, Transfer Learning & Proposed Approach, vol.123

. , Classification of Underwater Acoustic Observations Using Deep Features

, Deep Features versus Classic Features, p.124

, Influence of the Feature Vectors Dimension, p.125

, Layer Selection for Deep Features Extraction 129

. Highlights and . .. Summary, , p.132

. , Three Years in a Nutshell

. .. For-future-developments, 136 7.2.2 About the Time Window and the Various Lengths of Events

. About and . .. Output, , p.138

, About the Labeling Constraint, p.138

, About Mapping and Unsupervised Analysis, p.139

. Finally and . .. About-the-data, 139 projects related to the exploration of an environment: either a volcano, the very deep seas, or hypothetically

, We finish this manuscript by discussing the data: the need to extract information from a large amount of data is the foundation of this PhD thesis. It is lead by the data, it is about "making the data speak", and it is about great projects and great scientific questions that can be answered thanks to data

J. I. ?-marielle-malfante, M. D. Mars, C. Mura, and . Gervaise, Automatic fish sounds classification, The Journal of the Acoustical Society of America, vol.143, issue.5, pp.2834-2846, 2018.

M. D. ?-marielle-malfante, J. Mura, J. I. Métaxian, O. Mars, A. Macedo et al., Machine learning for volcano-seismic signals: Challenges and perspectives, IEEE Signal Processing Magazine, vol.35, issue.2, pp.20-30, 2018.

M. D. ?-marielle-malfante, J. I. Mura, J. Mars, O. Métaxian, and . Macedo, Mauro Dalla Mura, and Jerome I. Mars. Use of deep features for the automatic classification of fish sounds, OCEANS'18 MTS/IEEE, 2018.

M. D. ?-marielle-malfante, B. Mura, J. Boullay, J. I. Métaxian, and . Mars, Apprentissage statistique: classification automatique de signaux volcano-sismiques, XXVIème colloque GRETSI (GRETSI 2017), 2017.

A. Appendix, M. D. Malfante, J. I. Mura, J. Mars, and . Métaxian, Machine Learning for Automatic Classification of Volcano-Seismic Signatures, European Signal Processing Conference Proceeding, pp.2457-2461, 2017.

M. D. ?-marielle-malfante, J. Mura, O. Mars, A. Macedo, J. Inza et al., Automatic classification of seismo-volcanic signatures, EGU General Assembly Conference Abstracts, vol.19, 2017.

M. D. ?-marielle-malfante, J. I. Mura, C. Mars, and . Gervaise, The presentation was also selected for a lay language pa, vol.139, pp.2115-2116, 2016.

;. Talks-?-marielle-malfante, B. Bandung, and . Yogyakarta, Machine Learning for the Automatic Classification of Natural Signals: Application to Underwater Acoustics & Volcano-seismics, p.2017

. ?-marielle-malfante, Machine Learning for the Automatic Classification of Natural Signals: Application to Underwater Acoustics & Volcano-seismics, p.2017

M. D. ?-marielle-malfante, J. I. Mura, C. Mars, and . Gervaise, Machine Learning & Bioacoustics: automatic detection & classification of fish sounds, p.2016

, Automatic Classification & Detection of Fish Sounds, Deep Learning Summer School, p.2016

. ?-marielle-malfante, Automatic Classification of Underwater Acoustics Data: Application to Fish Sounds, Machine Learning Summer School, p.2016

A. Miguel, C. J. Acevedo, H. Corrada-bravo, L. J. Corrada-bravo, . Villanueva-rivera et al., Automated classification of bird and amphibian calls using machine learning: A comparison of methods, Ecological Informatics, vol.4, issue.4, pp.206-214, 2009.

I. Alvarez, L. Garcia, G. Cortes, C. Benitez, and Á. De-la-torre, Discriminative feature selection for automatic classification of volcano-seismic signals, IEEE Geoscience and Remote Sensing Letters, vol.9, issue.2, pp.151-155, 2012.

R. V. Allen, Automatic earthquake recognition and timing from single traces, Bulletin of the Seismological Society of America, vol.68, issue.5, pp.1521-1532, 1978.

R. Allen, Automatic phase pickers: Their present use and future prospects, Bulletin of the Seismological Society of America, vol.72, issue.6, pp.225-242, 1982.

