
HAL Id: tel-01948215
https://theses.hal.science/tel-01948215

Submitted on 7 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Limit theorems for a multi-type Galton-Watson process
in random independent environment

Thi da Cam Pham

To cite this version:
Thi da Cam Pham. Limit theorems for a multi-type Galton-Watson process in random independent
environment. Probability [math.PR]. Université de Tours, 2018. English. �NNT : 2018TOUR4005�.
�tel-01948215�

https://theses.hal.science/tel-01948215
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE TOURS

École Doctorale MIPTIS

Institut Denis Poisson

THÈSE présentée par :

Thi Da Cam PHAM

soutenue le : 05 Décembre 2018

pour obtenir le grade de Docteur de l’Université de Tours

Discipline/ Spécialité : Mathématiques

THÉORÈMES LIMITE POUR UN PROCESSUS DE
GALTON-WATSON MULTI-TYPE EN ENVIRONNEMENT

ALÉATOIRE INDÉPENDANT

THÈSE dirigée par :

PEIGNÉ Marc Professeur à l’Université de Tours

RAPPORTEURS :
ALSMEYER Gerold Professeur à l’Université de Münster
DELMAS Jean-François Professeur à l’École des Ponts ParisTech

JURY :

ALSMEYER Gerold Professeur à l’Université de Münster
BROFFERIO Sara Maître de Conférences à l’Université de Paris-Sud
DELMAS Jean-François Professeur à l’École des Ponts ParisTech
LE PAGE Émile Professeur à l’Université de Bretagne-Sud
PEIGNÉ Marc Professeur à l’Université de Tours
RASCHEL Kilian Chargé de recherches à l’Université de Tours





Talent can take you so far.
Hard work can take you anywhere.

Hiruma Yoichi (Eyeshield 21)





Remerciements

It is so easy to render thanks by saying “thank you” verbally that we do everyday,
which becomes even automatic. Even so, on the occasion of my thesis, I would like to at
least officially utter my gratitudes to :

- The Laboratory of Tours for its support that has enabled me to carry out my research.
- VIASM to support me during the time I was in Hanoi.
- the Probability group at the laboratory of Tours to be with me during three years.
- Kilian Raschel for inviting many people to the probability seminar so that I could

discover a variety of different subjects.
- Vincent Perrollaz for his devoted help and kind patience in teaching me Python,

Yann Jullien for his short but memorable communication in C and the mission of using
the “giant computer".

- Sara Brofferio for her course in “Stochastic dynamical system” in Halong, Vietnam
that encouraged me in different directions of research.

- to Romain Abraham and Jean-François Delmas for their course about “Galton-Watson
trees” in Hanoi which gave me more intuitions of my topic.

- Gerold Alsmeyer for having invited me one month in Münster to learn more about
renewal theory.

- Emile Le Page for his availability and generosity of giving me ideas to deal with my
questions.

- the rapporteurs Gerold Alsmeyer and Jean-François Delmas who gave me important
remarks and questions that I can improve my manuscript.

- the faculty thesis committee for spending their time on coming to my thesis defense.
- many people, in particular Florent Malrieu for his caring about the PhD students

group, Cedric Lecouvert for his gentle humor, Guy Barles for his welcome helping hand,
Elodie and Anouchka for their efficient administrative help and their friendly actions,
Sandrine for her supports of resources, etc.

- my friends, who spoke with me, who spent time with me, who listened to me, who
were waiting for me silently, who played guitar for me, who introduced me classical
music, who taught me to walk everyday, who picked raspberries for me, who climbed
with me over mountains, who showed me racehorses, who played boardgames with me,
who went to the Christmas markets with me, who played hide-and-seek with me, who
gave me flowers, who laughed with me, who danced with me, who cooked for me, who

5



REMERCIEMENTS

brought me food, who went with me to the hospital, who always welcomed me, who
gave me a part of their garden, who showed me the sky full of stars, who let me pick up
eggs of their hens, who appreciate me as who I am ...

- Quy and Xuyen at VIASM for their warm hearts for me, a girl from the south.
- Jin Garcien and Nadine, the staff at my residence Grandmont, who cared about me

kindly.
- Germain Rousseau from the International Relations Project Manager at the Euraxess

Service Centre, who accompanied me over many troubles that happened to a stranger
student in France.

- my family, my parents, my sisters to always trust in me, always be beside me, no
matter where I am.

- last but not least, my advisor Marc Peigné, for his strict persistence. I wouldn’t be
where I am now without him. This is how the steel was tempered !

Thanks for all the smiles I have received during those three years of my PhD.

6



REMERCIEMENTS

7



REMERCIEMENTS

8



Résumé

La théorie des processus de branchement multi-type en environnement i.i.d. est consi-
dérablement moins développée que dans le cas univarié, et les questions fondamentales
ne sont pas résolues en totalité à ce jour. Les réponses exigent une compréhension pro-
fonde du comportement des produits des matrices i.i.d. à coefficients positifs.

Sous des hypothèses assez générales et lorsque les fonctions génératrices de probabi-
lité des lois de reproduction sont “linéaire fractionnaires”, nous montrons que la proba-
bilité de survie à l’instant n du processus de branchement multi-type en environnement
aléatoire est proportionnelle à 1

√
n lorsque n→∞.

La démonstration de ce résultat suit l’approche développée pour étudier les processus
de branchement uni-variés en environnement aléatoire i. i. d. Il utilise de façon cruciale
des résultats récents portant sur les fluctuations des normes de produits de matrices
aléatoires i.i.d.

Mots clés : Multi-type branching process, Survival probability, Random environment,
Critical case, Exit time, Markov chains, Product of random matrices.
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Abstract

The theory of multi-type branching process in i.i.d. environment is considerably less
developed than for the univariate case, and fundamental questions are up to date un-
solved. Answers demand a deep understanding of the behaviour of products of i.i.d.
matrices with non-negative entries.

Under mild assumptions, when the probability generating functions of the reproduc-
tion laws are fractional-linear, the survival probability of the multi-type branching process
in random environment up to time n is proportional to 1

√
n as n→∞.

Techniques for univariate branching processes in random environment and methods
from the theory of products of i.i.d. random matrices are required.

Keywords : Multi-type branching process, Survival probability, Random environment,
Critical case, Exit time, Markov chains, Product of random matrices.
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Introduction

A search of any Mathematical library may reveal a number of volumes devoted to
branching processes. Let us mention two books among the most fundamental ones where
we found many informations : the ones by T. E. Harris [Harris, 1963] and K. B. Athreya &
P. E. Ney [Athreya et Ney, 1972]. Not long after, P. Jagers [Jagers, 2005] introduced general
branching processes in a more systematic way.

Branching processes are stochastic processes describing the dynamics of a popula-
tion of individuals which reproduce and die independently, according to some specific
probability distributions. They have numerous applications in population biology and
phylogenetics. There are many types of branching processes : discrete time, continuous
time, single-type or multi-type (with finitely or infinitely many types), individual repro-
duction rules may depend on the actual size of the population (population size-dependent
branching process), immigration at any generation may disturb the evolution of the size
of the population, etc. The method employed in branching processes allow questions
about extinction and survival in ecology and evolutionary biology to be addressed.

The study of branching processes began in the 1840’s with Irénée-Jules Bienaymé
and was advanced in the 1870’s with the work of Reverend Henry William Watson and
Francis Galton. The simplest and most frequently applied branching process is named
after Galton and Watson (or GW-process for short), it is a fundamental example of discrete-
time Markov chain.

Informally, we may describe that a population of individuals evolves in discrete time
as follows. A Galton-Watson branching process starts with one initial ancestor, sometimes
it is possible to have a random number of initial ancestors, in which case it will be explicitly
stated. This single ancestor produces a certain number of offspring according to a given
probability distribution. All the individuals of the population are assumed to be of the
same type and only live for a single unit time period ; but at the end of their life-length,
each of them produces a random number (possible 0) of offspring. The number of children
born by an individual does not depend on how many other individuals are present.
The number of offspring for distinct individuals are mutually independent, and also
independent of the offspring of other individuals from earlier generation. Furthermore,
they are identically distributed, with common distribution. And the system regenerates.

The following figure allows us to visuallize a Galton-Watson process in the image of
a tree, in which case it starts with one founding ancestor and has two children of the first
generation, two children of the second generation, four children of the third generation
and so on.
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INTRODUCTION

Figure 1 – Galton-Watson tree.

The expression “single” type refers to the fact that all individuals are of single type
such as the same gender, same cell type, or same geotype or phenotype while in the multi-
type process, each parent may have offspring of different types. For instance in genetics,
genes can be classified as wild or mutant types and mutation change a wild type into a
mutant type.

More rigorously, let us introduce a probability space (Ω,F,P) and, for any n ≥ 0,
denote by Zn the random number of individuals in the nth generation of this population ;
the numbers Zn are random variables defined on (Ω,F,P) and may present the population
size of animals, plants, cells, or genes at time n or generation n. At each generation n,
each individual i ∈ {1, ...,Zn} has Nn

i children, where
(
Nn

i , i ≥ 1, n ≥ 0
)

are i.i.d. random
variables with distribution µ = (µ(k))k≥0. The number of individuals at generation n + 1 is
therefore :

Zn+1 = Nn
1 + Nn

2 + ... + Nn
Zn
,

with the convention if Zn = 0 then Zn+1 = 0. Since this is a sum of i.i.d. random variables,
its distribution depends only on the value of Zn and neither on past values nor on time n ;
in other words, the sequence (Zn)n≥0 is a time-homogeneous Markov chain on the set of
natural numbersN. Having defined the process, we want to know the probability that the
random sequence Z0,Z1,Z2, .. eventually goes to zero. In order to answer this question,
we take into account the recursive structure of the process which makes it amenable
to generating function method. Under some assumptions of the offspring distribution
µ, we find some important information about the process, for instance the extinction
probability, when Zn = 0 for some n ≥ 1, or the asymptotic behavior of the process when
n tends to infinity. Moreover, according to the mean number m of offspring, the process is
dinstinguished into three classes : super-critical (m > 1), critical (m = 1) and sub-critical
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(m < 1). It is known that for subcritical and critical case, omitting the trivial cases, the
population has probability 1 to get extinction while the supercritical process has some
positive probability to explode.

In the multi-type case, when the population contains many different type of particles,
the process becomes a vector Markov process and the mean number of offspring changes
into matrix form M. In this case, the criteria to distinguish three classes depends on the
value of the Perron root ρ(M) of the mean matrix M : sub-critical (ρ(M) < 1), critical
(ρ(M) = 1) and super-critical (ρ(M) > 1).

Furthermore, it is natural that the offspring distribution µ does not stay the same
over generation but varies with time, in a deterministic way which is fixed once and
for all ; several contributions do exist in this direction, in single-type or multi-type cases,
let us mention for instance [Church, 1971], [Kersting, 2017] and references therein. It is
also natural to consider that these distributions have some random fluctuations, then
to replace the distribution µ by a sequence of random distributions (µn)n≥0. We arrive
in a new scheme of a Branching Process in Random Environment (BPRE). The simplest
case in the one when the (µn)n≥0 are assumed to be i.i.d. random probability measures.
Others situations may be explored, for instance Markovian random environment ; we
refer to [Athreya et Karlin, 1971a] and [Athreya et Karlin, 1971b] for general results in
these directions.

The case of single-type in random environment is the object of several works over the
last 40 years. There are three cases of extinction, the speed of convergence to extinction
is smaller with the appearance of some new phenomenons (for instance the sub-critical
case is decomposed into three sub-cases).

The goal of this thesis is to find the asymptotic behavior of the survival probability of
a critical multi-type Galton-Watson branching process in i.i.d. environment. Before going
further to multi-type BPRE, we first pass through single-type BPRE; we present briefly
in Chapter 3 the more important contributions about extinction in this case, under quite
general and natural hypotheses. In fact, the behavior of the single-type BPRE is mainly
determined by the properties of its associated random walk, whose increments are the
logarithm of the mean of (random) offspring distributions. Therefore, further studies on
random walk interact the evolution on studies on BPRE. Several limit theorems studied
over the three classes of BPRE do exist for single-type BPRE [Kozlov, 1977], [Afanasyev
et al., 2005], [Geiger et al., 2003]... It is natural to expect a similar result in multi-type
case. However, it is not so easy since many useful tools known for ordinary random
walks on the real line with i.i.d. increments have no analogues in the case of dependent
increments. More precisely (but not exactly), the associated random walk in multi-type
case is composed by the logarithms of the norms of products of matrices. Therefore,
studies on limit theorems of products of matrices and fluctuations of the logarithm of
their norm are required.

In this thesis, we investigate the asymptotic behavior of the probability of non-
extinction up to time n of critical multi-type BPREs and obtain an optimal result in
the case of linear fractional generating functions. To formulate our main results, we first
introduce some standard notations and definitions.

We fix an integer d ≥ 2 and denote Rd (resp. Nd) the set of d-dimensional column
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and row vectors (with the abuse of notation) with real (resp., non-negative integers)
coordinates ; for any column vector x = (xi)1≤i≤d ∈ R

d, we denote x̃ the row vector
x̃ := (x1, . . . , xd). Let 1 (resp. 0) be the column vector of Rd whose all coordinates equal
1 (resp., 0). We fix a basis {ei, 1 ≤ i ≤ d} in Rd and denote |.| the corresponding L1 norm

defined by |x| :=
d∑

i=1

|xi| for any column vector x = (xi)1≤i≤d. Let C be the cone of vectors in

Rd with non-negative coordinates

C := {x ∈ Rd : xi ≥ 0 for all 1 ≤ i ≤ d}

and X be the standard simplex defined by

X := {x ∈ C : |x| = 1}.

Let S be the set of d×d matrices with non-negative entries such that each column contains
at least one positive entry ; its interior is S+ := {g = (g(i, j))1≤i, j≤d/g(i, j) > 0}. Endowed
with the standard multiplication of matrices, the set S is a semigroup and S+ is the ideal
of S, more precisely, for any g ∈ S+ and h ∈ S, it is evident that gh ∈ S+.

We consider the following actions :
— the left linear action of S on C defined by (g, x) 7→ gx for any g ∈ S and x ∈ C,
— the left projective action of S onX defined by (g, x) 7→ g · x := gx

|gx| for any g ∈ S and
x ∈ X.

For any g = (g(i, j))1≤i, j≤d ∈ S, let

v(g) := min
1≤ j≤d

( d∑

i=1

g(i, j)
)

and |g| := max
1≤ j≤d

( d∑

i=1

g(i, j)
)
,

then | · | is a norm on S and for any x ∈ C,

0 < v(g) |x| ≤ |gx| ≤ |g| |x|.

We set N(g) := max
(

1
v(g) , |g|

)
; notice that N(g) ≥ 1 for any g ∈ S.

We consider a sequence of i.i.d. S-valued random matrices (gn)n≥0 defined on (Ω,F ,P)
with the same distribution µ on S ; let L0 = Id and Ln := gn . . . g1 for any n ≥ 1. The
associated “random walk” on R is defined by S0 := a and Sn = Sn(x, a) := a + log |Lnx| for
any n ≥ 1, where a ∈ R is fixed. We are interested in τ := min{n ≥ 1 : Sn ≤ 0}, the first
time the random process (Sn)n≥1 becomes non-positive.

Furthermore, from Theorem II.1 in [Hennion et Hervé, 2008], under conditions P1-P3
introduced below, there exists a unique probability measure ν on X such that for any
bounded Borel function ϕ from X to R,

(µ ∗ ν)(ϕ) =

∫

S

∫

X
ϕ(g · x)ν(dx)µ(dg) =

∫

X
ϕ(x)ν(dx) = ν(ϕ).

Such a measure is said to beµ-invariant. Moreover, the upper Lyapunov exponent (defined
in section 2.4) associated with µ is finite and is expressed by

γµ =

∫

S

∫

X
ρ(g, x)ν(dx)µ(dg),
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where ρ(g, x) = log |gx| for any (g, x) ∈ S ×X.
Let Px,a the probability measure on (Ω,F ) conditioned on the event [X0 = x,S0 = a].

We specify the main hypotheses concerning the distributionµ of the matrices under which
we obtain the main results of this thesis.
HYPOTHESES

P1. There exists ε0 > 0 such that
∫

S N(g)ε0µ(dg) < ∞.
P2. (Strong irreducibility). There exist no affine subspaces A of Rd such that A ∩ C is

non-empty, bounded and invariant under the action of all elements of the support of µ.
P3. There exists n0 ≥ 1 such that µ∗n0(S+) > 0.
P4. The upper Lyapunov exponent γµ of µ is equal to 0.
P5. There exists δ > 0 such that µ{g ∈ S : ∀x ∈ X, log |gx| ≥ δ} > 0.
Let V be the harmonic function defined in Proposition 1.1, section 1.5. Then, we obtain

the following result.

Theorem 1 Assume P1-P5. Then for any x ∈ X and a ≥ 0,

Px,a(τ > n) ∼
2V(x, a)
σ
√

2πn
as n→ +∞,

where σ2 := lim
n→+∞

1
n
Ex[S2

n] is the variance of the semi-markovian random walk (Sn)n≥0. Moreover,
there exists a constant c such that for any x ∈ X, a ≥ 0 and n ≥ 1,

√
nPx,a(τ > n) ≤ cV(x, a).

As a direct consequence, we prove that the sequence ( Sn
σ
√

n )n≥1, conditioned on the
event τ > n, converges in distribution to the Rayleigh law as stated below. It is not of
direct interest for our study of critical multi-type BPRE, but it is a natural question once
the estimate of the tail of the distribution of τ is obtained.

Theorem 2 Assume P1-P5. For any x ∈ X, a ≥ 0 and t > 0,

lim
n→+∞

Px,a

(
Sn
√

n
≤ t | τ > n

)
= 1 − exp

(
−

t2

2σ2

)
.

Using these results, we are able to make some significant progess regarding the main
topic of this thesis.

Respecting the common notation used in multi-type case, we denote by p the number
of types and then the multi-type Galton-Watson process is a temporally homogeneous
vector Markov process (Zn)n≥0 whose states are row vectors inNp. We always assume that
Z0 is non-random. For any 1 ≤ i ≤ p, the i-th component Zn(i) of Zn may be interpreted as
the number of objects of type i in the n-th generation.

We consider a measurable function ξ 7→ fξ fromR to the set of multivariate probability
generating functions fξ = ( f (i)

ξ )1≤i≤p defined by :

f (i)
ξ (s) =

∑

α∈Np

p(i)
ξ (α)sα,
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for any s = (si)1≤i≤p ∈ [0, 1]p, where

(i) α = (αi)i ∈N
p and sα = sα1

1 . . . sαp
p ;

(ii) p(i)
ξ (α) = p(i)

ξ (α1, . . . , αp) is the probability that an object of type i in environment ξ
has α1 children of type 1, . . . , αp children of type p.

Let (ξn)n≥0 be a sequence of real valued i.i.d. random variables defined on (Ω,F ,P).
The Galton-Watson process with p types of particles in a random environment (ξn)n≥0
describes the evolution of a particle population Zn = (Zn(i))1≤i≤p for n ≥ 0.

We assume that for any n ≥ 0, i = 1, . . . , p and ξ ∈ R, if ξn = ξ then each of the Zn(i) par-
ticles of type i existing at time n produces offspring in accordance with the p-dimensional
generating function f (i)

ξ (s) independently of the reproduction of all other particles.

If Z0 = ẽi then Z1 has the generating function :

f (i)
ξ0

(s) =

+∞∑

α∈Np

p(i)
ξ0

(α)sα.

To simplify notation, we put fn = fξn . In general, if Zn = (αi)1≤i≤p, then Zn+1 is the sum of
α1 + . . .+αp independent random vectors, where αi particles of type i have the generating
function f (i)

n for i = 1, . . . , p. It is obvious that if Zn = 0̃, then Zn+1 = 0̃.
As in the classical one-type case, the asymptotic behavior of the quantity above is

controlled by the mean of the offspring distributions. We assume that the offspring dis-
tributions have finite first and second moments ; the generating functions f (i)

ξ , ξ ∈ R, 1 ≤
i ≤ p, are thus C2-functions on [0, 1]p and we introduce

(i) the random mean matrices Mn = (Mn(i, j))1≤i, j≤p =

(
∂ f (i)

n (1)
∂s j

)

i, j

taken from the

vector-valued random generating function fn(s) at s = 1, namely

Mn =




∂ f (1)
n (1)
∂s1

. . .
∂ f (1)

n (1)
∂sp

...

∂ f (p)
n (1)
∂s1

. . .
∂ f (p)

n (1)
∂sp



.

These matrices Mn belong to the semi-group S of p× p matrices with non-negative
entries. For any 1 ≤ i, j ≤ p, the coefficient Mn(i, j) of the mean matrix Mn is the
mean number of offspring of type j produced by individual of type i at generation
n.

(ii) the random Hessian matrices B(i)
n = (B(i)

n (k, l))1≤k,l≤p =

(
∂2 f (i)

n
∂sk∂sl

(1)
)

k,l
, 1 ≤ i ≤ p, taken

from the real-valued random generating function f (i)
n (s) at s = 1.

For any 1 ≤ i ≤ p, the random variables Mn and B(i)
n are i.i.d. in n. The common law of

the Mn is denoted by µ.
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Recall that Ln = Mn−1 . . .M0 in this context. By [Furstenberg et Kesten, 1960], if

E(max(0, log |M0|)) < +∞, then the sequence
(

1
n

log |Ln|

)

n≥1
convergesP-almost surely to

some constant limit γµ := lim
n→+∞

1
n
E[log |Ln|]. Furthermore, if there exists a constant B > 0

such that
1
B
≤ Mn(i, j) ≤ B and 0 ≤ B(i)

n (k, l) ≤ B P-almost surely for any 1 ≤ i, j, k, l ≤ p,
then the process is positively regular and not singular (see Section 2.2 for the definitions
of these notions) ; hence, by [Kaplan, 1974], the process (Zn)n≥0 becomes extinct P-almost
surely if and only if γµ ≤ 0. These conditions seem to be a bit too strong, see (0.0.1) below.

In the present work, we focus our attention on the so-called critical case, that is γµ = 0,
and specify the speed of extinction of the Galton-Watson process. Then we introduce some
proper subset of the interior S+ of the semi-group S which is of interest in the sequel : for
any constant B ≥ 1, let S+(B) denote the set of p×p matrices g = (g(i, j))1≤i, j≤p with positive
coefficients such that for any 1 ≤ i, j, k, l ≤ p,

1
B
≤

g(i, j)
g(k, l)

≤ B. (0.0.1)

Additionally, we consider “linear-fractional multi-dimensional generating functions”
f = fγ,M of the form :

f (s) = fγ,M(s) = 1 −
1

1 + γ̃(1 − s)
M(1 − s), (0.0.2)

for any s ∈ [0, 1]p, where γ̃ = (γ, . . . , γ) ∈ Rp with γ > 0 and M ∈ S+. For such a function
f = fγ,M, we set γ = γ( f ) and M = M( f ) and notice that M( f ) equals the mean matrix(
∂ f (i)

∂s j
(1)
)

1≤i, j≤p
.

With the functions fn being linear-fractional generating functions, we specify hypo-
theses concerning the distribution µ of the mean matrices Mn = M( fn),n ≥ 1 and the
random variables γ( fn),n ≥ 0.

H1. There exists ε0 > 0 such that
∫

S N(g)ε0µ(dg) < ∞.
H2. (Strong irreducibility). There exists no affine subspaces A of Rd such that A ∩ C is

non-empty, bounded and invariant under the action of all elements of the support of µ.
H3. There exists B ≥ 1 such that µ(S+(B)) = 1.
H4. The upper Lyapunov exponent γµ of µ is equal to 0.
H5. There exists δ > 0 such that µ(Eδ) > 0, where

Eδ := {g ∈ S+
| ∀x ∈ X, log |x̃g| ≥ δ}.

H6. There exists B′ ≥ 1 such that
1
B′
≤ γ( fn) ≤ B′ P − a.s. for any n ≥ 1.

We recall the result when p = 1.

Theorem 3 [Geiger et Kersting, 2000](Critical case)
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Suppose that E log f ′0(1) = 0,

0 < E(log f ′(1))2 < +∞ and E

(
f ′′(1)
f ′(1)2 (1 + log+ f ′(1))

)
< +∞.

Then, for some 0 < β < +∞,

P(Zn > 0) ∼
β
√

n
as n→ +∞.

Here comes the main results of this thesis.

Theorem 4 Assume that the random variables fn are linear fractional generating functions and
that hypotheses H1-H6 hold. Then, for any i ∈ {1, . . . , p}, there exists a number βi ∈ (0,+∞) such
that

lim
n→+∞

√
nP(Zn , 0̃|Z0 = ẽi) = βi. (0.0.3)

For general generating functions, we obtain the following weaker result.

Theorem 5 Assume that the random variables fn are C2-functions on [0, 1]p such that

1. there exists A > 0 such that for any i, k, l ∈ {1, . . . , p},

∂2 f (i)
n

∂sk∂sl
(1) ≤ A

∂ f (i)
n

∂sk
(1) P − a.s.

2. the distribution µ of the matrices Mn =
(
∂ f (i)

n
∂s j

(1)
)

1≤i, j≤p
satisfies hypotheses H1-H5.

Then, there exist constants 0 < c1 < c2 < +∞ such that for any i ∈ {1, . . . , p}, and n ≥ 1,

c1
√

n
≤ P(Zn , 0̃|Z0 = ẽi) ≤

c2
√

n
.

Notice that by recent work [Vatutin et Dyakonova, 2017], statement (0.0.3) holds in fact
true even when the fn are not assumed to be linear fractional generating functions. The
authors in [Vatutin et Dyakonova, 2017] apply the proof presented in this thesis, adding
an extension to the multitype case of Geiger & Kersting’s decomposition of the extinction
probability and taking into account the residual term which appears in this expression.

This thesis is organised as follow : Chapter 1 provides the conditioned limit theorems
on products of matrices, which is an important tool to find the asymptotic behavior of ex-
tinction probability in BPRE. We recall general results about fluctuations of 1-dimensional
random walk with i.i.d. increments (section 1.1 and 1.2). Then we present general results
for products of random matrices and and fix the notations (section 1.3 and 1.4). The main
part of Chapter 1 is section 1.5. Chapter 2 concerns in more detail Galton-Watson bran-
ching processes in fixed and in random environment. Section 2.4 is the main part of this
chapter with the article that concerns the topic of this thesis. Chapter 3 gives some si-
mulations of the considered Galton-Watson process and the thesis ends with conclusions
with questions for future research.
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Chapitre 1

Random walks on R and products of
matrices

Many limit theorems which arose for the last 60 years, initiated by [Furstenberg
et Kesten, 1960], [Guivarc’h et Raugi, 1985], [Le Page, 1982]... and recently [Benoist et
Quint, 2016], describe the asymptotic behavior of random walks with i.i.d. increments,
for instance the strong law of large numbers, the central limit theorem, the invariant
principle... Moreover, the fluctuations of these processes are well studied, for example
functional central limit theorems for random walks conditioned on staying positive, or
the decay of the probability that the processes stay inside the half real line up to time n
or . A vast literature exists on this subject, see for instance [Bolthausen, 1976], [Iglehart,
1974b], [Iglehart, 1974a], [Iglehart, 1975] or [Kaigh, 1976] and references therein. The
Wiener-Hopf factorization is usually used in this case and so far, it seems to be impossible
to adapt in non-abelian context.

Recently, much efforts are made to apply the analogue results above for the logarithm
of the norm of the product of i.i.d. random matrices since it behaves similarly to a sum of
i.i.d. random variables. Let us mention also the works by [Hennion, 1984] and [Hennion
et Hervé, 2008] for matrices with positive entries. However, the studies on the subject
of fluctuation was quite sparse a few years ago. Thanks to the approach of [Denisov
et Wachtel, 2015] for random walks in Euclidean spaces and motivated by branching
processes, I. Grama, E. Le Page and M. Peigné recently progressed for invertible matrices
( [Grama et al., 2014]). Here we propose to develop the same strategy for matrices with
positive entries by using [Hennion et Hervé, 2008].

In this chapter we tend to find the asymptotic behavior of the random process Sn =
log |Mn . . .M1x|, where Mn are independent and identically distributed (i.i.d.) random
positive matrices and x is a random vector in R+d. Notice that the increments Sn − Sn−1
of this random process are not i.i.d. which is the main difference from classical random
walks on R.

First, we discuss random walks with i.i.d. increments and second, investigate the
Wiener-Hopf method used to obtain those results and the difficulties arising in the case of
non-i.i.d. increments, in particular for processes (Sn)n≥0 over products of random matrices
as introduced above. Third, we consider the results obtained for products of random
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1.1. RANDOM WALKS WITH I.I.D. INCREMENTS

positive matrices. Last but not least, some brief knowledge about Lyapunov’s exponent
is recalled for later use in an article put at the end of the present chapter.

1.1 Random walks with i.i.d. increments

The theory and applications of random walks are omnipresent in the modern proba-
bility literature, and random walks perhaps present the simplest and the most important
examples of stochastic processes. Let (Ω,F ,P) be a probability space. If we think of
X1,X2, . . . defined on (Ω,F ,P) as the gains or losses of a gambler on successive plays of a
gambling game, his cumulative gains or losses on the first n plays equal the partial sums

Sn := S0 + X1 + . . . + Xn,

where S0 is the initial fortune of the gambler. The behavior of the “random walk” (Sn)n
describes the evolution of the gambler’s fortune. The simplest non-trivial case is to let
X1,X2, . . . be independent with distribution µ and the basic operation that forms the nth
convolution powers are µ, µ∗2 := µ ∗ µ, . . . , µ∗n := µ ∗ µ∗(n−1).

When S0 = 0, one says that the random walk (Sn)n≥0 starts from 0. One of the main
tool to study random walks is the characteristic function of the increments Xn, defined by

µ̂(t) := E[exp(itXn)] =

∫
eitxµ(dx);

it contains all the information on the distribution µ. Since the increments are i.i.d., we can
interprete the characteristic function of Sn as follows

E[exp(itSn)] =

∫
eitxµ∗n(dx) = µ̂n(t).

Thanks to this expression, the asymptotic properties of (Sn)n≥0 are closely related to the
local behavior near 0 of the function µ̂. The basic dichotomy of transience or recurrence
for random walks can be expressed in terms of characteristic functions, which extends to
locally compact abelian groups, like how the Fourrier analysis does to the general setting
of random walks on groups.

The transience-recurrence dichotomy of random walks depends on the existence of
the Green potential,

G(x, dy) :=
+∞∑

n=0

Pn(x, dy).

If the Green potential is a Radon measure, that if G(x,K) =
∑+∞

n=0 Pn(x,K) < +∞ for every
x ∈ R and any compact set K ⊂ R, then the according random walk is transient, otherwise
the random walk is recurrent.

furthermore, since random walks are particularly simple and important Markov pro-
cesses, their potential theory is developed accordingly, where the concept of harmonic
function plays a crucial role to illustrate generalized results of classical potential theory.
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1.2. WIENER-HOPF FACTORIZATION METHOD

Formally, a function f is harmonic if it satisfies the equation P f = f , where P is the
transition operator of the random walk (Sn)n≥0 ; in other words, for every x ∈ R,

f (x) =

∫

R
f (y)P(x, dy) =

∫

R
f (x + z)µ(dz).

Nevertheless, while the Fourrier and potential theory are classical tools, the coupling
method is more recent : we consider two independent processes on the same probability
space with given distributions, and seek to compare those distributions by comparing
the processes themselves directly. Proving the convergence theorem for Markov chains
and renewal theorems are two of the most successful applications of the coupling method
[Lindvall, 1992].

Much of the core of classical probability theory is concerned with the limit theory of
a sequence of partial sums Sn, for example the following classical limit theorems : the
strong law of large numbers, the central limit theorem, the law of iterated logarithm, the
large deviation theorems... Informally, we concern with Sn as n → +∞. As the number
of steps increases, the influence of each step decreases. Thus, we may expect a setting
of a stochastic process in continuous time and state-space, which is indeed true. In the
simplest case when the Xn have finite variance then the limiting process obtained is a
Brownian motion. The necessary tool to handle the passage to the limit is the theory
of weak convergence of probability measures, see Billingsley [Billingsley, 1968] for an
excellent reference.

It frequently happens that we need to deal with a random walk in which we want
to condition on some event by time n, that this event may have small probability and
vanishing in the limit. The classical method used to study the rate of convergence of a
random walk on Markov chain is spectral theory. If the transition matrix of the chain
is P, then the nth step transition matris is Pn. Using Perron-Frobenius theorem, we can
decompose the transition matrix as P = Π + R, where Π is the diagonal matrix of the
Perron root 1 and the convergence behavior of Pn is determinded by the second greatest
eigenvalue of P. Random walks in random environment is a variant of random walk to
model aspects of natural phenomena.

1.2 Wiener-Hopf factorization method

The idea of taking a function which is defined on a strip in the complex plane and
expressing it as a product of two functions in which each functions is defined in a half-
plane intersecting at this strip and analytic in their interior allows us to use the powerful
tools of complex analysis. It may be traced to the work of Wiener-Hopf [Paley et Wiener,
1987] and is known as the Wiener-Hopf factorization [Feller, 1968].

Let (Xn)n≥1 be a a sequence of real valued i.i.d. random variables on (Ω,F ,P). We
consider the random walk on R defined by S0 = 0 and Sn := X1 + . . .+ Xn for every n ≥ 1,
where the Xk are i.i.d. random variables with distribution µ. Let ζ denote the characteristic
function of the Xk.

In order to study the first passage of a random walk to some given set A, it is often
useful to consider the joint distribution of the couple (N,SN), where N is the hitting time
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of the random walk to A. Thus, to get some information about the distribution of this
couple, it is natural to keep in mind the “time” for all the process (Sn)n≥0 and to consider
the process (n,Sn)n≥0 on N × R ; the characteristic function of this couple is a function
Φ(s, t) of two variables s and t, defined by Φ : (s, t) 7−→

∑+∞
n=0E[sneitSn], for every s ∈]−1, 1[

and t ∈ R. It holds, for every s ∈] − 1, 1[ and t ∈ R,

Φ(s, t) =

+∞∑

n=0

E[sneitSn] =

+∞∑

n=0

snµ̂(t)n =
1

1 − sζ(t)
. (1.2.1)

In this subsection, we study the first passage of (Sn)n≥0 to the subset ]0,+∞[ and its
complement ] −∞, 0]. Namely, with the convention inf ∅ = +∞, we define

l+ := inf{n > 0 : Sn > 0} and l− := inf{n > 0 : Sn ≤ 0}.

Set l+0 = l−0 = 0 and for every k ≥ 1, let l+k , l
−

k be respectively the (strict) ascending and
descending kth-ladder epoch of the walk (Sn)n≥0, defined inductively by

l+k := inf{n > l+k−1 : Sn > Sl+k−1
} and l−k := inf{n > l−k−1 : Sn ≤ Sl−k−1

}.

For k ≥ 0, the random variables l+k and l−k are stopping times with respect to the random
walk (Sn)n≥0.

By [Spitzer, 1976], we know that the random walk (Sn)n≥0 may have three main
behavior :.

1. Either Sn → +∞ P-a.s. ; in this case E(l+) < +∞ (in particular P(l+ < +∞) = 1)
and P(l− < +∞) < 1.

2. Either Sn → −∞ P-a.s. ; in this case E(l−) < +∞ and P(l+ < +∞) < 1.
3. Or (Sn)n≥0 oscillates, namely

lim inf
n→+∞

Sn = −∞ P−a.s. and lim sup
n→+∞

Sn = +∞ P−a.s.

In this case P(l− < +∞) = P(l+ < +∞) = 1 and E(l−) = E(l+) = +∞.

For instance, assume that E(|Xk|) < +∞ ; cases (1), (2) and (3) correspond respectively to
the conditions E(Xk) > 0,E(Xk) < 0 and E(Xk) = 0.

From now on, we assume that (Sn)n≥0 oscillates, that is the stopping times l− and l+

are finite P-a.s. ; this property holds in particular when the Xn have finite expectation
and are centered. In this case, for k ≥ 0, all the random stopping times l+k and l−k are finite
P-a.s. By a straightforward argument, one may check that the random variables l+k − l+k−1,
for k ≥ 1, are i.i.d. with the same distribution as l+ (similarly the random variables l−k − l−k−1,
for k ≥ 1, are i.i.d. with the same distribution as l−). Furthermore, the random sums Sl+k
and Sl−k

are well defined and the random variables Sl+k
− Sl+k−1

, for k ≥ 1, (resp., the random
variables Sl−k

− Sl−k−1
, for k ≥ 1) are also i.i.d. with the same distribution as Sl+ (resp., Sl−).

For every s in [0, 1[ and every t ∈ R, it holds
+∞∑

n=0

E[sneitSn] = E

[
l+−1∑

n=0

sneitSn

]
+ E

[
+∞∑

n=l+
sneitSn

]

= E

[
l+−1∑

n=0

sneitSn

]
+ E[sl+eitSl+ ]

+∞∑

k=0

E[skeitSk],
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which implies

E[
+∞∑

n=0

sneitSn] = E[
l+−1∑

n=0

sneitSn]{1 − E[sl+eitSl+ ]}−1. (1.2.2)

The random vectors (X1,X2, . . . ,Xn) and (Xn,Xn−1, . . . ,X1) have the same distribution :
this is the so-called duality property. By using the definition of l+ and duality property, we
obtain

E[
l+−1∑

n=0

sneitSn] =

+∞∑

n=0

E[sneitSn ; l+ > n] (1.2.3)

=

+∞∑

n=0

E[sneitSn ; S1 ≤ 0, . . . ,Sn ≤ 0]

=

+∞∑

n=0

E[sneitSn ; Sn ≤ Sn−1, . . . ,Sn ≤ 0]

=

+∞∑

n=0

E[sneitSn ;∃k > 0 : n = l−k ]

=

+∞∑

n=0

+∞∑

k=0

E[sl−k e
itSl−k ; n = l−k ]

=

+∞∑

k=0

E[sl−k e
itSl−k ]. (1.2.4)

Notice that

{1 − E[sl−eitSl− ]}−1 =

+∞∑

k=0

(E[sl−eitSl− ])k =

+∞∑

k=0

E[sl−k e
itSl−k ] (1.2.5)

{1 − E[sl+eitSl+ ]}−1 =

+∞∑

k=0

(E[sl+eitSl+ ])k =

+∞∑

k=0

E[sl+k e
itSl+k ]. (1.2.6)

From (1.2.2), (1.2.4) and (1.2.5), we obtain

E[
+∞∑

n=0

sneitSn] = {1 − E[sl−eitSl− ]}−1
{1 − E[sl+eitSl+ ]}−1.

Therefore, from (1.2.1), it yields

1 − sζ(t) = (1 − E[sl−eitSl− ])(1 − E[sl+eitSl+ ]), (1.2.7)

in which the right side contains two characteristic functions of measures which are sup-
ported on ] −∞, 0] and ]0,+∞[, respectively.

