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Résumé

Du point de vue du traitement automatique des langues (TAL), l’extraction des

événements dans les textes est la forme la plus complexe des processus d’extrac-

tion d’information, qui recouvrent de façon plus générale l’extraction des entités

nommées et des relations qui les lient dans les textes. Le cas des événements est

particulièrement ardu car un événement peut être assimilé à une relation n-aire ou

à une configuration de relations. Par rapport aux relations ne faisant intervenir que

deux entités, s’ajoute donc une dimension nouvelle obligeant à sortir bien souvent

du cadre de la phrase, ce qui constitue une difficulté supplémentaire. En pratique,

un événement est décrit par un déclencheur (le mot ou l’expression qui évoque l’évé-

nement) et un ensemble de participants à cet événement (c’est-à-dire des arguments

ou des rôles) dont les valeurs sont des extraits de texte.

Alors que la recherche en extraction d’information a largement bénéficié des jeux de

données étiquetés manuellement pour apprendre des modèles permettant l’analyse

des textes, la disponibilité de ces ressources reste un problème important. En outre,

de nombreuses approches en extraction d’information fondées sur l’apprentissage

automatique reposent sur la possibilité d’extraire à partir des textes de larges en-

sembles de traits définis manuellement grâce à des outils de TAL élaborés. De ce

fait, l’adaptation à un nouveau domaine constitue un défi supplémentaire.

Cette thèse présente plusieurs stratégies pour améliorer la performance d’un système

d’extraction d’événements en utilisant des approches fondées sur les réseaux de neu-

rones et en exploitant les propriétés morphologiques, syntaxiques et sémantiques

des plongements de mots. Ceux-ci ont en effet l’avantage de ne pas nécessiter une

modélisation a priori des connaissances du domaine et de générer automatiquement

un ensemble de traits beaucoup plus vaste pour apprendre un modèle.

Nous avons proposé plus spécifiquement différents modèles d’apprentissage profond

pour les deux sous-tâches liées à l’extraction d’événements : la détection d’événe-

ments et la détection d’arguments. La détection d’événements est considérée comme

une sous-tâche importante de l’extraction d’événements dans la mesure où la dé-

tection d’arguments est très directement dépendante de son résultat. La détection
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d’événements consiste plus précisément à identifier des instances d’événements dans

les textes et à les classer en types d’événements précis. Classiquement, un même

événement peut apparaître sous la forme de différentes expressions et ces expres-

sions peuvent elles-mêmes représenter des événements différents dans des contextes

différents, d’où la difficulté de la tâche. La détection des arguments s’appuie sur la

détection de l’expression considérée comme déclencheur de l’événement et assure la

reconnaissance des participants de l’événement. Parmi les difficultés à prendre en

compte, il faut noter qu’un argument peut être commun à plusieurs événements et

qu’il ne s’identifie pas nécessairement à une entité nommée facilement reconnais-

sable.

En préalable à l’introduction de nos nouveaux modèles, nous commençons par pré-

senter en détail le modèle de l’état de l’art qui en constitue la base. Des expériences

approfondies sont menées sur l’utilisation de différents types de plongements de mots

et sur l’influence des différents hyperparamètres du modèle en nous appuyant sur le

cadre d’évaluation ACE 2005, standard d’évaluation pour cette tâche.

Nous proposons ensuite deux nouveaux modèles permettant d’améliorer un système

de détection d’événements. L’un permet d’augmenter le contexte pris en compte lors

de la prédiction d’une instance d’événement (déclencheur d’événement) en utilisant

un contexte phrastique, tandis que l’autre exploite la structure interne des mots

en profitant de connaissances morphologiques en apparence moins nécessaires mais

dans les faits importantes. Nous proposons enfin de reconsidérer la détection des

arguments comme une extraction de relation d’ordre supérieur et nous analysons la

dépendance de cette détection vis-à-vis de la détection d’événements.
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Chapter 1

Introduction

As the amount of unstructured text data that humanity produces overall increases,

so does the need to intelligently process it and extract different types of knowledge

from data. A constantly encountered problem in processing this amount of data

is the fact that most of them are initially unstructured, e.g. written in a human-

understandable language. Information has many forms and sources, from broadcast

news, blogs to comments and conversations. Thus, it may also consist of different

types of discourse, professional or noisy discussions. Content extraction from such

unstructured data is the process of identifying only the key terms in a text that

are relevant to a specific application. By means of Information Extraction (IE), the

terms are extracted, put in relation with existing data structures and stored in a

structured way, e.g. databases. Domain specialists and data analysts can spend

many hours analyzing over endless streams of text documents for extracting and

classifying references to the content of interest. The area of IE has the important

task of finding these relevant data in sets of documents and also to store them in an

appropriate form for future use. A growing attention to this field led to a deeper text

analysis that builds a bridge between the cognitive models of text understanding and

the algorithmic approach to Natural Language Processing (NLP). More exactly, IE is

the task of automatically extracting entities, relations, and events from unstructured
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2 Chapter 1. Introduction

texts. Therefore, the process of scanning a text for relevant information mainly

implies three levels of extraction tasks: named entity recognition (NER), relation

extraction (RE) and event extraction (EE). NER represents the detection of target

entities in text and RE is the identification of binary relations between entities.

EE involves identifying instances of specified types of events and the correspond-

ing arguments in text, which is an important and challenging IE task. It can be

considered as the identification of n-ary relations among entities and therefore, all

IE tasks are interdependent. Usually, an EE system makes benefit of the previous

tasks (NER, RE), by performing them as separate tasks or in a joint approach. In

this thesis, we approach the EE task without relying on NER or RE, which involves

identifying event triggers (Event Detection) and the corresponding arguments (Ar-

gument Detection and Classification) associated with them and classifying them into

specific event types.

IE has many practical applications since by automatically identifying relevant infor-

mation, we can reduce the human labor and speed up this process. For example, due

to the market sensitivity to emerging news, investors on financial markets need to

continuously monitor financial events for deciding when buying and selling equities.

One might benefit from a personalized news system, with events ranging from news

sites to newspapers or a calendar where events are automatically detected and stored

from messages or mails. Event extraction can also be useful in risk analysis applica-

tions and monitoring systems, where a daily evolution of a situation in a particular

domain can be easily and efficiently supervised. For example, the acquisition and

the use of information about events and relationships in an organization’s external

environment - environmental scanning - can permit an organization to improve its

position in the future. In the medical domain, an IE system can be used to support

and facilitate biological analyses for the management of biological databases. For

example, after the detection of mentions of bio-entities e.g. genes, proteins or other

molecules, a relation extraction system will identify and encode events, such as de-

scriptions of protein - protein interactions and save them as records in a database.
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Having these automatically created structured representations allows the inference

of new associations through knowledge discovery.

1.1 Contributions of this thesis

This dissertation investigates models for the two sub-tasks of Event Extraction (EE):

Event Detection (ED) and Argument Detection and Classification. ED involves

identifying triggers of specified types of events in text and classifying them into

event types precisely. The argument detection and classification task is considered

as the next step after event detection and finds the event participants.

Classically, events are extracted at sentence level, even if some studies showed that

the extraction might also benefit from additional information at a more global view:

previous extracted events/relations/entities, document-level. Event detection is con-

sidered a crucial and quite challenging sub-task of event extraction, as the argument

detection and classification heavily depends on it. It also can be challenging as the

same event might appear in the form of different expressions, either single words or

multiword units, and these expressions might represent different events in different

contexts.

Event extraction often comes with tremendously unbalanced datasets where the

number of the non-event examples far exceeds the others, making event and ar-

gument detection more challenging. Furthermore, most standard approaches make

strong language assumptions and require human-designed features.

The neural network models studied in this thesis address these two shortcomings

and provide effective and general representations for sentences without assuming

any human feature engineering nor the use of advanced natural language processing

tools. They take place in the perspective defined by [Collobert et al., 2011] and the

more general trend to design end-to-end models. This trend has several motivations,

from a better adaptation of all the components of the model to the final task to
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the absence of dependence on external tools and a better ability to implement joint

approaches for dealing with the interactions between the components of the model or

the replacement of feature engineering by the automatic learning of representations

adapted to the task. We chose this kind of approach in order to provide solutions

for event extraction that do not rely on domain knowledge, which is generally costly

to obtain, and are language independent as possible, as some advanced NLP tools

may not exist for some language or be prone to errors. Our hypothesis is that an

event extraction system can be implemented being provided an annotated corpus

with existing events.

Two main contributions of our thesis are related to the main event detection issues

by considering two levels of focus for detecting triggers.

Most NN event detection models are based on a model that aims at classifying a

word given a window. Our first contribution seeks to enlarge the context taken into

account by the base model we consider. We propose a new global representation of

the sentences, computed by an NN model that we add to the base model.

In a complementary way, our second focus addresses the morphological diversity of

words, which is a way to tackle the problem of data sparsity. More precisely, we

propose in this second contribution both to extend our base model with a character

level model and to apply specific data augmentation techniques.

One concern shared by these two contributions is that we propose new features that

do not depend on NLP tools and resources (i.e., syntactic parsers, Part-of-Speech

taggers, Named Entity Recognizer, etc.) in order to combat the errors propagated

by these tools.

We also analyze the chosen baseline model for event detection and we conduct

extensive experiments on the usage of word representations (embeddings) which

are considered to provide general representations of words that can capture their

hidden syntactic and semantic properties. An in-depth analysis of their impact on
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the performance of event detection is performed.

Finally, for studying the impact of trigger detection and classification, we approach

the argument role prediction as a relation extraction task where we pair the event

mention (trigger) and one argument in a relation in order to analyze the effect of

the ED on the detection of arguments.

1.2 Structure and outline of the thesis

This thesis is organized as follows: Chapter 2 summarizes the related work on event

extraction and introduces the evaluation framework based on ACE corpus and ACE

types of events.

In Chapter 3, we describe a baseline approach for event detection based on a convo-

lutional neural network (CNN) applied to a window of text around potential triggers

that automatically learns features from the sequence of words (word embeddings)

and classifies the middle word as an event type. We evaluate the model in a general

setting and perform an analysis of results and hyperparameters.

Chapter 4 proposes two new NN architectures that aim at augmenting the baseline

neural-based model for event detection with additional features with no dependence

on handcrafted features or language.

Firstly, we add a feature called sentence embeddings that can catch a global informa-

tion about the trigger word. We create an encoder network (a bidirectional recurrent

neural network) used to produce a vector representation of the sentence. We con-

sider that representing the whole sentence will contribute at better distinguishing

between event types.

Secondly, we incorporate character embeddings as an extra feature with the motiva-

tion that these features can capture morphological and shape information, whereas

word embeddings are meant to capture syntactic and semantic information. Also,
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we benefit from the possibility of representing misspelled or custom words and the

treatment of words that appear infrequently (an advantage over the word embedding

models that suffer from lack of enough training opportunity for infrequent words).

We also propose a type of data augmentation that we assume helpful in capturing

the morphological information of the context of extraction.

Chapter 5 presents argument role prediction as a Relation Extraction (RE) task

and, at the same time, evaluates a use case for our best event detection model by

analyzing the influence of our model over argument prediction.

Chapter 6 concludes the thesis as a whole, pointing out some possible directions for

future work.



Chapter 2

State-of-the-art

The research in information extraction has been driven forward by a long history

that started with the MUC (Message Understanding Conferences) [Grishman and

Sundheim, 1996] from 1987 through 1998 under the auspices of the US government

(ARPA/DARPA) and continued with the Automatic Content Extraction (ACE)

program [Doddington et al., 2004], and more recently the Text Analysis Confer-

ences (TAC) 1. Another known competition initiated in 2004 by the Informatics for

Integrating Biology and the Bedside (i2b2) was designed to encourage the develop-

ment of NLP techniques for the extraction of medication-related information from

narrative patient records, in order to accelerate the translation of clinical findings

into novel diagnostics and prognostics.

For MUC, participating groups have been given predefined types of information

from a particular domain (templates called messages), following that the output of

each participant’s system to produce text snippets that satisfied the specified types

of interest. First MUCs involved sanitized forms of military messages about naval

sightings and engagements. For the MUC event extraction tasks, MUC-3/4 had

data on Latin American terrorist incidents (MUC 1991, MUC 1992), and MUC-6

data regarding executive successions (MUC 1995) 2.

1. https://tac.nist.gov/about/index.html
2. https://cs.nyu.edu/cs/faculty/grishman/muc6.html

7

https://tac.nist.gov/about/index.html
https://cs.nyu.edu/cs/faculty/grishman/muc6.html
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The ACE dataset contains datasets in multiple languages for the 2005 Automatic

Content Extraction (ACE) evaluation 3 with various types annotated for entities, re-

lations, and events, from various information sources (e.g., broadcast conversations,

broadcast news and telephone conversations). The data were created by Linguis-

tic Data Consortium (LDC) with support from the ACE Program. The proposed

tasks by ACE are more challenging than their MUC forerunners. In particular,

the increased complexity resulted from the inclusion of various information sources

(e.g., broadcast and telephone conversations, broadcast news) and the introduction

of more fine-grained entity types (e.g., facilities, geopolitical entities, etc.). More

recently, the Event track was introduced in the Text Analysis Conference (TAC)

evaluation workshops and proposed a set of tasks focusing on the extraction of

events from text along with their participants and relations.

MUC, ACE and TAC initiatives are of central importance to the IE field since

they provide a set of corpora that are available to the research community for the

evaluation and comparison of IE systems and approaches.

An IE pipeline usually involves three levels of extraction tasks: entity extraction

(the detection of target entities in a text), relation extraction (the identification

of binary relations between entities) and event extraction (the identification of

n-ary relations among entities).

Generally, an IE system starts with the detection and classification of relevant en-

tities found in the text, which is usually referred to as Named Entity Recognition

(NER). Most commonly, IE systems search for person names, organizations, and

geographical locations. The choice of the precise types of entities to be extracted

depends greatly on the task and the notion of Named Entity (NE) is extended to

include items that do not really denote a name or an entity, e.g. measurements,

prices, or temporal expressions or any other kinds of entities as product names or

medical entities.

3. https://catalog.ldc.upenn.edu/ldc2006t06
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For example, in processing the sentence Meanwhile Blair arrived in Washington

late Wednesday for two days of talks with Bush at the Camp David presiden-

tial retreat., an NER system would detect that Blair and Bush do refer to two

Persons, Washington and Camp David presidential retreat - two Locations

and that Wednesday is a temporal expression.

Usually, the next step in IE is the identification of binary relations between such

entities, referred as the arguments of the relations. Relation Extraction (RE) is

practically the transformation of unstructured data into structured information by

identifying the links between named entities and deciding which ones are relevant

for the task at hand.

For example, in the sentence in the medical domain: A culture taken from the lumbar

drain showed Staphylococcus aureus resistant to the Nafcillin., that is an exam-

ple of a hospital discharge summary [Ryan, 2011], after the entities Staphylococcus

aureus and Nafcillin are identified, a relation that reveals that the treatment has

not been successful can be extracted.

Following the example for NER, in the sentence Meanwhile Blair arrived in Wash-

ington late Wednesday for two days of talks with Bush at the Camp David

presidential retreat., three binary relations can be extracted between the entities

found by NER: (Blair, Washington), (Blair, Camp David presidential re-

treat) and (Bush, Camp David presidential retreat), all three being relations

of physical change of location.

The next step is the detection of n-ary relations between entities, a step that can

be named template filling or Event Extraction (EE). This task has the purpose of

identifying events and their descriptive entities in a large number of documents,

which is an important but challenging Information Extraction (IE) task because it

usually implies the usage of the previous IE tasks (NER, RE). Associated with each

event mention is a phrase, the event trigger (most often a single verb but also phrasal

verbs, nouns, phrasal nouns, pronouns and adverbs), which evokes best that event.
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More precisely, the task involves identifying event triggers (subtask called Event

Detection, ED) associated with corresponding arguments (subtask usually known

as Argument Detection and Classification) and classifying them into specific event

types or in a template with an event trigger and a number of associated arguments.

Following the example for NER and RE, in the sentence Meanwhile Blair arrived

in Washington late Wednesday for two days of talks with Bush at the Camp

David presidential retreat., talks is an event trigger denoting an event of type

Meet between two Persons: Blair and Bush, at a Location: Washington and

at a Time: Wednesday . This event can be considered as an n-ary relation between

the entities (Blair, Washington, Bush, Camp David presidential retreat),

and thus the EE can be considered as an n-ary or multi-way RE.

Despite the usefulness and wide prospective applicability of IE, several issues and

challenges have to be overcome until an IE system is widely adopted as an effective

tool in practice.

— Annotation cost: practical issues related to the high cost of manual anno-

tation of texts (e.g. human resources) have to be faced. We have to minimize

the human effort while keeping the quality of an IE system. Data annotation

needs human expertise and this causes labor-intensive work for data inter-

pretation at two levels. Firstly, an IE system may use NLP resources and

tools, created using lots of annotated documents and secondly, an IE system

needs a higher-level of annotation of relations or events.

— Feature engineering: the complex choice of features from NLP tools and

resources (i.e., parsers, part of speech taggers etc.) and the difficult decision

making in combining them represent an important issue too since the errors

from these sources propagate to the downstream tasks. For example, an NER

system may mistakenly detect the wrong entity needed by an RE system,

which downgrades the accuracy of the RE.

— Context of extraction: the extraction of the needed information can be
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approached at a local level, as in the case of the detection and extraction of

entities, relations or events that are fully expressed within a single sentence.

However, in a significant number of cases, almost 40% in the MUC evalua-

tions [Stevenson, 2006], several sentences or paragraphs of a text have to be

examined to identify a relation or an event. Thus, IE includes complex tasks

requiring to aggregate information that may be spread across a document. In

EE, for example, an entire document may have to be examined to identify an

event, where, for attaching all the entities to this event, coreference resolution

may be a task at hand for finding all expressions that refer to the same entity

in a set of phrases.

— Type of approach: for characterizing the different types of approaches,

we can differentiate two dimensions. The first one refers to their degree of

supervision, i.e. the degree of specification of the information need. For in-

stance, extracting all earthquake events compared to extracting all events

in general. In practice, this first dimension makes a clear distinction be-

tween supervised, unsupervised and semi-supervised learning approaches. In

supervised and semi-supervised, the information to extract is fully specified

and there is a need for expert data annotation since usually, there is a small

amount of annotated data and a large amount of unlabeled data available.

Supervised methods can perform quite well with enough training data, but

annotating sufficient data is time and resource-consuming [Mooney, 1999].

Semi-supervised methods aim to reduce the annotated data required, ide-

ally to a small set of labeled data [Patwardhan and Riloff, 2007, Yangarber

et al., 2000, Lin et al., 2003, Surdeanu et al., 2006]. The unsupervised meth-

ods make use of clustering or topic detection to extract similar relations or

events. For example, the OpenIE (Open Information Extraction) paradigm

was created to operate in a totally domain-independent manner and at Web

scale by making a single pass over a corpus to get the extraction templates of

interest and extracting a diverse set of relational tuples without requiring any
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relation-specific human input [Banko et al., 2009, Banko et al., 2008, Etzioni

et al., 2005, Talukdar et al., 2008, Moschitti et al., 2003]. These extractors

may produce extractions that are unspecific or ambiguous when taken out of

context and also, with potentially thousands of templates of interest, these

systems could not provide a convincing solution to the knowledge acquisition

bottleneck. The second dimension we distinguish for characterizing existing

approaches refers to the way the extraction model is defined: either automati-

cally from a set of annotations, which corresponds to data-driven approaches,

or by the means of a human work, which corresponds to expertise-driven ap-

proaches. Hybrid approaches combining these two types of approaches also

exist. The data-driven approaches aim at converting data to features through

the use of statistics, data mining, and machine learning and thus, they require

a lot of data for getting statistically significant features. The expertise-driven

methods exploit existing expert knowledge about how to extract information

from texts, usually through pattern-based approaches. These systems are

extremely dependent on the coverage of this knowledge and thus, they may

alleviate the work to do or extend its coverage by using techniques such as

bootstrapping or optimizing their knowledge-based algorithms by means of

machine learning, or vice-versa [Huang and Riloff, 2012a, Yangarber et al.,

2000]. An example of a hybrid system that tries to combine both data- and

expertise-driven techniques, is the Rapier system [Mooney, 1999] that learns

pattern-matching rules to extract fillers for the slots in an extraction tem-

plate. The human interaction of the system consisted of providing lots of

documents with filled-in templates.

— Architecture: as previously mentioned, all IE tasks are interdependent. For

instance, entities detected by an NER can further help Relation Extraction

(RE), taking these as input. A pipeline approach is more modular based

on generic components simpler to implement, faster to run and debug, but

errors in upstream components are often compounded and propagated to
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the downstream stages. A joint approach [Li et al., 2013b, Nguyen et al.,

2016a, Feng et al., 2017] is less prone to error propagation but more complex

in implementation.

These aspects could eventually impair the performance of IE systems. In light of the

high annotation cost and domain specialists required, we are following the current

state-of-the-art systems for EE that involve neural network models to improve the

event extraction systems and tend to some extent to overcome these fundamental

limitations mentioned above.

Consequently, our research goal in this thesis is to develop neural-based learning

models that can automatically induce representations of human language, in par-

ticular its structure and meaning, in order to solve the event extraction task by

overcoming its main challenges.

2.1 Event Extraction

The Event Extraction (EE) constitutes a challenging task with the purpose of quickly

identifying events and their entities in a large number of documents. An event is

described by a set of participants (i.e. attributes or roles) whose values are text

excerpts.

The EE implies identifying instances of specified types of events in text and the

arguments associated to them. Each event is represented by a phrase, a sentence

or a span of text, the event trigger (most often single verbs or phrasal verbs, but

also nouns, phrasal nouns, pronouns and adverbs), which evokes that event. After

the detection and classification of the triggers, the arguments of the event must

be found. Event arguments are entity mentions or temporal expressions that are

involved in an event (as participants).

These two main sub-tasks, trigger and argument role prediction are highly interde-
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pendent: trigger identification is usually treated as an independent task and argu-

ment finding and attribute assignment are each dependent on the results of trigger

identification. Finally, the event extraction task can be treated as an n-ary rela-

tion extraction task, where the components of a relation can be the triggers that

represent the central component and the arguments that are related to the trigger.

Let’s take, for instance, this sentence: There was the free press in Qatar, Al Jazeera,

but its’ offices in Kabul and Baghdad were bombed by Americans.

Typically, an event in a text is expressed by the following components:

— Event mention: an occurrence of an event with a particular type. These

are usually sentences or phrases that describe an event. The sentence above

is an Attack event mention.

— Event trigger: the word that most clearly expresses the event mention. The

Attack from the sentence is revealed by the event trigger word bombed.

— Event argument: an entity mention, temporal expression or value (e.g.

Sentence, Crime, Job-Title) that serves as a participant or attribute with a

specific role in an event mention.

— Argument role: the relationship between an argument and the event in

which it participates. The argument roles that should be extracted in this

case are: Americans that has the role of an Attacker, the Places where the

event produced are Kabul and Baghdad and the Target of the bombing is

comprised by the offices in Kabul and Baghdad. Attacker and Target are

roles of arguments that are specific for Conflict.Attack event type.

For example, Table 2.1 gives some examples of ACE events. Each event takes one

or more arguments. Most arguments are entities, which are references in the text

to people, organizations, locations, facilities, weapons, or vehicles.

At sentence-level extraction, one may consider that EE has some links with Seman-

tic Role Labeling (SRL). Indeed, in the case of semantic text representations, events



2.1. Event Extraction 15

Table 2.1 – ACE Life event subtypes and entities

Life event subtypes Arguments
Be Born Person, Time, Place
Marry Person, Time, Place
Injury Agent, Victim, Instrument, Time, Place
Divorce Person, Time, Place
Die Agent, Victim, Instrument, Time, Place

(called frames) include a predicate, which is the main determinant of what type of

event it represents, and arguments. Some resources containing more or less specific

frames have been developed manually, e.g. FrameNet [Baker et al., 1998, Ruppen-

hofer et al., 2016], PropBank [Kingsbury and Palmer, 2002], VerbNet [Schuler, 2005]

and NomBank [Meyers et al., 2004] 4. The events, in this case, are considered as

frames and "should not be confused with events as defined in IE, which correspond

more closely to the everyday notion of an event, such as a political, financial" or

biomedical event [Abend and Rappoport, 2017].