M. and C. P. Amorim, Diversity of sound production in fish, vol.1, pp.71-105, 2006.

M. Amorim, Y. Stratoudakis, and A. Hawkins, Sound production during competitive feeding in the grey gurnard, Journal of Fish Biology, vol.65, issue.1, pp.182-194, 2004.

M. Yannis, B. Assael, S. Shillingford, N. Whiteson, J. De-freitas-;-paolo-alasonati et al., Signal classification by wavelet-based hidden markov models: application to seismic signals of volcanic origin, Lipnet: Sentence-level lipreading, pp.161-174, 2006.

M. Bicego, C. Acosta-munoz, and M. Orozco-alzate, Classification of seismic volcanic signals using hidden-markov-model-based generative embeddings, IEEE Transactions on Geoscience and Remote Sensing, vol.51, issue.6, pp.3400-3409, 2013.

R. Bellman, Dynamic Programming and Lagrange Multipliers, Proceedings of the National Academy of Sciences of the United States of America, vol.42, pp.767-769, 1956.

E. Bernhard, . Boser, V. N. Isabelle-m-guyon, and . Vapnik, A Training Algorithm for Optimal Margin Classifiers, Proceedings of the fifth Annual Workshop on Computational Learning, pp.144-152, 1992.

C. Bedoya, C. Isaza, J. M. Daza, and . López, Automatic recognition of anuran species based on syllable identification, Ecological Informatics, vol.24, pp.200-209, 2014.

S. F. Sarah-k-brown, . Jenkins, . Stephen, H. Sparks, M. R. Odbert et al., Volcanic fatalities database: analysis of volcanic threat with distance and victim classification, Journal of Applied Volcanology, vol.6, issue.1, p.15, 2017.

E. Benetos, M. Kotti, and C. Kotropoulos, Musical instrument classification using non-negative matrix factorization algorithms and subset feature selection, Proceedings. 2006 IEEE International Conference on, vol.5, 2006.

T. Bayes and R. Price, An essay towards solving a problem in the doctrine of chances, Philosophical Transactions (1683-1775), vol.53, pp.370-418, 1763.

L. Breiman, Random forests. Machine learning, vol.45, pp.5-32, 2001.

C. Benítez, J. Ramírez, C. Jos, J. M. Segura, J. Ibanez et al., Continuous hmm-based seismic-event classification at deception island, antarctica, IEEE Transactions on Geoscience and remote sensing, vol.45, issue.1, pp.138-146, 2007.

M. Beyreuther and J. Wassermann, Continuous earthquake detection and classification using discrete hidden markov models, Geophysical Journal International, vol.175, issue.3, pp.1055-1066, 2008.

G. Cortés, R. Arámbula, L. Gutiérrez, C. Benítez, J. Ibánez et al., Evaluating robustness of a hmm-based classification system of volcano-seismic events at colima and popocatepetl volcanoes, Proc. Interspeech, vol.2, pp.4011-4015, 2009.

W. Chen, S. Chen, C. Lin, Y. Chen, and W. Lin, Automatic recognition of frog calls using a multi-stage average spectrum, Computers & Mathematics with Applications, vol.64, issue.5, pp.1270-1281, 2012.

R. Costanza, R. Ralph-d'arge, S. De-groot, M. Farber, B. Grasso et al., The value of the world's ecosystem services and natural capital, nature, vol.387, issue.6630, pp.253-260, 1997.

C. Couvreur, V. Fontaine, P. Gaunard, and C. G. Mubikangiey, Automatic classification of environmental noise events by hidden markov models, Applied Acoustics, vol.54, issue.3, pp.187-206, 1998.

T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE transactions on information theory, vol.13, pp.21-27, 1967.

C. H. Chen, Automatic recognition of underwater transient signals-a review, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.10, pp.1270-1272, 1985.

E. D. Chesmore, Application of time domain signal coding and artificial neural networks to passive acoustical identification of animals, Applied Acoustics, vol.62, issue.12, pp.1359-1374, 2001.

B. Chouet, Dynamics of a fluid-driven crack in three dimensions by the finite difference method, Journal of Geophysical Research: Solid Earth, vol.91, issue.B14, pp.13967-13992, 1986.

A. Bernard and . Chouet, Long-period volcano seismicity: its source and use in eruption forecasting, Nature, vol.380, issue.6572, pp.309-316, 1996.

J. Patrick, M. T. Clemins, and . Johnson, Generalized perceptual linear prediction features for animal vocalization analysis, The Journal of the Acoustical Society of America, vol.120, issue.1, pp.527-534, 2006.