We take into account some basic formal calculations which may be useful later :

1
1 − x

=

+∞∑

n=0

xn and log(1 − x) = −

+∞∑

n=0

xn

n
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which implies 1−x = exp(log(1−x)) = exp
(
−

+∞∑

n=1

xn

n

)
.Therefore, we may also decompose

formally 1 − sζ(t) as

1 − sζ(t) = exp
(
−

+∞∑

n=1

sn

n
E[eitSn]

)

= exp

[
−

+∞∑

n=1

sn

n
E[eitSn ; Sn > 0] −

+∞∑

n=1

sn

n
E[eitSn ; Sn ≤ 0]

]

= exp

[
−

+∞∑

n=1

sn

n
E[eitSn ; Sn > 0]

]
exp

[
−

+∞∑

n=1

sn

n
E[eitSn ; Sn ≤ 0]

]
, (1.2.8)

in which the right side contains also two characteristic functions of measures supported
on ] − ∞, 0] and ]0,+∞[, respectively. Some may call these functions the left and right
Wiener-Hopf factors. Thus, comparing decompositions (1.2.5), (1.2.7) and (1.2.8) yields

1 − E[sl−eitSl− ] =

{
+∞∑

k=0

E[sl−k e
itSl−k ]

}−1

= exp

[
−

+∞∑

n=1

sn

n
E[eitSn ; Sn ≤ 0]

]

and

1 − E[sl+eitSl+ ] =

{
+∞∑

k=0

E[sl+k e
itSl+k ]

}−1

= exp

[
−

+∞∑

n=1

sn

n
E[eitSn ; Sn > 0]

]
.

This is the so-called “Wiener-Hopf factorization” which furnishes a simple beautiful but
also powerful expression of the quantities E[sl−eitSl− ] and E[sl+eitSl+ ].

To be continued, notice that by (1.2.3) and (1.2.5) it holds

+∞∑

n=0

snE[eitSn ; l+ > n] = {1 − E[sl−eitSl− ]}−1,

and similarly,

+∞∑

n=0

snE[eitSn ; l− > n] = {1 − E[sl+eitSl+ ]}−1. (1.2.9)
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We set t = 0 in (1.2.9) and obtain

+∞∑

n=0

snP(l− > n) = {1 − E[sl+]}−1

= exp

(
+∞∑

n=1

sn

n
P(Sn > 0)

)

= exp

(
+∞∑

n=1

sn

n

(
P(Sn > 0) −

1
2

))
exp

(
1
2

+∞∑

n=1

sn

n

)

= exp

(
+∞∑

n=1

sn

n

(
P(Sn > 0) −

1
2

))
exp

(
−

1
2

log(1 − s)
)

=
1

√
1 − s

exp

(
+∞∑

n=1

sn

n

(
P(Sn > 0) −

1
2

))
. (1.2.10)

With the assumptions E(Xn) = 0 and E(X2
n) < +∞, the central limit theorem for ran-

dom walks on R yields limn→+∞P(Sn > 0) = 1
2 ; consequently 1

n

(
P(Sn > 0) − 1

2

)
= o(n)

n as
n → +∞. Under a stronger assumption E(X2+δ

n ) < +∞ for some δ ∈]0, 1[, a straight-
forward generalization of the Berry-Essen’s theorem [Chow et Teicher, 2012] yields∣∣P(Sn > 0) − 1

2

∣∣ ≤ C
nδ/2 for some constant C > 0, which implies

+∞∑

n=1

1
n

∣∣∣∣P(Sn > 0) −
1
2

∣∣∣∣ < +∞. (1.2.11)

Property (1.2.11) holds in fact under the hypothesis E(X2
n) < +∞, the proof is quite

technical (see [Spitzer, 1976]).
Now, let us briefly explain how to get the asymptotic behavior of the probability

P(l− > n) ; indeed, by (1.2.10) and (1.2.11), one may write

+∞∑

n=0

snP(l− > n) =
eα
√

1 − s
(1 + o(s))

with α :=
+∞∑

n=1

1
n

(
P(Sn > 0) −

1
2

)
and o(s)→ 0 as s→ 1. By a Tauberian theorem for power

series [Feller, 1968], it follows that 1
n
∑n

k=1P(l− > k) ∼ eα
√
πn as n→ +∞ ; using the fact that

the sequence (P(l− > n))n≥1 decreases, one concludes

P(l− > n) ∼
eα
√
πn

as n→ +∞.

The same approach leads to a more general statement (we refer to [Le Page et Peigné,
1997] for the details). For every a > 0, let τa be the first entrance time in ] − ∞,−a] of the
random walk (Sn)n≥0 starting from 0 :

τa := inf{n > 0 : Sn ≤ −a}.
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For a = 0 it holds τa = l−. One may prove that there exists a positive constant ca such that

P(τa > n) ∼
ca
√

n
as n→ +∞.

The constant ca may be expressed in terms of the renewal function of the increasing ladder
random walk (Sl+n )n≥0 and its behavior at infinity is controlled as follows : there exists a
positive constant c such that ca ∼ ca as a → +∞. Furthermore, the function a 7→ ca is
harmonic for Sn killed at leaving ]0,+∞[.

It is worth mentioning that Wiener-Hopf method is powerful as one does not need to
impose any moment conditions on the random walk ; indeed, other estimates as above
exist for random walks belonging to the domain of attraction of any stable distribution.
Nevertheless, it is based on the fact that (R,+) is abelian and that its bounded characters
are the functions x 7→ eitx for t ∈ R. The fact that the increments are independent and
identically distributed is crucial in order to use the characters of the group as test functions ;
the decompositions (1.2.7) and (1.2.8) and the pairwise identification of the factors are
based on this key point.

In the following sections, we obtain a similar result for the process (log |Mn · · ·M1x|)n≥1
where Mn are i.i.d. d × d random matrices with non-negative entries and x is an arbitrary
vector in (R∗+)d. By classical cocycle properties introduced to study products of random
matrices, the random variable log |Mn · · ·M1x|may be decomposed into the sum of real va-
lued random variables Yk ; unfortunately, the “increments” Mk of the product of matrices
M1 · · ·Mn are i.i.d. but this property fails for the increments Yk. Let us emphasize that the
process (log |Mn · · ·M1x|)n≥1 is not a Markov chain on R. Nevertheless, the matrices Mk
act projectively on some compact space X (see the next paragraph) ; this action yields to
some Markov chain (Xn)n≥0 on X, starting from x. The key point of this construction is
to notice that the process (Xn, log |Mn · · ·M1x|)n≥0 becomes a Markov chain on X ×R and
that the distribution of the increment Yk = log |Mk · · ·M1x| − log |Mk−1 · · ·M1x| depends
only on Xk−1. The process (Xn, log |Mn · · ·M1x|)n≥0 is called a semi-markovian random walk
on X ×R ; for short, one often say that (log |Mn · · ·M1x|)n≥0 is a Markov walk on R.

This explains why we have to use a different approach from the Wiener-Hopf factori-
zation to study the fluctuations of the process (log |Mn · · ·M1x|)n≥0. Recently in [Denisov
et Wachtel, 2015], D. Denisov and V. Wachtel developed a new strategy to get such results
for the first exit time of cones in the context of random walks on the Euclidean space
Rd, d ≥ 2 ; it is based on the weak invariance principle for random walks, with a control
of the rate of convergence. Grama, E. Le Page and M. Peigné adapted their approach to
sums of dependent real valued random variables and applied it to a wide class of Markov
walks on R, including the processes (log |Mn · · ·M1x|)n≥1 mentioned above.

1.3 Product of random matrices

Product of random matrices is the object of many investigations and many limit
theorems exist in this context : for instance, the law of large numbers, the central limit
theorem, the large deviations principle (see [Bougerol et Lacroix, 1985] and references
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therein). Unfortunately, since there is not any type of Wiener-Hopf factorization which is
available in the theory of fluctuations of products of random matrices, it remains to be
studied. In 2015, Denisov-Wachtel presented a new approach to studies of random walks
in Euclidean spaces and their fluctuations with respect to some cones. This approach is
totally different from the others before and based on weak functional limit theorems for
random walks, with a control of the rate of convergence.

In the following subsections, we introduce some notations used in the article presented
in this chapter and present some elements of proofs.

1.3.1 On the semi-group of matrices with non-negative entries

We fix an integer d ≥ 2 and denote Rd the set of d-dimensional column vectors with
real coordinates ; for every column vector x = (xi)1≤i≤d ∈ R

d, we denote x̃ the row vector
x̃ := (x1, . . . , xd). Let 1 (resp. 0) be the column vector of Rd whose all coordinates equal 1
(resp. 0). We fix a basis {ei, 1 ≤ i ≤ d} in Rd and denote | · | the corresponding L1-norm and
〈 , 〉 the usual scalar product on Rd.

Let S be the general linear semi -group of d×d matrices with non-negative coefficients
such that each column contains at least one positive element ; we denote S+ the interior
of S, that is the set of matrices with all strictly positive coefficients. Let us endow S with
the L1-norm : for every matrix M in S, where M = (M(i, j))i, j, then the norm of matrix M
is defined as follows

|M| := max
1≤ j≤d

d∑

i=1

M(i, j).

For any M,N ∈ S, it holds |MN| ≤ |M| |N|. Set C := (R+)d and X := {x ∈ C : |x| = 1}.
Matrices in S act linearly on the cone C, this property is crucial in the sequel ; they also

act on X as follows :

∀M ∈ S,∀x ∈ X M · x :=
1
|Mx|

Mx.

We mention [Hennion, 1997] for further information about a distance denoted by d that
we endow X with. This distance d is a variant of the Hilbert metric, bounded on X and
every element g in S acts on (X, d) as a contraction. We summarise its construction and its
major properties as follows. For every x, y in X, we write :

m(x, y) = sup{λ ∈ R+
|∀i ∈ {1, . . . , d}, λyi ≤ xi}

= min{
xi

yi
|∀i = 1, . . . , d such that yi > 0}

It follows that 0 ≤ m
(
x, y
)
≤ 1 and we define

d
(
x, y
)

:= ϕ
[
m
(
x, y
)

m
(

y, x
)]
,

where ϕ is the one-to-one function on [0, 1] defined by ϕ (s) :=
1 − s
1 + s

.

For M ∈ S, let c (M) := sup
{

d
(
M · x,M · y

)
, x, y ∈ X

}
.
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Proposition 1.3.1 [Hennion, 1997] The function d is a distance on X which satisfies the
following properties.

1. sup{d(x, y) | x, y ∈ X} = 1.

2. For every M = (M(i, j))i, j ∈ S,

c(M) = max
i, j,k,l∈{1,...,d}

|M(i, j)M(k, l) −M(i, l)M(k, j)|
M(i, j)M(k, l) + M(i, l)M(k, j)

.

In particular c(M) < 1 for every M ∈ S+(B).

3. d(M · x,M · y) ≤ c(M)d(x, y) ≤ c(M) for every x, y ∈ X and M ∈ S.

4. c(MN) ≤ c(M)c(N) for every M,N ∈ S.

1.3.2 On some sub-semigroup of S+ and its contraction properties

We consider some proper subset of S+ which is of interest in the sequel : for every
constant B ≥ 1, let S+(B) denote the set of d × d matrices M = (M(i, j))1≤i, j≤d with positive
coefficients such that for any 1 ≤ i, j, k, l ≤ d,

1
B
≤

M(i, j)
M(k, l)

≤ B.

By Proposition 1.3.1, there exists κB ∈ [0, 1[ such that c(M) ≤ κB for every M ∈ S+(B).
Indeed, we consider the function D : (x, y, z, t) 7→ |xy−zt|

|xy+zt| on the compact set [ 1
B ,B]4. Since D

is continuous on the given compact set, D attains its maximum here, that is the constant

κB := max
(x,y,z,t)∈[ 1

B ,B]4

|xy − zt|
|xy + zt|

belongs to [0, 1[ and depends on B.

Denote by TS+(B) the semigroup generated by the elements in S+(B). The following
lemma is the key argument to control the asymptotic behavior of the norm of products of
matrices in S+(B).

Notation. Let c > 0 and φ,ψ be two functions of some variable x ; we shall write φ
c
� ψ (or

simply φ � ψ) when φ(x) ≤ cψ(x) for any value of x. The notation φ
c
� ψ (or simply φ � ψ)

means φ
c
� ψ

c
� φ.

Since |M| ≤ |M|′ ≤ d|M| for any matrix M in S, where |M|′ :=
∑d

i, j=1 M(i, j), then without
loss of generality, we locally use the norm | · |′ in Lemma 1.3.2 and the same notation | · |
for the new norm.

Lemma 1.3.2 There exists c ≥ 1 which depends on B such that for every M,N ∈ TS+(B) and
x, y ∈ X,

1. |Mx|
c
� |M| and | ỹM|

c
� |M|,

2. |ỹMx|
c
� |M|,

3. |MN|
c
� |M||N|.
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We begin with the proof of Furstengberg-Kesten [Furstenberg et Kesten, 1960] and
then present an alternate proof which is based on spectral theory of matrices and contains
ideas from geometric arguments ; this new proof may be used in work in progress on
stochastic dynamical systems generated by affine maps in Rd.

The proof of Furstengberg-Kesten is based on the following simple result.

Lemma 1.3.3 For every n ≥ 1, any matrices M1, . . . ,Mn in S+(B), letting Ln := Mn . . .M1, it
holds :

∀i, j, k, l = 1, . . . , d
1

B2 ≤
Ln(i, j)
Ln(k, l)

≤ B2.

Proof. For n = 1, it is obvious. For n ≥ 2, setting Ln−1,2 = Mn−1 . . .M2 (with the convention
L1,2 = I), it holds

Ln(i, j)
Ln(k, l)

=

∑n
r,s=1 Mn(i, r)Ln−1,2(r, s)M1(s, j)∑n
r,s=1 Mn(k, r)Ln−1,2(r, s)M1(s, l)

≤

∑n
r,s=1 max

1≤i′, j′≤n
Mn(i′, j′)Ln−1,2(r, s) max

1≤i′, j′≤n
M1(i′, j′)

∑n
r,s=1 min

1≤i′, j′≤n
Mn(i′, j′)Ln−1,2(r, s) min

1≤i′, j′≤n
M1(i′, j′)

≤ B2.

Similarly,

Ln(i, j)
Ln(k, l)

≥

∑n
r,s=1 min

1≤i′, j′≤n
Mn(i′, j′)Ln−1,2(r, s) min

1≤i′, j′≤n
M1(i′, j′)

∑n
r,s=1 max

1≤i′, j′≤n
Mn(i′, j′)Ln−1,2(r, s) max

1≤i′, j′≤n
M1(i′, j′)

≥
1

B2 .

�

Proof of Lemma 1.3.2. By Lemma 1.3.3, for every M ∈ TS+(B) and 1 ≤ i, j, k, l ≤ d, it holds

M(i, j)
B2

� M(k, l),

which yields

|M| =
d∑

i, j=1

M(i, j)
d2B2

� M(k, l). (1.3.1)

Then, further properties can be easily deduced from (1.3.1). Indeed, the assertions we
need are obvious by noticing that for any x, y ∈ X and for any M,M′ ∈ S+(B),

|Mx| =
d∑

i, j=1

M(i, j)x j
d3B2

� |M|,

ỹMx =

d∑

i, j=1

yiM(i, j)x j
d2B2

� |M|,
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|MM′| =
d∑

i, j,k=1

M(i, j)M′( j, k)
d7B4

� |M||M′|.

�

We present an alternative proof of Lemma 1.3.2 which is based on the analysis of
the spectrum of elements of S+(B) ; we expect that this approach may be useful for a
larger class of matrices. We only get into the details for the assertion |Mx| � |M|, the other
assertions are easy consequences.

Before getting into the proof, let us state a useful lemma.

Lemma 1.3.4 For d ≥ 2, there exists a compact set included in the interior of X, denoted by XB,
such that M · x ∈ XB for every M ∈ TS+(B) and x ∈ X.

Proof. Step 1 : Assume that the matrix M belongs to S+(B), where M = (M(i, j))1≤i, j≤d. For
every i, j = 1, . . . , d,

〈M · e j, ei〉 =
M(i, j)

∑d
k=1 M(k, j)

=
1

∑d
k=1

M(k, j)
M(i, j)

,

which implies that 〈M · e j, ei〉 ∈
[ 1

dB
;

1
1 + 1

B

]
. Thus M · e j ∈

[
1

dB ; 1
1+ 1

B

]d
. Fix εB > 0 such that

[
1

dB ; 1
1+ 1

B

]
⊂ [εB; 1 − εB] and set XB := X ∩ [εB; 1 − εB]d ; it holds M · x ∈ XB for every x ∈ X

and M ∈ S+(B).
Step 2 : If M ∈ TS+(B), then there exists some k ≥ 1 such that M = M1 . . .Mk with

M1, . . . ,Mk ∈ S+(B). For k = 1, the vector M · x belongs to XB by Step 1. For k > 1,
the vector M2 . . .Mk · x belongs to X which yields M · x = M1 · (M2 . . .Mk · x) ∈ XB.

�

Remark. First, we recall general results on spectral theory of matrices. Let M ∈ TS+(B),
then its characteristic polynomial is PM(λ), expressed by

PM(λ) = det(M − λI) = (λ − λ1)α1 . . . (λ − λr)αm ,

where λ1, . . . , λm are eigenvalues of M with respective algebraic multiplicities α1, . . . , αm.
For 1 ≤ j ≤ m, we denote by Hλ j the real part of the characteristic space of λ j :

Hλ j = Re
(

Ker(M − λ jI)α j
)

=
{

x ∈ Rd
| ∃y ∈ Rd, x + iy ∈ Ker(M − λ jI)α j

}

=
{

v + v̄ | v ∈ Ker(M − λ jI)α j
}
.

It is noticable that Hλ j are M-invariant subspaces of Rd. By Cayley-Hamilton’s theorem,
it holds that Cd = ⊕m

j=1 Ker(M − λ jI)α j , which implies

Rd =
m
⊕
j=1

Hλ j .
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Since M has positive entries, by Perron-Frobenius’ theorem, its spectral radius is the simple
real dominant eigenvalue, denoted by λM. Without loosing generality, we suppose that
λM = λ1, then α1 = 1. Corresponding with λM is the eigenvector uM in X. Since λM is
dominant, all the other eigenvalues λk have modulus stricly less than λM, for 2 ≤ k ≤ m.

Set HM := ⊕m
j=2 Hλ j and notice that HM ⊂ C

c
∪{0}. Indeed, if there exists some u ∈ C such

that u ∈ HM and |u| = 1, then d(Mn
· u,Mn

· uM) = c(Mn)d(u,uM) ≤ κn
B, so that Mn

· u→ uM
as n → +∞. This contradicts the fact that u ∈ HM and HM is an M-invariant subspace of
Rd.

Therefore, by the inclusion HM ⊂ C
c
∪ {0}, there exists a positive constant δB (which

only depends on B) such that | cos(û, v)| = |〈u, v〉| ≤ 1 − δB for every u ∈ HM and v ∈ XB
such that |u| = 1.

Alternative proof of Lemma 1.3.2. Recall thatXB is defined in Lemma 1.3.4. We begin
to prove a part of the first assertion of Lemma 1.3.2, that there exists a positive constant

CB such that |Mx|
CB
� |M| for every M ∈ TS+(B) and x ∈ X.

Let us fix x ∈ X. The inequality |Mx| ≤ |M| is obvious ; let us prove the converse
inequality, up to a multiplicative constant. If M ∈ S+(B), the conclusion follows from the
definition of S+(B) (|Mx| ≥ 1

B2 |M|). Assume that M = M1 . . .Mk, where M1, . . . ,Mk ∈ S+(B)

for k ≥ 2 ; set M1,k−1 = M1 . . .Mk−1, then M = M1,k−1Mk, which yields |Mx| =
∣∣∣M1,k−1

Mkx
|Mkx|

∣∣∣×
|Mkx|with Mkx

|Mkx| ∈ XB by Lemma 1.3.4. The conclusion follows if we can prove that

∀N ∈ TS+(B),∀y ∈ XB |Ny| ≥
1

CB
|N|. (1.3.2)

Indeed, the assertion follows by taking into account that (1.3.2) implies

|Mx| =

∣∣∣∣M1,k−1
Mkx
|Mkx|

∣∣∣∣ × |Mkx|

≥
1

CB
|M1,k−1| ×

1
B2 |Mk|

≥
1

B2CB
|M|,

where the last inequality follows from the fact that |AB| ≥ |A||B| for two matrices A and B.
It remains to prove inequality (1.3.2) ; we fix N ∈ TS+(B) and y ∈ XB. With the convention

1 = (1, . . . , 1), for λ ∈ R, notice that (λ1 + Cc) ∩XB , ∅ if and only if there exists a positive
constant εB that depends on B such that εB ≤ λ ≤ 1− εB. The vector y can be decomposed
as y = λ1 + y′, where εB ≤ λ ≤ 1−εB and y′ ∈ HN ⊂ C

c
∪{0} ; consequently Ny = λN1+Ny′

with Ny′ ∈ HN ⊂ C
c
∪{0}. The L2-norm of the vector Ny satisfies the following inequalities :

‖Ny‖22 = λ2
‖N1‖22 + ‖Ny′‖22 + 2λ〈N1,Ny′〉

= λ2
‖N1‖22 + ‖Ny′‖22 + 2λ cos( ̂N1,Ny′)‖N1‖2‖Ny′‖2

≥ λ2
‖N1‖22 + ‖Ny′‖22 − 2|λ|(1 − δB)‖N1‖2‖Ny′‖2

= λ2
(

1 − (1 − δB)2
)
‖N1‖22 +

(
|λ|(1 − δB)‖N1‖2 − ‖Ny′‖2

)2

≥ ε2
B

(
1 − (1 − δB)2

)
‖N1‖22.

39



1.4. LYAPUNOV EXPONENT FOR PRODUCT OF MATRICES IN S+

Hence, for every x ∈ C, the double inequality ‖x‖2 ≤ |x| ≤
√

d‖x‖2 and the fact that
|M| = |M1| yield

|Ny| ≥ ‖Ny‖2 ≥ εB
√

1 − (1 − δB)2‖N1‖2 ≥ εB

√
1 − (1 − δB)2

d
|N|,

which is the inequality (1.3.2) with C−1
B := εB

√
1−(1−δB)2

d .
�

1.4 Lyapunov exponent for product of matrices in S+

In this section, we give the definition of the upper Lyapunov exponent γ which gives
the exponential rate of growth of the norm of products of i.i.d. matrices. We only speak
of Lyapunov’s exponent for positive matrices. For the case of invertible matrices, readers
can find in [Bougerol et Lacroix, 1985].

Let Ln denote the left product Ln := Mn . . .M1, where M1,M2, . . . are i.i.d. random
matrices in S+ with common distribution µ, defined on the probability space (Ω,F ,P).
It is well known that |Ln| ≤ |Mn| . . . |M1|. If E(log+

|M1|) < +∞ then log+
|Ln| is integrable.

Furthermore for any n, p ≥ 1,

E[log+
|Ln+p] = E[log |Mn+p...Mn+1...M1|]

= E[log |Mn+p...Mn+1| + log |Mn...M1|]
≤ E[log |Lp|] + E[log |Ln|].

Therefore, the sequence (E[log |Ln|]n≥1)n≥1 is sub-additive and

1
n
E[log |Ln|] −→ γµ := inf

m≥1

1
m
E[log |Lm|]

as n→ +∞with γµ ∈ R ∪ {−∞}.

Definition 1.4.1 If E[log+
|M1|] < +∞, then the upper Lyapunov exponent associated with µ

is the element γµ of R ∪ {−∞} defined by γµ = lim
n→+∞

1
n
E[log |Ln|].

The convergence of the quantity
1
n
E[log |Ln|] towards γµ may be strengthened as follows.

Theorem 1.4.2 [Bougerol et Lacroix, 1985] [Benoist et Quint, 2016] If E[log+
|M1|] < +∞,

then
lim

n→+∞

1
n

log |Ln| = γµ P−a.s.

The upper Lyapunov exponent of µ has an explicit expression, under stronger as-
sumptions on the semi-group generated by the support of µ (namely, conditions P1-P3
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introduced below) ; from Theorem II.1 in [Hennion et Hervé, 2008], under these condi-
tions, there exists a unique probability measure ν onX such that for every bounded Borel
function ϕ : X→ R,

(µ ∗ ν)(ϕ) =

∫

S

∫

X
ϕ(g · x)ν(dx)µ(dg) =

∫

X
ϕ(x)ν(dx) = ν(ϕ).

Such a measure is said to be µ-invariant. The Lyapunov exponent γµ is expressed by

γµ =

∫

S

∫

X
ρ(g, x)ν(dx)µ(dg),

where ρ(g, x) = log |gx| for any (g, x) ∈ S ×X.

1.5 Conditioned limit theorems for products of positive random
matrices

This section presents the article published in 2018 in the journal “Latin American
Journal of Probability and Mathematical Statistics". For the sake of unification, we change
the notation S̊ in the following article into S+.
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Abstract. Inspired by a recent paper of I. Grama, E. Le Page and M. Peigné, we
consider a sequence (gn)n≥1 of i.i.d. random d×d-matrices with non-negative entries
and study the fluctuations of the process (log |gn · · · g1x|)n≥1 for any non-zero vector
x in Rd with non-negative coordinates. Our method involves approximating this
process by a martingale and studying harmonic functions for its restriction to the
upper half line. Under certain conditions, the probability for this process to stay
in the upper half real line up to time n decreases as c√

n
for some positive constant

c.

1. Introduction

Many limit theorems describe the asymptotic behaviour of random walks
with i.i.d. increments, for instance the strong law of large numbers, the central
limit theorem, the invariant principle... Besides, the fluctuations of these processes
are well studied, for example the decay of the probability that they stay inside
the half real line up to time n or functional central limit theorems for random
walks conditioned to stay positive. A vast literature exists on this subject, see
for instance Bolthausen (1976), Iglehart (1974a), Iglehart (1974b), Iglehart (1975),
Kaigh (1976) or Shimura (1983), and references therein. The Wiener-Hopf factor-
ization is usually used in this case and so far, it seems to be impossible to adapt in
non-abelian context. Recently, much efforts are made to apply the results above for
the logarithm of the norm of the product of i.i.d. random matrices since it behaves
similarly to a sum of i.i.d. random variables. Many limit theorems arose for the last
60 years, initiated by Furstenberg and Kesten (1960), Guivarc’h and Raugi (1985),
Le Page (1982)... and recently Benoist and Quint (2016). Let us mention also the
works by Hennion (1984) and Hennion and Hervé (2008) for matrices with positive
entries. However, the studies on the subject of fluctuation was quite sparse a few
years ago. Thanks to the approach of Denisov and Wachtel (2015) for random walks
in Euclidean spaces and motivated by branching processes, I. Grama, E. Le Page

2000 Mathematics Subject Classification. 60J80, 60F17, 60K37.

Key words and phrases. Exit time, Markov chains, Product of random matrices.
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and M. Peigné recently progressed for invertible matrices (Grama et al. (2014)).
Here we propose to develop the same strategy for matrices with positive entries by
using Hennion and Hervé (2008).

We endow Rd with the norm | · | defined by |x| :=
d∑

i=1

|xi| for any column vector

x = (xi)1≤i≤d. Let C be the cone of vectors in Rd with non-negative coordinates

C := {x ∈ Rd : ∀1 ≤ i ≤ d, xi ≥ 0}
and X be the standard simplex defined by

X := {x ∈ C, |x| = 1}.
Let S be the set of d× d matrices with non-negative entries such that each column
contains at least one positive entry; its interior is S+ := {g = (g(i, j))1≤i,j≤d/g(i, j) >
0}. Endowed with the standard multiplication of matrices, the set S is a semigroup
and S+ is the ideal of S, more precisely, for any g ∈ S+ and h ∈ S, it is evident
that gh ∈ S+.
We consider the following actions:

• the left linear action of S on C defined by (g, x) 7→ gx for any g ∈ S and
x ∈ C,
• the left projective action of S on X defined by (g, x) 7→ g · x := gx

|gx| for any

g ∈ S and x ∈ X.

For any g = (g(i, j))1≤i,j≤d ∈ S, without confusion, let

v(g) := min
1≤j≤d

( d∑

i=1

g(i, j)
)

and |g| := max
1≤j≤d

( d∑

i=1

g(i, j)
)
,

then | · | is a norm on S and for any x ∈ C,
0 < v(g) |x| ≤ |gx| ≤ |g| |x|. (1.1)

We set N(g) := max
(

1
v(g) , |g|

)
; notice that N(g) ≥ 1 for any g ∈ S.

On some probability space (Ω,F ,P), we consider a sequence of i.i.d. S-valued
matrices (gn)n≥0 with the same distribution µ on S. Let L0 = Id and Ln := gn . . . g1

for any n ≥ 0. For any fixed x ∈ X, we define the X-valued Markov chain (Xx
n)n≥0

by setting Xx
n := Ln · x for any n ≥ 0 (or simply Xn if there is no confusion). We

denote by P the transition probability of (Xn)n≥0, defined by: for any x ∈ X and
any bounded Borel function ϕ : X→ C,

Pϕ(x) :=

∫

S

ϕ(g · x)µ(dg) = E[ϕ(L1 · x)].

Hence, for any n ≥ 1,

Pnϕ(x) = E[ϕ(Ln · x)].

We assume that with positive probability, after finitely many steps, the sequence
(Ln)n≥1 reaches S+. In mathematical term, it is equivalent to writing as

P


⋃

n≥1

[Ln ∈ S+]


 > 0.

On the product space S×X, we define the function ρ by setting for any (g, x) ∈ S×X,

ρ(g, x) := log |gx|.
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Notice that gx = eρ(g,x)g ·x; in other terms, the linear action of S on C corresponds
to the couple (g ·x, ρ(g, x)). This function ρ satisfies the cocycle property ρ(gh, x) =
ρ(g, h · x) + ρ(h, x) for any g, h ∈ S and x ∈ X and implies the basic decomposition
for any x ∈ X,

log |Lnx| =
n∑

k=1

ρ(gk, X
x
k−1).

For any a ∈ R and n ≥ 1, let S0 := a and Sn = Sn(x, a) := a+
∑n
k=1 ρ(gk, Xk−1).

Then the sequence (Xn, Sn)n≥0 is a Markov chain on X× R with transition prob-

ability P̃ defined by: for any (x, a) ∈ X × R and any bounded Borel function
ψ : X× R→ C,

P̃ψ(x, a) =

∫

S

ψ(g · x, a+ ρ(g, x))µ(dg).

For any (x, a) ∈ X×R, we denote by Px,a the probability measure on (Ω,F) condi-
tioned to the event [X0 = x, S0 = a] and by Ex,a the corresponding expectation; for
the sake of brevity, by Px we denote Px,a when S0 = 0 and by Ex the corresponding
expectation. Hence for any n ≥ 1,

P̃nψ(x, a) = E[ψ(Ln · x, a+ log |Lnx|)] = Ex,a[ψ(Xn, Sn)].

Now we consider the restriction P̃+ to X × R+ of P̃ defined by: for any (x, a) ∈
X× R+ and any bounded function ψ : X× R→ C,

P̃+ψ(x, a) = P (ψ1X×R+
∗

)(x, a).

Let us emphasize that P̃+ may not be a Markov kernel on X× R+.
Let τ := min{n ≥ 1 : Sn ≤ 0} be the first time the random process (Sn)n≥1

becomes non-positive; for any (x, a) ∈ X × R+ and any bounded Borel function
ψ : X× R→ C,

P̃+ψ(x, a) = Ex,a[ψ(X1, S1); τ > 1] = E[ψ(g1 · x, a+ ρ(g1, x)); a+ ρ(g1, x) > 0].

A positive P̃+-harmonic function V is any function from X×R+ to R+ satisfying

P̃+V = V . We extend V by setting V (x, a) = 0 for (x, a) ∈ X×R−∗ . In other words,

the function V is P̃+-harmonic if and only if for any x ∈ X and a ≥ 0,

V (x, a) = Ex,a[V (X1, S1); τ > 1]. (1.2)

From Theorem II.1 in Hennion and Hervé (2008), under conditions P1-P3 intro-
duced below, there exists a unique probability measure ν on X such that for any
bounded Borel function ϕ from X to R,

(µ ∗ ν)(ϕ) =

∫

S

∫

X
ϕ(g · x)ν(dx)µ(dg) =

∫

X
ϕ(x)ν(dx) = ν(ϕ).

Such a measure is said to be µ-invariant. Moreover, the upper Lyapunov exponent
associated with µ is finite and is expressed by

γµ =

∫

S

∫

X
ρ(g, x)ν(dx)µ(dg). (1.3)

Now we state the needed hypotheses for later work.
HYPOTHESES

P1 There exists δ0 > 0 such that

∫

S

N(g)δ0µ(dg) < +∞.
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P2 There exists no affine subspaces A of Rd such that A ∩ C is non-empty and
bounded and invariant under the action of all elements of the support of µ.
P3 There exists n0 ≥ 1 such that µ∗n0(S+) > 0.
P4 The upper Lyapunov exponent γµ is equal to 0.
P5 There exists δ > 0 such that µ{g ∈ S : ∀x ∈ X, log |gx| ≥ δ} > 0.

Condition P1 requires exponential moments of the quantity logN(g). Condition
P2 roughly speaking requires that the dimension of the smallest closed semigroup
which contains the support of µ can not be reduced. Condition P3 is called “Con-
traction property”, it says that there is a positive probability that after a finite
number n0 of times, the product of n0 matrices has positive coefficients, then those
products are contracting. Condition P4 does not imply that the event [τ > n]
occurs with positive probability when n tends to infinity, so P5 ensures this fact.

In this paper, we establish the asymptotic behaviour of Px,a(τ > n) by studying

a P̃+-harmonic function V . More precisely, Proposition 1.1 concerns the existence

of a P̃+-harmonic function and its properties whereas Theorem 1.2 is about the
limit behaviour of the exit time τ .

Proposition 1.1. Assume hypotheses P1-P5.

(1) For any x ∈ X and a ≥ 0, the sequence
(
Ex,a[Sn; τ > n]

)
n≥0

converges to

the function V (x, a) := a − Ex,aMτ , for (Mn)n≥0 is a martingale defined
in Proposition 2.6.

(2) For any x ∈ X the function V (x, ·) is increasing on R+.
(3) There exist c > 0 and A > 0 such that for any x ∈ X and a ≥ 0,

1

c
∨ (a−A) ≤ V (x, a) ≤ c(1 + a).

(4) For any x ∈ X, the function V (x, .) satisfies lim
a→+∞

V (x, a)

a
= 1.

(5) The function V is P̃+-harmonic.

The function V contains information of the part of the trajectory which stays in
R+ as stated in Theorem 1.2.

Theorem 1.2. Assume P1-P5. Then for any x ∈ X and a ≥ 0,

Px,a(τ > n) ∼ 2V (x, a)

σ
√

2πn
as n→ +∞,

where σ2 := lim
n→+∞

1

n
Ex[S2

n] is the variance of the semi-markovian random walk

(Sn)n≥0. Moreover, there exists a constant c such that for any x ∈ X, a ≥ 0 and
n ≥ 1, √

nPx,a(τ > n) ≤ cV (x, a).

As a direct consequence, we prove that the sequence ( Sn
σ
√
n

)n≥1, conditioned to

the event τ > n, converges in distribution to the Rayleigh law as stated below.

Theorem 1.3. Assume P1-P5. For any x ∈ X, a ≥ 0 and t > 0,

lim
n→+∞

Px,a
(
Sn√
n
≤ t | τ > n

)
= 1− exp

(
− t2

2σ2

)
.
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In section 2, we approximate the chain (Sn)n≥0 by a martigale and in section
3, we study the harmonic function V and state the proof of Proposition 1.1. We
use the coupling argument to prove Theorem 1.2 and Theorem 1.3 in section 4. At
last, in section 5 we check general conditions to apply an invariant principle stated
in Theorem 2.1 in Grama et al. (2014).

Throughout this paper, we denote the absolute constants such as C, c, c1, c2, . . .
and the constants depending on their indices such as cε, cp, . . .. Notice that they
are not always the same when used in different formulas. The integer part of a real
constant a is denoted by [a].

2. Approximation of the chain (Sn)n≥0

In this section, we discuss the spectral properties of P and then utilise
them to approximate the chain (Sn)n≥0. Throughout this section, we assume that
conditions P1-P4 hold true.

2.1. Spectral properties of the operators P and its Fourier transform.
Following Hennion (1997), we endow X with a bounded distance d such that g acts
on X as a contraction with respect to d for any g ∈ S. For any x, y ∈ X, we write:

m (x, y) = min
1≤i≤d

{
xi
yi
|yi > 0

}

and it is clear that 0 ≤ m (x, y) ≤ 1. For any x, y ∈ X, let d (x, y) := ϕ (m (x, y)m (y, x)),

where ϕ is the one-to-one function defined for any s ∈ [0, 1] by ϕ (s) :=
1− s
1 + s

. Set-

ting c (g) := sup {d (g · x, g · y) , x, y ∈ X} for g ∈ S; the proposition below gives
some more properties of d and c(g).

Proposition 2.1. Hennion (1997) The quantity d is a distance on X satisfying the
following properties:

(1) sup{d(x, y) : x, y ∈ X} = 1.
(2) |x− y| ≤ 2d(x, y) for any x, y ∈ X.
(3) c(g) ≤ 1 for any g ∈ S, and c(g) < 1 if and only if g ∈ S+.
(4) d (g · x, g · y) ≤ c (g) d (x, y) ≤ c(g) for any and x, y ∈ X.
(5) c (gh) ≤ c (g) c (h) for any g, h ∈ S.

From now on, we consider a sequence (gn)n≥0 of i.i.d. S-valued random variables,
we set ak := ρ(gk, Xk−1) for k ≥ 1 and hence Sn = a +

∑n
k=1 ak for n ≥ 1. In

order to study the asymptotic behavior of the process (Sn)n≥0, we need to consider
the “Fourier transform” of the random variables ak, under Px, x ∈ X, similarly for
classical random walks with independent increments on R. Let Pt be the family of
“Fourier operators” defined for any t ∈ R, x ∈ X and any bounded Borel function
ϕ : X→ C by

Ptϕ(x) :=

∫

S

eitρ(g,x)ϕ(g · x)µ(dg) = Ex
[
eita1ϕ(X1)

]
(2.1)

and for any n ≥ 1,

Pnt ϕ(x) = E[eit log |Lnx|ϕ(Ln · x)] = Ex[eitSnϕ(Xn)]. (2.2)
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Moreover, we can imply that

PmPnt ϕ(x) = E
[
eit log |gm+n···gm+1(Lm·x)|ϕ(Lm+n · x)

]

= Ex
[
eit(am+1+···+am+n)ϕ(Xn+m)

]
(2.3)

and when ϕ = 1, we obtain

Ex
[
eitSn

]
= Pnt 1(x) and Ex

[
eit(am+1+···+am+n)

]
= PmPnt 1(x).

