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 GIMADIEV Timur   
 

Modèles prédictifs pour les paramètres 
cinétiques et thermodynamiques des 
réactions chimiques 
 
 
Résumé  

Ce travail est consacré à la modélisation QSPR des propriétés cinétiques et 
thermodynamiques des réactions chimiques à l'aide de l'approche Graphe Condensé de 
Réaction (CGR). Le CGR permet de coder des structures de réactifs et de produits en un 
seul graphe moléculaire pour lequel des descripteurs moléculaires peuvent être générés. 
Une base de données contenant plus de 11000 réactions collectées manuellement a été 
développée puis utilisée dans la modélisation. Les modèles prédictifs ont été construits 
pour les constantes de vitesse de réactions Diels-Alder, SN2 et E2 ainsi que pour les 
constantes d'équilibre des transformations tautomères. Ils sont rendus publics via un 
portail WEB. Une partie de la thèse concerne une étude de mécanique quantique des 
réactions entre des sydnones et des alcynes contraints pour lesquels la taille du jeux de 
données n'était pas suffisante pour produire des modèles statistiquement significatifs. 
 

Résumé en anglais  
This work is devoted to QSPR modeling of kinetic and thermodynamic properties of 
chemical reactions using the Condensed Graph of Reaction (CGR) approach. CGR 
allows encoding structures of reactants and products into one sole molecular graph for 
which molecular descriptors can be generated. A comprehensive database containing 
some 11000 manually collected reactions has been developed then used in the modeling. 
Predictive models were built for rate constants of Diels-Alder, SN2 and E2 reaction as well 
as for equilibrium constants of tautomeric transformations. They are available for the 
users via WEB portal. A part of the thesis concerned quantum mechanics studies of 
reactions between sydnones and strained alkynes for which the size of the dataset was not 
sufficient to produce statistically meaningful models. 
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Résumé en français  

 

Introduction 

 

La plupart des approches chémoinformatiques pour l’analyse de données, la 

visualisation et la modélisation sont développées pour des molécules individuelles 

codées par des vecteurs de descripteurs. Dans ce contexte, une réaction chimique 

est un objet complexe, car il implique plusieurs structures moléculaires de deux 

types - les réactif(s) et les produit(s). Le rendement et les paramètres cinétiques et 

thermodynamiques de la réaction dépendent des conditions expérimentales 

(solvant, température, catalyseur, etc…) qui doivent aussi être pris en compte dans 

la modélisation. Dans ce projet, deux méthodologies différentes sont appliquées 

pour réduire ces complexités. Afin de réduire la complexité structurelle, on a utilisé 

l’approche des Graphes Condensés de Réaction (Condensed Graph of Reaction 

(CGR)), qui combine les structures des réactifs et des produits dans un graphe 

moléculaire unique, une sorte de pseudo-molécule (Figure 1), pour laquelle des 

descripteurs moléculaires peuvent être calculés. De plus, quelques descripteurs 

pertinents pour le solvant et la température ont été proposés afin de réduire la 

complexité des conditions réactionnelles. Ces méthodologies ont été appliquées ici 

pour construire des modèles prédictifs des constantes de vitesse pour trois classes de 

réactions ainsi que pour les constantes d’équilibre de 11 classes de réactions 

tautomériques. 

Malgré tous nos efforts, aucun modèle statistique robuste n’a été obtenu 

pour les constantes de vitesse des réactions dites “bioorthogonales” entre les 

sydnones et les iminosydnones avec des cycloalcynes. Par conséquent, la méthode 

quantique DFT a été appliquée pour accéder aux états de transition des réactions 

et aux énergies d’activation associées.  
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Figure 1. Exemple d’une réaction chimique (à gauche) et du Graphe Condensé 

associé (à droite). Les labels  et  correspondent à des liaisons créées et cassées, 

respectivement. Les labels “C-1” et “C+1” décrivent les charges dynamiques 

caractérisant les atomes dont la catégorie de charge (neutre, positive, négative) 

varie au cours de la transformation chimique. 

 

Cette thèse consiste en 11 chapitres. Le chapitre d’introduction décrit différents 

types de codages de réactions et passe en revue les publications antérieures sur la 

modélisation des relations structure-activité. Le chapitre 2 apporte des 

informations à propos des approches et des outils de la chémoinformatique et de la 

chimie quantique utilisées dans cette étude. Le chapitre 3 décrit la procédure 

d’obtention et de validation des modèles ainsi que les méthodes d’apprentissage 

automatique utilisées  dans ce travail. Le chapitre 4 décrit la base de données 

exhaustive de réactions (Comprehensive Réaction Database (CRDB)) créée dans 

cette étude, les procédures de standardisation des données, de nettoyage, ainsi que 

de nouveaux modes de représentation des réactions à l’aide des signatures CGR et 

des atomes dynamiques. Le chapitre 5 décrit les modèles prédictifs pour la 

constante de vitesse des réactions de type SN2.  Le chapitre suivant (6) est consacré 

à la modélisation des réactions E2 et aux études comparatives des descripteurs 

ISIDA par rapport aux descripteurs classiques et au nouveau type de descripteurs 

pour les réactions, les SIRMS. Le chapitre 7 décrit la modélisation de constante de 

vitesse de réactions de cycloaddition en solution. Le chapitre 8 est dévolu à la 

modélisation SVR et quantique (quantum chemical (QC)) des constantes 

d’équilibre tautomérique. Dans le chapitre 9, nous décrivons la modélisation SVR 
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et QC de la constante de vitesse de plusieurs réactions bioorthogonales impliquant 

des sydnones. The chapter 10 summarize conclusions for all work.  

 

Data collection, cleaning, representation and storage in 

comprehensive Reaction Database (CRDB) :  

La CRDB contient des informations à propos de plus de 15.000 entrées, incluant la 

structure des réactifs et des produits, les conditions expérimentales (solvants, 

température, catalyseur) et les constantes de vitesse pour la substitution nucléophile 

bimoléculaire (SN2), l'élimination bimoléculaire (E2), les réactions de Diels-Alder 

(DA) et la constante d’équilibre pour certaines réactions tautomériques (TAU). Ces 

données ont été collectées manuellement à partir d’articles de recherches ainsi que 

de thèses de doctorat et de thèses d’habilitation défendues à l’Université Fédérale 

de Kazan. Toutes les structures sont vérifiées, organisées et standardisées en 

utilisant un protocole développé dans le cadre de ce travail.. Chaque réaction 

contient une information à propos de la transposition atome à atome et est encodée 

par une empreinte particulière aux réactions. Les données sont conservées dans un 

fichier SQL et il est possible d’y effectuer des recherches via l’outil 

IJChem/ChemAxon ou en utilisant des requêtes SQL. Ainsi, la CRDB est une 

base de données unique, qui contient des informations claires à propos des 

réactions chimiques, souvent manquantes dans les bases de données largement 

utilisées comme la CAS ou la base de données Reaxys. 

Toutes les réactions ont été standardisées suivant le processus basé sur la 

représentation linéaire des CGRs, appelé « signatures CGR ». Au total, 10998 

entrées de données brutes de réactions de substitution nucléophilique bimoléculaire 

(SN2), d’élimination bimoléculaire (E2), de Diels-Alder (DA) et d’équilibre 

tautomérique (TAU) ont été collectées (Table 1). La colonne « données collectées » 

dans la Table 1 représente le nombre total de réactions collectées. La colonne 

« Données standardisées » montre le nombre de réactions après standardisation 

structurale, correction AAM et suppression des duplicats complets, c’est-à-dire des 

entrées où tous les champs coincident. Cette dernière raison, étant majeure, est 



 12 

causée par le fait que ce jeu de donées a été collecté simultanément par plusieurs 

personnes, et parfois, par erreur, une même réaction a pu être extraite deux fois. 

Les erreurs dans la structure ou l’abscence de certains champs obligatoires ont été 

les secondes raisons de la suppression de points de données. La colonne « Jeu 

modèle » contient des réactions sélectionnées pour la modélisation. La procédure 

de standardisation de données implique dans ce cas de standardiser, d’identifier les 

duplicats et de moyenner les propriétés des duplicats. Le nombre total de types de 

transformation (combinaison de réactifs et de produits) est donné dans le champ 

« transformation dans le jeu modèle ». La différence entre la taille du jeu modèle et 

le nombre de transformations reflète le fait que les propriétés ont été mesurées dans 

plusieurs conditions pour certaines transformations. 

 

Table 1. Données expérimentales utilisées dans ce travail 

T
ypes de 

réactions 

D
onnées 

collectées 

D
onnées 

standardisées   

Jeu m
odèle  

T
ransform

ation 

dans le jeu 

m
odèle  

Sources 

bibliographiques  

SN2 7848 7544 4830 1382 [1] 

E2 1431 1389 1043 843 [1] 

CA 1178 1130 880 679 PhD thesis 

defended 

in KFU 

TAU 905 840 782 367 [1] 

 

 

Modélisation structure-activité des constantes de vitesse des réactions 

SN2, E2 et Diels-Alder. 
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Pour chaque réaction, le vecteur de descripteurs résulte de la concaténation des 

descripteurs caractérisant les structures chimiques, le solvant, et la température. 

Les structures chimiques ont été encodées par des descripteurs ISIDA, 

correspondant à des sous-graphes CGR de différentes tailles et topologies. Chaque 

solvant a été caractérisé par 15 descripteurs physico-chimiques. La température 

inverse (1/T) a été aussi utilisée comme descripteur. Pour chaque jeu de données, 

le flux de travail a impliqué les étapes suivantes : (1) préparation des CGRs, (2) 

génération des descripteurs ISIDA [2], (3) préparation des vecteurs de descripteurs 

de réactions comme une combinaison des descripteurs ISIDA, des descripteurs de 

solvants et de l’inverse de la température, (4) construction et validation des modèles 

individuels en utilisant la méthode de la Régression à Vecteurs de Support [3], (5) 

sélection des 10 meilleurs modèles individuels et (6) estimation du consensus des 10 

modèles au sujet de la propriété modélisée. Dans l’ensemble, 616 types de 

fragmentation ISIDA différents ont été utilisés; chacun d’eux a conduit à un 

modèle SVR individuel dont la performance a été évaluée par une validation 

croisée en 5 paquets répétée 10 fois. Les hyper-paramètres de la SVR et les 

meilleurs types de fragmentation ont été sélectionnés par un algorithme génétique 

optimisant le coefficient de détermination estimé en validation croisée. Les 

performances des modèles consensus de l’estimation des constantes de vitesse (logk) 

sont données dans la Table 1. On constate que la précision des prédictions de logk 

est proche de l’erreur expérimentale estimée (0.7-1.0 unités de log). 

Une attention particulière a été donnée au jeu de données SN2 qui assemble les 

réactions effectuées dans 44 solvants différents et impliquant à la fois des 

nucléophiles anioniques et neutres (voir Table 2). En essayant d’améliorer la 

performance des prédictions de logk, certains modèles “locaux” correspondant à 

un solvant particulier ou impliquant un type de nucléophile particulier ont été 

préparés. Leurs performances étaient néanmoins similaires à celles du modèle 

“global” (voir Table 2). 
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Table 2. Paramètres des jeux de données et performances des modèles a 

Dataset Ntot Nreact Nunique RMSE RMSEunique R2 Runique2 

SN2 4830 1382 554 0.37 0.65 0.9 0.73 

E2 1043 843 395 0.72 0.87 0.75 0.58 

DA 880 679 279 0.95 1.37 0.8 0.58 

TAU 782 367 267 0.74 0.94 0.79 0.84 
a Pour chaque jeu de données, les paramètres suivants sont donnés : le nombre de 

données (Ntot), le nombre de réactions (Nreact), le nombre de réactions “uniques” 

(Nunique) pour lesquelles seulement une mesure est disponible, et les coefficients de 

détermination de validation croisée (R2 et Runique2) et les erreurs  quadratiques 

moyennes (RMSE and RMSEunique), estimés, respectivement, pour le jeu de 

données entier et pour son sous-ensembe de données “uniques”. 

La visualisation et l’analyse de l’espace de réactions avec l’approche de 

Cartographie Topographique Générative (« Generative Topographic Mapping », 

GTM) a été réalisée avec les descripteurs fragmentaux. La puissance des cartes 

dans l’analyse de données est due à la possibilité de colorer les objets en fonction de 

différents critères. Ainsi, nous avons coloré les réactions par rapport à leur cœur, 

aux substrats, et à la nature nucléophile (Figure 2). On voit bien que les cartes 

séparent bien différentes classes de réactions.  
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Figure 2. Carte GTM sur le jeu de données de 1394 transformations de 

réactions SN2, encodées par des fragments ISIDA, sans prendre en compte les 

descripteurs de conditions. Les objets sont colorés en fonction a) de la signature du 
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centre de réaction (seuls les atomes du centre de réaction sont inclus), b) des 

substrats, c) des nucléophiles, d) du type de nucléophiles. Les signatures ou les 

molécules les plus populaires sont explicitement montrés. 

 

 

QSPR et modélisation par chimie quantique des constantes d’équilibre 

tautomérique 

 

Par convention, le logarithme de la constante d’équilibre tautomérique 

(logKT) est évalué comme la différence entre les valeurs de pKa d’une paire 

structures tautomères. En prenant en compte l’effet cumulatif des erreurs, ceci 

pourrait significativement affecter la précision des prédictions de logKT estimés à 

partir de modèles de pKa. Ici, pour obtenir des modèles pour le logKT, un 

équilibre tautomérique a été encodé par un Graphe Condensé de Réaction, ce qui 

nous a permis d’appliquer la procédure de modélisation décrit dans la section 2.2. 

Le jeu de données de modélisation contenait 11 types d’équilibres (kéto/énol, 

amino/imino, azo/hydrazone, pyridol/pyridone, pyridinoid/pyridonoid, phenol-

imine/keto-amine, thione-enol/keto-thiol, amine-thione/imine-thiol, nitro/acide, 

forme neutre/zwitterion et cycle/chaîne) mesurés à différentes températures et 

dans différents solvants. La précision de la prédiction obtenue en validation croisée 

(RMSE = 0.94 unités de log, Table 2) est similaire aux erreurs expérimentales. 

Dans un but de comparaison, des calculs de chimie quantique ont été effectués sur 

deux jeux de données de test (TEST1 et TEST2) contenant respectivement 23 et 

24 équilibres tautomériques. Les valeurs de logKT ont été calculées comme la 

différence des énergies libres de formation des tautomères estimées par des calculs 

DFT dans B3LYP/6-311++G(d,p) implémentés dans le logiciel Gaussian09. Les 

effets de solvant ont été évalués en utilisant le formalisme IEF-PCM du modèle de 

solvant continu polarisable de Tomasi [4]. Les paramètres SMD [5] pour la part 

non-électrostatique de l’énergie de solvatation ont été utilisés. Nos modèles SVR 

surpassent significativement ces calculs DFT (Table 3). Il a été aussi montré que 
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nos modèles sont plus performants que l’outil commercialisé par la société 

ChemAxon, qui fait référence actuellement. 

 

Table 3. Prédiction des constantes d'équilibre tautomérique (logKT) en solution. 

Performance des calculs DFT et des modèles SVR appliqués à deux jeux de 

données externes TEST1 et TEST2.a 

Method Dataset Neq RMSE R2 MT,% 

DFT 
TEST1 23 1.62 0.5 74 

TEST2 24 5.8 -1.2 48 

SVR 
TEST1 23 1.2 0.73 74 

TEST2 24 2.6 0.45 52 

Nombre de points de données (Neq), coefficients de détermination (R2), erreurs 

quadratique moyenne (RMSE en unités de log), et taux de succès de prédiction du 

tautomère dominant (MT, %). 

 

 

Cinétique des réactions “bioorthogonales” impliquant des sydnones. 