A. Bernard, R. S. Chouet, and . Matoza, A multidecadal view of seismic methods for detecting precursors of magma movement and eruption, Journal of Volcanology and Geothermal Research, vol.252, pp.108-175, 2013.

A. Cannata, P. Montalto, M. Aliotta, C. Cassisi, A. Pulvirenti et al., Clustering and classification of infrasonic events at Mount Etna using pattern recognition techniques, vol.185, pp.253-264, 2011.

P. Comon, Independent component analysis, a new concept? Signal processing, vol.36, pp.287-314, 1994.

D. R. Cox, The regression analysis of binary sequences, Journal of the Royal Statistical Society. Series B (Methodological), pp.215-242, 1958.

C. Cortes and V. Vapnik, Support-vector networks, Machine learning, vol.20, issue.3, pp.273-297, 1995.

G. Curilem, J. Vergara, G. Fuentealba, G. Acuña, and M. Chacón, Classification of seismic signals at villarrica volcano (chile) using neural networks and genetic algorithms, Journal of volcanology and geothermal research, vol.180, issue.1, pp.1-8, 2009.

R. O. Duda, P. E. Hart, and D. G. Stork, , 2001.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang et al., Decaf: A deep convolutional activation feature for generic visual recognition, International conference on machine learning, pp.647-655, 2014.

M. Dash, H. Liu-;-del-pezzo, A. Esposito, F. Giudicepietro, M. Marinaro et al., Discrimination of earthquakes and underwater explosions using neural networks, Bulletin of the Seismological Society of America, vol.1, issue.3, pp.215-223, 1997.

E. D. Manuel and . Santos,

M. S. Matos, R. F. Grober, A. Oliveira, and . Canario, Sound production by the lusitanian toad fish, halobatrachus didactylus, Bioacoustics, vol.10, issue.4, pp.309-321, 2000.

H. Deshpande, R. Singh, and U. Nam, Classification of music signals in the visual domain, Proceedings of the COST-G6 Conference on Digital Audio Effects, pp.1-4, 2001.

J. Dennis, H. Huy-dat-tran, and . Li, Spectrogram image feature for sound event classification in mismatched conditions, IEEE signal processing letters, vol.18, issue.2, pp.130-133, 2011.

X. Dong, M. Towsey, J. Zhang, J. Banks, and P. Roe, A novel representation of bioacoustic events for content-based search in field audio data, Digital Image Computing: Techniques and Applications (DICTA), 2013 International Conference on, pp.1-6, 2013.

T. H. Druitt, S. R. Young, B. Baptie, C. Bonadonna, E. S. Calder et al., Episodes of cyclic vulcanian explosive activity with fountain collapse at soufrière hills volcano, montserrat, vol.21, pp.281-306, 2002.

A. M. Esposito, F. Giudicepietro, D. Luca, S. Auria, M. G. Scarpetta et al., Unsupervised neural analysis of very-long-period events at stromboli volcano using the self-organizing maps, Bulletin of the Seismological Society of America, vol.98, issue.5, pp.2449-2459, 2008.

A. Eronen and A. Klapuri, Musical instrument recognition using cepstral coefficients and temporal features, Acoustics, Speech, and Signal Processing, vol.2, pp.753-756, 2000.
DOI : 10.1109/icassp.2000.859069

URL : http://www.icsi.berkeley.edu/~dpwe/research/etc/icassp2000/pdf/1285_104.PDF

S. Esmaili, S. Krishnan, and K. Raahemifar, Content based audio classification and retrieval using joint time-frequency analysis, ICASSP2004, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.5, pp.9-12, 2004.

M. Esfahanian, H. Zhuang, and N. Erdol, Sparse representation for classification of dolphin whistles by type, The Journal of the Acoustical Society of America, vol.136, issue.1, pp.1-7, 2014.

S. Fagerlund, Bird Species Recognition Using Support Vector Machines, EURASIP Journal on Advances in Signal Processing, issue.1, 2007.

S. Falsaperla and S. Graziani, Automatic classification of volcanic earthquakes by using multi-layered neural networks, Natural Hazards, vol.13, issue.3, pp.205-228, 1996.

A. Ronald and . Fisher, The use of multiple measurements in taxonomic problems, Annals of human genetics, vol.7, issue.2, pp.179-188, 1936.