We consider the space C(X) of continuous functions from X to C endowed with
the norm of uniform convergence |.|∞. Let L be the subset of Lipschitz functions
on X defined by

L := {ϕ ∈ C(X) : |ϕ|L := |ϕ|∞ +m(ϕ) < +∞},
where m(ϕ) := supx,y∈X

x 6=y
|ϕ(x)−ϕ(y)|

d(x,y) . The spaces (C(X), | · |∞) and (L, | · |L) are

Banach spaces and the canonical injection from L into C(X) is compact. The norm
of a bounded operation A from L to L is denoted by |A|L→L := supϕ∈L |Aϕ|L. We
denote L′ the topological dual of L endowed with the norm | · |L′ corresponding to
| · |L; notice that any probability measure ν on X belongs to L′.
For further uses, we state here some helpful estimations.

Lemma 2.2. For g ∈ S, x, y, z ∈ X such that d(x, y) < 1,

|ρ(g, x)| ≤ 2 logN(g), (2.4)

and for any t ∈ R,

|eitρ(g,y) − eitρ(g,z)| ≤
(

4 min{2|t| logN(g), 1}+ 2C|t|
)
d(y, z), (2.5)

where C = sup{ 1
u log 1

1−u : 0 < u ≤ 1
2} < +∞.

Proof. For the first assertion, from (1.1), we can imply that | log |gx|| ≤ logN(g).
For the second assertion, we refer to the proof the Theorem III.2 in Hennion and
Hervé (2008).

�
The following Proposition is a combination of several results stated in Hennion

and Hervé (2008); for the sake of completeness, we present below the main steps of
its proof. Denote ε(t) :=

∫
S

min{2|t| logN(g), 2}µ(dg). Notice that limt→0 ε(t) = 0.

Proposition 2.3. Under hypotheses P1, P2, P3 and P4, for any t ∈ R, the
operator Pt acts on L and there exists on X a unique P -invariant probability measure
ν. Furthermore,

(1) If Π : L → L denotes the rank one operator defined by Π(ϕ) = ν(ϕ)1 for
any function ϕ ∈ L and R := P −Π, the operator R : L→ L satisfies

ΠR = RΠ = 0,

and its spectral radius is less than 1. In other words, there exist constants
C > 0 and 0 < κ < 1 such that |Rn|L→L ≤ Cκn for any n ≥ 1.

(2) There exist ε > 0 and 0 ≤ rε < 1 such that for any t ∈ [−ε, ε], there exist a
complex number λt close to 1 with modulus less than or equal to 1, a rank
one operator Πt and an operator Rt on L with spectral radius less than or
equal to rε such that

Pt = λtΠt +Rt and ΠtRt = RtΠt = 0.
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Moreover, CP := sup
−ε≤t≤ε
n≥0

|Pnt |L→L < +∞.

(3) For any p ≥ 1,

sup
n≥0

sup
x∈X

Ex|ρ(gn+1, Xn)|p < +∞. (2.6)

Proof. (a) We first check that Pt acts on (L, | · |L) for any t ∈ R. On one hand,
|Ptϕ|∞ ≤ |ϕ|∞ for any ϕ ∈ L. On the other hand, by (2.5) for any x, y ∈ X such
that x 6= y,

|Ptϕ(x)− Ptϕ(y)|
d(x, y)

≤
∫

S

(∣∣∣∣
eitρ(g,x) − eitρ(g,y)

d(x, y)

∣∣∣∣ |ϕ(g · x)|+
∣∣∣∣
ϕ(g · x)− ϕ(g · y)

d(x, y)

∣∣∣∣
)
µ(dg)

≤ |ϕ|∞(4ε(t) + 2C|t|) +

∫

S

( |ϕ(g · x)− ϕ(g · y)|
d(g · x, g · y)

d(g · x, g · y)

d(x, y)

)
µ(dg),

≤ |ϕ|∞(4ε(t) + 2C|t|) +m(ϕ),

which implies m(Ptϕ) ≤ |ϕ|∞(4ε(t) + 2C|t|) +m(ϕ) < +∞. Therefore Ptϕ ∈ L.

(b) Let µ∗n be the distribution of the random variable Ln and set

c(µ∗n) := sup

{∫

S

d(g · x, g · y)

d(x, y)
dµ∗n(g) : x, y ∈ X, x 6= y

}
.

By hypothesis P3 and Proposition 2.1 (3), it holds c(·) < 1. Furthermore, c(µ∗(m+n)) ≤
c(µ∗m)c(µ∗n) for any m,n > 0; in other words, the sequence (c(µ∗n))n≥1 is sub-

multiplicative. Thus, its limit κ := lim
n→+∞

(
c(µ∗n)

) 1
n

does exist and is strictly less

than 1.
The existence and unicity of an invariant probability measure ν on X is a direct

consequence of this contraction property, this is Theorem II-1 in Hennion and Hervé
(2008).

(c) Now, let us achieve the proof of assertion (1) of the Proposition. Let Π be the
rank one projection on L defined by Πϕ = ν(ϕ)1 for any ϕ ∈ L. Let R := P − Π.
By definition, we obtain PΠ = ΠP = Π and Π2 = Π which implies ΠR = RΠ = 0
and Rn = Pn −Π for any n ≥ 1.

The same argument as in (a), with t = 0 yields

m(Pnϕ) ≤ m(ϕ)c(µ∗n).

Notice that Pn(ϕ − Πϕ) belongs to KerΠ for any ϕ ∈ L and n ≥ 0 and that
m(ϕ) ≤ |ϕ|L ≤ 3m(ϕ) for any ϕ ∈ KerΠ. Hence |Pn(ϕ − Πϕ)|L ≤ 3c(µ∗n)|ϕ|L
which yields

|Rn|L→L = |Pn −Π|L→L = |Pn(I −Π)|L→L ≤ 3c(µ∗n).

Therefore, the spectral radius of R is less than or equal to κ given above.

(d) By Hypothesis P1, the function t 7→ Pt is analytic near 0. The theory of
perturbations (see Dunford and Schwarz (1958) Chapter VII, section 6) allows to
extend the decomposition P = Π+R to the operator Pt when t is close to 0. Indeed,
for ε > 0 small enough, there exists rε ∈ [0, 1[ such that, for any t ∈ [−ε; ε], the
operator Pt may be decomposed as Pt = λtΠt + Rt, where the spectral radius of
Rt is less than or equal to rε and λt is the unique eigenvalue of Pt with modulus
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greater than rε; furthermore, the eigenvalue λt is simple. In order to control Pnt ,
we ask λnt to be bounded. Notice that by Hypothesis P1, the function t 7→ Pt is
analytic near 0. To prove that the sequence (Pnt )t is bounded in L, it suffices to
check |λt| ≤ 1 for any t ∈ [−ε, ε].
When ϕ(x) = 1(x), equality (2.2) becomes

Pnt 1(x) = E
[
eitρ(Ln,x)

]
= λnt Πt1(x) +Rnt 1(x). (2.7)

By the theory of perturbations, since t 7→ Pt is analytic around 0, the same holds
for the map t 7→ λt; thus, its local expansion near 0 is

λt = 1 + tλ′0 +
t2

2
λ′′0 [1 + o(1)]. (2.8)

Taking the first derivative of (2.7) with respect to t, we may write for any n ≥ 0,

E(iρ(Ln, x)eitρ(Ln,x)) =
d

dt
Pnt 1(x)

=
d

dt
(λnt Πt1(x) +Rnt 1(x))

= nλn−1
t λ′tΠt1(x) + λnt Π′t1(x) + (Rnt )′1(x)

Recall that λ0 = 1, Π01(x) = 1 and |Rn|L→L ≤ Crnε ; hence,

iE(ρ(Ln, x)) = nλ′0 + Π′01(x)− [(Rnt )′1(x)]t=0,

which readily imply λ′0 = i lim
n→+∞

1

n
E[ρ(Ln, x)] = iγµ = 0.

Similarly, by taking the second derivative of (2.7), one may write

−E(ρ(Ln, x)2eitρ(Ln,x)) =
d2

dt2
(λnt Πt1(x) +Rnt 1(x))

= n(n− 1)λn−2
t (λ′t)

2Πt1(x) + nλn−1
t λ′′t Πt1(x)+

+ 2nλn−1
t λ′tΠ

′
t1(x) + λnt Π′′t 1(x) + (Rnt )′′1(x).

This equality for t = 0 yields

−E(ρ(Ln, x)2) = nλ′′0 + Π′′01(x) + [(Rnt )′′1(x)]t=0

so that λ′′0 = − lim
n→+∞

1

n
E[ρ(Ln, x)2] = −σ2. Notice that λ′′0 = −σ2 < 0 by Lemma

5.3 in Bougerol and Lacroix (1985).
Therefore, for t close to 0, expression (2.8) becomes

λt = 1− σ2

2
t2(1 + o(1)),

hence |λt| ≤ 1 for t small enough.

(e) In particular, inequality (1.1) implies |ρ(g, x)| ≤ logN(g) for any x ∈ X.
Therefore, for any p ≥ 1, x ∈ X and n ≥ 1, Hypothesis P1 yields

Ex|ρ(gn+1, Xn)|p ≤ p!

δp0
Exeδ0|ρ(gn+1,Xn)| ≤ p!

δp0
EN(g)δ0 < +∞.

�
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2.2. Martingale approximation of the chain (Sn)n≥0.
As announced in the abstract, we approximate the process (Sn)n≥0 by a martingale
(Mn)n≥0. In order to construct the suitable martingale, we introduce the operator

P and then find the solution of the Poisson equation as follows. First, it is neccessary
to introduce some notation and basic properties. Let g0 = I and X−1 := X0. The
sequence ((gn, Xn−1))n≥0 is a Markov chain on S × X, starting from (Id, x) and

with transition operator P defined by: for any (g, x) ∈ S × X and any bounded
measurable function φ : S × X→ R,

Pφ(g, x) :=

∫

S×X
φ(h, y)P ((g, x), dhdy) =

∫

S

φ(h, g · x)µ(dh) (2.9)

(in other words, the measure P ((g, x), dhdy) on S × X equals δg·x(dy)µ(dh)).
Notice that by (2.4), under assumption P1, for any g ∈ S and x ∈ X, the function
h 7→ ρ(h, g · x) is µ-integrable, so that Pρ(g, x) is well defined.

Lemma 2.4. The function ρ̄ : x 7→
∫

S

ρ(g, x)µ(dg) belongs to L and for any g ∈ S,

x ∈ X and n ≥ 0,

P
n+1

ρ(g, x) = Pnρ(g · x). (2.10)

Proof. (1) For any x ∈ X, definition of ρ and (2.4) yield

|ρ(x)| ≤
∫

S

| log |gx||µ(dg) ≤
∫

S

2 logN(g)µ(dg) ≤ c(δ0)

∫

S

2N(g)δ0µ(dg) < +∞,

where c(δ0) is a constant depending on δ0. Hence |ρ|∞ < +∞. For any x, y ∈ X
such that d(x, y) > 1

2 , we can see that

|ρ(g, x)− ρ(g, y)| ≤ |ρ(g, x)− ρ(g, y)|2d(x, y) ≤ 8 logN(g)d(x, y). (2.11)

For any x, y ∈ X such that d(x, y) ≤ 1
2 , applying Lemma III.1 in Hennion and

Hervé (2008), we obtain

|ρ(g, x)− ρ(g, y)| ≤ 2 log
1

1− d(x, y)
≤ 2Cd(x, y), (2.12)

where C is given in Lemma 2.2. For any x, y ∈ X, by (2.11) and (2.12) we obtain

|ρ(x)− ρ(y)| ≤
∫

S

|ρ(g, x)− ρ(g, y)|µ(dg)

≤
∫

S

[8 logN(g) + 2C]d(x, y)µ(dg).

Thus m(ρ) = sup
x,y∈X,x 6=y

|ρ(x)− ρ(y)|
d(x, y)

< +∞.

(2) From (2.9) and definition of ρ, it is obvious that

Pρ(g, x) =

∫

S

ρ(h, g · x)µ(dh) = ρ(g · x),
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which yields

P
2
ρ(g, x) = P (Pρ)(g, x) =

∫

S×X
(Pρ)(k, y)P ((g, x), dkdy)

=

∫

S×X
ρ(k · y)P ((g, x), dkdy)

=

∫

S

ρ(k · (g · x))µ(dk) = Pρ(g · x).

By induction, we obtain P
n+1

ρ(g, x) = Pnρ(g · x) for any n ≥ 0.
�

Formally, the solution θ : S ×X→ R of the equation θ − Pθ = ρ is the function

θ : (g, x) 7→
+∞∑

n=0

P
n
ρ(g, x).

Notice that we do not have any spectral property for P and ρ does not belong to
L. However, we still obtain the convergence of this series by taking into account
the important relation (2.10), as shown in the following lemma.

Lemma 2.5. The sum θ =

+∞∑

n=0

P
n
ρ exists and satisfies the Poisson equation ρ =

θ − Pθ. Moreover,

|Pθ|∞ = sup
g∈S,x∈X

|θ(g, x)− ρ(g, x)| < +∞; (2.13)

and for any p ≥ 1, it holds

sup
n≥0

sup
x∈X

Ex|θ(gn+1, Xn)|p < +∞. (2.14)

Proof. (1) Since P acts on (L, | · |L) and ρ ∈ L from Lemma 2.4, we obtain
Pρ ∈ L. Thanks to definition of ρ, (1.3) and P4, it follows that

ν(ρ) =

∫

X
ρ(x)ν(dx) =

∫

S

∫

X
ρ(g, x)ν(dx)µ(dg) = γµ = 0.

Proposition 2.3 and the relation (2.10) yield for any x ∈ X and n ≥ 0,

P
n+1

ρ(g, x) = Pnρ(g · x) = Πρ(g · x) +Rnρ(g · x) = ν(ρ) +Rnρ(g · x) = Rnρ(g · x)

and there exist C > 0 and 0 < κ < 1 such that for any x ∈ X and n ≥ 0,

|Rnρ(x)| ≤ |Rnρ|L ≤ |Rn|L→L |ρ̄|L ≤ Cκn.

Hence for any g ∈ S and x ∈ X,
∣∣∣∣∣
+∞∑

n=1

P
n
ρ(g, x)

∣∣∣∣∣ ≤
+∞∑

n=0

|Pnρ(g · x)| ≤ C
+∞∑

n=0

κn =
C

1− κ < +∞.
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Therefore, the function θ =
+∞∑

n=0

P
n
ρ exists and obviously satisfies the Poisson

equation ρ = θ − Pθ. Finally, it is evident that

sup
g∈S,x∈X

|θ(g, x)− ρ(g, x)| = sup
g∈S,x∈X

∣∣∣∣∣
+∞∑

n=1

P
n
ρ(g, x)

∣∣∣∣∣ < +∞.

(2) Indeed, from (2.6), (2.13) and Minkowski’s inequality, the assertion arrives.
�

Now we contruct a martingale to approximate the Markov walk (Sn)n≥0. Hence,
from the definition of Sn and the Poisson equation, by adding and removing the
term Pθ(g0, X−1), we obtain

Sn = a+ ρ(g1, X0) + . . .+ ρ(gn, Xn−1)

= a+ Pθ(g0, X−1)− Pθ(gn, Xn−1) +
n−1∑

k=0

[
θ(gk+1, Xk)− Pθ(gk, Xk−1)

]
.

Let F0 := {∅,Ω} and Fn := σ{gk : 0 ≤ k ≤ n} for n ≥ 1.

Proposition 2.6. For any n ≥ 0, x ∈ X, a ≥ 0 and p > 2, the sequence (Mn)n≥0

defined by

M0 := S0 and Mn := M0 +
n−1∑

k=0

[
θ(gk+1, Xk)− Pθ(gk, Xk−1)

]
(2.15)

is a martingale in Lp(Ω,Px,a, (Fn)n≥0) satisfying the properties:

sup
n≥0
|Sn −Mn| ≤ 2|Pθ|∞ Px,a-a.s. (2.16)

sup
n≥1

n−
p
2 sup
x∈X

Ex,a|Mn|p < +∞. (2.17)

From now on, we set A := 2|Pθ|∞.
Proof. By definition (2.15), martingale property arrives.
(1) From the construction of Mn and (2.13), we can see easily that

sup
n≥0
|Sn −Mn| = sup

n≥0

∣∣Pθ(g0, X−1)− Pθ(gn, Xn−1)
∣∣ ≤ 2

∣∣Pθ
∣∣
∞ < +∞ Px,a-a.s..

(2) Denote ξk := θ(gk+1, Xk)−Pθ(gk, Xk−1). Thus Mn = M0 +
∑n−1
k=0 ξk. Using

Burkholder’s inequality, for any p ≥ 1, there exists some positive constant cp such
that for 0 ≤ k < n,

(Ex,a|Mn|p)
1
p ≤ cp


Ex,a

∣∣∣∣∣
n−1∑

k=0

ξ2
k

∣∣∣∣∣

p
2




1
p

.

Now, with p > 2, applying Hölder’s inequality, we obtain

∣∣∣∣∣
n−1∑

k=0

ξ2
k

∣∣∣∣∣ ≤ n
1− 2

p

(
n−1∑

k=0

|ξk|p
) 2
p

,

which implies
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Ex,a

∣∣∣∣∣
n−1∑

k=0

ξ2
k

∣∣∣∣∣

p
2

≤ n p2−1Ex,a
n−1∑

k=0

|ξk|p ≤ n
p
2 sup

0≤k≤n−1
Ex,a|ξk|p.

Since (Mn)n is a martingale, by using the convexity property, we can see that for
any k ≥ 0,

∣∣∣Pθ(gk, Xk−1)
∣∣∣
p

=
∣∣∣Ex,a

[
|θ(gk+1, Xk)||Fk

]∣∣∣
p

≤ Ex,a
[
|θ(gk+1, Xk)|p|Fk

]
,

which implies Ex,a
∣∣Pθ(gk, Xk−1)

∣∣p ≤ Ex,a |θ(gk+1, Xk)|p. Therefore, we obtain

(
Ex,a|Mn|p

) 1
p ≤ cp

(
n
p
2 sup

0≤k≤n−1
Ex,a|ξk|p

) 1
p

≤ cpn
1
2 sup

0≤k≤n−1

(
Ex,a|ξk|p

) 1
p

≤ cpn
1
2 sup

0≤k≤n−1

[(
Ex,a|θ(gk+1, Xk)|p

)1/p

+
(
Ex,a|Pθ(gk, Xk−1)|p

)1/p]

≤ 2cpn
1
2 sup

0≤k≤n−1

(
Ex,a|θ(gk+1, Xk)|p

) 1
p

.

Consequently, we obtain Ex,a|Mn|p ≤ (2cp)
pn

p
2 sup

0≤k≤n−1
Ex,a|θ(gk+1, Xk)|p and the

assertion arrives by using (2.14).
�

3. Proof of Proposition 1.1

In this section we construct explicitly a P̃+-harmonic function V and study
its properties. We begin with the first time the martingale (Mn)n≥0 (2.15) visit
]−∞, 0], defined by

T = min{n ≥ 1 : Mn ≤ 0}.
The equality γµ = 0 yields lim inf

n→+∞
Sn = −∞ Px,a-almost surely for any x ∈ X

and a ≥ 0. Thus, by Lemma 2.6, lim inf
n→+∞

Mn = −∞ Px,a-almost surely so that

T < +∞ Px,a-a.s. for any x ∈ X and a ≥ 0.

3.1. On the properties of T and (Mn)n.
We need to control the first moment of the random variable |MT∧n| under Px; we
consider the restriction of this variable to the event [T ≤ n] in Lemma 3.1 and
control the remaining term in Lemma 3.4.

Lemma 3.1. There exists ε0 > 0 and c > 0 such that for any ε ∈ (0, ε0), n ≥ 1, x ∈
X and a ≥ n 1

2−ε,

Ex,a
[
|MT |;T ≤ n

]
≤ c a

nε
.

Proof. For any ε > 0, consider the event An := { max
0≤k≤n−1

|ξk| ≤ n
1
2−2ε}, where

ξk = θ(gk+1, Xk)− Pθ(gk, Xk−1); then

Ex,a
[
|MT |;T ≤ n

]
= Ex,a

[
|MT |;T ≤ n,An

]
+ Ex,a

[
|MT |;T ≤ n,Acn

]
.(3.1)
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On the event [T ≤ n] ∩ An, we have |MT | ≤ |ξT−1| ≤ n
1
2−2ε. Hence for any x ∈ X

and a ≥ n 1
2−ε,

Ex,a
[
|MT |;T ≤ n,An

]
≤ Ex,a

[
|ξT−1|;T ≤ n,An

]
≤ n 1

2−2ε ≤ a

nε
. (3.2)

Let M∗n := max
1≤k≤n

|Mk|; since |MT | ≤ M∗n on the event [T ≤ n], it is clear that, for

any x ∈ X and a ≥ 0,

Ex,a
[
|MT |;T ≤ n,Acn

]
≤ Ex[M∗n;Acn]

≤ Ex,a
[
M∗n;M∗n > n

1
2 +2ε, Acn

]
+ n

1
2 +2εPx,a(Acn)

≤
∫ +∞

n
1
2
+2ε

Px,a(M∗n > t)dt+ 2n
1
2 +2εPx,a(Acn). (3.3)

We bound the probability Px,a(Acn) by using Markov’s inequality, martingale defi-
nition and (2.14) as follows: for any p ≥ 1,

Px,a(Acn) ≤
n−1∑

k=0

Px,a
(
|ξk| > n

1
2−2ε

)

≤ 1

n( 1
2−2ε)p

n−1∑

k=0

Ex,a|ξk|p

≤ 2p

n( 1
2−2ε)p

n−1∑

k=0

Ex,a|θ(gk+1, Xk)|p

=
cp

n
p
2−1−2εp

.

For any a ≥ n 1
2−ε, it follows that

n
1
2 +2εPx,a(Acn) ≤ an3εPx,a(Acn) ≤ cpa

n
p
2−1−2εp−3ε

. (3.4)

Now we control the integral in (3.3). Using Doob’s maximal inequality for mar-
tingales and (2.17), we receive for any p ≥ 1,

Px(M∗n > t) ≤ 1

tp
Ex
[
|Mn|p

]
≤ cp

n
p
2

tp
,

which implies for any a ≥ n 1
2−ε,

∫ +∞

n
1
2
+2ε

Px(M∗n > t)dt ≤ cp
p− 1

n
p
2

n( 1
2 +2ε)(p−1)

≤ cp
p− 1

a

n2εp−3ε
. (3.5)

Taking (3.3), (3.4) and (3.5) altogether, we obtain for some c′p,

Ex,a
[
|MT |;T ≤ n,Acn

]
≤ c′p

(
a

n2εp−3ε
+

a

n
p
2−1−2εp−3ε

)
. (3.6)

Finally, from (3.1), (3.2) and (3.6), we obtain for any a ≥ n 1
2−ε,

Ex,a
[
|MT |;T ≤ n

]
≤ a

nε
+ c′p

a

nε

(
1

n2εp−4ε
+

1

n
p
2−1−2εp−4ε

)
.
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Fix p > 2. Then there exist c > 0 and ε0 > 0 such that for any ε ∈ (0, ε0) and

a ≥ n 1
2−ε,

Ex,a
[
|MT |, T ≤ n

]
≤ c a

nε

which proves the lemma.
�

For fixed ε > 0 and a ≥ 0, we consider the first time νn,ε when the process

(|Mk|)k≥1 exceeds 2n
1
2−ε. Let (Bt)t≥0 be a standard Brownian motion on the

probability space (Ω,B(Ω),P) and for any a ≥ 0, let τ bma be the first time the process
(a+σBt)t≥0 becomes non-positive. It is connected to Lemma 4.3 where P(τ bma > n)
is controlled uniformly in a under condition a ≤ θn

√
n with limn→+∞ θn = 0 which

we take into account here by setting

νn,ε := min{k ≥ 1 : |Mk| ≥ 2n
1
2−ε}.

Notice first that for any ε > 0, x ∈ X and a ≥ 0 the sequence (νn,ε)n≥1 tends to
+∞ a.s. on (Ω,B(Ω),Px,a). The following lemma yields a more precise control of
this property.

Lemma 3.2. For any ε ∈ (0, 1
2 ), there exists cε > 0 such that for any x ∈ X, a ≥ 0

and n ≥ 1,
Px,a(νn,ε > n1−ε) ≤ exp(−cεnε).

Proof. Let m = [B2n1−2ε] and K = [nε/B2] for some positive constant B. By

(2.16), for n sufficiently great such that A ≤ n
1
2−ε, we obtain for any x ∈ X and

a ≥ 0,

Px,a(νn,ε > n1−ε) ≤ Px,a
(

max
1≤k≤n1−ε

|Mk| ≤ 2n
1
2−ε
)

≤ Px,a
(

max
1≤k≤K

|Mkm| ≤ 2n
1
2−ε
)

≤ Px,a
(

max
1≤k≤K

|Skm| ≤ 3n
1
2−ε
)
. (3.7)

Using Markov property, it follows that, for any x ∈ X and a ≥ 0, from which by
iterating K times, we obtain

Px,a
(

max
1≤k≤K

|Skm| ≤ 3n
1
2−ε
)
≤
(

sup
b∈R,x∈X

Px,b
(
|Sm| ≤ 3n

1
2−ε
))K

. (3.8)

Denote B(b; r) = {c : |b+ c| ≤ r}. Then for any x ∈ X and b ∈ R

Px,b
(
|Sm| ≤ 3n

1
2−ε
)

= Px
(
Sm√
m
∈ B(b/

√
m; rn)

)
,

where rn = 3n
1
2
−ε

√
m

. By the central limit theorem for (Sn)n (Theorem 5.1 property

iii) Bougerol and Lacroix (1985)), we obtain as m→ +∞,

sup
b∈R,x∈X

∣∣∣∣∣Px
(
Sm√
m
∈ B(b/

√
m; rn)

)
−
∫

B(b/
√
m;rn)

φσ2(u)du

∣∣∣∣∣→ 0,

where φσ2(t) = 1
σ
√

2π
exp

(
− t2

2σ2

)
is the normal density of mean 0 and variance σ2

on R. Since rn ≤ c1B−1 for some constant c1 > 0, we obtain
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sup
b∈R

∫

B(b/
√
m;rn)

φσ2(u)du ≤
∫ rn

−rn
φσ2(u)du ≤ 2rn

σ
√

2π
≤ 2c1

Bσ
√

2π
.

Choosing B and n great enough, for some qε < 1, we obtain

sup
b∈R,x∈X

Px,b
(
|Sm| ≤ 3n

1
2−ε
)
≤ sup

b∈R

∫

B(b/
√
m;rn)

φσ2(u)du+ o(1) ≤ qε.

Implementing this bound in (3.8) and using (3.7), it follows that

sup
a>0,x∈X

Px,a(νn,ε > n1−ε) ≤ qKε ≤ q
nε

B2−1
ε ≤ ce−cεnε

for some positive constants c and cε.
�

Lemma 3.3. There exists c > 0 such that for any ε ∈ (0, 1
2 ), x ∈ X, a ≥ 0 and

n ≥ 1,

sup
1≤k≤n

Ex,a[|Mk|; νn,ε > n1−ε] ≤ c(1 + a) exp(−cεnε)

for some positive constant cε which only depends on ε.

Proof. By Cauchy-Schwartz inequality, for any x ∈ X, a ≥ 0 and 1 ≤ k ≤ n,

Ex,a
[
|Mk|; νn,ε > n1−ε] ≤

√
Ex,a|Mk|2Px,a(νn,ε > n1−ε).

By Minkowsky’s inequality, (2.16) and the fact that 1
nEx|Sn|2 → σ2 as n → +∞,

it yields
√

Ex,a|Mk|2 ≤ a+A+
√

Ex,0|S2
k| ≤ a+A+ c

√
k ≤ a+A+ c

√
n

for some c > 0 which does not depend on x. The claim follows by Lemma 3.2.
�

Lemma 3.4. There exists c > 0 and ε0 > 0 such that for any ε ∈ (0, ε0), x ∈ X,
a ≥ 0 and n ≥ 1,

Ex,a[Mn;T > n] ≤ c(1 + a). (3.9)

and

lim
a→+∞

1

a
lim

n→+∞
Ex,a[Mn;T > n] = 1. (3.10)

Proof. (1) On one hand, we claim

Ex,a[Mn;T > n, νn,ε ≤ n1−ε] ≤
(

1 +
c′ε
nε

)
Ex,a

[
M[n1−ε];T > [n1−ε]

]
(3.11)

and delay the proof of (3.11) at the end of the first part. On the other hand, by
Lemma 3.3, there exists c > 0 such that for any ε ∈ (0, 1

2 ), x ∈ X, a ≥ 0 and n ≥ 1,

Ex,a[Mn;T > n, νn,ε > n1−ε] ≤ sup
1≤k≤n

Ex,a
[
|Mk|; νn,ε > n1−ε

]

≤ c(1 + a) exp(−cεnε). (3.12)

Hence combining (3.11) and (3.12), we obtain for any x ∈ X and a ≥ 0,

Ex,a[Mn;T > n] ≤
(

1 +
c′ε
nε

)
Ex,a

[
M[n1−ε];T > [n1−ε]

]
+ c(1 + a) exp(−cεnε).

(3.13)
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Let kj :=
[
n(1−ε)j

]
for j ≥ 0. Notice that k0 = n and [k1−ε

j ] ≤ kj+1 for any j ≥ 0.

Since the sequence ((Mn)1[T>n])n≥1 is a submartingale, by using the bound (3.13),
it yields

Ex,a[Mk1 ;T > k1] ≤
(

1 +
c′ε
k1
ε

)
Ex,a

[
M[k11−ε];T > [k1

1−ε]
]

+ c(1 + a) exp(−cεkε1)

≤
(

1 +
c′ε
k1
ε

)
Ex,a[Mk2 ;T > k2] + c(1 + a) exp(−cεkε1).

Let n0 be a constant and m = m(n) such that km =
[
n(1−ε)m] ≤ n0. After m

iterations, we obtain

Ex,a[Mn;T > n] ≤ Am
(
Ex,a[Mkm ;T > km] + c(1 + a)Bm

)
, (3.14)

where

Am =
m∏

j=1

(
1 +

c′ε
kεj−1

)
≤ exp

(
2εc′ε

n−ε0

1− n−ε20

)
, (3.15)

and

Bm =
m∑

j=1

exp
(
−cεkεj−1

)
(

1 +
c′ε
kεj−1

)
. . .
(

1 +
c′ε
kεm

) ≤ c1
n−ε0

1− n−ε20

(3.16)

from Lemma 5.6 in Grama et al. (2014). By choosing n0 sufficient great, the first
assertion of the lemma follows from (3.14), (3.15) and (3.16) taking into account
that

Ex,a[Mkm ;T > km] ≤ Ex,a[Mn0
;T > n0] ≤ Ex,a|Mn0

| ≤ a+ c.

Before proving (3.11), we can see that there exist c > 0 and 0 < ε0 <
1
2 such that

for any ε ∈ (0, ε0), x ∈ X and b ≥ n 1
2−ε,

Ex,b[Mn;T > n] ≤
(

1 +
c

nε

)
b. (3.17)

Indeed, since (Mn,Fn)n≥1 is a Px,b- martingale, we obtain

Ex,b[Mn;T ≤ n] = Ex,b[MT ;T ≤ n]

and thus

Ex,b[Mn;T > n] = Ex,b[Mn]− Ex,a[Mn;T ≤ n]

= b− Ex,b[MT ;T ≤ n]

= b+ Ex,b[|MT |;T ≤ n]. (3.18)

Hence (3.17) arrives by using Lemma 3.1. For (3.11), it is obvious that

Ex,a
[
Mn;T > n, νn,ε ≤ n1−ε

]
=

[n1−ε]∑

k=1

Ex,a
[
Mn;T > n, νn,ε = k

]
. (3.19)
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Denote Um(x, a) := Ex,a[Mm;T > m]. For any m ≥ 1, by the Markov property
applied to (Xn)n≥1, it follows that

Ex,a
[
Mn;T > n, νn,ε = k

]
=

∫
Ey,b[Mn−k;T > n− k]

Px,a(Xk ∈ dy,Mk ∈ db;T > k, νn,ε = k)

= Ex,a
[
Un−k(Xk,Mk);T > k, νn,ε = k

]
. (3.20)

From the definition of νn,ε, we can see that [νn,ε = k] ⊂
[
|Mk| ≥ n

1
2−ε
]
, and by us-

ing (3.17), on the event [T > k, νn,ε = k] we have Un−k(Xk,Mk) ≤
(

1 + c
(n−k)ε

)
Mk.

Therefore (3.20) becomes

Ex,a[Mn;T > n, νn,ε = k] ≤
(

1 +
c

(n− k)ε

)
Ex,a[Mk;T > k, νn,ε = k]. (3.21)

Combining (3.19) and (3.21), it follows that, for n sufficiently great,

Ex,a[Mn;T > n, νn,ε ≤ n1−ε] ≤
[n1−ε]∑

k=1

(
1 +

c

(n− k)ε

)
Ex,a[Mk;T > k, νn,ε = k]

≤
(

1 +
c′ε
nε

) [n1−ε]∑

k=1

Ex,a[Mk;T > k, νn,ε = k],

for some constant c′ε > 0. Since (Mn1[T>n])n≥1 is a submartingale, for any x ∈ X,

a ≥ 0 and 1 ≤ k ≤ [n1−ε],

Ex,a[Mk;T > k, νn,ε = k] ≤ Ex,a
[
M[n1−ε];T > [n1−ε], νn,ε = k

]
.

This implies

Ex,a[Mn;T > n, νn,ε ≤ n1−ε] ≤
(

1 +
c′ε
nε

) [n1−ε]∑

k=1

Ex,a
[
M[n1−ε];T > [n1−ε], νn,ε = k

]

≤
(

1 +
c′ε
nε

)
Ex,a

[
M[n1−ε];T > [n1−ε]

]
.

(2) Let δ > 0. From (3.15) and (3.16), by choosing n0 sufficiently great, we
obtain Am ≤ 1 + δ and Bm ≤ δ. Together with (3.14), since (Mn1[T>n])n≥1 is a
submartingale, we obtain for km ≤ n0,

Ex,a[Mn;T > n] ≤ (1 + δ)
(
Ex,a[Mn0 ;T > n0] + c(1 + a)δ

)
.

Moreover, the sequence Ex,a[Mn;T > n] is increasing, thus it converges Px,a-a.s.
and

lim
n→+∞

Ex,a[Mn;T > n] ≤ (1 + δ)
(
Ex,a[Mn0

;T > n0] + c(1 + a)δ
)
.

By using (3.18), we obtain

a ≤ lim
n→+∞

Ex,a[Mn;T > n] ≤ (1 + δ)
(
a+ Ex|Mn0

|+ c(1 + a)δ
)
.

Hence the assertion follows since δ > 0 is arbitrary.
�
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3.2. On the stopping time τ .
We now state some useful properties of τ and Sτ . Denote τa := min{n ≥ 1 : Sn ≤
−a} and Ta := min{n ≥ 1 : Mn ≤ −a} for any a ≥ 0.

Lemma 3.5. There exists c > 0 such that for any x ∈ X, a ≥ 0 and n ≥ 1,

Ex,a[Sn, τ > n] ≤ c(1 + a).

Proof. (2.16) yields Px(τa ≤ Ta+A) = 1 and A + Mn ≥ Sn > 0 on the event
[τ > n]. By (3.9), it follows that

Ex,a[Sn; τ > n] ≤ Ex,a[A+Mn; τ > n]

≤ Ex,a+A[Mn;T > n]

≤ c1(1 + a+A) ≤ c2(1 + a).

�

Proposition 3.6. There exists c > 0 such that for any x ∈ X and a ≥ 0,

Ex,a|Sτ | ≤ c(1 + a) < +∞
and

Ex,a|Mτ | ≤ c(1 + a) < +∞. (3.22)

Proof. By (2.16), since (Mn)n is a martingale, we can see that

−Ex,a[Sτ ; τ ≤ n] ≤ −Ex,a[Mτ ; τ ≤ n] +A

= Ex,a[Mn; τ > n]− Ex,a[Mn] +A

≤ Ex,a[Sn; τ > n] + 2A.

Hence by Lemma 3.5, for any x ∈ X and a ≥ 0,

Ex,a [|Sτ |; τ ≤ n] ≤ Ex,a |Sτ∧n|
= Ex,a [Sn; τ > n]− Ex,a [Sτ ; τ ≤ n]

≤ 2Ex,a[Sn; τ > n] + 2A

≤ c(1 + a) + 2A.

By Lebesgue’s Monotone Convergence Theorem, it yields

Ex,a|Sτ | = lim
n→+∞

Ex,a [|Sτ |; τ ≤ n] ≤ c(1 + a) + 2A < +∞.

By (2.16), the second assertion arrives.
�

3.3. Proof of Proposition 1.1.
By definition of τa, we can see that Ex,aMτ = a + ExMτa and Px,a(τ > n) =
Px(τa > n).

(1) By (3.22) and Lebesgue’s Dominated Convergence Theorem, for any x ∈ X
and a ≥ 0,

lim
n→+∞

Ex,a[Mτ ; τ ≤ n] = Ex,aMτ = a− V (x, a),

where V (x, a) is the quantity defined by: for x ∈ X and a ∈ R,

V (x, a) :=

{
−ExMτa if a ≥ 0,
0 if a < 0.
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Since (Mn,Fn)n≥1 is a Px,a-martingale,

Ex,a[Mn; τ > n] = Ex,aMn − Ex,a[Mn; τ ≤ n] = a− Ex,a[Mτ ; τ ≤ n],(3.23)

which implies
lim

n→+∞
Ex,a[Mn; τ > n] = V (x, a).

Since |Sn −Mn| ≤ A Px-a.s. and lim
n→+∞

Px,a(τ > n) = 0, it follows that

lim
n→+∞

Ex,a[Sn; τ > n] = lim
n→+∞

Ex,a[Mn; τ > n] = V (x, a).

(2) The assertion arrives by taking into account that 0 ≤ a ≤ a′ implies τa ≤ τa′
and

Ex[a+ Sn; τa > n] ≤ Ex[a′ + Sn; τa′ > n].

(3) Lemma 3.5 and assertion 1 imply that V (x, a) ≤ c(1 + a) for any x ∈ X and
a ≥ 0. Besides, (3.23) and (2.16) yield

Ex,a[Mn; τ > n] ≥ a− Ex,a[Sτ ; τ ≤ n]−A ≥ a−A,
which implies

V (x, a) ≥ a−A. (3.24)

Now we prove V (x, a) ≥ 0. Assertion 2 implies V (x, 0) ≤ V (x, a) for any x ∈ X
and a ≥ 0. From P5, let Eδ := {g ∈ S : ∀x ∈ X, log |gx| ≥ δ} and choose a positive
constant k such that kδ > 2A. Hence, for any g1, . . . , gk ∈ Eδ and any x ∈ X, we
obtain log |gk . . . g1x| ≥ kδ > 2A. It yields

V (x, 0) = lim
n→+∞

Ex[Sn; τ > n]

≥ lim inf
n→+∞

∫

Eδ

. . .

