 0.2946 70.54 0.3311 66.89 0.3189 68.11 0.3086 69.14

Synch-HILL 0.2 0.2113 78.87 0.2595 74.05 0.2394 76.06 0.2269 77.31
0.3 0.1536 84.64 0.1997 80.03 0.1753 82.47 0.1607 83.93
0.4 0.1294 87.06 0.1684 83.16 0.1478 85.22 0.1311 86.89
0.5 0.1125 88.75 0.1475 85.25 0.1258 87.42 0.1193 88.07

for the training sets and 5000 stego images for the testing sets. The ensemble classifiers
apply a vote to estimate the error of detection. This process is repeated 10 times to obtain
P̄E which quantify the detectability and are collected for each method and each payload
in order to evaluate the steganalysis method.

As explained in Section 10.2.1, the experiments were run in such a way as to find the best
filter bank parameters: the scale of the steerable filters σ (Eq. 10.2) and the rotation step
(∆θ) with angles evenly drawn from 0◦ to 180◦. These experiments have been led using
S-UNIWARD with a payload size of 0.3 bpc with the use of the 22, 563 features obtained
by concatenating the CRM with the gradient features. Table 10.1 shows that σ = 0.7
with ∆θ = 10◦ corresponds to the optimal parameters for the steerable filters operation in
this steganalysis work because, compared to the other parameters, they bring the best
detection rate. The experimental results are given in Table 10.2. Three algorithms have
been tested: S-UNIWARD, WOW and Synch-HILL with different relative payloads sizes:
{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Furthermore, the proposed method is tested against
three other approaches: CRM [GFC14], CFARM [GF15] and GCRM [ACMM16b].

Table 10.2 demonstrates that the proposed method registered the highest performance.
As an example, detection rates for, at a time, S-UNIWARD, WOW and Synch-HILL for
a payload of 0.5 bpc are 88.83%, 87.94% and 88.75% respectively using the proposed
approach, to the contrary of the other three compared methods. The CRM method
[GFC14] achieved 86.14%, 85.27% and 85.25% respectively. The CFARM method [GF15]
achieved 87.61%, 87.04% and 87.42% respectively.
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Additionally, the GCARM method [ACMM16b] achieved 88.76%, 87.93% and 88.07%
respectively. Moreover, curves in Fig. 10.4 for S-UNIWARD, WOW, and Synch-HILL
steganography methods illustrate the comparison between the proposed method and the
comparison methods. As a result, the error probability of the proposed method is less
than the three steganalysis methods. This performance is due to the Gaussian filters bank,
created by the steerable filters, which allow a more precise estimation of the gradient and
its associated tangent vector. In order to increase the detectability rate of the GCRM
method [ACMM16b], another experiment has been performed by concatenating the GCRM
[ACMM16b] features with the new proposed features in one dimensional vector to produce
28, 563 features. These new dimensional vectors achieved 85.03% for S-UNIWARD, and
85.07% for Synch-HILL steganography methods payload 0.3 bpc as a detection rate. It
obtains a difference of 1.26%, 1.14% respectively more than GCRM [ACMM16b] alone
and this result is close (slightly better) to our proposed approach results (less than 1%).
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Figure 10.4: Error probability P̄E as a function of the payload for three steganography methods.
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10.4 Summary

To summarize this chapter, here new method for color image steganalysis has been
presented. Applying a Gaussian filters bank, to an order of 1, in different directions, enabled
us to detect the slight changes in the images which occurred as a result of embedding
the message. This proposed method treats the three color channels separately. Firstly,
as steerable filters estimate precisely the edge directions in images, features correspond
to the three image derivatives along the edges and the three gradient magnitude images.
Secondly, features are extracted from these six images using the co-occurrence matrices
of pixel pairs. Finally, our proposed features are integrated with the CRM features
[GFC14] to get the new approach. This methodology forms one of our contribution
and resulted in the publication [ACMM16a]. To evaluate the performance of the new
approach, the embedding algorithms used are S-UNIWARD, WOW, and Synch-HILL at
different payloads. Experimental results show that fusing proposed features with those
obtained by CRM allows in the majority of cases, the detectability of hidden messages in
the color images. Additionally, the new approach achieved higher detection rates than
the three recent steganalysis approaches: CRM, CFARM, and GCRM. This observed
detection improvement is due to a fine estimation of the tangent vector which is used for
the estimation of the image derivatives in the edges directions. The proposed features
allow the Ensemble Classifier to reveal the hidden message between the stego and cover
images.
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Conclusion and Perspectives