I. Fujinaga and K. Macmillan, Realtime recognition of orchestral instruments, Proceedings of the International Computer Music Conference (ICMC2000), vol.141, pp.141-143, 2000.

J. Foote, A similarity measure for automatic audio classification, Proc. AAAI 1997 Spring Symposium on Intelligent Integration and Use of Text, Image, Video, and Audio Corpora, 1997.

C. Friedrich and G. , Theoria motus corporum coelestium in sectionibus conicis solem ambientium auctore Carolo Friderico Gauss. sumtibus Frid. Perthes et IH Besser, 1809.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

A. Leon, A. S. Gatys, M. Ecker, and . Bethge, A neural algorithm of artistic style, 2015.

F. Giacco, A. M. Esposito, S. Scarpetta, F. Giudicepietro, and M. Marinaro, Support vector machines and mlp for automatic classification of seismic signals at stromboli volcano, Proceedings of the 2009 Conference on Neural Nets WIRN09: Proceedings of the 19th Italian Workshop on Neural Nets, pp.116-123, 2009.

T. Ganchev, N. Fakotakis, and G. Kokkinakis, Volcano-seismic signal detection and classification processing using hidden markov models. application to san cristóbal volcano, nicaragua, Geoscience and Remote Sensing Symposium, vol.1, pp.191-194, 2005.

G. Guo, . Stan, and . Li, Content-based audio classification and retrieval by support vector machines, IEEE transactions on Neural Networks, vol.14, issue.1, pp.209-215, 2003.

H. Gene, C. Golub, and . Reinsch, Singular value decomposition and least squares solutions, Numerische mathematik, vol.14, issue.5, pp.403-420, 1970.

R. M. Harrington and E. E. Brodsky, Volcanic hybrid earthquakes that are brittle-failure events, Geophysical Research Letters, vol.34, issue.6, 2007.

C. Hammer, M. Beyreuther, and M. Ohrnberger, A seismic-event spotting system for volcano fast-response systems, Bulletin of the Seismological Society of America, vol.102, issue.3, pp.948-960, 2012.

K. Heck, C. Hays, and R. Orth, Critical evaluation of the nursery role hypothesis for seagrass meadows, Marine Ecology Progress Series, vol.253, pp.123-136, 2003.

S. V. Ng-chee-han, J. Muniandy, and . Dayou, Acoustic classification of australian anurans based on hybrid spectral-entropy approach, Applied Acoustics, vol.72, issue.9, pp.639-645, 2011.

C. Hibert, A. Mangeney, G. Grandjean, C. Baillard, D. Rivet et al., Automated identification, location, and volume estimation of rockfalls at piton de la fournaise volcano, Journal of Geophysical Research: Earth Surface, vol.119, issue.5, pp.1082-1105, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01056058

K. Tin and . Ho, Random decision forests. In Document analysis and recognition, proceedings of the third international conference on, vol.1, pp.278-282, 1995.

C. Hibert, F. Provost, J. Malet, A. Stumpf, A. Maggi et al., Automated classification of seismic sources in large database using random forest algorithm: First results at piton de la fournaise volcano (la réunion), EGU General Assembly Conference Abstracts, vol.18, p.12895, 2016.

C. Hibert, F. Provost, J. Malet, A. Maggi, ;. Canology et al., Automatic identification of rockfalls and volcanotectonic earthquakes at the piton de la fournaise, vol.340, pp.130-142, 2017.

F. Hsu, Ibm's deep blue chess grandmaster chips, IEEE Micro, vol.19, issue.2, pp.70-81, 1999.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Elements, vol.1, pp.337-387, 2009.

C. Huang, Y. Yang, D. Yang, and Y. Chen, Frog classification using machine learning techniques, Expert Systems with Applications, vol.36, issue.2, pp.3737-3743, 2009.

M. Andrew-g-howard, B. Zhu, D. Chen, W. Kalenichenko, T. Wang et al., Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.

C. Jesús-m-ibáñez, . Benítez, A. Ligdamis, G. Gutiérrez, A. Cortés et al., The classification of seismo-volcanic signals using hidden markov models as applied to the stromboli and etna volcanoes, Journal of Volcanology and Geothermal Research, vol.187, issue.3-4, pp.371-384, 2009.