∫

Eδ

Egk...g1·x,log |gk...g1x|[Sn−k; τ > n− k]µ(dg1) . . . µ(dgk)

≥ lim inf
n→+∞

∫

Eδ

. . .

∫

Eδ

V (gk . . . g1 · x, 2A)µ(dg1) . . . µ(dgk)

≥ A
(
µ(Eδ)

)k
> 0,

where the last inequality comes from (3.24) by applying to a = 2A.

(4) Equation (3.24) yields lim
a→+∞

V (x, a)

a
≥ 1. By (2.16), it yields that Px(τa <

TA+a) = 1, which implies

Ex,a[Sn; τ > n] ≤ Ex,a[A+Mn; τ > n] ≤ Ex,a[A+Mn;TA > n] = Ex,a+A[Mn;T > n].

From (3.10), we obtain lim
n→+∞

V (x, a)

a
≤ 1.

(5) For any x ∈ X, a ≥ 0 and n ≥ 1, we set Vn(x, a) := Ex,a[Sn; τ > n]. By
assertion 1, we can see lim

n→+∞
Vn(x, a) = V (x, a). By Markov property, we obtain

Vn+1(x, a) = Ex,a

[
E

[
S1 +

n∑

k=1

ρ(gk+1, Xk);S1 > 0, . . . , Sn+1 > 0|F1

]]

= Ex,a [Vn(X1, S1); τ > 1] .

By Lemma 3.5, we obtain sup
x∈X,a≥0

Vn(x, a) ≤ c(1 + a) which implies P-a.s.

Vn(X1, S1)1[τ>1] ≤ c(1 + S1)1[τ>1].

60



86 Thi Da Cam Pham

Lebesgue’s Dominated Convergence Theorem and (1.2) yield

V (x, a) = lim
n→+∞

Vn+1(x, a) = lim
n→+∞

Ex,a[Vn(X1, S1); τ > 1]

= Ex,a[V (X1, S1); τ > 1]

= P̃+V (x, a).

�

4. Coupling argument and proof of Theorems 1.2 and 1.3

Firstly, we check that the weak invariance principle with rate, Theorem 2.1
in Grama et al. (2014), may be applied. The hypotheses C1, C2 and C3 of this
theorem are given in terms of Fourier transform of the partial sums of Sn; combining
the expressions (2.1), (2.2), (2.3) and the properties of the Fourier operators (Pt)t,
we verify in the next section that these conditions are satisfied in our context. This
leads to the following simpler but sufficient statement.

Theorem 4.1. Assume P1-P4. There exist

• ε0 > 0, and c0 > 0,

• a probability space (Ω̃, B(Ω̃)),

• a family (P̃x)x∈X of probability measures on (Ω̃, B(Ω̃)),

• a sequence (ãk)k of real-valued random variables on (Ω̃, B(Ω̃)) such that

L
(

(ãk)k/P̃x
)

= L
(

(ak)k/Px
)

for any x ∈ X,

• and a sequence (W̃i)i≥1 of independent standard normal random variables

on (Ω̃,B(Ω̃))

such that for any x ∈ X,

P̃x

(
sup

1≤k≤n

∣∣∣∣∣
k∑

i=1

(ãi − σW̃i)

∣∣∣∣∣ > n
1
2−ε0

)
≤ c0n−ε0 . (4.1)

In order to simplify the notations, we identify (Ω̃,B(Ω̃)) and (Ω,B(Ω)). Notice
that if (4.1) holds true for ε0 then it also holds true true for any ε ≤ ε0.

Under hypotheses P1–P4, we may apply this Theorem to the sequence (ak)k≥0 =
(ρ(gk, Xk−1))k≥0. Thus, the process (log |Lnx|)n≥0 satisfies the following property:
there exists ε0 > 0 and c0 > 0 such that for any ε ∈ (0, ε0] and x ∈ X,

P
(

sup
0≤t≤1

| log |L[nt]x| − σBnt| > n
1
2−ε
)

= Px
(

sup
0≤t≤1

|S[nt] − σBnt| > n
1
2−ε
)
≤ c0n−ε, (4.2)

where (Bt)t≥0 is a standard Brownian motion on the probability space (Ω,B(Ω),P)
and σ > 0 is the variance of the sequence (Sn)n≥0. For any a ≥ 0, let τ bma be the
first time the process (a+ σBt)t≥0 becomes non-positive:

τ bma = inf{t ≥ 0 : a+ σBt ≤ 0}.
The following lemma is due to Levy Levy (1937) (Theorem 42.I, pp. 194-195).
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Lemma 4.2. (1) For any a ≥ 0 and n ≥ 1,

P(τ bma > n) = P
(
σ inf

0≤u≤n
Bu > −a

)
=

2

σ
√

2πn

∫ a

0

exp

(
− s2

2nσ2

)
ds.

(2) For any a, b such that 0 ≤ a < b < +∞ and n ≥ 1,

P(τ bma > n, a+ σBn ∈ [a, b])

=
1

σ
√

2πn

∫ b

a

[
exp

(
− (s− a)2

2nσ2

)
− exp

(
− (s+ a)2

2nσ2

)]
ds.

From Lemma 4.2, we can obtain the next result.

Lemma 4.3. (1) There exists a positive constant c such that for any a ≥ 0
and n ≥ 1,

P(τ bma > n) ≤ c a

σ
√
n
. (4.3)

(2) For any sequence of real numbers (αn)n such that αn → 0 as n → +∞,
there exists a positive constant c such that for any a ∈ [0, αn

√
n],

∣∣∣P(τ bma > n)− 2a

σ
√

2πn

∣∣∣ ≤ c αn√
n
a. (4.4)

We use the coupling result described in Theorem 4.1 above to transfer the prop-
erties of the exit time τ bma to the exit time τa for great a.

4.1. Proof of Theorem 1.2.
(1) Let ε ∈ (0,min{ε0; 1

2}) and (θn)n≥1 be a sequence of positive numbers such

that θn → 0 and θnn
ε/4 → +∞ as n → +∞. For any x ∈ X and a ≥ 0, we have

the decomposition

Pn(x, a) := Px,a(τ > n) = Px,a(τ > n, νn,ε > n1−ε) + Px,a(τ > n, νn,ε ≤ n1−ε).(4.5)

It is obvious that from Lemma 3.2, we obtain

sup
x∈X,a≥0

Px,a(τ > n, νn,ε > n1−ε) ≤ sup
x∈X,a≥0

Px,a(νn,ε > n1−ε) ≤ e−cεnε . (4.6)

For the second term, by Markov’s property,

Px,a(τ > n, νn,ε ≤ n1−ε) = Ex,a
[
Pn−νn(Xνn,ε , Sνn,ε); τ > νn,ε, νn,ε ≤ n1−ε](4.7)

= In(x, a) + Jn(x, a),

where

In(x, a) := Ex,a
[
Pn−νn(Xνn,ε , Sνn,ε);Sνn,ε ≤ θnn

1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]
,

and Jn(x, a) := Ex,a
[
Pn−νn(Xνn,ε , Sνn,ε);Sνn,ε > θnn

1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]
.

Now we control the quantity Pn−νn(Xνn,ε , Sνn,ε) by using the following lemma.
The proofs of the lemmas stated in this subsection are postponed to the next
subsection.

Lemma 4.4. (1) There exists c > 0 such that for any n sufficiently great,

x ∈ X and a ∈ [n
1
2−ε, θnn

1
2 ],

∣∣∣∣Px,a(τ > n)− 2a

σ
√

2πn

∣∣∣∣ ≤ c
aθn√
n
. (4.8)
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(2) There exists c > 0 such that for any x ∈ X, a ≥ n 1
2−ε and n ≥ 1,

Px,a(τ > n) ≤ c a√
n
. (4.9)

Notice that for any x ∈ X, a ≥ 0 and 0 ≤ k ≤ n1−ε,

Pn(x, a) ≤ Pn−k(x, a) ≤ Pn−[n1−ε](x, a). (4.10)

By definition of νn,ε and (2.16), as long as A ≤ n 1
2−ε, we have Px,a-a.s.

Sνn,ε ≥Mνn,ε −A ≥ 2n
1
2−ε −A ≥ n 1

2−ε. (4.11)

Using (4.8) and (4.10), (4.11) with θn replaced by θn

(
n

n−n1−ε

) 1
2

, for n sufficiently

great, on the event
[
Sνn,ε ≤ θnn

1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]
, we obtain Px,a-a.s.

Pn−νn,ε(Xνn,ε , Sνn,ε) =
2(1 + o(1))Sνn,ε

σ
√

2πn
.

Let

I ′n(x, a) := Ex,a
[
Sνn,ε ; τ > νn,ε, νn,ε ≤ n1−ε] , (4.12)

J ′n(x, a) := Ex,a
[
Sνn,ε ;Sνn,ε > θnn

1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]
. (4.13)

Hence

In(x, a) =
2(1 + o(1))

σ
√

2πn
Ex,a

[
Sνn,ε ;Sνn,ε ≤ θnn

1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]

=
2(1 + o(1))

σ
√

2πn
[I ′n(x, a)− J ′n(x, a)] ,

Jn(x, a) =
c(1 + o(1))√

n
J ′n(x, a).

Therefore (4.5) becomes
∣∣∣Px,a(τ > n)− 2(1 + o(1))

σ
√

2πn
I ′n(x, a)

∣∣∣ ≤ C
(
n−

1
2 J ′n(x, a)

)
+ C ′

(
e−cεn

ε
)
.

The first assertion of Theorem 1.2 immediately follows by noticing that the term J ′n
is negligible and Px,a(τ > n) is dominated by the term I ′n as shown in the lemma
below.

Lemma 4.5.

lim
n→+∞

I ′n(x, a) = V (x, a) and lim
n→+∞

n2εJ ′n = 0,

where I ′n and J ′n are defined in (4.12) and (4.13).

(2) By using Proposition 1.1 (3), it suffices to prove
√
nPx,a(τ > n) ≤ c(1 + a)

for n great enough. For n sufficiently great, using (4.9) and (4.11), we obtain Px,a-
a.s.

Pn−[n1−ε](Xνn,ε , Sνn,ε) ≤ c
Sνn,ε√
n
.

Combined with (4.7), it yields

Px,a(τ > n, νn,ε ≤ n1−ε) ≤ c√
n
I ′n. (4.14)
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Since τa < Ta+A P-a.s. and (3.9), it follows that

I ′n(x, a) ≤ Ex,a+A[Mνn,ε ;T > νn,ε, νn,ε ≤ n1−ε] ≤ c(1 + a+A).

Hence (4.14) becomes

Px,a(τ > n, νn,ε ≤ n1−ε) ≤ c√
n

(1 + a+A). (4.15)

Combining (4.5), (4.6) and (4.15), we obtain for n great enough,

Px,a(τ > n) ≤ e−cεnε +
c√
n

(1 + a+A) ≤ c′(1 + a).

�

4.2. Proof of Theorem 1.3.
Let us decompose Px,a(Sn ≤ t

√
n|τ > n) as follows:

Px,a(Sn ≤ t
√
n, τ > n)

Px,a(τ > n)
= Dn,1 +Dn,2 +Dn,3, (4.16)

where

Dn,1 :=
Px,a(Sn ≤ t

√
n, τ > n, νn,ε > n1−ε)

Px,a(τ > n)
,

Dn,2 :=
Px,a(Sn ≤ t

√
n, τ > n, Sn > θn

√
n, νn,ε ≤ n1−ε)

Px,a(τ > n)
,

Dn,3 :=
Px,a(Sn ≤ t

√
n, τ > n, Sn ≤ θn

√
n, νn,ε ≤ n1−ε)

Px,a(τ > n)
.

Lemma 3.2 and Theorem 1.2 imply

lim
n→+∞

Dn,1 = 0. (4.17)

Theorem 1.2 and Proposition 1.1 (3) imply

Dn,2 ≤ Px,a(τ > n, Sn > θn
√
n, νn,ε ≤ n1−ε)

Px,a(τ > n)

=
1

Px,a(τ > n)
Ex,a

[
Pn−νn,ε(Xνn,ε , Sνn,ε); τ > νn,ε, Sνn,ε > θn

√
n, νn,ε ≤ n1−ε

]

≤ c
Ex,a

[
1 + Sνn,ε ; τ > νn,ε, Sνn,ε > θn

√
n, νn,ε ≤ n1−ε

]

Px,a(τ > n)σ
√
n− n1−ε

≤ c′
Ex,a

[
Sνn,ε ; τ > νn,ε, Sνn,ε > θn

√
n, νn,ε ≤ n1−ε

]
+ Px,a(τ > νn,ε)

V (x, a)
√

1− n−ε
.

Since Px,a(τ < +∞) = 1 and Px,a(νn,ε < +∞) = 0, Lemma 4.5 yields

lim
n→+∞

Dn,2 = 0. (4.18)

Now we control Dn,3. Let Hm(x, a) := Px,a(Sm ≤ t
√
n, τ > m). We claim the

following lemma and postpone its proof at the end of this section.
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Lemma 4.6. Let ε ∈ (0, ε0), t > 0 and (θn)n≥1 be a sequence such that θn → 0

and θnn
ε/4 → +∞ as n → +∞. Then for any x ∈ X, n1/2−ε ≤ a ≤ θn

√
n and

1 ≤ k ≤ n1−ε,

Px,a
(
Sn−k ≤ t

√
n, τ > n− k

)
=

2a

σ3
√

2πn

∫ t

0

u exp
(
− u2

2σ2

)
du(1 + o(1)).

It is noticeable that on the event [τ > k, Sk ≤ θn
√
n, νn,ε = k], the random

variable Hn−k(Xk, Sk) satisfies the hypotheses of Lemma 4.6. Hence

Px,a(Sn ≤ t
√
n, τ > n, Sn ≤ θn

√
n, νn,ε ≤ n1−ε)

= Ex,a
[
Hn−νn,ε(Xνn,ε , Sνn,ε); τ > νn,ε, Sνn,ε ≤ θn

√
n, νn,ε ≤ n1−ε

]

=

[n1−ε]∑

k=1

Ex,a
[
Hn−k(Xk, Sk); τ > k, Sk ≤ θn

√
n, νn,ε = k

]

=
2(1 + o(1))

σ3
√

2πn

∫ t

0

u exp

(−u2

2σ2

)
duEx,a

[
Sνn,ε ; τ > νn,ε, Sνn,ε ≤ θn

√
n, νn,ε ≤ n1−ε

]
.

Lemma 4.5 yield as n→ +∞,

Ex,a
[
Sνn,ε ; τ > νn,ε, Sνn,ε ≤ θn

√
n, νn,ε ≤ n1−ε

]
= V (x, a)(1 + o(1)).

Therefore, Theorem 1.2 yields

Dn,3 =
2V (x, a)(1 + o(1))

Px,a(τ > n)σ3
√

2πn

∫ t

0

u exp

(−u2

2σ2

)
du

=
1 + o(1)

σ2

∫ t

0

u exp

(−u2

2σ2

)
du. (4.19)

The assertion of the theorem arrives by combining (4.16), (4.17), (4.18) and (4.19).
�

4.3. Proof of Lemma 4.4.
(1) Fix ε > 0 and let

An,ε :=

[
sup

0≤t≤1
|S[nt] − σBnt| ≤ n

1
2−2ε

]
.

For any x ∈ X, (4.2) implies Px(Acn,ε) ≤ c0n
−2ε. Denote a± := a ± n 1

2−2ε and

notice that for a ∈ [n
1
2−ε, θn

√
n],

0 ≤ a± ≤ 2θn
√
n. (4.20)

Using (4.4) and (4.20), for any x ∈ X and a ∈ [n
1
2−ε, θn

√
n], we obtain

−ca
±θn√
n
± 2n−2ε

σ
√

2π
≤ Px(τ bma± > n)− 2a

σ
√

2πn
≤ ca±θn√

n
± 2n−2ε

σ
√

2π
. (4.21)

For any a ≥ n 1
2−ε, we have

[
τ bma− > n

]
∩Acn,ε ⊂ [τa > n]∩Acn,ε ⊂

[
τ bma+ > n

]
∩Acn,ε,

which yields

Px(τ bma− > n)− Px(Acn,ε) ≤ Px(τa > n) ≤ Px(τ bma+ > n) + Px(Acn,ε)
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for any x ∈ X. It follows that
{

Px(τa > n)− Px(τ bma+ > n) ≤ c0n−2ε,
Px(τ bma− > n)− Px(τa > n) ≤ c0n−2ε.

(4.22)

The fact that θnn
ε/4 → +∞ yields for n great enough

θn
a√
n
≥ n

1
2−ε

nε
√
n

= n−2ε. (4.23)

From (4.21), (4.22) and (4.23), it follows that for any a ∈ [n
1
2−ε, θn

√
n],

∣∣∣∣Px(τa > n)− 2a

σ
√

2πn

∣∣∣∣ ≤ c(1 + θn)n−2ε + c1
θna√
n
≤ c2

θna√
n
.

(2) For n great enough, condition a ≥ n
1
2−ε implies a+ ≤ 2a. From (4.3) and

(4.22) , since n−2ε ≤ a√
n

, for any x ∈ X,

Px(τa > n) ≤ c a

σ
√
n

+ c0n
−2ε ≤ c1

a√
n
.

�

4.4. Proof of Lemma 4.5.
(1) We prove that lim

n→+∞
Ex,a

[
Mνn,ε ; τ > νn,ε, νn,ε ≤ n1−ε] = V (x, a). Then, the

assertion arrives by using (2.16) and taking into account that Px(τa < +∞) = 1
and Px( lim

n→+∞
νn,ε = +∞) = 1. For x ∈ X and a ≥ 0, we obtain

Ex,a
[
Mνn,ε ; τ > νn,ε, νn,ε ≤ n1−ε] = Ex,a

[
Mνn,ε∧[n1−ε]; τ > νn,ε, νn,ε ≤ n1−ε]

= Ex,a
[
Mνn,ε∧[n1−ε]; τ > νn,ε ∧ [n1−ε]

]

−Ex,a
[
Mνn,ε∧[n1−ε]; τ > νn,ε ∧ [n1−ε], νn,ε > n1−ε] .

By using Lemma 3.3,

Ex,a
[
Mνn,ε∧[n1−ε]; τ > νn,ε ∧ [n1−ε], νn,ε > n1−ε] ≤ c(1 + a)e−cεn

ε

.

Using the facts that (Mn)n≥0 is a martingale and Px
(

lim
n→+∞

νn,ε = +∞
)

= 1, we

obtain

lim
n→+∞

Ex,a
[
Mνn,ε ; τ > νn,ε, νn,ε ≤ n1−ε] = lim

n→+∞
Ex,a

[
Mνn,ε∧[n1−ε]; τ > νn,ε ∧ [n1−ε]

]

= a− lim
n→+∞

Ex,a
[
Mνn,ε∧[n1−ε]; τ ≤ νn,ε ∧ [n1−ε]

]

= a− lim
n→+∞

Ex,a
[
Mτ ; τ ≤ νn,ε ∧ [n1−ε]

]

= a− Ex,a[Mτ ] = V (x, a).

(2) Let b = a+A. Remind that M∗n = max
1≤k≤n

|Mk|. We obtain

Ex,a
[
Sνn,ε ;Sνn,ε > θnn

1
2 , τ > νn,ε, νn,ε ≤ n1−ε

]
≤ Ex,b

[
Mνn,ε ;Mνn,ε > θnn

1
2 , νn,ε ≤ n1−ε

]

≤ Ex,b
[
M∗[n1−ε];M

∗
[n1−ε] > θnn

1
2

]
.
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Since θnn
ε/4 → +∞ as n→ +∞, it suffices to prove that for any δ > 0, x ∈ X and

b ∈ R,

lim
n→+∞

n2εEx
[
b+M∗n;M∗n > n

1
2 +δ
]

= 0.

Obviously, by (3.5),

Ex
[
b+M∗n;M∗n > n

1
2 +δ
]
≤ bPx

(
M∗n > n

1
2 +δ
)

+ Ex
[
M∗n;M∗n > n

1
2 +δ
]

=
(
b+ n

1
2 +δ
)
Px
(
M∗n > n

1
2 +δ
)

+

∫ +∞

n
1
2
+δ

Px(M∗n > t)dt

≤ c
(
b+ n

1
2 +δ
)
n−pδ + cn−pδ+

1
2 +δ.

Since p can be taken arbitrarily great, it follows that lim
n→+∞

n2εJ ′n = 0.

�

4.5. Proof of Lemma 4.6.
Recall that a± = a± n1/2−2ε and denote t± = t± 2n−2ε. For any 1 ≤ k ≤ n1−ε,

{τ bma− } ∩An,ε ⊂ {τa > n− k} ∩An,ε ⊂ {τ bma+ } ∩An,ε
and

{a−+σBn−k ≤ t−
√
n}∩An,ε ⊂ {a+Sn−k ≤ t

√
n}∩An,ε ⊂ {a++σBn−k ≤ t+

√
n}∩An,ε,

which imply

Px(τ bma− > n− k, a− + σBn−k ≤ t−
√
n)− Px(Acn,ε)

≤ Px(τa > n− k, a+ Sn−k ≤ t
√
n) ≤ (4.24)

Px(τ bma+ > n− k, a+ + σBn−k ≤ t+
√
n) + Px(Acn,ε).

Moreover, by Lemma 4.2, we obtain

Px
(
τ bma+ > n− k, a+ + σBn−k ≤ t+

√
n
)

=
2a

σ3
√

2πn

∫ t

0

u exp
(
− u2

2σ2

)
du(1 + o(1))(4.25)

and similarly,

Px
(
τ bma− > n− k, a− + σBn−k ≤ t−

√
n
)

=
2a

σ3
√

2πn

∫ t

0

u exp
(
− u2

2σ2

)
du(1 + o(1)).(4.26)

Therefore, from (4.24), (4.25), (4.26) and Px(Acn,ε) ≤ cn−2ε, it follows that

Px
(
τa > n− k, a+ Sn−k ≤ t

√
n
)

=
2a

σ3
√

2πn

∫ t

0

u exp
(
− u2

2σ2

)
du(1 + o(1)).1

�

5. On conditions C1-C3 of Theorem 2.1 in Grama et al. (2014)

Let kgap,M1,M2 ∈ N and j0 < . . . < jM1+M2
be natural numbers. Denote

ak+Jm =
∑
l∈Jm ak+l, where Jm = [jm−1, jm),m = 1, . . . ,M1+M2 and k ≥ 0. Con-

sider the vectors ā1 = (aJ1 , . . . , aJM1
) and ā2 = (akgap+JM1+1

, . . . , akgap+JM1+M2
).

Denote by φx(s, t) = Eeisā1+itā2 , φx,1(s) = Eeisā1 and φx,2(s) = Eeitā2 the char-
acteristic functions of (ā1, ā2), ā1 and ā2, respectively. For the sake of brevity, we
denote φ1(s) = φx,1(s), φ2(t) = φx,2(t) and φ(s, t) = φx(s, t).
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We first check that conditions C1-C3 hold and then prove the needed lemmas.

5.1. Statement and proofs of conditions C1-C3.
C1: There exist positive constants ε0 ≤ 1, λ0, λ1, λ2 such that for any kgap ∈
R,M1,M2 ∈ Z+, any sequence j0 < . . . < jM1+M2

and any s ∈ RM1 , t ∈ RM2

satisfying |(s, t)|∞ ≤ ε0,

|φ(s, t)− φ1(s)φ2(t)| ≤ λ0 exp(−λ1kgap)

(
1 + max

m=1,...,M1+M2

card(Jm)

)λ2(M1+M2)

.

C2: There exists a positive constant δ such that supn≥0 |an|L2+2δ < +∞.
C3: There exist a positive constant C and a positive number σ such that for any
γ > 0, any x ∈ X and any n ≥ 1,

sup
m≥0

∣∣∣∣∣n
−1V arPx

(
m+n−1∑

i=m

ai

)
− σ2

∣∣∣∣∣ ≤ Cn
−1+γ .

Proposition 5.1. Condition 1 is satisfied under hypotheses P1-P5.

Proof. First, we prove the following lemma.

Lemma 5.2. There exist two positive constants C and κ such that 0 < κ < 1 and

|φ(s, t)− φ1(s)φ2(t)| ≤ CCM1+M2

P κkgap ,

where CP is defined in Proposition 2.3.

Proof. In fact, the characteristic functions of the ramdom variables ā1, ā2 and
(ā1, ā2) can be written in terms of operator respectively as follows:

φ1(s) = Ex[eisā1 ] = P j0−1P |J1|s1 . . . P
|JM1

|
sM1

1(x),

φ2(t) = Ex[eitā2 ] = P kgap+jM1
−1P

|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1(x), (5.1)

φ(s, t) = Ex[eisā1+itā2 ] = P j0−1P |J1|s1 . . . P
|JM1

|
sM1

P kgapP
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1(x).

Now we decompose φ(s, t) into the sum of φΠ(s, t) and φR(s, t) by using the
spectral decomposition P = Π +R in Proposition 2.3, where

φΠ(s, t) = P j0−1P |J1|s1 . . . P
|JM1

|
sM1

ΠP
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1(x),

φR(s, t) = P j0−1P |J1|s1 . . . P
|JM1

|
sM1

RkgapP
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1(x).

Since Π(ϕ) = ν(ϕ)1 for any ϕ ∈ L and Pt acts on L, we obtain

φΠ(s, t) = P j0−1P |J1|s1 . . . P
|JM1

|
sM1

1(x)ν
(
P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)
.

Then setting ψ2(t) = ν(P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1) yields

φ(s, t) = φ1(s)ψ2(t) + φR(s, t)

= φ1(s)φ2(t) + φ1(s)[ψ2(t)− φ2(t)] + φR(s, t),

which implies

|φ(s, t)− φ1(s)φ2(t)| ≤ |φ1(s)||ψ2(t)− φ2(t)|+ |φR(s, t)|. (5.2)
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On the one hand, we can see that |φ1(s)| =
∣∣∣
(
P j0−1P

|J1|
s1 . . . P

|JM1
|

sM1
1
)

(x)
∣∣∣ ≤ C1+M1

P

and |φR(s, t)| ≤ C1+M1+M2

P CRκ
kgap . On the other hand, since ν is P -invariant

measure and (ν − δx)(1) = 0, by using again the expression P = Π +R, we obtain

|ψ2(t)− φ2(t)| =
∣∣∣(ν − δx)

(
P kgap+jM1

−1P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

≤
∣∣∣(ν − δx)

(
ΠP
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

+
∣∣∣(ν − δx)

(
Rkgap+jM1

−1P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

=
∣∣∣(ν − δx)(1)ν

(
P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

+
∣∣∣(ν − δx)

(
Rkgap+jM1

−1P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

=
∣∣∣(ν − δx)

(
Rkgap+jM1

−1P
|JM1+1|
t1 . . . P

|JM1+M2
|

tM2
1
)∣∣∣

≤ CCM2

P κkgap+jM1
−1. (5.3)

Therefore, (5.2) follows.
�

Second, let λ2 = max{1, log2 CP }. Since max
m=1,...,M1+M2

card(Jm) ≥ 1, we obtain

CM1+M2

P ≤ 2λ2(M1+M2) ≤
(

1 + max
m=1,...,M1+M2

card(Jm)

)λ2(M1+M2)

,

which implies that

|φ(s, t)− φ1(s)φ2(t)| ≤ Cκkgap
(

1 + max
m=1,...,M1+M2

card(Jm)

)λ2(M1+M2)

.

Finally, let λ0 = C and λ1 = − log κ. Then the assertion arrives.
�

Proposition 5.3. Condition 2 is satisfied under hypotheses P1-P5.

Proof. Condition P1 implies that there exists δ0 > 0 such that E[N(g)δ0 ] <

+∞ and since E[N(g)δ0 ] = E[exp(δ0 logN(g))] =
+∞∑

k=0

δk0
k!

E[(logN(g))k], we obtain

E|an|k ≤ E[(logN(g))k] < +∞ for any n ≥ 0 and any k ≥ 0.
�

Proposition 5.4. Condition 3 is satisfied under hypotheses P1-P5. More precisely,
there exists a positive constant σ such that for any x ∈ X and any n ≥ 1,

sup
m≥0

∣∣∣∣∣V arPx

(
m+n−1∑

k=m

ak

)
− nσ2

∣∣∣∣∣ < +∞. (5.4)

Proof. For any integer m,n ≥ 0, we denote Sm,n =
∑m+n−1
k=m ak, Vx(X) =

V arPx(X) = Ex(X2)− (ExX)2 and Covx(X,Y ) = CovPx(X,Y ). Then

Vx(Sm,n) =

m+n−1∑

k=m

Vx(ak) + 2

m+n−1∑

k=m

m+n−k−1∑

l=1

Covx(ak, ak+l) (5.5)
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and (5.4) becomes supm≥0 |Vx(Sm,n) − nσ2| < +∞. We claim two lemmas and
postpone their proofs until the end of this section.

Lemma 5.5. There exist C > 0 and 0 < κ < 1 such that for any x ∈ X, any k ≥ 0
and any l ≥ 0,

|Covx(ak, ak+l)| ≤ Cκl. (5.6)

Lemma 5.6. There exist C > 0, 0 < κ < 1 and a sequence (sn)n≥0 of real numbers
such that for any x ∈ X, any k ≥ 0 and any l ≥ 0,

|Covx(ak, ak+l)− sl| ≤ Cκk, (5.7)

|sl| ≤ Cκl. (5.8)

For the first term of the right side of (5.5), by combining Lemma 5.5 and Lemma
5.6, we obtain

|Covx(ak, ak+l)− sl| ≤ Cκmax{k,l}. (5.9)

Inequality (5.7) implies |Vx(ak)− s0| ≤ Cκk, which yields for any integer m,n ≥ 0,
∣∣∣∣∣
m+n−1∑

k=m

Vx(ak)− ns0

∣∣∣∣∣ ≤
m+n−1∑

k=m

|Vx(ak)− s0| ≤ C
m+n−1∑

k=m

κk ≤ C

1− κ < +∞.(5.10)

For the second term of the right side of (5.5), we can see that
∣∣∣∣∣
m+n−1∑

k=m

m+n−k−1∑

l=1

Covx(ak, ak+l)−
m+n−1∑

k=m

+∞∑

l=1

sl

∣∣∣∣∣

≤
m+n−1∑

k=m

m+n−k−1∑

l=1

|Covx(ak, ak+l)− sl|+
m+n−1∑

k=m

+∞∑

l=m+n−k
|sl|

= Σ1(x,m, n) + Σ2(x,m, n). (5.11)

On the one hand, by (5.7) and (5.9), we can see that for any x ∈ X, any m ≥ 0 and
any n ≥ 1,

Σ1(x,m, n) ≤
+∞∑

k=0

k∑

l=1

Cκk +

+∞∑

k=0

+∞∑

l=k+1

Cκl

≤
+∞∑

k=0

Ckκk +
+∞∑

k=0

C
κk+1

1− κ < +∞. (5.12)

Similarly, on the other hand, by (5.8) we obtain for any x ∈ X, any m ≥ 0 and any
n ≥ 1,

Σ2(x,m, n) ≤
n−1∑

k=0

+∞∑

l=n−k
Cκl ≤ C

(1− κ)2
< +∞. (5.13)

Combining (5.5),(5.10),(5.11),(5.12) and (5.13), we obtain

sup
m≥0

∣∣∣∣∣Vx(Sm,n)− n
+∞∑

l=0

sl

∣∣∣∣∣ < +∞. (5.14)

In fact, by using Lemma 2.1 in Le Page et al. (to appear), Theorem 5 in Hennion
(1997) implies that the sequence ( Sn√

n
)n≥1 converges weakly to a normal law with
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variance σ2. Meanwhile, under hypothesis P2, Corollary 3 in Hennion (1997) implies
that the sequence (|Rn|)n≥1 is not tight and thus σ2 > 0, see Hennion (1997) for
the definition and basic properties. Therefore, we can see that V arxSn ∼ nσ2 with
σ2 > 0, which yields

∑+∞
l=0 sl = σ2.

�

5.2. Proof of Lemma 5.5.

Let g(x) =

{
x if |x| ≤ 1,
0 if |x| > 2.

such that g is C∞ on R and |g(x)| ≤ |x| for any x ∈ R.

Then g ∈ L1(R) ∩ C1
c (R). Therefore, the Fourier transform of g is ĝ defined as

follows:

ĝ(t) :=

∫

R
e−itxg(x)dx,

and the Inverse Fourier Theorem yields

g(x) =
1

2π

∫

R
eitxĝ(t)dt.

Let gT (x) := Tg( xT ) for any T > 0. Then |ĝT |1 = T |ĝ|1 < +∞. Let hT (x, y) =

gT (x)gT (y). Then ĥT (x, y) = ĝT (x)ĝT (y). Let V and V ′ be two i.i.d. random
variables with mean 0, independent of al for any l ≥ 0 whose characteristic functions
have the support included in the interval [−ε0, ε0] for ε0 defined in C1. Assume
that E|V |n < +∞ for any n > 0. Let Zk = ak+V and Z ′k+l = ak+l+V

′ and denote

by φ̃1(s), φ̃2(t) and φ̃(s, t) the characteristic functions of Zk, Z
′
k+l and (Zk, Z

′
k+l),

respectively.
We use the same notations introduced at the beginning of this section by setting

φ1(s) = Ex[eisak ], φ2(t) = Ex[eitak+l ] and φ(s, t) = Ex[eisak+itak+l ]. We also denote
ϕ the characteristic function of V , that yields

φ̃1(s) = E[e
isZk ] = E[e

isak ]E[e
isV ] = φ1(s)ϕ(s),

φ̃2(t) = E[e
itZ′k+l ] = E[e

itak+l ]E[e
itV ′ ] = φ2(t)ϕ(t), (5.15)

φ̃(s, t) = E[e
isZk+itZ′k+l ] = E[e

isak+itak+l ]E[e
isV ]E[e

itV ′ ] = φ(s, t)ϕ(s)ϕ(t).

Then we can see that φ̃1 and φ̃2 have the support in [−ε0, ε0]. We perturb ak and
ak+l by adding the random variables V and V ′ with mean 0 and the support of their
characteristic functions are on [−ε0, ε0]. We explicit the quantity Covx(ak, ak+l):

Covx(ak, ak+l) = Ex[ak, ak+l]− ExakExak+l. (5.16)

On the one hand, we can see that

Ex[akak+l] = Ex[ZkZ
′
k+l] = Ex[hT (Zk;Z ′k+l)] + Ex[ZkZ

′
k+l]− Ex[hT (Zk;Z ′k+l)]

=
1

(2π)2
Ex
∫ ∫

ĥT (s, t)eisZk+itZ′k+ldsdt+R0

=
1

(2π)2

∫ ∫
ĥT (s, t)Ex

[
eisZk+itZ′k+l

]
dsdt+R0

=
1

(2π)2

∫ ∫
ĥT (s, t)φ̃(s, t)dsdt+R0,

(5.17)
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where R0 = Ex[ZkZ
′
k+l]− Ex[hT (Zk;Z ′k+l)]. On the other hand, we obtain

Exak = ExZk = ExgT (Zk) + ExZk − ExgT (Zk)

=
1

2π

∫
ĝT (s)φ̃1(s)ds+R1, (5.18)

where R1 = ExZk − ExgT (Zk) and

Exak+l = ExZ ′k+l = ExgT (Z ′k+l) + ExZ ′k+l − ExgT (Z ′k+l)

=
1

2π

∫
ĝT (t)φ̃2(t)dt+R2, (5.19)

where R2 = ExZ ′k+l − ExgT (Z ′k+l). From (5.16), (5.17), (5.18) and (5.19), since

ĥT (s, t) = ĝT (s)ĝT (t), we obtain

Covx(ak, ak+l) =
1

(2π)2

∫ ∫
ĥT (s, t)φ̃(s, t)dsdt+R0

−
(

1

2π

∫
ĝT (s)φ̃1(s)ds+R1

)(
1

2π

∫
ĝT (t)φ̃2(t)dt+R2

)

=
1

(2π)2

∫ ∫
ĥT (s, t)

[
φ̃(s, t)− φ̃1(s)φ̃2(t)

]
dsdt+R (5.20)

where R = R0−R1R2−R1
1

2π

∫
ĝT (t)φ̃2(t)dt−R2

1

2π

∫
ĝT (s)φ̃1(s)ds. Since ĝT ∈

L1(R) and applying Lemma 5.2 for j0 = k, j1 = k + 1, j2 = k + 2, kgap = l,M1 =
M2 = 1, we obtain

|Covx(ak, ak+l)| ≤
1

(2π)2

∫ ∫ ∣∣∣ĥT (s, t)
∣∣∣
∣∣∣φ̃(s, t)− φ̃1(s)φ̃2(t)

∣∣∣ dsdt+ |R|

≤ 1

(2π)2

∫ ∫ ∣∣∣ĥT (s, t)
∣∣∣ |φ(s, t)ϕ(s)ϕ(t)− φ1(s)φ2(t)ϕ(s)ϕ(t)| dsdt+ |R|

≤ sup
|s|,|t|≤ε0

|φ(s, t)− φ1(s)φ2(t)|
(∫
|ĝT (s)| ds

)2

+ |R|

≤ CT 2κl + |R|. (5.21)

It remains to bound of |R|. On the one hand, we can see that

• |R1| = |Ex[Zk − gT (Zk)]| = Ex
∣∣[Zk − gT (Zk)]1[|Zk|>T ]

∣∣ ≤ 2T−1Ex|Zk|2,

•
∣∣∣∣

1

2π

∫
ĝT (s)φ̃1(s)ds

∣∣∣∣ = |ExgT (Zk)| ≤ Ex |Zk| ≤ Ex|ak|+ Ex|V | ≤ C,

• |R2| =
∣∣Ex[Z ′k+l − gT (Z ′k+l)]

∣∣ ≤ 2T−1Ex|Z ′k+l|2,

•
∣∣∣∣

1

2π

∫
ĝT (t)φ̃2(t)dt

∣∣∣∣ =
∣∣ExgT (Z ′k+l)

∣∣ ≤ Ex|al+k|+ Ex|V ′| ≤ C.