One difference between frames and events in IE is not only that an SRL system

assumes the existence of semantic roles in every sentence, but also, the predicate is

not always representative of an event (each predicate does not necessarily refer to

an event and conversely, not all event triggers are predicates). For example, let’s

take this paragraph: Barghouti was one of the major leaders of the First Intifada

in 1987, leading Palestinians in a mass uprising against Israeli occupation of the

West Bank. During the uprising, he was arrested by Israel and deported to Jordan,

where he stayed for seven years until he was permitted to return under the terms of

the Oslo Accords in 1994. Accordingly to the annotators of the ACE 2005 Dataset 5,

only one event is relevant for a human evaluator, a Conflict.Demonstrate event

that is represented in the first sentence by the trigger word uprising. Its anno-

tated arguments are the West Bank : Place and 1987 : temporal expression (Time-

4. These resources are available mainly for English but some of them have been developed for
other languages, such as the French FrameNet [Djemaa et al., 2016] or Verb3Net [Pradet et al.,
2014], the adaptation of VerbNet for French.

5. https://catalog.ldc.upenn.edu/ldc2006t06

https://catalog.ldc.upenn.edu/ldc2006t06
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Within). The same word also appears in the second sentence but is not considered

as an event trigger in that case since the sentence contains no argument for the

corresponding event. However, uprising is a predicate in both cases. Conversely,

an event trigger does not always correspond to a predicate. For instance, fatal in

the phrase The fatal accident ... can be a trigger for a Die event. The abundance

of roles detected by an SRL system could also represent another challenge to the

task of EE, the selection of the relevant entities from the detected arguments with

semantic roles. Another inconvenience is the reliance of an SRL to a prior complete

morphological and syntactical analysis that can make an IE system prone to error

propagation. Regardless of these issues, SRL has been successfully used in NER as

features [Wattarujeekrit et al., 2005], or to generate predicate-argument structures

from the output of parsers to improve EE (more exactly, event detection) [Surdeanu

et al., 2003, Grishman et al., 2005, Meyers et al., 2001]. Our conclusion is that even

if EE and SRL are different, we can imagine that SRL can help EE. But in that

situation, we have to face the pipeline effect : errors in SRL results, which are still at

a high level in current tools, are likely to impair EE, which certainly explains why

SRL tools are not used widely for EE.

The main approaches developed for the task of EE are presented in the next section.

2.1.1 Event Extraction approaches

In order to better generalize the systems developed for the Event Extraction task,

one can divide the prior work in: pattern-based systems [Krupka et al., 1991, Hobbs

et al., 1992, Riloff, 1996a, Riloff, 1996b, Yangarber et al., 2000], machine learning

systems based on engineered features (i.e. feature-based) [Freitag, 1998, Chieu et al.,

2003, Surdeanu et al., 2006, Ji et al., 2008, Patwardhan and Riloff, 2009, Liao and

Grishman, 2010, Huang and Riloff, 2011, Hong et al., 2011, Li et al., 2013b, Bronstein

et al., 2015] and neural-based approaches [Chen et al., 2015b, Nguyen and Grishman,

2015a, Nguyen et al., 2016a, Feng et al., 2016].
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2.1.2 Pattern-based approaches

In light of the high annotation cost of expert manual annotations, several pattern-

based (rule-based) systems have been proposed, to speed up the annotation process.

The pattern-based approaches first acquire a set of patterns, where the patterns con-

sist of a predicate, an event trigger, and constraints on its local syntactic context.

They also include a rich set of ad-hoc lexical features (e.g. compound words, lemma,

synonyms, Part-of-Speech (POS) tags), syntactic features (e.g. grammar-level fea-

tures, dependency paths) and semantic features (e.g., features from a multitude of

sources, WordNet 6, gazetteers) to identify role fillers. Earlier pattern-based extrac-

tion systems were developed for the MUC conferences [Krupka et al., 1991, Hobbs

et al., 1992, Riloff, 1996a, Yangarber et al., 2000].

For instance, the AutoSlog system [Riloff, 1996b] automatically created extraction

patterns that could be used to construct dictionaries of important elements for a

particular domain and a text where the elements of interest were manually tagged

only for the training stage. Later, [Riloff, 1996a] makes the observation that pat-

terns occurring with substantially higher frequency in relevant documents than in

irrelevant documents are likely to be good extraction patterns. They propose the

separation between relevant and irrelevant syntactic patterns and a re-ranking of

the patterns. The system named AutoSlog-TS attempted to overcome the necessity

of having a hand-labeled input requiring only pre-classified texts and a set of generic

syntactic patterns. The main drawback of this system is the requirement of manual

inspection of the patterns, which can be costly.

Many proposed approaches targeted the minimization of human supervision with a

bootstrapping technique for event extraction. [Huang and Riloff, 2012a] proposed

a bootstrapping method to extract event arguments using only a small amount of

annotated data. After the manual inspection of the patterns, another effort was

made for performing manual filtering of resulting irrelevant patterns.

6. https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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[Yangarber et al., 2000] developed another bootstrapping approach, starting with

some seed patterns, using these patterns to identify some relevant documents, us-

ing these documents to identify additional patterns, etc. The authors in [Sudo

et al., 2003] also proposed to sort relevant from irrelevant documents using a topic

description and information retrieval engine. This approach was further refined

in [Surdeanu et al., 2006], which explored alternative pattern ranking strategies.

[Stevenson and Greenwood, 2005] used a lexical database for the English language

WordNet-based similarity to expand an initial set of event patterns. The systems

in [Patwardhan and Riloff, 2007, Patwardhan, 2010] are built upon a sentence clas-

sifier that distinguishes between relevant and irrelevant regions and learns domain-

relevant extraction patterns using a semantic affinity measure. Later, [Bronstein

et al., 2015] takes the example trigger terms mentioned in the guidelines as seeds,

and then applies an event-independent similarity-based classifier for trigger labeling.

Thus, a great amount of effort has been put in to overcome the manual annotation

of data.

2.1.3 Feature-based approaches

Most recent event extraction frameworks are feature-based approaches applied at

the sentence-level or to a larger context (document-level). These approaches usually

require effort to develop rich sets of features.

The feature-based approaches rely mainly on designing large effective feature sets for

statistical models, ranging from local features [Grishman et al., 2005, Ahn, 2006, Li

et al., 2013a], to the higher level structures such as cross-document, cross-sentence

and cross-event information e.g. global features [Gupta and Sarawagi, 2009, Hong

et al., 2011, Ji et al., 2008, Li et al., 2015, Liao and Grishman, 2010, Patward-

han and Riloff, 2009]. The discrete local features include: lexical features (e.g.

unigrams/bigrams of text context, lemma, synonyms, Part-of-Speech (POS) tags,

Brown clusters [Brown et al., 1992]), syntactic features (e.g. dependency paths)
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and semantic features (e.g., features from a multitude of sources, WordNet [Miller

et al., 1990], gazetteers). Using Natural Language Processing (NLP) toolkits for

extracting this type of features may lead to severe error propagation, has a cost in

terms of computational efficiency and second, limits the application of the models to

languages for which such NLP tools are available. The cross-* features are usually

inferred from known instances to predict the attributes of unknown instances. As

an example, given an Attack event, the cross-event inference can predict its type

by using the related events (Die) co-occurring with it within the same document

or same sentence. An Attack event often co-occurs with a Die event in the same

document or sentence, but rarely co-occurs with a Marry event.

Local features were considered to be insufficient to reliably and accurately perform

event extraction in complex domains [Grishman et al., 2005, Ahn, 2006]. Because

of this, [Finkel et al., 2005, Ji et al., 2008, Patwardhan and Riloff, 2007, Hong et al.,

2011] tried to use a larger context besides sentences as in discourse, document, cross-

document or cross-entity information to improve the traditional sentence-level event

extraction systems.

For instance, [Ji et al., 2008] used global information from related documents (cross-

sentence), and [Gupta and Sarawagi, 2009] extracted implicit time information.

[Patwardhan and Riloff, 2009] used a sentential context by doing an a priori classi-

fication of sentences to decide if they contain or not an event mention. In the same

manner, [Liao and Grishman, 2010] leveraged document-level cross-event informa-

tion and topic-based features. More exactly, the authors use information about

other types of events to make predictions or resolve ambiguities regarding a given

event.

[Huang and Riloff, 2012b] sustained that there is a need for a larger view over

event extraction, regarding the relevancy of an entity for an event and thus, other

discourse features were developed. With a bottom-up approach to event extraction,

the candidate role fillers for a specific event template slot is identified independently
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and then, along with discourse properties, the textual cohesion is modeled.

[Li et al., 2013b] implements a joint model via structured prediction with cross-

event features. Concretely, they use structured perceptron with beam search to

jointly extract triggers and arguments that co-occur in the same sentence. One

drawback of this approach is the usage of a large set of features dependable of NLP

toolkits and resources.

Inspired by the work of [Li et al., 2013b], [Yang and Mitchell, 2016] uses a similar

large set of features provided by NLP toolkits and resources. Their contribution is

the addition of a document context for extracting events creating a unified model

that jointly extracts events from sentences across the whole document.

This type of approach suffers from a great labor put in feature engineering. A

large set of elaborated hand-designed features can bring a visible improvement in

accuracy, but the same additions can make a system slow and intractable in large-

scale applications [Ji et al., 2008, Patwardhan and Riloff, 2009, Liao and Grishman,

2010, Huang et al., 2012, Li et al., 2013b, Li et al., 2013a, Li et al., 2014].

2.1.4 Neural-based approaches

The current state-of-the-art systems for event extraction involve neural network

models to improve event extraction. Neural networks have been introduced into

event extraction very recently with the purpose of overcoming two fundamental

limitations of the traditional feature-based approaches: complicated feature engi-

neering for rich feature sets and error propagation from the preceding stages which

generate these features. All these models use word embeddings, a general word rep-

resentation that is produced by training a deep learning model on a large unlabeled

dataset. Consequently, word embeddings replace the hard matches of words in the

feature-based approaches with the soft matches of continuous word vectors.

Neural-based approaches for event extraction have used two types of models: Con-
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volutional Neural Networks (CNNs), following work in the field of image processing,

and Recurrent Neural Networks (RNNs), which are more particularly adapted to the

sequential aspect of texts. These two kinds of approaches have also been associated.

[Nguyen and Grishman, 2015a] and [Chen et al., 2015b] deal with the event detection

problem with a model based on CNNs. [Nguyen and Grishman, 2016] improve the

previous CNN models [Nguyen and Grishman, 2015a] for event detection by taking

into account the possibility to have non-consecutive n-grams as basic features instead

of continuous n-grams. Both models use word embeddings for representing windows

of text that are trained like the other parameters of the neural network. As another

extension of the basic CNN models, [Nguyen and Grishman, 2018] proposes to apply

Graph Convolution Networks for exploiting syntactic dependency relations.

Concerning RNNs, [Jagannatha and Yu, 2016] extracts event instances from health

records with Bidirectional Recurrent Neural Networks (Bi-RNNs) while [Nguyen

et al., 2016a] proposes a joint framework with the same type of neural networks for

predicting at the same time event triggers and their arguments. This last work is

benefiting from the advantages of the two models as well as addressing issues inherent

in the existing approaches. The authors also systematically investigate the usage

of memory vectors/matrices to store the prediction information during the course

of labeling sentences features. Additionally, [Nguyen et al., 2016a] augments their

system with discrete local features inherited from [Li et al., 2013b]. [Duan et al.,

2017] and [Zhao et al., 2018] explore another extension of RNNs by integrating a

larger context through a document representation while [Hong et al., 2018] exploits

a generative adversarial network for discarding spurious detections.

Further, [Feng et al., 2016] develops a hybrid neural network (a CNN and an RNN)

to capture both sequence and chunk information from sentences, and use them to

train an event detector that does not depend on any handcrafted features.

We will focus on a deeper analysis of these systems in later chapters.
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2.2 Event extraction evaluation

As mentioned at the beginning of this chapter, the event extraction task has been

developed through several evaluations, mainly MUC, ACE, and TAC. Each evalu-

ation defined specific metrics and rules but the work coming after ACE generally

adopted those used in [Ji et al., 2008], which are globally close to those of TAC.

More precisely, the evaluation in this context is based on event mentions and event

arguments. An event mention is a phrase or a sentence within which an event is

described, including trigger and arguments. The triggers are words that most clearly

express the event and can have an arbitrary number of arguments.

The evaluation is based on the standard metrics: Precision (P), Recall (R), and

F-measure (F1), defined by the following equations:

P = TruePositives
TruePositives+FalsePositives

R = TruePositives
TruePositives+FalseNegatives

F1 = 2·P ·R
P+R

True positives are the samples classified as belonging correctly to a class. False neg-

atives are classified as not belonging to a class, incorrectly. False positives are the

samples classified as belonging to a class, incorrectly. Thus, precision is the fraction

of relevant samples among the retrieved samples, while recall is the fraction of rel-

evant samples that have been retrieved over the total amount of relevant samples.

The F1 is the harmonic mean between these two. Because the data in EE tasks

usually suffer from class imbalance, we compute the micro-averages of these metrics

for aggregating the contributions of all classes.

Following previous work [Li et al., 2013b, Chen et al., 2015b, Huang et al., 2012,

Nguyen et al., 2016a, Nguyen and Grishman, 2015a], the following criteria are used

to determine the correctness of a predicted event mention:

— A trigger is correct if its event subtype and offsets match those of a reference

trigger.
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— An argument is correctly identified if its event type and offsets match those

of any of the reference argument mentions.

2.3 In-depth analysis of the state-of-the-art approaches

So far, we discussed the previous systems developed for the Event Extraction (EE)

task in relation to the main challenges, the high cost of manual annotation of data,

the complex feature engineering.

In order to position our work, we continue with an in-depth analysis of the systems

on the ACE 2005 Dataset in Table 2.2.

Table 2.2 – Performance of the state-of-the-art systems for event detection on the
blind test data. 1 refers to approaches beyond sentence level

Number Approaches
Event Detec-
tion (P/R/F1)
%

Argument
Classification
(P/R/F1) %

1 MaxEnt with local features in
[Li et al., 2013b] 74.5 / 59.1 / 65.9 65.4 / 33.1 / 43.9

2 Cross-event in [Liao and Grish-
man, 2010] 68.7 / 68.9 / 68.8 45.1 / 44.1 / 44.6

3
1Cross-entity in [Hong et al.,
2011] 72.9 / 64.3 / 68.3 51.6 / 45.5 / 48.3

4 Joint at document level in [Yang
and Mitchell, 2016] 75.1 / 63.3 / 68.7 70.6 / 36.9 / 48.4

5
Joint beam search with local
and global features in [Li et al.,
2013b]

73.7 / 62.3 / 67.5 64.7 / 44.4 / 52.7

6 Dynamic multi-pooling CNN in
[Chen et al., 2015b] 75.6 / 63.6 / 69.1 62.2 / 46.9 / 53.5

7 Joint Recurrent Neural Net-
works in [Nguyen et al., 2016a] 66.0 / 73.0 / 69.3 54.2 / 56.7/ 55.4

These systems can be divided according to the type of architecture:

— pipeline, where the subtask of argument role prediction follows the event

detection one: [Liao and Grishman, 2010, Hong et al., 2011] (2, 3), MaxEnt
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with local features in [Li et al., 2013b] and the dynamic multi-pooling CNN

in [Chen et al., 2015b] (1, 5)

— joint inference, where the prediction of triggers and arguments are performed

at the same time: joint beam search with local and global features in [Li

et al., 2013b] and joint Recurrent Neural Networks (RNNs) in [Nguyen et al.,

2016a] (4, 6)

Also, they are differentiated by the choice of features:

— discrete local features or sentence-level features: [Liao and Grishman, 2010,

Hong et al., 2011, Yang and Mitchell, 2016, Li et al., 2013b] (1, 2, 3, 4, 5)

— global features such as cross-document, cross-sentence and cross-event infor-

mation: [Liao and Grishman, 2010, Hong et al., 2011, Yang and Mitchell,

2016] and the joint beam search with local and global features in [Li et al.,

2013b] (1, 3, 4, 5)

— learned feature representations (feature embeddings): [Chen et al., 2015b,

Nguyen et al., 2016a] (6, 7)

This use of both local and global features proved to be useful in the case of the

joint architecture in [Li et al., 2013b] (5). One global feature of this system is the

trigger global feature that captures the dependencies between two triggers within

the same sentence. For example, an Attack event often co-occurs with a Die event

in the same sentence, but rarely co-occur with a Marry event. Via these global

features, the system benefits from the inter-dependencies among event triggers or

arguments. These dependencies are also taken into consideration by [Yang and

Mitchell, 2016], which seems to improve the performance for triggers classification,

but not for argument classification.

Despite this advantage, this system devoted a great effort in engineering large feature

sets with local features (lemma and synonyms, Brown clusters, unigrams/bigrams

of Part-of-Speech (POS) tags, unigrams/bigrams of the current and context words,

dependency types associated the current token etc.) extracted by existing Natural

Language Processing (NLP) tools and resources (i.e., parsers, part of speech tag-
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gers etc.), which require themselves a significant work on manual annotation and a

considerable amount of expert domain knowledge and expertise. Using these sets of

features in systems as in [Liao and Grishman, 2010, Hong et al., 2011] (2, 3) may

lead to severe error propagation and can make these methods difficult to be applied

across different domains or other languages.

Also, [Li et al., 2013b]’s system (5) suffers from the inability to extract meaningful

structure for the event extraction task that happens mainly due to the hand-crafted

local feature sets. The pipelined system in [Chen et al., 2015b] (6) overcomes these

problems by having no reliance on discrete local features or sentence-level features.

Instead of lexical features, they introduce the use of word embeddings and instead of

syntactic features (dependency paths), they propose a dynamic multi-pooling layer

for CNN, which returns the maximum value in each part of the sentence according

to event triggers and arguments. Word embeddings have been shown to be able to

capture the meaningful semantic and syntactic regularities of words [Bengio et al.,

2003, Mikolov et al., 2013a].

The state-of-the-art results are obtained by [Nguyen et al., 2016a] (7), a joint ap-

proach via recurrent neural networks (RNNs) with memory vectors/matrices to store

the prediction information during the course of labeling the sentences in order to

capture the inter-dependencies between triggers and arguments. This model also

benefits from the usage of word representations (embeddings) which can capture

hidden syntactic and semantic properties revealing the underlying feature represen-

tations from data.

Thus, the joint prediction and the usage of memory vectors/matrices that work as

global features can improve the gracefulness of error recovery. Moreover, the system

also includes discrete local features inherited from [Li et al., 2013b]. The binary

vector whose dimensions correspond to the possible relations between words in the

dependency tree is added to the model. This approach basically inherits all the

benefits from both feature-based and neural-based systems as well as overcoming
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their inherent issues.

2.4 Conclusions

From the work presented in this chapter, we can observe that neural-based methods

[Chen et al., 2015b, Nguyen et al., 2016a] (6, 7) proved that state-of-the-art results

can be obtained by renouncing complicated feature engineering of rich feature sets,

with the exception of [Nguyen et al., 2016a] that relies on the discrete features

proposed by [Li et al., 2013b]. One can notice the fact that the initial trend was

to avoid engineered features but such features were in fact quickly reintroduced

(generally under the form of feature embeddings that can take into account the

similarity between features).

As it is generally done in the field of IE, we approach the EE as two subtasks:

Event Detection (ED) and event argument role prediction, starting from a baseline

model proposed by [Nguyen and Grishman, 2015a] based on a CNN and a minimum

required feature set: feature representations (embeddings) of words and trigger and

arguments positions. We aim at overcoming the complicated feature engineering

that depends on NLP tools and sources and thus, avoiding the error propagation

from these tools. As triggers are often ambiguous words that can refer to different

events, we will study how to improve the modeling of the context at the sentence level

for better representing the event itself. Another point concerns the improvement of

the word embeddings themselves. Neural network models require a lot of training

data, and current datasets for event extraction do not contain all the variants for

trigger terms, either semantic variants with synonyms or morphological variants.

Embeddings are expected to represent these variations. Thus, we will make an in-

depth study of different word embedding models given as input of the neural-based

model, and we will propose a new architecture in order to account for morphological

variants, that are under-represented in our dataset.
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We chose to analyze the dependence of the argument detection and classification

subtask on the event detection one by developing a pipeline approach. Our moti-

vation is that it is empirically common to build independent predictors in a setting

where joint prediction can apply because it is simpler to implement and faster to

run and debug.

The next chapter introduces [Nguyen and Grishman, 2015a]’s model for Event De-

tection (ED) as a chosen baseline and an in-depth analysis of the usage of word

embeddings and other hyperparameters.



Chapter 3

Event Detection

This chapter focuses on the problem of Event Detection (ED) or trigger prediction,

first subtask of Event Extraction (EE). This step implies the identification of in-

stances of specified types of events in text. Each event mention is characterized by

a sentence that contains an event trigger (the word or the phrase that evokes that

event).

The main challenge relies on the choice of features. In the past, proposed approaches

have coped with the event detection task by using a large set of hand-designed fea-

tures and using the existing supervised Natural Language Processing (NLP) toolkits

and resources (i.e. name tagger, parsers, gazetteers etc.) to extract these features

to be fed into statistical classifiers [Ji et al., 2008, Patwardhan and Riloff, 2009, Liao

and Grishman, 2010, Huang et al., 2012, Li et al., 2013b, Li et al., 2013a, Li et al.,

2014]. It is often challenging to adapt these prior methods to multiple languages

since they require extensive linguistic knowledge for feature engineering. Using Nat-

ural Language Processing (NLP) toolkits for extracting the features may also lead to

severe error propagation and can make these methods difficult to be applied across

different domains or other languagess.

By contrast, current approaches [Nguyen et al., 2016b, Nguyen et al., 2016c, Nguyen

and Grishman, 2016, Nguyen and Grishman, 2015a, Chen et al., 2015b]) indicate

28
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that deep learning is a compelling solution to avoid the aforementioned problems by

automatically extracting meaningful features from raw text without relying entirely

on existing NLP toolkits, thus minimizing the dependence on these toolkits and

resources for features and alleviating the error propagation.

This chapter is dedicated to an in-depth study of a state-of-the-art model we chose

as a baseline with a specific focus of its input word embeddings and a first attempt

to improve its performance through the use of Retrofitting [Faruqui et al., 2015].

Firstly, we remind the main theoretical key points that are needed for understanding

the model. We then present in more details the task of Event Detection (ED) and the

challenges that it implies. We describe the chosen baseline system of [Nguyen and

Grishman, 2015a] based on a Convolutional Neural Network (CNN) and evaluate the

presented CNN over the ACE 2005 corpus. We present an analysis of its results in

relation to its hyperparameters, with a specific emphasis on the impact of different

types of word embeddings. Finally, we examine to which extent a method such as

Retrofitting can be used for biasing a priori these embeddings for the ED task. The

next section presents the theoretical basis of NN.

3.1 Background theory

3.1.1 Multi-Layer Perceptrons (MLPs)

Multi-Layer Perceptrons (MLPs) constitute the basis of neural networks. An MLP

contains neurons organized in layers. Several neurons are connected to the same

inputs x1, . . . , xn, with a different set of weightsW . The outputs of all these neurons

are inputs for a new layer of neurons. An MLP with a single hidden layer can be

represented graphically as in Figure 3.1.

A single-layered MLP is a function f : RD → RL, where D is the size of input

vector x and L is the size of the output vector f(x), such that: f(x) = ψ(b(2) +
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Figure 3.1 – An MLP with a single hidden layer. Source: https:
//medium.com/@curiousily/tensorflow-for-hackers-part-iv-neural-
network-from-scratch-1a4f504dfa8

W (2)(σ(b(1) + W (1)x))), with bias vectors b(1), b(2), weight matrices W (1),W (2) and

the activation functions ψ and σ.

The vector h(x) = Φ(x) = s(b(1) + W (1)x) constitutes the hidden layer. W (1) ∈

RD×Dh is the weight matrix connecting the input vector to the hidden layer. Each

column W
(1)
·i represents the weights from the input units to the i-th hidden unit.

Typical choices for the activation functions σ include the hyperbolic tangent func-

tion tanh, tanh(a) = ea−e−a

ea+e−a , the logistic sigmoid function, sigmoid(a) = 1
1+e−a , or

rectified linear function ReLu, ReLu(a) = max(0, a).

The output vector is then obtained as: o(x) = ψ(b(2) + W (2)h(x)). In the case of

multi-class classification, the probabilities can be obtained by choosing the softmax

function as ψ yi = ezi∑
j e

zj .