A. Lamberto, J. Inza, J. I. Métaxian, C. J. Mars, . Bean et al., Analysis of dynamics of vulcanian activity of ubinas volcano, using multicomponent seismic antennas, Journal of Volcanology and Geothermal Research, vol.270, pp.35-52, 2014.

M. Iguchi, H. Yakiwara, T. Tameguri, M. Hendrasto, and J. Hirabayashi, Mechanism of explosive eruption revealed by geophysical observations at the sakurajima, suwanosejima and semeru volcanoes, Dynamics of Volcanic Explosions: Field Observations, Experimental Constraints and Integrated Modelling of Volcanic Explosions: Field Observations, Experimental Constraints and Integrated Modelling, vol.176, pp.1-9, 2008.

A. Kundu, C. George, and C. Chen, Persons. Transient sonar signal classification using hidden markov models and neural nets, IEEE Journal of Oceanic Engineering, vol.19, issue.1, pp.87-99, 1994.

A. Karpathy and L. Fei-fei, Deep visual-semantic alignments for generating image descriptions, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.3128-3137, 2015.

A. Joseph, D. Kogan, and . Margoliash, Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden markov models: A comparative study, The Journal of the Acoustical Society of America, vol.103, issue.4, pp.2185-2196, 1998.

T. Kohonen, The self-organizing map, Proceedings of the IEEE, vol.78, issue.9, pp.1464-1480, 1990.

A. Köhler, M. Ohrnberger, and F. Scherbaum, Unsupervised pattern recognition in continuous seismic wavefield records using self-organizing maps, Geophysical Journal International, vol.182, issue.3, pp.1619-1630, 2010.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, vol.25, pp.1097-1105, 2012.

W. Harold, A. Kuhn, and . Tucker, Nonlinear programming. In Traces and emergence of nonlinear programming, pp.247-258, 2014.

P. Langley, Selection of relevant features in machine learning, Proceedings of the AAAI Fall symposium on relevance, vol.184, pp.245-271, 1994.

N. Langet, Détection et caractérisation massives de phénomènes sismologiques pour la surveillance d ' événements traditionnels et la recherche systématique de phénomènes rares, 2014.

P. Simon-laplace, Théorie analytique des probabilités, p.1820

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

T. Lim, K. Bae, C. Hwang, and H. Lee, Classification of underwater transient signals using mfcc feature vector, Signal Processing and Its Applications, 2007. ISSPA 2007. 9th International Symposium on, pp.1-4, 2007.

C. Lee, C. Chou, C. Han, and R. Huang, Automatic recognition of animal vocalizations using averaged mfcc and linear discriminant analysis, Pattern Recognition Letters, vol.27, issue.2, pp.93-101, 2006.

A. S. Román-a-lara-cueva, J. C. Moreno, D. S. Larco, and . Benítez, Real-time seismic event detection using voice activity detection techniques, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.9, issue.12, pp.5533-5542, 2016.

J. C. Lahr, A. Bernard, . Chouet, and D. Christopher,

J. A. Stephens, R. A. Power, and . Page, Earthquake classification, location, and error analysis in a volcanic environment: Implications for the magmatic system of the 1989-1990 eruptions at redoubt volcano, alaska. Journal of Volcanology and Geothermal Research, vol.62, issue.1-4, pp.137-151, 1994.

A. M. Legendre, Nouvelles méthodes pour la détermination des orbites des comètes, F. Didot, p.1805

H. Langer, S. Falsaperla, M. Masotti, R. Campanini, S. Spampinato et al., Synopsis of supervised and unsupervised pattern classification techniques applied to volcanic tremor data at mt etna, italy, Geophysical Journal International, vol.178, issue.2, pp.1132-1144, 2009.

H. Langer, S. Falsaperla, T. Powell, and G. Thompson, Automatic classification and aposteriori analysis of seismic event identification at Soufrière Hills volcano, Montserrat. Journal of Volcanology and Geothermal Research, vol.153, pp.1-10, 2006.

H. Langer, S. Falsaperla, and G. Thompson, Application of artificial neural networks for the classification of the seismic transients at soufriere hills volcano, montserrat. Geophysical research letters, vol.30, 2003.

J. Lossent, L. Gervaise, and . Iorio, Cartographie de la biophonie des écosystèmes côtiers, pp.1-5, 2015.

N. Langet, A. Maggi, A. Michelini, and F. Brenguier, Continuous kurtosis-based migration for seismic event detection and location, with application to Piton de la Fournaise volcano, La Réunion, vol.104, pp.229-246, 2014.