On the other hand, similarly for |R0|, we obtain

|R0| = Ex
[∣∣ZkZ ′k+l − hT (Zk, Z

′
k+l)

∣∣ (1[|Zk|>T ] + 1[|Zk|≤T ]

) (
1[|Z′k+l|>T ] + 1[|Z′k+l|≤T ]

)]

≤ Ex
[∣∣ZkZ ′k+l − hT (Zk, Z

′
k+l)

∣∣
(
1[|Zk|>T ] + 1[|Z′k+l|>T ]

)]

≤ 2Ex
∣∣ZkZ ′k+l1[|Zk|>T ]

∣∣+ 2Ex
∣∣∣ZkZ ′k+l1[|Z′k+l|>T ]

∣∣∣ .
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For any positive δ, let qδ = δ+1
δ , by Holder’s inequality, we obtain

Ex
∣∣ZkZ ′k+l1[|Zk|>T ]

∣∣ ≤
(
Ex|Zk|2+2δ

) 1
2+2δ

(
Ex|Z ′k+l|2+2δ

) 1
2+2δ Px(|Zk| > T )

1
qδ .

By Minkowski’s inequality,
(
Ex|Zk|2+2δ

) 1
2+2δ ≤

(
Ex|ak|2+2δ

) 1
2+2δ +

(
Ex|V |2+2δ

) 1
2+2δ < C,

(
Ex|Z ′k+l|2+2δ

) 1
2+2δ ≤

(
Ex|al+k|2+2δ

) 1
2+2δ +

(
Ex|V ′|2+2δ

) 1
2+2δ < C.

By Markov’s inequality,

Px(|Zk| > T ) ≤ 1

T qδ
Ex|Zk|qδ ≤

C

T qδ
,

Px(|Z ′k+l| > T ) ≤ 1

T qδ
Ex|Z ′k+l|qδ ≤

C

T qδ
.

Hence |R0| ≤ CT−1 for T > 1 and thus |R| ≤ CT−1.
Thus, (5.21) becomes |Covx(ak, ak+l)| ≤ CT 2κl + CT−1. By choosing T = κ−α

with α > 0, we obtain

|Covx(ak, ak+l)| ≤ Cκl−2α + Cκα ≤ C ′max{κl−2α, κα}.
Now we choose α > 0 such that l − 2α > 0, for example, let α = l

4 , we obtain

|Covx(ak, ak+l)| ≤ Cκ
l
4 .

5.3. Proof of Lemma 5.6.
Inequality (5.8) follows by setting k = l in (5.6) and (5.7). It suffices to prove (5.7).
Recall the definition in (5.15) and let

ψ(s) = ν(Ps1)ϕ(s),

ψ(s, t; l) = ν(PsP
l−1Pt1)ϕ(s)ϕ(t),

ψ̃(s, t; l) = ψ(s, t; l)− ψ(s)ψ(t), (5.22)

φ̃0(s, t) = φ̃(s, t)− φ̃1(s)φ̃2(t),

sl,T =
1

(2π)2

∫ ∫
ĥT (s, t)ψ̃(s, t; l)dsdt.

Then (5.20) implies

|Covx(ak, ak+l)− sl,T | ≤
∣∣∣∣

1

(2π)2

∫ ∫
ĥT (s, t)[φ̃0(s, t)− ψ̃(s, t; l)]dsdt

∣∣∣∣+ |R|.

We claim that∣∣∣∣
1

(2π)2

∫ ∫
ĥT (s, t)[φ̃0(s, t)− ψ̃(s, t; l)]dsdt

∣∣∣∣ ≤ Cκk−1T 2, (5.23)

which implies

|Covx(ak, ak+l)− sl,T | ≤ Cκk−1T 2 + CT−1, (5.24)

which yields for any k,m ≥ 1,

|Covx(ak, ak+l)− Covx(am, am+l)| ≤ Cκmin{k−1,m−1}T 2 + CT−1. (5.25)

By choosing T = κ−
1
4 min{k−1,m−1}, we obtain

|Covx(ak, ak+l)− Covx(am, am+l)| ≤ Cκmin{ k−1
4 ,m−1

4 }. (5.26)
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Hence we can say that (Covx(ak, ak+l))l is a Cauchy sequence, thus it converges to
some limit, denoted by sl(x). When k → +∞, (5.24) becomes

|sl(x)− sl,T | ≤ CT−1.

Now let T = T (`) = κ−`, we obtain |sl(x)−sl,T (`)| ≤ Cκ`. Let `→ +∞, we can see
that sl,T (`) → sl(x). Since sl,T (`) does not depend on x, so is sl(x), i.e. sl(x) = sl.
Now let m→ +∞ in (5.26), we obtain

|Covx(ak, ak+l)− sl| ≤ Cκ
k−1
4 .

Now we prove the claim (5.23). By definitions in (5.15) and (5.22), we obtain

∣∣∣φ̃0(s, t)− ψ̃(s, t; l)
∣∣∣ ≤

∣∣∣φ̃(s, t)− ψ(s, t; l)
∣∣∣+
∣∣∣φ̃1(s)φ̃2(t)− ψ(s)ψ(t)

∣∣∣ . (5.27)

On the one hand, we can see that
∣∣∣φ̃(s, t)− ψ(s, t; k)

∣∣∣
=

∣∣P k−1PsP
l−1Pt1(x)ϕ(s)ϕ(t)− ν(PsP

l−1Pt1)ϕ(s)ϕ(t)
∣∣

=
∣∣ΠPsP l−1Pt1(x) +Rk−1PsΠPt1(x) +Rk−1PsR

l−1Pt1(x)− ν(PsP
l−1Pt1)

∣∣
=

∣∣Rk−1Ps1(x)ν(Pt1) +Rk−1PsR
l−1Pt1(x)

∣∣ ≤ Cκk−1. (5.28)

On the other hand,
∣∣∣φ̃1(s)φ̃2(t)− ψ(s)ψ(t)

∣∣∣ =
∣∣∣[φ̃1(s)− ψ(s)]φ̃2(t) + ψ(s)[φ̃2(t)− ψ(t)]

∣∣∣

≤
∣∣∣φ̃1(s)− ψ(s)

∣∣∣+
∣∣∣φ̃2(t)− ψ(t)

∣∣∣
≤ |φ1(s)ϕ(s)− ψ(s)|+ |φ2(t)ϕ(t)− ψ(t)| ,

where as long as k ≥ 2,

|φ1(s)ϕ(s)− ψ(s)| =
∣∣[ΠPs1(x) +Rk−1Ps1(x)

]
Ex[eisV ]− ν(Ps1)Ex[eisV ]

∣∣
≤

∣∣[ΠPs1(x)− ν(Ps1)] +Rk−1Ps1(x)
∣∣

=
∣∣Rk−1Ps1(x)

∣∣ ≤ Cκk−1.

Similarly, we obtain
∣∣∣φ̃1(s)φ̃2(t)− ψ(s)ψ(t)

∣∣∣ ≤ Cκk−1. (5.29)

Therefore, (5.27), (5.28) and (5.29) imply
∣∣∣φ̃0(s, t)− ψ̃(s, t; l)

∣∣∣ ≤ Cκk−1 which

yields the assertion of the claim.
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Chapitre 2

The Galton-Watson branching
process

This chapter discuss single-type and multi-type branching processes in fixed envi-
ronment and in random environment. The original branching process was considered
by Galton and Watson in the 1870’s while seeking a quantitative explanation for the
disappearing family names phenomenon, even in a growing population. In general it
describes the evolution of successive generations of a “population” under the following
assumptions :

1. the initial generation has one member (the ancestor) ;

2. the number of children of every member in every generation of the population is random
and follows the same offspring distribution denoted p ;

3. the random variables that represent the number of children of each member in all generations
of the population are independent.

The behavior of this process, in particular the probability of the extinction of the
population, is governed by the value m of the expectation of the offspring distribution
p. When m < 1 (subcritical case), the process becomes extinct almost surely, the same
property holds for m = 1 (critical case) ; however, when m > 1 (supercritical case), the
process may survive indefinitely.

During the 20th century, multi-type Galton-Watson processes was introduced since
in several cases, the individuals involved in a branching process are not all alike. Several
examples are presented in [Mode, 1971] ; for instance, we may mention models coming
from

1. Population Genetics : when considering inheritance of alleles, a multi-type bran-
ching process with types corresponding to the genotypes, can be used as a model.

2. Physics : cosmic-ray cascades involve both electrons and photons, with electrons
producing photons and photons producing electrons. Such an example is modeled
by a two-type branching process.

In this model, the population has p types with p ≥ 2 and the offspring distribution is
replaced by a family p = (pi)1≤i≤p of probability measures on Np and the corresponding
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expectation becomes a matrix M = (mi, j)1≤i, j≤p. A natural assumption is to assume that this
matrix M is positive regular : all entries are finite and there exists a natural number n ≥ 1
such that all entries of Mn are positive. Then the Perron-Frobenius Theorem ensures that
M has a positive eigenvalue of multiplicity 1 (the Perron-Frobenius root of M), denoted
by ρ and the modulus of all other eigenvalues of M is strictly less than ρ. The behavior of
multi-type Galton-Watson processes are similar to the single-type ones and depending to
the value of ρ that they are distinguished into three cases : when ρ < 1 (subcritical case),
when ρ = 1 (critical case) and when ρ > 1 (supercritical case).

Branching processes in random environment (BPRE) were introduced in the 1960’s
(see for instance [Smith et Wilkinson, 1969]) to describe the development of populations
whose evolution may be affected by environmental factors ; they became a central topic
of research.

In the single-type case in random environment, the behavior of these processes is
mainly determined by the 1-dimensional random walk generated by the logarithms of
the expected population sizes denoted by mk, for k ≥ 0, of the respective generations.
The theory of fluctuations of random walks on R with i.i.d. increments allows to classify
BPRE in three classes - supercritical, critical or subcritical - of single-type BPRE, according
to the fact that the associated random walk tends to +∞, oscillates or tends to −∞ (see
for instance the fundamental papers [Athreya et Karlin, 1971b] and [Athreya et Karlin,
1971a]). In particular, when E(| log mk|) < +∞, the BPRE is supercritical (resp., critical or
subcritical) when E(log mk) > 0 (resp., E(log mk) = 0 or E(log mk) < 0).
There exist numerous statements concerning the asymptotic behavior of the probability of
non-extinction up to time n, the distribution of the population size conditioned on survival
up to moment n, large deviation type results (see for instance [Afanasyev, 1993], [Bansaye
et Berestycki, 2008], [Dyakonova et al., 2004]). In the critical case, the branching process
is degenerate with probability one [Athreya et Karlin, 1971b] ; with the assumption that
the generating functions of the BPRE are linear-fractional, in 1976, M. V. Kozlov [Kozlov,
1977] proved that the probability of non-extinction up to time n is equivalent to c1/

√
n

as n → +∞, for some explicit constant c1 > 0 ; in 2003, in the general case, J. Geiger and
G. Kersting [Geiger et al., 2003] strengthened this result. Let us recall that the probability
of non-extinction up to time n is equivalent to 1/n when the offspring distribution is
fixed, that is to say it does not vary randomly ; in other words, branching processes in
random environment die more slowly. In the supercritical and subcritical cases, similar
studies were done (see for instance [Athreya et Karlin, 1971b], [Athreya et Karlin, 1971a]
and [Geiger et al., 2003]), we do not go into detail about these cases since they are outside
the scope of this thesis.

It is of interest to prove analogues of the statements above for the multi-type BPRE.
The main difficulty which appears is that the role of the random walk associated to the
BPRE in this case is played by the logarithms of the norm of some Rp-valued Markov
chain whose increments are governed by i.i.d. random p × p-matrices Mk for k ≥ 0 ;
the coefficients of these matrices Mk are non-negative and correspond to the expected
population sizes of the respective generations, according to the types of the particles and
their direct parents. Therefore, the multi-type BPRE constitute a relevant application area
to the studies of products of random matrices. Nevertheless, as in the single-type case, the
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set of multi-type BPRE is divided into three classes : they are supercritical (resp., critical
or subcritical) when the upper Lyapunov exponent of the associated random matrices is
positive (resp., null or negative) [Kaplan, 1974].

Specification of the asymptotic behavior of the probability of non-extinction up to time
n of the multi-type BPRE is important. As for single-type BPRE, the first case was studied
when the generating functions defining the random environment are linear-fractional ; it
yields to explicit formulas which are easier to tackle.

In [Dyakonova, 1999], E. E. Dyakonova obtained in the critical case an equivalence of
the survival probability at time n, under the restrictive assumption that the mean matrices
Mk have a concordant deterministic Perron-Frobenius eigenvector. It happens for instance
when the Mk are upper-triangular matrices with strictly decreasing coefficients on the
diagonal. In this case, the behavior of the BPRE is governed by the one-dimensional
random walk whose increments are the logarithm of the spectral radius of the Mk ; this
allows one to apply the same techniques as in the single-type case.

To tackle the general case when the action of the random matrices Mk is strongly
irreducible, limit theorems on the fluctuations of the norm of products of random matrices
are required, which were recently achieved in [Grama et al., 2014] and [Grama et al., 2017]
with asymptotic results on the tails of certain hitting time distribution.

Let us briefly mention two main approaches to answer the main question of this chap-
ter : quenched and annealed. Under quenched approach, we fix some ω ∈ Ω and the
characteristics of a BPRE are treated as random variables whose distributions correspond
to the choice of ω ; in other words, there is only one layer of randomness and the environ-
ment is fixed with ω. The annealed approach studies the mean values of the mentioned
characteristics and can be viewed as an averaged analysis of the more detailed quenched
one. This is the context of the work presented here.

In this chapter, we introduce several classical results for single-type and multi-type
Galton-Watson processes in fixed and in random environment. The principal result is
about the multi-type process in random environment, located at the last section.

2.1 Single-type Galton-Watson process in fixed environment

2.1.1 Model description

Let (Ω,F,P) be a probability space. We are interested in a population which evolves
with time and denote by Zn the number of individuals in the nth generation of this
population. At each generation n, each individual i ∈ {1, ...,Zn} has Nn

i children, where(
Nn

i , i > 1, n > 0
)

are i.i.d. random variables with distribution P
(
Nn

i = k
)
, k > 0. The

number of individuals at generation n + 1 is therefore :

Zn+1 = Nn
1 + Nn

2 + ... + Nn
Zn
,

with the convention if Zn = 0 then Zn+1 = 0. Let Fn be the σ-algebra generated by Nk
l for

k ≤ n and l ≥ 0. Since Zn+1 is a sum of i.i.d. random variables, its distribution depends only
on the value of Zn and not on past values. More precisely, (Zn)n≥0 is a time-homogeneous
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Markov chain. Having defined the process, we want to know some of its properties :
the probability distribution and moments of Zn ; the fluctuations of Zn as n → ∞ ; the
probability that the random sequence Z0,Z1,Z2, .. eventually goes to zero. The following
basic result was discovered by Watson and has been rediscovered a number of times since.

What are the basic assumptions?

1. the initial generation numbered 0 has one member (the ancestor),

2. the number of children of every member in every generation of the population is
random and follows a offspring distribution denoted p,

3. the p-distributed random variables that represent the number of children of each
member in all generations of the population are independent.

We denote p = (p(k))k≥0 the distribution of the random variables Nn,i.
We consider some trivial cases.

1. If p(0) = 0 then P(extinction) = 0 ; furthermore, if p is degenerate, that is p(1) = 1,
then Zn = 1 P-a.s. for any n ≥ 0.

2. If p(0) = 1 then Zn = 0 P-a.s. for any n ≥ 1 and P(extinction) = 1.

3. If 0 < p(0) < 1 and p(0) + p(1) = 1, then P(Zn , 0,Zn+1 = 0) = p(1)np(0), which
yields

P(extinction) =

+∞∑

n=0

P(Zn , 0,Zn+1 = 0) =
p(0)

1 − p(1)
= 1.

Therefore it is more interesting to omit these 3 particular cases and assume that p
satisfies the following assumption

0 < p(0) < 1 and p(0) + p(1) < 1. (2.1.1)

We also assume that p is non-degenerate, that is p(k) , 1 for any k ≥ 0, and aperiodic that is
gcd{k ∈N∗ | p(k) > 0} = 1.

Denote by f (s) the probability generating function of the offspring distribution p
defined by f (s) =

∑+∞
k=0 p(k)sk, and by gn(s), for n ≥ 0, the probability generating function

of the random variable Zn. Obviously g0(s) = f (s) and gn(s) = E[sZn]. Moreover, under
condition (2.1.1), the function f is strictly convex.

2.1.2 Classical properties

Proposition 2.1.1 The function gn is the n-fold composition of f , that is, for any n ≥ 0,

1. g0(s) = s,

2. gn+1(s) = f ◦ f ◦ . . . ◦ f︸             ︷︷             ︸
n times

(s).

Proof. Easily we see that g0(s) = E[sZ0] = E[s1]. The second statement is obtained as
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follows, using the fact that Nn
l are independent on Fn−1,

gn+1(s) = E
(
sZn+1

)
=

+∞∑

i=0

E
[
sNn

1 +...+Nn
Zn 1[Zn=i]

]

=

+∞∑

i=0

E
[
sNn

1 +...+Nn
i 1[Zn=i]

]

=

+∞∑

i=0

E
[
E
[
sNn

1 +...+Nn
i 1[Zn=i]|Fn

]]

=

+∞∑

i=0

[
E
(

sN1
1

)]i
P (Zn = i).

Since E
(
sN
)

= f (s), we see that

gn+1(s) =

+∞∑

i=0

[
f (s)
]i
P (Zn = i) = E

[(
f (s)
)Zn
]

= gn
(

f (s)
)
.

By induction, we obtain : gn = f ◦ f ◦ ... ◦ f︸            ︷︷            ︸
n times

, which is the nth iterate of function f .

�

Proposition 2.1.1 enables us to calculate the generating function of Zn, and hence the
probability distribution of Zn by simply computing the iterates of f . From the point of
view of probability theory, the main value of Proposition 2.1.1 is that it enables us to
calculate the generating function of Zn thanks to what we can obtain various asymptotic
laws of behavior for Zn when n is large.

Proposition 2.1.2 Assume that E((N1
1)2) < ∞. We set m := E(N1

1) and σ2 := Var(N1
1). Then,

for any n ≥ 1,

1. E(Zn) = mn,

2. Var(Zn) =





nσ2 when m = 1,

σ2
(

mn−1 mn
− 1

m − 1

)
when m , 1.

2.1.3 Classification of the Galton-Watson process

Definition 2.1.3 A Galton-Watson process with mean offspring number m is said to be super-
critical if m > 1, critical if m = 1, or subcritical if m < 1 .

We are interested in the probability of extinction of the population namely the behavior of
the non-decreasing sequence (P(Zn = 0))n whose limit e is called the extinction probability.

81



2.1. SINGLE-TYPE GALTON-WATSON PROCESS IN FIXED ENVIRONMENT

Figure 2.1 – Three cases

Proposition 2.1.4 If m ≤ 1, the extinction probability e is 1. If m > 1, the extinction probability
is the unique non-negative solution less than 1 of the equation f (s) = s.

Proof. One easily checks that f is strictly convex on [0, 1], so there are two cases to consider,
as described in Figure 2.1 :

1. If the slope f ′(1) 6 1, the graph of f (s) stands above the diagonal line and so, the
equation f (s) = s has no solution other than s = 1.

2. If f ′(1) > 1 then the graph of f (s) does intersect the diagonal line at some point
other than (1, 1) so the solution is s∗ with s∗ < 1.

It is obvious that (en)n is a non-decreasing sequence bounded by 1. We also have gn+1 (0) =
en+1 → e and gn (0) = en → e. Since gn+1(0) = f (gn(0)), then e = f (e).

For n = 0, we obtain e0 = P (Z0 = 0) = 0 6 s∗. Since f is an increasing function on
[0, 1], one gets e1 = f (e0) 6 f (s∗) = s∗. By induction en 6 s∗ for any n ≥ 0, and letting n
tend to ∞, this yields e 6 s∗. This implies e is the smallest non-negative fixed-point of f .

�

2.1.4 Speed of convergence

The first two precise results about the extinction of the GW process are due to [Kol-
mogorov, 1938] and the third one is due to [Kesten et Stigum, 1966].

Theorem 2.1.5 Let (Zn)n≥0 be a GW process whose offspring distribution p satisfies (2.1.1) and
has finite second moment.

1. In the subcritical case, the process (Zn)n≥0 becomes extinctP-a.s. and there exists a positive
constant c such that

P(Zn , 0) ∼ cmn as n→ +∞. (2.1.2)

2. In the critical case, the process (Zn)n≥0 becomes extinct P-a.s. and

P(Zn , 0) ∼
2
σ2n

as n→ +∞. (2.1.3)
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3. In the supercritical case, the martingale (Zn/mn)n≥0 converges P-a.s. to some random
variable W which satisfies the two properties :

E(W) ≤ 1 and P(W = 0) = e, (2.1.4)

where e ∈]0, 1[ is the probability of extinction of (Zn)n≥0.

The statement concerning the supercritical case holds under a weaker moment assump-
tion (namely when the Nn

i belong to L1 ln+ L1) and is due to Kesten and Stigum under
this assumption ; it is a bit out of the scope of this thesis, so we omit its proof. We refer
to the book [Athreya et Ney, 1972] and readers can find a proof of another approach
in [Abraham et Delmas, 2016], based on the notion of Galton-Watson trees.

Before giving the proof of the first two statements, let us say a few comments. In the
subcritical and critical cases, the extinction probability at time n converge to 1, exponen-
tially quickly in the subcritical case and only polynomially quickly (with speed 1/n) in
the critical one.

In the supercritical case, since the non-extinction event
(⋂

n≥0(Zn ≥ 1)
)

has probability
1 − e, the events (W > 0) and

⋂
n≥0(Zn ≥ 1) equal P-almost surely. In other words, for

P-almost ω ∈ Ω,

1. either Zn(ω) = 0 for n large enough (this occurs with probability e) ;

2. or (Zn(w))n≥0 tends to +∞ exponentially quickly, namely Zn(ω) ∼ mnZ(w) as n →
+∞, with Z(ω) > 0 (this occurs with probability 1 − e).

Proof. (1) Notice the two following points :

1. P(Zn ≥ 1) ≤ E[Zn], where E[Zn] = mn,

2.

P(Zn+1 > 0) = 1 − P(Zn+1 = 0)
= 1 − f (gn(0))

=
1 − f (gn(0))

1 − gn(0)
P(Zn > 0).

Since f ∈ C∞[0, 1] and f is continuous, there exists sn ∈ [gn(0), 1] such that f ′(sn) =
1 − f (gn(0))

1 − gn(0)
. Moreover, f ′(sn) < f ′(1) by strict convexity of f , which yields

P(Zn+1 > 0) ≤ f ′(1)P(Zn > 0) = mP(Zn > 0).

Hence, the sequence (P(Zn > 0)/mn)n is decreasing, thus it converges to some non-
negative limit c.

It remains to check that c > 0. By using the Cauchy-Schwartz inequality, we obtain
E[Zn] = E[Zn1[Zn>0]] ≤

√
E[Z2

n]P(Zn > 0), together with Proposition 2.1.2, it follows that

P(Zn > 0) ≥
(E[Zn])2

E[Z2
n]

=
(1 −m)mn+1

(1 −mn)σ2 + (1 −m)mn+1 ,
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2.2. MULTI-TYPE GALTON-WATSON PROCESS IN FIXED ENVIRONMENT

which implies

lim inf
n→+∞

P(Zn > 0)
mn ≥ lim inf

n→+∞

(1 −m)m
(1 −mn)σ2 + (1 −m)mn+1 =

m(1 −m)
σ2 > 0.

Hence c ≥
m(1 −m)

σ2 > 0.

(2) In critical case, we can see that σ2 = Varξ = f ′′(1). Then by using Taylor expansion

for 1 − x and 1, we obtain f (1 − x) =
∑+∞

n=0
f (n)(a)

n! (−x)n, which yields

f (1 − x) = 1 − x +
σ2

2!
x2(1 + ε(x)).

Let vn := P(Z1 > 0). By the two points in the first part of this proof, we see that lim
n→+∞

vn = 0

and vn+1 = 1 − f (1 − vn) for any n ≥ 0. Moreover,

1
vn+1

−
1
vn

=
1

1 − f (1 − vn)
−

1
vn

=
1
vn

1
1 − σ2

2 vn(1 − ε(vn))
−

1
vn

=
1
vn

[
1 +

σ2

2
vn(1 + ε(vn))

]
−

1
vn

=
σ2

2
(1 + ε(vn))→

σ2

2
,

which implies

1
vn

=
1
v0

+

n−1∑

k=0

(
1

vk+1
−

1
vk

)
∼ n

σ2

2
. (2.1.5)

Then P(Zn > 0) ∼ 2
nσ2 .

�

2.2 Multi-type Galton-Watson process in fixed environment

The materials in this section follows the style of [Harris, 1963]. We extend our problem
to a little more difficult level : the Galton-Watson branching processes with many types
of particles. The question considered is whether the asymptotic behavior of the process
change compared to those of the single-type case.

In the reproduction of certain bacteria, the usual form may produce a mutant form
that behaves differently. Another example is about mitochondrial DNA, it represents a
mainstay of evolutionary biology. Normally, a normal mt DNA gives birth to two other
normal mt DNA but someday, it changes. This time it separates into one normal and one
abnormal which we may call mutant mt DNA. The noticeable feature is that only the
normal mt DNA can do this, producing to either two normal, or one normal and one
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mutant. Mutants only can give birth to mutants. This is just a very simple example. It can
be a bit more complicated as follows.

We fix p ≥ 2 and for each generation n ≥ 0, we define Zn as a p-dimensional vector
(Zn(1), . . .Zn(p)) whose jth entry gives the number of individuals of type j in the nth

generation of the branching process. We write (Zn)n≥0 for the sequence of the random
variables Zn for n ≥ 0. Because all individuals reproduce independently and offspring
distributions do not change between generations, the random vector Zn depends only
on the vector Zn−1. In other words, the Galton-Watson process (Zn)n≥0 is a temporally
homogeneous vector Markov chain.
Consider a p-dimensional vector α̃ = (α1, . . . , αp) ∈ Np ; the vector α̃ represents the off-
spring of each type created by a individual, with α1 equalling the number of offspring of
type 1, . . . , and αp the number of offspring of type p. For every type i = 1, 2, ..., p,, let pi(α̃)
be the probability that an individual of type i has α1 children of type 1, . . . , αp children of
type p. The probability measure pi is the offspring distribution for individuals of type i.
Let us assume that Z0 = ẽi = (0, . . . , 1, . . . , 0) (all the entries equal 0 except the ith one which
equals 1). Then Z1 has distribution pi whose p-dimensional generating function is of the
form

f i(s) = f i(s1, . . . , sp) =
∑

α̃∈Np

pi(α1, . . . , αp)sα1
1 . . . sαp

p .

It is obvious that if Zn = (α1, . . . , αp) then Zn+1 is a sum of α1 + . . . + αp vectors and if
Zn = 0 then Zn+1 = 0. The generating function of Zn given Z0 = ẽi is denoted f i

n and we
set fn(s) = ( f 1

n (s), . . . , f p
n (s)).

Theorem 2.2.1 The generating function f i
n are functional iterates as follows :

f i
n+1(s) = f i( f 1

n (s), . . . , f p
n (s)), n = 0, 1, . . .

f i
0(s) = si, i = 1, . . . , p.

In particular, fn+k(s) = fn[fk(s)] for any n, k = 0, 1, . . .

Firstly, we state several basic definitions. The multi-type process (Zn)n≥1 is irreducible
if for every pair of types i and j in {1, . . . , p}, there exists some natural number n such that
P[Zn( j) ≥ 1|Z0 = ẽi] > 0. If for some n the statement holds for all i and j, then the process
is said to be positively regular.

From here to the end of this subsection, we assume that the distribution p has moment
of order 2. Thus, the function f = ( f 1, . . . , f p) is twice differentiable, let M = (M(i, j))i, j be
the matrix of the first moments of the offspring generating function f ,

M(i, j) = E[Z1( j)|Z0 = ẽi] =
∂ f i(1, . . . , 1)

∂s j
, i, j = 1, . . . , p.

Assume also that ni, j are finite and they are not all equal to 0. A straightforward genera-
lization yields to the formula E[Zn+k|Zk] = ZkMn, for any n, k = 0, 1, 2, . . .

A vector and a matrix are said to be positive if all their entries are positive.
A Galton-Watson process, or its mean matrix M, are said positively regular when

there exists k ≥ 1 such that Mk is positive ; this condition is stricter than the process
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being positively regular . The process is said to be singular if the generating functions
f i(s1, . . . , sp), for 1 ≤ i ≤ p, are all linear in s1, . . . , sp, with no constant terms ; that is to say
each individual has exactly one child.

The following classical result for positively regular matrices will be of interest in the
sequel.

Theorem 2.2.2 [Harris, 1963] (Perron-Frobenius) Let M be a non-negative matrix of order p
such that Mk is positive for some positive integer k . Let ρ be its spectral radius. Then ρ is a simple
eignevalue of M, greater in module than any other eigenvalues ; it corresponds to positive right
and left eigenvectors µ = (µi)1≤i≤p and ν = (νi)1≤i≤p. Moreover, for n ≥ 1,

Mn = ρnM1 + Mn
2 ,

where M1 = (µiν j)1≤i,i≤p and M2 = M − ρM1, with the normalisation
∑p

i=1 µiνi = 1. Hence
M1M1 = M1, M1M2 = M2M1 = 0 and ρ(M2) < ρ(M) = ρ.

As we may expect, the eigenvalue ρ plays a role similar to the expectation m in one type
case ; more precisely, it is the required indicator of criticality.

Let e = (e1, . . . , ep) be the extinction vector probability, where ei is the extinction
probability given Z0 = ẽi :

ek = lim
n→+∞

P(Zn = 0̃|Z0 = ẽi).

If u and v are two vectors, then u > v (or u ≥ v) if u − v has all its coefficients positive (or
non-negative).

Theorem 2.2.3 Suppose the process is positive regular and not singular. If ρ ≤ 1, then e = 1. If
ρ > 1, then 0 ≤ e < 1 and e satisfies the equation f(e) = e. Moreover, if e1 is any vector in the
unit cube other than 1, then lim

n→+∞
fn(e1) = e. More precisely, the only solutions of the equation

f(e) = e in the unit cube are e and 1.

Remarks. 1. If the process is singular, then M is a Markov matrix with ρ = 1 andE[Zn] = Z0
for any n ≥ 1. It is obvious that the population survives forever.
2. For process that is not positive regular, problems arise similar to those encountered in
the theory of Markov chains with decomposable matrices, that is matrices similar to a
block-diagonal ones.

Here we state the results for the three regime with speed of convergence. We refer to
Chapter 5 of the book [Athreya et Ney, 1972] for details and comments.

Theorem 2.2.4 Let (Zn)n≥0 be a positively regular multi-type Galton-Watson process with mo-
ment of order 2, that is E(|Z1|

2/Z0 = ẽi) < +∞ for any 1 ≤ i ≤ p.

1. In the subcritical case (ρ < 1), the process (Zn)n≥0 becomes extinct P-a.s. and for any
1 ≤ i ≤ p, there exists a positive constant ci such that

P(Zn , 0̃|Z0 = ẽi) ∼ ciρ
n as n→ +∞. (2.2.1)
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2. In the critical case (ρ = 1), the process (Zn)n≥0 becomes extinct P-a.s. and, for any
1 ≤ i ≤ p, there exists a positive constant ci such that

P(Zn , 0̃|Z0 = ẽi) ∼
ci

n
as n→ +∞. (2.2.2)

3. In the supercritical case (ρ > 1), the sequence (Zn/ρ
n)n≥0 converges P-a.s. to Wν where

W is a nonnegative random variable and ν is a left eigenvector of M associated with ρ ;
furthermore, P(W = 0|Z0 = ẽi) = ei where e = (ei)1≤i≤p is the extinction probability of
(Zn)n≥0.

The constants ci are given explicitly in [Athreya et Ney, 1972], in term of the Hessian
matrices of the generating functions fi and the eigenvectors µ and ν of the mean matrix M.
The convergence in supercritical case holds under weaker assumption moment (moment
of order L1 ln+ L1 are only required), as in the one type case.

2.3 Single-type Galton-Watson process in random environment

In the previous section, we present a model for the size over time of a population
which evolves in a fixed environment. Indeed, the offspring distribution f is always
the same : the members of the population produce and die according to the same law
of chance. Furthermore, they do not interfere with one another. Unfortunately, natural
processes of multiplication are often affected by many factors which introduce variations
over time and also dependencies. In the nature, plant and animal populations depend
on their surrounding environment which is constantly changing. Their survival depends
on environmental conditions such as food, water availability and temperature. Under
favorable environment, the number of offspring increases, otherwise it declines.

In this section, we take into account some variations of the offspring distributions over
time ; more precisely, a natural idea is to assume that the environment varies randomly
and i.i.d., that is to replace the offspring distribution µ by a sequence of i.i.d. random pro-
bability meausre (µi)i≥0, or equivalently replace the generating function f by a sequence
( fn)n≥0 of i.i.d. random generating functions. The random variable fn is the generating
function of the random offspring distribution of members of generation n.

One important remark is that there are two level of randomness that arise. Firstly, we
choose a random family of distributions ( fn)n≥0, then according to these distributions, the
branching process (Zn)n evolves stochastically, that is to say the particles at time n take
fn as their reproduction law. After, the number of offspring of each particle is again a
random variable.

2.3.1 Model description

Our population starts with one ancestor. The particles at time n produce children with
the offspring distribution fn. Let Zn denotes the size of the population at time n. The
generating function of Zn can be expressed by a product of generating functions :

E
(
sZ

n |Z0, . . . ,Zn−1, f0, . . . , fn−1
)

= fn−1(s)Zn−1 , (2.3.1)
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which yields
E[sZn | f0, . . . , fn−1] = f0( f1(. . . fn−1(s) . . .)).

Limiting to the interesting case, we assume

P(µ0(0) < 1) = 1 and P(µ0(0) + µ0(1) < 1) > 0. (2.3.2)

2.3.2 Classification

Given the environment f̄ = ( fn)n≥0, the “quenched” probability of survival qn at time
n is

qn( f̄ ) := P(Zn > 0| f0, . . . , fn−1) = 1 − f0( f1(. . . fn−1(0) . . .)), n ≥ 1. (2.3.3)

The “annealed probability” of extinction at time n is obtained averaging on the environ-
ment

P(Zn > 0) = E(qn( f̄ )) = E
(

1 − f0( f1(. . . fn−1(0) . . .))
)
. (2.3.4)

Since the sequence (qn( f̄ ))n decreases P-a.s., then it converges P-a.s. to some limit q( f̄ )
which is called the survival probability conditioned on the environment f̄ . The extinction
of the Galton-Watson process is given by the following statement whose proof is detailed
in [Athreya et Karlin, 1971b].

Theorem 2.3.1 (1) Assume that E
(
log f ′0(1)

)+
< +∞. If E

(
log f ′0(1)

)
≤ 0 then

P
(

q( f̄ ) = 0
)

= 1.

In other words, conditioned on almost all environment f̄ , the process (Zn)n≥0 becomes extinct a.s.

(2) Assume E
(
log f ′0(1)

)+
< +∞ and E(− log(1 − f0(0)) < +∞. 1 If E

(
log f ′0(1)

)
> 0 then

P
(

q( f̄ ) > 0
)

= 1.

In other words, conditioned on almost all random environment f̄ , the process (Zn)n≥0 survives
with some strictly positive probability.

Consequently, we may classify the Galton-Watson process in random environment
by the value of E log f ′0(1) (when it exists, that is when E(log f ′0(1))+ < +∞). The Galton-
Watson process is said to be :

(i) subcritical if E
(

log f ′0(1)
)
< 0 ;

(ii) critical if E
(

log f ′0(1)
)

= 0 ;

(iii) supercritical if E
(

log f ′0(1)
)
> 0 (and E(− log 1 − f ′0(0)) < +∞).

1. The conditionE(− log(1− f0(0)) < +∞ is not natural at the first sight but it appears in a crucial way in the
proof in [Athreya et Karlin, 1971b] ; it is a way to control that the random probability measures corresponding
to the functions f0, f1, ... are not close to the Dirac mass at 0, whose generating function equals 1 on [0, 1].
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2.3.3 The particular case of linear-fractional generating functions

We consider the case when the offspring generating function are linear-fractional, that
is when it is of the form

f (s) := 1 −
α

1 − β
+

αs
1 − βs

, ∀z ∈ [0, 1], (2.3.5)

where 0 < α, β < 1 and
α

1 − β
≤ 1. In other words, the function f is the generating function

of the probability measure p which is the convex combination aδ0 + (1− a)Gp of the Dirac
mass δ0 at 0 and the geometric distribution Gp with parameter 1 − β ; obviously, p is a

probability distribution if and only if
α

1 − β
≤ 1 (in this case, we have α = (1 − a)p and

β = 1 − p).
In the context of random environment, we consider a sequence f̄ = ( fn)n≥0 of i.i.d.

random variables with values in the set of linear-fractional generating functions defined
by :

∀x ∈ [0, 1[ fn(x) := 1 −
αn

1 − βn
+

αnx
1 − βnx

.

Equivalently, ((αn, βn))n≥0 is a sequence of i.i.d. random variables with values in the set
{(α, β) | 0 < α, β < 1 and

α
1 − β

≤ 1}. This class of generating offspring functions for

Galton-Watson processes is extensively studied, in fixed and random environment ; not
only each function has linear-fractional form but also the iterates f1( f2 . . . fn(s) . . .).

Besides, the first and second moments of f can be found explicitly : f ′(1) =
α

(1 − β)2

and f ′′(1) =
2αβ

(1 − β)3 . Then formula (2.3.5) may be rewritten as

∀s ∈ [0, 1] 1 − f (s) =

(
1

f ′(1)(1 − s)
+

f ′′(1)
2 f ′(1)2 )

)−1

. (2.3.6)

The work [Kozlov, 1977] by Kozlov is the first main contribution to the study of the speed
of convergence to the extinction of critical Galton-Watson in i.i.d. random environment ;
he considered only linear-fractional offspring distributions. The starting point of his proof
is the following formula for the superposition of linear-fractional generating functions,

based on (2.3.6) : for any 0 ≤ s ≤ 1, setting
∏

0 = 1 and
∏

j :=
j−1∏

i=0

f ′i (1) for j ≥ 1, it follows

that

1 − f0(· · · fn−1(s) · · · ) =


 1

(1 − s)
∏

n
+

n−1∑

j=0

1∏
j

f ′′j (1)

2 f ′j (1)2



−1

. (2.3.7)

Thanks to this formula, Kozlov succeeded in translating the probability of survival into
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the language of one dimensional random walks. Namely,

qn( f̄ ) := P(Zn > 0 | f0, · · · , fn−1)
= 1 − f0(· · · fn−1(0) · · · )

=


e−Sn +

n−1∑

j=0

η j+1e−Si



−1

, (2.3.8)

where for any j ≥ 1,

(i) S j := ln( f0 ◦ . . . ◦ f j−1)′(1) =

j∑

i=1

Xi with Xi = ln f ′i−1(1) for i ≥ 1 ;

(ii) η j =
f ′′j−1(1)

2 f ′j−1(1)2 .