The rest of this chapter summarises the research objectives achieved by this thesis and the
main conclusions and provides discussions for future research.
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11.1 Conclusion

The overall goal of this thesis was to investigate on feature extraction using different
amounts of existing knowledge from image filtering to more advanced domain knowledge
such as oriented filter bank. In addition to studying different error measure methods,
based on the theory of supervised edge detection dissimilarity evaluations. This goal
was achieved by developing a number of new methods to contours evaluation, corners
detection and color image steganalysis. In this thesis, a new techniques are proposed to
evaluate filtering edge detection. Moreover, we have proposed a new approach for corner
detection based on the combination of oriented half kernels and homogeneity kernels. The
half Gaussian kernels (HGK) allow to detect a relevant strength of a corner while the
IRON indicates the more homogeneous directions. A such combination enables to remove
undesirable corners near contour areas which could be considered as a ideal feature by the
HGK. Informations captured by the directional kernels enable to describe precisely all
the grayscale variations and the directions of the crossing edges around the considered
pixel. Furthermore, In this thesis, we have proposed and developed three color image
steganalysis methods, based on a machine learning approach. The GCRM [ACMM15]
which is an extension of the CCRM (Correlation Color Rich Model [ACMM15]) seems to
be the equivalent or better than the color rich model method and CFARM when recent
adaptive grey-level embedding algorithms are used for embedding independently in each
color channel. Additionally, note that a recent independent study has shown that CCRM
was the most reliable method in every case, even when the algorithm was embedding
adaptively with a synchronization of the embedding between the color channels [TLLH16].
Moreover, proposed a new approach [ACMM16b] enriches the features from the Color Rich
Model by adding new features obtained by applying steerable Gaussian filters and then
computing the co-occurrence of pixel pairs. Adding these new features to those obtained
from Color Rich Models allows us to increase the detectability of hidden messages in color
images. The Gaussian filters are angled in different directions to precisely compute the
tangent of the gradient vector. Then, the gradient magnitude and the derivative of this
tangent direction are estimated. This refined method of estimation enables us to unearth
the minor changes that have occurred in the image when a message is embedded.

• In chapter 4 a new normalized supervised edge detection evaluation method was
proposed, comparing a ground truth contour image, the candidate contour image
and their associated spacial nearness [AMM17d]. Several referenced-based boundary
detection evaluations are detailed, pointing their advantages and disadvantages
through concrete examples of edge images [AMM17d, AMM17a].

• In chapter 5 Proposed a new technique to evaluate filtering of edge detection methods
involving the minimum score of the considerate measures [AMM17a].
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• In chapter 7 proposed a novel method for corner detection based on the combination
of directional derivative and homogeneity kernels [AMM17c], [MAM17].

• In chapter 9 extract new features from color image for development a color image
steganalysis based on color feature correlation and based on geometric measures
obtained by the sine and cosine of gradient angles between all the color channels
[ACMM15, ACMM16b]. and machine learning. Features are extracted from the
channel correlation, and co-occurrences.

• In chapter 10 important contribution was present for color steganalysis approach
by development of a new color steganalysis based on Steerable Gaussian Filters
Bank. This approach enriches the features from the Color Rich Model by adding
new features obtained by applying steerable Gaussian filters and then computing
the co-occurrence of pixel pairs [ACMM16a]. Intensive experiments reveal that our
steganalysis approaches is able to better detect the color adaptive steganographic
approaches.

11.2 Perspectives

In the summary of each chapter, we discussed various theoretical and practical possibilities
for the improvement of our approaches. In this section we aim to present these perspectives,
that could improve the obtained results and also to start out new research work. In the
future we would like to include the following improvements:

• In this thesis we presents a supervised edge detection assessment methods. In
the future, our work program agenda is to compare more different edge detectors
with their more different parameters. To deeply compare the more robustness edge
detection algorithms and proposed a new measure in object recognition.