Dans le cadre du projet ANR ClickReal, nous devions construire des 

modèles pour les constantes de vitesse de réaction (k) des sydnones (SYD) avec des 

cycloalcynes. Ces réactifs pouvaient potentiellement être utilisés pour des réactions 

bioorthogonales. Le jeu de données contenait 18 valeurs de k mesurées par nos 

partenaires. Nous ne sommes pas parvenus à construire un modèle statistique 

satisfaisant pour logk, quels que soient les descripteurs ou la méthode 

d’apprentissage machine utilisés. Par conséquent, une série de calculs de DFT en 

phase gazeuse a été effectuée afin d’identifier les états de transition des réactions et 

les énergies d’activation associées. L’ensemble de fonctionnelles de Perdew–Burke–

Ernzerhof  (PBE) et l’ensemble de base 3z implémentés dans le programme 

Priroda14 ont été utilisés. En accord avec les données expérimentales, le chemin 

réactionnel contenait 2 états de transition : l’un d’entre eux (TS1, Figure 3) 

définissait la vitesse de réaction. Les énergies libres d’activation calculées (∆∆G) 
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corrélaient bien avec les observations expérimentales de logk,  en utilisant 

l’équation d’Arrhenius (Figure 4). La précision des prédictions de ∆∆G is 1.97 

kcal/mol (RMSE) pour SYD. 

 

Table 4. Reactions of sydnones (A,B,C) with bicyclo-[6.1.0]-nonyne (BCN) and 

3,3,6,6-tetram-ethylthiaheptyne (TMTH) 

No. R X Cycloalkyne Rate constant 

(tolerance), M-

1*sec-1 

Reference 

A p-Me C6H4 H BCN 0.032 (0.001) [6] 

B p-Me C6H4 F BCN 42 [6] 

C p-Me C6H4 F TMTH 1500 [6] 
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Figure 3. Voie réactionnelle  pour la réaction A (ligne en pointillés rouges), B (ligne 

noire pleine), et C (ligne en pointillés bleue), selon la Table 4. Les énergies libres 

relatives à 298K des molécules par rapport aux réactifs sont montrées. La structure 

des réactifs, les états de transition et intermédiaires pour la réaction B sont montrés. 

Le substituant R du sydnone ainsi que presque tous les atomes du BCN ont été 

omis pour des soucis de clarté. 

 

la Figure 3 montre que l’étape limitante des réactions est le premier état de 

transition (TS1), l’intermédiaire étant plus bas en énergie libre que les réactifs de 21 

kcal/mol. Selon notre calcul, l’intermédiaire est très instable étant donné qu’il est 

séparé des produits par un état de transition (TS2) avec une petite barrière (environ 

1 kcal/mol). La décomposition intermédiaire est exergonique d’environ 85 

kcal/mol. La même chose est vraie pour la réaction beaucoup plus lente A. L’effet 

du solvant calculé par le modèle IEF-PCM [4] n’a presque aucune influence sur la 

barrière de réaction, à cause de la compensation. Dans la réaction C entre le 

fluorosydnone et le TMTH, l’état de transition n’a pas été localisé du tout. 

Cette petite barrière d’énergie est pathologique d’une décomposition 

totalement dominée par les effets entropiques très difficiles à estimer (illustrée 

Figure 3).  
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Figure 4. Corrélation entre les énergies libres d’activation calculées (Predicted 

∆∆G) et les observations expérimentales (Experimental ∆∆Gcalc) pour les réactions 

entre les sydnones et les iminosydnones avec des alcynes cycliques. Les ∆∆G 

expérimentales sont calculées à partir des valeurs mesurées de logk en utilisant 

l’équation d’Arrhenius. Les coefficients de détermination (R2), les erreurs 

quadratiques moyennes (RMSE) et le nombre de points de données (n) sont affiché 

dans le graphique. 

 

 

2.5 Implémentation des modèles.  

 

Les modèles développés pour les réactions SN2, E2, DA et TAU ont été intégrés à 

un service WEB et rendus disponibles pour les utilisateurs à l’adresse suivante : 

https://cimm.kpfu.ru/predictor 

 

Conclusions: 

1. La Comprehensive Reaction Database contenant des informations sur plus de 

15.000 réactions chimiques a été créée. Elle inclut la structure des réactifs et 
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des produits, les conditions expérimentales (solvant, température, catalyseur) 

ainsi que des paramètres cinétiques et thermodynamiques pour quatre 

classes de réactions. 

2. La méthodologie des Graphes Condensés de Réactions a été étendue par 

l’introduction du concept de charges dynamiques décrivant les atomes dont 

la catégorie de charge (neutre, positive, négative) varie au cours de la 

transformation chimique. 

3. Une procédure originale de modélisation des paramètres cinétiques et 

thermodynamiques des réactions chimiques en solution a été proposée. Elle 

inclut : (1) la transformation de l’ensemble des réactifs et produits en 

Graphes Condensés de Réactions, (2) la préparation des vecteurs de 

descripteurs de réactions comme une combinaison des descripteurs 

fragmentaux, des descripteurs du solvant et de l’inverse de la température, 

(4) la construction et la validation des modèles en utilisant la méthode de 

Régression à Vecteurs de Supports (SVR). 

4. Des modèles prédictifs pour la constante de vitesse pour la substitution 

nucléophilique bimoléculaire (SN2), l’élimination bimoléculaire (E2) et la 

réaction de Diels-Alder (DA) ont été préparés. La précision de la prédiction 

est comparable à l’erreur expérimentale. 

5. Des modèles prédictifs pour les constantes d’équilibre de 11 types différents 

de réactions tautomériques (TAU) ont été construits. Il a été démontré qu’ils 

présentent de meilleures performances que les calculs DFT de haut niveau 

ou que l’outil commercial de ChemAxon. 

6. Les modèles développés pour les réactions SN2, E2, DA et TAU sont mis à 

disposition des utilisateurs à l’adresse https://cimm.kpfu.ru/predictor  

7. Une série de calculs DFT sur 18 sydnones et sur les états de transition de 

leurs réactions avec des cycloalcynes a été réalisée. Les énergies libres 

d’activation calculées in vacuo corrèlent bien avec les vitesses expérimentales 

de réaction en solution. 
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Chapter 1. 

Introduction 
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Reactions are the main tool for the chemist. New substances cannot be produced 

without being involved into this process of matter transformation. There are a lot of 

empirical rules that should be memorized by a chemist in many various examples of 

transformations. Consequently, this process makes every chemist to a very focused 

specialist in a narrow area of chemistry. The creation of a chemoinformatic tool helping 

chemist to extract and store these rules from known experimental data will improve 

synthesis flexibility of research labs. Chemoinformatics deals with information 

management and prediction of different properties of various chemical systems [7]. A lot 

of articles are devoted to modeling of different features of molecules, but much less has 

been written about predicting of properties of reactions like rate constant, conditions, 

selectivity, yield, etc.  

Recently, a gain of interest of chemoinformatics specialists for chemical reaction 

modeling is observed. It could be related to the fact that, first, a wealth of data in 

chemical reaction has been accumulated by now and, second, chemoinformatics 

technologies were developed enough to address new challenges. Several reviews were 

published [8, 9]. It was stated that organic synthesis is a rate-limiting factor in drug 

discovery and the usage of artificial intelligence tools could revolutionize medicinal 

chemistry [10]. 

The development of chemoinformatics approaches for reactions is limited by the 

fact that it is a complex process: it involves reagent(s) and product(s), depends on their 

concentrations, reaction conditions (like temperature, pressure, radiation), This makes 

representation of reactions in electronic databases much more problematic than the 

storage of simple molecules, requiring specific procedures for standardization. Another 

rising problem is incompleteness of experimental data. There is a lot of information about 

reactions, but popular databases like Reaxys and SciFinder provide very heterogeneous 

information. Often, only one major component of reaction is reported. The information 

about kinetics of reactions is rare and usually comes from only one source, so there is no 

cross-validation of values between various experimental methods.  

Currently, the main tool of reactions studies is quantum chemistry. The main 

advantage of this method is that the whole energetic profile of a reaction can be 

generated by calculations. It means that in principle all possible ways of reaction can be 
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determined with rather high detail resolution of the electron transferring processes. 

Quantum chemistry is still the only one way for ab initio prediction (e.g. not based on 

previous knowledge of related examples) of energetic characteristics like rate constants or 

activation barriers. But it is limited by intrinsic inaccuracy of polarizable continuum 

solvent models. Additionally, fast methods like DFT must first be calibrated on certain 

sets of molecules and usually does not achieve “chemical” accuracy (about 1 kcal/mol) 

[11]. The accuracy versus computing effort ratio is much too low to qualify these 

approaches as large-scale predictors of properties of large series of reactions. So, we 

decided to use another strategy, which is empirical, not mechanistic and, in exchange, 

extremely fast. The proposed approach implies application of QSAR/QSPR modeling, a 

machine-learning technique that learns a model of a property from known examples and 

extrapolates property values of new items based on this model. The Condensed Graph of 

Reaction (CGR)  approach helped exploiting rich base of Chemoinformatics methods to 

predict properties of reactions. CGR representation (as it shown at Figure 5) allows the 

encoding of a reaction as pseudo molecule and to apply all QSPR techniques for 

modeling of its properties. 

 

The thesis consists of 10 chapters. Chapter 2 provides information about the 

approaches and tools of chemoinformatics and quantum chemistry used in this study. 

The 3rd chapter describes different types of reactions encoding in chemoinformatics and 

reviews publications on structure-reactivity modeling and provides with some information 

about chemoinformatics and quantum chemistry approaches and tools used in this study. 

The 4th chapter describes the Comprehensive Reaction Database (CRDB) created in this 

study and procedures of data curation, cleaning and new way of representation of 

reactions with the help of CGR signatures and dynamic atoms. The chapter 5 describes 

predictive models for the rate constant for SN2 reactions.  The Next chapter 6 is devoted 

to modeling of E2 reactions and benchmarking of ISIDA descriptors in comparison with 

classical ones and new type of mixture SIRMS descriptors for reactions. In the 7th chapter 

application of the approach to cycloaddition reactions in solution is described. Chapter 8 

is devoted to the SVR and quantum chemical modeling (QC) of the tautomeric 

equilibrium constants. In Chapter 9, the SVR and QC modeling of the rate constant of 
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several bioorthogonal reactions involving sydnones is described. The Chapter 10 

summarize conclusions for the work. 

 

    
 

Figure 5. Example of a chemical reaction (left) and related Condensed Graph 

(right). Labels “0>1” and “1>0” correspond to created and broken bonds, respectively.  
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Chapter 2.  

Review on chemical reaction modeling studies 
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2.1 Thermodynamics and kinetics of reaction 

A chemical equation is a special symbolic representation of a chemical reaction. 

The reactant entities are given on the left-hand side and the product entities on the right-

hand side.  

𝑥𝐴 + 𝑦𝐵 +⋯ = 𝑛𝐶 +𝑚𝐷 +⋯  

The numbers next to the formulae of entities represent number of molecules 

participating reaction act are called stoichiometric coefficients [12]. The first-ever 

chemical equation was diagrammed by Jean Beguin in 1610 in first edition of 

“Tyrocinium Chymicum” book [13].  

The reaction is a complex instance that requires a description of physical conditions 

and chemical environment of compounds along with description of reagents and 

products. Chemical environment includes compounds such as solvents, catalysts, catalytic 

poisons, additives, etc, which do not participate in reaction according to its chemical 

equation, but can influence it. Physical conditions include physical factors that are 

significant for reaction: temperature, pressure, irradiation, etc. All of them influence the 

macroscopic parameters characterizing the reaction process : yield, rate, selectivity, 

equilibrium constant etc. From chemists’ point of view, the most important endpoint of 

reactions is the yield of desired compound. The latter depends on the speed of product 

and byproducts accumulation (reaction rate) and the equilibrium constant, the key 

thermodynamic parameter of a chemical process.  

Properties of reactions can be divided into thermodynamic  and kinetic ones. 

Thermodynamic properties reflect the position of equilibrium, heat of reaction and work 

against external forces. Kinetic properties reflect speed of reagents conversion or product 

accumulation. 

Among the most important thermodynamic properties of chemical reaction are 

enthalpy, entropy and free energy of reaction. The enthalpy, H, comprises a system's 

internal energy, which is the energy required to create the system, plus the amount of 

work required to make room for it by displacing its environment and establishing its 

volume and pressure. The difference between enthalpy of products and reagents is equal 

to the heat released or absorbed in reaction, provided that system has constant pressure: 
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Q = -ΔH. Entropy, S, is a thermodynamic function reflecting the number of microscopic 

configurations that a thermodynamic system can have in a state with defined macroscopic 

variables. In other words, it measures the degree of disorder in the thermodynamic 

system. The difference between enthalpy (total energy) and entropy (amount of useless 

energy accounting for disordered movement) defined Gibb’s free energy G = H – TS, 

reflecting the amount of work that a thermodynamic system can perform (where T is 

absolute temperature of the system, in Kelvin). The standard change of Gibb’s free 

energy in a reaction (Eq. 1), under isothermal and isobaric conditions is related with the 

equilibrium constant, equation (Eq. 2), K, as shown in equation (Eq. 3). 

Eq. 1    ∆𝐺 = ∆𝐻 − 𝑇∆𝑆 

Eq. 2    𝐾 = [456789:;][456789:=]…
[?@AB@C:;][?@AB@C:=]…

 

Eq. 3    ∆𝐺 = −𝑅𝑇 ∙ log𝐾 

where R is the gas constant. 

The equilibrium constant defines the relative concentrations of products and 

reagents at chemical equilibrium. Thus, equation (2) and (3) used for calculation of 

reagent and product concentration. While direct experimental measurement of ΔG is 

rather challenging, equilibrium constant could be readily calculated from (2) if 

composition of mixture at equilibrium is known.  

Chemical kinetics deals with the study of reaction evolution in time. The most 

essential characteristics studied by kinetics are rate of compound formation (for product) 

or conversion (for reagent). Both of them are usually called reaction rate but one should 

take into account that in case of competitive or consecutive reactions rate of product 

formation and reagent conversion can differ. Reaction rate depends on concentration of 

reagents involved in elementary reaction step. If the reaction rate depends on 

concentration of one, two, etc compounds (reagents in elementary step), it is called mono-

, bimolecular, etc respectively. The rate constant, k, is obtained dividing the rate by 

concentrations of compound. The constant is insensitive to reagent concentration, but 

still depends on temperature (via Arrhenius equation (Eq. 4)), solvent, pressure, and other 

conditions.  

Eq. 4     𝑘 = 𝐴𝑒K
LM

NO 
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where A is pre-exponential factor, and Ea is activation energy of reaction. 

 

Thermodynamics and kinetics are closely connected with each other, e.g. rate 

constants of forward, kf, and backward reaction, kb, can be used to calculate equilibrium 

constant for this process, K= kf / kb.  

Competitive reversible reactions could proceed under thermodynamic or kinetic 

control. A reaction selectivity will highly depend on the dominating type of control that 

itself depends on reaction condition. Here (Figure 6), product P1 has lower activation 

energy for reaction of its formation (greater reaction rate), but P2 is more stable 

(dominate at equilibrium).  In this case in the beginning of reaction the product P1 is 

formed more rapidly but over time the amount of P2 rises and finally it becomes 

dominating. 

 

Figure 6. Thermodynamic and kinetic reaction control. 

For example, high temperature and catalysts shorten the time required for reaching 

equilibrium and favor the thermodynamically controlled product.  With properly selected 

reaction time, the kinetically controlled product can dominate in mild conditions. 

Knowing reaction rate constants and equilibrium constant or ΔG of reaction, one could 

shift reaction in desired direction and maximize the yield of desired product. 

Unfortunately, the measure of kinetic and thermodynamic data for reactions is quite 

expensive, and prediction tools are either too computationally demanding (like quantum 

chemical prediction), or insufficiently developed (like chemoinformatics approaches), or 

have limited applicability (like LFER approaches). 
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Prediction of reaction characteristics for synthesis optimization is an unsolved 

problem. Quantum chemical methods could hardly be used as a priori calculation tools 

mainly due to their time- and resource-consummation. However, in 2013 scientists 

proposed an approach for selection of the best solvent in bimolecular substitution 

reaction, combining quantum mechanical computations of the reaction rate constant in a 

few solvents with linear regression based on solvent descriptors [14]. According to 

authors, it took several days to make one prediction. 