3.1.2 Training neural networks

Training a neural network consists in adjusting its parameters, the connection weights,

so that the model is able to perform the task at hand. The goal is to optimize a cri-

terion that reflects the quality of the network. Given such a criterion, one may apply

numerical optimization methods such as gradient descent. The backpropagation al-

gorithm [Rumelhart et al., 1988] takes advantage of the structure of the networks to

https://medium.com/@curiousily/tensorflow-for-hackers-part-iv-neural-
https://medium.com/@curiousily/tensorflow-for-hackers-part-iv-neural-
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apply these methods. Algorithms were also designed to handle the temporal aspect

of recurrent neural networks, such as the Backpropagation Through Time (BPTT)

algorithm [Williams and Zipser, 1995].

3.1.3 Optimization problem

A neural network performs a series of simple computations on the input to return

an output, corresponding to a classification. To assess the quality of the neural

network, one can compare the output y(x) to the desired one z, and calculate a

measure of error. For example, it may be the squared error (y(x) − z)2 for binary

classification. For multi-class classification, the output is a vector y(x). The desired

output may be encoded as a vector z, with all components set to 0 except for the one

corresponding to the true class, and the squared error is: EMSE(x, z) = ‖y(x)− z‖2.

The components of y are posterior probabilities. With softmax , yi = ezi∑
j e

zj , the

outputs are positive and sum up to one, so one can use the Cross-Entropy (CE)

criterion: ECE(x, z) = −
C∑
i=1

zi log yi(x). Given a dataset S = (x(i), z(i)), where

i = 1, 2 . . . , N of examples labeled with the expected outputs, one can compute a

global loss function: E(S) = 1
N

N∑
i=1

E(x(i), z(i)).

The optimal parameters θ = θ1, . . . , θN are obtained by minimizing the error func-

tion. Numerical optimization methods, such as gradient descent, are applied to

reach this minimum.

The gradient descent proceeds as follows:

— for each training example (x(i), z(i)), compute y(x(i)) and E(x(i), z(i))

— compute the error E(S), and its derivative with respect to the parameters

∂E
∂θi

— update the parameters in the direction of the gradient θi ← θiη
∂E
∂θi

, where η

is the learning rate

In order to compute the error, and therefore take one step in adjusting the param-
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eters, one has to go through the whole dataset, which can lead to a slow conver-

gence. In Stochastic Gradient Descent (SGD), the parameters are updated after

every training example, or every few ones, and allows to better explore and exploit

the parameter space. The momentum technique [Rumelhart et al., 1985] consists in

adding a fraction of the previous update in the current one ∆θ(t) = η ∂E
∂θi

+ρ∆θ(t−1).

The choice of learning rate may be crucial. Instead of keeping it fixed, one may

change it during training. One can pre-define a schedule for learning rates, or

decrease it when the objective function does not improve, or with rules such as in

[Bottou, 2010] where its decrease is inversely proportional to the number of epochs,

or the AdaGrad technique [Duchi et al., 2011], Adadelta [Zeiler, 2012], RMSProp or

Adam [Kingma and Ba, 2014], where the learning rate is adaptive.

Finally, while the error on the training set is minimized, the system has to perform

well on unseen examples and avoid overfitting the training data. If the number

of parameters in the model is large enough, the network can memorize the training

examples, and be excellent at predicting the correct targets for examples of the train-

ing set but perform poorly on unseen example. This problem is called overfitting.

Overfitting is prevented by regularization, explained in the next section.

3.1.4 Regularization

The criterion optimized in the training of neural networks is a measure of error

on the training set. The early stopping method consists in stopping the training

procedure when the error on these validation data increases, while the training error

is decreasing. We present two regularization methods which help in reducing the

overfitting phenomenon: weight decay and dropout.
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Weight Decay

The weight decay technique consists in adding a penalty to the cost function, which

depends on the weights of the network.

A common formulation is the following: Ereg(S) = E(S) + λ
∑
i,k,j

(wkij)
2 where the

regularization term is the sum of squares of all the weights wij of all layers k, E(S) is

the original cost function and λ controls the relative importance given to the original

cost compared to the regularization part.

The practical effect of weight decay is that the training procedure will promote

solutions with small weights. It is generally observed that neural networks overfit

less with those constraints, which might be explained by the fact that with small

weights, the network is less sensitive to small changes of the input.

Dropout

The dropout technique was proposed by [Hinton et al., 2012] to reduce overfitting.

It consists in randomly ignoring some of the units of the network during training.

When dropout is applied to a hidden layer, a sample of units is dropped for each

training example, with some probability. The forward pass computes the output

of the network without those dropped units and corresponding connections. The

backpropagation procedure is performed in this network with missing nodes.

Using dropout is equivalent to train simultaneously 2N network architectures which

share weights, where N is a large number. One architecture is randomly selected at

each training step. At test time, no unit is dropped, and the whole network is used.

Because a layer following dropout had fewer inputs during the training procedure,

the weights are multiplied by (1 − p), where p is the dropping probability, when

the whole network is used. For an MLP with a single hidden layer and a softmax

output, this is equivalent to computing the geometric mean of the outputs of all 2N

possible architectures [Hinton et al., 2012].
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One of the motivations of dropout is to prevent hidden units to rely on the output of

others and make them useful for classification by themselves. The underlying goal

is to reduce overfitting, hence making it a form of regularization. This technique

has been successfully applied to MLPs [Dahl et al., 2013], Convolutional Neural

Networks (CNNs) [Krizhevsky et al., 2012], Recurrent Neural Networks (RNNs)

[Zaremba et al., 2014].

3.1.5 Gradient-based learning

After its introduction in the 1970s, the backpropagation algorithm was not fully

appreciated until [Rumelhart et al., 1988]. This work defined several neural network

models that were based on this algorithm for learning and were able to solve pre-

viously insoluble problems. Today, the backpropagation algorithm is widely used.

Gradient descent consists in calculating the gradient of the error with respect to

the parameters of one layer at a time, starting from the output layer and going

sequentially to the input layer. The algorithm can be applied when the connec-

tions between layers form a directed acyclic graph, and the error is propagated from

the outputs to the inputs, hence the term backpropagation, and the parameter up-

dates are computed on the way. The only requirement is to be able to compute the

derivatives of the outputs of a layer with respect to its inputs.

Stochastic Gradient Descent (SGD) works according to the same principles as or-

dinary gradient descent but proceeds more quickly by estimating the gradient from

just a few examples at a time instead of the entire training set. In its purest form,

the gradient is estimated from a single example at a time. Minibatch SGD works

identically to SGD, except that more than one training example are used to make

each estimate of the gradient.
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3.1.6 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are MLPs with a special structure. CNNs

are a type of feed-forward neural networks whose layers are formed by a convolu-

tion operation followed by a pooling operation [LeCun et al., 1998a, Kalchbrenner

et al., 2014]. This means that the first layers do not use all input features at the

same time but rather features that are connected. This type of neural network is

a well-known deep learning architecture inspired by the natural visual perception

mechanism of the living creatures. CNNs became the mainstream method for solving

various computer vision problems, such as image classification [Russakovsky et al.,

2015], object detection [Russakovsky et al., 2015, Everingham et al., 2010], semantic

segmentation [Dai et al., 2016], image retrieval [Tolias et al., 2015], tracking [Nam

and Han, 2016], text detection [Jaderberg et al., 2014] and many others. At first,

in 1990, [LeCun et al., 1990] published the seminal paper establishing the modern

framework of CNN, and later improved it in [LeCun et al., 1998a]. They developed

a multi-layer neural network called LeNet-5 which could classify handwritten digits.

This is a highly influential paper that promoted deep convolutional neural networks

for image processing. Two factors made this possible: firstly, the availability of

large enough datasets and secondly, the development of powerful enough GPUs to

efficiently train large networks.

Besides two classic papers on training neural networks [LeCun et al., 1998b, Bengio,

2012], which are still highly relevant, there is very little guidance on the plethora

of design choices and hyperparameter settings of CNNs with the consequence that

researchers proceed by trial-and-error experimentation and architecture copying,

sticking to established neural network types. With good results in ImageNet com-

petition, the AlexNet [Krizhevsky et al., 2012], VGGNet [Ergun and Sert, 2016],

GoogLeNet (Inception) [Szegedy et al., 2015] and ResNet [He et al., 2016] became

the standard. Improvements of many components of the CNN architecture like the

nonlinearity type (activation function), pooling, structure and learning have been
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recently proposed.

CNNs use layers with convolution filters that are applied to local features [LeCun

et al., 1998a]. They are useful for classification tasks in which we expect to find

local clues regarding class membership, but these clues are spread all over the input

sequence of features. Pooling layers allow the model to capture these local clues,

regardless of their position.

Recently, with the emerging interest in deep learning, CNNs have been revived and

effectively applied in various Natural Language Processing (NLP) tasks, including

semantic parsing and question answering [Bordes et al., 2014, Yih et al., 2014, Yin

et al., 2016], search query retrieval [Shen et al., 2014b], sentence modeling and clas-

sification [Kalchbrenner et al., 2014, Kim, 2014], name tagging and semantic role

labeling [Collobert, 2011, Fonseca and Rosa, 2013], relation classification and ex-

traction [Liu et al., 2013, Zeng et al., 2014, Nguyen and Grishman, 2015b, Nguyen

and Grishman, 2016], short-text categorization, sentiment classification [Kim, 2014],

paraphrase identification [Yin and Schütze, 2015], event detection [Nguyen and Gr-

ishman, 2015a, Nguyen et al., 2016a]. In NLP, they process a sequence of data by

extracting the most informative parts for the sequence of words and only considers

their resulting activations.

Convolutions

One common application of convolutional neural networks is image processing. In

an image, it is assumed that pixels that are spatially close together cooperate on

forming a particular feature of interest much more than ones on opposite corners of

the image. Also, if there is a feature relevant to the classification of an image, it will

remain important, regardless of its location in an image.

In the same manner, in NLP, we can think of a sequence x with n words, as a

matrix where each entry in x is represented by a d-dimensional dense vector (word
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embedding), thus the input x is represented as a feature map of dimensionality n×d.

This can be interpreted as a 1D image.

In Computer Vision, filters slide over local patches of an image, but in NLP, these

filters slide over rows of the matrix (a list of words), with the intuition that there is

a compositional aspect, as in how an adjective is modifying a noun. The convolution

layer is used for representation learning from sliding w-grams. For an input sequence

with n entries: {x0, . . . , xn} with vector ci ∈ Rwd be the concatenated embeddings

of w entries {xi−w+1, . . . , xi} where w is the filter width and 0 < i < w. Embeddings

for xi, with i < 1 or i > n are padded with a special token (typically a zero-

vector). The representation pi ∈ Rd for the w-gram {xi−w+1, . . . , xi} is generated

using the convolution weightsW ∈ Rd×wd, and then activation function ψ is applied,

pi = ψ(W × ci + b), where bias b ∈ Rd and ψ is typically one of the tanh, sigmoid

or ReLu activation functions.

A big argument for CNNs is that they are fast and they are also efficient in terms

of representation. Thus, convolutional filters give the possibility of learning good

representations, without needing to represent explicitly w-grams (since the sequences

produced by the sliding filters are typically compared with w-grams).

Pooling layers

A key aspect of CNNs are pooling layers, typically applied after the convolutional

layers. A max-pooling layer takes the maximum of features over small blocks of a

previous layer. The output tells us if a feature was present in a region of the previous

layer, but not the precise position. Thus, pooling layers subsample their input and

keep the most salient information, keep the local information captured by the filters

but lose the position of the feature and the global information about locality. All

representations produced by the convolutional filters pi ∈ Rd are used to generate

the representation of an input sequence x by max-pooling : xj = max
(
p1,j, p2,j, . . .

)
,

where j = {1, . . . , d} and x is a d-dimensional dense vector.
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3.2 Word embeddings

Before discussing the neural-based model for the Event Detection (ED) proposed by

[Nguyen and Grishman, 2015a] in more depth, it is important to pay attention to how

features are represented. The concept of feature embeddings (vector representations

of each core feature) is the main attraction in Natural Language Processing (NLP)

approaches because the field has seen success in switching from linear models over

sparse inputs to non-linear neural-network models over dense inputs.

This representation is preferred because:

— feature vectors are now a parameter of the model and can be trained

— feature interdependence can be captured, conforming to the distributional

hypothesis that states words in similar contexts have similar meanings

These embeddings can encode features such as words, Part-of-Speech (POS) tags or

any other linguistic information. The distributed representations of words remain a

standard practice in today’s NLP systems, both in shallow and deep architectures

[Goldberg, 2016].

Most word representations fall into one of two categories: discrete or continuous.

Discrete representations or one-hot encoding (or 1-of-K encoding, with K the vo-

cabulary size) consist in representing a word as a binary vector that is all 0 values

except the index of the word in the vocabulary, which is marked with a 1. They

can also consist of memberships in a hard clustering of words, e.g., via k-means

or the [Brown et al., 1992] algorithm. This representation of a word suffers from

data sparsity, namely, for words that are rare in the training data, their correspond-

ing model parameters will be poorly estimated. Moreover, another problem is the

so-called curse of dimensionality. Because an index vector over a large vocabulary

is very sparse, models can easily overfit to the training data. These limitations of

these discrete representations have prompted researchers to investigate unsupervised

methods for inducing word representations over large unlabeled corpora.
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Continuous representations (or distributed representations or embeddings) [Deer-

wester et al., 1990, Levy et al., 2015] consist of low-dimensional, real-valued vec-

tors for each word, typically induced via neural language models [Bengio et al.,

2003, Mnih and Hinton, 2007]. That is, each word is embedded into a d-dimensional

space, and represented as a vector in that space. This vector can capture similarities

between words and make models more robust. Word embeddings can be learned in

an unsupervised way to capture distributional similarities and be fine-tuned in a

supervised fashion. In a neural-based model, these vectors can then be fine-tuned

like the other parameters of the neural network.

By encoding word information in real-valued vectors, a diverse set of NLP tasks

have been shown to benefit, as in syntactic parsing [Bansal et al., 2014, Lazaridou

et al., 2013], named entity recognition [Wu et al., 2015, Ma et al., 2016, Peng and

Dredze, 2016], sentiment analysis [Maas et al., 2011, Socher et al., 2013], document

retrieval [Turian et al., 2010, Collobert and Weston, 2008, Turney and Pantel, 2010].

Additionally, due to the fact that they can be induced directly from unannotated

corpora, they are available in different languages and domains. Intrinsic evaluations

on various tasks have been performed to help refine vector learning methods to

discover representations that capture syntactic and semantic information about the

tasks [Turney and Pantel, 2010, Ghannay et al., 2016].

Many methods of deriving word embeddings were explored in the NLP community.

We will describe types of models to learn such word vectors in as in [Collobert et al.,

2011, Huang et al., 2012, Mikolov et al., 2013b, Luong et al., 2013, Pennington et al.,

2014]. These models form a good basis for understanding neural-based approaches

and can be used for other simple word classification tasks.

Word embeddings are created through feature learning technique that maps the

words to real-valued vectors in a low-dimensional space. By leveraging large cor-

pora of unlabeled text, such continuous space representations can be computed for

capturing syntactic and semantic information about words. Basically, a neural net-
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work that takes as input words from a vocabulary yields word embeddings as the

weights of the network.

Figure 3.2 – A neural language model [Bengio et al., 2003]

In comparing models for creating word embeddings, we will assume the following: a

training corpus containing a sequence of N training words {w1, . . . , wN} that belong

to a vocabulary V whose size is |V |. A context of n words is assumed with every

word associated with an input embedding vw with d dimensions and an output

embedding. An objective function Jθ is optimized with regard to model parameters

θ and the output consists of a score fθ(x) for every input x.

3.2.1 Neural language model

The classic neural language model proposed by [Bengio et al., 2003] consists of

a one-hidden-layer feed-forward neural network that predicts the next word in a

sequence as in Figure 3.2. Their model maximizes the following objective (with the

regularization term omitted):

Jθ = 1
N

N∑
t=1

log fθ(wt, wt−1, · · · , wt−n+1), where

fθ(wt, wt−1, · · · , wt−n+1) = p(wt|wt−1, · · · , wt−n+1) is the output of the model (i.e.

the probability computed by the softmax function), where n is the number of pre-
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vious words fed into the model.

[Bengio et al., 2003] was among the first to introduce word embeddings learned by

neural networks, real-valued feature vectors in a space. The model has three main

layers:

— an embedding layer that generates word embeddings by multiplying an index

vector with a word embedding matrix.

— one or more layers that produce an intermediate representation of the input,

e.g. a fully-connected layer that applies a non-linear function (activation

function, e.g. tanh, sigmoid, ReLu) to the concatenation of word embeddings

of n previous words.

— a final layer (softmax ) that produces a probability distribution over words

in a vocabulary V . softmax is proportional to the number of words in V ,

thus discovering methods that alleviate the computational cost related to

computing the softmax over a large vocabulary [Chen et al., 2015a] became

one of the main challenges in both neural language and word embedding

models.

Starting from this notion of neural language model, different approaches have been

proposed for creating word embeddings through neural networks [Collobert and

Weston, 2008, Collobert et al., 2011, Mikolov et al., 2013a, Pennington et al., 2014,

Joulin et al., 2016a, Joulin et al., 2017, Bojanowski et al., 2017, Levy and Goldberg,

2014]. These approaches differ in the type of the architecture and the data used to

train the model. We will detail a subset of them in the next subsections.

3.2.2 Collobert&Weston (C&W)

The model proposed by [Collobert and Weston, 2008, Collobert et al., 2011] is a

direct extension of the model of [Bengio et al., 2003]. It targets the alleviation of

the computational cost related to computing the softmax over a large vocabulary
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Figure 3.3 – The C&W model [Collobert et al., 2011]

by proposing a pairwise ranking criterion: Jθ =
∑
x∈X

∑
w∈V

max{0, 1fθ(x) + fθ(x
w)}

This objective function trains a network to output a higher score fθ for a correct

word sequence than for an incorrect one. For every sequence of words x containing

n words, they generate an incorrect one xw by replacing the middle word with a

random chosen word from the vocabulary V . Their objective maximizes the distance

between the scores for the correct and the incorrect window with a margin of 1.

Their model follows the architecture proposed by [Bengio et al., 2003] where the

intermediate layers are fully-connected followed by the hardtanh non-linear layer,

where hardtanh(x) = −1 if x < −1;x if − 1 ≤ x ≤ 1; 1 if x > 1.

3.2.3 Word2vec

In the last few years, the Word2vec 1 approach has become the standard approach for

word embeddings. Word2vec is not technically a component of deep learning, with

1. Code and pre-trained embeddings available at https://code.google.com/archive/p/
word2vec/

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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the reasoning being that its architecture is neither deep nor uses non-linearities.

[Mikolov et al., 2013a] proposes two architectures for learning word embeddings:

Continuous Bag-of-Words (CBOW) and Skip-gram, that are efficient to train and

computationally less expensive.

One important goal that has been overcome is the fact that the proposed techniques

are able to learn high-quality word embeddings from huge datasets. This is due to

the use of hierarchical softmax where the vocabulary is represented as a Huffman

binary tree [Huffman, 1952]. Huffman trees assign short binary codes to frequent

words, and this further reduces the number of output units that need to be evaluated.

The two methods for learning word embeddings with Word2vec are presented next.

Word2vec: Continuous Bag-of-Words (CBOW) model Unlike in the classic

neural language model proposed by [Bengio et al., 2003], where a prediction of a

new word is based on a past word, [Mikolov et al., 2013a] uses a context of the

targeted word, both the n words before and after the target word wt to predict

current word wt, as shown in Figure 5.1. This is known as a Continuous Bag-of-

Words (CBOW), due to the fact that it uses continuous representations where the

order has no importance.

The purpose of CBOW is only marginally different than that of the language model

one:

Jθ = 1
N

N∑
t=1

log p(wt | wt−n, · · · , wt−1, wt+1, · · · , wt+n)

Rather than feeding n previous words into the model, the model receives a window

of n words around the target word wt at each time step t.

Word2vec: Continuous Skip-gram model In the Skip-gram model, rather

than using the surrounding words to predict the center word as with CBOW, it

predicts the surrounding context words given a center word as in Figure 3.5.
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Figure 3.4 – Continuous bag-of-words (CBOW) model. Source: [Mikolov et al.,
2013a]

The Skip-gram objective thus sums the log probabilities of the surrounding n words

to the left and to the right of the target word wt to produce the following objective:

Jθ = 1
N

N∑
t=1

∑
−n≤j≤n,6=0

log p(wt+j | wt)

3.2.4 FastText

fastText [Bojanowski et al., 2017] is another popular word embedding model, which

can be seen as a variant of Word2vec including character sequences in the learning of

embeddings. The difference between the embeddings generated by [Collobert et al.,

2011, Mikolov et al., 2013a] and fastText embeddings [Joulin et al., 2016a, Joulin

et al., 2017, Bojanowski et al., 2017] is that fastText 2 takes into consideration the

internal structure of words, which can be of a great impact when working with

morphologically rich languages (as in Finnish, Turkish or French). [Joulin et al.,

2016a, Joulin et al., 2017, Bojanowski et al., 2017] try to improve word embeddings

by using character-level information, proposing to represent words as the sum of

2. Code and pre-trained embeddings available at https://github.com/facebookresearch/
fastText

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText
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Figure 3.5 – Skip-gram model. Source: [Mikolov et al., 2013a]

learned representations for character n-grams, using an extension of the Skip-gram

model [Mikolov et al., 2013a] presented in Section 3.2.3.

Each word wt is represented as a bag of character n-grams and the word itself. If

we consider a scoring function which maps pairs of words (word, context) s(w, c)

to real-valued scores, the problem of predicting context words becomes a binary

classification task, where we predict the presence or the absence of those context

words. For every word wt at position t, we consider all context words as positive

examples (semantically related with the word at focus) and random words from the

dictionary as negative examples. The objective function is given by the following

equation and computed with negative sampling:

Jθ = 1
N

N∑
t=1

[ ∑
c∈ct

l(s(wt, wc)) +
∑

n∈Nt,c

l(−s(wt, n))
]
, where Nt,c is a set of negative

examples sampled from the vocabulary and l the logistic loss function l 7→ log(1 +

e−x).

In contrast with Skip-gram, where the score between the vectors uwt and vwc is the

scalar product between them s(wt, ct) = tTwt
vwc , the fastText model considers a word
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as a set of character n-grams. If we denote the n-gram vector as z and v as output

vector representation of word w (context word), the scoring function is now:

s(w, c) =
∑
g∈Gw

zTg vc, where Gw is the set of n-grams appearing in w.

3.2.5 Dependency-based

Dependency-based 3 word embeddings proposed by [Levy and Goldberg, 2014] gener-

alize the Word2vec Skip-gram model and move from linear bag-of-words contexts to

arbitrary word contexts. The objective function is the same as in Skip-gram model.

In particular, the dependency-based contexts of a word include the syntactic con-

text derived from automatically produced dependency parse-trees. While Skip-gram

(paragraph 3.2.3) embeddings yield broad topical similarities, these embeddings can

yield more functional similarities of cohyponym nature (a word or phrase that shares

the same hypernym as another word or phrase: e.g. fruit is a hypernym of apple,

and thus apple is, therefore, a cohyponym of pear).

The authors of [Levy and Goldberg, 2014] prove their choice of using arbitrary word

contexts using this sentence as an example:

Australian scientist discovers star with telescope.

The Skip-gram model considers the following window contexts of size 2 for the word

discovers : Australian, scientist and star, with. In this case, these context windows

will miss some important clues, as in telescope, and include some irrelevant ones, like

Australian, which may result in stars and scientist as neighbors in the embedded

space. They propose the dependency-based context based on the syntactic relations

the word participates in.

They motivate the usage of small arbitrary syntactic context windows by declaring

that a larger window will, indeed, capture topical content, but not more focused

3. Code and pre-trained embeddings available at https://levyomer.wordpress.com/2014/
04/25/dependency-based-word-embeddings/

https://levyomer.wordpress.com/2014/04/25/ dependency-based-word-embeddings/
https://levyomer.wordpress.com/2014/04/25/ dependency-based-word-embeddings/
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Figure 3.6 – Dependency-based context extraction example. Top: the dependency
parse tree. The preposition relations are collapsed into single arcs, making telescope
a direct modifier of discovers. Bottom: the contexts extracted for each word in the
sentence. Source: [Levy and Goldberg, 2014]

information about the target word. Using the syntactic context derived from auto-

matically produced dependency parse-trees thus as shown in Figure 3.6, telescope

will have more chances to be a neighbor of discovers.