• In recent years, deep learning used in different areas, the use of deep learning
networks challenges traditional two step approaches (feature extraction, and use
of a classifier). We plan in the future, to study and use deep learning machine to
automatically detect the edges, corners and junctions, also use deep learning with
image steganalysis.

• In the future, we plan to study junctions types to enhance the our proposed method
corner detection in a way to classify in a 2π periodic form features of type L, Y or
X junctions.

• Steganography by modification is the art of modifying a digital media (image, sound,
video, ...) in order to hide a secret message most often unrelated to the media, and so
that changes are statistically undetectable. In the future works we consist of better
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understanding WOW-CMD-C or HILL-CMD-C [TLLH16] embedding algorithms,
which synchronize the color selection channel during the embedding process.

• Because the Facebook is available now for more than two milliards people around
the world, we plan in the future to study exactly what Facebook is doing to image
during compression by detailed comparison of the uploaded and downloaded images.
On other hand, propose a new stegnography method that can hide texts inside color
image. Also, propose a new steganalysis method to detect hidden data from the
modified image in the Facebook.
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Ce chapitre souligne brièvement la motivation et les objectifs de cette thèse.
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12.1 Introduction

En informatique, tous les systèmes d’image numérique, en particulier les structures au-
tomatiques de traitement de l’information, doivent être évalués avant d’être développés,
principalement pour des applications industrielles ou des données médicales. En effet,
il y a une littérature torrentielle couvrant différents aspects du traitement des images.
Le traitement de l’image numérique est lié au développement d’un système numérique
qui effectue des opérations sur une image numérique en utilisant un ordinateur numé-
rique [GW02]. Les méthodes de traitement d’image numérique s’intéresent à deux tâches
d’application majeures. La première est l’amélioration de l’information picturale pour
l’interprétation humaine, tandis que la seconde est le traitement de données pour la
perception automatique des machines [Dou09].

Une image numérique contient des informations différentes, telles que les objets, la couleur
et l’orientation. La discrimination des objets à partir de leur arrière-plan est le premier
problème qui se pose avant tout traitement ultérieur. Afin d’extraire le contour d’un
objet, les arêtes qui forment cet objet doivent être détectées et ce fait révèle l’importance
constitutionnelle de la détection de bord en vision par ordinateur et traitement d’image.
Les fonctions de détection de bord supportent une large gamme d’applications telles que la
reconnaissance, la compression, l’amélioration de l’image, la restauration, l’enregistrement,
la récupération, le tatouage, la stéganographie, la stéganalyse et etc. [OH10].

Dans la littérature, plusieurs travaux de recherche développent des techniques de détection
de bord. En général, une méthode de détection de bord peut être divisée en trois étapes.
Tout d’abord, un processus de réduction du bruit est effectué afin d’obtenir de meilleures
performances de détection de bord. Cette réduction de bruit est habituellement obtenue
en effectuant un filtre passe-bas car le bruit additif est normalement un signal de haute
fréquence. Vu que les bords sont des signaux haute fréquence, ils peuvent être supprimés
pendant le processus de réduction du bruit. Par conséquent, la sélection du filtre approprié
avec le meilleur paramètre est importante pour préserver les informations de bord. Pour
cette raison, cette thèse fournit plus de détails sur la source de bruit dans le pipeline
de construction d’images numériques. Dans la deuxième étape, un filtre passe-haut tel
qu’un filtre orienté est généralement effectué pour trouver les bords. Enfin, un processus
de localisation de bord est effectué pour identifier les bords réels, qui se distinguent des
réponses similaires provoquées par le bruit.

Une partie de cette thèse cible l’évaluation des méthodes de détection de bord. En effet,
plusieurs références de méthodes d’évaluation sont étudiées, tout en indiquant leurs
avantages et leurs inconvénients à travers des exemples concrets d’images de bord et les
appliquant à une analyse objective. D’autre part, une nouvelle mesure de qualité de carte
de bord supervisée est proposée. En outre, cette thèse présente et démontre comment
construire une nouvelle carte de bord de vérité terrestre qui est marquée d’une manière
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semi-automatique en images réelles. Afin d’évaluer les performances des détecteurs de
filtrage/détection de bord de rampe, une technique est proposée pour évaluer les méthodes
de détection de bord de filtrage impliquant le score minimal des mesures considérables.