Although properties of pure compounds are widely predicted by means of 

Quantitative Structure-Property (Activity) Relationship (QSPR, QSAR) approach [1] 

that favorably differs from quantum chemical calculations in terms of required effort, 

only few works were devoted to QSPR modeling of reactions. The main reason is that 

reaction is a more complex ITEM for modeling than a molecule [9]. First, a reaction 

involves several molecules. Next, a reaction has a sense, which must be accounted for in 

predictions: the backward process from products to reagents is characterized by DGback=-

DG and Kback=1/K. Moreover, some chemical compounds such as solvents, catalysts and 

additives influence the reaction but they are usually omitted from the reaction equation. 

And finally, physical conditions (temperature, pressure) are very important for some 

properties. Hence, account for all this effect is required in QSAR/QSPR study of 

reactions and special approaches for handling reaction complexity need to be introduced. 

In spite of the huge amount of known reactions, only a tiny portion has any kinetic 

or thermodynamic data and this information has not been transferred from primary 

sources to electronic databases. There is no publicly available database of kinetic 

characteristics of diverse reactions in common conditions (there are some small databases 

of gas phase reactions [15, 16]). The largest databases like Reaxys and CAS REACT 

annotate only the fact that kinetics of thermodynamic data were measured but not the 

values.  

 

2.2 Reaction representation 

 

As already mentioned, reaction description has to include information about 

reagents (structural information), and products, temperature, solvent, catalyst, 

respectively (condition descriptors).  
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There are several ways to represent structural information of reactions, based on 

graph representation (usually represented as connection tables), linear notations systems 

(reaction is represented by an alphanumerical array) or descriptor representation 

calculated usually on the basis of previous two. The numeric encoding of its 

characteristics under the form of a vector of descriptors is key feature of 

chemoinformatics. 

Generally, one can define 3 main ways to represent a reaction in chemoinformatics: 

(i) as ordered set of reagent and product molecules, (ii) reaction center based 

representation and (iii) product-reagent difference. In our work we proposed the special 

type of reaction representation [17] in which reagent and product part of reaction is 

treated as mixture with given composition [18]. 

 

2.2.1 Reagent-product representation  

Reagent-product representation of chemical reaction is based on consideration of 

common reaction equation: reagents in reaction are enumerated and followed by 

products. Using special approaches reagents are explicitly separated from products to 

avoid confusion. 

One of the most popular system for molecule representation is the simplified 

molecular-input line-entry system (SMILES), developed by D. Weininger [19]. It is an 

ASCII string that is compiled according to specification that encodes the structure of 

chemical species. The main advantage of this type of representation is saving of space for 

storage, machine and human readability. An algorithm of canonicalization [20] is used 

for generation of a unique SMILES representation of molecule. As a development of 

SMILES, the SMIRKS [21] represents reaction as transformation of reagents SMILES 

into products SMILES. Reagents and product molecules are separated by dots as usually 

for disconnected components in SMILES. After list of reagents “>” symbol opens list of 

additives which follows another “>” symbol, after which products are specified. In the 

absence of additives, the “>>” symbol separates the lists of reagents and products. Atoms 

and their correspondence (atom-to-atom mapping, see below) could be specified using 

numbers (see Figure 7).  
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[C:1](=[O:2])[Cl:3].[H:99][N:4]([H:100])[C:0]>>[C:1](=[O:2])[N:4]([H:100])[C:0].[Cl:3][H:99] 

Figure 7. Reaction (top) and corresponding SMIRKS (bottom). Atom-to-atom 

mapping is specified by numbers. 

 

The other widely used molecule line notation system was developed within IUPAC 

initiative. International Chemical Identifier(InChI) is a textual identifier for chemical 

substances, designed to provide a standard way to encode molecular information and to 

facilitate the search for such information in databases and on the web [22]. Widely 

distributed and open source standard software for InChI generation is the main 

advantage of it.  Thus, InChIs are unique by default. This format is still machine and 

human readable, but it is by far less human readable than SMILES. The extension of 

InChI for reactions was called RInChI [23] and was developed within IUPAC project 

2009-043-2-800 finished in 2017 when the first version was released [24]. In RInChI 

molecules of reagents or products are represented by InChI separated by the “//” 

symbol; products follow reagents after “///” symbol. 

 

 

 

 
RInChI = 0.02.1S/C8H12O2/c1-2-4-8-6(3-1)9-5-7(8)10-8/h6-7H,1-5H2/t6-

,7+,8-/m1/s1///C8H14O3/c9-6-5-11-7-3-1-2-4-8(6,7)10/h6-7,9-10H,1-5H2/t6-

,7+,8+/m1/s1//C8H14O3/c9-6-5-11-7-3-1-2-4-8(6,7)10/h6-7,9-10H,1-5H2/t6-

,7,8+/m1/s1/d+  

Figure 8. RInChI for a given concurrent reaction. 



 33 

 

Chemical table file (CT File) formats developed by Molecular Design Limited [25] 

represent the most popular file formats for storage and exchange by structural 

information. For reaction representation, the RXN file format was developed. It is based 

on enumeration of specified number of reagents followed by enumeration of products. 

Molecules are represented in MOL format. RDF file format is an extension of RXN 

providing functionality to store factual data associated with a given reaction in text, 

numeric and structure (for reagents, catalysts, etc) fields. Other popular file format based 

on Chemical Markup Language has an extension for reaction representation [26]. 

 

2.2.2 Reaction center representation  

 

Reagent-product representation is not an effective way for reaction storage, since 

every atom is indeed represented twice – in reagents and in products. Reaction center 

type representations avoid this drawback, encoding the changes occurring in reaction. 

This type of representation is tightly connected with the notion of reaction center, i.e. the 

atoms incident to edges associated with bond order changes). With a few exceptions, 

changes in reaction are mostly associated with bond formation, cleavage and bond order 

changes.  

Detection of reaction center is a crucial step required for this type of 

representations. Atom-to-atom mapping (AAM) or bond-to-bond mapping (BBM) is the 

essential procedure used for identification of reaction center [27]. AAM/BBM establishes 

one-to-one correspondence between atoms/bonds of reagents and products assigning 

each atom a unique label (Figure 9), AAM/BBM allows identification of atoms with 

altered environment and thus enables automated reaction center detection. For reaction 

on Figure 9, three atoms comprise reaction center Br1, C2, N9. Reaction center can be 

annotated as the simplest possible reaction of a given type: Br-C + N = CH-N + Br- 

(implicit hydrogens are omitted). Automated, computer-based AAM is one of the key 

problems in reactions processing. However the procedure itself is error prone and rather 

computationally intensive [27].  
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Figure 9. Common representation of chemical reaction with SN2 mechanism. 

Numbers represent atom-to-atom mapping. 

 

Several reaction center-based representations were proposed. Initially they were 

proposed for reaction classification rather than for information storage and retrieval. 

Reaction centers are indeed the “signatures” that differentiate reaction [28]. They were 

used for creation of an ontology of chemical reactions and creation of unique reaction 

identifiers, like the IUPAC nomenclature for chemical compounds. The first reaction 

classification scheme based on electron redistribution in pericyclic reactions including 6 

atoms in reaction center was proposed by Balaban [29]. Arens proposed an approach for 

textual representation of bond types valid both for cyclic (when reaction center forms 

cyclic graph) and linear reaction centers (without cycles) [30–32], Figure 10. Hendrickson 

developed Balaban’s approach and created coherent classification system of pericyclic 

reactions based on bonds redistribution within 4-, 5- and 6-membered rings [33]. The 

latter was further extended to other reaction types and called “comprehensive system for 

classification and nomenclature of organic reactions” [34], Figure 10. Zefirov and Tratch 

developed a hierarchical system for reaction representation and a classification that 

considers not only the reaction center, but its higher level of generalization [35, 36]. 

Albeit universal and widely accepted methodologies of reaction classification haven’t been 

developed, the efforts were not made in vain and finally led to progress in reaction data 

mining. One of the most promising approaches in this emerging field of application is the 

Condensed Graph of Reaction methodology. 
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Figure 10. Comparison of different reaction representations. 

The Condensed Graph of Reaction approach is based on the early work of Vladutz 

[37], who used it for reaction information storage and classification. He was the first to 

give the definition of reaction center as group of atoms in which changes of bonds take 

place during the reaction and proposed a method for representing the reaction center in 

terms of bond changes [38]. He proposed to merge reaction center atoms from reactant 

and product graphs, and specially mark changes in the bond orders, (Figure 10). He 

called the obtained graph the “skeletal scheme of reaction”. The latter is common to 

reactions of the same type and encodes the changes taking place in the reaction center. 

Kiho proposed to construct these graph notations not only for the reaction center, but 

also for the whole reaction [39], however his paper was unnoticed and the same 

approach was proposed independently by S. Fujita [40]. He called the superimposed 

graph of reagents and products Imaginary Transition State [40]. The latter had three 

types of bonds: in-bonds, out-bonds and par-bonds standing for the bonds that are 

formed, cleaved and unaffected in the reaction, respectively. Thus the whole reaction is 

represented by a single graph with different labels on the edges that trace bond 

transformation. Further development of this approach was made in the group of 

Kauffman, who renamed Imaginary Transition State representation as Condensed 

Graph of Reaction and distinguished only two types of bonds: ordinary bonds (single, 

double, etc.) and dynamic bonds (single broken, single created, etc.) [41]. To additionally 

represent changes in stereochemistry and atom formal charges in reaction he added 

pseudo-atoms standing for atomic charges, stereochemistry, etc. Thus any changes in the 

reaction were encoded by bond reorganization. 
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Any atom-to-atom-mapped reagent-product representation of a reaction can be 

easily converted  into CGR, Figure 11. A CGR can be easily represented as any 

molecular 2D-sketch. The bonds, which are created, broken, or modified during the 

reaction are called dynamic bonds and represented by specific notations denoting the 

change, e.g. a single bond broken by the reaction, Figure 11. The bonds that are not 

changed in reaction (single, double, aromatic, etc.) are represented conventionally. 

 

Figure 11. Common representation and CGR representation of reaction with 

addition features (dynamic bonds and dynamic charges). Bond with circle – dynamic 

bond corresponding to formed single bond, crossed bond represent cleaved single bond. 

“c+1” and “c-1” labels are used to represent dynamic atoms: increase or decrease of 

atomic formal charge by one, respectively 

 

Recently we proposed discontinue support for pseudo-atoms in CGR and instead 

introduce “dynamic atoms” to represent changes in atomic properties [42].  

 

2.2.3 Representation based on difference in structure of reagents and 

products. 

While detection of reaction center requires AAM, the changes in reaction could be 

detected subtracting features or reagents from products. This idea is used in difference 

reaction representation.  

Ugi and Dugundji [43] proposed to represent reaction as difference of bond-

electron matrices of products (E matrix) and reagents (B matrix). B and E-matrices of 
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reagents and products, correspondingly, are symmetric matrices where elements of main 

diagonal represent number of valence electrons on the lone pairs of certain atoms and off-

diagonal elements are bond orders (Figure 12).  

 

 

Figure 12. Ugi-Dugundji R matrix as representation of reaction. 

 

A reaction is represented as a new difference matrix R = E - B. R gives a description 

of changes taking place in the reaction center and has some other interesting 

mathematical properties [43]. The Ugi - Dugundji formalism was used to plan organic 

synthesis and predict reaction pathways [44] and to search for the shortest distance 

between the reactant and product [45]. AAM is required for R-matrix creation. This type 

of representation is useful for many applications but has not been used for reaction 

characteristics modeling.  

2.3. Reaction descriptors 

Graph representations of chemical objects are mainly used for primary structural 

information storage but they need further preprocessing in order to encode information 

leading the way to numerical descriptors that are perfect for in silico processing. 

Representation of chemical items as vectors of numerical descriptors allows for fast 

information retrieval and can be used in conjunction with most machine learning 

methods i.e. QSAR/QSPR modeling. However, descriptor representation is not always 

invertible, and the structure of the item usually may not be always be restored from 
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descriptor values – which implies that the encoding process may trigger some loss of 

information. 

Descriptors are values that otherwise represent features of a chemical item. 

Evolution of QSPR/QSAR modeling resulted in numerous descriptors of different types. 

The comprehensive compilation of descriptors were made by Todescini and Consonni 

[46]. They can be categorized into several types. For example, according to origin, 

descriptors could be classified as: 

• Measured physicochemical properties such as “logP(o/w),” the logarithm of the 

octanol/water partition coefficient, molecular polarizability and refraction.  

• Calculated descriptors are mathematical models of some kind, from the simplest 

counting of carbon atoms and summing up of the molecular mass, to descriptors 

representing predicted properties according to QSPR equations, themselves 

relying on simpler descriptors.  

According to dimensionality of the molecular representation required for 

calculation of descriptors one can distinguish: 

• Оne-dimensional (1D) descriptors that are calculated from the composition of 

compounds, 

• 2D descriptors that are calculated from a planar graph representation of a 

molecule,  

• 3D descriptors such as “molecular volume” or “surface area” that are derived 

from molecular conformation, and 

• 4D descriptors that require ensemble of conformations or molecular dynamics 

trajectories.  

According to application typically the following descriptor types are distinguished: 

• Fragment descriptors that are usually represented by binary and integer vectors 

monitoring the existence or the frequency of fragment occurrence in a 

structure[47]. The main advantage of fragment descriptors is their universality 

[48].  

• Topological indices or connectivity indices are planar molecular graph 

invariants used for numerical representation of graph topology [49].  
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• Physicochemical descriptors can be obtained from experimental measurements 

of compounds physicochemical properties. The most frequently used descriptor 

of this type is the logarithm of the octanol/water partition coefficient, a 

measure of the hydrophobic character of a molecule. Nowadays, these 

characteristics are usually calculated using QSPR models. 

• Quantum-chemical descriptors are characteristics that obtained from 

approximate solution of Schrodinger’s equation for molecules [50]. Energetic, 

molecular orbital and electron distribution descriptors are the most widely 

used. 

• Descriptors of molecular fields are the values that approximate interaction of 

the molecule with some virtual probe. This descriptors are often used in 3D-

QSAR modeling of biological activity, for example, in CoMFA approach [51].  

• Pharmacophore descriptors show occurrence of pharmacophore-labelled 

fragments (usually pharmacophore pairs or triplets with defined distance 

between centers) in a molecule [52]. A pharmacophore is the ensemble of 

steric, electronic and other physico-chemical properties that are necessary to 

ensure optimal supramolecular interactions with a specific biological target 

structure.  

• Substituent constants, first introduced by Hammet [53], reflect electronic or 

sterical influence of a given substituent on the core molecule. 

• Descriptors of molecular similarity report the molecular similarity with respect 

to some common set of reference compounds. 

The descriptors best suited to encode the structural information of reactions are 

fragment descriptors of reagents/products/CGR. Since fragment descriptors represent 

per se a vast chapter of possible fragmentation schemes and strategies to capture specific 

chemical information, this category was the only one exploited in this work (see below). 

Quantum-chemical descriptors and substituent constants are often used in conjunction 

with linear regression to model some reaction properties (usually kinetics) or to reveal 

reaction mechanism. 
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2.3.1. Fragment Descriptors 

An important advantage of fragment descriptors is related to the simplicity of their 

calculation, storage and interpretation [2, 54, 55]). They belong to information-based 

descriptors [56], which encode the information stored in molecular structures. This 

contrasts with knowledge-based (or semi-empirical) descriptors derived from 

consideration of the mechanism of action. Owing to their versatility, fragment descriptors 

can efficiently be used to build structure–property models, perform similarity searches, 

virtual screening and in silico design of chemical compounds with desired properties. 