3.2.6 GloVe

In contrast to Word2vec, GloVe 4 [Pennington et al., 2014] (Global Vectors) seeks to

illustrate that the ratio of the co-occurrence probabilities of two words (rather than

their co-occurrence probabilities themselves) contains information and they encode

this information as vector differences. For this to be accomplished, the authors of

[Pennington et al., 2014] propose a weighted least squares objective J that directly

aims at reducing the difference between the dot product of the vectors of two words

and the logarithm of their number of co-occurrences:

J =
V∑

i,j=1

f(Xij)
(
wNi w̃j + bi + b̃j logXij

)2
where wi and bi are the word vector and bias respectively of word i, w̃j and b̃j are the

context word vector and bias respectively of word j, Xij is the number of times word

4. Code and pre-trained embeddings available at http://nlp.stanford.edu/projects/
glove/

http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
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i occurs in the context of word j, and f is a weighting function that assigns lower

weights to rare and frequent co-occurrences. In this way, this objective associates

the logarithm of ratios of co-occurrence probabilities Xij with vector differences in

the word vector space.

As co-occurrence counts can be directly encoded in a word context co-occurrence

matrix, GloVe takes such a matrix rather than the entire corpus as input (but it

requires one upfront pass through the dataset).

3.2.7 Conclusions

The quality of word vectors is crucial for any application. To measure this qual-

ity, intrinsic and extrinsic evaluations have been developed. Intrinsic evaluations

measure the quality of word embeddings on word similarity or word analogy tasks

based on human judgments that imply semantic and syntactic word relationships.

Extrinsic evaluations use embeddings as features in models for other tasks, such as

named entity recognition (NER) [Santos and Guimaraes, 2015, Lample et al., 2016]

semantic role labeling (SRL) [Shen et al., 2014a] or part-of-speech (POS) tagging

[Collobert et al., 2011], relation extraction (RE) [Zeng et al., 2014, Nguyen and Gr-

ishman, 2015b] and event extraction (Section 2.1.4). A more detailed presentation

of intrinsic and extrinsic evaluations of word embeddings can be found in [Schnabel

et al., 2015].

In intrinsic evaluations, when comparing the two models of Word2vec (CBOW and

Skip-gram) on word analogy tasks, the authors of [Mikolov et al., 2013a, Mikolov

et al., 2013b] observed that the CBOW architecture works better on the syntactic

tasks while the Skip-gram works slightly worse on syntactic tasks than the CBOW

model but better on semantic tasks. In the case of fastText, which incorporated

character n-grams into the Skip-gram model, the authors of [Bojanowski et al., 2017]

concluded that morphological information significantly improves the syntax and in

contrast, it does not help for semantic tasks and even degrades the performance.
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The GloVe model [Pennington et al., 2014] handles semantic regularities explicitly

by using a global log-bilinear model regression which combines the global matrix

factorization and the local context vectors when training word embeddings. The

authors of [Pennington et al., 2014] state that GloVe outperforms CBOW and C&W

on word analogy and word similarity, while using a corpus less than half the size. In

extrinsic evaluations, more exactly on a common named entity recognition (NER)

benchmark, the CoNLL-2003 shared task for NER [Tjong Kim Sang and De Meulder,

2003], GloVe vectors also outperform both CBOW and C&W vectors.

In the next section, we present the Event Detection subtask and describe the cho-

sen baseline system based on a Convolutional Neural Network (CNN) proposed by

[Nguyen and Grishman, 2015a]. We evaluate the presented CNN over the ACE 2005

corpus, with an in-depth analysis of the usage of pre-trained embeddings obtained

with the previously presented methods.

3.3 Event Detection

Event Detection (ED) is considered a crucial and quite challenging subtask of event

extraction and involves identifying instances of specified types of events in text and

classifying them into event types precisely. Associated with each event mention

is a phrase, the event trigger (most often a single verb, noun, phrasal verbs, and

nouns, but also pronouns and adverbs), which evokes that event. More precisely, this

subtask involves identifying event triggers and classifying them into a specific type.

It can be challenging because the same event might appear in the form of multi-

word expressions and these expressions might represent different events in different

contexts.

The baseline neural-based model that we chose is proposed by [Nguyen and Gr-

ishman, 2015a] for the ED task. We rely on this model because it avoids using

complicated feature engineering of rich feature sets that depend on NLP tools and



50 Chapter 3. Event Detection

sources and thus, it avoids the error propagation from these tools. The authors ap-

proach the task by applying a Convolutional Neural Network (CNN) to a window of

text around potential triggers that automatically learns features from the sequence

of words and aims at classifying the targeted word as an event type. This simple

model got correct results and will easily allow us to combine it with other models

in a more complex architecture for integrating different kinds of information.

Firstly, we focus on the meaning of a trigger word and the challenges met by this

task while performing a corpus analysis based on the ACE 2005 dataset. Then, we

evaluate our implementation of the model in a general setting, in comparison with

the state-of-the-art systems, followed by a deeper analysis of the hyperparameters

of the model (e.g. word embeddings).

3.3.1 What is an event trigger?

An event trigger is a word or multi-word that depicts the occurrence of an event in

a text. The problem can be thought of in the following manner: given a trigger or

word, there are two possibilities: the trigger can represent an event of interest, or it

can represent another event or something else in which we have no interest.

The same event might appear in the form of various trigger expressions and an

expression might represent different event types in different contexts. For example,

transfer could refer to transferring ownership of an item, transferring money, or

transferring personnel from one location to another. Each sense of the word is

linked with an event type. In the same manner, fired can correspond to an attack

type of event as in an American tank fired on the street or it can express the dismissal

of an employee from a job as in Hillary Clinton was fired from the House Judiciary

Committee’s Watergate investigation. A trigger can also appear in the form of

a multi-word expression. For example, in the sentence We finally ended up at the

station, the trigger word ended up is a phrasal verb. Usually, in this case, only ended

is taken into consideration. At the same time, trigger words are not restricted by
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the Part-of-Speech (POS) and can also be nouns, phrasal nouns, but also adverbs

and pronouns.

3.3.2 Corpus analysis

We used for our experiments, as most EE systems, the annotated data ACE 2005

corpus provided by the ACE evaluation 5. Thus, we will describe it in this section.

ACE events are restricted to a range of types, each with a set of subtypes. Thus,

only the events of an appropriate type are annotated in a document.

The corpus has 8 types of events, with 33 subtypes. These are the types of events:

— Business: Start-Org, Merge-Org, Declare-Bankruptcy, End-Org

— Conflict: Attack, Demonstrate

— Contact: Meet, Phone-Write

— Life: Be-Born, Marry, Divorce, Injure, Die

— Movement: Transport

— Justice: Arrest-Jail, Release-Parole, Trial-Hearing, Charge-Indict, Sue, Con-

vict, Sentence, Fine, Execute, Extradite, Acquit, Appeal, Pardon

— Transaction: Transfer-Ownership, Transfer-Money

— Personnel: Start-Position, End-Position, Nominate, Elect

Events are distinguished from their mentions in text. An event mention or a trigger

is a span of text (an extent, usually a sentence) with a distinguished trigger word

and zero or more arguments, which are entity mentions, timestamps, or values in

the extent. Since there is nothing inherent in the task that requires the two levels of

type and subtype, we will refer to the combination of event type and subtype (e.g.,

Life.Die) as the event type. If we consider, for instance, this sentence, There was

the free press in Qatar, Al Jazeera but its’ offices in Kabul and Baghdad were bombed

by Americans., an event extractor should detect a Conflict.Attack event mention,

5. https://catalog.ldc.upenn.edu/ldc2006t06

https://catalog.ldc.upenn.edu/ldc2006t06
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with the trigger word bombed.

As mentioned in [Li, 2015], trigger words can be of many different POS tags besides

verb (usually, an EE system considers that a trigger is most often a single verb, an

assumption made in order to ease the task of Event Detection). Figure 3.7 illustrates

the distribution of event triggers with respect to POS tags. In fact, the majority

of triggers are verbs (47.92%) and nouns (42.42%), but there exist some exceptions

such as adjectives (ADJ) with 3.56%, proper nouns (PROPN), 1.66%, pronouns

(PRON), and adverbs (ADV). We remind here that this analysis is dependent on

the NLP tools used (in our case, we relied on the SpaCy library [Honnibal and

Johnson, 2015] 6).

Figure 3.7 – Distribution of POS of all the true triggers

One of the main challenges is that some trigger words are ambiguous indicators of

particular types of events. For example:

— fire can be either a Conflict.Attack event (fire a weapon) or Personnel.End-

Position event (fire a person), with the cases distinguishable by the semantic

type of the direct object. discharge has the same ambiguity and the same

disambiguation rule.

— leave can be either a Movement.Transport event (he left the building) or a

Personnel.End-Position event (he left the administration), again generally

6. More information available at https://spacy.io/

https://spacy.io/
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distinguishable by the type of the direct object.

Another challenge for this dataset is the number of triggers per sentence.

For example, in the sentence: Frenetic merger and acquisition activity doesn’t mean

much in the early days of a business, it’s just as likely that ridiculously overfunded

startups are buying out their bankrupt competitors to create larger and less stable

conglomerates., there are five trigger words, merger, acquisition, buying, bankrupt,

create that depict the three different types of events, Business.Merge-Org men-

tioned by merger and create, Transaction.Transfer-Ownership by buying and

acquisition, Business.Declare-Bankruptcy by bankrupt , with startups as the Buyer

argument, competitors and business as Organization argument.

Table 3.1 – Distribution of some words as event triggers in the data splits (train /
test / valid)

Trigger candidates advance % leave % fire %
train/test/valid train/test/valid train/test/valid

8/1/4 35/9/9 93/1/13
Movement.Transport 25.0 0.0 75.0 17.1 22.2 11.1

Conflict.Attack 34.4 23.0
Personnel.End-Position 2.8 0.0 33.3 2.1 23.0

Other 75.0 100.0 25.0 80.0 77.7 28.8 63.4 100.0 53.8

Event detection often comes with a tremendously unbalanced dataset where the

number of the non-event examples far exceeds the others, making trigger detection

more challenging. The train set of the ACE 2005 corpus has 79.98% negative in-

stances (sentences that do not contain events of interest) and 98.13% of all the words

are not triggers of events of interest.

Moreover, a true trigger like fire, for example, refers to an Attack or End-Position

event for 36.5% of its occurrences in the train dataset, and in the other 63.4% of

the cases, it represents another type of event or something else in which we have no

interest. At the same time, none of the fire instances in the test set represents an

event of interest. For illustrating such imbalances, Table 3.1 presents statistics about

the distribution of some event triggers, more precisely advance, fire, leave, among the
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train/test/valid datasets. For example, it shows that the candidate trigger advance

is an event of no interest in 100% of the cases in the test set but refers to a Transport

event in 75% of the cases in the validation set, which can be clearly a problem for

finding good values for hyperparameters.

Next, we present the Convolutional Neural Network (CNN) model for the chosen

baseline [Nguyen and Grishman, 2015a].

3.3.3 Event Detection CNN

We chose as a baseline model, a Convolutional Neural Network (CNN), proposed

by [Nguyen and Grishman, 2015a] where the Event Detection (ED) task is modeled

as a word classification task. Although an event trigger may in principle be more

than one word, more than 95% of the triggers in the data consist of a single word.

The others are in the form of multi-word expressions (e.g. phrasal verbs, nouns).

Furthermore, in the training data, triggers are not restricted by their Part-of-Speech

(POS) (to nouns, verbs, adjectives, adverbs, pronouns). Thus, trigger identification

for a document is reduced to the task of classifying each word in the document into

one of 34 classes (the 33 event types plus an Other class for words that are not an

event anchor). In the case of [Nguyen and Grishman, 2015a], the authors consider

only the single word trigger candidates, meanwhile, in our case, we also consider

the multi-word candidates. For example, for a phrasal verb, we consider as trigger

candidates, both the verb and the adverb preposition. At the prediction time, the

two consecutive candidate triggers are concatenated and evaluated in the proper

form.

So, considering a sentence, we want to predict for each word of the sentence, if

the current token is a trigger and decide what event type it represents. The current

token x(i) is surrounded by a context that constitutes the main entry for the CNN. In

order to consider a limited sized context, longer sentences are trimmed and shorter

ones are padded with a special token. Let x = [x(0), x(1), ..., x(N)] be a sentence with
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words from 0 to N . Given a document, we first generate a set of trigger candidates

T . For each trigger candidate x(i) ∈ T , we associate it a context window. We

consider 2 × n + 1 the size of the context window, thus a trigger candidate x(0) is

represented as x = [x(−n), x(−n+1), . . . , x(0), . . . , x(n−1), x(n)]. Each context token x(i)

has as features the word itself and the relative position of the token to the trigger

candidate x(0). This linear distance in between two words in a sentence may serve

as an informative feature, as the position of the trigger is a strong signal for this

prediction task.

That is, each core feature is embedded into a d-dimensional space, and represented as

a vector in that space. The feature embeddings (the real values of the vector entries

for each feature, in this case, words and distances) are treated as model parameters

that need to be trained together with the other components of the network. Thus,

each feature is mapped to a vector retrieved from the following embedding tables:

Figure 3.8 – CNN model for ED, where Baghdad is the current trigger candidate in
a context window of 2× 4 + 1 words

— Word Embeddings Table (initialized or not by some pre-trained word em-

beddings): to capture the hidden semantic and syntactic properties of the

tokens

— Positional Embeddings Table: to embed the relative distance i of the token
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x(i) to the current token x(0). Each distance value is associated with a d-

dimensional vector (in practice, the table is initialized randomly), and these

distance embedding vectors are then trained as regular parameters in the

network [Zeng et al., 2014, Dos Santos and Gatti, 2014, Zhu et al., 2015,

Nguyen and Grishman, 2015a].

For each token x(i), the vectors Xn×2+1,mt obtained from the table look-ups above

are concatenated into a single vector to represent the token. As a result, the original

event trigger x is transformed into a matrix X, where d is the distance embedding,

w is the word embedding and mt is the size of the concatenated embeddings.

The matrix representation X is then passed through a convolutional layer, as seen

in Figure 3.8, for the candidate trigger Baghdad. The word and positional embed-

dings of the words in the context window are concatenated and passed through the

convolutional layer, where we have a set of feature maps (filters) {f0, f1, ..., fn} for

the convolution operation. Each feature map fi corresponds to some filter size k

and can be essentially seen as a weight matrix of size mt × x. A max-over-time

pooling operation [Collobert et al., 2011] is applied over every feature map and

the maximum value is taken as the feature corresponding to this particular filter

[Kim, 2014, Kalchbrenner et al., 2014]. These features form the penultimate layer

and are passed to a fully connected softmax layer whose output is the probability

distribution over labels.

3.3.4 Evaluation framework

For comparison purposes, we use the same test set with 40 newswire articles (672

sentences), the same development set with 30 other documents (863 sentences) and

the same training set with the remaining 529 documents (14,849 sentences) as in

previous studies of this dataset [Ji et al., 2008, Liao and Grishman, 2010, Li et al.,

2013b, Nguyen and Grishman, 2015a, Nguyen et al., 2016a]. Following previous work

[Ji et al., 2008, Liao and Grishman, 2010, Hong et al., 2011, Nguyen and Grishman,
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2015a, Chen et al., 2015b], a trigger is correct if its event subtype and offsets match

those of a reference trigger. We use Precision (P), Recall (R) and F-measure (F1)

to evaluate the overall performance.

3.3.5 Results and comparison with existing systems

We present an analysis of the state-of-the-art systems on the ACE 2005 dataset in

Table 3.2. The baseline model for event detection will be referred as CNN without

any external features [Nguyen and Grishman, 2015a] and our implementation of this

model as CNN without any external features, our implementation.

Hyperparameters

In [Nguyen and Grishman, 2015a], the set of parameters is as it follows. The filter

sizes for the convolutional layer with ReLu activation are from the set {2, 3, 4, 5} to

generate feature maps, each of them with size 150. The window size for triggers is

set to 31 while the dimensionality of the position embeddings is 50. Some of these

values are inherited from [Kim, 2014], as in the dropout rate of 0.5 applied after

the max-over-time pool operation. The mini-batch size is 50 and the embeddings

for initialization are the pre-trained word embeddings Word2vec for Google News

[Mikolov et al., 2013a].

However, the source code for [Nguyen and Grishman, 2015a] has not been published

and the reproducibility of their system has proven difficult due to different reasons:

the choice of the NLP tools for pre-processing (sentence splitting, tokenization),

which can influence considerably such a system, the hyperparameters are vaguely

presented and some assumptions and choices are not stated. Finally, the reporting

of the results does not take into account the intrinsic variability of nondeterministic

approaches.

In order to replicate their results, we tuned the model parameters on the development
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data and obtained a different configuration of parameters. The parameters used for

our implementation of the CNN model for event detection are depicted as follows.

The filter sizes used in the experiments are in the same set but we use 300 feature

maps for each filter size in this set. We use the same dropout rate of 0.5 after the

max-over-time pool operation and we also apply a dropout of 0.3 to the embeddings.

The window size and the dimensionality of the position embeddings remain the same.

The size of the mini-batch is set to 128 and we employed also the same pre-trained

word embeddings.

The gradients are computed using back-propagation, regularization is implemented

by early stopping [Prechelt, 1998], with a patience of 2 epochs, consisting in stopping

the training as soon as the error on the validation set is higher than it was in the

previous epoch. Training is done via stochastic gradient descent with shuffled mini-

batches and the Adam update rule, learning rate of 0.001, different from [Kim,

2014, Nguyen and Grishman, 2015a] who used Adadelta. During the training, the

word and positional embeddings tables are optimized at the same time to reach an

effective state [Kim, 2014].

Results

The systems in Table 3.2 include both feature-based and neural-based methods,

either with a pipeline or a joint inference approach:

— The feature-based systems with local features (rich hand-designed feature

sets) and global features such as cross-document, cross-sentence, and cross-

event information: the pipelined architecture in [Hong et al., 2011, Ji et al.,

2008] (1, 2), both models proposed by [Li et al., 2013b] (3, 4), the pipelined

MaxEnts and the joint architecture (the structured perceptron model for joint

beam search), cross-* features based systems [Ji et al., 2008, Hong et al.,

2011, Liao and Grishman, 2010, Yang and Mitchell, 2016] (5, 9, 10, 11). We

also consider here the Seed-based method in [Bronstein et al., 2015] (16) that
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Table 3.2 – Performance of the state-of-the-art systems for event detection on the
blind test data; 1: beyond sentence level; 2: with gold-standard entity mentions and
types. The systems are given by ascending F1. Systems are referred by their number
in the text.

Number Approaches Precision Recall F1
1 Sentence-level in [Hong et al., 2011] 67.5 53.5 59.7
2 Sentence-level in [Ji et al., 2008] 67.6 53.5 59.7

3 Joint beam search with local features in [Li
et al., 2013b] 73.7 59.3 65.7

4
2MaxEnt with local features in [Li et al.,
2013b] 74.5 59.1 65.9

5 Cross-sentence + Cross-doc inference in [Ji
et al., 2008] 60.2 76.4 67.3

6 Joint beam search with local and global fea-
tures in [Li et al., 2013b] 73.7 62.3 67.5

7 CNN without any external features, our im-
plementation 72.9 62.9 67.5

8 CNN without any external features
[Nguyen and Grishman, 2015a] 71.9 63.8 67.6

9 1Cross-entity in [Hong et al., 2011] 72.9 64.3 68.3

10 Joint at document level in [Yang and
Mitchell, 2016] 75.1 63.3 68.7

11 Cross-event in [Liao and Grishman, 2010] 68.7 68.9 68.8

12 CNN augmented with entity types [Nguyen
and Grishman, 2015a] 71.8 66.4 69.0

13 Dynamic multi-pooling CNN in [Chen
et al., 2015b] 75.6 63.6 69.1

14 Joint RNN in [Nguyen et al., 2016a] 66.0 73.0 69.3

15 Non-Consecutive CNN in [Nguyen et al.,
2016b] – – 71.3

16 Seed-based in [Bronstein et al., 2015] 80.6 67.1 73.2
17 Hybrid neural network in [Feng et al., 2016] 84.6 64.9 73.4

takes the example triggers in the training set as seeds, and then applies an

event-independent similarity-based classifier for event detection.

— The neural-based models: the CNN model without any external features in

[Nguyen and Grishman, 2015a] (12), the dynamic multi-pooling CNN model

[Chen et al., 2015b] (13), the bidirectional joint Recurrent Neural Networks

(RNNs) [Nguyen et al., 2016a] (14) and the non-consecutive CNN in [Nguyen

et al., 2016b] (15). Also, we consider the model that holds the state-of-the-

art event detection results, the hybrid model proposed by [Feng et al., 2016]
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(17) that benefits from the features combination obtained from a CNN and

a Long-Short-Term Memory Units (LSTM).

As it can be seen in the presented results, the neural-based models outperform all the

feature-based models, sentence-level (e.g. local: lemma, synonyms, Part-of-Speech

(POS) tags, features from a multitude of sources, WordNet [Leacock and Chodorow,

1998]) or beyond sentence level (e.g. global: cross-document, cross-sentence and

cross-event information). It is remarkable since these models, with the exception

of [Nguyen et al., 2016a] (13) that uses the dependency paths as semantic features,

do not require any external features, in contrast to the other feature-based systems

[Yang and Mitchell, 2016, Liao and Grishman, 2010, Hong et al., 2011, Ji et al.,

2008, Li et al., 2013b] (10, 11, 1, 4, 6) that extensively rely on such external features

to perform well.

Considering the systems that only use sentence level information, CNN without any

external [Nguyen and Grishman, 2015a] (7, 8) significantly outperforms the MaxEnt

classifier [Li et al., 2013b] (4) as well as the joint beam search with local features

from [Li et al., 2013b] (6). CNN without any external features, our implementation

(7) [Nguyen and Grishman, 2015a] has a drop of 0.1 in F1.

We believe that this model is gaining potential over the other systems, regarding the

need of almost no preprocessing of data, no reliance on Natural Language Process-

ing (NLP) toolkits for feature extraction and no cross-sentence nor cross-document

inference.

Next experiments are based on this baseline model. We will present also how differ-

ent parameters influence the performance of such a model.

3.3.6 Word embeddings analysis

In this section, we investigate different methods to obtain the pre-trained word em-

beddings used for initializing the baseline Convolutional Neural Network (CNN)
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model. Several factors influence the quality of word vectors, from their size and

training algorithm to the amount and quality of their training data. The abil-

ity to perform well on word similarity and analogy tasks, which implies different

semantic-syntactic word relationships, is a way to characterize their quality but is

not necessarily linked in a straightforward way to their performance in downstream

applications.

Table 3.3 presents the performance for trigger classification on the blind test set for

the list of pre-trained embeddings presented in Section 3.2: pre-trained Word2vec 7

embeddings on Google News corpora [Mikolov et al., 2013a], GloVe [Pennington

et al., 2014] trained on EnglishWikipedia 2014 8 and Gigaword 5 9, Collobert&Weston

(C&W) [Collobert et al., 2011] and dependency-based [Levy and Goldberg, 2014]

trained on English Wikipedia (2007 and respectively 2014) and fastText 10 embed-

dings trained on English Wikipedia 2010 [Shaoul, 2010].

We also trained word embeddings on the Gigaword 5 corpus (North American News)

using the Word2vec toolkit and we include them in the analysis. These Gigaword

embeddings were trained with the Skip-gram model presented in Section 3.2.3 (use

of the center word to predict the context), a context of 5 words and an embedding

size equal to 400.

We take into consideration that the embeddings differ in size and that the dataset

on which they are trained on has distinct data sources. We analyze the results

accordingly.

Finally, for comparison, the performance of random word embeddings drawn from a

uniform distribution is also included. All word embeddings are updated during the

training of the model.

7. Code and pre-trained embeddings available at https://code.google.com/archive/p/
word2vec/

8. Data available at https://dumps.wikimedia.org/
9. Data available at https://catalog.ldc.upenn.edu/LDC2011T07

10. Data available at http://www.psych.ualberta.ca/~westburylab/downloads/
westburylab.wikicorp.download.html

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://dumps.wikimedia.org/
https://catalog.ldc.upenn.edu/LDC2011T07
http://www.psych.ualberta.ca/~westburylab/ downloads/ westburylab.wikicorp.download.html
http://www.psych.ualberta.ca/~westburylab/ downloads/ westburylab.wikicorp.download.html
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Table 3.3 – Performance of the baseline CNN with different word embeddings (al-
gorithm and data sources). Values written in italic are assumed.