A similar decomposition exists when the fn are not linear-fractional ; see [Geiger et Kers-
ting, 2000]. It is well known that, under suitable moment conditions on the X j and η j and

when the X j are centered, the quantity
n−1∑

j=0

η j+1e−Si behaves as the minimum of the partial

sums S0 = 0, . . .Sn, see [Grincevičjus, 1974] ; thus, the study of qn( f̄ ) is connected to the
fluctuation theory of the one-dimensional random walk (Sn)n≥0.

2.3.4 Statements of results

In this section, we just state some main results about the speed to extinction of Galton-
Watson processes in i.i.d. random environment. There exists a huge literature on the
subject, in particular the ones with weaker moment assumptions (see [Afanasyev et al.,
2005] and references therein). We begin with a result on critical single-type branching
process in random environment.

Theorem 2.3.2 [Geiger et Kersting, 2000](Critical case) SupposeE log f ′0(1) = 0, 0 < E(log f ′(1))2 <

+∞ and E
(

f ′′(1)
f ′(1)2 (1 + log+ f ′(1))

)
< +∞. Then, for some 0 < β < +∞,

P(Zn > 0) = E[qn( f̄ )] ∼
β
√

n
as n→ +∞.

Let us emphasize that (P(Zn > 0))n≥0 converges to 0 more slowly than in the fixed
environment, where the speed of convergence to extinction was 1/n, up to some constant.
This can be explained by the averaging effect induced by the random environment.

In the subcritical case, there are three subcases to consider with different speeds of
convergence to extinction ; this is an important difference compared to the fixed environ-
ment case. We refer for instance to [Geiger et al., 2003] among many other articles existing
on this subject.

Theorem 2.3.3 (Subcritical case) [Geiger et al., 2003] Let E(log f ′0(1)) < 0.
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1. Strongly subcritical case.
Assume that

E( f ′0(1) log f ′0(1)) < 0 and E(Z1 log+ Z1) < +∞,

then there exists 0 < β1 ≤ 1 such that

P(Zn > 0) ∼ β1

(
E( f ′0(1)

)n
as n→ +∞.

Moreover,
lim

n→+∞
P(Zn = k|Zn > 0) = q1(k), k ≥ 1,

where
+∞∑

k≥1

q1(k) = 1 and
+∞∑

k≥1

kq1(k) < +∞.

2. Intermediate subcritical case.
Assume that

E( f ′0(1) log f ′0(1)) = 0,

E( f ′0(1) log2 f ′0(1)) < +∞ and E((1 + log− f ′0(1)) f ′′0 (1)) < +∞,

then there exists 0 < β2 < +∞ such that

P(Zn > 0) ∼
β2
√

n

(
E( f ′0(1)

)n
as n→ +∞.

Moreover,
lim

n→+∞
P(Zn = k|Zn > 0) = q2(k), k ≥ 1,

where
+∞∑

k≥1

q2(k) = 1.

3. Weakly subcritical case.
Assume

0 < E( f ′0(1) log f ′0(1)) < +∞

and the distribution of log f ′0(1) is not supported by any non-centered lattice, and that the
following integrability conditions are satisfied,

E

(
f ′′0 (1)

f ′0(1)1−ε

)
< +∞, and E

(
f ′′0 (1)

f ′0(1)2−ε

)
< +∞.

Then there exists 0 < β3 < +∞ and γ ∈]0, 1[ such that

P(Zn > 0) ∼
β3

n3/2γ
n as n→ +∞. (2.3.9)

Moreover,
lim

n→+∞
P(Zn = k|Zn > 0) = q3(k), k ≥ 1,

where
+∞∑

k≥1

q3(k) = 1.
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Let us just explain briefly how these three subcases appear ; we do not get into the details.
Firstly, the function φ : t 7→ E(et log f ′0(1))) is well defined, convex on [0, 1] and it satisfies

φ(0) = 1, φ(1) = E f ′0(1), φ′(0) = E log f ′0(1) and φ′(1) = E f ′0(1) log f ′0(1).

Consequently,

1. in the strongly subcritical case, the function φ strictly decreases on [0, 1], it reaches
its minimum at 1 and φ′(1) < 0 ; in particular φ(1) = E f ′0(1) < 1, and by convexity
E log f ′0(1) < 0.

2. in the intermediate subcritical case, the function φ reaches its minimum at 1 and
φ′(1) = 0 ; again φ(1) = E f ′0(1) < 1, and by convexity E log f ′0(1) < 0.

3. in the weakly subcritical case, the functionφ reaches its minimum at some t0 ∈]0, 1[
and φ′(t0) = 0 ; the constant γ in (2.3.9) equals φ(t0) and belongs to ]0, 1[. Notice
that φ(1) = E f ′0(1) may be greater than 1 in this case.

The proof of Theorem 2.3.3 is based on a classical argument in the theory of random walk :
using the function φ, one changes the distribution of the increments of the random walk
(log Πn)n≥1. In the first sub-case, the new random walk has a negative first moment, which
corresponds to the rate of convergence to 0 of the process (Zn)n≥1 ; in the intermediate
one, the new random walk is centered, that’s why the quantity 1

√
n appears ; at last, in

the weakly case, the change of measure yields also to a centered random walk and the
coefficient 1/n3/2 comes from classical results on fluctuations of such random walks.

Eventually, in the supercritical case, a version of Kesten-Stigum’s theorem [Kesten et
Stigum, 1966] completes the picture of analogues in random environment. Many works
were done since the appearence of the couple of seminal papers by K. B. Athreya and S.
Karlin [Athreya et Karlin, 1971b], [Athreya et Karlin, 1971a] ; let us state their version in
random environment of Kesten-Stigum’s theorem , base on the fact that (ZN/Πn)n≥0 is a
martingale.

Theorem 2.3.4 (supercritical case) [Athreya et Karlin, 1971a] Assume that E(log f ′0(1)) >
0 ; then the process (Zn/Πn)n≥0 is a non-negative martingale with respect to the filtration
(σ(Z0, . . . ,Zn, f0, f1 . . . , fn))n≥0 and hence limn→+∞ Zn/Πn = W exists P-a.s.

Suppose in addition that E
(

f ′′0 (1)
f ′0(1)

)
< +∞. 2

Then E[W| f̄ ] = 1 and P(W , 0| f̄ ) = q( f̄ ) P-a.s.

In others words, for almost all environment f̄ , the process (Zn)n≥0, given this environment
f̄ , becomes extinct with probability 1− q( f̄ ) or behave as eSnW → +∞ a.s. with probability
q( f̄ ).

2. Notice that weaker moment assumptions of type L1 log L1 are required, as for the Kesten-Stigum’s
theorem in fixed environment.
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2.4 Multi-type Galton-Watson process in random environment

E.E. Dyakonova studied multi-type Galton-Watson process in random environment
under some restrictive assumption : the mean matrices of the random environment have
a common eigenvector. For example, those matrices are upper triangular with strictly
decreasing entries on the diagonal. In this case, the behavior of the BPRE is governed
by the one-dimensional random walk (Sn)n≥0 with increments logρ(Mk). The strategy of
her proof is based on the same techniques as in single-type case and the study of the
extinction probability qn( f̄ ) is connected to the fluctuation theory of the one-dimensional
random walk (Sn)n≥0.

In the general case, that is when the action of the random matrices is strongly irre-
ducible, the one-dimensional random walk (Sn)n≥0 mentioned above is replaced by the
process (log |x̃M0 · · ·Mn−1|)n≥0, for some row vector x̃ with positive entries. To control the
fluctuations of this process, we apply the result presented in the previous section. This
is the main “new” ingredient to study the asymptotic behavior of qn( f̄ ) in the multitype
case. Nevertheless, we have to restrict our study to the case when the matrices Mk belong
to some proper subset S+(B) of the semi-group S+ of p × p matrices with positive entries ;
namely,

S+(B) = {M = (M(i, j))1≤i, j≤p |
1
B
≤

M(i, j)
M(k, l)

≤ B for all 1 ≤ i, j, k, l ≤ p},

where B is a positive constant. Let us explain how this restriction is neccessarry and
present the main argument we need to achieve the proof ; this corresponds to Lemma 3.1
in the article presented at the end of this section.

Firstly, in [Geiger et Kersting, 2000], J. Geiger and G. Kersting prove that for any real
constant C, ∑

n≥0

E
[
e−Sn ; S1 > C, . . . ,Sn > C

]
< +∞ (2.4.1)

holds, where Sn = Y1 + . . . + Yn for i.i.d. random variables Yk on R for k ≥ 1. This is an
important step in their work and they prove that it can be reduced to the case when C = 0.

In this case, inequality (2.4.1) is a direct consequence of the so-called “duality pro-
perty” which states that the random vectors (Y1, . . . ,Yn) and (Yn, . . . ,Y1) have the same
distribution ; consequently, the same property holds for the vectors (S1,S2, . . . ,Sn) and
(Yn,Yn + Yn−1, . . . ,Yn + · · · + Y1). Hence,

E
[
e−Sn ; S1 > 0, . . . ,Sn > 0

]

= E
[
e−Sn ; Y1 > 0,Y1 + Y2 > 0, . . . ,Y1 + · · · + Yn > 0

]

= E
[
e−Sn ; Yn > 0,Yn + Yn−1 > 0, . . . ,Yn + · · · + Y1 > 0

]

= E
[
e−Sn ; Sn > Sn−1,Sn > Sn−2, . . . ,Sn > 0

]

= E
[
e−Sn ; n is a strict ladder epoch of the random walk (Sk)k≥0

]
.

By a straightforward argument, one easily deduces that (2.4.1) holds when C = 0.
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After, let us consider the multi-type case in random environment when Sn is replaced
by Sn(x̃) = log |x̃Rn|, where Rn = M0 . . .Mn−1 for any n ≥ 0 and x̃ is a row vector with
positive entries with L1-norm equal to 1 (the set of such x̃ is denoted byX in the following
article). Following the same strategy, we want to overestimate the quantity

E
[
|x̃Rn|

−1; |x̃R1| > C, . . . , |x̃Rn| > C
]
.

The “duality property” L(M0, . . . ,Mn−1) = L(Mn−1, . . . ,M0) yields that two following
events are equal in distribution

[|x̃Rk| > C] dist
= [|x̃Mn−1 . . .Mn−k| > C].

Indeed, firstly, notice that the “right product” Rk is replaced by the left product
Mn−1 . . .Mn−k ; secondly, the quantity |x̃Mn−1 . . .Mn−k| cannot be expressed in terms of
x̃Ln and x̃Ln−k as in the case of classical random walks, where Ln = Mn−1 . . .M0. The
difficuty comes from the starting vector x̃, so in order to overcome this problem, we try
to “forget” x by temporarily replace the quantity |x̃Rn| by |Rn| (and similarly |Lnx| by |Ln|,
where x denotes the column vector corresponding to x̃), which is possible when the ma-
trices Mn belong to S+(B), since in this case the quantities |x̃Rn| and |Rn| are “comparable”
in the following sense (see Lemma 1.3.2) : there exists a positive constant c greater than 1
depending on B such that, for any x̃ ∈ X and any n ≥ 1,

1
c
|Rn| ≤ |x̃Rn| ≤ c|Rn| (similarly

1
c
|Ln| ≤ |Lnx| ≤ c|Ln|)

(one write |Rn|
c
� |x̃Rn| and |Ln|

c
� |Lnx| for short). As a direct consequence, changing if

necessary the value of c, it also holds |Ln|
c
� |Mn−1 . . .Mn−k||Ln−k| for any 0 ≤ k ≤ n, by using

Lemma 1.3.2. Hence, in distribution

[|x̃Rk| > C] ⊂
[
|Rk| >

C
c

]
dist
= [|Mn−1 . . .Mn−k| >

C
c

]

with
[
|Mn−1 . . .Mn−k| >

C
c

]
⊂

[
|Ln| >

C
c2 |Ln−k|

]

⊂

[
|Lnx| >

C
c4 |Ln−kx|

]
.

More generally, it holds

E
[
|x̃Rn|

−1; |x̃R1| > C, . . . , |x̃Rn| > C
]

≤ cE
[
|Lnx|−1; |Lnx| >

C
c4 |Ln−1x|, . . . , |Lnx| >

C
c4 |x|

]
.

If C ≥ c4, it holds

E
[
|x̃Rn|

−1; |x̃R1| > C, . . . , |x̃Rn| > C
]
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≤ cE
[
|Lnx|−1; n is a strict ladder epoch of the random process (|Lkx|)k≥0

]

so that
∑

n≥0

E
[
|x̃Rn|

−1; |x̃R1| > C, . . . , |x̃Rn| > C
]
< +∞. The proof is a bit more delicate for

the other values of C, the details are given in the following article.
To summarize this introduction, the study of the probability of extinction of multi-

type Galton-Watson processes we present here follows the strategy developed by J. Geiger
and G. Kersting and needs two main ingredients : the fluctuation theory for product of
random matrices and a “key lemma” (see Lemma 1.3.2) which allows to compare the
norm of some product of matrices with the norm of vectors obtained by their action on
X.
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THE SURVIVAL PROBABILITY OF A CRITICAL MULTI-TYPE
BRANCHING PROCESS IN I.I.D. RANDOM ENVIRONMENT
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Université de Bretagne-Sud ∗ and Université Fr. Rabelais Tours†

We study the asymptotic behavior of the probability of non-
extinction of a critical multi-type Galton-Watson process in i.i.d. ran-
dom environments by using limits theorems for products of positive
random matrices. Under suitable assumptions, the survival probabil-
ity is proportional to 1/

√
n

1. Introduction. Branching processes in random environments (BPREs) were in-
troduced in the 1960s (see for instance [22]) to describe the development of populations
whose evolution may be affected by environmental factors; they have been a central topic
of research.

In the single-type case, the behaviour of these processes is mainly determined by the
1-dimensional random walk generated by the logarithms of the expected population sizes
mk, k ≥ 0, of the respective generations. The theory of fluctuations of random walks on R
with i.i.d. increments allows one to classify BPREs in three classes - supercritical, critical
or subcritical - of single-type BPREs, according to the fact that the associated random
walk tends to +∞, oscillates or tends to −∞ (see for instance the fundamental papers [2]
and [3]). In particular, when E(| logmk|) < +∞, the BPRE is supercritical (resp., critical
or subcritical) when E(logmk) > 0 (resp., E(logmk) = 0 or E(logmk) < 0). There exist
numerous statements concerning the asymptotic behaviour of the probability of non-
extinction up to time n, the distribution of the population size conditionally to survival
up to moment n, large deviation type results (see for instance [1], [4], [7]). In the critical
case, the branching process is degenerate with probability one [2]; M. V. Kozlov [19]
(for BPREs with linearly fractional generating functions) and J. Geiger and G. Kersting
[10] in the general case strengthened this result and proved that the probability of non-
extinction up to time n is equivalent to c1/

√
n as n → +∞, for some explicit constant

c1 > 0 (see also [15]). Let us recall that this probability of non-extinction up to time
n is equivalent to 1/n when the offspring distribution is fixed, that is it does not vary
randomly; in other words, branching processes in random environment die more slowly.
In the supercritical and subcritical cases, similar studies have been done (see for instance
[2], [3], [11] and [16]), we do not go into detail about these cases since they are outside
the scope of this paper.

It is of interest to prove analogues of the above statements for the multi-type BPREs

MSC 2010 subject classifications: Primary 60J80; secondary 60F17, 60K37
Keywords and phrases: multi-type branching process, survival probability, random environment, prod-

uct of random matrices, critical case.

2946

96



2947

(Zn)n≥0. The main difficulty which appears is that the role of the random walk associated
to the BPRE in this case is played by the logarithm of the norm of some Rp-valued
Markov chain whose increments are governed by i.i.d. random p× p-matrices Mk, k ≥ 0;
the coefficients of these matrices Mk are non negative and correspond to the expected
population sizes of the respective generations, according to the types of the particles
and their direct parents. Products of random matrices have been the object of many
investigations and many limit theorems do exist in this context: for instance, the law
of large numbers, the central limit theorem, the large deviations principle (see [5], [20]
and references therein). Unfortunately, the theory of their fluctuations remains a field
in which practically no research has been done and the multi-type BPREs constitute a
relevant application area for this study. Nevertheless, as in the single-type case, the set of
multi-type BPREs may be divided into three classes: they are supercritical (resp., critical
or subcritical) when the upper Lyapunov exponent of the associated random matrices is
positive, null or negative [18].

A problem of particular importance is to specify the asymptotic behaviour of their
probability of non-extinction up to time n. As for single-type BPREs, the case has been
first studied when the generating functions defining the random environment are linear
fractional; it yields to explicit formulas which are easier to tackle.

In [6], E. E. Dyakonova obtained in the critical case an equivalence of the survival
probability at time n, under the restrictive assumption that the mean matrices Mk have
a concordant deterministic Perron-Frobenius eigenvector. It happens for instance when
the Mk are upper-triangular matrices with strictly decreasing coefficients on the diagonal.
In this case, the behaviour of the BPRE is governed by the 1-dimensional random walk
whose increments are the logarithm of the spectral radius of the Mk; this allows one to
apply the same techniques as in the single-type case.

To tackle the “general” case when the action of the random matrices Mk is strongly
irreducible (see hypothesis H2 below), limit theorems on the fluctuations of the norm of
products of random matrices were required; they have been recently achieved in [12] and
[13] with asymptotic results on the tails of certain hitting time distribution.

In this paper, we investigate the asymptotic behaviour of the probability of non-
extinction up to time n of critical multi-type BPREs and obtain an optimal result in
the case of linear fractional generating functions. To formulate our main results, we first
introduce some standard notations and definitions.

We fix an integer p ≥ 2 and denote Rp (resp., Np) the set of p-dimensional column
vectors with real (resp., non-negative integers) coordinates; for any column vector x =
(xi)1≤i≤p ∈ Rp, we denote x̃ the row vector x̃ := (x1, . . . , xp). Let 1 (resp., 0) be the
column vector of Rp whose all coordinates equal 1 (resp., 0). We fix a basis {ei, 1 ≤ i ≤ p}
in Rp and denote |.| the corresponding L1 norm. We also consider the general linear semi
-group S+ of p × p matrices with positive coefficients. We endow S+ with the L1-norm
denoted also by |.|.

The multi-type Galton-Watson process is a temporally homogeneous vector Markov
process (Zn)n≥0 whose states are column vectors in Np. We always assume that Z0 is
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non-random. For any 1 ≤ i ≤ p, the i-th component Zn(i) of Zn may be interpreted as
the number of objects of type i in the n-th generation.

We consider a measurable function ξ 7→ fξ from R to the set of multi-variate probability

generating functions fξ = (f
(i)
ξ )1≤i≤p defined by

f
(i)
ξ (s) =

∑

α∈Np
p
(i)
ξ (α)sα,

for any s = (si)1≤i≤p ∈ [0, 1]p, where

(i) α = (αi)i ∈ Np and sα = sα1
1 . . . s

αp
p ;

(ii) p
(i)
ξ (α) = p

(i)
ξ (α1, . . . , αp) is the probability that an object of type i in environment

ξ has α1 children of type 1, . . . , αp children of type p.

Let (ξn)n≥0 be a sequence of real valued i.i.d. random variables defined on a proba-
bility space (Ω,F ,P). The Galton-Watson process with p types of particles in a random
environment (ξn)n≥0 describes the evolution of a particle population Zn = (Zn(i))1≤i≤p
for n ≥ 0.

We assume that for any n ≥ 0, i = 1, . . . , p and ξ ∈ R, if ξn = ξ then each of the
Zn(i) particles of type i existing at time n produces offspring in accordance with the p-

dimensional generating function f
(i)
ξ independently of the reproduction of other particles

of all types.

If Z0 = ẽi then Z1 has the generating function

f
(i)
ξ0

(s) =
+∞∑

α∈Np
p
(i)
ξ0

(α)sα.

In general, if Zn = (αi)1≤i≤p, then Zn+1 is the sum of α1 + . . .+αp independent random

vectors, where αi particles of type i have the generating function f
(i)
ξn

for i = 1, . . . , p. It

is obvious that if Zn = 0̃, then Zn+1 = 0̃.
Denote fn = fξn . By the above descriptions, (written in equation (2.1) in [18]) for

any s = (si)1≤i≤p, 0 ≤ si ≤ 1,

E
(
sZn |Z0, . . . , Zn−1, f0, . . . , fn−1

)
= fn−1(s)Zn−1

which yields (Lemma 2.1 in [18])

E
(
sZn |f (i)0 , f1, . . . , fn−1

)
:= E

(
sZn |Z0 = ẽi, f0, . . . , fn−1

)

= f
(i)
0 (f1(. . . fn−1(s) . . .)).

In particular, the probability of non-extinction q
(i)
n at generation n given the environ-

ment f
(i)
0 , f1, . . . fn−1 is

q(i)n := P(Zn 6= 0̃|f (i)0 , f1, . . . , fn−1)

= 1− f (i)0 (f1(. . . fn−1(0̃) . . .)) = ẽi(1− f0(f1(. . . fn−1(0̃) . . .))),(1.1)
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so that

E[q(i)n ] = E[P(Zn 6= 0̃|f (i)0 , f1, . . . , fn−1)] = P(Zn 6= 0̃|Z0 = ẽi).

As in the classical one-type case, the asymptotic behaviour of the quantity above
is controlled by the mean of the offspring distributions. We assume that the offspring

distributions have finite first and second moments; the generating functions f
(i)
ξ , ξ ∈

R, 1 ≤ i ≤ p, are thus C2-functions on [0, 1]p and we introduce:

(i) the random mean matrices Mn = (Mn(i, j))1≤i,j≤p =

(
∂f

(i)
n (1)

∂sj

)

i,j

taken from

the vector-valued random generating function fn(s) at s = 1, namely

Mn =




∂f
(1)
n (1)

∂s1
. . .

∂f
(1)
n (1)

∂sp
...

∂f
(p)
n (1)

∂s1
. . .

∂f
(p)
n (1)

∂sp



.

(ii) the random Hessian matrices B
(i)
n = (B

(i)
n (k, l))1≤k,l≤p =

(
∂2f

(i)
n

∂sk∂sl
(1)

)

k,l

, 1 ≤ i ≤ p,

taken from the real-valued random generating function f
(i)
ξn

(s) at s = 1.

For any 1 ≤ i ≤ p, the random variables Mn and B
(i)
n are i.i.d. in n. The common law

of the Mn is denoted by µ.
Let Rn and Ln denote the right and the left product of random matrices Mk, k ≥ 0,

respectively, Rn = M0M1 . . .Mn−1 and Ln = Mn−1 . . .M1M0.

By [9], if E(max(0, log |M0|)) < +∞, then the sequence

(
1

n
log |Rn|

)

n≥1
converges

P-almost surely to some constant limit πµ := lim
n→+∞

1

n
E[log |Rn|]. Furthermore, by [18],

if there exists a constant A > 0 such that
1

A
≤ Mn(i, j) ≤ A and 0 ≤ B

(i)
n (k, l) ≤ A

P-almost surely for any 1 ≤ i, j, k, l ≤ p, then the process (Zn)n≥0 becomes extinct
P-almost surely if and only if πµ ≤ 0.

In the present work, we focus our attention on the so-called critical case, that is
πµ = 0, and specify the speed of extinction of the Galton-Watson process.

We define the cone C and the space X respectively as follows:

C := {x̃ = (x1, . . . , xp) ∈ Rp | ∀i = 1, . . . , p, xi ≥ 0} ,
and

X := {x̃ ∈ C | |x̃| = 1}.
In the sequel, we consider:
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• the right and the left linear actions of S+ on C defined by:

(x̃, g) 7→ x̃g and (x̃, g) 7→ gx

for any x̃ ∈ C and g ∈ S+,
• the right and the left projective actions of S+ on X defined by:

(x̃, g) 7→ x̃ · g =
x̃g

|x̃g| and (x̃, g) 7→ g · x =
gx

|gx|

for any x̃ ∈ X and g ∈ S+.

For any g = (g(i, j))1≤i,j≤d ∈ S+, let v(g) := min
1≤j≤d

( d∑

i=1

g(i, j)
)
. Then, for any x ∈ C,

(1.2) 0 < v(g) |x| ≤ |gx| ≤ |g| |x|.

We set N(g) := max
(

1
v(g) , |g|

)
. We also introduce some proper subset of S+ which is of

interest in the sequel: for any constant B ≥ 1, let S+(B) denote the set of p× p matrices
g = (g(i, j))1≤i,j≤p with positive coefficients such that for any 1 ≤ i, j, k, l ≤ p,

(1.3)
1

B
≤ g(i, j)

g(k, l)
≤ B.

On the product space X×S+ we define the function ρ by setting ρ(x̃, g) := log |x̃g| for
(x̃, g) ∈ X × S+. This function satisfies the cocycle property, namely for any g, h ∈ S+

and x̃ ∈ X,

(1.4) ρ(x̃, gh) = ρ(x̃ · g, h) + ρ(x̃, g).

Under hypothesis H3 introduced below, there exists a unique µ-invariant measure ν
on X such that for any continuous function ϕ on X,

(µ ∗ ν)(ϕ) =

∫

S+

∫

X
ϕ(x̃ · g)ν(dx̃)µ(dg) =

∫

X
ϕ(x̃)ν(dx̃) = ν(ϕ).

Moreover, the upper Lyapunov exponent πµ defined above coincides with the quantity∫
X×S+ ρ(x̃, g)µ(dg)ν(dx̃) and is finite [5].

In the sequel, we first focus our attention on “linear-fractional multi-dimensional gen-
erating functions” f = fγ,M of the form:

(1.5) f(s) = fγ,M (s) = 1− 1

1 + γ̃(1− s)M(1− s),

for any s ∈ [0, 1]p, where γ̃ = (γ, . . . , γ) ∈ Rp with γ > 0 and M ∈ S+. For such a
function f = fγ,M , we set γ = γ(f) and M = M(f) and notice that M(f) equals the

mean matrix
(
∂f (i)

∂sj
(1)
)
1≤i,j≤p

.
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Here, we specify hypotheses concerning the distribution µ of the mean matrices Mn =
M(fn), n ≥ 1.

H1. There exists ε0 > 0 such that
∫
S+ N(g)ε0µ(dg) <∞.

H2. (Strong irreducibility). There exists no affine subspaces A of Rd such that A∩C is
non-empty, bounded and invariant under the action of all elements of the support of µ.

H3. There exists B ≥ 1 such that µ(S+(B)) = 1.
H4. The upper Lyapunov exponent πµ of µ is equal to 0.
H5. There exists δ > 0 such that µ(Eδ) > 0, where

Eδ := {g ∈ S+ | ∀x̃ ∈ X, log |x̃g| ≥ δ}.

If the variables fn are linear fractional generating functions, then we introduce an addi-
tional hypothesis.

H6. There exists B′ ≥ 1 such that
1

B′
≤ γ(fn) ≤ B′ P− a.s.

Here comes the main result of this paper.

Theorem 1.1. Assume that the random variables fn are linear fractional generating
functions and that hypotheses H1-H6 hold. Then, for any i ∈ {1, . . . , p}, there exists a
real number βi ∈ (0,+∞) such that

(1.6) lim
n→+∞

√
nP(Zn 6= 0̃|Z0 = ẽi) = βi.

For general generating functions, we obtain the following weaker result.

Theorem 1.2. Assume that the random variables fn are C2-functions on [0, 1]p such
that

1. there exists A > 0 such that for any i, k, l ∈ {1, . . . , p},

∂2f
(i)
n

∂sk∂sl
(1) ≤ A∂f

(i)
n

∂sk
(1) P− a.s.

2. the distribution µ of the matrices Mn =
(
∂f

(i)
n

∂sj
(1)
)
1≤i,j≤p

satisfies hypotheses H1-

H5.

Then, there exist real constants 0 < c1 < c2 < +∞ such that for any i ∈ {1, . . . , p}, and
n ≥ 1,

(1.7)
c1√
n
≤ P(Zn 6= 0̃|Z0 = ẽi) ≤

c2√
n
.

In particular, under weaker assumptions than in [18], this theorem states that the
process (Zn)n≥0 becomes extinct P-a.s. in the critical case. Notice that by a recent work
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[8], equivalence (1.6) holds true even when the fn are not assumed to be linear fractional
generating functions. The authors in [8] apply the proof in the present paper with two new
ingredients: first, an extension to the multitype case of Geiger & Kersting’s decomposition
of the extinction probability ([10], formula (2.2)) and second, a variation of Lemma 3.1
below, taking into account the residual term which appears in this expression of the
extinction probability.

Notation. Let c > 0 and φ, ψ be two functions of some variable x; we shall write φ
c
� ψ

(or simply φ � ψ) when φ(x) ≤ cψ(x) for any value of x. The notation φ
c� ψ (or simply

φ � ψ) means φ
c
� ψ

c
� φ.

2. Preliminary results.

2.1. Product of matrices with non-negative coefficients. We describe in this section
some properties of the set S+. We first endow X with a distance d which is a variant
of the Hilbert metric; it is bounded on X and any element g ∈ S+ acts on (X, d) as a
contraction. We summarize here its construction and its major properties.

For any x̃ = (xi)1≤i≤p, ỹ = (yi)1≤i≤p ∈ X, we write

m(x̃, ỹ) = min
{xi
yi

∣∣∣i = 1, . . . , p such that yi > 0
}

and we set
d(x̃, ỹ) := ϕ

(
m(x̃, ỹ)m(ỹ, x̃)

)
,

where ϕ is the one-to-one function on [0, 1] defined by ϕ(s) :=
1− s
1 + s

. For g ∈ S+, we set

c(g) := sup{d(x̃ · g, ỹ · g) | x̃, ỹ ∈ X}.

We present some crucial properties of d.

Proposition 2.1. ([17]). The function d is a distance on X which satisfies the fol-
lowing properties:

1. sup{d(x̃, ỹ) | x̃, ỹ ∈ X} = 1.
2. For any g = (g(i, j))i,j ∈ S+

c(g) = max
i,j,k,l∈{1,...,p}

|g(i, j)g(k, l)− g(i, l)g(k, j)|
g(i, j)g(k, l) + g(i, l)g(k, j)

.

In particular, there exists κB ∈ [0, 1) such that c(g) ≤ κB < 1 for any g ∈ S+(B).
3. d(x̃ · g, ỹ · g) ≤ c(g)d(x̃, ỹ) ≤ c(g) for any x̃, ỹ ∈ X and g ∈ S+(B).
4. c(gg′) ≤ c(g)c(g′) for any g, g′ ∈ S+(B).
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The following lemma follows from [9] Lemma 2, and its proof is presented in Section
4. It is the key argument in the sequel to control the asymptotic behaviour of the norm
of products of matrices of S+(B). Let TS+(B) be the semi-group generated by the set
S+(B).

Lemma 2.1. For any g ∈ TS+(B) and 1 ≤ i, j, k, l ≤ p,

g(i, j)
B2

� g(k, l).(2.1)

In particular, there exist c > 1 such that for any g, h ∈ TS+(B) and x̃, ỹ ∈ X

1. |gx| c� |g| and |ỹg| c� |g|,
2. |ỹgx| c� |g|,
3. |gh| c� |g||h|.

2.2. Conditioned product of random matrices. Recall that (Mn)n≥0 is a sequence
of i.i.d. matrices whose law µ satisfies hypotheses H1-H5 and Rn = M0 . . .Mn−1 and
Ln = Mn−1 . . .M0 for n ≥ 1. Consider the homogenous Markov chain (Xn)n≥0 on X,
with initial value X0 = x̃ ∈ X, defined by

Xn = x̃ ·Rn, n ≥ 1.

Its transition probability P is given by: for any x̃ ∈ X and any bounded Borel function
ϕ : X→ R,

Pϕ(x̃) :=

∫

S+

ϕ(x̃ · g)µ(dg).

The chain (Xn)n≥0 has been the object of many studies, in particular there exists on X
a unique P -invariant probability measure ν.

Indeed, by Proposition 2.1, for any x̃, ỹ ∈ X and any sequence (gn)n≥1 of elements
in S+(B), it follows that

(2.2) d(x̃ · gn . . . g1, ỹ · gn . . . g1) ≤ κnB.
This yields sup

k≥0
d(x̃ · gn+k · · · gn · · · g1, x̃ · gn . . . g1) → 0 as n → +∞; the sequence (x̃ ·

g1 · · · gn)n≥0 thus converges in X.
In particular, under hypothesis H3, the sequence (x̃ · Ln)n≥0 converges P-a.s. towards

some X-valued random variable X∞. It follows that the Markov chain (x̃ · Rn)n≥0 con-
verges in distribution to the law ν of X∞, which is the unique P -invariant probability
measure on X. Property (2.2) allows one to prove that the restriction of P to some
suitable space of continuous functions from X to C is quasi-compact, which is a crucial
ingredient to study the asymptotic behavior of (x̃ ·Rn)n≥0 ([5], [14], [17]).

In the sequel, we are interested in the left linear action x̃ 7→ x̃Rn of the right products
Rn, for any x̃ ∈ X. Since it holds

x̃Rn = elog |x̃Rn| x̃ ·Rn,
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we consider the random process (Sn)n≥0 defined by: for any x̃ ∈ X, a ∈ R and n ≥ 1,

S0 = S0(x̃, a) := a and Sn = Sn(x̃, a) := a+ log |x̃Rn|.

Iterating the cocycle property (1.4), the basic decomposition of Sn(x̃, a) arrives:

(2.3) Sn(x̃, a) = a+ log |x̃Rn| = a+
n−1∑

k=0

ρ(Xk,Mk).

Let us emphasize that for any a ∈ R the sequence (Xn, Sn)n≥0 is a Markov chain on X×R
whose transition probability P̃ is defined by: for any (x̃, a) ∈ X × R and any bounded
Borel function ψ : X× R→ C,

P̃ψ(x̃, a) =

∫

S+

ψ(x̃ · g, a+ ρ(x̃, g))µ(dg).

We set R+
∗ := R+\{0} and denote P̃+ the restriction of P̃ to X×R+ defined by: for a ≥ 0

and any x̃ ∈ X,
P̃+((x̃, a), ·) = 1X×R+(·)P̃ ((x̃, a), ·).

Fix a ≥ 0 and denote by τ the first time greater than 1 the random process (Sn)n≥0
becomes nonpositive:

(2.4) τ := min{n ≥ 1 | Sn ≤ 0}.

For any x̃ ∈ X and a ≥ 0, let us denote Px̃,a the probability measure on (Ω,F ,P)
conditioned to the event [X0 = x̃, S0 = a] and Ex̃,a the corresponding expectation; we
omit the index a when a = 0 and denote Px̃ the corresponding probability. For any n ≥ 0,
let mn = mn(x̃, a) be the minimum of the values S1(x̃, a), . . . , Sn(x̃, a) and set

mn(x̃, a) := Px̃,a[mn > 0] = Px̃,a(τ > n).

We present a general result concerning the behavior of the tail distribution of the
random variable τ .

The asymptotic behaviour of the probability Px̃,a(τ > n) is established in [13] when
the matrices Mn are invertible and in [21] when the Mn has non negative entries, under
several conditions P1-P5; the first step is to establish the existence of a P̃+-harmonic
function h on X × R+. Our hypotheses H1, H2, H4 and H5 are exactly P1, P2, P4 and
P5 in [21] and H3 is obviously stronger than P3. Proposition 2.2 concerns the existence
of the function h and its properties.

Proposition 2.2. ([21]). Under hypotheses H1-H5, for any x ∈ X and a ≥ 0, the

sequence
(
Ex,a[Sn; τ > n]

)
n≥0

converges to a function h(x̃, a) which satisfies the following

properties:
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1. For any x ∈ X, the function h(x̃, a) is increasing on R+.
2. There exists c > 0 and A > 0 such that for any x ∈ X and a ≥ 0,

(2.5)
1

c
∨ (a−A) ≤ h(x̃, a) ≤ c(1 + a).

3. For any x ∈ X, the function h(x̃, a) satisfies lim
a→+∞

h(x̃, a)

a
= 1.

4. The function h is P̃+-harmonic.

This statement yields to the following theorem about the limit behaviour of Px̃,a(τ > n)

as n→ +∞; the relation un ∼ vn defines lim
n→+∞

un
vn

= 1.

Theorem 2.1. ([21]). Under hypotheses H1-H5, for any x̃ ∈ X and a ≥ 0,

Px̃,a(τ > n) ∼ 2

σ
√

2πn
h(x̃, a) as n→∞,(2.6)

where σ2 := lim
n→+∞

1

n
Ex[S2

n] is the variance of the semi-markovian random walk (Sn)n≥0.

Moreover, there exists a constant c > 0 such that for any x̃ ∈ X, a ≥ 0 and n ≥ 0,
√
nPx̃,a(τ > n) ≤ c h(x̃, a).(2.7)

Remark. The fact that σ2 > 0 is a direct consequence of hypotheses H2 and H5 (which
implies in particular that the semi-group generated by the support of µ is unbounded);
see [5], chap 6, Lemmas 5.2 and 5.3 and section 8 for more details.

3. Proof of Theorem 1.1.

3.1. Expression of nonextinction probability. For any 0 ≤ k < n, set Rk,n :=
Mk . . .Mn−1 and Rk,n := I otherwise. Let Yk,n := Rk,n · 1. It is known (see Lemma
1 in [6]) that

(3.1) (q(i)n )−1 =
1 + γ̃0M1 . . .Mn−11 + γ̃1M2 . . .Mn−11 + . . .+ γ̃n−11

ẽiRn1
.

Since ẽiRkRk,n1 = ẽiM0 . . .Mn−11 for any 1 ≤ k ≤ n, we may rewrite (3.1) as

(3.2)
(
q(i)n

)−1
=

1

ẽiRn1
+

n−1∑

k=0

γ̃kYk+1,n

ẽiRkYk+1,n
=

1

ẽiRn1
+

n−1∑

k=0

γk
ẽiRkYk+1,n

.

Notice that, for any fixed k ≥ 0, the sequence (Yk,n)n≥0 converges to some limit Yk,∞
([9], [17]). Indeed, the matrices Ml, l ≥ 1, all belong to S+(B), so do their transposes
and we may write as in (2.2)

sup
m≥1

d(Ỹk,n, Ỹk,n+m) ≤ κn−kB
n→+∞−→ 0.
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The sequence of row vectors (Ỹk,n)n≥0 is thus a Cauchy sequence in X, it converges and
so does (Yk,n)n≥0; we denote Yk,∞ the limit of this last sequence. Using this key fact, we

prove in Lemma 3.2 that the sequence
(
q
(i)
n

)
n≥1

converges to some positive limit

(3.3) q(i)∞ =
(+∞∑

k=0

γk
ẽiRkYk+1,∞

)−1

in the L1-norm with respect to another probability measure P̂x̃,a on (Ω,F), corresponding
to the Doob transform of P associated with the function h given by Theorem 2.1; the
construction of P̂x̃,a is described in the following subsection.