The following types of fragment descriptors can be distinguished [57]: Simple Fixed 

Types Fragments [58], WLN and SMILES Fragments [59], Sequences [2], Atom-

centered Fragments [60, 61], Bond-centered Fragments [62, 63], Atom Pairs and 

Topological Multiplets [52, 64, 65], Substituents and Molecular Frameworks [66–68], 

Basic Subgraphs [69], Mined Subgraphs [70, 71], Random Subgraphs [72], Library 

Subgraphs [73]. Despite many different type of fragment descriptors being proposed, 

only some of them became widely used. Below, two most universal approaches for 

fragment descriptor generation are discussed: ISIDA and SiRMS fragments.   

 

 

2.3.1.1. ISIDA descriptors 

ISIDA (shorthand for In SIlico Data Analysis) fragments – simple way for encoding 

molecules and reactions. For both molecules and CGR, the ISIDA Fragmentor [74] 

produces a vector of integers counting the occurrences of molecular fragments of different 

topology. There are two types of the ISIDA descriptors: sequences of atoms and/or 

bonds, and augmented atoms (circular fragments) representing a selected atom with its 

closest environment, Figure 13.  

 

 2 1 1 … 
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Figure 13. Vector of numbers after ISIDA fragmentor.  

 

There are several main parameters controlling ISIDA fragment descriptor 

generation: 

• Fragmentation scheme. Three fragmentation schemes are supported: sequences, 

augmented atoms (circular fragments) and topological triplets. User can specify 

whether to take atom and bond labels in the generated fragments into account. 

For example, in Figure 13 one can see values for sequence descriptors. 

• Minimal and maximal length of sequence or augmented atom radius. All 

sequences having specified length or augmented atoms having given topological 

distance from central atom are generated. This parameter influences the balance 

between long and short fragments.  If short fragments are too general such 

description will be non-informative. Long fragments could be too selective and 

numerous and thus could introduce noise in the model. 

• Do_all_ways  - flag switches off default calculation of shortest path sequences and 

fragments generated by all possible detours on the graph. It is relevant only for 

structures with cycles. 

• Formal charge option adds the information of the formal charge on an atom into 

fragment description. This option is useful to differentiate protonation states of 

molecules. In case of CGR ISIDA fragment descriptors are universal and were 

used for many different QSAR/QSPR tasks: prediction of H-bond stability [75, 

76], halogen bonding [77], metal complexation [78], and many other biological 

and physico-chemical properties of molecules [2, 74, 79],  if to name a few.  

 

2.3.1.2. SiRMS descriptors 

SiRMS (shorthand for SImplex Representation of Molecular Structure) are 

topological multiplets (see 2.3.1). The descriptor vector encodes frequency of presence of 

all possible atomic multiplets (atom combinations) having given number of vertices. 

MultipletSSS could contain atoms that are not bound, but unlike other topological 

multiplets the topological distance between atoms is not specified in SiRMS, Figure 14. 

Initially, SiRMS contained only so called simplexes (tetratomic multiplets) but later 
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fragments with any number of centers (from two to six, as an option) became used [80]. 

The latter are still called simplexes due to historical reasons. Description of simplexes 

could contain bond orders, stereochemical configuration of simplex, atomic property 

labels (like charge, lipophilicity, polarizability, etc.). Optionally, simplexes containing 

atoms not bound to other atoms of a given fragment could be discarded.  

 

 
Figure 14. Generation of SiRMS descriptors for chemical compound. 

 

SiRMS descriptors were shown to be generally applicable for prediction of many 

different properties: biological activity of compounds [81, 82], environmental toxicity 

[83], solubility [84] and other physico-chemical properties [85]. One of their specific 

features is the possibility to correctly represent stereochemistry-related properties [86]. 

Quite recently, mixture SiMRS descriptors [18] incorporating calculation of simplexes 

for chemically disconnected molecules were proposed. For a mixture, one fragment could 

contain parts coming from several molecules. This approach was successfully used for 

prediction of properties of binary mixtures [87]. The “Quasi-mixture” approach, in 

which every compound is represented as a mixture with itself, was shown to be superior 

over the single molecule approach in physical properties prediction [88]. 

 

2.3.2. Particular types of reaction descriptors 

The reaction descriptor vector should encode two essential features of chemical 

reaction –the transformation (i.e. structure of reagents and products) and reaction 

conditions. To simplify the situation, modeling usually addresses either a set of reactions 

under common conditions, or a single reaction under variable conditions. In this case, the 

constant part of descriptor vector is neglected.  

In this part we will describe some techniques for reaction descriptor calculation. 
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2.3.2.1. Reagent-product descriptors 

The simplest way to describe reaction is to consider it as a combination of reagents 

and products. Reagents and products in this approach are considered as molecular 

graphs. Thus this approach is based on molecular descriptors making it rather general 

since it does not require special reaction-oriented descriptors. 

 

2.3.2.1.1. Reagent descriptors  

Let us consider the case of a series of reactions of the same type. In this case, the 

structure of product is fully determined by reagents and thus only reagents could be 

considered.  

The Linear Free Energy Approach (LFER) is based on this assumption. Moreover, 

within LFER, reagents are congeneric, i.e. they differ by substituent. Thus changes in 

predicted value could be explained only by electronic and steric influence of the 

substituents. The first substituent descriptor was introduced by Hammett [53] and was 

used for prediction of acidity. Later, Taft [89] introduced the steric factor of substituents. 

Later, a lot of different substituent constants were proposed to describe inductive, 

mesomeric and other electronic and steric effects. Substituent constants [90] descriptors 

were used for prediction of reaction rate or equilibrium constants k using linear equation 

of the type P
PQ
= σρ, where k0 is reaction rate with hydrogen as substituent, s is 

substituent constant and r is reaction and scaffold type dependent constant. Often, 

multiparametric LFER equations were built to describe dependence of property under 

study on several substituent constants or solvent parameters. Since these descriptors have 

clear physical meaning the dependencies are used for interpretation and to study reaction 

mechanism. Although the usage of LFER approach for predictive purpose has mostly 

historical importance, it is still used for mechanism elucidation and interpretation [90, 91] 

Usage of the approach with predictive purpose is limited since it has a very narrow 

applicability mainly due to two facts: (i) only congeneric reactions could be predicted and 

(ii) descriptors used are obtained experimentally. Nevertheless, from time to time 

predictive models based on LFER approach are proposed. For example, in the work [14] 

LFER equation was used to correlate quantum-chemically predicted activation energies 

for a given reaction in different solvents with descriptors of solvents to predict optimal 

conditions for the reaction. 
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The idea that reagent descriptors could be used to predict reaction properties is 

sometimes exploited in the field of QSRR. Various descriptors [92] of compounds 

including topological indices, information indices based on charge distribution in 

molecules, fragment descriptors and others were used for prediction of rate of homolysis 

of nitrocompounds. In this case, focusing the description on anything else but the 

reagents is impossible, since the mechanism of reaction is unknown and reaction results in 

complex mixture of products.  

In the work of Marcou et al different descriptor creation strategies were 

benchmarked [93] in order to predict Michael reaction feasibility under given conditions 

(solvent type and catalyst type). They compared reagent based descriptors (420 CDK 

descriptors, MOLMAP [63, 94], ISIDA fragments and EED descriptors [95]) and came 

to conclusion that the models employing them have the same predictive performance that 

the one based on descriptors with explicit reaction center encoding. They came to 

conclusion that within the considered training set, condition specific structural “patterns” 

or “signatures” can be established even in absence of explicit knowledge of the reaction 

center itself. 

 

2.3.2.1.2. Concatenated descriptors of reagents and products 

In case when for a given reagent several products can be formed, and modeling 

reaction property depends on the product formed, the reagent based approach described 

above can no longer be used. In this case, the reaction descriptor should explicitly encode 

both reagent and product features. The natural idea to solve this problem is to 

concatenate reagent and product descriptor vectors. This approach is quite universal and 

can be used for any chemical reaction, but leads to rather long descriptor vectors. Large 

descriptor vectors could introduce noise and spurious correlations into a model. If several 

reagents and products are involved, they should be represented in some specific order 

(reaction descriptor would be concatenation of descriptors for A, B, C and D molecule). 

Thus, careful curation of the dataset is required. 

Kravtsov et al [96] used concatenated representation of reagents and products 

based on topological, physicochemical and quantum chemical descriptors for the 

modeling reaction rate of SN2 reaction. The transformation descriptor vector was 

concatenated with vector of solvent descriptors and reaction temperature. Using 
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descriptor selection on the basis of Fast Stepwise Multiple Linear Regression and artificial 

neural networks as machine learning method the first chemoinformatics model able to 

predict reaction rate in different conditions were built. Similar approach was used in the 

work of the same authors for classification of preferable mechanism of nucleophilic 

substitution (SN1 or SN2) reactions [97]. 

 

2.3.2.1.3. Difference descriptors  

The last approach that could be used for generation of reaction transformation 

descriptors without explicit consideration of reaction center is based on arithmetic 

difference between vectors of reagents and products. The approach is based on the idea 

that if reagents and products are represented by fragment descriptors, difference between 

them represents fragments that exist in one part of the equation but absent in the other. 

In such a reaction center is implicitly represented without AAM. 

In case of binary fingerprint usage there are two options how the difference 

fingerprint could be calculated. First, the difference could be calculated as element-wise 

subtraction, in this case final fingerprint will contain “1”, “0” and “-1” and no longer a 

binary number. This approach was used to classify enzymes according to reactions they 

catalyze [98]. The other option is to calculate difference fingerprint as bitwise logic OR 

operation, resulting fingerprint will be still binary but will coincide for forward and 

backward reaction [99].  

The drawback of the approach is that only fragment descriptors can be used 

(otherwise their meaning is unclear), and reaction should be perfectly balanced. If one 

reagent of product is absent descriptor vector will contain meaningless values.  

Schneider et al. [100] implemented the idea of reaction difference fingerprints, 

using the following procedure: authors calculated the bitstrings for each molecule 

involved in the reaction and the descriptor representation of the reaction was found as the 

difference between the sum of product bitstrings and the sum of reactant bitstrings. 

Resulted vector was summed with descriptors of additives to enhance the ability of the 

model. It allows classifying reactions by their types. 

Another type of difference descriptors has been proposed by Ridder and Wagener 

[101] who calculated the reaction descriptors as the difference between the frequencies of 

occurrence of some fragment in the products and in the reactants. A similar approach, 
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but using fragment descriptors, which were called atomic signatures (sort of augmented 

atoms), was applied by Faulon et al [102]. The MOLMAP reaction descriptors calculated 

as the difference between the product and reactant MOLMAP descriptors, which are 

calculated as Kohonen’s map of bond centered descriptors for a given molecule. They 

were used several times for classification tasks [63, 93, 94] involving chemical reactions.  

 

2.3.2.1.4. CGR descriptors 

Explicit representation of reaction center could overcome many problems related 

with descriptor generation: first, making emphasis on reaction center potentially enhance 

predictive ability and reduce chance to find spurious correlations; second, this method is 

insensitive to molecule ordering and reaction balancing. In LFER approach atoms belong 

to reaction center were usually selected manually choosing appropriate substituent 

descriptor or calculating some quantum chemical property of atoms causing interest. 

Reaction center graph representation could be used as a basis for descriptor 

calculation. Varnek [2] noticed that CGR can be regarded as a pseudo-molecular graph 

and its fragment descriptors could be readily calculated using approaches designed for 

application to molecules, Figure 15.  

 
Figure 15. Example of fragment descriptors generation for CGR. One could notice 

that the procedure is very similar to the one used for molecules descriptor generation, 

given on Figure 13.  

 

For CGR-based fragment descriptors calculation for chemical reactions one can 

generate fragments that contain only dynamic bonds (no ordinary bonds), or fragments 

containing at least one dynamic atom\bond, or all fragment descriptors. The first two 

options introduce special attention on reaction center that can be efficiently used for 

quantitative reaction similarity assessment or applied in QSRR studies. Corresponding 

options were introduced in ISIDA Fragmentor descriptor generation software.  
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Resulted descriptor vectors for chemical reactions could be compared using well-

known similarity metrics and applied in reaction similarity search [103]. De Luca et al 

[104] used neighborhood behavior approach [105] with different types of CGR fragment 

descriptors and similarity indices to find optimal strategies to assess reaction similarity. 

The paper was based on the idea that the most similar reactions should correspond to the 

same type. Best descriptors selected by neighborhood behavior were used for mapping 

reactions using Kohonen’s self-organizing map approach and it was shown that reactions 

of a given type fall into the same or nearby nodes. The latter was used to select reaction 

signatures corresponding to a given reaction center. Application of fragment descriptors 

for CGR in QSRR modeling will be described below.  

 

 

2.3.2.2. Reaction condition descriptors 

Reaction conditions are essential for prediction of reaction properties. Temperature, 

pressure, reactant concentration and solvent are the most important of them.  Usually 

concentration independent characteristics are modeled (reaction rates, equilibrium 

constants, usually taken as logarithms) and thus reagents initial concentrations are 

neglected. Temperature and pressure are numerical values that could be easily added to 

the descriptor vector. Due to Arrhenius equation (Eq. 4) if logarithm of reaction rate is 

modelled it is more natural to introduce temperature descriptor as inverse of absolute 

temperature (1/T, where T is in Kelvin).  

Traditionally, the mechanism of solvent action is associated with its ability to 

stabilize polar molecules in solution (called polarity), participation in H-bonds with 

solvent being H-donor or H-acceptor (called H-bond acidity or basicity) [90]. Moreover, 

a dissolved molecule could polarize solvent itself that changes the polarity of the latter. In 

modeling, solvent is represented as a vector of usual molecular descriptors (e.g., fragment 

descriptors and others) and by physicochemical parameters describing the main 

mechanism of solvent action on solute. In the work [96] authors included both type of 

descriptors however fast stepwise multiple linear regression used for descriptor selection 

picked only physicochemical parameters of solvents, that indirectly shows that the latter 

could better reflect solvent influence. 
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Among physicochemical parameters the most important are dielectric permittivity 

and refraction index. The former is related to solvent polarity and the latter with its 

polarizability. The dielectric permittivity influence on a dissolved molecule is a highly 

nonlinear. Reaction field theory (a.k.a Onsager theory) [106] gives some formulae that 

describe the dependence of solute energy on dielectric permittivity: Born and Kirkwood , 

Debye function [107]. Analogously polarizability of solvent could be described as a 

function of the refractive index measured by D-line of sodium spectra at 20 degrees 

Celsius  [107]. 

Several physicochemical scales for description of solvent effects (polarity-

polarizability, H-acidity and basicity) were proposed: Catalan SPP, SA and SB scales 

[108–110], Camlet-Taft π*, α and β scales [111–113], Koppel-Palm tetraparametric 

equations [114] for solvent effect modeling. Most of these scales are based of 

solvatochromic effects of the solvent, i.e. shifts in UV, visible or IR radiation absorption 

of some molecules in different solvents.  

 

2.4. Computational approaches to reactivity modeling  

One of the most universal approaches for modeling properties of chemical objects is 

based on application of machine learning tools to chemical systems. Generally this 

approach is called QSAR (Quantitative Structure–Activity Relationship) or QSPR 

(Quantitative Structure–Property Relationship), with QSAR being the most widespread 

term. The essence of the approach is based on finding mapping between a space 

represented by set of structural descriptors {𝑋;, 𝑋=, …𝑋C}	and predicted property: 

𝑌 = 𝑓(𝑋;,𝑋=, …𝑋C) 

This mapping is done in a way valid for most of objects. Thus model obtained on 

some limited portion of data called training set could be applied for the rest of objects. 

Linear Free Energy Relationships [115] use very similar technique in general but 

interpretability of the model is a cornerstone of the approach. That is why in LFER linear 

regression and physicochemical descriptors are used almost exclusively. In 

SAR/QSAR/QSPR black box machine learning methods based on very flexible fitting 

functions 𝑓(𝑿) and many other type of descriptors are widely used. The main accent is 

done on general applicability and robustness of the model rather than its interpretability. 