Dans cette thèse, nous nous concentrons sur des filtres orientés tels que le filtre gaussien
orientable et le noyau demi-gaussien (HGK). En outre, nous avons proposé une nouvelle
méthode en combinant deux filtres : le noyau demi-gaussien avec un filtre asymétrique
calculant l’homogénéité le long des bords. D’autre part, les réponses maximales du HGK
indiquent les directions (2ΠPériodiques) des bords. En plus, la variance orientée détermine
si les directions de la maxima du HGK correspond aux bords ou à d’autres types de pixels
(texture, région homogène, etc.).

La stéganalyse de l’image peut donc être considérée comme un processus de reconnaissance
de formes, et considère deux classifications des images de tests : image originale et image
stego. Le problème clé pour la stéganalyse, tout comme pour la reconnaissance de motifs,
est l’extraction de caractéristiques. En effet, les caractéristiques doivent être sensibles au
processus de dissimulation des données. En d’autres termes, les caractéristiques devraient
être plutôt différentes pour l’image sans message caché et pour l’image stego.

Cette thèse propose aussi trois nouvelles méthodes de stéganalyse en couleurs basées sur
l’extraction de caractéristiques en utilisant des techniques d’apprentisage. La première
méthode étudie la corrélation entre les canaux d’image en couleurs et l’extraction de
caractéristiques. La seconde méthode étudie deux types de caractéristiques basées sur
la corrélation entre les canaux d’image en couleurs. Le premier type de caractéristiques
reflète les transformations euclidiennes locales et le second reflète les transformations
miroir. Ces transformations géométriques se calculent à la base du sinus et cosinus des
angles gradients entre tous les canaux d’image en couleurs. La troisième méthode utilise
la banque de filtrage d’orientation pour détecter les messages cachés dans l’image, et se
base sur l’extraction de caractéristiques à partir d’images en couleurs avec des techniques
et d’apprentissage. Cette nouvelle méthode de stéganalyse en couleurs utilise des filtres
gaussiens orientés. Dans cette méthode, les filtres gaussiens sont inclinés dans différentes
directions pour calculer précisément la tangente du vecteur gradient. Ensuite, la grandeur
du vecteur gradient et la dérivée de cette direction tangente sont estimées. Cette méthode
d’estimation raffinée nous permet de découvrir les changements mineurs qui se sont
produits dans l’image lorsqu’un message est intégré. Nous avons calculé un vecteur tangent
de contour pour chaque pixel et pour chaque canal. Ce vecteur tangent correspond à la
direction du bord, et est orthogonal à l’image de la grandeur du vecteur gradient pour
chaque canal de couleur.
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12.2 Motivations

Dans le domaine de traitement d’image, la détection de bord représente une problématiaque
clé qui a de nombreuses applications. En effet, une méthode efficace de détection de contour
doit localiser les bords correctement avec un minimum de pixels mal classés. Les bords
représentent une caractéristique de bas niveau, tandis que les caractéristique de haut
niveau sont définies en termes d’objet dans l’image. Les contours sont des points dans
l’image projetée d’un objet où il y a une discontinuité de profondeur ou une discontinuité
d’orientation de surface sur l’objet.

De nombreuses approches d’extraction de caractéristiques sont basées sur des points
d’intérêt, tels que les coins, pour localiser les caractéristiques en deux dimensions. Dans
la littérature, on trouve plusieurs algorithmes développés, mais uniquement quelques
algorithmes fournissent une comparaison de performance objective. En effet, l’évaluation
devrait produire un résultat qui est en corrélation avec la qualité perçue de l’image de bord,
et qui repose sur le jugement humain. En d’autres termes, une carte de bord fiable devrait
caractériser toutes les structures pertinentes d’une image. D’autre part, un minimum de
pixels parasites ou de trous (oversights) doit être créé par le détecteur de bord en même
temps. Par conséquent, une évaluation efficace peut être utilisée pour évaluer et améliorer
un algorithme, ou pour optimiser les paramètres du détecteur de bord [HSSB97].