Embeddings
Type Size Corpora

No.
To-
kens

Vocab.
Size P R F1

Random, baseline 50 65.7 45.2 53.6
Random, baseline 300 62.3 54.2 58.0
Random, baseline 400 69.3 51.1 58.8
C&W [Collobert
et al., 2011] 50 Wikipedia

2007 450M 103k 50.1 56.6 53.1

Dependency-based
[Levy and Gold-
berg, 2014]

300
English
Wikipedia
2014

1.2B 175k 67.7 55.8 61.2

GloVe [Pennington
et al., 2014] 300

English
Wikipedia
2014 +
Gigaword 5

6B 400K 63.5 62.9 63.2

Gigaword trained 400 Gigaword 5 4B 68.1 60.6 64.1

fastText [Joulin
et al., 2016b] 300

English
Wikipedia
2010

900M 2M 65.8 64.1 64.9

Word2vec [Mikolov
et al., 2013a] 300 Google

News 100B 3M 72.9 62.9 67.5

First, we can globally observe from Table 3.3 that using pre-trained word embed-

dings as features results in performance lifts when compared to the baselines. It

should be noted that we have considered baselines with three different sizes for a

fair comparison in terms of size.

We can more precisely observe that all pre-trained word embeddings of size 300

perform better than the random ones, suggesting that they may contain relevant

information for the task. Among the pre-trained embeddings of size 300, it is clear

that Word2vec embeddings outperform all the others.

The size of the data on which the embeddings have been trained on has unsurpris-

ingly a significant impact on the performance of the task. Dependency-based [Levy

and Goldberg, 2014] embeddings have been trained on around 1 billion words, Glove

[Pennington et al., 2014] on 6 billion words, fastText [Bojanowski et al., 2017] on 900
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million words and Word2vec [Mikolov et al., 2013a] on 100 billion words. Moreover,

the Word2vec embeddings also have the largest coverage in terms of vocabulary,

with 3 million words. Thus, the better performance of Word2vec embeddings can be

explained not only from the dataset that has been used for learning, Google News,

in comparison with the other two that use mainly English Wikipedia but also from

the greater coverage of words.

For studying more specifically the influence of the size of the embeddings, we per-

formed experiments with randomly generated embeddings. Note that in Figure

3.9, the most efficient embedding size is 600 on this type of task but with enough

dimensions, between 300 and 600, the performances of the embeddings are quite

comparable, with F1 values between 58% and 59%.

Figure 3.9 – Different sizes for random embeddings

From the point of view of the training algorithm, most of our tested embeddings,

Word2vec, Gigaword trained, fastText and dependency-based embeddings, were trained

using Skip-gram or a variation of Skip-gram, which does not allow conclusions to

be drawn. Gigaword trained, Word2vec, fastText outperform on the ED task the

dependency-based embeddings. Dependency-based embeddings [Levy and Goldberg,

2014] are known to provide structural information, are less topical and exhibit more

functional similarity than the original Word2vec embeddings. The evaluation of syn-
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tax based word embeddings and dependency context embeddings on different tasks

done by the authors of [Melamud et al., 2016] proves the usefulness of dependency-

based embeddings on parsing tasks. While Table 3.3 is not sufficient for drawing

strong conclusions about this point, it seems that for ED, the use of dependency-

based embeddings is not necessarily the best option.

The embeddings trained with fastText performed similarly to the embeddings trained

on Gigaword with Word2vec while the corpus used for training fastText had only

900 million words, compared to the 4 billion words of the Gigaword corpus. This

suggests that the character model used by fastText is particularly interesting in this

context.

Finally, we assume that the performance of C&W, that obtained a score close to

the random embeddings, is due not only to the size of the embeddings, 50, but also

from the size of the corpus used, a small version of English Wikipedia.

Globally, we consider that the high performance obtained by Word2vec embed-

dings comes from the dataset that has been used for learning, namely large news

datasets. Meanwhile, we consider that fastText embeddings bring improvements in

performance because of their additional morphological information (character-level

information) in learning word vectors using an extension of Skip-gram.

To understand the behavior of word relevance for the Event Detection (ED) task,

we can look-up a set of neighbors for the difficult trigger candidates mentioned in

Section 3.3.1, respectively fire, advance and leave, in Table 3.4. In this case, the

nearest neighbors of a word are the words with the highest cosine similarity between

their respective vectors. The cosine similarity is calculated by the dot product of

two numeric vectors and is normalized by the product of the vector lengths, so that

output values close to 1 indicate high similarity cos(x, y) = x·y
‖x‖·‖y‖ .

Table 3.4 reveals that for Word2vec and fastText, the found neighbors are more

relevant than the ones found for Collobert&Weston. The neighbors of fire represent
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Table 3.4 – The neighbors for three difficult trigger candidates

Keywords Collobert&
Weston

Dependency-
based

Word2vec fastText

fire water, land,
ship, mine,
fuel, boat,
bomb, storm,
smoke, sea

fires, gun-
fire, bushfire,
shellfire, wild-
fire, barrage,
conflagration,
musketry,
fusillade

blaze, fires,
Fire, flames,
carelessly
discarded
cigarette

fires, ex-
tinguisher,
extinguish-
ers, firefights,
firefighters,
extinguishing

advance invasion,
progress, es-
cape, transfer,
surrender, de-
fense, burma,
appeal, abort,
invitation

progress,
advancing,
advances,
advanced,
counterat-
tack, push,
spearhead

advancing,
advances,
Advance,
advanced,
Trafigura_Vena,
Teras_vision

advancing,
advancer,
advancers,
#advance

leave save, enter,
visit, notice,
wait, hold,
marry, reach,
break, aban-
don

leaving, reen-
ter, abscond,
depart, aban-
don, redeco-
rate, rehire,
vacate, re-
marry, forsake

leaving, stay,
depart, Leav-
ing, left,
leaves, return,
vacate, quit,
rejoin

stay, leaving,
wait, rejoin,
return, join,
depart, #leave

mainly in the first case the concept of dismissal from an office or position, as in the

event subtype Job-Title, while for Collobert&Weston, they refer more to a state or

an instance of combustion. In the case of fastText, as it was expected, the neighbors

are mostly morphological derivations and inflections of the target word.

In the next section, due to the fact that fastText performed very well in the ED

task, we attempt at improving the embeddings by retrofitting the word vectors with

a semantic lexicon dedicated to the target types of events.

3.3.7 Retrofitting

Based on the underlying assumption that trigger words can be clustered semantically

and that a similarity might exist between trigger words, we include an experiment
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based on retrofitted word embeddings.

Arguably, one of the reasons behind the popularity of word embeddings is that they

are general purpose: they can be used in a variety of tasks without modification.

This can be observed from the word embeddings analysis in the previous section.

Although this behavior is sometimes desirable, it may in other cases be detrimental

to specific tasks that use word embeddings. For example, when classifying trigger

words by event type, we are particularly interested in related words rather than

similar ones: knowing that move, which represents a Movement.Transport event

type, is associated with trip is much more informative of the topic than knowing

that it is a synonym of walk.

[Faruqui et al., 2015] introduced retrofitting as a graph-based learning technique for

using lexical relational resources to obtain higher quality semantic vectors. Retrofitting

is applied as a post-processing step by running belief propagation on a graph con-

structed from lexicon-derived relational information to update word vectors. This

allows retrofitting to be used on pre-trained word vectors. We constructed the lex-

Table 3.5 – Performance of the state-of-the-art CNN with different retrofitted word
embeddings

Retrofitted Embeddings
Type Precision Recall F1

F1 no
retro-
fitting

Collobert&Weston [Collobert
et al., 2011] 42.3 64.8 51.2↓ 53.1

Dependency-based [Levy and
Goldberg, 2014] 63.8 57.5 60.5↓ 61.2

Word2vec 64.7 62.0 63.3↓ 67.5
Gigaword trained 63.1 64.3 63.7↓ 64.1
GloVe [Pennington et al., 2014] 60.4 68.8 64.3↑ 63.2
fastText [Bojanowski et al., 2017] 64.5 63.2 64.3↓ 64.9

icon with all the trigger words from the train partition of the ACE 2015 Corpus.

This structured collection indicates that entries are related to each other by the

type of event. For example, go, come, went, take, going, moving, trip, coming are



3.4. Conclusions 67

associated with Movement.Transport.

We apply retrofitting for these words, for all the pre-trained embeddings used in the

previous experiments and compare with the results obtained when no retrofitting

was applied.

We can notice from Table 3.5 that retrofitting does not globally provide better

results for the event detection task. The arrow in every column ↓ reveals that

retrofitting almost any type of embedding to better represent the types of events

decreases the performance for the ED task. Retrofitting brings a slight improvement

only in the case of GloVe embeddings. We assume that these results are due to

the main challenge of the task, the fact that some trigger words are ambiguous

indicators of particular types of events. For those triggers, the amplification brought

by Retrofitting is likely to have a negative impact.

3.4 Conclusions

After we presented the baseline model for event detection and performed differ-

ent experiments for the choice of parameters, the results can be explained by the

following reasons:

— firstly, compared with the feature-based methods that benefit from manual

engineered feature sets, all neural-based methods perform better by avoid-

ing error propagation from different NLP tools (parsers etc.) and by better

representing the semantics of the words;

— CNNs are a good choice for event detection since they capture global repre-

sentations of text and extract the most informative parts for the sequence of

words and only considers their resulting activations;

— experiments show also that the choice of pre-trained embeddings has an im-

portant impact on the performance of the ED task. The data used for training

the embeddings, their size, and the training algorithm influence the perfor-
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mance. We concluded that the higher the amount of data, the better the word

vectors and 300 is a good choice for their size. Also, Skip-gram-based embed-

dings (Word2vec, fastText) have obtained the best word representations for

the task;

— regarding Retrofitting, the process applied as a post-processing step to im-

prove vector quality does not bring improvements in performance for the ED

task. We assume that placing similar words from the chosen semantic lexi-

con in the same neighborhood is affecting the ability of the model to distin-

guish between triggers that are common to several event types. For example,

the word fire remains ambiguous, representing a Conflict.Attack, but also

a Personnel.End-Position event. It is also possible that the Retrofitting

process creates too much distortion in the space, when applied, to capture

some semantic relatedness.
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Deep neural network architectures

for Event Detection

We presented in the previous chapter the baseline model proposed by [Nguyen and

Grishman, 2015a], a Convolutional Neural Network (CNN) with word and position

embeddings.

We introduce in this chapter two deep neural network architectures for event detec-

tion. We are going beyond word embeddings in two directions, trying to capture

more global information and more local information.

The first contribution consists in using representations at the sentence-level, through

sentence embeddings. We assume that the context taken into account by the baseline

model is too limited. For long sentences, this limit results from the fixed size of

the window in which the convolutions are performed. But more globally, CNNs

intrinsically focus on continuous and short range n-grams. An event is defined not

only by the trigger word but also by important words that can be found in its context.

However, these words are not always grouped in the span of an n-gram. So, our

hypothesis is that representing the whole sentence in a way that it can predict the

existence of a trigger will further help the model distinguish between event types. We

introduce a deep neural network architecture, which combines Bidirectional RNNs

69
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(Bi-RNNs) for adding sentence-level information for every trigger candidate.

The second contribution aims at exploiting two techniques for incorporating the

inner information of words as new features. Firstly, we consider creating character-

level features that can capture morphological and shape information of words, whereas

word embeddings are effective to capture word-level syntactic and semantic informa-

tion. For example, if we take a new word not present in the training data, torturing,

but present in the validation data, given its root and suffix (i.e. tortur-ing), it is

natural to guess that it is a variant of torture and the latter probably represents the

same type of event, that being Life.Injure. At the same time, we target one of the

main concerns when working with word embeddings, that is to say, the treatment

of the words that occur infrequently since word embedding models suffer from lack

of enough training opportunity for infrequent words. Another advantage of adding

character-level representations is the possibility of treatment of misspelled or cus-

tom words. The second technique is a type of data augmentation that relies on

morphological derivation and inflection generation, which practically adds variants

of known triggers in train, targeting the same impact as the character-level features.

We introduce a neural network architecture where we enrich every trigger candidate

context with character-level features and we perform experiments to observe the

effect of augmenting the data with new variants of triggers.

Before presenting our models, we will present the theory that underlies our propo-

sitions.

4.1 Background theory

4.1.1 Recurrent Neural Networks (RNNs)

One drawback of convolutional and pooling architectures is while they allow cap-

turing salient features, they are sacrificing the structural information. Recurrent
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and recursive architectures, on the other hand, work with sequences and trees while

preserving the structural information. Thus, two choices are available: either to cap-

ture regularities in such structures or to model similarities between such structures.

In many cases, this means encoding the structure as a fixed-sized vector, which can

then be passed to another statistical model for further processing.

Two types of networks can handle variable sized input vectors: recurrent and re-

cursive neural networks. Recurrent networks [Elman, 1990] are designed to model

sequences, while recursive networks [Goller and Kuchler, 1996] are generalizations

of recurrent networks that can handle trees. The Recurrent Neural Network (RNN)

is a type of deep neural networks that is deep in temporal dimension and has been

used extensively in time sequence modeling (speech recognition, text summarization)

[Mikolov et al., 2010, Graves, 2012, Zeng et al., 2016].

Since we consider sentences as sequences, we chose RNNs for representing these.

RNNs take as their input not just the current input example they see, but also what

they have perceived previously in time. In its simplest form, a RNN is a Multi-Layer

Perceptron (MLP), but with recurrent layers. Basically, at the time step t − 1, a

prediction is performed, which affects the prediction performed at time step t. Thus

a recurrent layer not only receive information from the previous layers, but also from

itself, as seen in Figure 4.1.

Figure 4.1 – An RNN processing sequential data over time. Source: https://
medium.com/@erikhallstrm/hello-world-rnn-83cd7105b767

For example, in Natural Language Processing (NLP), an RNN can map vectors

of sentences of variable length to a fixed-length vector by recursively transforming

https://medium.com/@erikhallstrm/ hello-world-rnn-83cd7105b767
https://medium.com/@erikhallstrm/ hello-world-rnn-83cd7105b767
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current sentence vector xt with the output vector of the previous step ht−1. The

transition function is typically a linear layer followed by σ, a pointwise non-linearity

layer (activation function). The state of such a layer evolves through time with the

following recurrence:

ht = σ
(
Wf

[
ht−1, xt

]
+ bf

)
where Wf ∈ Rlh×(lt×ls), bf ∈ Rlh , lh and ls are dimensions of hidden vector and

sentence vector, respectively. xt represents the input,Wf the corresponding weights,

ht−1 the layer’s outputs at the previous time step and bf the bias units.

Unfortunately, standard RNNs suffer from the problem of gradient vanishing or

exploding [Bengio et al., 1993, Hochreiter and Schmidhuber, 1997], where gradients

may grow or decay exponentially over long sequences. This makes it difficult to

model long-distance correlations in a sequence. To address this problem, a gating

mechanism has been proposed and a type of recurrent neural network that solves this

problem. We will present in the next section this type of network, Long-Short-Term

Memory Units (LSTM).

4.1.2 Long Short-Term Memory Units (LSTMs)

[Hochreiter and Schmidhuber, 1997] proposed a variant of a recurrent network with

so-called Long Short-Term Memory units, or LSTMs, as a solution to the vanishing

gradient problem. This type of recurrent network introduces a gating system to

control the flow of information, by deciding what information can be forgotten,

hence the word memory in LSTM. The gating system includes: an input gate, an

output gate and a forget gate. These gates compute an activation often using

the sigmoid function. An LSTM cell is shown in Figure 4.2.

The following equations define the behavior of the LSTM unit:

The forget gate controls whether the previous state is integrated into the cell state,
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Figure 4.2 – An LSTM processing sequential data over time. Source: http://
colah.github.io/posts/2015-08-Understanding-LSTMs/

or if it will be forgotten. The activation function σ for this gate is usually the sigmoid

function. The sigmoid layer outputs numbers between zero and one, describing how

much of each component should be let through, where 0 means totally forget.

ft = σ
(
Wf ·

[
ht−1, xt

]
+ bf

)
The input gate controls whether the input of the cell is integrated into the cell

state.

it = σ
(
Wi ·

[
ht−1, xt

]
+ bi

)
The cell state is the sum of the previous state Ct−1, scaled by the forget gate ft, and

of the cell input it, scaled by the input gate. ψ can be the sigmoid or hyperbolic

tangent function.

C̃t = ψ
(
WC ·

[
ht−1, xt

]
+ bC

)
Ct = ft ∗ Ct−1 + it ∗ C̃t

The output gate controls whether the LSTM unit emits the activation:

ot = σ
(
Wo ·

[
ht−1, xt

]
+ bo

)
The cell output is computed by applying the activation function Ct to the cell state,

scaled by the output gate.

ht = ot ∗ ψ(Ct)

Gated Recurrent Units (GRUs) A gated recurrent unit (GRU) is basically a

LSTM without an output gate. A GRU has two gates, a reset gate r, and an update

gate z, depicted by the following equations:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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zt = σ
(
Wz ·

[
ht−1, xt

])
rt = σ

(
Wr ·

[
ht−1, xt

])
h̃t = ψ(W ·

[
rt ∗ ht−1, xt

])
ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

The input and forget gates from LSTMs are combined by the update gate z and

the reset gate r is applied directly to the previous hidden state ht−1. ψ can be the

sigmoid or hyperbolic tangent function. The forget and input gates from LSTM

are combined in the update gate. GRUs are quite recent and have been growing

increasingly popular due to the decreased number of parameters (in comparison with

LSTMs) and thus decreased training time.

4.1.3 Bidirectional RNNs

A bidirectional neural network has two networks, one accessing information in a

forward direction and another, in the reverse direction.

These networks have access to the past as well as the future information and hence

the output is generated from both the past and future context, as shown in Figure

4.3.

Figure 4.3 – A bidirectional RNN. Source http://colah.github.io/posts/
2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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4.1.4 Training RNNs

In RNNs, the inputs of recurrent layers include their outputs at the previous time

step. Thus, a sequential aspect is added to the layered structure of the network.

The Backpropagation Through Time (BPTT) algorithm [Werbos, 1990] consists in

propagating the error both from the output to the input layer and to the previous

time steps. When the network is unrolled in time, one obtains a directed acyclic

graph, on which backpropagation methods can apply. There are input and output

layers at every time step t, so the error for each of them should be incorporated in

the gradient computations.

4.2 Exploiting sentential context in Event Detec-

tion

One important feature used for satisfying the event extraction task is the context

information for event detection. Our hypothesis is that, if larger context informa-

tion is included, the performance could be increased. This can be achieved with

the addition of sentence embeddings. In sentence embeddings, sentences, which are

variable-length sequences of discrete symbols, are encoded into fixed length contin-

uous vectors that are then used for further prediction tasks.

Since we combine two different neural networks, we propose a deep neural network

model where we add an additional feature called sentence embeddings that can

catch a global information about the trigger candidate that is being classified. In

order to encode the sentence, we create an encoder network (a bidirectional LSTM)

used to produce a vector representation of the sentence. We obtain the sentence

representation from the encoder and we feed it as an additional feature into the

CNN model presented in Chapter 3, before prediction.
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4.2.1 Sentence embeddings

The representation of sentences, used in the context of neural networks, falls into two

categories: a universal sentence embedding usually trained by unsupervised learning

[Hill et al., 2016], such as recursive auto-encoders [Socher et al., 2011], [Socher et al.,

2013], SkipThought vectors [Kiros et al., 2015], ParagraphVector [Le and Mikolov,

2014], Sequential Denoising Autoencoders (SDAE ) or FastSent [Hill et al., 2016]

and models trained specifically for a certain task trained in a supervised fashion,

for instance the semantic sentence representations for the textual entailment task

[Conneau et al., 2017].

A common approach in creating a sentence representation is by using the final

hidden state of an RNN or the max (or average) pooling from either RNNs hidden

states or the last convolutional layers. Several models have been proposed using this

technique [Ma et al., 2015, Mou et al., 2015, Yin and Schütze, 2015, Palangi et al.,

2016, Tan et al., 2016, Tai et al., 2015].

Another approach is the encoder-decoder architecture, producing models also known

as sequence-to-sequence models [Sutskever et al., 2014, Cho et al., 2014, Bahdanau

et al., 2014]. In this architecture, an RNN (e.g. an LSTM) is used to produce a vector

representation of the sentence, which is then fed as input into a decoder network

that uses it to perform some prediction task (e.g. recreate the sentence, or produce a

translation of it). The encoder and decoder networks are trained jointly in order to

perform the final task. For some tasks, people propose to use attention mechanism

on top of the CNN or LSTM model to introduce an extra source of information to

guide the extraction of sentence embeddings [dos Santos et al., 2016].

In the next section, we present the model for creating sentence embeddings based on

the supervised task of detecting an event mention in a sentence, similar to [Conneau

et al., 2017] for the textual entailment task, which we think can further be transferred

to other tasks (e.g. relation extraction).
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4.2.2 Sentence encoder

Given a sentence representation method, we train a classifier to predict the existence

of a trigger in a sentence. We then keep the dense layer before prediction and for

every new sentence in test, we generate a fixed-sized real-valued vector, a sentence

embedding. Thus, in this sentence embedding, the relationship among words in the

sentence, i.e., the context information, is taken into consideration.

We tend to efficiently learn generic representation embeddings as wide sentential con-

texts, using a bidirectional recurrent neural network (RNN) that can subsequently

be transferred to other tasks (e.g. relation extraction). Essentially, we are able to

encode a sentence using the ACE dataset to learn a model that embeds the entire

sentential context and the hint of the existence of an event mention. We aim at clas-

sifying them in sentences that contain events and sentences that do not, therefore

it is a binary classification.

We motivate the use of a bidirectional RNN by the choice of taking into account

the entire sentential context in both directions, to gain some dependency between

adjacent words within a single sentence. We want to encode a variable length sen-

tence into a fixed size embedding. This is achieved by choosing a linear combination

of two RNN hidden vectors in one representation. The first is applied to the input

sentence and the second one on a reversed copy of the input sequence, which reflects

the bidirectional meaning.

The architecture of sentence encoding is depicted in Figure 4.4. That is, we train

a model that can automatically transform a sentence to a vector that encodes the

semantic meaning of the sentence by using the final hidden state of the last bidi-

rectional RNN and then we consider the sentence embeddings as a larger context

feature for the event detection task.

In the encoding phase, we first transform each token wi into a real-valued vector

xi using the concatenation of the word embedding vectors. This is obtained by
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Figure 4.4 – RNN-based model for creating sentence embeddings

looking up a word embedding table (initialized or not by some pre-trained word

embeddings).

Consider the input sequence X = [x1, x2 . . . xn]. At each step i, we compute the

hidden vector ht = σ
(
Wf [ht−1, xt]+bf

)
based on the current input vector xt and the

previous hidden ht−1 using the non-linear transformation function σ (e.g. sigmoid

or tanh). This recurrent computation is done over X to generate the hidden vector

sequence
−→
h = [h1, . . . , hn]. An important characteristic of the recurrent mechanism

is that it adaptively accumulates the context information from the first position to t

into the hidden vector. However, as we already said, ht is not sufficient for the event

trigger predictions at position i as such predictions might need to rely on the context

information in the future (i.e., from position i to n). Thus, a second RNN is run in

the reverse direction from xn to x1 to generate the second hidden vector sequence
←−
h = [hn, . . . , h1] in which ht summarizes the context information from position n to

t. We obtain the new representation [h1, . . . , hn] for X by concatenating the hidden

vectors
−→
h = [h1, . . . , hn] and

←−
h = [hn, . . . , h1]. ht at time t basically encapsulates

the context information for the whole sentence. This bidirectional representation
−→
h ‖
←−
h , the concatenation of the hidden vectors in both directions, usually focuses

on a specific component of the sentence, like a special set of related words. So it is

expected to reflect an aspect, or component of the semantics in a sentence. Given
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this representation, in the encoding phase, we apply a fully connected layer with a

nonlinear activation and then, another fully-connected layer before prediction done

with sigmoid, for binary classifying the sentences in sentences with and without

events, as shown in Figure 4.4.

The model is trained off-line and saved, in order to be able to use this model for a

transfer task. New sentences are passed through the model and the hidden repre-

sentation produced by the fully-connected layer with a nonlinear activation is picked

up for encoding the sentence into a fixed-sized vector.

4.2.3 Event Detection with sentence embeddings

Figure 4.5 – Event detection model with sentence embeddings

The task of ED is modeled as a word classification task as described in Section 3.3.3.
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As previously said, considering a sentence, we want to predict for each word of the

sentence, if the current token is a trigger and decide what event type it represents.

The current token is surrounded by a context that constitutes the main entry for the

CNN model. For each trigger candidate x(i) ∈ T , we associate it a context window.

