Skip to Main content Skip to Navigation
Theses

Neural Methods for Event Extraction

Abstract : With the increasing amount of data and the exploding number data sources, the extraction of information about events, whether from the perspective of acquiring knowledge or from a more directly operational perspective, becomes a more and more obvious need. This extraction nevertheless comes up against a recurring difficulty: most of the information is present in documents in a textual form, thus unstructured and difficult to be grasped by the machine. From the point of view of Natural Language Processing (NLP), the extraction of events from texts is the most complex form of Information Extraction (IE) techniques, which more generally encompasses the extraction of named entities and relationships that bind them in the texts. The event extraction task can be represented as a complex combination of relations linked to a set of empirical observations from texts. Compared to relations involving only two entities, there is, therefore, a new dimension that often requires going beyond the scope of the sentence, which constitutes an additional difficulty. In practice, an event is described by a trigger and a set of participants in that event whose values are text excerpts. While IE research has benefited significantly from manually annotated datasets to learn patterns for text analysis, the availability of these resources remains a significant problem. These datasets are often obtained through the sustained efforts of research communities, potentially complemented by crowdsourcing. In addition, many machine learning-based IE approaches rely on the ability to extract large sets of manually defined features from text using sophisticated NLP tools. As a result, adaptation to a new domain is an additional challenge. This thesis presents several strategies for improving the performance of an Event Extraction (EE) system using neural-based approaches exploiting morphological, syntactic, and semantic properties of word embeddings. These have the advantage of not requiring a priori modeling domain knowledge and automatically generate a much larger set of features to learn a model. More specifically, we proposed different deep learning models for two sub-tasks related to EE: event detection and argument detection and classification. Event Detection (ED) is considered an important subtask of event extraction since the detection of arguments is very directly dependent on its outcome. ED specifically involves identifying instances of events in texts and classifying them into specific event types. Classically, the same event may appear as different expressions and these expressions may themselves represent different events in different contexts, hence the difficulty of the task. The detection of the arguments is based on the detection of the expression considered as triggering the event and ensures the recognition of the participants of the event. Among the difficulties to take into account, it should be noted that an argument can be common to several events and that it does not necessarily identify with an easily recognizable named entity. As a preliminary to the introduction of our proposed models, we begin by presenting in detail a state-of-the-art model which constitutes the baseline. In-depth experiments are conducted on the use of different types of word embeddings and the influence of the different hyperparameters of the model using the ACE 2005 evaluation framework, a standard evaluation for this task. We then propose two new models to improve an event detection system. One allows increasing the context taken into account when predicting an event instance by using a sentential context, while the other exploits the internal structure of words by taking advantage of seemingly less obvious but essentially important morphological knowledge. We also reconsider the detection of arguments as a high-order relation extraction and we analyze the dependence of arguments on the ED task.
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-01943841
Contributor : Abes Star :  Contact
Submitted on : Tuesday, December 4, 2018 - 11:01:07 AM
Last modification on : Tuesday, January 4, 2022 - 4:28:23 AM

File

75928_BOROS_2018_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01943841, version 1

Citation

Emanuela Boroş. Neural Methods for Event Extraction. Artificial Intelligence [cs.AI]. Université Paris Saclay (COmUE), 2018. English. ⟨NNT : 2018SACLS302⟩. ⟨tel-01943841⟩

Share

Metrics

Les métriques sont temporairement indisponibles