At the same, the other methods are widely used for prediction of chemical objects 

20
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characteristics, first of all one need to mention quantum chemistry and molecular 

mechanics. These approaches use strict physical theories to predict desired properties of 

chemical systems.  

Linear free energy approach dates back to 1937 when Hammett [53] proposed it to 

predict acidities of chemical compounds. The name arises because the logarithm of an 

equilibrium constant (at constant temperature and pressure) is proportional to a standard 

free energy (Gibbs energy) change, and the logarithm of a rate constant is a linear 

function of the free energy (Gibbs energy) of activation. The approach was extensively 

used to establish linear correlations between substituent or solvent descriptors and 

reaction characteristics such as reaction rate or equilibrium constants. There were a lot of 

investigations done in this field that are reviewed in the book of Palm [116]. In the end of 

XX century with the development of computers quantum chemical approaches have 

mostly substituted LFERs. Usually quantum chemical studies involve building simple 

correlations between parameters of molecules and their reactivities which are alike LFER, 

for example, linear equations between Diels-Alder reaction rate and conceptual DFT 

indices [117]. Reaction kinetics study sometimes still involves LFER to understand 

substituent or solvent effect and thus get some ideas on reaction mechanism.  

In this part we will describe the application of different approaches to study 

chemical reactions.  

 

2.4.1. Quantum chemical calculations 

The quantum chemical methods are based on approximate solution of Schrodinger 

equation (Hartree-Fock and post-Hartree-Fock methods) or Kohn-Sham equations [118] 

within Density Functional Theory (DFT) [119]. One of earliest and most widely used 

method of approximate Schrodinger equation solution is self-consistent field (a.k.a. 

Hartree-Fock-Roothaan, or simply Hartree-Fock) method [120]. Post-Hartree-Fock 

methods use Hartree-Fock solution to decompose wavefunction into series of excited 

Slaters determinant that allows achieving more appropriate values of energy. MP2 [121], 

Multireference Configuration Interactions [122] and Coupled Cluster approach [123] 

are popular methods of this type. Less computationally expensive methods are based on 

Density Functional Theory, which uses a functional correctly reproducing exchange-
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correlation energy. The list of available functionals is extremely wide [124], however 

B3LYP [125] and PBE [126] are the most well-known. 

Energy and its derivatives are used to locate extremums on potential energy surface 

corresponding to stable chemical structures or transition states and in such a way used to 

assess molecular energy and geometry. Many other characteristics of molecular systems 

(including spectra) could be calculated in a similar manner.  

 

2.4.1.1. Predicting of thermodynamic parameters  

 

The quantum chemical calculations are the main way to predict thermodynamic 

parameters of molecules nowadays. Usage of quantum chemical approaches for 

prediction of different thermodynamic parameters is published each year in thousands of 

articles. Special approaches for precise estimation of thermodynamic properties of 

molecules taking into account all required energetic terms and usually some empirical 

corrections are proposed [127, 128]. 

Prediction of thermodynamics parameters for reagents and products could be used 

to assess reaction enthalpy and free energy. The latter could be used for prediction of 

reaction equilibrium constant. For example, the company “Schrodinger” proposed an 

accurate quantum chemical approach for assessing tautomeric equilibrium constants 

[129].  

Despite quantum chemical approaches are the most used methods for prediction of 

reaction thermodynamics, they are rather slow and the need to estimate solvent effect 

sufficiently complicates this problem. The achievement of chemical accuracy in the 

prediction requires the performance of very sophisticated and resource-intensive 

calculations. And even with them the quality of data is far away from experimental 

accuracy [11]. Results of a blind competition performed in the frame of SAMPL2 

Challenge [130] where various, mainly quantum chemical, approaches competed in the 

prediction of solvation energies and energy differences of tautomers have shown that 

computational accuracy they reach now (the mean square error of the energy calculation 

was ~2.5—3 kcal/mol) is insufficient for the adequate description of the energy and is 

much lower than the experimental one. Almost all methods used had fitting parameters 
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adjusted to a training set proposed in the competition that allows more appropriate 

estimation of desired property compared to ab initio calculation.  

 

2.4.1.2. Mechanism of reaction  

 

Usually mechanism of reaction is explained in terms of Transition State Theory, 

that was developed simultaneously by Eyring [131], Evans and Polanyi in 1935 [132]. A 

minimal energy pathway on potential energy surface that connects reagents and products 

is stated in the theory. This pathway describes alterations of geometry and energy in the 

system while reagents are transformed to products. Minimal energy pathway is the 

pathway that requires the least amount of energy. The movement along the pathway 

requires changing of one or more molecular coordinate and is called reaction coordinate. 

Each elementary step of reaction involves formation of Transition State (activated 

complex) – highest energy structure on reaction pathway. Difference between energies of 

transition state and reagents is called activation energy. Reaction could proceed if 

reagents have enough energy to jump over transition state.  

Quantum chemical study of mechanism of reaction requires determination of 

transition state and all intermediate along reaction pathway. One also needs to prove that 

detected transition states belong to reaction path. Usage of Intrinsic Reaction Coordinate 

(IRC) following algorithm makes small steepest descent steps down from the transition 

state. If one could get reagents and product following IRC it means that transition state, 

reagents and products belong to the same reaction pathway, otherwise they belong to 

different domains on potential energy surface.  

Eyring have shown that reaction rate depends on activation free energy: 

Eq. 5.     𝑘 = ^_`
a
	𝑒𝑥𝑝 c− ∆de

?`
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where ∆𝐺g is known as the Gibbs free energy of activation, is the standard molar 

Gibbs energy change for the conversion of reactants into transition state. A plot of 

standard molar Gibbs energy against a reaction coordinate is known as a Gibbs-energy 

profile. In principle the right-hand side of equation (Eq. 5) should be multiplied by a 

transmission coefficient, κ, which represents the probability that an activated complex 
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forms a particular set of products rather than reverting to reactants or forming alternative 

products.  

In such a way, quantum chemical calculations could be used to understand 

mechanism of reaction and to find its rate constant [133]. Even for simple reactions 

quantum-chemical study of its mechanism and kinetics is computationally intensive, but 

nevertheless it is the most developed and widely used approach for reaction study and 

qualitative assessment of their characteristics [134]. 

 

2.4.2. QSAR in reaction modeling 

Chemoinformatics approaches were rarely applied to study and predict reaction 

characteristics. Mainly it is related with reaction complexity and lack of data ready for 

modeling. Thus works related to reaction modeling appeared sporadically and no 

systematic studies were still published.  

 

2.4.2.1. Reaction kinetics  

 

The collection of data on reaction kinetics were mainly inspired by great interest in 

reaction mechanism study and popularity of linear free energy relationships in the XX 

century [116, 135, 136]. By the end of 1990th general workflow of QSAR modeling had 

been developed and thus first attempts to build models for reaction kinetics based on 

QSAR methodology was done.  

The first works in reaction rate prediction were done in N. Zefirov’s group and were 

based on application of artificial neural networks and molecular descriptors of different 

type to chemical reactions. In the work of Sukhachev et al [92] rate constants of nitro 

compounds decomposition in gas phase were predicted. Authors used ordinary 

topological and fragment descriptors ignoring conditions that were the same for all 

measurements.  

In the work of Halberstam et al [137] a model for the rate constant of 2092 acid 

ester hydrolysis reactions was built. Since one of reagent was unchanged (water) the 

descriptors of chemical transformation were simply molecular descriptors of ester, 

quantum-chemical descriptors were used. To represent reaction conditions reaction 

temperature and Palms descriptors of solvents were concatenated with structural 
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descriptors. On validation set (209 reactions), RMSE of prediction was 0.34 logk units. 

Using the same dataset and workflow but fragment descriptors to represent ester structure 

Zhokhova at al [138] slightly increased the quality of prediction– RMSE dropped down 

to 0.31 logk units.  

For bimolecular nucleophilic substitution reaction rate assessment Kravtsov et al 

[96] proposed approach where molecular descriptors of two substrate and product 

molecules were combined into the feature vector using for modeling by means of neural 

networks. Dataset comprised 3451 SN2 reaction rate constant in pure solvents at different 

temperature. Authors used fragment, topological and quantum-chemical descriptors for 

encoding chemical transformation, Palm solvent descriptors to represent media. 

Significant descriptors were selected using the fast stepwise linear regression procedure. 

On 193 test set reactions RMSE was 0.58 log units. The approach was used as well for 

SN2/ SN1 reaction classification and SN1 reaction rate prediction [97] with RMSE 0.61 

log units on test set that is unbiased enough.  

Further development of reaction rate modeling was related with CGR approach. 

Hoonakker et al [139] used dataset of 1014 reactions in water solvent proceeding at 

various temperatures, 3 various machine-learning techniques (SVR, M5P, MLR) and 

ISIDA fragment descriptors based on CGR representation of reactions for building 

model for logk prediction. The best model built using SVR and atomic sequences of 

topological length from 2 to 8 as descriptors shown quite good performance, Q2=0.53, 

RMSE=1.26, but worse than that of Kravtsov et al [96]. The difference could arise due 

to different validation procedures and biased estimation of prediction error (see chapter 

4.2). Hoonakker’s model could only predict reaction rate in water solvent. In the next 

work [140] the dataset of 1041 reaction proceeding in different solvents and at different 

temperatures involving only neutral nucleophiles was collected. The model on this data 

was built using ISIDA and SiRMS descriptors of structure, 15 solvent descriptors 

characterizing polarity, polarizability, and proton-acceptor and proton-donor abilities of 

solvent, temperature of reaction. Random Forest regressor usage for model building 

allowed reaching RMSE on out-of-bag sample of 0.5 logk units that was shown to be 

comparable with experimental noise. Neutral nucleophiles were selected to exclude 

effects due to complication of reaction process in case of usage of salts as nucleophiles. In 

the next work [141] it was found that for particular case of SN2 reaction using azide ion as 



 54 

nucleophile addition of descriptors that encode concentration of substrate and 

nucleophile and the nature of counter ion increases predictive performance of the model. 

In this case RMSE achieved 0.98 vs 1.07 logk units in case of absence of counter ion 

descriptor. Such wise despite 4 models for SN2 reactions were published by now, there 

was no model that was developed to predict reaction rate of any nucleophile in any 

solvent and solvent mixtures. 

2.4.2.2. Reaction classification  

Classification of reaction types implies the recognition of types of reactions present 

in databases or entered by a user, which is important for solving practical tasks of 

synthetic chemistry, for example, for search of similar reaction, optimal condition 

selection or synthesis planning (generation or selection of retrosynthetic rules). There is 

two approaches for reaction classification: model-based and data-based [28]. Model-

based approaches use different reaction center representations schemes (see Chapter 

2.2.2). Reaction center is specific for reaction of given type and that could be utilized for 

grouping, making reaction nomenclature and ontology [33, 34]. It is however not a 

universal approach since classification of reactions used in organic chemistry sometimes is 

not related to immediate environment of reactions center.  

Similar approach that could be called rule-based works in opposite way: first, 

reaction ontology is manually created using concepts in organic chemistry and then rules 

for reaction extraction are manually proposed. For example, RXNO reaction ontology 

(http://github.com/rsc-ontologies/rxno) created on the basis of works [142, 143] was 

used in rule-based reaction classification NameRxn system [144]. This system was used to 

investigate the popularity of reactions of various types in medicinal chemistry [145].  

Data-based classification approaches are based on application of machine learning 

tools to the dataset with known reaction classes to create the model able to classify new 

reactions. One of first approaches to classify reaction by type have used Kohonen’s map 

and physicochemical descriptors of atoms [146]. It was shown that reactions could be 

quite efficiently classified; however the number of reaction types was quite small. 

Similarity based system for hierarchical reaction classification to additions, eliminations, 

and substitutions, followed by two successive subdivisions by number and types of 

reactive atoms was proposed by Sello and Termini [147]. Rules in mentioned NameRxn 

system lack generality and thus they sometimes skip reactions belonging to given type. 
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Thus in the work of Schneider et al [100] several machine learning techniques were used 

to make classification model trained on dataset of reactions, extracted from patents and 

annotated by type using NameRxn tool. Information on conditions could help with 

classification since reactions of a given type are usually performed in similar conditions. 

Thus, authors used very unusual fingerprints: they substracted from product fingerprint 

reagent one and summed result with fingerprint of small-molecule reactant. Several 

RDKit molecular fingerprints were used for reaction fingerprint creation [148]. The 

created model were used to annotate reactions that were skipped by rule-based approach. 

 

2.4.2.3. Reaction conditions prediction 

 

Prediction of optimal conditions for chemical reactions is very interesting but yet 

really insufficiently explored topic in reaction modeling. One of the first work in this 

direction was the one by Struebing et al [14] where optimal solvents for nucleophilic 

substitution reaction were predicted. Proposed approach used quantum chemical 

calculations of transition states of reactions in a given solvent with the following LFER-

like equation that united activation energy and solvent parameters. The latter was used to 

find solvent that potentially enhances reaction rate and the procedure repeated until self-

consistency reached. As the result authors reported about new found solvent for reaction 

that increased reaction rate on 40%. This approach was quite resource-consuming – one 

prediction required some days of calculation. 

Chemoinformatics approach in this case could be much faster. Marcou et al [93] 

proposed a classification model that could predict general type of catalyst and solvent for 

Michael reactions. The model was built using manually annotated set of 193 reactions. 

Several descriptor types (reagent-based, difference fingerprints, CGR-based fragments) 

and machine learning techniques were benchmarked. The best model had balanced 

accuracy 0.85± 0.15. The model was successfully tested on external set and was capable 

to predict feasibility conditions for new 50 Michael reactions.  

Recently, approach to assess optimal conditions for hydrogenation reactions was 

proposed by Lin et al [149]. The training set reactions were extracted from Reaxys 

database and curated in fully automatic manner. Optimal conditions were predicted 

using similarity based approach: for test set reaction system looks for most similar reaction 
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center environment in curated database of reactions where required transformation 

proceeds and where does not. The approach was validated internally and externally and 

has shown very good results. 

 

2.4.2.4.  Reaction yield prediction  

 

Prediction of expected yield for reaction running under certain condition could be 

rather interesting for synthetic chemist to assess yield of multistep procedure or ensure 

that reaction conditions were selected properly. There are two very recent publications 

that dealt with yield prediction. 

Very recently Skoraczyn ́ski et al [150] modeled 425 000 of reactions from Reaxys. 

The authors predicted yields and times of reactions with several types of descriptors. The 

author claimed that the results of their work were somewhat negative but tended to be 

thought-provoking. Error in prediction of yields and reaction times are 35% and 25%, 

correspondingly. Classification models have accuracy 65% for prediction of reactions of 

class with high yields (>65%) [150]. Such limited prediction was interpreted as 

consequence of imperfectness of descriptors but one should take into account that yield of 

reaction is a very noisy parameter.  

In the work of Ahneman et al [151] high-throughput reaction screening approach 

for collection data on yield of Buchwald-Hartwig reaction was presented. The yield was 

predicted using different machine-learning techniques and quantum-chemical 

descriptors. Unlike aforementioned work, model shows very good performance on out-of-

bag validation: RMSE was substantially lower than in previous work - 11% and R2=0.91. 

Such a drastic difference between two articles could be partially explained by different 

dataset (big and noisy data from Reaxys vs relatively small automatically collected data).  
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Chemical reactions study and discovery is a central topic in synthetic and quantum 

chemistry. But as it comes from the review reaction modeling is really poorly explored 

topic in chemoinformatics. There are few sporadic publications without systematic efforts 

for the development of approach adapted for reaction modeling taking into account 

reaction specifics. The goals of present study immediately come from previous studies. In 

this PhD thesis we want to contribute to reaction modeling by (i) collection of big dataset 

of kinetic and thermodynamic properties of chemical reactions, (ii) development of 

workflow for modeling reaction characteristics using machine learning techniques, (iii) 

development of specific methodologies for reaction data curation, (iv) development of 

novel descriptors to model chemical reactions taking into account reaction conditions, (v) 

modeling reactions studied previously and a new one , creation of universal models 

predicting reaction characteristics of different types in variety of conditions, (vi) 

development of server for publication of reaction models.  
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Chapter 3.  