We keep this model and modify it at prediction level by adding sentence embeddings

as extra features. We consider that this larger context for a trigger candidate, made

of the whole sentence, can bring more information about discriminant words by

capturing associations between words beyond the range of the n-grams taken into

account by the CNN model.

As depicted in Figure 4.5, for every window of words, we take the whole sentence, we

look-up every word in the sentence in the word embedding table and we concatenate

the real-valued vectors. Then, we feed these vectors into the sentence encoder and

we pick up the hidden representation from the fully-connected layer as a sentence

embedding. We concatenate the max-pooled word and position embeddings with

the sentence embedding and feed this to a fully connected layer with a softmax

activation function to generate the final prediction. One concern is that, for every

sliding window of words with the focus on the middle word, the candidate trigger,

the sentence representation is the same. We are counting in this situation on the rep-

resentation of the context window to add relevant information in order to correctly

detect and classify the trigger candidate.

4.2.4 Results

Hyperparameters

For the bidirectional GRU, we use 256 units for the GRU layers. We then apply a

fully-connected layer of size 400 andReLu activation and a final fully-connected layer

with sigmoid activation, for binary classification. To avoid overfitting, we employ

the use of early stopping [Prechelt, 1998] with a patience of 2 epochs, consisting
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in stopping the training as soon as the error on the validation set is higher than it

was in the previous epoch. We train the networks using stochastic gradient descent

with shuffled mini-batches, the Adam update rule [Kingma and Ba, 2014] with a

learning rate of 1e−3. During the training, the embedding tables (word and position

embeddings) are optimized to achieve the optimal states. Finally, for training, we

use the mini-batch size of 100.

Analysis

We decided to use a GRU network for creating the sentence embeddings by compar-

ing it with an LSTM network. The results are shown in Table 4.1. GRUs usually

run faster than LSTMs since they have fewer parameters, but LSTMs have a greater

expressive power that may lead to better results. We can observe that the bidirec-

tional GRU network is more balanced between precision and recall, while LSTM

favors recall. Thus, we chose GRUs, which has also the benefit of having a smaller

training time than LSTMs.

Table 4.1 – Performance on sentence classification: contains or not an event trigger

LSTM/GRU Precision Recall F1
GRU 78.4 74.4 76.4
LSTM 67.6 86.3 75.9

As it can be observed from Table 4.2, our new NN architecture outperforms the

baseline system by 3.2 points. It also gets results slightly better than the joint model

(5). Thus, adding features corresponding to a sentence representation learned for

the event prediction task has a very positive impact.

If we analyze the triggers returned by the baseline model, CNN without any external

features, our implementation (1), and this new model with sentence embeddings (6),

we notice that from a total of true triggers of 424, (1) returns 366 triggers from which

267 are correct and (6) returns only 276 from which 244 are correct. It explains why
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Table 4.2 – Performance of the state-of-the-art neural-based systems for event de-
tection on the blind test data

Number Approaches Precision Recall F1

1 CNN without any external features, our
implementation 72.9 62.9 67.5

2 CNN without any external features
[Nguyen and Grishman, 2015a] 71.9 63.8 67.6

3 CNN augmented with entity types
[Nguyen and Grishman, 2015a] 71.8 66.4 69.0

4 Dynamic multi-pooling CNN in [Chen
et al., 2015b] 75.6 63.6 69.1

5 Joint RNN in [Nguyen et al., 2016a] 66.0 73.0 69.3
6 CNN with sentence embeddings 88.3 58.9 70.7

7 Non-Consecutive CNN in [Nguyen et al.,
2016b] – – 71.3

8 Hybrid neural network in [Feng et al.,
2016] 84.6 64.9 73.4

the precision of (6), equal to 88.3, is the highest among all the neural-based models

of Table 4.2. More qualitatively, from the true triggers returned by (6), the true

triggers leaving, War, demonstrate, discussions, launched, bloodshed, former, purge,

jailed, launch, targeted, correspondence are not detected by (1). Moreover, there

are no true triggers correctly detected by (1) and not detected by (6), which means

that even though the number of returned triggers returned is small, most of them

are correct.

We can also remark that all models, with the exception of the Joint RNN (5) in

[Nguyen et al., 2016a], tend to favor precision compared to recall, and our model

gets the best one. At the same time, all models tend to suffer from an imbalance

between precision and recall, which may be due to the unbalanced nature of the

task, with many more words that are not event triggers than words that are event

triggers. The Joint RNN seems to extract more triggers of lower quality, giving a

higher cost to false positives and favoring in this way recall over precision, while

our model has a slightly better performance by extracting smaller amounts of more

accurate triggers, which proves that the CNN with sentence embeddings benefits
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from its more global information. In comparison with Joint RNN, we are not using

such a complex set of features (dependency-parse trees, information about entities).

The Non-Consecutive CNN (7) of [Nguyen et al., 2016b] is another way to tackle

the problem of the local nature of n-grams in CNN models by introducing non-

consecutive n-grams, which are expected to help to capture the representation of all

the arguments that are present in a sentence. In terms of comparison with our work,

it should be noted that we do not use gold entity mentions and types, which proved

to add 2 points to the F1 score of the baseline CNN. The joint RNN in [Nguyen

et al., 2016a] (5) and the Hybrid neural network (8) in [Feng et al., 2016] use also a

context representation for enriching the trigger candidate representation.

The model of [Feng et al., 2016] is more particularly interesting in terms of com-

parison with our model since it associates a bidirectional LSTM with a CNN. More

precisely, the bidirectional LSTM is used for producing a representation of trigger

candidates taking into account the preceding and following words in the sentence

while the CNN is quite analogous to our baseline model and focuses on the detec-

tion of the most discriminant n-grams in a window surrounding trigger candidates.

One can notice that there is an imbalance between precision and recall for both our

system and the Hybrid neural network, which may denote the fact that encoding

context at the sentence level benefits to the local features extracted by a CNN and

leads to more precise predictions. Using the same sentence representation for each

candidate trigger as we do seems to accentuate this trend towards high precision.

Moreover, this option has a cost advantage both for training and application in

comparison with [Feng et al., 2016] but at the expense of overall performance.

After having examined how to integrate information about the sentence context of

triggers, in the next section, we will exploit the internal structure of words in order

to include morphological and shape information in the features and will analyze the

effects of this addition accordingly.
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4.3 Exploiting the internal structure of words for

Event Detection

So far, all state-of-the-art models presented are based mainly on word embeddings

and the relative position of a possible trigger to the other words in a sequence.

Some researchers studied the application of Convolutional Neural Networks (CNNs)

to characters. These include using character-level n-grams with linear classifiers

[Kanaris et al., 2007]. [Santos and Zadrozny, 2014] learn character-level embeddings,

joins them with pre-trained word embeddings, and use a CNN for Part-of-Speech

(POS) tagging. The same model was used for improving the performance of a named

entity recognition (NER) system, with character-level embeddings, in [Santos and

Guimaraes, 2015]. Character models have been used with success in several contexts,

mostly in sequential tasks (POS, NER), for tackling the problem of the impossibility

to have pre-trained embeddings for all words. [Zhang et al., 2015, Zhang and LeCun,

2015] explore the use of CNNs to learn directly from characters, without the need

for any pre-trained embeddings. Notably, the authors use a relatively deep network

and apply it to sentiment analysis and text classification tasks. [Kim et al., 2016]

explore the application of character-level convolutions to language modeling, using

the output of the character-level CNN as the input to an LSTM at each time step.

The same model is easily applied to various languages since it does not rely on

words.

In the context of event extraction, we also face the problem of missing word em-

beddings. In the ACE corpus, 14.8% of the words are not part of the pre-trained

embeddings for the Word2vec Google News embeddings [Mikolov et al., 2013a], 1.5%

for the GloVe embeddings [Pennington et al., 2014] and 4.5% for the fastText em-

beddings [Joulin et al., 2016b]). So, one possible advantage of character models

might be the open vocabulary, due to the ability to deal with abnormal character

combinations and misspellings. The ACE corpus comprises different types of dis-
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course, professional news articles, and noisy forum discussions. Thus, there is an

important possibility of the existence of misspelled or custom words.

We also consider that, while word-level embeddings are meant to capture syntactic

and semantic information, character-level embeddings capture morphological and

shape information. As an example, if we take a new word not present in the train-

ing data, torturing, but present in the validation data, given its root and suffix (i.e.

tortur-ing), it is natural to assume that it is a variant of torture and the latter

probably represents the same type of event, that being Life.Injure. If we take an-

other example, a misspelled word, travelling from the validation data and traveling,

the correct variant, present in the training data, with their suffixes travel-l-ing and

travel-ing, we can conclude that probably traveling and its misspelled word might

represent the same type of event, Movement.Transport.

Hence we decided to test if the use of character embeddings in the context of event

extraction could be interesting. We study the effect of the character-level features on

the extraction and classification of triggers by experimenting with word and charac-

ter embeddings separately. We then propose different architectures for incorporating

character-level features. We also propose some sort of data augmentation dedicated

to increase the presence of these variants in the training corpus and apply our model

on the two training datasets.

Our goal is to confirm the hypothesis that character information poses a valuable

source of information for the event detection task.

4.3.1 Character-level CNN

We introduce the character-level CNN that generates a semantically-rich represen-

tation of a sequence of characters. The inputs are character embeddings that can

essentially represent words that are not in the pre-trained embeddings vocabularies

and deals with misspellings. Thus, the words not known in the sequence of words
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can be taken into account more accurately with this level of representation. The

character-level CNN basically applies a convolutional layer with a set of feature maps

(filters) and a max-over-time over the concatenated character embeddings. See the

top model in Figure 4.6.

For each trigger candidate x(i), we associate it a context window. As usual, in

order to consider a limited sized context, longer sentences are trimmed and shorter

ones are padded with a special token. For every word in the context, we generate

the character embeddings and concatenate them. Given the character sequence

c = {c1, . . . , cn} of a word w, we first transform each character ci to its corresponding

d-dimensional character embedding x by look-up in a char embedding table (drawn

from a uniform distribution).

The obtained matrix representation C is then passed through a convolution layer.

In the convolution layer, we have a set of feature maps (filters) {f0f1, ..., fn} for

the convolution operation. Each feature map fi corresponds to some filter size k. A

max-over-time pooling operation [Collobert et al., 2011] is applied over every feature

map and the maximum value is taken as the feature corresponding to this particular

filter.

4.3.2 Model

We make use of the character-level features as following:

— we apply the CNN for Event Detection (ED) presented in Chapter 3 for every

trigger candidate surrounded by a fixed-sized context window and obtain the

concatenation of the convolutional filters with different widths;

— we apply the character-level CNN, as mentioned before, on the sequence of

characters corresponding to the words in the window and we obtain the local

context character-level features.

We perform a late fusion of the results of these two models that separately learned

different characteristics of the candidate trigger. The baseline CNN [Nguyen and
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Figure 4.6 – Event detection model with character-level embeddings

Grishman, 2015a] combines word and positional embeddings that can capture syn-

tactic and semantic information, and of course, the relative positions of words to the

candidate trigger. The character-level CNN learns more local features from charac-

ter n-grams and can capture morphological information. The late fusion focuses on

the individual strength of these two models. We explain the methodology and our

reasons for choosing this kind of late fusion in Section 4.3.4.

4.3.3 Data augmentation

Another possibility for better representing morphological variants in the corpus con-

sists in adding examples. Thus, we propose adopting a type of data augmentation

that relies on the generation of morphological derivations and inflections of triggers.

By morphological derivation, we mean the generation of other words from given

words, often by adding a prefix or a suffix and by inflection generation, we mean
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the modification of verbs, nouns and adjectives to account for different grammatical

features such as tense or gender. The inflections are basically a bundle of morpho-

syntactic features. We decided to augment the true triggers from the training set of

ACE 2015 Dataset, e.g. become, force, hiring, name, sell, conviction. For each of

them, we manually generate different types of variations as in Table 4.3:

Table 4.3 – Examples of variants of true triggers

Triggers Event Type Variants
become Personnel.Start-Position became, becoming, becomes

force Personnel.Start-Position &
Conflict.Attack forces, forced, forcing

hiring Personnel.Start-Position hires, hire, hired
name Personnel.Nominate names, named, naming

sell Transaction.Transfer-
Ownership sells, sold, selling

conviction Justice.Convict convictions, convict, convicts, con-
victed, convicting

For every true trigger in the train set, we generate a context window as explained

in Chapter 3. We create new instances of windows, by replacing the middle word

(true trigger) with its morphological variants.

We motivate our choice by the fact that, in this way, we add morphological informa-

tion to the models and this can increase the ability to distinguish different trigger

forms.

In this work, we manually generated the inflections for the trigger words, which

may not be a reliable technique when handling larger data. One interesting future

approach can be the automatic generation of the variants. For example, the Special

Interest Group on Computational Morphology and Phonology 1 (SIGMORPHON)

and CoNLL have organized since 2016 two types of tasks in inflectional morphology

that could be useful in that perspective: the first task implies the generation of

inflected word forms based on labeled examples (e.g. the conversion of a lemma

become to its present participle, becoming). The second one is more difficult, where

1. More information can be found at http://www.sigmorphon.org/conll2017/

http://www.sigmorphon.org/conll2017/
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the systems must infer the morphological features from the sentential context. More

exactly, the systems have to provide the correct form of a lemma in context.

Next, we experiment with these two ways of adding morphological information to

the models: character-level embeddings, with or without data augmentation.

4.3.4 Results

Hyperparameters

We consider a maximum length of 1024 for a sequence of characters. For every word

in the sequence of 31 words previously presented, we look up every character in a

character embeddings table and concatenate them. If the sequence is smaller than

1024, we pad the end with a special token.

The sequence of character embeddings is passed through a convolutional layer. The

convolutional layer applies a set of 300 filters for each size in the set {2, 3, 4, 5, 6, 7, 8,

9, 10}. Using the max-over-time pooling operation over the character filters of the

word, we extract a fixed-size feature vector for the sequence that could cover the

missing information brought by word embeddings.

We train the two networks (baseline CNN for ED and character-level CNN for ED)

in the same manner, using stochastic gradient descent with shuffled mini-batches

and Adam update rule [Kingma and Ba, 2014]. We employ dropout with a drop

probability of 0.5 before the softmax layer. We also apply a dropout of 0.3 to

the embeddings (word and character). During the training, we update the embed-

ding tables (i.e., word, positional and character embeddings) to achieve the optimal

states. Finally, for training, we use the mini-batch size of 128.
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Analysis

For observing the influence that the character-level features have on the event de-

tection and also, the effect of data augmentation on the performance of the model,

we test the two models, with and without data augmentation.

Table 4.4 – Performance of the baseline CNN with word and positional embeddings
on the blind test data. 1: results with data augmentation

Approaches Precision Recall F1
Baseline CNN 72.9 62.9 67.5
Baseline CNN1 63.4 63.9 63.6

Table 4.5 – Performance of the CNN with character embeddings for event detection
on the blind test data. 1: results with data augmentation

Approaches Precision Recall F1
Character-level CNN 72.0 45.5 55.7
Character-level CNN1 67.6 47.8 56.0

First, we can observe from Table 4.4 and Table 4.5 that data augmentation hurts the

performance of the baseline CNN model, but not the performance of the character-

level CNN. This might be due to the type of data augmentation we use, which modi-

fies the internal structure of words. We assume that, in the case of the baseline CNN,

which relies on pre-trained word embeddings already capturing morpho-syntactic

and semantic properties of words, adding new windows with trigger’s variants may

not be realistic, in the sense that these windows may correspond to word sequences

that are not likely to be found in the dataset. We note, however, that at the char-

acter level, where no pre-trained vectors have been used, the model is able to learn

the meaning of the context of words.

One could notice that the recall of all Character-level CNN s is considerably lower

compared to the Baseline CNN s. We opted in favor of a late fusion of results, being

motivated by the fact that the recall can be increased by the baseline model and the
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precision by the character-level model. More precisely, this late fusion is performed

by a kind of voting method, implemented as follows:

— if a trigger was detected by Baseline CNN and Character-level CNN, we keep

the Character-level CNN label;

— if a trigger was detected by Baseline CNN but not by Character-level CNN,

we keep the Baseline CNN label;

— if a trigger was detected by Character-level CNN but not by Baseline CNN,

we keep the Character-level CNN label.

Moreover, we compare our late fusion approach with a model where we concatenate

the output of the baseline CNN with the character-level CNN output as an extra

feature before prediction. The two models are trained at the same time, sharing

parameters. We also compute these results with the augmented data. Table 4.6

shows the results.

Table 4.6 – Performance of the CNN with character embeddings for event detection
on the blind test data using two fusion methods. 1: results with data augmentation

Approaches Precision Recall F1
Baseline CNN 72.9 62.9 67.5
CNN with character-level features - joint1 82.2 62.5 71.0
CNN with character-level features - joint 84.8 63.4 72.6
CNN with character-level features - late fusion 87.8 63.2 73.5
CNN with character-level features - late fusion1 78.8 74.0 76.3

From Table 4.6, we can first outline that adding character embeddings outperforms

the word embedding baseline CNN for all the models. Second, if we now consider

the different results according to the data augmentation and the fusion method:

— joint & late fusion (not augmented): there is not a considerable difference

between the two (only 0.9);

— joint & late fusion (augmented): in the case of joint prediction, with the two

models trained at the same time, we notice that the recall is comparable to

our baseline CNN while it is much higher for the late fusion approach. We
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assume that in the joint approach, the power of representation provided by

the words and positions from the Baseline CNN is overtaking the influence

of the character embeddings representing morphological properties.

We notice that our best model manages to balance recall and precision using data

augmentation and a late fusion of results (CNN with character-level features - late

fusion1). The advantage of this type of voting is the increase in recall by trusting the

baseline CNN while keeping a good level of precision by giving priority to the CNN

with character-level features. It is clear that data augmentation further improves

the CNN with character-level features by sharing the same purpose, the addition of

more internal information to the features and respectively, the model.

Table 4.7 – Performance of the state-of-the-art neural-based systems for event de-
tection on the blind test data. 1: results with data augmentation

Number Approaches Precision Recall F1

1 CNN without any external features, our
implementation 72.9 62.9 67.5

2 CNN without any external [Nguyen and
Grishman, 2015a] 71.9 63.8 67.6

3 CNN with sentence embeddings1 88.9 54.9 67.9

4 CNN augmented with entity types
[Nguyen and Grishman, 2015a] 71.8 66.4 69.0

5 Dynamic multi-pooling CNN in [Chen
et al., 2015b] 75.6 63.6 69.1

6 Joint RNN in [Nguyen et al., 2016a] 66.0 73.0 69.3
7 CNN with sentence embeddings 88.3 58.9 70.7

8 Non-Consecutive CNN in [Nguyen et al.,
2016b] – – 71.3

9 Hybrid neural network in [Feng et al.,
2016] 84.6 64.9 73.4

10 CNN with character-level features - late
fusion 87.8 63.2 73.5

11 CNN with character-level features - late
fusion and sentence embeddings1 80.7 68.3 74.0

12 CNN with character-level features - late
fusion and sentence embeddings 85.2 66.7 74.8

13 CNN with character-level features - late
fusion1 78.8 74.0 76.3

We now compare different versions of our model with character-level features in
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Table 4.7 with the neural-based models that have results above the baseline result,

i.e., the CNN model without any external features (1, 2) in [Nguyen and Grishman,

2015a], the Dynamic multi-pooling CNN (5) model [Chen et al., 2015b], the Joint

RNN (6) in [Nguyen et al., 2016a], the Non-consecutive CNN (8) in [Nguyen et al.,

2016b], and the Hybrid neural network model (9) proposed by [Feng et al., 2016].

Combining word and positional embeddings with the CNN with character-level fea-

tures ’s output in a late fusion of results resulted in the best performance (76.3% F1

on the blind test set), bringing a gain of 8.8 points in F1 over the Baseline CNN

(1). This demonstrates that our convolutional approach to learning character-level

embeddings can be successfully applied to event detection, with no dependence on

handcrafted features or language and the late fusion of results gives importance to

the character-level model predictions. One weak point of the proposed approach is

the introduction by the character-level CNN of additional hyperparameters to be

tuned. However, we argue that it is generally preferable to tune hyperparameters

than to handcraft features.

In order to understand how data augmentation helps the character-level CNN, we

checked the triggers retrieved by CNN with character-level features1. Without aug-

mentation, the model returns 305 from 424 total true triggers while with data aug-

mentation, it returns 349. 62 of the triggers returned by the augmented model

are not returned by the other. Between them, we note that at least half of them

correspond to inflectional or morphological variants of triggers. Table 4.8 presents

some examples of correct and incorrect triggers that come from the list of generated

variants and that are not in the training set as a true trigger.

Since the obvious next step is to combine the two models we proposed, the CNN with

sentence embeddings model of Section 4.2 and the CNN with character-level features

model, with and without data augmentation, we report these results (11, 12). A

late fusion of results is applied in the same manner as described in the previous

section, where the vote of the Baseline CNN model is replaced by the CNN with
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Table 4.8 – Examples of correct (correctly predicted) variants of true triggers re-
trieved, not present in the train set

Inflections retrieved Correct/Incorrect Existing triggers
formed 3 form, former
formerly 8 form, former
steps 3 step
deploy 3 deployed, deploying
extradited 3 extradition, extraditing
wiped 3 wipe
ousting 3 ouster
funded 3 fund

sentence embeddings model. We observe that, while this replacement leads to higher

results without data augmentation (model 12), it does not reach the performance

of the Baseline CNN model with data augmentation (model 13), even if the data

augmentation has a positive impact on results. An unbalance between precision and

recall is observed, favoring precision. Since we can observe from Table 4.7 that the

highest precisions are obtained for the CNN with sentence embeddings models (3,

7), we assume that in both cases (augmented and not augmented: 11, 12) during

the late fusion, the CNN with character-level features over-improves the quality of

results.

4.4 Conclusions

We proposed two neural-based architectures for Event Detection (ED): CNN with

character-level features and CNN with sentence embeddings, as improvements for

the baseline model that we chose based on a CNN [Nguyen and Grishman, 2015a].

We analyze the effect of the technique of data augmentation and a prediction voting

system that we proposed. The gain in performance can be explained by the following

reasons:

— once again, CNNs are a good choice for event detection, since they semanti-
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cally can understand a sequence of data by extracting the most informative

parts for the sequence of words.

— the need for adding global information (sentence-level) for every trigger candi-

date is proved by the CNN architecture with sentence embeddings by the high

quality of results (high precision). Moreover, we can confirm the effectiveness

of Bi-GRUs to learn effective feature representations for sentences;

— comparing with other neural-based methods, the architecture that makes

use of character-level features has the advantage of representing misspelled,

custom or morphological variants of words from the dataset. When applying

the late fusion of results that favors the Character-level CNN in deciding the

labels of the triggers retrieved by the Baseline CNN, we conclude that the

character-level features help the model in bringing a significant increase in

performance and allow to get state-of-the-art results;

— the proposed data augmentation technique that increases the training dataset

with variants of words (inflections) creates a balance between precision and

recall and the augmented model with character-level features brings the best

performance in comparison with the state-of-the-art approaches.



Chapter 5

Argument role prediction

This chapter focuses on the problem of argument role prediction, i.e., identifying the

corresponding arguments to a trigger with a specific event type. This task comes

as the second building block in the sequential pipeline that has as the first step the

trigger detection and classification. In theory, the two tasks are highly interdepen-

dent but, in practice, they are applied as two separate steps: trigger identification is

first treated as an independent task and argument finding and attribute assignment

are each dependent on the results of trigger identification.

One challenging problem is the reliance on the event detection task, extracting ar-

guments being extremely dependent on the event mentions (trigger words). Another

phenomenon that cannot be ignored and has been studied by previous works in event

extraction is the case of multiple-event sentences, where arguments can be common

to different events, and thus can be mistakenly attached to the wrong event type.

[Chen et al., 2015b] considers this sentence as an example: In Baghdad, a camera-

man died when an American tank fired on the Palestine Hotel. This sentence has

two event mentions: Life.Die event (trigger word: died) and Conflict.Attack event

(trigger word: fired). cameraman has the role of a Victim for the Life.Die event and

a Target for the Conflict.Attack event. The authors try to overcome this problem

by modifying the max-pooling operation applied after the convolution: a dynamic

96
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multi-pooling layer to obtain a maximum value for each part of a sentence, which is

split by event triggers and event arguments. Their motivation is that, by applying

the dynamic multi-pooling, the model captures the most valuable information with

regard to the change of the candidate words.