Les filtres orientés sont utilisés dans de nombreuses approches de traitement de la vision
et de l’image, telles que la détection de bord, l’analyse de texture, la compression d’image,
la détection d’objets, la stéganographie et l’amélioration de l’image [NA12].

Pour être moins visible, la plupart des méthodes stéganographiques modifient les valeurs
de pixels dans les zones de texture/bord [PFB10, HFD14b, LWHL14]. . .

Durant de nombreuses années, la dissimulation de l’information a stimulé l’imagination
des chercheurs. La stéganographie est l’une des techniques qui peuvent être utilisées pour
cacher un secret [HH03]. À titre d’exemple, en 2001, un journal international intitulé
USA Today, a annoncé que la stéganographie était utilisée par les terroristes [Kel01], afin
de planifier l’attaque du 11 septembre 2001. Cela a également été confirmé par d’autres
rapports [KOL01, Tib02].

Dans le passé, beaucoup de gens ne croient pas que les techniques de stéganographie ont
été utilisées par les criminels et les terroristes. Maintenant, cette idée est acceptée et
comprise. Pour cette raison, les techniques de stéganalyse doivent être développées pour
détecter les communications suspectes.

La stéganographie et la stéganalyse ont prospéré à l’ère numérique. De nombreuses
techniques intéressantes de stéganalyse ont été créées en fonction des images en niveaux de
gris, et la stéganalyse poursuit son évolution. En particulier, il est nécessaire de détecter un
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message caché dans les images en couleurs [KBB+13]. Pour ces raisons, une des principales
motivations de cette thèse est de développer une nouvelle méthode de stéganalyse pour
détecter un message caché dans des images numériques en couleurs.

12.3 Contributions

Les contributions clés de cette thèse se basent sur l’extraction de caractéristiques en
utilisant des filtre orientés. D’une part, on propose de nouvelles méthodes pour la détection
des contours et des coins, et en plus leur évaluation. D’autre part, on développe de nouvelles
méthodes de stéganalyse pour détecter les messages cachés dans l’image, en extractant des
caractéristiques des images en couleurs avec des techniques d’apprentissage. On résume
les contributions de cette thèse dans la liste ci-dessous :

• Une nouvelle méthode pour la détection de coins basée sur la combinaison de dérivées
directionnelles et de grains d’homogénéité [AMM17c].

• Une nouvelle technique pour évaluer le filtrage des méthodes de détection des arêtes
impliquant le score minimal des mesures préventives [AMM17a].

• Une nouvelle méthode d’évaluation de détection de bordure supervisée normalisée, en
comparant une image de contour de vérité terrestre, l’image de contour de candidat
et leur proximité spatiale associée [AMM17d].

• Plusieurs méthodes d’évaluation de la détection des limites identifiées dans l’état de
l’art sont discutées, en détaillant leurs avantages et leurs inconvénients à travers des
exemples concrets d’images de bord [AMM17d], [AMM17a].

• Une nouvelle stéganalyse d’image en couleurs basée sur la corrélation des caracté-
ristiques de couleurs avec des techniques d’apprentissage. Les caractéristiques sont
identifiées à travers la corrélation du canal et les co-occurrences [ACMM15].

• Une nouvelle stéganalyse d’image en couleurs basée sur une banque de filtres gaussiens
orientés. Cette approche enrichit les caractéristiques du modèle riche en couleurs en
ajoutant de nouvelles caractéristiques obtenues en appliquant des filtres gaussiens
orientés, puis en calculant la co-occurrence de paires de pixels [ACMM15].