3.2. Construction of a new probability measure P̂x̃,a conditioned to the environment.

Since the function h is P̃+-harmonic on X× R+, it gives rise to a Markov kernel P̃ h+ on
X× R+ defined by

P̃ h+φ =
1

h
P̃+(hφ)

for any bounded measurable function φ on X× R+. The kernels P̃+ and P̃ h+ are related
to the stopping times τ by the following identity: for any x̃ ∈ X, a ≥ 0 and n ≥ 1,

(P̃ h+)nφ(x̃, a) =
1

h(x̃, a)
P̃n+(hφ)(x̃, a)

=
1

h(x̃, a)
Ex̃,a (hφ(Xn, Sn); τ > n)

=
1

h(x̃, a)
Ex̃,a (hφ(Xn, Sn);mn > 0) .

This new Markov chain with kernel P̃ h+ allows one to change the measure on the
canonical path space ((X×R)⊗N, σ(Xn, Sn : n ≥ 0), θ) of the Markov chain (Xn, Sn)n≥0
(1) from P to the measure P̂x̃,a characterized by the property that

(3.4) Êx̃,a[ϕ(X0, S0, . . . , Xk, Sk)] =
1

h(x̃, a)
Ex̃,a[ϕ(X0, . . . , Sk)h(Xk, Sk); mk > 0]

for any positive Borel function ϕ on (X× R)k+1.

1θ denotes the shift operator on (X × R)⊗N defined by θ
(

(xk, sk)k≥0

)
= (xk+1, sk+1)k≥0 for any

(xk, sk)k≥0 in (X× R)⊗N
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For any 0 ≤ k ≤ n,

Ex̃,a[ϕ(X0, S0, . . . , Xk, Sk);mn > 0]

= Ex̃,a[ϕ(X0, . . . , Sk);S1 > 0, . . . , Sn > 0]

= Ex̃,a[ϕ(X0, . . . , Sk); a+ ρ(X0,M0) > 0,

. . . , a+

k−1∑

i=0

ρ(Xi,Mi) +

n−1∑

i=k

ρ(Xi,Mi) > 0]

= Ex̃,a[E[ϕ(X0, . . . , Sk);S1 > 0, . . . , Sk > 0,

Sk + S1 ◦ θk > 0, . . . , Sk + Sn−k ◦ θk > 0|M0, . . . ,Mk−1]]

= Ex̃,a
[
ϕ(X0, . . . , Sk)

×E[Sk + S1 ◦ θk > 0, . . . , Sk + Sn−k ◦ θk > 0|M0, . . . ,Mk−1];mk > 0
]

= Ex̃,a
[
ϕ(X0, . . . , Sk)

×PXk,Sk(S1 ◦ θk > 0, . . . , Sn−k ◦ θk > 0);mk > 0
]

= Ex̃,a
[
ϕ(X0, . . . , Sk)PXk,Sk(τ > n− k);mk > 0

]
.

Hence,

Ex̃,a [ϕ(X0, . . . , Sk);mn > 0]

= Ex̃,a[ϕ(X0, . . . , Sk)mn−k(Xk, Sk);mk > 0].(3.5)

Moreover, in view of Theorem 2.1, the dominated convergence theorem and (3.5), we
obtain for any bounded function ϕ with compact support,

lim
n→+∞

Ex̃,a[ϕ(X0, . . . , Sk)|mn > 0]

=
1

h(x̃, a)
Ex̃,a[ϕ(X0, . . . , Sk)h(Xk, Sk);mk > 0]

= Êx̃,a[ϕ(X0, . . . , Sk)],(3.6)

which clarifies the interpretation of P̂x̃,a.
We formalize in three steps the construction of a new probability measure, denoted
again P̂x̃,a, for each x̃ ∈ X and a ≥ 0, but defined this time on the bigger σ-algebra

σ(fn, Zn : n ≥ 0). Retaining the notations from the previous parts, the measure P̂x̃,a is
characterized by properties (3.4), (3.7) and (3.8).
Step 1. The marginal distribution of P̂x̃,a on σ(Xn, Sn : n ≥ 0) is P̂x̃,a characterized by
the property (3.4).
Step 2. For any n ≥ 0, the conditional distribution of (f0, · · · , fn) under P̂x̃,a given
X0 = x̃0 = x̃, . . . , Xn = x̃n, S0 = s0 = a, . . . , Sn = sn is given by:

P̂x̃,a(fk ∈ Ak, 0 ≤ k ≤ n|Xi = x̃i, Si = si, 0 ≤ i ≤ n)

= P(fk ∈ Ak, 0 ≤ k ≤ n|Xi = x̃i, Si(x̃) = si, 0 ≤ i ≤ n),(3.7)
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for any measurable sets A0, . . . , An in HB and almost all (x̃i)0≤i≤n and (si)0≤i≤n with

respect to the law of (X0, . . . , Xn, S0, . . . , Sn) under P (and also under P̂x̃,a since, by

formula (3.4), the probability measure P̂x̃,a is absolutely continuous with respect to P on
each σ-algebra σ(X0, . . . , Sn)).

Step 3. The conditional distribution of (Zn)n≥0 under P̂x̃,a given f
(i)
0 , f1, . . . is the same

as under P, namely

Êx̃,a
(
sZn |Z0, . . . , Zn−1, f

(i)
0 , f1, . . . , fn−1

)

= fn−1(s)Zn−1 = E
(
sZn |Z0, . . . , Zn−1, f

(i)
0 , f1, . . . , fn−1

)
.(3.8)

3.3. Proof of Theorem 1.1. We follow J. Geiger and G. Kersting’s approach. We fix

1 ≤ i ≤ p. For any x̃ ∈ X and a ≥ 0 let us denote P(i)
x̃,a the probability measure on

(Ω,F ,P) conditioned to the event [X0 = x̃, S0 = a, Z0 = ẽi] and E(i)
x̃,a the corresponding

expectation.
First, notice that the quantity P(Zn 6= 0̃ | Z0 = ẽi) equals Ex̃,a(q(i)n ) for any (x, a) ∈ X×

R+; thus we fix (x̃, a) ∈ X×R+, ρ > 1 and 0 ≤ k ≤ n and decompose P(Zn 6= 0̃ | Z0 = ẽi)
as

(3.9) P(i)(Zn 6= 0̃) = An +Bn + Cn −Dn,

where

• An = An(x̃, a) = P(i)
x̃,a(Zn 6= 0̃,mn ≤ 0);

• Bn = Bn(x̃, a, ρ) = P(i)
x̃,a(Zn 6= 0̃,mn > 0)− Px(Zn 6= 0̃,mρn > 0);

• Cn = Cn(x̃, a, ρ, k) = P(i)
x̃,a(Zk 6= 0̃,mρn > 0);

• Dn = Dn(x̃, a, ρ, k) = P(i)
x̃,a(Zk 6= 0̃, Zn = 0̃,mρn > 0).

We decompose the proof in 5 steps and then conclude, letting first k → +∞, then ρ→ 1
and at last a→ +∞.

1. The quantity A = A(x̃, a) := lim sup
n→+∞

√
nAn(x̃, a) tends to 0 when a→ +∞.

2. The quantity B = B(x̃, a, ρ) := lim sup
n→+∞

√
nBn(x̃, a, ρ) tends to 0 when ρ→ +1.

3. As n→ +∞, the sequence
(√
nCn(x̃, a, ρ, k))n≥0 converges to

C = C(x̃, a, ρ, k) := c1
h(x̃, a)√

ρ
P̂x(Zk 6= 0̃).

4. For any ρ > 1 the quantity D = D(x̃, a, ρ, k) := lim sup
n→+∞

√
nDn(x̃, a, ρ, k) tends to 0

when k → +∞.
5. The sequence (P̂(i)

x̃,a(Zk 6= 0))k≥0 converges to some limit v(i)(x̃, a) > 0.
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Step 1. We may write

An(x̃, a) = Ex̃,a
(
E
(
Zn 6= 0̃|f (i)0 , f1, . . . , fn−1

)
;mn ≤ 0

)

= Ex̃,a
(
q(i)n ;mn ≤ 0

)
.(3.10)

To control the quantity q
(i)
n , we use the expression (3.2); Lemma 2.1 yields

1

q
(i)
n

=
1

ẽiRn1
+
n−1∑

k=0

γk
ẽiRkYk+1,n

≥ max
0≤k≤n−1

{
γk

ẽiRkYk+1,n

}
� max

0≤k≤n−1

{
1

|x̃Rk|

}

≥ 1

exp

{
min

0≤k≤n−1
(a+ ln |x̃Rk|)

}

so that q
(i)
n � exp(mn(x̃, a)) and by applying Theorem 2.1 equation (2.7), we obtain

An(x̃, a) = P(i)
x̃ (Zn 6= 0̃,mn ≤ −a)

� Ex̃[exp(mn);mn ≤ −a]

≤
+∞∑

k=a

e−kPx̃(−k < mn ≤ −k + 1)

≤
+∞∑

k=a

e−kPx̃,k(τ > n)

� 1√
n

+∞∑

k=a

(k + 1)e−k,(3.11)

where the last inequality comes from (2.5) and (2.7). Notice that the sum
+∞∑

k=a

(k + 1)e−k

becomes arbitrarily small for sufficiently great a. ConsequentlyA(x̃, a) = lim sup
n→+∞

√
nAn(x̃, a) −→

0 as x→ +∞.
Step 2. Theorem 2.1 yields

0 ≤ Bn(x̃, a, ρ) = P(i)
x̃,a(Zn 6= 0,mn > 0)− P(i)

x̃,a(Zn 6= 0,mρn > 0)

∼ c1
h(x̃, a)√

n

(
1− 1√

ρ

)
as n→ +∞

with c1 =
2

σ
√

2π
. Hence

B(x̃, a, ρ) := lim sup
n→+∞

√
nBn(x̃, a, ρ) ≤ c1h(x̃, a)

(
1− 1√

ρ

)
ρ→1−→ 0.
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Step 3. Fix 0 ≤ k ≤ n. Using (3.5) and the fact that 1[mk>0] and mρn−k(Xk, Sk) are

measurable with respect to the σ-algebra σ(f
(i)
0 , f1, . . . , fk−1), we may write

Cn(x̃, a, ρ, k) = P(i)
x̃,a(Zk 6= 0̃,mρn > 0)

= P(i)
x̃,a

(
Zk 6= 0̃,mk > 0,mρn−k(Xk, Sk)

)

= E(i)
x̃,a

(
E(1Zk 6=0̃1[mk>0]mρn−k(Xk, Sk) | f (i)0 , . . . , fk−1)

)

= E(i)
x̃,a

(
P(Zk 6= 0̃|f (i)0 . . . , fk−1)1[mk>0]mρn−k(Xk, Sk)

)

= Ex̃,a
(
q
(i)
k ,mρn > 0

)

= Ex̃,a
(
q
(i)
k | mρn > 0

)
Px̃,a(mρn > 0).

By (3.6), since k is fixed

lim
n→+∞

Ex̃,a
(
q
(i)
k |mρn > 0

)
= Êx̃,a

(
q
(i)
k

)
= P̂(i)

x̃,a(Zk 6= 0̃).

Hence, by Theorem 2.1

lim
n→+∞

√
nCn(x̃, a, ρ, k) = c1

h(x̃, a)√
ρ

P̂(i)
x̃,a(Zk 6= 0̃).

Step 4. As in the previous step, we may write

Dn(x̃, a, ρ, k) = P(i)
x̃,a(Zk 6= 0̃, Zn = 0̃,mρn > 0)

= P(i)
x̃,a(Zk 6= 0̃,mρn > 0)− P(i)

x̃,a(Zn 6= 0̃,mρn > 0)

= Ex̃,a
(
q
(i)
k ,mρn > 0

)
− Ex̃,a

(
q(i)n ,mρn > 0

)

= Ex̃,a
((
q
(i)
k − q(i)n

)
m(ρ−1)n(Xn, Sn);mn > 0

)

� 1√
(ρ− 1)n

1

h(x̃, a)
Ex̃,a

(
(q

(i)
k − q(i)n )h(Xn, Sn);mn > 0

)
,

where the last inequality comes from (2.7). Since 1[mn>0] and h(Xn, Sn) are σ(S0, . . . , Sn)-
measurable, we observe that

√
nDn(x̃, a, ρ, k) � 1√

ρ− 1
Êx̃,a

(
q
(i)
k − q(i)n

)

=
1√
ρ− 1

(
P̂(i)
x̃,a(Zk 6= 0̃)− P̂(i)

x̃,a(Zn 6= 0̃)
)
.

Hence

D(x̃, a, ρ, k) = lim sup
n→+∞

√
nDn(x̃, a, ρ, k) � 1√

ρ− 1

(
P̂x(Zk 6= 0̃)− v(i)(x̃, a)

)

so that D(x̃, a, ρ, k) −→ 0 as k → +∞.
Step 5. We first state the following lemmas whose proofs follow in the next section.
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Lemma 3.1. For any x̃ ∈ X and a ≥ 0,

Êx̃,a
+∞∑

n=0

e−Sn < +∞.

This allows one to identify the limit of the sequence (P̂(i)
x̃,a(Zk 6= 0̃))k≥0.

Lemma 3.2. For any x̃ ∈ X and a ≥ 0, the sequence
(
q
(i)
n

)
n≥1

converges to q
(i)
∞ in

L1(P̂x̃,a); in particular

lim
k→+∞

P̂(i)
x̃,a(Zk 6= 0̃) = Êx̃,aq(i)∞ ,(3.12)

where q
(i)
∞ is given by the expression (3.3).

From Lemma 3.2, it is obvious that Êx̃,aq
(i)
∞ ≤ 1. On the other hand, the expression

of q
(i)
∞ combined with Lemma 3.1 and the fact that |x̃Rn| � ẽiRnYn+1,∞ (see Lemma 2.1

property 2) yields Êx̃,aq
(i)
∞ > 0. In other words, for any a ≥ 0

0 < v(i)(x̃, a) := Êx̃,aq(i)∞ < +∞.

This achieves the proof of Step 5.

Let us complete the proof of Theorem 1.1. Letting n→ +∞ in expression (3.9) yields,
for any x̃ ∈ X, a ≥ 0, ρ > 1 and k ≥ 1,

C −D ≤ lim inf
n→+∞

√
nP(i)(Zn 6= 0̃) ≤ lim sup

n→+∞

√
nP(i)(Zn 6= 0̃) ≤ A+B + C −D.

Letting first k → +∞ then ρ→ 1 yields

c1h(x̃, a)v(i)(x̃, a) ≤ lim inf
n→+∞

√
nP(Zn 6= 0̃)

≤ lim sup
n→+∞

√
nP(Zn 6= 0̃)

≤ c1h(x̃, a)v(i)(x̃, a) +A(x̃, a).

Since v(i)(x̃, a) > 0, h(x̃, a) > 0 and A(x̃, a) < +∞, we obtain in particular

0 < lim inf
n→+∞

√
nP(Zn 6= 0̃) ≤ lim sup

n→+∞

√
nP(Zn 6= 0̃) < +∞.

Finally, letting a −→ +∞, we conclude that both limits

lim
n→+∞

√
nP(i)(Zn 6= 0̃) and lim

a→+∞
c1h(x̃, a)v(i)(x̃, a)

exist, coincide and belong to ]0,+∞[.
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3.4. Proof of Theorem 1.2. First, for any n ≥ 1 and s = (s1, . . . , sp), we denote

Fn(s) = fξ0(fξ1(. . . (fξn−1(s)) . . .)). By definition of q
(i)
n , we have for any 0 ≤ k < n,

q(i)n = ẽi(Fk(1)− Fk(z)),

where z = z(k, n) = fξk(. . . (fξn−1(0)) . . .); the Mean Value Theorem yields

q(i)n = ẽi(Fk(1)− Fk(z)) ≤ ẽiM0 . . .Mk−11 � |x̃Rk| = exp(Sk(x̃, 0))

so that q
(i)
n � exp(mn(x̃, 0)) and E[q

(i)
n ] � E[emn(x̃,0)] = Ex̃[emn ].

Using the same trick like in (3.11), we can deduce that there exists a constant c2 such
that

Ex̃[emn ] = Ex̃[emn ;mn ≤ 0] ∼ c2√
n
,

and thus the upper estimate in equation (1.7) arrives.
To obtain the lower estimate in (1.7), for any R-valued multi-dimensional generating

function f(s), s = (s1, . . . , sp)
T , we obtain (see for instance formulas (64) and (65) in

[23])

(3.13) f(s) ≤ 1−
(

p∑

i=1

∂f

∂si
(1)(1− si)

)



1 +

p∑

i,j=1

∂2f

∂si∂sj
(1)(1− sj)(1− si)

p∑

l=1

∂f

∂sl
(1)(1− sl)




−1

.

We set gξn(s) = 1− Mξn(1− s)
1 + γ̃ξn(1− s) , where Mξn is the mean matrix of fξn(s) and γ̃ξn =

(A, . . . , A); thus, hypothesis H6 holds for gξn with B′ = A. Applying inequality (3.13)

with f = f
(i)
ξn

, we may write

f
(i)
ξn

(s) ≤ g(i)ξn (s), i = 1, . . . , p,

which yields

(3.14) E[1− gξ0(gξ1(. . . (gξn−1(0)) . . .))] ≤ E[1− f0(f1(. . . (fn−1(0)) . . .))].

The lower estimate in equation (1.7) appears by applying Theorem 1.1 to the left side of
equation (3.14). Therefore, the assertion of the Theorem 1.2 arrives.

4. Proof of lemmas. We first give some hints for the proof of Lemma 2.1 and
describe later the proofs of Lemmas 3.1 and 3.2.
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4.1. Proof of Lemma 2.1. First, using (2.1), we obtain

|g| =
p∑

i,j=1

g(i, j)
p2B2

� g(k, l).(4.1)

Further properties can be easily deduced from (4.1). Indeed, the assertions we need are
obvious by noticing that

|gx| =
p∑

i,j=1

g(i, j)xj
p3B2

� |g|,

ỹgx =

p∑

i,j=1

yig(i, j)xj
p2B2

� |g|,

|gh| =
p∑

i,j,k=1

g(i, j)h(j, k)
p7B4

� |g||h|.

4.2. Proof of Lemma 3.1. Before going into the proof, we first claim that in the critical
case, for any δ > 0 and c given from Lemma 2.1, there exists an integer κ = κ(δ, c) ≥ 1
such that

µ∗κ(Eδ) := µ∗κ{g | ∀x̃ ∈ X, log |x̃g| ≥ δ} > 0.(4.2)

Indeed, let τ ′ := inf{n ≥ 1 | log |Rn| ≥ log c + δ}. The random variable τ ′ is a stopping
time with respect to the natural filtration (σ(M0, . . . ,Mk))k≥0; furthermore P(τ ′ <
+∞) = 1 since the Lyapunov exponent πµ equals 0, which yields

lim sup
n→+∞

log |Rn| = lim sup
n→+∞

log |x̃ ·Rn| = +∞

(this last property is a direct consequence of the ergodic theorem applied here to the
Birkhof sums log |x̃ ·Rn|, n ≥ 0 [5]).

Therefore, for any δ > 0 and c given from Lemma 2.1, there exists κ ≥ 1 such that
P(τ ′ = κ) > 0. Moreover, we also have

P(log |Rκ| ≥ log c+ δ) ≥ P(log |Rκ| ≥ log c+ δ, τ ′ = κ)

= P(log |Rτ ′ | ≥ log c+ δ, τ ′ = κ)

= P(τ ′ = κ) > 0.

Since for any x̃ ∈ X, g ∈ S+(B), |gx| ≥ |g|c , it follows that

{g | log |g| ≥ log c+ δ} ⊂ {g | ∀x̃ ∈ X, log |x̃g| ≥ δ}.

Thus,

0 < P(log |Rκ| ≥ log c+ δ) = µ∗κ{g | log |g| ≥ log c+ δ}
≤ µ∗κ{g | ∀x̃ ∈ X, log |x̃g| ≥ δ},
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which is the assertion of the claim (4.2).
Let us go into the proof of Lemma 3.1. For any x̃ ∈ X, a ≥ 0 and λ ∈ (0, 1), there

exists some constant C(λ) > 0 such that (t + 1)e−t ≤ C(λ)e−λt for any t > 0. From
now on, we fix such a λ ∈ (0, 1) and, for technical reasons which appear in Step 1 below,
assume that 0 < λ ≤ ε0 where ε0 is the constant of hypothesis H1. Hence

Êx̃,a
[+∞∑

n=0

e−Sn
]
≤ 1 +

1

h(x̃, a)

+∞∑

n=1

Ex̃,a
(
e−Snh(Xn, Sn);S1 > 0, . . . , Sn > 0

)

≤ 1 +
c

h(x̃, a)

+∞∑

n=1

Ex̃,a
(
e−Sn(1 + Sn);S1 > 0, . . . , Sn > 0

)

≤ 1 +
c C(λ)

h(x̃, a)

+∞∑

n=1

Ex̃,a
(
e−λSn ;S1 > 0, . . . , Sn > 0

)
,

where c is introduced in inequality (2.5).
We define a function Φ for any x̃ ∈ X and a ∈ R as follow:

Φ(x̃, a) :=

+∞∑

n=1

Ex̃,a
(
e−λSn ;S1 > 0, . . . , Sn > 0

)

Notice that for any x̃ ∈ X, the function Φ(x̃, .) increases on R. To prove Lemma 3.1, it
is sufficient to check that for any x̃ ∈ X and a ∈ R

(4.3) Φ(x̃, a) < +∞.

Let us explain briefly the strategy of our proof, inspired by Lemma 3.2 in [10]. J.
Geiger and G. Kersting first use in a crucial way the so-called “duality principle” (that is
the fact that for a classical random walk (Sn)n≥1 on R the vectors (S1, S2, · · · , Sn) and
(Sn−Sn−1, Sn−Sn−2, . . . , Sn) have the same distribution) and they prove in this context

of random walks with i.i.d. increments that the quantity

+∞∑

n=1

Ea[e−λSn ;S1 > 0, . . . , Sn > 0]

is finite when a = 0. Second, they extend this property for any a ≥ 0.
In the multi-dimensional case, it is more complicated to apply the duality principle and

we can only prove at the beginning that the quantity Φ(x̃, a0) is finite for some a0 < 0
(without any control on the value of a0). To extend this property to Φ(x̃, a) for a > a0,
we use crucially hypothesis H5 ; we refer to Step 2 below, especially inequality (4.4),
and emphasize that the argument holds only when −a0 ≤ δ). To avoid this difficulty, we
modify the function Φ by introducing the functions Φκ associated with the κth power of
convolution µ∗κ of µ. For any x̃ ∈ X, a ∈ R, let

Φκ(x̃, a) :=

+∞∑

n=1

Ex̃,a
(
e−λSnκ ;Sκ > 0, . . . , Snκ > 0

)
.
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The relation is that Φ(x̃, a) � Φκ(x̃, a) for any x̃ ∈ X, a ∈ R, proved in Step 1 below.
Then, by using the duality principle, we bound from above Φκ(x̃, a) by a new quantity
Ψκ(x̃) defined below for any x̃ ∈ X and a ∈ R. Finally, we prove Ψκ(x̃) < +∞ by using
the ascending ladder epochs associated to the Markov walk (Ln ·x, log |Lnx|)n≥0 and the
Elementary Renewal Theorem.

We set L0 = 0 and denote Ln := Mn−1 . . .M0 the left product of the matrices
M0, . . . ,Mn when n ≥ 1. Set, for any x̃ ∈ X,

Ψκ(x̃) :=

+∞∑

n=1

E
[
|Lnκx|−λ; |Lnκx| > |L(n−1)κx|, . . . , |Lnκx| > 1

]
.

Property (4.3) is a direct consequence of the four following steps :

1. For any κ ≥ 1, there exists a constant C(κ) > 0 such that, for any x̃ ∈ X and
a ∈ R,

Φ(x̃, a) ≤ C(κ)(1 + Φκ(x̃, a)).

2. If there exist some κ ≥ 1, x̃0 ∈ X and a0 < 0 such that 0 < Φκ(x̃0, a0) < +∞, then

∀x̃ ∈ X, ∀a ∈ R Φκ(x̃, a) < +∞.

3. There exist C1 > 0 and a1 < 0 such that for any κ ≥ 1, x̃ ∈ X and a < a1

Φκ(x̃, a)
C1� Ψκ(x̃).

4. For any κ ≥ 1 and x̃ ∈ X
Ψκ(x̃) < +∞.

With these steps at hand, we may prove (4.3) as follows. First, for any a0 ≤ a1 < 0,
we choose some δ0 such that δ0 > −a0 > 0. For each δ0, there exists κ0 ≥ 1 such that
P(log |x̃Rκ0 | ≥ δ0) > 0 (see (4.2) above). Since δ0 > −a0, we have Px̃,a(Sκ0 > 0) > 0,
which implies Φκo(x̃0, a0) > 0. On the other hand, since a0 ≤ a1, step 3 and step 4 yield
Φκo(x̃0, a0) < +∞. Therefore, we can apply step 2 and it yields Φκ(x̃, a) < +∞ for any
x̃ ∈ X and a ∈ R. Finally, thanks to Step 1, (4.3) arrives.
Step 1. It is easy to see that

Φ(x̃, a) ≤
κ−1∑

r=1

Ex̃,a[e−λSr , Sr > 0] +

+∞∑

n=1

κ−1∑

r=0

Ex̃,a[e−λSnκ+r ;Sκ > 0, . . . , Snκ > 0]

≤ κ+

+∞∑

n=1

Ex̃,a
(
e−λSnκ ;Sκ > 0, . . . , Snκ > 0

)
×
κ−1∑

r=0

sup
ỹ∈X

Eỹ,0
(
e−λSr

)
.

By Hypothesis H1 and Lemma 2.1, for 0 ≤ r < κ,

0 ≤ Eỹ,0[e−λSr ] = Eỹ,0[|Lry|−λ] ≤ cλE[|Lr|−λ] ≤ c(r+1)λE[|M1|−λ] < +∞.
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Hence 0 ≤ Φ(x̃, a) ≤ C(κ)(1 + Φκ(x̃, a)) with C(κ) = κ
(
1 + cκλE[|M1|−λ]

)
< +∞.

Step 2. The inequality Φκ(x̃0, a0) > 0 implies that P(log |x̃0Rκ| > −a0) > 0; we thus fix
δ > −a0 > 0 and κ ≥ 1 such that µ∗κ(Eδ) > 0. Since a0 < 0, this property may hold only
when κ is large enough; this happens for instance when the support of µ is bounded.
To simplify the notations, we assume that −a0 < δ where δ is given by H5. We set κ =
1 and write

Φ(x̃0, a0) =
+∞∑

n=1

E
[
|x̃0Rn|−λ; |x̃0R1| > e−a0 , . . . , |x̃0Rn| > e−a0

]

≥
∫

{g∈S+(B):|x̃0g|≥e−a0}

+∞∑

n=2

E
[
|x̃0gR1,n|−λ; |x̃0g| > e−a0 ,

. . . , |x̃0gR1,n| > e−a0
]
µ(dg)

≥
∫

Eδ

+∞∑

n=2

E
[
|x̃0gR1,n|−λ; |x̃0g| ≥ eδ > e−a0 , |x̃0gR1,2| > e−a0 ,

. . . , |x̃0gR1,n| > e−a0
]
µ(dg)

=

∫

Eδ

|x̃0g|−λ
+∞∑

m=1

E
[
|(x̃0 · g)Rm|−λ; |(x̃0 · g)R1| > e−a0−log |x̃0g|,

. . . , |(x̃0 · g)Rk| > e−a0−log |x̃0g|
]
µ(dg)

=

∫

Eδ

|x̃0g|−λΦ(x̃0 · g, a0 + log |x̃0g|)µ(dg),

so that

(4.4) Φ(x̃0, a0) ≥
∫

Eδ

|x̃0g|−λΦ(x̃0 · g, a0 + δ)µ(dg).

Consequently, if Φ(x̃0, a0) < +∞ then Φ(x̃0 · g, a0 + δ) < +∞ for µ-almost all g ∈ Eδ
and by iterating this argument, there thus exists a sequence (gk)k≥1 of elements of Eδ
such that

∀k ≥ 1, Φ(x̃0 · g1 · · · gk, a0 + kδ) < +∞.
By Lemma 2.1, for any x̃, ỹ ∈ X and a ∈ R

Φ(x̃, a− log c) ≤ cλ
+∞∑

n=1

E[|Rn|−λ; |R1| > e−a, . . . , |Rn| > e−a]

≤ c2λΦ(ỹ, a+ log c);
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it follows that, by choosing k sufficiently great such that a0 + kδ > a+ 2 log c, we have

Φ(x̃, a) ≤ Φ(x̃0 · g1 · · · gk, a+ 2 log c) ≤ Φ(x̃0 · g1 · · · gk, a0 + kδ) < +∞.

Step 3. For any 0 ≤ k < n, denote Ln,k := Mn−1 . . .Mk and Ln,k = I otherwise. Let
c > 1 be the constant given by Lemma 2.1. For any x̃ ∈ X and a ∈ R, by using Lemma
2.1, we may write

Φκ(x̃, a) =

+∞∑

n=1

E
(
|x̃Rnκ|−λ; |x̃Rκ| > e−a, . . . , |x̃Rnκ| > e−a

)

≤ cλ
+∞∑

n=1

E
(
|Rnκ|−λ; |Rκ| >

e−a

c
, . . . , |Rnκ| >

e−a

c

)

so that, by duality principle and Lemma 2.1,

Φκ(x̃, a) ≤ cλ
+∞∑

n=1

E
(
|Lnκ|−λ; |Lnκ,(n−1)κ| >

e−a

c
, . . . , |Lnκ| >

e−a

c

)

= cλ
+∞∑

n=1

E[|Lnκ|−λ; |Lnκ,(n−1)κ| × |L(n−1)κ| > |L(n−1)κ|
e−a

c
,

. . . , |Lnκ| >
e−a

c
]

≤ cλ
+∞∑

n=1

E
(
|Lnκ|−λ; |Lnκ| > |L(n−1)κ|

e−a

c2
, . . . , |Lnκ| >

e−a

c2

)

≤ c2λ
+∞∑

n=1

E
(
|Lnκx|−λ; |Lnκx| > |L(n−1)κx|

e−a

c4
, . . . , |Lnκx| >

e−a

c4

)

Consequently, setting a1 := −4 log c and using the fact that the map a 7→ Φκ(x̃, a) is non
decreasing for any a ∈ R, one may write Φκ(x̃, a) ≤ Ψ(x̃) as long as a < a1.

Step 4. To simplify the notations, we assume here κ = 1; the proof is the same when
κ ≥ 2. For any x̃ ∈ X and n ≥ 0, set X ′n := Ln · x and S′n := log |Lnx|; the random
process (X ′n, S

′
n)n≥0 is a Markov walk on X×R starting from (x, 0) and whose transitions

are governed by the ones of the Markov chain (X ′n)n≥0 on X. To study the quantity Ψ(x̃),
we follow the strategy developed in the case of one dimensional random walks on R with
independent increments and we thus introduce the sequence (ηj)j≥0 of ladder epochs of
(S′n)n≥0 defined by

η1 = 0, ηj+1 = ηj+1(x) := min
{
n > ηj : log |Lnx| > log |Lηjx|

}
, j ≥ 0.
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For any x̃ ∈ X, one may write

Ψ(x̃) =

+∞∑

n=1

E
(
|Lnx|−λ;∃j ≥ 1 | n = ηj

)

=
+∞∑

j=1

E
(
|Lηjx|−λ

)
.(4.5)

Let Q′ denote the transition kernel of the Markov walk (X ′n, S
′
n)n≥0 and GQ′ :=

+∞∑

n=0

Q′n

its Green kernel. The sub-process (X ′ηj , S
′
ηj )j≤0 is also a Markov chain, its transition

kernel Q′η is given by: for any bounded Borel function φ : X×R→ C and for any x ∈ X,
a ∈ R,

Q′ηφ(x, a) = E
(
φ(X ′η1 , a+ S′η1)|X ′0 = x

)

=

+∞∑

n=1

E (φ(Ln · x, a+ log |Lnx|); η1 = n)

=

+∞∑

n=1

E[φ(Ln · x, a+ log |Lnx|);

|L1x| ≤ 1, · · · , |Ln−1x| ≤ 1, |Lnx| > 1].

Let G′η denote the Green kernel associated with the process (X ′ηj , S
′
ηj )j≥0; by (4.5)

1 + Ψ(x̃) =
+∞∑

j=0

E
(
|Lηjx|−λ

)

=

+∞∑

j=0

∫

X

∫

R
e−λa(Q′η)

j((x, 0), dyda)

=

∫

X

∫

R
e−λaG′η((x, 0), dyda).

The Markov walk (X ′n, S
′
n)n≥0 has been studied by many authors (see for instance

[9], [14] or [13]). All the works are based on the fact that the transition kernel of the
chain (X ′n)n≥0 has some “nice” spectral properties, namely its restriction to the space
of Lipschitz functions on X is quasi-compact. In particular, it allows these authors to
prove that the classical renewal theorem remains valid for this Markov walk on X × R
as long as it is not centered, that is πµ = lim

n→+∞
1

n
E[log |Ln|] 6= 0; in this case one may

prove in particular that, for any x̃ ∈ X, the quantity GQ′((x, 0),X× [0, a]) is equivalent

to
a

π
as a→ +∞ [14]. For the behavior as a→ +∞ of G′η((x, 0),X× [0, a]), the situation
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is way different. On one hand, it is easier since for any j ≥ 1 the random variables
S′ηj are strictly positive, one might thus expect a similar result; on the other hand, the
control of the spectrum of the transition kernel Q′η remains unfortunately unknown in
this circumstance, in particular the transition kernel Q′η does not even act on the space
of continuous functions on X. Nevertheless, we have the following weak result with the
postponed proof at the end of this subsection.

Fact 4.1. There exists C > 0 such that for any x̃ ∈ X and a ≥ 0

G′η((x, 0),X× [0, a]) =
+∞∑

j=0

P(log |Lηjx| ≤ a) ≤ Ca.

It follows that

1 + Ψ(x̃) =

∫

X

∫

R+
∗
e−λaG′η((x, 0), dyda)

≤ eλ
+∞∑

a=1

e−λaG′η((x, 0),X× [a− 1, a])

≤ eλ
+∞∑

a=1

e−λaG′η((x, 0),X× [0, a])

≤ Ceλ
+∞∑

a=1

ae−λa < +∞.

To complete the proof of Step 4, it remains to prove Fact 4.1. First, by definition of Eδ,
for any j ≥ 0 and x̃ ∈ X, we may write S′ηj+1

−S′ηj ≥ δ1Eδ(Mηj ); setting εj := 1Eδ(Mηj ),
this yields S′ηj ≥ δ(ε0 + . . .+ εj−1) so that

G′η((x, 0),X× [0, a]) =
+∞∑

j=0

P(X ′ηj ∈ X, S′ηj ∈ [0, a]|X ′0 = x)

≤
+∞∑

j=0

E
(

1[0,a](S
′
ηj )|X ′0 = x

)

≤
+∞∑

j=0

E
(
1[0,a](δ(ε0 + · · ·+ εj−1))

)
.

To conclude, we use the fact that (εi)i≥0 is a sequence of i.i.d. random variables; the
Elementary Renewal Theorem for the Bernoulli random walk process [(ε0+. . .+εj−1)]j≥0
implies

G′η((x, 0), X × [0, a]) ≤ E




+∞∑

j=1

1[0,a](δ(ε0 + . . .+ εj−1))


 � a.
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4.3. Proof of Lemma 3.2. We claim that

lim
n→+∞

Êx̃,a
∣∣∣ 1

q
(i)
n

− 1

q
(i)
∞

∣∣∣ = 0.(4.6)

By definition, the quantities q
(i)
n are always less than or equal to 1. Therefore, (4.6)

implies that the same property holds P̂x̃,a-almost surely for q
(i)
∞ . Hence,

|q(i)n − q(i)∞ | = q(i)n q(i)∞
∣∣∣ 1

q
(i)
n

− 1

q
(i)
∞

∣∣∣ ≤
∣∣∣ 1

q
(i)
n

− 1

q
(i)
∞

∣∣∣.

Using (4.6) again, we find that lim
n→+∞

Êx̃,a|q(i)n − q(i)∞ | = 0. In particular,

lim
n→+∞

P̂(i)
x̃,a(Zn 6= 0̃) = lim

n→+∞
Êx̃,aq(i)n = Êx̃,aq(i)∞ ,

which is the assertion of (3.12).
Finally, it remains to verify (4.6). From (3.2) and (3.3),

∣∣∣ 1

q
(i)
n

− 1

q
(i)
∞

∣∣∣ ≤
∣∣∣ 1

ẽiRn1

∣∣∣

+
n−1∑

k=0

∣∣∣ γk
ẽiRkYk+1,n

− γk
ẽiRkYk+1,∞

∣∣∣+

+∞∑

k=n

∣∣∣ γk
ẽiRkYk+1,∞

∣∣∣

so that

Êx̃,a
∣∣∣ 1

q
(i)
n

− 1

q
(i)
∞

∣∣∣ ≤ In + Jn +Kn

with

In = Êx̃,a
∣∣∣ 1

ẽiRn1

∣∣∣,

Jn =
n−1∑

k=0

Êx̃,a
∣∣∣γk

ẽiRk(Yk+1,n − Yk+1,∞)

(ẽiRkYk+1,n)(ẽiRkYk+1,∞)

∣∣∣,

Kn =

+∞∑

k=n

Êx̃,a
∣∣∣ γk
ẽiRkYk+1,∞

∣∣∣.

By using Lemma 2.1, it is obvious that Lemma 3.1 implies

(4.7)
+∞∑

k=0

Êx̃,a
(

1

|Rk|

)
< +∞.

Besides, as a direct consequence of Lemma 2.1

(4.8) In � Êx̃,a
(

1

|Rn|

)
,
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(4.9)
∣∣∣γk

ẽiRk(Yk+1,n − Yk+1,∞)

(ẽiRkYk+1,n)(ẽiRkYk+1,∞)

∣∣∣ � |Yk+1,n − Yk+1,∞|
|Rk|

� 1

|Rk|
,

(4.10) Kn �
+∞∑

k=n

Êx̃,a
(

1

|Rk|

)
.

Hence

• (4.7) and (4.8) implies In → 0 as n→∞.
• since Yk+1,n(ω) → Yk+1,∞(ω) for any ω ∈ Ω (see Section 3.1), this convergence

holds in particular P̂x̃,a-almost surely; combining (4.7), (4.9) and the the dominated
convergence Theorem, we obtain Jn → 0 as n→ +∞.
• by (4.7) and (4.10), the term Cl can be made arbitrarily small by choosing l suffi-

ciently great.
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Chapitre 3

Simulation of Galton-Watson
processes

The interest of this chapter is to simulate :
1. critical single-type process in fixed environment,
2. critical multi-type (two-type and three-type) process in fixed environment,
3. critical single-type process in random environment,
4. critical multi-type (two-type and three-type) process in random environment,
The code simulating the processes are in Python and C languages and accesible on

the webpage of the author.