Computational techniques used in the study 
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In this chapter technologies used in the work for reaction modeling will be reviewed. 

Moreover, some clarification of technical aspects of the workflows used in the work is 

given.  

3.1. Quantitative Structure Reactivity Relationship (QSRR) 

modeling strategy 

QSAR/QSPR methodology application to chemical reaction proposed and used in 

the work will be described in the following chapters. In order to discriminate it from other 

approaches we called it for convenience Quantitative Structure Reactivity Relationship 

(QSRR).  

The general workflow of QSRR is the same as for QSAR study and starts with 

generation of descriptors for the objects of the dataset. The next step is selection of model 

validation procedure and machine learning method. Hyperparameters of machine 

learning method and fragment descriptors type maximizing model performance are 

selected using stochastic algorithms. The parameters shown best performance in cross 

validation are used for final consensus model building. All the steps will be discussed in 

chapters below. 

 

3.1.1. Reactions Descriptors  

 

Every modeling procedure starts from descriptors generation since machine 

learning methods usually require input represented as numerical vector. In this work two 

types of fragment descriptors were used for modeling of reactions – SiRMS and ISIDA. 

The SiRMS descriptors were used for modeling of reaction for the first time in this 

work. The procedure of generation descriptors is fully described in the article on E2 

reactions modeling in the chapter 6.2, as the procedure that was used only in that part of 

the work and not included in general workflow. SiRMS descriptors were calculated using 

in house software developed by Dr. Pavel Polishchuk available at 

https://github.com/DrrDom/sirms. 

The ISIDA substructural fragments based on CGR were commonly used in the 

work. ISIDA Fragmentor tool with the following settings were used for the descriptor set 

generation (see chapter 2.3.1.1 for options description): 
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• Minimal length from 2 to 4; 

• Maximal length from 3 to 8; 

• Fragment types: sequences and augmented atom type descriptors including 

description of only atoms, only bonds or both atom and bonds; 

• Formal charge on atoms were optionally explicitly included into fragment 

description; 

• Shortest paths or all possible paths were optionally explored in sequence 

descriptor generation. 

As a result, 616 fragmentation schemes were used. All fragmentations were 

supplemented by 13 descriptors of solvents. Each solvent was described by special 

descriptors that represent polarity, polarizability, H-acidity and basicity: Catalan SPP, 

SA, and SB constants [108–110], Kamlet–Taft constants α, β, and π* [111–113], four 

functions describing solvent polarity depending on the dielectric constant ε (Born 

 and Kirkwood  functions, , ), three functions 

describing solvent polarizability depending on the refractive index measured by D-line of 

sodium spectra at 20 degrees Celsius  ( , , , 

refractive index is denoted as n for simplicity). In order to describe water-organic solvent 

mixtures descriptor specifying the molar ratio of organic solvent in water was added. The 

inverse absolute temperature, 1/T (in Kelvin degrees) was also used as temperature 

descriptor.  

 

 

3.1.2. Model Validation  

The best parameters for machine learning methods are selected within 5-fold cross-

validation procedure. Cross-validation is a model validation technique for assessing 

predictive power of the model. In 5-fold cross-validation procedure the whole dataset is 

divided into five almost equal parts. Four of them were used for model building (training 

set) and one part is used to test predictive performance (test set), see Figure 16. The 

procedure is repeated in such a way that every part once is used as test set. The 
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evaluation of model is done by taking into account only predictions for the reactions 

when they were in the test set.  

 
Figure 16. Cross-validation procedure of machine learning parameters evaluation.  

 

 

3.1.3. Machine-Learning methods 

Machine learning algorithms can fit some flexible function to describe the data, and 

thus it could extract rules from observed data without being explicitly programmed [7]. 

Such algorithms overcome following strictly static program instructions by making data-

driven predictions or decisions, based on sample inputs. Machine learning is widely used 

in a range of computing tasks where designing and programming explicit algorithms with 

good performance is difficult or infeasible. 

 

3.1.3.1.  Support Vector Machine 

Among the most popular state-of-the-art algorithms is Support Vector Machine 

(SVM) - a supervised non-probabilistic learning method used for classification (called 

SVC or simply SVM) and regression analysis (SVR).  

In classification task a set of training examples is given, each labelled as belonging to 

one of two classes, an SVM training algorithm assigns new objects some class. An SVM 

looks for hypersurface in some descriptor space that separate objects of different classes. 

The surface is adjusted in a way that the gap (called margin) between objects of opposite 

classes is as wide as possible. New examples are then mapped into that same space and 

predicted to belong to a category based on definite side of the surface they fall on. 
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In addition to performing linear classification, SVMs can efficiently perform a non-

linear classification using so called kernel trick, implicitly mapping their inputs into high- 

dimensional feature spaces. 

Consider some training data 𝐷 that are represented by a set of n objects with known 

class: 

𝐷 = {(𝒙𝒊, 𝑦j)		|	𝒙𝒊 	 ∈ 	ℝn, 𝑦j ∈ {−1, 1}}jp;C  

 

where the 𝑦j is either 1 or −1, indicating the class to which the point 𝒙𝒊 belongs. 

Each 𝒙𝒊 is a p- dimensional real vector. Optimal classifier is found by selection of the 

maximum-margin hyperplane that divides the points having 𝑦j = 1 from those having 

𝑦j = −1, Figure 17. Any hyperplane can be written as the set of points 𝑥 satisfying 

condition 

  𝒘 ∙ 𝒙 − 𝑏 = 0 

where 𝒘 is the (not necessarily normalized) normal vector to the hyperplane. The 

parameter t
||𝒘||

 determines the offset of the hyperplane from the origin along the normal 

vector [152], Figure 17. Maximization of margin was shown to be equivalent to 

maximization of =
‖𝒘‖

. One could notice that correct classification of objects by plane with 

given w and b means that  

𝑦j(𝒘 ∙ 𝒙𝒊 − 𝑏) ≥ 1 

Thus the following task of quadratic programming is posed: 

;
=𝒘

`𝒘 →min  

𝑦j(𝒘 ∙ 𝑥j − 𝑏) ≥ 1 
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Figure 17. Maximum-margin hyperplane and margins for an SVM trained with 

samples from two classes. Samples on the margin are called the support vectors. 

 

A support vector regression(SVR) was proposed in 1996 by V. Vapnik, et al [3] as a 

development of SVM method for continuous variables prediction (Figure 18). To find the 

original regression 𝑦 = 𝒘 ∙ 𝒙 + 𝑏 for points T={(x1,y1),(x2,y2),...} is to find 𝒘 and 𝑏 

minimizing 

‖𝒘	‖=

2
+ 𝐶|(𝜉j + 𝜉j∗)

�

jp;

 

where C is the cost that define the severity of the penalty for points whose predicted 

value deviates from experimental one more than ε,	Figure 18: 

𝑦j 	− (𝒘 ∙ 𝒙𝒊) − 𝑏	 ≤ 	𝜀 + 	𝜉j 

(𝒘 ∙ 𝒙𝒊) + 𝑏 −	𝑦j 	≤ 	𝜀 + 	𝜉j∗ 

𝜉j ≥ 0  

𝜉j∗ ≥ 0  
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Figure 18. Illustration of parameters of SVR method.  

 

Kernel trick based implemented using dual formulation of SVR optimization task is 

utilized to build non-linear regression model. 

 

3.1.3.2. Random Forests 

 

Another popular machine learning method is Random Forest (RF). Random 

forests are a combination of tree predictors such that each tree is built on random subset 

of objects sampled independently and with the same distribution for all trees in the forest 

[153]. This method is evolution of simple decision tree [154], where each node of tree is a 

rule based on value of some descriptor that selects subset enriched with objects of given 

class. Thus a tree is an ensemble of rules that leads to decision about class attribution of 

an object.  

In random forest tree predictors are united in a way that every tree gives 

independent prediction and final decision about class attribution is based on simple 

majority of votes. For random forest regressor trees for prediction of continuous variables 

are used and averaging predicted values of trees makes decision. Each tree is built on 

subset of objects selected by bootstrapping [155]. Moreover, during tree learning 

(growing) procedure, when algorithm looks for feature giving best split in branching, 

random subset of descriptors is considered rather than all descriptors. The main 

hyperparameters in RF is number of trees and number of descriptors in random subset. 
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The more trees are generally better for this machine learning method, but it also leads to 

increase in resources and time consummation. Optimal number of descriptors in random 

subset is usually adjusted using cross-validation or on the basis out-of-bag sample 

prediction. 

 

3.1.3.3. GTM 

 

As a visualization tool Generative Topographic Mapping (GTM) was used. 

 

 

Figure 19. Schematic representation of the GTM algorithm: nonlinear mapping of 

grid nodes in 2D latent space onto a manifold in D-dimensional data space. 

In GTM, each point in the low dimensional (usually 2D) latent space (LS) is mapped 

onto the manifold embedded in a high-dimensional data space (input space, IS), Figure 

19. 

The manifold is defined by a mapping function y (x; W) assessed with the help of m 

radial basis functions (RBFs) of width w regularly distributed in LS. The latent space is 

covered by a mesh containing k nodes each of which corresponding to a normal 

probability distribution (NPD) centered on the manifold in IS. Ensemble of NPDs is used 

to compute a posterior probability for a data point tn in D-dimensional IS to be projected 

onto a node xk: 

𝑝(𝑥^|𝑡C,𝐖, σ) =
p(𝑡C|𝑥^,𝐖, σ)

∑ p^ (𝑡C|𝑥^,𝐖, σ)
 

where W is a parameter matrix and σ the variance of the distribution of t: 



 66 

𝑝(𝐭|𝐱) = �
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=
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The log likelihood of the whole data set is calculated according to equitation: 

ℒ(𝐖, 𝜎) =|𝑙𝑛 �
1
𝐾
|𝑝(𝑡C|𝑥^,𝐖, 𝜎)
^

�
C

 

The GTM is optimized with an expectation-maximization (EM) algorithm using 

data likelihood (ℒ) as the objective function (the best GTM map corresponds to the 

highest ℒ). The mapping depends on four parameters: the number m of RBFs, the grid 

resolution k, the RBF width w, and the weight regularization coefficient l. The latter is 

used for re-estimating the W parameter matrix and influences the flexibility of the 

manifold. Notice that a too flexible manifold, although nicely approximating the training 

data, may lead to overfitting when training set objects ideally fit manifold but new data 

points are located too far from it. In this work GTM map parameters w and l were 

optimized by likelihood. 

GTM approach is unsupervised machine learning methods, as it does not use target 

values while learning. Obtained map however can be colored by different properties to 

define zones of selectivity on the map, as it was done in our previous work [156]. This 

approach is used in this work for the analysis of SN2 reactions chemical space. 

 

3.1.4. Applicability domain  

 

All QSAR models are strongly connected with the training set. Due to limitated 

number of trained instances prediction could be done more or less confidently for objects 

similar to training set ones. The set of objects that could be predicted confidently by a 

model is called its applicability domain (AD) [157], Figure 20. The test set compound 1 

(in green) is inside the AD and its prediction is considered reliable while the test set 

compound 2 (in red) is outside and therefore, its prediction is considered unreliable. The 

concept of applicability domain is extensively studied in chemoinformatics [157–161] 

since datasets are usually rather limited and machine learning methods being good in 

interpolation are unstable in extrapolation.  
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One of the most simple applicability domains is bounding box [158]. It states that 

an instance is out of model’s applicability domain if descriptor values for it are not within 

the min-max ranges valid for training set. The Bounding Box techniques by definition 

encompasses so-called Fragment Control: if the data set encoded in structural fragment 

descriptors, then any molecule of the test set possessing a new structural fragment 

considered to be out of AD. 

  
Figure 20. Representation of the Applicability Domain boundary in chemical space.  
 
 

3.1.5. Genetic Algorithm driven parameters optimization 

The fragment descriptor types (fragmentation scheme) and hyperparameters for 

machine-learning methods were selected within stochastic search approach. As an 

algorithm was selected program by Horvath [162] with genetic like algorithm of search. 

Predictive performance of models based on given vectors of parameters to be optimized is 

checked within cross-validation procedure. The first generation vectors are initiated 

unsystematically. Two sources of new vectors come from this time : randomly generated 

and generated by crossover using best-performing vectors. This strategy helps to avoid 

full iteration of all possible variants and gives reasonably good results in acceptable time. 
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3.1.6. Model publishing 

Modeling procedure was made by in-house program called ChemoInformatics and 

Molecular Modeling Lab tools (CIMMtools). This program produce special compressed 

container with model. Such containers are stored at our server and are used by special 

dispatcher. All obtained models are available at http://cimm.kpfu.ru/predictions – visual 

interface for working with model dispatcher. Moreover, server have special module, that 

takes input reactions and makes all preprocessing before prediction, according to 

specification of model that will be used. Then model gives prediction for curated reaction 

and gives evaluation of prediction by bounding box applicability domain. The server can 

handle several users simultaneously or make a queue of queries. Usage of models is free of 

charge, but requires registration procedure on the site. The example of model application 

is given in chapter 4.4. 

 

3.2. Matched Molecular Pairs 

Matched Molecular Pairs (MMP) have generally been defined as “molecules that 

differ only by a particular, well-defined, structural transformation” [163]. The analysis of 

such pair is usually used by cheminformatics to see smoothness in change of the 

properties of two molecules that differ only by a single chemical transformation, such as 

the substitution of a hydrogen atom by a chlorine one (Figure 21). Since the structural 

difference between the two molecules is small, any experimentally observed change in a 

physical or biological property between the matched molecular pair is attributed to 

substituent effect.  

 
Figure 21. Example of MMP due to substitution of hydrogen by chlorine. 

 

In this work the MMP approach was used for reactions for the first time. The 

concept was applied to CGRs of SN2 type reactions to monitor the influence of 

substituents on reaction rate (Figure 22). 
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Figure 22. Example of MMP for reactions encoded by CGR. 

 

Matched molecular pairs for CGR (called matched reaction pairs) was built by 

means of OCHEM.eu site that was modified by its owner I. Tetko to accept CGRs. 

Matched reaction pairs were used for verification of reaction mechanism (see chapter 

4.2.1.4). 

 

3.3. Quantum Chemistry calculations 

Density functional theory (DFT) is a computational quantum mechanical modelling 

method used in physics, chemistry and materials science to investigate the electronic 

structure (principally the ground state) of many-body systems, in particular atoms, 

molecules, and the condensed phases [164]. DFT states that ground state energy of the 

system could be expressed as the functional of the electron density unlike classic quantum 

chemistry (Hartree-Fock and post-Hartree-Fock methods), which relates energy with the 

many-body wavefunction. Whereas the many-body electronic wavefunction is a function 

of 3N variables (the coordinates of all N particles in the system) the electron density is 

only a function of x, y, z -only three variables. To calculate energy of the molecular 

system and other properties one need to know exchange-correlation functional that 

approximates dependence of exchange and correlation energy on electronic density or so 

called Kohn-Sham orbitals.  

In this work for DFT calculations Priroda [165] program was used, that is one of 

the fastest DFT code due to approximation of Coulomb and exchange-correlation terms 
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implemented by Laikov [166]. PBE exchange-correlation functional was used [126]. 

Built-in triple-zeta split valence basis set (called 3z within program itself, equivalent of 

Schäfer’s TZVP basis [167]) was selected. This level of theory was used for geometry 

optimization, transition state localization, reaction path exploration  and Intrisic Reaction 

Coordinate following along. Transition states were found with saddle point search 

algorithm of Priroda program. 