We propose to model the task of argument role prediction as a relation extraction

problem, where we pair the trigger and one argument in a relation, similar to the

model proposed by [Chen et al., 2015b]. In this chapter, we firstly remind the

common approaches to the relation extraction task and we describe a CNN based

model for our task [Liu et al., 2013, Zeng et al., 2014, Nguyen and Grishman,

2015b]. An analysis of results and hyperparameters follows, proving that though

not requiring complicated feature engineering, our approach outperforms the state-

of-the-art feature-based methods extensively relying on the other supervised modules

and manual resources for features. All the experiments are presented considering

gold and predicted trigger words.

5.1 What are event arguments?

In the ACE 2005 dataset, an event argument is defined as an entity mention, a

temporal expression or a value (e.g. Crime, Sentence, Job-Title) that is involved in

an event (as participants or attributes with a specific role in an event mention). An

event argument has a type and a role. For example, in a Conflict.Attack event type,

one event argument can be an Attacker with three possible types: PER, ORG, GPE

(Person, Organization, Geo-political Entity). The entity types detection has close

ties to the named entity recognition (NER), work that is beyond the purposes of

this thesis.

An entity mention (or as we will be referring to in the next sections, an argument)

is a snippet of text that refers to something of an appropriate role.

Examples of argument roles are: Attacker, Target for an event of type Conflict.Attack.
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All events can also have a Time and Place argument.

For example, for this sentence:

There was the free press in Qatar, Al Jazeera but its’ offices in Kabul and Baghdad

were bombed by Americans.

An argument detection and classification system should give as an output, for each

argument, the following values:

— the event type: Conflict.Attack

— the argument role: Attacker

— the text snippet associated to the argument: Americans

One of the main challenges in evaluating such a system is that there are types of

arguments that are common to many types of events. Place and Entity are common

to most of the event types.

Identifying event arguments is a pair classification task. Each event mention is

paired with each of the entity/timex/value mentions occurring in the same sentence

to form a single classification instance. There are 36 classes in total: 35 role types

and also an Other class. Again, the distribution of classes is skewed, though not as

heavily as for the anchor task, with around 70% Other instances. The Other class

is represented by the heads of all the other nouns, proper nouns or phrasal nouns

that are not in relation with the trigger. One additional consideration is that no

single event type allows arguments of all 36 possible roles, each event type has its

own set of allowable roles.

Following previous work [Ji et al., 2008, Liao and Grishman, 2010, Hong et al., 2011,

Nguyen and Grishman, 2015a, Chen et al., 2015b], an argument is correctly identified

if its event subtype and offsets match those of any of the reference arguments. We

consider the heads of all the nouns, proper nouns, and noun phrases and we consider

the new offsets for the evaluation.

Finally, we use the same test set and the same training set as in previous work and
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we evaluate the overall performance of the system with Precision (P), Recall (R)

and F-measure (F1).

5.2 Links with Relation Extraction

In supervised approaches, the Relation Extraction (RE) and classification task

specifically refers to the classification of an entity pair to a set of known relation

types, using sentences containing mentions of the entity pair. The relation extrac-

tion task refers to predicting whether a given document contains a relation or not

for the pair, modeled as a binary classification. Relation classification refers to pre-

dicting which relation class, coming from a given ontology, that document points to,

given that it contains a relation (modeled as a multi-class classification problem).

The two tasks can be combined by making a multi-class classification problem with

an extra no relation class, thus, creating a tremendously unbalanced dataset where

the number of the non-relation examples far exceeds the others, making relation

extraction more challenging.

[Liu et al., 2013, Zeng et al., 2014, Nguyen and Grishman, 2015b] created similar

models for relation extraction based on a Convolutional Neural Network (CNN)

approach. [Liu et al., 2013] built a model with the inclusion of lexical features (Part-

of-Speech (POS), entity types). With the motivation that the previous models that

use word embeddings as input neglect semantic meaning among words, the authors

assign a single vector to each synonym class rather than giving every individual

word a vector. However, the model fails to exploit the real representational power

of word embeddings.

Similarly to the previous model, [Zeng et al., 2014] used a CNN for encoding the

sentence level features. But unlike [Liu et al., 2013], they used pre-trained word

embeddings. The paper was the first work that used positional embeddings that

we used for event detection task in Chapter 3.3, which were adopted as standard
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in all subsequent RE and EE neural-based models. The sentence-level features are

obtained through a non-linear transformation (activation function) applied on a

max-pooled CNN. To replace the discrete features used by previous models, which

were depending strongly on the results of existing NLP tools, they propose the

lexical-level features that consist in the word embeddings of the targeted candidate

entities and their context tokens. The lexical and sentence-level features are then

concatenated to form a final feature vector and a softmax is applied to compute the

confidence of each relation. One important contribution of this model was the use

of a max-pooling layer after the convolutional layer.

The model proposed by [Nguyen and Grishman, 2015b] gets rid completely of ex-

ternal lexical features to enrich the representation of the input sentence and lets the

CNN learn the required features itself. Their architecture is similar to [Zeng et al.,

2014], consisting of the sentence-level word embeddings and positional embeddings

followed by convolution and max-pooling. The positional feature is the combina-

tion of the relative distances of the current word to both entities of the relation.

Additionally, they also incorporate convolutional kernels of varying sizes to capture

wider ranges of n-gram features.

In Event Extraction (EE), this model became the base model for the argument role

prediction neural-based pipelined approaches. For example, the authors of [Chen

et al., 2015b] target one challenge of EE, that is to say, the fact that one argument

can be common to multiple events, in the same sentence. After the prediction of the

trigger word, the arguments can be mistakenly attached to the wrong event type.

They try to overcome this problem by implementing a max-pooling CNN applied to

the word embeddings of a sentence, to obtain, what they call, sentence-level features.

As in [Zeng et al., 2014], they use the lexical-level features. They select the word

embeddings of candidate words (candidate trigger, candidate argument) and the

context tokens (left and right tokens of the candidate words) and concatenate them.

This is injected in the main CNN, before prediction.
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We will present in the next section a CNN based model for argument role label-

ing, that uses the minimum required features: word and positional embeddings, to

analyze the dependency of arguments to the event detection task.

5.3 CNN model for argument role prediction

We base our model on a max-pooled CNN with word and positional embeddings as

main features, which is the main architecture of the [Chen et al., 2015b, Nguyen

and Grishman, 2015a, Nguyen and Grishman, 2015b]. The input of the model for

argument role prediction consists of sentences marked with a trigger word, its type,

and one argument of interest. We compute the maximal distance, in the training

set, between the trigger and an argument linked by a relation (labeled with the

event subtype) and choose an input width greater than this distance. We ensure

that every input has this length by trimming longer sentences and padding shorter

sentences with a special token.

Given a document, we first generate a set of argument candidates T , consider-

ing only heads of the nouns, proper nouns and phrasal nouns as possible can-

didates. For each argument candidate x(a) ∈ T , we associate it with all the

words in the sentence as a context, thus an argument candidate is represented as

x = [x(1), x(t) . . . , x(a), . . . , x(n)], where n is the length of the sentence and x(t) denotes

the trigger and x(a) denotes the argument candidate. Each candidate x(a) or context

word x(i) has as features the word itself, the relative distance of the token to the

trigger x(t), the relative distance to the argument candidate x(a) and the event type

detected in the ED step. Note that the relative distances only range from −n + 1

to n − 1. The position embedding matrix D has size (2n − 1) ×md where md is a

hyperparameter indicating the dimensionality of the positional embeddings). Each

feature is mapped to a vector retrieved from the following embedding tables:

— Word Embedding Table (initialized or not by some pre-trained word embed-
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dings)

— Positional Embedding Table: to embed the relative distances. Each distance

value is associated with a d-dimensional vector. In practice, the table is

initialized randomly.

— Event Embedding Table: each type of event (Life, Movement etc.) or sub-

type (Conflict.Attack, Life.Marriage, Life.Die etc.) is associated with a d-

dimensional vector. As in the case of positional embeddings, the table is

initialized randomly. In this work, we experiment with both possibilities.

Figure 5.1 – CNN model for argument role prediction

The word embeddings wi, the positional embeddings d(1)i , d(2)i and the event embed-

ding ei are concatenated into a single vector xi = [wi, d
(1)
i , d

(2)
i , ei] to represent the

word xi. As a result, the original sentence x can now be viewed as a matrix X of size

(mw+2md+me)×n where me is the dimensionality of the event embedding vectors,

mw the size of the word embedding and md, the size of the positional embedding.

The matrix representation X is then passed through a convolution layer. In the

convolution layer, we have a set of feature maps (filters) {f0f1, ..., fn} for the con-

volution operation. A max-over-time pooling operation [Collobert et al., 2011] is

applied over every feature map and the maximum value is taken as the feature cor-

responding to this particular filter [Kim, 2014, Kalchbrenner et al., 2014]. These

features form the penultimate layer and are passed to a fully connected softmax



5.4. The influence of Event Detection on arguments 103

layer whose output is the probability distribution over labels.

5.4 The influence of Event Detection on arguments

Since we formulated the event extraction as a two-stage, multi-class classification

via two neural networks models with automatically learned features, we present our

choices for these steps. In the first stage, event detection, we use the CNN with

character-level features presented in Chapter 4, Section 4.3 (model 13 in Table 4.7),

to classify each word of a sentence to identify trigger words. If one sentence has trig-

gers, the second stage is conducted, which applies the CNN presented in the previous

section, to assign arguments to triggers and assign the roles to the arguments.

We formalize the task as follows. Let W = [w1, w2, . . . wn] be a sentence where n is

the sentence length and wi is the i-th token.

For every sentence W , we check every wi to find the trigger words. If wi is a trigger

word for some event of interest, we then need to predict the roles of every argument

candidate. For every trigger detected and classified, we use the predicted event

subtype and classify every argument candidate from the sentence (filtered by Part-

of-Speech (POS): the heads of all the noun or proper noun chunks). Thus, for every

pair (detected trigger, candidate argument), the argument role is predicted. The

first N possible roles are kept with their probability. From these roles, only those

that can be part of the subset roles possible for the detected event subtype and

the one who has a maximum probability is considered as a result. If there are no

possible roles, then the candidate argument is categorized as an Other.

For example, if we take this sentence: There was the free press in Qatar, Al Jazeera

but its’ offices in Kabul and Baghdad were bombed by Americans.

Suppose bombed has been detected and classified as Conflict.Attack. The argument

candidates are: press, Qatar, Al Jazeera, offices, Kabul, Baghdad, and Americans.
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For every pair (bombed , Baghdad), (bombed , Americans) etc., we classify the argu-

ment candidates. If for Americans two roles are detected: Conflict.Defendant and

Attack.Attacker, with different probabilities, since the event subtype corresponds to

the trigger Conflict.Attack, we consider the argument role with the greater probabil-

ity. If, in case of one predicted role is Die.Victim, which corresponds to the Life.Die

event subtype, then we keep the other one that corresponds to Conflict.Attack event

subtype subset of argument roles.

5.5 Results

Hyperparameters

The parameters used for the CNN model for argument detection/classification are

depicted as follows. The filter sizes used in the experiments are in the set {2, 3, 4, 5}

to generate feature maps and 300 feature maps are used for each filter size in this

set as in [Nguyen and Grishman, 2015a].

The context is the whole sentence with a maximum size of 153 tokens (the length

of the longest sentence) and shorter sentences are padded with a special token. The

dimensionality for the positional embeddings is set to 50 [Nguyen and Grishman,

2015a] and 100 for event embeddings. We chose the event subtype due to the results

of the experiments where we check which one from the event type or subtype is

more suited for this task. These embeddings are drawn from a Gaussian distribution

[Glorot et al., 2011]. The size of the mini-batch is set to 128 and we employed the

pre-trained Word2vec [Mikolov et al., 2013a] word embeddings trained on Google

News.

We use as regularization the early stopping [Prechelt, 1998], with a patience of 2

epochs, i.e. the number of epochs to wait before stopping the training if no progress

on the validation set. Training is done via stochastic gradient descent with shuffled
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mini-batches and the Adam update rule with a learning rate of 1e−3. As in previous

experiments, the weights of the words, positional and event embedding tables are

updated during the training of the model.

Analysis

In order to evaluate the effectiveness of the event embeddings, Table 5.1 reports

the performance of the proposed CNN on the blind test set when the event subtype

embeddings are either included or excluded from the systems. We make a difference

between event type and subtype embeddings and compare them also.

Table 5.1 – Argument classification, results with gold triggers (gold relative distances
to the trigger words) and event type/subtype, on the blind test set

Approaches Precision Recall F1
− event embeddings 57.37 47.41 51.92
+ event type embeddings 58.35 49.34 53.46
+ event subtype embeddings 60.40 50.42 54.96

We always use positional embeddings in these scenarios. The reported results are

obtained using gold triggers and event type/subtype. There is a 3 points perfor-

mance gain with the event subtype embeddings over the model with only word

and positional embeddings. Therefore this feature will be considered for the next

experiments in the form EventType.EventSubtype (e.g. Conflict.Attack).

The Event Detection (ED) step predicts the EventType.EventSubtype and provides

the position of the trigger word in the sentence. In order to evaluate the influence of

the importance of the detected positions of the triggers (and thus, the importance of

the positional embeddings) towards argument role classification, we report in Table

5.2 the performance on the blind test set, without the EventType.EventSubtype of

the event and with/without the relative distances to the trigger. Note that in

the experiment without the relative distances to the trigger, we also consider the

sentences where no trigger is present, thus the results do not depend at all on
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the trigger detection stage. With the large margin of performance, it is very clear

Table 5.2 – Argument classification, results without EventType.EventSubtype infor-
mation and with/without relative distances to the trigger on the blind test set

Approaches Precision Recall F1
− trigger distances 22.03 6.03 9.47
+ trigger distances 57.37 47.41 51.92

from the Table 5.2 that the positional embeddings relative to the trigger are very

important and also very useful for CNNs for completing the argument role prediction

task.

In Table 5.3, we present the results for argument role classification with provided

gold-standard triggers and with predicted triggers.

Table 5.3 – Performance of the CNN for argument classification on the blind test
data, with gold and predicted triggers

Approaches Precision Recall F1
Our CNN with gold triggers 60.40 50.42 54.96
Our CNN with predicted triggers 47.46 40.08 43.46

Our CNN with predicted triggers has a considerable loss in F1, of 11.5%, which

obviously means that arguments are dependent on a correct prediction of the trigger.

Thus improving the model for trigger detection would probably lead to an increase

in performance of the argument role prediction task.

We compare the proposed CNN with these state-of-the-art systems on the blind test

set and compare with the following systems:

— The feature-based systems with local features (rich hand-designed feature

sets) and global features such as cross-document, cross-sentence and cross-

event information: the pipelined architecture in Cross-event in [Liao and

Grishman, 2010] (3), both models proposed by [Li et al., 2013b] (2, 6) and

[Yang and Mitchell, 2016] (5), the pipelined MaxEnts (1) and the joint ar-

chitecture (the structured perceptron model for joint beam search with local
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Table 5.4 – Performance of the state-of-the-art systems for argument classification
on the blind test data

Number Approaches Precision Recall F1
1 Our CNN with predicted triggers 47.4 40.0 43.4

2 MaxEnt with local features in [Li et al.,
2013b] 65.4 33.1 43.9

3 Cross-event in [Liao and Grishman, 2010] 45.1 44.1 44.6
4 Cross-entity in [Hong et al., 2011] 51.6 45.5 48.3

5 Joint at document level in [Yang and
Mitchell, 2016] 70.6 36.9 48.4

6 Joint beam search with local and global
features in [Li et al., 2013b] 64.7 44.4 52.7

7 Dynamic multi-pooling CNN in [Chen
et al., 2015b] 62.2 46.9 53.5

8 Joint RNN in [Nguyen et al., 2016a] 54.2 56.7 55.4

and global features in [Li et al., 2013b]) (6), the pipeline with cross-entity

inference in [Hong et al., 2011] (4).

— The neural-based models: the dynamic multi-pooling CNN model [Chen

et al., 2015b] (7) and the bidirectional joint Recurrent Neural Networks

(RNNs) [Nguyen et al., 2016a] (8).

Our CNN with predicted triggers performs comparably with the MaxEnt with local

features in [Li et al., 2013b] model (1) (a difference of 0.5%), which is also a joint

model. In contrast with this system with discrete features, our system does not

require any external features and only employs sentence-level information.

The joint RNN in [Nguyen et al., 2016a] (6) obtains the best results for argument

role classification but heavily relies on lexical and syntactic features inherited from

[Li et al., 2013b] (1, 4). It also has the highest recall because, besides the sentence-

level features (sentence encoding), the model uses the dependencies among argument

roles and among trigger subtypes, encoded by memory matrices. The trigger and

the arguments are predicted simultaneously, in a joint approach, so that the model

benefits of the memory matrices. For example, in the case of a 2-event sentence, an

argument common to the two different events, can be easily attached to the right
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event mention, knowing the previous detected triggers and arguments (e.g. one can

notice that a Victim argument for a Life.Die event is often the Target argument for

an Conflict.Attack event in the same sentence). In comparison with this system, the

joint RNN [Nguyen et al., 2016a] (6), it is clear that a joint architecture augmented

with discrete features can bring benefits.

5.6 Conclusions

We presented the argument detection and classification task as a use case of the

Event Detection (ED) task. We considered an approach similar to the Relation

Extraction (RE) methods, where we defined a relation between the trigger and every

argument in an event mention. These are our conclusions regarding the results:

— The argument classification step uses the event subtypes predicted in the

ED step and the position of the detected trigger (the relative distance of

an argument candidate is computed in regards to this position). We saw a

significant drop in performance between the cases where either gold triggers or

the predicted triggers are used. Thus, an improvement of the trigger detection

could facilitate the argument role prediction task. A correct detected trigger

along with its position can clearly bring a gain in performance.

— Future work regarding this task may include the addition of character-level

features and improvements to the model.

— Finally, the experiments proved that an argument role prediction system

could benefit from a joint architecture, where previous detected arguments

or triggers can influence the new predictions.
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Conclusions

This thesis has developed neural-based models for the Event Extraction task, more

exactly for the sub-tasks Event Detection (ED) and Event Arguments Detection and

Classification. Its main motivation is overcoming the difficulty of feature engineering

for this type of tasks. The thesis has three main parts: firstly, the reproduction of a

baseline neural-based system for ED and its in-depth study; secondly, the proposal

of two new neural network architectures to take into account both the context at the

sentence level and the morphological variants of words to improve the performance

of event detection; thirdly, the argument identification and classification, presented

as a use case for the event detection stage.

6.1 Summary of the contributions of the thesis

In Chapter 3, we re-implemented the baseline model for the Event Detection (ED)

task based on a Convolutional Neural Network (CNN) proposed by [Nguyen and

Grishman, 2015a]. We evaluated the model in a general setting and proposed a

detailed analysis of its results according to its hyperparameters, especially its input

word embeddings. Experiments showed that the choice of pre-trained embeddings

and the embedding size have an important impact on the performance. The most

109
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efficient embedding size we found was 300 and also, for ACE events, we proved

that embeddings trained on large news datasets (large vocabulary) got the best

performance.

Chapter 4 presents two new neural network systems that integrate and improve

the baseline neural-based model for event detection. Firstly, we introduced a more

global information for every trigger candidate, in order to help to recognize if a word

is an event trigger or not and to disambiguate trigger words that can refer to several

events. We proposed to build sentence representations relevant to the task of ED

by training a Bi-GRU on a global classification task, to differentiate sentences that

contain an event trigger and sentences that do not. This model is trained off-line

and at the moment of trigger prediction (ED), we encode the sentence from which

the context of the candidate trigger has been taken. This new representation is

added before prediction in the baseline model. The high quality returned results

are due to a high precision with an improvement of by 15.4 points over the chosen

baseline model. The F1 is increased by 3.2 points. It compares favorably with the

joint model in [Nguyen et al., 2016a] which also benefit from a sentence encoding

done with a Bidirectional Gated Recurrent Units (Bi-GRU). We can thus confirm

the effectiveness of RNNs to learn effective feature representations for sentences.

Secondly, we proposed two techniques for incorporating the inner information of

words as new features. Firstly, we consider creating character-level features that

can capture morphological and shape information of words, whereas word embed-

dings are effective to capture word-level syntactic and semantic information. For

noticing the effect of the character-level features, we perform two types of experi-

ments regarding the way the predictions are generated. Firstly, we jointly trained

the baseline model and the character-level model together and predicted once, and

secondly, we performed a late fusion of the results of the baseline CNN and the

character-level model trained separately in order to benefit of the different learned

characteristics of the candidate trigger.
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The second technique is a type of data augmentation that relies on morphological

derivation and inflection generation, which practically adds variants of known trig-

gers in train, targeting the same impact as the character-level features. We noticed

that data augmentation hurts the performance of the models that use word embed-

dings, but improves the performance of the models that use character embeddings,

which we assume it is due to the type of data augmentation that modifies the inter-

nal structure of the word. At the character-level, where no pre-trained vectors have

been used, the model is able to learn the meaning of the context of words.

The experiments show that data augmentation and a late fusion of results from the

baseline CNN and the character-level features bring an increase of 8.8 points in F1

in comparison with the baseline model. As the late fusion of results focuses on the

individual strength of the models, the precision and recall of this architecture are

balanced and we obtain the highest results in comparison with the state-of-the-art

results.

Naturally, we combined these models together: the model with sentence embed-

dings and the model with character-level features, in all the scenarios, with and

without data augmentation, with and without late fusion of results. We did not

get a better performance. An unbalance between precision and recall is observed,

favoring excessively the precision, which probably results from the fact that both

the model with sentence embeddings and the model with character-level features

tend to over-improve the quality of results.

In Chapter 5, we presented the influence of ED on arguments detection and clas-

sification. We consider identifying event arguments as a relation extraction task,

where the first argument is the event mention (trigger) detected in the first stage

and the second is a candidate argument of the event mention. The event type pre-

dicted in the ED step is used as a feature for argument detection and classification,

along with the position of the candidate argument to the predicted trigger. Our

experiments show that the correct detection of the trigger is crucial, the predicted



112 Chapter 6. Conclusions

event type being less important. At test phase, when predicting arguments with the

already predicted trigger, we saw that the pipeline approach leads to error prop-

agation. Nevertheless, the proposed approach performed slightly better than the

feature-based systems and requires neither any elaborated hand-designed features

nor features produced by existing supervised Natural Language Processing toolkits

and resources.

In this thesis, we showed that neural-based models without any use of NLP tools

allow encoding different kinds of features (local sentence structures, sentence-level

context, morphological variations) while achieving very good performances for the

ED task, and acceptable results for the argument detection and classification task.

As a consequence, these models help to minimize the effort of feature engineering

compared to the preceding approaches on the same dataset. We will make the code

available on GitHub 1.

6.2 Future work

Following this dissertation, we envision future work for the Event Extraction (EE)

task.

An important advantage of the proposals in this thesis is the non-reliance on features

extracted from Natural Language Processing toolkits and rich hand-designed feature

sets specific to this task.

Since we observed that the ED stage is crucial for argument detection and classifi-

cation, we also envision the implementation of a joint model in order to capture the

inter-dependencies between triggers and arguments.

Considering the architecture of the model, we consider experimenting replacing the

Convolutional Neural Networks (CNNs) with Capsule Networks proposed by [Sabour

1. https://github.com/EmanuelaBoros/event-detection

https://github.com/EmanuelaBoros/event-detection
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et al., 2017]. They are meant to overcoming one of CNN major drawbacks, the fact

that the max-pooling operation disregards positional information. This operation

basically helps in creating positional invariance which can lead to triggering false

positive for a sequence of words. For example, as explained in [Chen et al., 2015b],

there can be cases in event extraction, where one sentence may contain two or more

events, and these events may share arguments with different roles. A percentage

of 27.3 of the sentences in the ACE dataset contain more than one trigger words.

[Chen et al., 2015b] considers this sentence: In Baghdad, a cameraman died when

an American tank fired on the Palestine Hotel. This sentence reflects two event

mentions: Life.Die event (trigger word: died) and Conflict.Attack event (trigger

word: fired). A max-pooling layer keeps the most important information in the

sentence, thus, it can obtain a cameraman died, and disregard an American tank

fired. This can lead to predicting the sentence as a Conflict.Die event, and totally

ignoring the Attack event. Also, these events share an argument with different

roles. cameraman has the role of a Victim for the Life.Die event and a Target

for the Conflict.Attack event. In this case, a missed event mention leads to error

propagation in the event argument roles classification stage. The authors of [Chen

et al., 2015b] tried to overcome this problem by implementing the max-pooling

operation as a multi-pooling convolutional network. One drawback of their solution

is the fact that this model is highly dependent on the task (trigger and argument

position).