3.1 How to choose critical distributions?

3.1.1 For single-type process in fixed environment

Let p = [p(0), . . . , p(d)] be the offspring distribution of the process, where d is the
maximum number of children. Criticality requires that

∑d
i=0 kp(k) = 1. We first choose p(k)

for all 1 ≤ k ≤ d, then it remains to find p(0) such that it satisfies the probability property∑d
i=0 p(k) = 1.
For instance, let µ = [0.5, 0.4, 0.1] be an offspring distribution, where 0.5 is the proba-

bility to have 0 child, 0.4 is the probability to have 1 child and 0.1 probability to have 2
children. The mean number of children is the value of the first derivative of the offspring
generating function at 1, which is

f ′(1) = 0 × 0.5 + 1 × 0.4 + 2 × 0.1 = 0.6.

Therefore, criticality can be obtained for example in the distribution [0.3, 0.4, 0.3].
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3.1. HOW TO CHOOSE CRITICAL DISTRIBUTIONS?

3.1.2 For multi-type process in fixed environment

For multi-type-processes, we have to work with the mean matrices. If d is the number
of types in the process, then d×d is the dimension of the mean matrix. In fixed environment,
the criteria is that the Perron root of the mean matrix M equals 1. Notice that what we
need is the offspring distribution in order to apply in Python code. If we start with a mean
matrix with its Perron root 1, then this matrix satisfies the criteria to be in critical case,
but to trace back to the possible offspring distributions is not an easy problem because
we may end up with a systems of many variables which is not easy to solve. Therefore,
we try to find a way that answer the following question : if we adjust the mean matrix,
how does the corresponding offspring distribution change?

Let us consider a two-type-process in the given environment µ = (µ1, µ2), where µi
is a probability measure on N2 that gives the offspring distribution of parent typed i,
for i = 1, 2. We assume that µi(1, 0) = µi(0, 1) = 0 for any i = 1, 2. Therefore, it is easy to
see that the corresponding mean matrix M has the Perron root ρ(M) greater than 1. The
mean matrix M here should be checked if it is positively regular. After, we modify µ to
µ′ by creating a combination of µ with some other Dirac mass at (0, 0), (0, 1) and (1, 0) as
follows :

µ′i = aiδ(0,0) + biδ(1,0) + ciδ(0,1) + diµi, (3.1.1)

where ai, bi, ci, di ∈]0, 1[ and ai + bi + ci + di = 1, for i = 1, 2. From the expression (3.1.1)
above, we can calculate the coefficients m′i, j of the mean matrix M′ corresponding to
µ′. The strategy is : from a super-critical mean matrix with a given distribution, we
construct another new distribution depending on the old one such that the new mean
matrix satisfies the critical criteria. Notice that if M′ = 1

ρ(M) M then ρ(M′) = 1. Solving the

equation M′ = 1
ρ(M) M, we obtain





b1 + d1m1,1 = 1
ρm1,1

c1 + d1m1,2 = 1
ρm1,2

b2 + d2m2,1 = 1
ρm2,1

c2 + d2m2,2 = 1
ρm2,2,

which implies




b1 = ( 1
ρ − d1)m1,1

c1 = ( 1
ρ − d1)m1,2

b2 = ( 1
ρ − d2)m2,1

c2 = ( 1
ρ − d2)m2,2.

Then, we can choose d1 and d2 such that 0 < d1, d2 < 1
ρ and find the other coefficients

b1, c1, b2, c2. Since ai + bi + ci + di = 1, we can find finally ai for i = 1, 2. Notice that we can
always choose di close enough to 1

ρ so that bi, ci ∈]0, 1[. With all the found coefficients, we
can construct explicitly the new measure µ′.

Example 1 : Two-type process in fixed environment.
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3.1. HOW TO CHOOSE CRITICAL DISTRIBUTIONS?

Let µ1 and µ2 given in Tables 3.3 be two offspring distributions, where x is the number
of children of type 1 and y is the number of children of type 2. Then, the mean matrix M
is found as

y = 0 y = 1 y = 2
x = 0 0 0 0.25
x = 1 0 0.25 0.5

Table 3.1 – µ1

y = 0 y = 1 y = 2
x = 0 0 0 0.1
x = 1 0 0.1 0.1
x = 2 0.1 0.2 0.4

Table 3.2 – µ2

Table 3.3 – Two-type process in fixed environment

M =

(
0.75 1.75
1.6 1.5

)
,

and its Perron root ρ(M) =
45 +

√
4705

40
. It is obvious that M is positively regular. Solving

the equation M′ = 1
ρ(M) M by choosing d1 = 0.3 and d2 = 0.2, we obtain

M′ '
(

0.2641 0.6162
0.5634 0.5282

)
,

which yields the new measure described in Table 3.6.

y = 0 y = 1 y = 2
x = 0 0.5697 0.0912 0.075
x = 1 0.0391 0.075 0.15

Table 3.4 – µ′1

y = 0 y = 1 y = 2
x = 0 0.3284 0.2282 0.02
x = 1 0.2434 0.02 0.02
x = 2 0.02 0.04 0.08

Table 3.5 – µ′2

Table 3.6 – Two-type process in fixed environment

Example 2 : Three-type process in fixed environment.
Let µ1, µ2 and µ3 given in Tables 3.10 be three offspring distributions, where x is the

number of children of type 1, y is the number of children of type 2 and z is the number of
children of type 3.

Then, the mean matrix M is found as

M =




1.7 0.6 0.7
0.6 1.8 0.6
0.5 0.7 1.7


 ,

with the Perron root ρ(M) ∼ 2.966 and we round off 1
ρ(M) ∼ 0.33715. It is obvious that M

is positively regular. Notice that the new measure is of the following combination.

µ′i = ai
0δ(0,0,0) + ai

1δ(1,0,0) + ai
2δ(0,1,0) + ai

3δ(0,0,1)

+ai
4δ(1,1,0) + ai

5δ(1,0,1) + ai
6δ(0,1,1) + ai

7µi. (3.1.2)
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3.1. HOW TO CHOOSE CRITICAL DISTRIBUTIONS?

z = 0 y = 0 y = 1
x = 0 0 0
x = 1 0 0
x = 2 0.2 0.1

z = 1 y = 0 y = 1
x = 0 0 0
x = 1 0 0.3
x = 2 0.2 0.2

Table 3.7 – µ1

z = 0 y = 0 y = 1 y = 2
x = 0 0 0 0.3
x = 1 0 0 0.1

z = 1 y = 0 y = 1 y = 2
x = 0 0 0 0.1
x = 1 0 0.2 0.3

Table 3.8 – µ2

z = 0 y = 0 y = 1
x = 0 0 0
x = 1 0 0

z = 1 y = 0 y = 1
x = 0 0 0
x = 1 0 0.3

z = 2 y = 0 y = 1
x = 0 0.2 0.3
x = 1 0.1 0.1

Table 3.9 – µ3

Table 3.10 – Three-type process in fixed environment

Solving the equation M′ = 1
ρ(M) M, taking into account (3.1.2) and by choosing a1

7 =

0.02, a2
7 = 0.01 and a3

7 = 0.15, we obtain the new measure described in Table 3.14.

z = 0 y = 0 y = 1
x = 0 0.36855 0.00029
x = 1 0.269155 0.12
x = 2 0.004 0.002

z = 1 y = 0 y = 1
x = 0 0.002005 0.07
x = 1 0.15 0.006
x = 2 0.004 0.004

Table 3.11 – µ′1
z = 0 y = 0 y = 1 y = 2
x = 0 0.23855 0.50887 0.003
x = 1 0.00629 0.04 0.001

z = 1 y = 0 y = 1 y = 2
x = 0 0.00629 0.04 0.001
x = 1 0.15 0.002 0.003

Table 3.12 – µ′2
z = 0 y = 0 y = 1
x = 0 0.457267 0.021005
x = 1 0.023573 0.03

z = 1 y = 0 y = 1
x = 0 0.198155 0.08
x = 1 0.04 0.045

z = 2 y = 0 y = 1
x = 0 0.03 0.045
x = 1 0.015 0.015

Table 3.13 – µ′3

Table 3.14 – Three-type process in fixed environment

3.1.3 For single-type process in random environment

Let Pi = (pi(k))1≤k be offspring distributions, for 1 ≤ i ≤ N, where N is the number of
offspring distributions in the environment andαi the probability to choose the distribution
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3.1. HOW TO CHOOSE CRITICAL DISTRIBUTIONS?

Pi. Let mi =
∑+∞

k=0 kpi(k). Then the criteria is E[log f ′(1)] = 0, that is
∑N

i=1 αi log mi = 0. In
this case, we have to choose Pi and also αi.

For instance, given two offspring distributions µ0 and µ1, the criteria is the value
E(log f ′0(1)) = 0. We introduce two ways to obtain the criticality : to choose the offspring
distributions with the mean number of children equal 1 or to choose the distribution
α = (α0, α1) such that

E(log f ′0(1)) = α0 log m0 + α1 log m1 = 0

More precisely, for the first way, we choose µ0 = [0.25, 0.5, 0.25] and µ1 = [0.4, 0.2, 0.4] with
the mean values corresponding m0 = 1 and m1 = 1. Therefore, the criteria E(log f ′0(1)) =
α0 log m0 + α1 log m1 = 0, no matter the value of α. For the second way, we choose
µ0 = [0.5, 0.3, 0.2] and µ1 = [0.2, 0.3, 0.5] with m0 = 0.7 and m1 = 1.3. Then we solve a
system of equations to find α :




α0 log m0 + α1 log m1 = 0,
α0 + α1 = 1,
α0 × α1 > 0.

The solution isα =

(
log 1.3

log 1.3 − log 0.7
,

− log 0.7
log 1.3 − log 0.7

)
. For more samples of distribution,

we do similarly.
Example 3 : Single-type process in random environment with the offspring distribution

described as follows : environment distribution : α =

(
log 1.3

log 1.3 − log 0.7
,

− log 0.7
log 1.3 − log 0.7

)

and offspring distribution : [0.5, 0.3, 0.2] and [0.2, 0.3, 0.5].

3.1.4 For multi-type process in random environment

In fact the probability to fall into a sequence of matrices such that with respect to some
distribution, the corresponding Lyapunov exponent is different from 0 is high. Therefore,
we first calculate the Lyapunov exponent of those matrices, denoted by γ. Then using the
technique presented in the part of multi-type in fixed environment with exp(γ) instead of
the Perron root ρ(M), we can obtain a new set of probability measures. The mean matrices
corresponding to those new measures do have the Lyapunov’s exponent 0.

More precisely, given µ and ν the two offspring probability measures, we can calculate
the mean matrices Mµ and Mν. Let α = (α1, α2) be the distribution of the environment,
that is with probability α1 we choose µ and with probability α2 we choose ν as the

offspring distribution. The Lyapunov’s exponent is γ = lim
n→+∞

1
n
E|M1 . . .Mn|, where Mi

are i.i.d. random matrices chosen from the set {Mµ,Mν} with distribution α. By using the
technique of combination with Dirac mass applying to exp(γ), we can construct a new set
of probability measures {µ′, ν′} with the corresponding mean matrices M′µ and M′ν. Since
M′µ = 1

exp(γ) Mµ and M′ν = 1
exp(γ) Mν, the new Lyapunov’s exponent γ′ can be explicited as
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3.1. HOW TO CHOOSE CRITICAL DISTRIBUTIONS?

follows

γ′ = lim
n→+∞

1
n
E|M′1 . . .M

′

n|

= lim
n→+∞

1
n

log |e−γMn . . . e−γM1|

= lim
n→+∞

1
n

log e−nγ
|Mn . . .M1|

= −γ + lim
n→+∞

1
n

log |Mn . . .M1|

= 0. (3.1.3)

Notice that to obtain criticality, we have to deal with the Perron root and the limit
for Lyapunov’s exponent, which are not found absolutely precisely, thus rounding off
numbers is neccessary. Therefore, criticality considered in python code is relative but
quite fine. Furthermore, the mean matrices should satisfy the strong irreducibility, which
we go into more detail in the next subsection.

Example 4 : Two-type process in random environment.
Environment distribution : [0.4, 0.6].
Offspring distribution : Tables 3.19.

y = 0 y = 1 y = 2
x = 0 0 0 0.25
x = 1 0 0.25 0.5

Table 3.15 – µ1

y = 0 y = 1 y = 2
x = 0 0 0 0.1
x = 1 0 0.1 0.1
x = 2 0.1 0.2 0.4

Table 3.16 – µ2

y = 0 y = 1
x = 0 0 0
x = 1 0 0.4
x = 2 0.4 0.2

Table 3.17 – ν1

y = 0 y = 1 y = 2
x = 0 0 0 0.2
x = 1 0 0.2 0.1
x = 2 0.2 0.2 0.1

Table 3.18 – ν2

Table 3.19 – Two-type process in random environment

The Lyapunov’s exponent is round off to exp(−γ) = 0.3995. New measures are descri-
bed in Table 3.24.

Example 5 : Three-type process in random environment.
Environment distribution : [0.4, 0.6].
Offspring distribution : Table 3.31. The Lyapunov’s exponent is round off to exp(−γ) =

0.31956. New measures are described in Table 3.38.
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y = 0 y = 1 y = 2
x = 0 0.45125 0.174125 0.075
x = 1 0.074625 0.075 0.15

Table 3.20 – µ′1

y = 0 y = 1 y = 2
x = 0 0.18155 0.29925 0.02
x = 1 0.3192 0.02 0.02
x = 2 0.02 0.04 0.08

Table 3.21 – µ′2
y = 0 y = 1

x = 0 0.4211 0.0897
x = 1 0.2392 0.1
x = 2 0.1 0.05

Table 3.22 – ν′1

y = 0 y = 1 y = 2
x = 0 0.22625 0.2994 0.03
x = 1 0.32435 0.03 0.015
x = 2 0.03 0.03 0.015

Table 3.23 – ν′2

Table 3.24 – Two-type process in random environment

3.2 Matrices satisfy the strong irreducibility hypothesis

3.2.1 For 2 × 2 matrices

Step 1. Two positive matrices A and B with distinct eigenvectors create a semi-group
T(A,B) which is strong irreducible, that is there is no finite union of proper subspaces U of
T(A,B) such that for any g ∈ T(A,B) : g(U) ⊂ U. Suppose that there exists a finite union U
such that g(U) ⊂ U for any g ∈ U. Denote by xA, x′A and xB, x′B the distinct eigenvectors of
the matrices A and B. We consider the projective space P(R2). Notice that for any x ∈ P(R2)
such that x , xA, we obtain the convergence in direction An

· x → xA, where xA is the
dominant eigenvector of A.

Case 1 : when {x′A, x
′

B} 1 U, for any x ∈ U, we see that Anx → xA ( ! with finite union
because Anx , xA).

Case 2 : when {x′A} ⊂ U and when {x′B} 1 U, for any x ∈ U, we see that AnBx → xA ( !
with finite union).

Case 3 : when {x′A, x
′

B} ⊂ U, for any x ∈ U, there exists k such that

Akx ∈ {x′AR,Nε(xA)} and x′B < {x
′

AR,Nε(xA)},

which yields BnAkx→ xB ( ! with finite union).
Step 2. If a semi-group is strong irreducible, then so are all the bigger semi-groups

that contain it. We prove for instant a set of three matrices. For any positive matrix C,
we consider the semi-group T(A,B,C) generated by the set of matrices {A,B,C}. Therefore
T(A,B) ⊂ T(A,B,C). Since T(A,B) is strong irreducible, so is T(A,B,C). Indeed, we can verify
this property by using contradiction method. Suppose that T(A,B,C) does not satisfy the
strong irreducible property, that is there exists some finite union U such that for any
g ∈ T(A,B,C) : g(U) ⊂ U, which yields for any g ∈ T(A,B), g(U) ⊂ U, which is contradiction
because T(A,B) is strongly irreducible.
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z = 0 y = 0 y = 1
x = 0 0 0
x = 1 0 0
x = 2 0.2 0.1

z = 1 y = 0 y = 1
x = 0 0 0
x = 1 0 0.3
x = 2 0.2 0.2

Table 3.25 – µ1

z = 0 y = 0 y = 1 y = 2
x = 0 0 0 0.3
x = 1 0 0 0.1

z = 1 y = 0 y = 1 y = 2
x = 0 0 0 0.1
x = 1 0 0.2 0.3

Table 3.26 – µ2

z = 0 y = 0 y = 1
x = 0 0 0
x = 1 0 0

z = 1 y = 0 y = 1
x = 0 0 0
x = 1 0 0.3

z = 2 y = 0 y = 1
x = 0 0.2 0.3
x = 1 0.1 0.1

Table 3.27 – µ3

z = 0 y = 0 y = 1 y = 2
x = 0 0 0 0.1
x = 1 0 0 0.3

z = 1 y = 0 y = 1 y = 2
x = 0 0 0 0.2
x = 1 0 0.2 0.2

Table 3.28 – ν1

z = 0 y = 0 y = 1 y = 2
x = 0 0 0 0.1
x = 1 0 0 0.05
x = 2 0.05 0.15 0.1

z = 1 y = 0 y = 1 y = 2
x = 0 0 0 0.05
x = 1 0 0.1 0.1
x = 2 0.1 0.1 0.1

Table 3.29 – ν2

z = 0 y = 0 y = 1
x = 0 0 0
x = 1 0 0
x = 2 0.15 0.3

z = 1 y = 0 y = 1
x = 0 0 0
x = 1 0 0.1
x = 2 0.05 0.4

Table 3.30 – ν3

Table 3.31 – Three-type process in random environment

3.2.2 For 3 × 3 matrices

The same idea is applied for 3×3 matrices like in case of 2×2 matrices. For instance, we
consider two 3×3 matrices A and B, where A has three different eigenvalues λ1 > λ2 > λ3
with u1,u2,u3 the three associate eigenvectors, and B has three different eigenvalues
γ1 > γ2 > γ3 with v1, v2, v3 the three associate eigenvectors, such that λi , λ j, γi , γ j,
Rui , Rv j and R(ui ∧ u j) , R(vk ∧ vl), for i , j, k , l and i, j, k, l = 1, 2, 3. In other words,
there does not exist any directions, planes or combination of directions and planes that
stay invariant under the action of products of matrices composed by A and B.
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z = 0 y = 0 y = 1
x = 0 0.44132 0.041736
x = 1 0.218252 0.03
x = 2 0.03 0.015

z = 1 y = 0 y = 1
x = 0 0.048692 0.03
x = 1 0.04 0.045
x = 2 0.03 0.03

Table 3.32 – µ′1
z = 0 y = 0 y = 1 y = 2
x = 0 0.33132 0.355208 0.03
x = 1 0.071736 0.01 0.01

z = 1 y = 0 y = 1 y = 2
x = 0 0.051736 0.03 0.01
x = 1 0.05 0.02 0.03

Table 3.33 – µ′2
z = 0 y = 0 y = 1
x = 0 0.533276 0.023692
x = 1 0.02978 0.01

z = 1 y = 0 y = 1
x = 0 0.133252 0.05
x = 1 0.02 0.06

z = 2 y = 0 y = 1
x = 0 0.04 0.06
x = 1 0.02 0.02

Table 3.34 – µ′3
z = 0 y = 0 y = 1 y = 2
x = 0 0.519364 0.165208 0.02
x = 1 0.013692 0.03 0.06

z = 1 y = 0 y = 1 y = 2
x = 0 0.011736 0.02 0.04
x = 1 0.04 0.04 0.04

Table 3.35 – ν′1
z = 0 y = 0 y = 1 y = 2
x = 0 0.511974 0.048906 0.015
x = 1 0.045862 0.15 0.0075
x = 2 0.0075 0.0225 0.015

z = 1 y = 0 y = 1 y = 2
x = 0 0.013258 0.03 0.0075
x = 1 0.05 0.015 0.015
x = 2 0.015 0.015 0.015

Table 3.36 – ν′2
z = 0 y = 0 y = 1
x = 0 0.38643 0.025648
x = 1 0.0267164 0.1
x = 2 0.015 0.03

z = 1 y = 0 y = 1
x = 0 0.020758 0.05
x = 1 0.05 0.01
x = 2 0.005 0.04

Table 3.37 – ν′3

Table 3.38 – Three-type process in random environment

3.3 Simulation with tree graphs and stairstep graphs

Notice that all the simulations presented in this section use the offspring distributions
and environment distributions which are introduced in the following subsection.

3.3.1 Tree graphs

The vertical axe of the following graphs corresponds to the number of generation.
Those trees are downward oriented and they represent some possible samples of random
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trees generated with the following distributions.
• Single-type process in fixed environment :

Offspring distribution : [0.3, 0.4, 0.3]. Tree graphs are presented in Figure 3.1.
• Single-type process in random environment :

Environment distribution : [ log 1.3
log 1.3−log 0.7 ,

− log 0.7
log 1.3−log 0.7 ].

Offspring distribution : [0.5, 0.3, 0.2] and [0.2, 0.3, 0.5]. Tree graphs are presented in
Figure 3.2.
• Two-type process in fixed environment :
Offspring distribution : Table 3.6. Tree graphs are presented in Figure 3.3.
• Two-type process in random environment :
Environment distribution : [0.4, 0.6].
Offspring distribution : Table 3.24. Tree graphs are presented in Figure 3.4.
• Three-type process in fixed environment :
Offspring distribution : Table 3.14. Tree graphs are presented in Figure 3.5.
• Three-type process in random environment :
Environment distribution : [0.4, 0.6].
Offspring distribution : Table 3.38. Tree graphs are presented in Figure 3.6.

3.3.2 Stairstep graphs

The Figure 3.13 describes 100 realizations of critical Galton-Watson branching pro-
cesses in fixed and in random environment over 150 generations, with the according
offspring distributions presented in subsection above. The horizontal axe is for the num-
ber of generations and the verical axe is for the size of the population.

Comments.
As it is supposed to be, the process dies more slowly in random environment rather

than in fixed environment. Notice that there is no absolute comparison between the cases
according to the distributions or to the number of types. However, intuitive prediction
says that with more types of individual, the population dies more slowly and it survives
better in random environment than in fixed environment.

The graphs are plotted in order to visualize the extinction probability. Following the
graphs, it is clear that most of the trajectories end at 0 quickly after around 40 generations
and only a few populations survive. This fact matches the probability of extinction theo-
retically. Moreover, we cannot say anything about the effect of the number of types on the
extinction probability at the moment. To obtain a more persuasive conclusion, we need a
more precise approximation, which can be done by optimizing the codes that simulates
the process. However, this problem is out of the scope of this thesis. Still one question
naturally arises from observing the graphs : what is the first moment that one of the types
gets extinction. This can be the first step to the answer of the question about the effect of
the number of types on the extinction probability.
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3.3.3 Simulation of rate of convergence

In this subsection, we simulate critical Galton-Watson processes given the same off-
spring distributions as in previous subsection, with the maximum number of generations
1e2, 1e3, 1e4, 1e5 and 1e6. Each experiment is repeated 1e6 times and Table 3.43 gives us
the mean frequencies obtained. Notice that the codes used in simulating those processes
are in C and by the help of the central computer in Insitut Denis Poisson, we could
not calculate precisely the frequency and had to truncate the size of the population if it
exceeds 1e6 in all cases except single-type in fixed environment case, and consider that
this population survives. This truncation undoubtedly perturbs the rate of convergence
showed in Figures 3.14 and 3.15.

In order to understand Figures 3.14 and 3.15, we briefly provide some ordinary com-
ments. The frequencies obtained play the role of survival propbability at time n, where n
is the maximum number of generations in each experiment. Let qn and q′n be the survival
probability in fixed and in random environment of a critical single-type Galton-Watson
process. Then, it is well known that qn ∼

c1
n and q′n ∼

c2√
n . We take the logarithm of base 10

and obtain log(qn) ∼ log c1 − log n and log(q′n) ∼ log c2 −
1
2 log n. After, we plot the graphs

of these two functions with the variable log n for x-axis and log( f requency(n)) for y-axis.
With the graphs obtained, they should show the difference of slopes between two graphs
(slope −1 in fixed case and − 1

2 in random case). However, because of technical contraints,
we have to truncate the size of populations who exceed some certain number (1e6 in this
context) and this truncation creates un effect, that is it increases the frequency of survival.
However, this approach opened a door for further work after.
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Figure 3.1 – Single-type process in fixed
environment

Figure 3.2 – Single-type process in ran-
dom environment

Figure 3.3 – Two-type process in fixed
environment

Figure 3.4 – Two-type process in ran-
dom environment

Figure 3.5 – Three-type process in fixed
environment

Figure 3.6 – Three-type process in ran-
dom environment
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Figure 3.7 – Single-type process in fixed
environment

Figure 3.8 – Single-type process in ran-
dom environment

Figure 3.9 – Two-type process in fixed
environment

Figure 3.10 – Two-type process in ran-
dom environment

Figure 3.11 – Three-type process in
fixed environment

Figure 3.12 – Three-type process in ran-
dom environment

Figure 3.13 – 100 possible realizations of populations over 150 generations
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n log(n, 10) frequency(n) log(frequency(n), 10)
1e2 2 0,969048 -0,01365471
1e3 3 0,996397167 -0,001567516
1e4 4 0,999693667 -0,000133059
1e5 5 0,999876333 -5,37111e-05
1e6 6 0,999968 -1,38976e-05

Table 3.39 – Single-type in fixed environment
n log(n, 10) frequency(n) log(frequency(n), 10)

1e2 2 0,956372833 -0,019372769
1e3 3 0,983792 -0,007096713
1e4 4 0,983901333 -0,007048451
1e5 5 0,983890333 -0,007053306
1e6 6 0,984010333 -0,007000341

Table 3.40 – Single-type in random environment
n log(n, 10) frequency(n) log(frequency(n), 10)

1e2 2 0,975969167 -0,010563903
1e3 3 0,997426 -0,001119315
1e4 4 0,999567333 -0,000187945
1e5 5 0,999850667 -6,48595e-05
1e6 6 0,999828333 -7,45603e-05

Table 3.41 – Multi-type in fixed environment
n log(n, 10) frequency(n) log(frequency(n), 10)

1e2 2 0,985623 -0,006289171
1e3 3 0,998218167 -0,000774531
1e4 4 0,999616833 -0,000166439
1e5 5 0,999612833 -0,000168177
1e6 6 0,999616833 -0,000166439

Table 3.42 – Multi-type in random environment

Table 3.43 – Frequency

136



3.3. SIMULATION WITH TREE GRAPHS AND STAIRSTEP GRAPHS

Figure 3.14 – Rate of convergence in single-type case

Figure 3.15 – Rate of convergence in multi-type case
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Conclusion

In this chapter we revise principal results obtained and presented in section 2.6 and
3.4 ; we also discuss some questions for future research.

Conditioned limit theorems for products of positive random ma-
trices

The fluctuations of a random sequence Sn = a+ log |gn . . . g1x| are studied, where g j are
i.i.d. random d × d matrices with non-negative entries. The contribution of the paper lies
in the description of some aspects of the fluctuations of Sn : the behavior of the probability
that the path S1, . . . ,Sn is positive, and the distribution of Sn conditioned on S1, . . . ,Sn to
stay positive.

If τ denotes the first time the random walk (Sn)n becomes non-positive, the asymptotic
expansion for Px,a(τ > n) is of order c

√
n ; the constant c is explicitly presented, it depends

on the P̃+-harmonic function V(x, a).
Furthermore, it is shown that Sn/

√
n conditioned on [τ > n] has asymptotically Ray-

leigh distribution.
The proofs are based on a martingale approximation, on error estimates in the central

limit theorem for dependent random variables, and on a “coupling" of S[nt]

σ
√

n with Brownian
motion.

The survival probability of a critical multi-type branching process
in i.i.d. random environment

The paper investigates the asymptotic behavior of the quantityP(Zn > 0) for the multi-
type branching process in i.i.d. random environment, under reasonable assumptions.
First, the relation P(Zn > 0) ∼ c/

√
n for the special case of random linear-fractional

offspring distributions. Second, for a bigger class of random offspring distributions, it
follows that P(Zn > 0) � 1/

√
n. The proofs use techniques for univariate BPRE and

methods from the theory of products of i.i.d. random matrices (result obtained from the
article published in ALEA).
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Some questions for future research

There is a huge literature on one type or multi-type Galton Watson processes and
many questions remain open ; in this section, we propose to describe some of them,
closely related to the main results of this thesis.

On a local limit theorem for product of random matrices whose norms are
conditioned on staying > 1

Once the behavior at infinity of the quantity Px,a(τ > n) is known, a natural question
is to focus on the one of the probabilities P(x̃Rn ∈ K compact, τa > n) and to prove
that it behaves as c

n3/2 . Results in this direction was obtained recently by R. Lauvergnat
[Lauvergnat, 2017] who studied in his PhD thesis fluctuations of a class of Markov walks
(or random walks with Markovian dependent increments). The question is still open for
product of random matrices, works are in progress with E. Le Page. Such a result for
product of positive random matrices would be of interest to describe the probability of
extinction of sub-critical multi-type Galton-Watson processes in random environment, as
in the one type case presented in Chapter 3 of this thesis.

On a central limit theorem for Galton-Watson processes conditioned on non-
extinction at time n

It is known that critical one type Galton-Watson processes (Zn)n≥0 in random envi-
ronment, conditioned on the event [Zn > 0], do exhibit “super critical behavior”. Let us
briefly explain this.

First, supercritical branching processes (whether classical or in random environment)
obey the growth law Zn/µn

→W a.s., where W is some typically non-degenerate random
variable (see Kesten-Stigum’s statement in Chapter 3 of this thesis). Conditioned on the
event [Zn > 0], this kind of behavior can no longer be formulated as a statement on a.s.
convergence, since the conditional probability measures depend on n.

Instead, in random environment, it holds some “central limit theorem” for the size of
the population at time n, with a random normalization depending on the environment
up to time n. The main ingredient is the fact that the process (Zn/ f ′0(1) . . . f ′n−1(1))n≥1 is
a martingale, where f0, f1 . . . is the i.i.d. environment of the branching process. More
precisely,

L

(
Zn

f ′0(1) . . . f ′n−1(1)
/Zn > 0

)
−→ L(W)

for some positive and finite random variable W (see [Afanasyev et al., 2005] for the details
and interesting comments).

Thus, it is natural to ask whether or not such a result does exist for multi-type Galton-
Watson processes (Zn)n≥0 in random environment. It is natural to replace the quantity
f ′0(1) . . . f ′n−1(1) by the product of the random mean matrices of the offspring distributions,
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unfortunately the sequence
(

Z(i)
n 1

eSn(x̃)

)

n≥1

=

(
Z(i)

n 1
x̃Rn1

)

n≥1

is no more a martingale. Nevertheless, we may expect for a weak convergence of
this sequence, which should allow us to conclude as in [Afanasyev et al., 2005] ; the
delicate argument related to martingale needs to be settled, using ideas from [Cohn, 1989]
and [Dolgopyat et al., 2017].

On the affine recursion in (R+)p, p ≥ 1

We consider the random difference equation Xn+1 = An+1Xn + Bn+1, where (An,Bn) are
i.i.d. (S+(B) ×Rd+)-valued. A direct computation yields for any n ≥ 1,

Xn = An . . .A1X0 +

n∑

k=1

An . . .Ak+1Bk.

A major improvement in critical case for one dimension was done in [Babillot et al.,
1997], when E(log An) = 0. Under general hypotheses, they proved the existence and
unicity of an infinite Radon measure λ which is invariant for the process (Xn)n on R.
The unicity of λ base on the local contractivity of the semi-group of the random affine
maps x 7→ An . . .A1x+

∑n
k=1 An . . .Ak+1Bk. The demonstration used fine results on random

walsk on affine groups of the real line and especially the fact that these random walks are
transient since the affine group is unimodular.

In higher dimension, several results exist when the products An . . .A1 are strongly
contractive, namely when the Lyapunov’s exponent of the product of matrices An is strictly
less than 0. Nevertheless, the same question for critical case remains open. Under quite
strong hypotheses on the matrices An, we prove the existence and unicity of an infinite
Radon measure, using some results of products of matrices with non-negative entries
presented in [Le Page et al., 2018], [Pham, 2018] and adapting the strategy developped
in [Brofferio, 2003].

141



CONCLUSION

142



Bibliographie

[Abraham et Delmas, 2016] Abraham, R. et Delmas, J. P. (2016). An introduction on
galton-watson trees and their local limits. ESAIM : Proceedings and Surveys, 7. ESAIM :
Proceedings and Surveys.

[Afanasyev, 1993] Afanasyev, V. I. (1993). A limit theorem for a critical branching process
in a random environment. Diskret. Mat., 5(1):45–58.

[Afanasyev et al., 2005] Afanasyev, V. I., Geiger, J., Kersting, G. et Vatutin, V. A. (2005).
Criticality for branching processes in random environment. Ann. Probab., 33(2):645–673.

[Athreya et Karlin, 1971a] Athreya, K. B. et Karlin, S. (1971a). Branching processes with
random environments. II. Limit theorems. Ann. Math. Statist., 42:1843–1858.

[Athreya et Karlin, 1971b] Athreya, K. B. et Karlin, S. (1971b). On branching processes
with random environments. I. Extinction probabilities. Ann. Math. Statist., 42:1499–
1520.

[Athreya et Ney, 1972] Athreya, K. B. et Ney, P. E. (1972). Branching processes. Springer-
Verlag, New York-Heidelberg. Die Grundlehren der mathematischen Wissenschaften,
Band 196.

[Babillot et al., 1997] Babillot, M., Bougerol, P. et Elie, L. (1997). The random difference
equation Xn = AnXn−1 + Bn in the critical case. Ann. Probab., 25(1):478–493.

[Bansaye et Berestycki, 2008] Bansaye, V. et Berestycki, J. (2008). Large deviations for
branching processes in random environment. arXiv preprint arXiv :0810.4991.

[Benoist et Quint, 2016] Benoist, Y. et Quint, J.-F. (2016). Central limit theorem for linear
groups. Ann. Probab., 44(2):1308–1340.

[Billingsley, 1968] Billingsley, P. (1968). Convergence of probability measures. John Wiley
& Sons, Inc., New York-London-Sydney.

[Bolthausen, 1976] Bolthausen, E. (1976). On a functional central limit theorem for ran-
dom walks conditioned to stay positive. Ann. Probability, 4(3):480–485.

[Bougerol et Lacroix, 1985] Bougerol, P. et Lacroix, J. (1985). Products of random matrices
with applications to Schrödinger operators, volume 8 de Progress in Probability and Statistics.
Birkhäuser Boston, Inc., Boston, MA.

[Brofferio, 2003] Brofferio, S. (2003). How a centred random walk on the affine group
goes to infinity. Ann. Inst. H. Poincaré Probab. Statist., 39(3):371–384.

[Chow et Teicher, 2012] Chow, Y. S. et Teicher, H. (2012). Probability theory : independence,
interchangeability, martingales. Springer Science & Business Media.

143



BIBLIOGRAPHIE

[Church, 1971] Church, J. D. (1971). On infinite composition products of probability
generating functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19:243–256.

[Cohn, 1989] Cohn, H. (1989). On the growth of the multitype supercritical branching
process in a random environment. Ann. Probab., 17(3):1118–1123.

[Dyakonova, 1999] Dyakonova, E. E. (1999). The asymptotics of the probability of nonex-
tinction of a multidimensional branching process in a random environment. Diskret.
Mat., 11(1):113–128.

[Denisov et Wachtel, 2015] Denisov, D. et Wachtel, V. (2015). Random walks in cones.
Ann. Probab., 43(3):992–1044.

[Dolgopyat et al., 2017] Dolgopyat, D., Hebbar, P., Koralov, L. et Perlman, M. (2017).
Multi-type branching processes with time-dependent branching rates.

[Dyakonova et al., 2004] Dyakonova, E. E., Geiger, J. et Vatutin, V. A. (2004). On the
survival probability and a functional limit theorem for branching processes in random
environment. Markov Process. Related Fields, 10(2):289–306.

[Feller, 1968] Feller, W. (1968). An introduction to probability theory and its applications. Vol.
I. Third edition. John Wiley & Sons, Inc., New York-London-Sydney.

[Furstenberg et Kesten, 1960] Furstenberg, H. et Kesten, H. (1960). Products of random
matrices. Ann. Math. Statist., 31:457–469.

[Geiger et Kersting, 2000] Geiger, J. et Kersting, G. (2000). The survival probability of
a critical branching process in random environment. Teor. Veroyatnost. i Primenen.,
45(3):607–615.

[Geiger et al., 2003] Geiger, J., Kersting, G. et Vatutin, V. A. (2003). Limit theorems for
subcritical branching processes in random environment. Ann. Inst. H. Poincaré Probab.
Statist., 39(4):593–620.

[Grama et al., 2014] Grama, I., Le Page, E. et Peigné, M. (2014). On the rate of convergence
in the weak invariance principle for dependent random variables with applications to
Markov chains. Colloq. Math., 134(1):1–55.

[Grama et al., 2017] Grama, I., Le Page, E. et Peigné, M. (2017). Conditioned limit theo-
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Résumé :

La théorie des processus de branchement multi-type en environnement i.i.d. est consi-
dérablement moins développée que dans le cas univarié, et les questions fondamentales
ne sont pas résolues en totalité à ce jour. Les réponses exigent une compréhension pro-
fonde du comportement des produits des matrices i.i.d. à coefficients positifs.

Sous des hypothèses assez générales et lorsque les fonctions génératrices de probabi-
lité des lois de reproduction sont “linéaire fractionnaires”, nous montrons que la proba-
bilité de survie à l’instant n du processus de branchement multi-type en environnement
aléatoire est proportionnelle à 1

√
n lorsque n→∞.

La démonstration de ce résultat suit l’approche développée pour étudier les processus
de branchement uni-variés en environnement aléatoire i. i. d. Il utilise de façon cruciale
des résultats récents portant sur les fluctuations des normes de produits de matrices
aléatoires i.i.d.

Mots clés :

Multi-type branching process, Survival probability, Random environment, Critical
case, Exit time, Markov chains, Product of random matrices.

Abstract :

The theory of multi-type branching process in i.i.d. environment is considerably less
developed than for the univariate case, and fundamental questions are up to date unsol-
ved. Answers demand a solid understanding of the behavior of products of i.i.d. matrices
with non-negative entries.

Under mild assumptions, when the probability generating functions of the reproduc-
tion laws are fractional-linear, the survival probability of the multi-type branching process
in random environment up to moment n is proportional to 1

√
n as n→∞.

Techniques for univariate branching process in random environment and methods
from the theory of products of i.i.d. random matrices are required.

Keywords :

Multi-type branching process, Survival probability, Random environment, Critical
case, Exit time, Markov chains, Product of random matrices.