• Des expériences intensives révèlent que nos approches de stéganalyse permettent de
mieux détecter les approches stéganographiques appliquées en couleurs.
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12.4 Conclusion

L’objectif global de cette thèse était d’enquêter sur les caractéristiques l’extraction en
utilisant différentes quantités de connaissances existantes depuis le filtrage d’image jusqu’à
des connaissances de domaine plus avancées telles qu’une banque de filtres orientés. En plus
d’étudier différentes méthodes de mesure d’erreur, basées sur la théorie des évaluations de
dissimilarité de détection de bord supervisé. Cet objectif a été atteint en développant un
certain nombre de nouvelles méthodes pour l’évaluation des contours, la détection des coins
et la stéganalyse des images couleur. Dans cette thèse, on propose de nouvelles techniques
pour évaluer la détection de bord de filtrage en se basant sur la théorie des évaluations de
dissimilation de détection de bord supervisées. En outre, on propose une nouvelle approche
pour la détection de coins en fonction de la combinaison des demi-noeuds orientés et
des grains d’homogénéité. Les grains demi-gaussiens (HGK) permettent de détecter une
résistance importante d’un coin tandis que le filtre IRON indique les directions les plus
homogènes. Une telle combinaison permet d’éliminer les coins indésirables près des zones
de contours qui pourraient être considérées comme une caractéristique idéale par le HGK.
Les informations capturées par les noyaux directionnels permettent de décrire précisément
toutes les variations de niveaux de gris et les directions des bords de passage autour du
pixel considéré.

En outre, une nouvelle approche proposée [ACMM16b] enrichit les fonctionnalités du
modèle riche en couleurs en ajoutant de nouvelles caractéristiques obtenues en appliquant
des filtres gaussiens orientés, puis en calculant la co-occurrence de paires de pixels. L’ajout
de ces nouvelles fonctionnalités à celles obtenues à partir de du modèle riche en couleurs
nous permet d’augmenter la détection des messages cachés dans les images en couleurs.
Les filtres gaussiens sont inclinés dans différentes directions pour calculer précisément
la tangente du vecteur gradient. Ensuite, la grandeur de gradient et la dérivée de cette
direction tangente sont estimées. Cette méthode d’estimation raffinée nous permet de
découvrir les changements mineurs qui se sont produits dans l’image lorsqu’un message
est intégré.

12.5 Perspectives

Dans le résumé de chaque chapitre, nous avons discuté de diverses possibilités théoriques et
pratiques pour l’amélioration de nos approches. Dans cette section, nous visons à présenter
ces perspectives, qui pourraient améliorer les résultats obtenus et aussi commencer de
nouveaux travaux de recherche. Dans les perspectives, on vise les améliorations suivantes :



12.5. Perspectives 187

• Dans cette thèse, on présente des méthodes d’évaluation de détection de bord
supervisées. Comme perspective, on va ajouter de nouveaux détecteurs de bord pour
les comparer avec leurs différents paramètres. Cette comparaison permet d’évaluer
la robustesse de plusieurs algorithmes de détection de bord et utiliser la nouvelle
mesure dans la reconnaissance d’objet.

• Récemment, la technique d’apprentissage profond (Deep Learning) est appliquée
dans différents domaines, en défiant les approches traditionnelles qui se basent sur
deux étapes (extraction des caractéristiques et utilisation d’un classificateur). On
prévoit l’application de la technique d’apprentissage profond (Deep Learning) pour
détecter automatiquement les bords, les coins et les jonctions ou la stéganalyse.

• On vise également l’étude de plusierus types de jonctions pour améliorer notre
détection de coins afin de classifier avec des caractéristiques de forme périodique 2Π
du type de jonctions L, Y ou X.

• La stéganographie est l’art de modifier un média (image, son, vidéo, ...) afin de cacher
un message secret le plus souvent non lié aux médias, de sorte que les changements
sont statistiquement indétectables. La stéganalyse est l’art de détecter la présence
d’un message secret. Dans de futurs travaux , on compte de mieux comprendre les
algorithmes d’intégration WOW − CMD − C ou HILL − CMD − C [TLLH16],
qui synchronise le canal de sélection de couleurs pendant le processus d’intégration.

• Plus que deux milliards de personnes utilisent Facebook dans le monde. Pour cette
raison, on cible l’étude de méthodes de compression appliquées dans Facebook
durant l’émission (upload) et la réception (download) de l’image. Ceci nous permet
de développer de nouvelles méthodes de stéganographie pour cacher des messages
à l’intérieur de l’image, et de nouvelles méthodes de stéganalyse pour détecter ces
messages cachés dans les images de Facebook.
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