Gaussian program [168] was used for solvation free energy calculation. In this case 

IEF-PCM model [4, 169] with SMD parameters for non-electrostatic terms [170] was 

utilized. Geometry optimization and Hessian calculation in solvent was performed in 

Gaussian program [171] using PBEPBE/6-311++G(d,p) level. 

All structures under discussion were optimized using default Gaussian and Priroda 

program algorithms. Many different starting geometries were used in order to enhance 

chance to find global minima of energy. Frequency calculation supported that discussed 

structures have the right set of Hessian eigenvalues: all positive frequencies for molecules 

and intermediates, one imaginary frequency for transition states. The details are shown in 

the chapter devoted to 4.3.3. 

 

3.4. Model implementation  

For model publication, a client-server application was implemented. The 

description of interaction with client side is described in this chapter. 

All QSRR models are available at cimm.kpfu.ru/predictor after registration 

procedure. The first page of predictor contains User manual and tools for interactive 

creation of molecules or reactions (Add task, Figure 23) and button for files upload. After 

creation of some dataset one should click the button “Validate” to check structure for 

correctness. 
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Figure 23. Interactive creation of reaction with Marvin Web application. 

 

After validation procedure, new window with AAM established by embedded 

algorithms is given to user to check it and modify if needed. On the same page one can 

select the model to apply and choose conditions (Figure 24). If single molecule is entered, 

reaction models are not available.  

 

 
Figure 24. Window with selection of model and conditions for modeling. 
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After the selection of all parameters and clicking “Modeling” button, the server 

returns the result of modeling (Figure 25). At this window predicted value and variance of 

prediction within consensus is given. Also results of AD application are given in line 

“Trust of prediction”. The trustworthiness of prediction depends on fragment control 

applicability domain and variance of prediction. If prediction of test set appears to be out 

of fragment control AD for more than certain percent of models inside consensus or 

variance exceed certain value, trustworthiness will be lowered from “optimal” to “good”. 

If two conditions are fulfilled simultaneously it becomes “poor”. The reason of “Trust of 

prediction” lowering is given below in “Distrust reason” section.  

 
Figure 25. Results of modeling procedure. 

Hense, modeling procedure is user-friendly and includes 3 simple steps: input – 

validation – results. All the preprocessing and descriptors generation is written in the 

model itself and hidden from the user. As a result fast and easy tool for reaction modeling 

was obtained. 

 

3.5. In-house software tools  

All the tools developed in the work are written in Python 3.5 language [172]. For 

handling graphs NetworkX library [173] is used. Sklearn [174] library is used for 

machine learning method (mainly SVM) application. Databases are implemented using 

Pony ORM [175] solution linked to PostgreSQL database management system [176]. 

Other dependencies include the following libraries as well: Pandas (data operation) [177], 
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NumPy (basic math and statistics) [178], ChemAxon Web Services (chemical data 

processing) [179]. Client side for model publishing server was written in JavaScript.  

Using aforementioned tools several new tools and libraries were created. For 

databasing chemical reactions in-house chemical cartridge CGR DB was implemented. 

CGRtools library were created for reaction information management using CGR 

approach. For QSRR modeling CIMMtools library was implemented. All the 

developments were supervised by Dr. R. Nugmanov and Dr. T. Madzhidov from 

Chemoinformatics and Molecular Modelling Laboratory of KFU.  The final code was 

implemented by Dr. R. Nugmanov on the base techniques that were developed during 

this work. 

GTM method for visualization and modeling as well as the Fragmentor program for 

fragment descriptor calculation and Genetic Algorithm optimizer for model 

hyperparameter selection are the developments of the Laboratory of Chemoinformatics 

of the University of Strasbourg, supervised by Prof. A. Varnek. 
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Chapter 4.  

Data collection, cleaning and representation 
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4.1. Development of a comprehensive reaction database  

Nowadays, modern chemical databases (Reaxys, CASReact, InfoChem, etc) contain 

some 100 million reactions. They store every reaction as a separate record that consist of 

reagents, products and some additional information. Despite the fact that amount of 

known reactions is incredibly high, there are almost no data for modeling reaction rates, 

almost no data on other kinetics parameters annotated in databases. Usually only 

reaction time and yield of desired product are annotated according to the needs of 

synthetic chemists. Recent work shows that these parameters could hardly be modelled 

[150]. Thus the content of existing reaction databases is not satisfactory for reaction 

characteristics prediction. 

From the other hand, standardization of reaction is tricky and not so well elaborated 

as for molecules. The reactions are usually represented in the way they were in original 

article, databases are just storage of information about successful reactions from the 

article with no moderation. Some preprocessing is done to merge reactions with the same 

structures of reagents-products. Notice that reactions with the same transformation and 

conditions are usually saved. Usually reactions in such databases are stochiometrically 

unbalanced (some reactants and products are lost),  its additives and conditions are 

represented in text fields in non-standardized way and could be lost, for example, only 

half of reaction extracted from Reaxys had temperature in corresponding field [149]. 

To overcome the problem of lack of data, a new database of kinetic measurements 

of reactions was collected. Relational database was designed to deal with big amount of 

data on different reactions that can differ by transformation or/and conditions.  

In this chapter the workflow of standardization, storage, representation and filtering 

of reactions will be described. This workflow appeared as the result of further 

development of CGR concept and its representation. 

 

4.1.1. CGR technology development  

The new challenges were come across during the realization of new database and 

standardization techniques that are related to the needs in further development of CGR 

technology, its adaptation to the challenges we faced upon reaction modeling and 

storage. 
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In this chapter the developments in CGR technology such as introduction of 

dynamic atom concept, more useful way of CGR storage and creation of reaction center 

signatures based on CGR are described. Such features are needed to increase the speed 

and easiness in processing and storage of reactions.   

 

4.1.1.1.  CGR technology extension 

In this chapter the reasons for dynamic atom concept introduction into CGR 

approach is described.  

Usually for representation of molecules and reactions reduced graph representation 

with implicit hydrogens is used. It assists not only to save data storage space, but reduce 

number of fragments descriptors that will be generated for the structure. Usually it does 

not cause problems, since the change of hydrogen position is encoded in change of bonds 

orders of between heavy atoms. But in some cases, e.g. for zwitter-ion formation reactions 

(type of tautomeric equilibria) or SN2 reactions with OH- or NH-containing nucleophiles, 

implicit hydrogen migration is not captured in CGR since bonds between heavy atoms 

are not touched. Thus, only charge of some heavy atom is changed in reaction. There is 

several ways to encode hydrogen migration in CGR: 

• Explicit hydrogen representation. Dynamic bond will appear between heavy atom 

and proton and thus migration of hydrogen will be encoded, Figure 26. From the other 

side, it will increase number of descriptors and the time required for its calculation. 

• Usage of pseudoatoms representing atomic charge. The idea was to represent 

additional features of atom as connections from it to pseudo atoms standing for charge 

label (+1/-1/0), stereo label (R/S), etc. It was proposed by Jauffret [41]. Migration of 

hydrogen will be encoded as dynamic bonds between heavy atom and virtual atom that 

represent charge, Figure 26. However, it causes a problem with visualization and CGR 

could hardly be represented by widespread SDF format. Additional atoms will also 

drastically increase number of descriptors that decrease speed of model building. 

• Dynamic atom. The third idea was to introduce analog of dynamic bond for one 

sole atom – dynamic atom. Dynamic atom encodes changes in some atomic property 

(charge, stereochemistry) in chemical reaction, Figure 26. This will solve a problem with 

encoding proton migration, as atomic formal charge is changed that could be captured by 

dynamic atom label. Generally the number of descriptors does not increase, as dynamic 
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charge is a simple atomic label. This label can be correctly represented in SDF format 

and visualized by common visualization tools (e.g. ChemAxon Marvin View). Thus, this 

approach was implemented in our SDF specification.  

 

                
Figure 26. Dynamic atom representation in tautomeric equilibria. (ChemAxon 

Marvin Sketch representation [180]). Left side original tautomeric transformation, right 

side CGR representation with dynamic atoms. 

 

Dynamic bond and dynamic atom labels could be encoded using standard fields in 

CTfile specification [181] and CGR could be stored in SDF format without non-standard 

fields. This representation gives opportunity to use ordinary programs for SDF file 

visualization without any changes.  

 

4.1.1.2. CGR storage in SDF format 

In this chapter reasons of SDF format usage for CGR storage will be discussed and 

features allowing to do it natively for SDF file format will be described. 

MDL/SDF [25] is one of the most popular formats in the world for storage 

information about molecules. The CGR looks like pseudomolecule, this similarity was 

used to store CGRs in SDF file like an ordinary molecule. The solution is compatible 

with a standard MDL/SDF format. Common bonds are encoded according to 

MDL/SDF specification. Dynamic bonds are encoded  additionally in bond section as 8 

(“any bond” according to the CTfile specification [181]).  

The type of dynamic property label is encoded in MOL file properties section using 

standard V2000 connection table specification of specific groups (Sgroups) in CTfile 

format [181], see Scheme 1 below. First line in properties section starting “M  STY” in 

property section specifies number of dynamic properties. Then, each dynamic property is 
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encoded in 4 fields. It is shown from the first field (starting with “M  SAL”) which atom or 

bond CGR property corresponds to. Precisely first field encode atomic array that can 

contain 1 entry (for dynamic atom) or 2 entries (for dynamic bonds). The second line 

(starting with “M  SDT”) contains title of property: “dynatom” and “dynbond” for 

dynamic atom and bond correspondingly. The third line starting with “M  SDD” 

contains information needed for visualization of CGR – coordinates on the screen where 

to place the label. Forth line starting with “M  SED” contains value of dynamic atom and 

bond label. Dynamic bond labels representing changes in bond orders are given using the 

following scheme “R>P”, where R and P bond orders of the bond in reagents and 

products (0 for absence of bond). Dynamic charge is represented using “c+1” and “c-1” 

labels standing for charge increase or decrease by 1 correspondingly. The example for 

SDF file with dynamic bonds and dynamic charge is shown on Scheme 1. More options 

are given in CGR Whitepaper describing other labels. 

 

Scheme 1. 

SDF 
================= 
Standard atoms block 
================= 
Standard bonds block 
22 23  8 0  0  0  0 
================= 
M  STY  2   1 DAT   2 DAT    # 2 CGR properties specified 
M  SAL   1  2  22  23     #prop1– for atoms 22,23 pair 
M  SDT   1 dynbond     #prop1 – dynamic bond 
M  SDD   1     6.2460    6.0953    DAU   ALL  0    0 #prop1–position on screen 
M  SED   1 1>0      #prop1-single bond cleavage 
M  SAL   1  1  12      #prop2 – for one atom - No 12 
M  SDT   1 dynatom     #prop2 – valence state dynamic 
atom 
M  SDD   1   -18.8792    0.8913    DAU   ALL  0   0 #prop2–position on screen 
M  SED   1 c-1      #prop2 – formal charge reduced 
by 1 

 

The dynamic labels were proved to be rendered by ChemAxon programs and the 

latter could be used for creating CGRs in proposed specification.  
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4.1.1.3. CGR signatures  

At this chapter such newly developed features as canonical CGR and reaction 

center signatures will be described. These two techniques is used for fast duplicated 

transformation search and reaction classification without standard graph embedding 

procedure. 

For canonical numbering Morgan [182] like algorithm was developed based on 

prime number usage as in paper of Ihlenfeldt and Gasteiger [183]. In it we use the 

property to that every number could be factorized uniquely. Unlike classic Morgan 

algorithm where extended connectivity index for a given atom is calculated summing up 

corresponding indices of surrounding atoms, we use multiplication of prime numbers 

representing atomic connectivity. In this case, there is no possibility that two atoms have 

the same extended connectivity index by chance. 

Conceptually algorithm includes several steps. The first step includes ranking of 

tuples describing atomic properties (element, connectivity, charge, isotope, stereolabel, 

etc) of every atom in molecule as in CANGEN algorithm for SMILES canonization [20]. 

Based on the rank obtained prime number is selected from prime number table. Thus 

every atom assigned prime number that coincides for atoms having the same type. This 

number used to define amount of unique atoms. At the next step this number for a given 

atom is multiplied to the corresponding numbers of its neighbors and again used to define 

amount of unique atoms. Obtained numbers are sorted and again used for selecting 

prime number from table. This procedure is repeated several times, until the number of 

unique atoms will not change for 3 following cycles. This final numbers are sorted and 

the ranks are used as canonic atom numbers. The latter are applied for linear string 

generation using rules similar to canonic SMILES generation [20].  

For CGR generation current implementation generates canonic numbers for all 

molecules in reagent and product side and SMIRKS-like string is generated using 

OpenSMILES compliant rules [184]. AAM is renumbered in a way that in reagent side 

AAM is sequentially numbered. Reactions where atoms are mapped in the same way 

(even if numbers for AAM encoding are different) will give the same text representation 

of graph, that we call reaction (or CGR) signature, CGRS ( 

CGRS for 
reaction: 

[C:1]:1(:[C:2]:[C:3](:[C:4]:[C:5]:[C:6]:1)-[C:7])(-[N:8].[C:9]-
[Br:10])>>[C:1]:1(:[C:2]:[C:3](:[C:4]:[C:5]:[C:6]:1)-[C:7])(-[N:8]-
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 [C:9].[Br-1:10]) 

 
CSMIRKS 
for 
reaction: 

[C]:1(:[C]:[C](:[C]:[C]:[C]:1)-[C])-[N].[C]-
[Br]>>[C]:1(:[C]:[C](:[C]:[C]:[C]:1)-[C])-[N]-[C].[Br-1] 

 
 

CGRS for 
reaction 
center: 

 

[C:1](-[Br:2]).[N:3]>>[C:1](.[Br-1:2])-[N:3] 

Figure 27). Long CGRS text strings could be hashed for shortness and represented 

as hashed hexadecimal number called CGRS-key (Figure 24). 

 

 
CGRS for 
reaction: 

 

[C:1]:1(:[C:2]:[C:3](:[C:4]:[C:5]:[C:6]:1)-[C:7])(-[N:8].[C:9]-
[Br:10])>>[C:1]:1(:[C:2]:[C:3](:[C:4]:[C:5]:[C:6]:1)-[C:7])(-[N:8]-
[C:9].[Br-1:10]) 

 
CSMIRKS 
for 
reaction: 

[C]:1(:[C]:[C](:[C]:[C]:[C]:1)-[C])-[N].[C]-
[Br]>>[C]:1(:[C]:[C](:[C]:[C]:[C]:1)-[C])-[N]-[C].[Br-1] 

 
 

CGRS for 
reaction 
center: 

 

[C:1](-[Br:2]).[N:3]>>[C:1](.[Br-1:2])-[N:3] 

Figure 27. Conventional reaction representation (left) and CGR (right). Cleaved 
bonds in CGR are crossed, formed bonds are denoted by circle. Dynamic atom option 
c+1 and c-1 mean that atom acquired positive and negative formal charge 
correspondingly. Numbers near atoms represent AAM.  

 

We also developed canonical SMIRKS representation of reaction ignoring atom-to-

atom mapping that we called CSMIRKS,  

CGRS for [C:1]:1(:[C:2]:[C:3](:[C:4]:[C:5]:[C:6]:1)-[C:7])(-[N:8].[C:9]-
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reaction: 
 

[Br:10])>>[C:1]:1(:[C:2]:[C:3](:[C:4]:[C:5]:[C:6]:1)-[C:7])(-[N:8]-
[C:9].[Br-1:10]) 

 
CSMIRKS 
for 
reaction: 

[C]:1(:[C]:[C](:[C]:[C]:[C]:1)-[C])-[N].[C]-
[Br]>>[C]:1(:[C]:[C](:[C]:[C]:[C]:1)-[C])-[N]-[C].[Br-1] 

 
 

CGRS for 
reaction 
center: 

 

[C:1](-[Br:2]).[N:3]>>[C:1](.[Br-1:2])-[N:3] 

Figure 27. Mechanism of generation is exactly the same as for CGRS but AAM is 

not reflected in text string. Transformation with the same set of reagent and products will 

have same CSMIRKS whatever AAM is. 