Until now, we considered event detection as a word classification task. Candidate

triggers in the form of multi-word expressions were stripped of the components

that are not verbs (e.g. adverbs or prepositions). One possibility of eliminating the

constraint of predicting every word is the employment of the BIO annotation schema

to assign the labels to each word in the sentences. This technique has already been

applied by [Nguyen and Grishman, 2015a] only for argument classification.

We also envision a work on one major drawback of the EE, that is to say, the

requirement of large training datasets which require a significant work on manual
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annotation and a considerable amount of expert domain knowledge and expertise.

Solutions could include unsupervised or weakly-supervised techniques (e.g. boot-

strapping, that has been one trend in augmenting data in case of the pattern-based

methods). Unsupervised learning models have been applied successfully in other

problems such as autoencoder models [Xu et al., 2017], Generative Adversarial Net-

works (GANs) [Goodfellow et al., 2014] etc. GANs are basically neural networks

that learn to create synthetic data similar to a known input data, having as compo-

nents a generator and a discriminator. A vast palette of GANs has been proposed

towards data augmentation. At first, the main drawbacks of this GAN architecture

were: one cannot control what data to generate, and cannot generate categorical

data. As explained by the authors of [Goodfellow et al., 2014], If you output the

word penguin, you cannot change that to penguin + .001 on the next step, because

there is no such word as penguin + .001. You have to go all the way from pen-

guin to ostrich. 2. Solutions to these drawbacks were implemented in [Chen et al.,

2016, Gulrajani et al., 2017, Donahue et al., 2016]. Very recently, a first attempt

at applying a kind of GAN method to event extraction has been proposed in [Hong

et al., 2018].

One other possible perspective can be the formulation of the ED task as a sequen-

tial learning problem to capture temporal dependencies in sequences, potentially of

arbitrary length. These models usually rely on Recurrent Neural Networks (RNNs).

One improvement could be the implementation of an attention mechanism for a bet-

ter modeling of long-term dependencies [Luong et al., 2015, Yang et al., 2016, dos

Santos et al., 2016]. Attention mechanisms allow for a more direct dependence be-

tween the states of the model at different points in time. Usually, a model that could

benefit from such attention mechanism is of an encoder-decoder type. A Convolu-

tional Neural Network (CNN) generates semantically-rich representations of text

(the encoder) and an RNN (the decoder) is applied after, for predicting the next

sequence. At this moment, the attention mechanism is focusing on the relevant

2. Information available at https://www.reddit.com/r/MachineLearning/comments/
40ldq6/generative_adversarial_networks_for_text/

https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/
https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/
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information generated by the CNN, so the decoder only uses specific information

and finally makes the prediction. An attention mechanism allows the model to learn

how to generate a context vector for each time step, and, thus, in the context of

event extraction, it can be useful in the case of multiple event sentences.
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danpur, S. (2010). Recurrent neural network based language model. In Inter-

speech, volume 2, page 3.

[Mikolov et al., 2013b] Mikolov, T., Yih, W.-t., and Zweig, G. (2013b). Linguistic

regularities in continuous space word representations. In Hlt-naacl, volume 13,

pages 746–751.

[Miller et al., 1990] Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller,

K. J. (1990). Introduction to wordnet: An on-line lexical database. International

journal of lexicography, 3(4):235–244.

[Mnih and Hinton, 2007] Mnih, A. and Hinton, G. (2007). Three new graphical

models for statistical modelling. In 24th International Conference of Machine

learning (ICML 2007), pages 641–648. ACM.

[Mooney, 1999] Mooney, R. (1999). Relational learning of pattern-match rules for

information extraction. In Sixteenth National Conference on Artificial Intelli-

gence, pages 328–334.

[Moschitti et al., 2003] Moschitti, A., Morarescu, P., and Harabagiu, S. (2003).

Open-domain information extraction via automatic semantic labeling. In Pro-

ceedings of FLAIRS, pages 397–401.

[Mou et al., 2015] Mou, L., Peng, H., Li, G., Xu, Y., Zhang, L., and Jin, Z. (2015).

Discriminative neural sentence modeling by tree-based convolution. arXiv preprint

arXiv:1504.01106.

[Nam and Han, 2016] Nam, H. and Han, B. (2016). Learning multi-domain convolu-

tional neural networks for visual tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4293–4302.



BIBLIOGRAPHY 129

[Nguyen et al., 2016a] Nguyen, T. H., Cho, K., and Grishman, R. (2016a). Joint

event extraction via recurrent neural networks. In Proceedings of NAACL-HLT,

pages 300–309.

[Nguyen et al., 2016b] Nguyen, T. H., Fu, L., Cho, K., and Grishman, R. (2016b).

A two-stage approach for extending event detection to new types via neural net-

works. ACL 2016, page 158.

[Nguyen and Grishman, 2015a] Nguyen, T. H. and Grishman, R. (2015a). Event

detection and domain adaptation with convolutional neural networks. In ACL

(2), pages 365–371.

[Nguyen and Grishman, 2015b] Nguyen, T. H. and Grishman, R. (2015b). Relation

extraction: Perspective from convolutional neural networks. In Proceedings of

NAACL-HLT, pages 39–48.

[Nguyen and Grishman, 2016] Nguyen, T. H. and Grishman, R. (2016). Modeling

skip-grams for event detection with convolutional neural networks. In Proceedings

of EMNLP.

[Nguyen and Grishman, 2018] Nguyen, T. H. and Grishman, R. (2018). Graph con-

volutional networks with argument-aware pooling for event detection. In Thirty-

Second AAAI Conference on Artificial Intelligence (AAAI 2018).

[Nguyen et al., 2016c] Nguyen, T. H., Sil, A., Dinu, G., and Florian, R. (2016c). To-

ward mention detection robustness with recurrent neural networks. arXiv preprint

arXiv:1602.07749.

[Palangi et al., 2016] Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J.,

Song, X., and Ward, R. (2016). Deep sentence embedding using long short-term

memory networks: Analysis and application to information retrieval. IEEE/ACM

Transactions on Audio, Speech and Language Processing (TASLP), 24(4):694–707.

[Patwardhan, 2010] Patwardhan, S. (2010). Widening the field of view of informa-

tion extraction through sentential event recognition. PhD thesis, University of

Utah.



130 BIBLIOGRAPHY

[Patwardhan and Riloff, 2007] Patwardhan, S. and Riloff, E. (2007). Effective in-

formation extraction with semantic affinity patterns and relevant regions. In 2007

Joint Conference on Empirical Methods in Natural Language Processing and Com-

putational Natural Language Learning (EMNLP-CoNLL 2007), pages 717–727.

[Patwardhan and Riloff, 2009] Patwardhan, S. and Riloff, E. (2009). A unified

model of phrasal and sentential evidence for information extraction. In 2009 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP 2009),

pages 151–160.

[Peng and Dredze, 2016] Peng, N. and Dredze, M. (2016). Learning word segmenta-

tion representations to improve named entity recognition for chinese social media.

arXiv preprint arXiv:1603.00786.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014).

Glove: Global vectors for word representation. In EMNLP, volume 14, pages

1532–1543.

[Pradet et al., 2014] Pradet, Q., Danlos, L., and de Chalendar, G. (2014). Adapting

verbnet to french using existing resources. In Ninth International Conference on

Language Resources and Evaluation (LREC’14).

[Prechelt, 1998] Prechelt, L. (1998). Early stopping-but when? Neural Networks:

Tricks of the trade, pages 553–553.

[Riloff, 1996a] Riloff, E. (1996a). Automatically generating extraction patterns from

untagged text. In AAAI’96, pages 1044–1049.

[Riloff, 1996b] Riloff, E. (1996b). An empirical study of automated dictionary con-

struction for information extraction in three domains. Artificial intelligence,

85(1):101–134.

[Rumelhart et al., 1985] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.

(1985). Learning internal representations by error propagation. Technical report,

California Univ San Diego La Jolla Inst for Cognitive Science.



BIBLIOGRAPHY 131

[Rumelhart et al., 1988] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.

(1988). Learning representations by back-propagating errors. MIT Press, Cam-

bridge, MA, USA.

[Ruppenhofer et al., 2016] Ruppenhofer, J., Ellsworth, M., Petruck, M. R., John-

son, C. R., and Scheffczyk, J. (2016). FrameNet II: Extended theory and practice.

Institut für Deutsche Sprache, Bibliothek.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,

S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Ima-

genet large scale visual recognition challenge. International Journal of Computer

Vision, 115(3):211–252.

[Ryan, 2011] Ryan, R. J. (2011). Groundtruth Budgeting: A technique for Weakly-

Supervised Relation Extraction of Medical. PhD thesis, MIT CSAIL.

[Sabour et al., 2017] Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic

routing between capsules. In Advances in Neural Information Processing Systems,

pages 3857–3867.

[Santos and Zadrozny, 2014] Santos, C. D. and Zadrozny, B. (2014). Learning

character-level representations for part-of-speech tagging. In Proceedings of the

31st International Conference on Machine Learning (ICML-14), pages 1818–1826.

[Santos and Guimaraes, 2015] Santos, C. N. d. and Guimaraes, V. (2015). Boost-

ing named entity recognition with neural character embeddings. arXiv preprint

arXiv:1505.05008.

[Schnabel et al., 2015] Schnabel, T., Labutov, I., Mimno, D., and Joachims, T.

(2015). Evaluation methods for unsupervised word embeddings. In Proceedings

of the 2015 Conference on Empirical Methods in Natural Language Processing,

pages 298–307.

[Schuler, 2005] Schuler, K. K. (2005). Verbnet: A broad-coverage, comprehensive

verb lexicon.

[Shaoul, 2010] Shaoul, C. (2010). The westbury lab wikipedia corpus. Edmonton,

AB: University of Alberta.



132 BIBLIOGRAPHY

[Shen et al., 2014a] Shen, Y., He, X., Gao, J., Deng, L., and Mesnil, G. (2014a).

A latent semantic model with convolutional-pooling structure for information re-

trieval. In Proceedings of the 23rd ACM International Conference on Conference

on Information and Knowledge Management, pages 101–110. ACM.

[Shen et al., 2014b] Shen, Y., He, X., Gao, J., Deng, L., and Mesnil, G. (2014b).

Learning semantic representations using convolutional neural networks for web

search. In Proceedings of the 23rd International Conference on World Wide Web,

pages 373–374. ACM.

[Socher et al., 2011] Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Man-

ning, C. D. (2011). Semi-supervised recursive autoencoders for predicting sen-

timent distributions. In Conference on Empirical Methods in Natural Language

Processing, pages 151–161.

[Socher et al., 2013] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D.,

Ng, A., and Potts, C. (2013). Recursive deep models for semantic compositionality

over a sentiment treebank. In Proceedings of the 2013 conference on empirical

methods in natural language processing, pages 1631–1642.

[Stevenson, 2006] Stevenson, M. (2006). Fact distribution in information extraction.

Language Resources and Evaluation, 40(2):183–201.

[Stevenson and Greenwood, 2005] Stevenson, M. and Greenwood, M. A. (2005). A

semantic approach to ie pattern induction. In Proceedings of the 43rd Annual

Meeting on Association for Computational Linguistics, pages 379–386. Associa-

tion for Computational Linguistics.

[Sudo et al., 2003] Sudo, K., Sekine, S., and Grishman, R. (2003). An improved

extraction pattern representation model for automatic ie pattern acquisition. In

41st Annual Meeting on Association for Computational Linguistics (ACL-03),

pages 224–231.

[Surdeanu et al., 2003] Surdeanu, M., Harabagiu, S., Williams, J., and Aarseth, P.

(2003). Using predicate-argument structures for information extraction. In Pro-



BIBLIOGRAPHY 133

ceedings of the 41st Annual Meeting on Association for Computational Linguistics-

Volume 1, pages 8–15. Association for Computational Linguistics.

[Surdeanu et al., 2006] Surdeanu, M., Turmo, J., and Ageno, A. (2006). A hybrid

approach for the acquisition of information extraction patterns. In EACL-2006

Workshop on Adaptive Text Extraction and Mining (ATEM 2006), pages 48–55.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence

to sequence learning with neural networks. In Advances in neural information

processing systems, pages 3104–3112.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going

deeper with convolutions. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1–9.

[Tai et al., 2015] Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved

semantic representations from tree-structured long short-term memory networks.

arXiv preprint arXiv:1503.00075.

[Talukdar et al., 2008] Talukdar, P. P., Reisinger, J., Paşca, M., Ravichandran, D.,

Bhagat, R., and Pereira, F. (2008). Weakly-supervised acquisition of labeled

class instances using graph random walks. In Conference on Empirical Methods

in Natural Language Processing, pages 582–590.

[Tan et al., 2016] Tan, M., dos Santos, C. N., Xiang, B., and Zhou, B. (2016).

Improved representation learning for question answer matching. In ACL (1).

[Tjong Kim Sang and De Meulder, 2003] Tjong Kim Sang, E. F. and De Meulder,

F. (2003). Introduction to the conll-2003 shared task: Language-independent

named entity recognition. In Proceedings of the seventh conference on Natural

language learning at HLT-NAACL 2003-Volume 4, pages 142–147. Association

for Computational Linguistics.

[Tolias et al., 2015] Tolias, G., Sicre, R., and Jégou, H. (2015). Particular ob-

ject retrieval with integral max-pooling of cnn activations. arXiv preprint

arXiv:1511.05879.



134 BIBLIOGRAPHY

[Turian et al., 2010] Turian, J., Ratinov, L., and Bengio, Y. (2010). Word rep-

resentations: a simple and general method for semi-supervised learning. In 48th

international Annual Meeting on Association for Computational Linguistics (ACL

2010), pages 384–394.

[Turney and Pantel, 2010] Turney, P. D. and Pantel, P. (2010). From frequency

to meaning: Vector space models of semantics. Journal of artificial intelligence

research, 37:141–188.

[Wattarujeekrit et al., 2005] Wattarujeekrit, T. et al. (2005). Exploring Semantic

roles for Named Entity Recognition in the Molecular biology domain. PhD thesis,

Ph. D. diss., Department of Informatics, School of Multidisciplinary Sciences, The

Graduate University for Advanced Studies.

[Werbos, 1990] Werbos, P. J. (1990). Backpropagation through time: what it does

and how to do it. Proceedings of the IEEE, 78(10):1550–1560.

[Williams and Zipser, 1995] Williams, R. J. and Zipser, D. (1995). Gradient-based

learning algorithms for recurrent networks and their computational complexity.

Backpropagation: Theory, architectures, and applications, 1:433–486.

[Wu et al., 2015] Wu, Y., Xu, J., Jiang, M., Zhang, Y., and Xu, H. (2015). A

study of neural word embeddings for named entity recognition in clinical text.

In AMIA Annual Symposium Proceedings, volume 2015, page 1326. American

Medical Informatics Association.

[Xu et al., 2017] Xu, W., Sun, H., Deng, C., and Tan, Y. (2017). Variational au-

toencoder for semi-supervised text classification. In AAAI, pages 3358–3364.

[Yang and Mitchell, 2016] Yang, B. and Mitchell, T. (2016). Joint extraction of

events and entities within a document context. arXiv preprint arXiv:1609.03632.

[Yang et al., 2016] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A. J., and Hovy,

E. H. (2016). Hierarchical attention networks for document classification. In

HLT-NAACL, pages 1480–1489.

[Yangarber et al., 2000] Yangarber, R., Grishman, R., Tapanainen, P., and Hut-

tunen, S. (2000). Automatic acquisition of domain knowledge for information



BIBLIOGRAPHY 135

extraction. In 18th Internation Conference on Computational Linguistics (COL-

ING 2000), pages 940–946.

[Yih et al., 2014] Yih, S. W.-t., He, X., and Meek, C. (2014). Semantic parsing for

single-relation question answering.

[Yin and Schütze, 2015] Yin, W. and Schütze, H. (2015). Convolutional neural net-

work for paraphrase identification. In Proceedings of the 2015 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, pages 901–911.

[Yin et al., 2016] Yin, W., Yu, M., Xiang, B., Zhou, B., and Schütze, H. (2016).

Simple question answering by attentive convolutional neural network. arXiv

preprint arXiv:1606.03391.

[Zaremba et al., 2014] Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recur-

rent neural network regularization. arXiv preprint arXiv:1409.2329.

[Zeiler, 2012] Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method.

arXiv preprint arXiv:1212.5701.

[Zeng et al., 2014] Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J., et al. (2014).

Relation classification via convolutional deep neural network. In COLING, pages

2335–2344.

[Zeng et al., 2016] Zeng, W., Luo, W., Fidler, S., and Urtasun, R. (2016). Ef-

ficient summarization with read-again and copy mechanism. arXiv preprint

arXiv:1611.03382.

[Zhang and LeCun, 2015] Zhang, X. and LeCun, Y. (2015). Text understanding

from scratch. arXiv preprint arXiv:1502.01710.

[Zhang et al., 2015] Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level

convolutional networks for text classification. In Advances in neural information

processing systems, pages 649–657.

[Zhao et al., 2018] Zhao, Y., Jin, X., Wang, Y., and Cheng, X. (2018). Document

embedding enhanced event detection with hierarchical and supervised attention.



136 BIBLIOGRAPHY

In 56th Annual Meeting of the Association for Computational Linguistics (ACL

2018), pages 414–419. Association for Computational Linguistics.

[Zhu et al., 2015] Zhu, C., Qiu, X., Chen, X., and Huang, X. (2015). A re-ranking

model for dependency parser with recursive convolutional neural network. arXiv

preprint arXiv:1505.05667.



Titre : Méthodes Neuronales pour l’Extraction d’Événements

Mots clés : extraction d’information, extraction d’événements, réseaux de neurones, plongements de mots

Résumé : Du point de vue du traitement automa-
tique des langues (TAL), l’extraction des événements
dans les textes est la forme la plus complexe des pro-
cessus d’extraction d’information, qui recouvrent de
façon plus générale l’extraction des entités nommées
et des relations qui les lient dans les textes. Le cas
des événements est particulièrement ardu car un
événement peut être assimilé à une relation n-aire ou
à une configuration de relations. Par rapport aux re-
lations ne faisant intervenir que deux entités, s’ajoute
donc une dimension nouvelle obligeant à sortir bien
souvent du cadre de la phrase, ce qui constitue une
difficulté supplémentaire. En pratique, un événement
est décrit par un déclencheur (le mot ou l’expression
qui évoque l’événement) et un ensemble de partici-
pants à cet événement (c’est-à-dire des arguments ou
des rôles) dont les valeurs sont des extraits de texte.
Alors que la recherche en extraction d’information a
largement bénéficié des jeux de données étiquetés
manuellement pour apprendre des modèles permet-
tant l’analyse des textes, la disponibilité de ces res-
sources reste un problème important. En outre, de
nombreuses approches en extraction d’information
fondées sur l’apprentissage automatique reposent sur
la possibilité d’extraire à partir des textes de larges en-
sembles de traits définis manuellement grâce à des
outils de TAL élaborés. De ce fait, l’adaptation à un
nouveau domaine constitue un défi supplémentaire.
Cette thèse présente plusieurs stratégies pour
améliorer la performance d’un système d’extraction
d’événements en utilisant des approches fondées sur
les réseaux de neurones et en exploitant les pro-
priétés morphologiques, syntaxiques et sémantiques
des plongements de mots. Ceux-ci ont en effet l’avan-
tage de ne pas nécessiter une modélisation a priori
des connaissances du domaine et de générer auto-
matiquement un ensemble de traits beaucoup plus
vaste pour apprendre un modèle.
Nous avons proposé plus spécifiquement différents
modèles d’apprentissage profond pour les deux sous-
tâches liées à l’extraction d’événements: la détection

d’événements et la détection d’arguments. La
détection d’événements est considérée comme une
sous-tâche importante de l’extraction d’événements
dans la mesure où la détection d’arguments est très
directement dépendante de son résultat. La détection
d’événements consiste plus précisément à identifier
des instances d’événements dans les textes et à
les classer en types d’événements précis. Classique-
ment, un même événement peut apparaı̂tre sous la
forme de différentes expressions et ces expressions
peuvent elles-mêmes représenter des événements
différents dans des contextes différents, d’où la dif-
ficulté de la tâche. La détection des arguments
s’appuie sur la détection de l’expression considérée
comme déclencheur de l’événement et assure la re-
connaissance des participants de l’événement. Parmi
les difficultés à prendre en compte, il faut noter qu’un
argument peut être commun à plusieurs événements
et qu’il ne s’identifie pas nécessairement à une entité
nommée facilement reconnaissable.
En préalable à l’introduction de nos nouveaux
modèles, nous commençons par présenter en détail
le modèle de l’état de l’art qui en constitue la base.
Des expériences approfondies sont menées sur l’uti-
lisation de différents types de plongements de mots
et sur l’influence des différents hyperparamètres du
modèle en nous appuyant sur le cadre d’évaluation
ACE 2005, standard d’évaluation pour cette tâche.
Nous proposons ensuite deux nouveaux modèles
permettant d’améliorer un système de détection
d’événements. L’un permet d’augmenter le contexte
pris en compte lors de la prédiction d’une ins-
tance d’événement (déclencheur d’événement) en
utilisant un contexte phrastique, tandis que l’autre ex-
ploite la structure interne des mots en profitant de
connaissances morphologiques en apparence moins
nécessaires mais dans les faits importantes. Nous
proposons enfin de reconsidérer la détection des ar-
guments comme une extraction de relation d’ordre
supérieur et nous analysons la dépendance de cette
détection vis-à-vis de la détection d’événements.
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Abstract: With the increasing amount of data and the
exploding number data sources, the extraction of in-
formation about events, whether from the perspective
of acquiring knowledge or from a more directly oper-
ational perspective, becomes a more and more ob-
vious need. This extraction nevertheless comes up
against a recurring difficulty: most of the information
is present in documents in a textual form, thus un-
structured and difficult to be grasped by the machine.
From the point of view of Natural Language Process-
ing (NLP), the extraction of events from texts is the
most complex form of Information Extraction (IE) tech-
niques, which more generally encompasses the ex-
traction of named entities and relationships that bind
them in the texts. The event extraction task can
be represented as a complex combination of rela-
tions linked to a set of empirical observations from
texts. Compared to relations involving only two en-
tities, there is therefore a new dimension that often
requires going beyond the scope of the sentence,
which constitutes an additional difficulty. In practice,
an event is described by a trigger (the word or phrase
that evokes the event) and a set of participants in that
event (that is, arguments or roles) whose values are
text excerpts.
While IE research has benefited significantly from
manually annotated datasets to learn patterns for text
analysis, the availability of these resources remains
a significant problem. These datasets are often ob-
tained through the sustained efforts of research com-
munities, potentially complemented by crowdsourc-
ing. In addition, many machine learning-based IE
approaches rely on the ability to extract large sets
of manually defined features from text using sophis-
ticated NLP tools. As a result, adaptation to a new
domain is an additional challenge.
This thesis presents several strategies for improving
the performance of an Event Extraction (EE) sys-
tem using neural-based approaches exploiting mor-
phological, syntactic, and semantic properties of word

embeddings. These have the advantage of not requir-
ing a priori modeling domain knowledge and automat-
ically generate a much larger set of features to learn a
model. More specifically, we proposed different deep
learning models for two sub-tasks related to EE: event
detection and argument detection and classification.
Event Detection (ED) is considered an important sub-
task of event extraction since the detection of argu-
ments is very directly dependent on its outcome. ED
specifically involves identifying instances of events in
texts and classifying them into specific event types.
Classically, the same event may appear as different
expressions and these expressions may themselves
represent different events in different contexts, hence
the difficulty of the task. The detection of the argu-
ments is based on the detection of the expression
considered as triggering the event and ensures the
recognition of the participants of the event. Among
the difficulties to take into account, it should be noted
that an argument can be common to several events
and that it does not necessarily identify with an easily
recognizable named entity.
As a preliminary to the introduction of our proposed
models, we begin by presenting in detail a state-of-
the-art model which constitutes the baseline. In-depth
experiments are conducted on the use of different
types of word embeddings and the influence of the
different hyperparameters of the model using the ACE
2005 evaluation framework, a standard evaluation for
this task.
We then propose two new models to improve an event
detection system. One allows increasing the context
taken into account when predicting an event instance
(event trigger) by using a sentential context, while the
other exploits the internal structure of words by taking
advantage of seemingly less obvious but essentially
important morphological knowledge. We also recon-
sider the detection of arguments as a high-order re-
lation extraction and we analyze the dependence of
arguments on the ED task.
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