A. Livshin and X. Rodet, Musical instrument identification in continuous recordings, Digital Audio Effects, pp.1-1, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01156882

H. William, E. Lawton, and . Sylvestre, Self modeling curve resolution, Technometrics, vol.13, issue.3, pp.617-633, 1971.

E. Rachel, A. S. Learned, and . Willsky, A wavelet packet approach to transient signal classification, Applied and computational Harmonic analysis, vol.2, issue.3, pp.265-278, 1995.

M. Malfante, Automatic Analysis Architecture (AAA), 2018.

L. Alex, H. Mcilraith, and . Card, Birdsong recognition using backpropagation and multivariate statistics, IEEE Transactions on Signal Processing, vol.45, issue.11, pp.2740-2748, 1997.

S. R. Mcnutt, Volcanic tremor, Encyclopedia of Earth System Science, vol.4, pp.417-425, 1992.

S. R. Mcnutt, Seismic Monitoring and Eruption Forecasting of Volcanoes: A Review of the State-of-the-Art and Case Histories, pp.99-146, 1996.

M. Malfante, M. D. Mura, B. Boullay, J. Métaxian, and J. I. Mars, Apprentissage statistique: classification automatique Bibliography de signaux volcano-sismiques, XXVIème colloque GRETSI (GRETSI 2017), 2017.

M. Malfante, M. D. Mura, J. Mars, O. Macedo, A. Inza et al., Automatic classification of seismo-volcanic signatures, EGU General Assembly Conference Abstracts, vol.19, p.8842, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01520728

M. Malfante, M. D. Mura, J. Métaxian, J. I. Mars, O. Macedo et al., Machine learning for volcano-seismic signals: Challenges and perspectives, vol.35, pp.20-30, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01742506

M. Malfante, M. D. Mura, J. I. Mars, and C. Gervaise, Automatic fish sounds classification, vol.139, pp.2115-2116, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01343780

M. Malfante, M. D. Mura, J. I. Mars, and J. Métaxian, Machine Learning for Automatic Classification of Volcano-Seismic Signatures, European Signal Processing Conference Proceeding, pp.2457-2461, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578149

M. Malfante, M. D. Mura, J. I. Mars, J. Métaxian, and O. Macedo, Automatic Classification of Volcano Seismic Signals, Journal of Geophysical Research, 2018.

A. Maggi, V. Ferrazzini, C. Hibert, F. Beauducel, P. Boissier et al., Implementation of a multistation approach for automated event classification at piton de la fournaise volcano, Seismological Research Letters, vol.88, issue.3, pp.878-891, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01481992

L. Van-der-maaten and G. Hinton, Visualizing data using t-sne, Journal of machine learning research, vol.9, pp.2579-2605, 2008.

D. A. Mann, A. D. Hawkins, and J. Michael-jech, Active and passive acoustics to locate and study fish, vol.32, 2008.

M. Minsky, A neural-analogue calculator based upon a probability model of reinforcement, 1952.

M. Minski, The society of mind. Columbia: Simon & Schuster, 1985.

M. Minsky, Society of mind: a response to four reviews, Artificial Intelligence, vol.48, issue.3, pp.371-396, 1991.

M. Minsky, The emotion machine: Commonsense thinking, artificial intelligence, and the future of the human mind, 2007.

M. Malfante, J. I. Mars, M. D. Mura, and C. Gervaise, Automatic fish sounds classification, The Journal of the Acoustical Society of America, vol.143, issue.5, pp.2834-2846, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01343780

M. Malfante, O. Mohammed, C. Gervaise, M. D. Mura, and J. I. Mars, Use of deep features for the automatic classification of fish sounds, OCEANS'18 MTS/IEEE, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01802551

S. C. Morgan, S. D. Malone, A. I. Qamar, W. A. Thelen, A. K. Wright et al., Seismicity associated with renewed dome building at mount st. helens, Chapter 2 in a volcano rekindled: the renewed eruption of mount st. helens, 2004.

M. Márquez-molina, L. P. Sánchezfernández, S. Suárez-guerra, and L. A. Sánchez-pérez, Aircraft take-off noises classification based on human auditory's matched features extraction, Applied Acoustics, vol.84, pp.83-90, 2014.

O. Macedo, J. Métaxian, E. Taipe, D. Ramos, and A. Inza, Seismicity associated with the 2006-2008 eruption, pp.262-270, 2009.

S. Warren, W. Mcculloch, and . Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, vol.5, issue.4, pp.115-133, 1943.

D. Mitrovic, M. Zeppelzauer, and C. Breiteneder, Discrimination and retrieval of animal sounds, Multi-Media Modelling Conference Proceedings, p.5, 2006.

Y. Nievergelt, A tutorial history of least squares with applications to astronomy and geodesy, Numerical Analysis: Historical Developments in the 20th Century, pp.77-112, 2001.

J. Nils and . Nilsson, Learning machines: Foundations of trainable pattern-classifying systems, 1965.

J. Neuberg, . Luckett, K. Baptie, and . Olsen, Models of tremor and low-frequency earthquake swarms on montserrat, Journal of Volcanology and Geothermal Research, vol.101, issue.1, pp.83-104, 2000.

K. Nogueira, A. B. Otávio, J. Penatti, and . Santos, Towards better exploiting convolutional neural networks for remote sensing scene classification, Pattern Recognition, vol.61, pp.539-556, 2017.

L. Narváez, M. , R. A. Torres, C. , D. M. Gómez et al., Tornillo'-type seismic signals at Galeras volcano, Colombia, 1992-1993, Journal of Volcanology and Geothermal Research, vol.77, issue.1-4, pp.159-171, 1997.

J. Juan, C. M. Noda, D. Travieso, and . Sánchezrodríguez, Automatic taxonomic classification of fish based on their acoustic signals, Applied Sciences, vol.6, issue.12, p.443, 2016.

M. Orozco, M. E. García, P. W. Robert, C. Duin, and . Castellanos, Dissimilarity Based Classification of Seismic Signals at Nevado del Ruiz Volcano, Earth Sciences Research Journal, vol.10, issue.2, pp.57-65, 2006.

T. Ohminato, Characteristics and source modeling of broadband seismic signals associated with the hydrothermal system at satsumaalwojima volcano, japan, Journal of Volcanology and Geothermal Research, vol.158, issue.3, pp.467-490, 2006.

M. Ohrnberger, Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, 2001.

C. Oppenheimer, Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (indonesia) 1815. Progress in physical geography, vol.27, pp.230-259, 2003.

Q. Paris-;-federica-pace, F. Benard, H. Glotin, O. Adam, and P. White, Subunit definition and analysis for humpback whale call classification, Open Journal of Statistics, vol.5, issue.11, pp.1107-1112, 2010.

F. Provost, C. Hibert, and J. Malet, Automatic classification of endogenous landslide seismicity using the random forest supervised classifier, Geophysical Research Letters, vol.44, issue.1, pp.113-120, 2017.

E. Parmentier, P. Vandewalle, B. Frederich, and M. L. Fine, Sound production in two species of damselfishes (Pomacentridae): Plectroglyphidodon lacrymatus and Dascyllus aruanus, Journal of Fish Biology, vol.69, issue.2, pp.491-503, 2006.

J. and R. Quinlan, Induction of decision trees, Machine learning, vol.1, issue.1, pp.81-106, 1986.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision (IJCV), vol.115, issue.3, pp.211-252, 2015.

R. Lawrence, B. Rabiner, and . Gold, Theory and application of digital signal processing, 1975.

G. E. David-e-rumelhart, R. Hinton, and . Williams, Learning representations by back-propagating errors, nature, vol.323, issue.6088, p.533, 1986.

F. Rosenblatt, The perceptron, a perceiving and recognizing automaton, 1957.

L. Arthur and . Samuel, Some studies in machine learning using the game of checkers, IBM Journal of research and development, vol.3, issue.3, pp.210-229, 1959.

F. Sattar, S. Cullis-suzuki, and F. Jin, Acoustic analysis of big ocean data to monitor fish sounds, Ecological Informatics, vol.34, pp.102-107, 2016.

C. Simmermacher, D. Deng, and S. Cranefield, Feature analysis and classification of classical musical instruments: An empirical study, Industrial Conference on Data Mining, pp.444-458

. Springer, , 2006.

G. S. Sebestyen, Decision-making processes in pattern recognition, 1962.

S. Scarpetta, F. Giudicepietro, C. Eugène, S. Ezin, E. Petrosino et al., Automatic classification of seismic signals at mt. vesuvius volcano, italy, using neural networks, Thore Graepel, and Demis Hassabis, vol.95, pp.484-489, 2005.

C. D. Saragiotis, J. Leontios, S. M. Hadjileontiadis, and . Panas, Pai-s/k: A robust automatic seismic p phase arrival identification scheme, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.6, pp.1395-1404, 2002.

A. Sousa, R. Kabirzadeh, and P. Blaes, Automatic Colorization of Grayscale Images, 2013.

. Stephen-m-stigler-;-christian, V. Szegedy, and . Vanhoucke, Rethinking the Inception Architecture for Computer Vision, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2818-2826, 1981.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

E. Michael, C. Tipping, and . Bishop, Probabilistic principal component analysis, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.61, issue.3, pp.611-622, 1999.

S. Tucker and G. J. Brown, Classification of transient sonar sounds using perceptually motivated features, IEEE Journal of Oceanic Engineering, vol.30, issue.3, pp.588-600, 2005.

G. Tesauro, Temporal difference learning and tdgammon, Communications of the ACM, vol.38, issue.3, pp.58-68, 1995.

F. Robert, M. L. Thorson, and . Fine, Crepuscular changes in emission rate and parameters of the boatwhistle advertisement call of the gulf toadfish, Opsanus beta, Environmental Biology of Fishes, vol.63, issue.3, pp.321-331, 2002.

H. Tyagi, M. Rajesh, . Hegde, A. Hema, A. Murthy et al., Automatic identification of bird calls using spectral ensemble average voice prints, Signal processing conference, pp.1-5, 2006.

K. H. Aaron-m-thode, S. B. Kim, C. R. Blackwell, C. S. Greene, . Nations et al., Automated detection and localization of bowhead whale sounds in the presence of seismic airgun surveys, The Journal of the Acoustical Society of America, vol.131, issue.5, pp.3726-3747, 2011.

A. M. Turing, Computing machinery and intelligence, Journal of the Mind Association, issue.236, pp.433-460, 1950.

U. , International Strategy for Disaster Reduction. 70th UN General Assembly, p.22, 2015.

K. Unglert, V. Radi?, and A. Mark-jellinek, Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra, Journal of Volcanology and Geothermal Research, vol.320, pp.58-74, 2016.

M. Vieira, P. J. Fonseca, C. Amorim, and . Teixeira, Call recognition and individual identification of fish vocalizations based on automatic speech recognition: An example with the lusitanian toadfish, The Journal of the Acoustical Society of America, vol.138, issue.6, pp.3941-3950, 2015.

V. Vapnik and A. Lener, Pattern recognition using generalized portrait method. Automation and remote control, vol.24, pp.774-780, 1963.

A. Wang, An industrial strength audio search algorithm, Ismir, pp.7-13, 2003.

D. C. Washington, , 2003.

R. A. White, A. D. Miller, L. Lynch, and J. Power, Observations of hybrid seismic events at soufriere hills volcano, montserrat: July 1995 to september 1996, IEEE Sixth International Conference on, vol.25, pp.308-315, 1998.

W. Wei and S. Xinjian, Dynamic fuzzy clustering for infrasound as a precursor of earthquakes, Image and Signal Processing (CISP), vol.8, pp.3582-3586, 2010.

S. Wang and X. Zeng, Robust underwater noise targets classification using auditory inspired time-frequency analysis, Applied Acoustics, vol.78, pp.68-76, 2014.

C. Xu, X. Namunu-chinthaka-maddage, and . Shao, Automatic music classification and summarization, IEEE transactions on speech and audio processing, vol.13, pp.441-450, 2005.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, How transferable are features in deep neural networks?, Advances in neural information processing systems, pp.3320-3328, 2014.

G. Yu and J. Slotine, Audio classification from time-frequency texture, ICASSP 2009. IEEE International Conference on, pp.1677-1680, 2009.

X. Zhu, Z. Ghahramani, and J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, Proceedings of the 20th International conference on Machine learning (ICML-03), pp.912-919, 2003.

Q. Zhou, G. Tong, D. Xie, B. Li, and X. Yuan, Real-time acoustic classification of sperm whale clicks and shipping impulses from deep-sea observatories, IEEE Signal Processing Letters, vol.19, issue.10, pp.1011-1019, 2010.

F. Zheng, G. Zhang, and Z. Song, Comparison of different implementations of mfcc, Journal of Computer Science and Technology, vol.16, issue.6, pp.582-589, 2001.