CGR signature could represent either the whole reaction (as described above) or 

only reaction center. To create the latter, atoms incident to dynamic bonds or possessing 

dynamic atom labels are left while others are deleted.  For reaction classification and 

some other tasks one could need more detailed specification of reaction center, thus we 

implemented possibility to include into reaction center description its first, second, etc 

environments of dynamic atoms and bonds. CGRS is created with obtained reaction 

center graph. Resulted reaction center signatures could be used for similarity search in 

databases in a manner as ICClassify hash codes [185] implemented in SciFinder and 

Reaxys for reaction similarity search [186]. We used reaction center signatures for 

identification of AAM errors since signatures are different for precisely and imprecisely 

mapped reactions. The signature could be visualized and one can clearly understand that 

it corresponds to correct reaction center or appeared due to AAM error. In such a way 

one could easily identify reactions with wrong AAM.  

All described signatures are quite long strings thus we compressed them using hash 

function and represented as hexadecimal number. Developed signatures help to match 

reactions superfast without expensive graph embedding procedure, cluster them and 

analyze influence of reaction center surroundings. 
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4.1.2. Data collection 

As we already mentioned there exists no database of well-structured data on 

chemical reactions, especially its kinetic characteristics that are ready for modeling. We 

decided to collect our own dataset of kinetic and thermodynamic properties of chemical 

reactions. Data were collected manually from the reference book by Palm [1] and PhD 

theses that were defended in Kazan Federal University, Russia. The information was 

extracted manually. In this chapter the rules that were used for selection and annotation 

of data will be described. These rules were used to minimize efforts needed for data 

standardization; some of them were introduced to make possible usage of the other 

modeling approaches rather than CGR used in this study. 

Datasets of SN2 and E2 reaction rate and equilibrium constants of tautomerization 

was collected from book edited by Palm [1], cycloaddition (CA) reactions rate constants, 

activation energy and pre-exponential factor were extracted from PhD theses of Kazan 

Federal University (totally about 20 theses). The databases were created using 

InstantJChem [187] database management system.  

We posed some constraints on reaction to be extracted. For SN2, E2 and CA 

reactions, only constants that were declared for bimolecular processes were added to 

database. Only reactions in pure solvent or water-organic solvent with known molar ratio 

of solvents were annotated. In all cases reactions with additives and catalysts were 

ignored, as well as reactions under not standard pressure (other than 1 atm).  

The rules of reaction annotation were slightly different for different dataset. Order 

of molecules in reaction was fixed. Molecules in SN2 reaction were drawn in following 

order: substrate, nucleophile, anion, cation -> major product, minor product, anion, 

cation. For E2 the order was following: substrate, base/reagent, counter ion of 

base/reagent -> product, cleaved group, changed base/reagent, counter ion of 

base/reagent (see Scheme 2). For cycloaddition reaction diene was drawn first, dienophile 

second. Counter cations or anions in all type of reactions are drawn after reagents and 

products.  

Scheme 2. 
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Usually description of reaction in literature sources included only description of 

reagents. It is not problematic for most of reaction types to guess the product, however for 

CA reaction it caused unclear stereoconfiguration or even regioisomer of products, Figure 

28. Consequently, CA reaction data was stored as a mixture of all possible reactions with 

special markers to identify them while dataset preparation. 

 

Figure 28. Unclear result of reaction in literature. 

The tautomeric equilibria database has its own peculiarities. Only equilibria 

between two possible tautomers were collected. Since equilibrium is reversible reaction it 

is important to select which molecules is reagent and which is product. The roles of 

molecules were assigned according to the type of tautomerism, e.g. for keto-enol 

equilibria keton was reagent and enol was product. 

For all databases ionic compounds were represented as two separate ions. Bonds of 

metals with heteroatoms – N, P, O, S, Se, Te, F, Cl, Br, I atoms – were considered ionic 

except of organometallic compounds. All molecules were stored as graphs with implicit 

hydrogen. All known information about reaction was extracted. 

Mentioned rules helped to collect database that have unified representation of 

reaction. The amount of collected data for each reaction type is given in Chapter 4.1.5. 
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4.1.3. Data curation  

Initial data set should be checked for possible errors in representation or in values of 

the property. This chapter will describe techniques of data curation and stages of this 

process. This workflow was used for preparation the dataset for modeling.  

Quality of data is a very important issue for building predictive models using 

machine learning tools. While best practices for data curation in QSAR modeling [188, 

189] and chemogenomics data cleaning [190, 191] were published there is no such kind 

of information for chemical reactions. Reaction data curation is more challenging task 

than molecular data curation mainly due to the fact that conditions should be taken into 

account. From the other side Arrhenius law could be used for finding doubtful data on 

reaction rate. Thus, we developed our own workflow for processing chemical reaction 

that takes into account the features of reactions as chemical objects. 

Reaction cleaning process includes two stages: (1) structure and transformation 

cleaning, (2) experimental facts cleaning. First step produces standardized transformation 

representation with mechanistically correct atom-to-atom mapping. The second step is 

required for discarding duplicates, producing correct tuple transformation-condition-

property for modeling. Both steps are based on some conventions. For structure cleaning 

one should decide how the product is specified, since the chemically correct 

representation is not implicitly best for the modeling purpose. So, it is not really 

important that structure should be chemically correct. It is more important, that similar 

transformations have similar representations. Since different people extracted reactions 

manually, one have to take into account possibility of different representations of 

molecules participating in reaction, existence AAM errors. These issues should be fixed. 

For the second step one has to decide what condition parameters influence rate 

constant. Our convention was that concentration of reagents and additives should not 

influence the reaction rate constant. And thus reactions proceeding under the same 

temperature and solvent but with different initial concentration of reagents should be 

considered duplicates.  

Usually the same transformation could proceed under different conditions and thus 

with different rate constant. For further usage in modeling it is more useful to group all 

reactions having the same transformation. Then dataset could be stored as relational 

table. 
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4.1.3.1.  Structure standardization  

The first step is standardization of reaction representation is unification. In order to 

find group of reactions with same transformation that differ in conditions, initial database 

structures was standardized in order to remove different representations of the same 

molecules using ChemAxon Standardizer [192]. The main problem is representation of 

aromatic bonds in aromatic or Kekule form. It causes a lot of erroneous dynamic bonds 

in CGR structure or makes same reactions looks different due to different 

representations. To fix this problem standardization procedure was included following 

steps: de-aromatization, functional group standardization, re-aromatization and atom-to-

atom mapping (AAM) of reactions with keeping existing manual mapping (if some atoms 

were not mapped by mistake).  

 

4.1.3.2. Atom-to-atom mapping  

Second step, that will be described in this chapter, is devoted to search and 

correction of AAM by means of new CGR feature as linear representation of CGR and 

canonical SMIRKS.  

CGRs could be used to identify incorrect AAM. CGR corresponding to incorrect 

AAM usually have more dynamic atoms and bonds than the correct one and thus is more 

complicated that is consistent with minimum chemical distance principle [193], Figure 

29. 

For every transformation we created two alphanumerical strings: canonical 

SMIRKS representation of reaction ignoring atom-to-atom mapping (CSMIRKS) and 

CGR signature (CGRS). The latter represents a unique identifier of reaction 

transformation like SMILES or InChI for molecules. Both line notation strings were 

created by in-house program that uses aforementioned Morgan-like algorithm for 

canonical numbering. Then canonical name is created according to defined numbering 

using SMILES-like rules. For human readability CSMIRKS and CGRS long text strings 

of variable length are compressed using MD5 hash function [194] and represented as 

hexadecimal number that are called CSMIRKS-key and CGRS-key correspondingly. 

Transformation with the same set of reagent and products will have same CSMIRKS 

whichever AAM is. CGRS will depend on AAM: two formally different but correct AAM 
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(reactions A and B on Figure 29) have the same CGRS while they do not coincide for 

reactions with correct and wrong AAM (reaction A and C on Figure 29). As there were 

no reliable and numerous data on rates of reaction involving stereoisomeric reagents or 

with formation of isomeric products it was decided to ignore stereochemistry of reaction 

and to use 2D descriptors. Thus upon CSMIRKS and CGRS generation stereochemistry 

of reaction was ignored and transformations with different absolute stereolabels of 

reagents/products were considered the same.  

 

Figure 29. Conventional reaction representation (left) and CGR (right). Cleaved 
bonds are crossed, formed bonds are denoted by circle, dynamic atom option c+1 and c-
1 mean that charge of atom increased and decreased by one respectively. Numbers near 
atoms represent AAM. Examples of reaction with formally different but correct AAM (A 
and B) and reaction with wrong AAM (C) are shown. CGRS and reaction center 
signatures (RCS) are shown below reactions. For human readability CGRS are 
compressed using MD5 hash function [194] and represented as hexadecimal number 
CGRS-key. 
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Reactions having the same CSMIRKS are grouped together. Different CGRS for 

reactions having the same CSMIRKS could be caused only by AAM error. Such 

reactions were identified and their AAMs were manually fixed.  

The described approach identifies AAM errors for duplicated transformations 

however it does not work if the transformation is performed in one sole condition or the 

error was made for all transformation of given type. Thus, we used approach for checking 

validity of AAM by verifying signatures of reaction centers.  

Reaction center is a set of atoms that change their environment in reaction. 

Generally, complex reactions could have more than one reaction center and thus deletion 

of conventional atoms and bonds will lead to disconnected graph. Thus, reaction center is 

a one connected component of such graph. Reaction center signatures for a given 

transformations were generated using approach described earlier in chapter 4.1.1.3. For a 

given reaction type the number of signatures is limited, e.g. for SN2 reactions cleaned 

dataset it is equal to only 29. Error in AAM lead to appearance of wrong reaction center 

(Figure 29). They could be easily manually distinguished and AAM of corresponding 

reactions were fixed. 

 

4.1.3.3.  Curation of temperature data 

The next task is curation of reaction conditions. The most important conditions for 

us is solvent and temperature. Error in solvent specification could be corrected only by 

human and could hardly be identified automatically. Temperature data being the most 

important characteristics could be automatically verified.  

Since we mainly interested in reactions between dissolved molecules, solvent or 

mixture have to be in liquid phase. All datapoints with temperatures below freezing point 

or higher than boiling point of pure solvent or component in the solvent mixture were 

discarded as doubtful.  

As a second filtering rule we required that temperature dependence should follow 

chemically meaningful behavior. Since the activation energy (Ea) is unknown for reaction 

of dataset Arrhenius equation could not be applied and Van’t Hoff rule was utilized. The 

latter states that reaction rates usually increase 2-4 times every 10 degrees Celsius [195]. 

This law can be used as a filter criterion for anomaly change of rate constants with 

change of temperature.  
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As the second check, we applied Arrhenius equation to compare temperature and 

reaction rate constants for different reaction conditions description corresponding to the 

same transformation. We mark condition description of reactions as suspicious if two 

same transformations differ only in temperature, the difference in temperature is less than 

10°С but the difference in logk is greater than 1 (according to Arrhenius equation it 

should be not more than 0.6). Suspicious conditions were manually examined. If there 

were examples supporting that the value is correct (similar measurements from other 

references), this datum was considered as valid. If there were not such examples, datum 

was discarded from modeling set. 

 

4.1.3.4.  Duplicate detection 

This chapter is devoted to decisions that should be taken in final dataset preparation 

and how duplicated data are removed. 

In this work measurements of rate constant corresponding to the same 

transformation considered as duplicates if they have the same conditions that are 

considered valuable for reaction rate constant: temperature, solvent and concentration of 

organic solvent in mixture. Thus, measurements taken from different literature source 

and records differed only by concentration of reactants were considered as duplicated 

reactions. The latter was done, because the second-order rate constant that was collected 

should not depend on concentration of components (there are some exceptional cases 

that are discussed below). Since reaction stereochemistry were neglected, reactions 

involving diastereoisomers and enantiomeric molecules running in same conditions were 

considered as duplicates as well.  

Descriptions of conditions of duplicated reactions were combined and its rate 

constant logarithm (logk) were averaged if the difference in the property is lesser than 0.5 

log units. Otherwise, they are marked as suspicious. The threshold 0.5 was taken from 

comparison of rate constant logarithm for duplicated reactions. The difference in logk for 

SN2 reaction set (the biggest collected set) was mainly within 0.5 log units (Figure 30). We 

consider this value as estimation of reproducibility of reaction rate value.  
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Figure 30. Difference in logk values for duplicated reactions. 

Suspicious reactions were curated manually. If there were some evidences that the 

logk value is correct (for example, close values reaction constant of other duplicates) the 

value is accepted and averaged with other duplicates if any. Otherwise, values were 

discarded from the final modeling set. From the final dataset we excluded reactions that 

were performed in solvents, for which solvent descriptors described below have not been 

known.  

The described workflow for data curation results in the curated dataset that was 

used for modeling.  

4.1.4. Relational tables 

Preprocessed data need to be stored in a database specifically designed for the 

reaction storage. This database will be briefly described in this section. 

Relational database was found to be optimal for modeling dataset storage. It is 

logical, because database contain a lot of supporting tables about person that added 

record, time, molecules that contained in database, condition, properties, etc. Reaction 

with the same structure of reagents and products (we call it transformation) could be 

performed in different conditions. Thus, one-to-many relations between structure and 
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conditions is straightforward solution for data storage which is useful for modeling. The 

main two tables used for reaction storage are, Figure 31: 

• Transformation table contain structural representation of reaction 

transformation, its CGRS and CSMIRKS signatures. As additional fields MD5 

hashed representation [194] of CSMIRKS and CGRS were used.  

• Conditions table contain information about conditions used for 

measurement and corresponding reaction property.  

The transformation table has one-to-many relation to conditions table. Hashed 

CGRS and CSMIRKS representation are used for fast reaction search and finding 

transformation for a given reaction. The latter is needed to establish relations in database. 

All approaches developing for data curation procedure become essential part of the 

database and showed their effectiveness in storage of all data that were collected manually 

and have some errors. The more database is flooded with data the more efficient, useful 

and the same time robust automatic procedures become. Each new entity that goes into 

database is checked by CGRS and CSMIRKS. If there is no such CGRS in database, but 

CSMIRKS already exist, new reaction with high probability has mapping error that 

needs to be fixed.  
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Figure 31. Structure of the reaction database. Calculated fields are shown in bold, 

required fields by plain text and optional fields in italics. 

 

Thus, we created a tool that incorporates our experience in reaction data processing 

and allows fast and feasible reaction search and data curation.  

 

4.1.5. Content of the database  

Summary of results of the data collection and curation is given in Table 5. Data 

annotation was performed by several people and took about 4 years.  

In total, about 10998 records of raw data of bimolecular nucleophilic substitution 

(SN2), bimolecular elimination (E2), Diels-Alder (DA) reactions and tautomeric equilibria 

(TAU) were collected (Table 5). “Data collected” column in Table 5represents total 

number of reactions collected. “Curated data” shows the number of reactions after 

structural curation, AAM correction and deletion of full duplicates, i.e. entries where all 

fields coincide. The latter reason, being the major one, is caused by the fact that the 

dataset was collected simultaneously by several people and sometimes by error the same 

reaction was extracted twice. Errors in structure or absence of mandatory field were the 

second reasons for the deletion of datapoint. “Model set” column contains reaction 

selected for modeling. Data curation procedure in this case includes condition curation, 

duplicate identification (as described in chapter 4.1.3.4) and averaging properties of 

duplicates. Total number of transformation types (combinations of reagents and products) 

is given in field “Transformations in model set”. Difference between model set size and 

number of transformations reflects the fact that the property for some transformation 

were measured in several conditions.  
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Table 5. Data that were collected and curated for this research.  

D
ataset 

D
ata 

collected 

C
urated data 

M
odel set 

T
ransform

ati
ons in m

odel 
set 

Source of 
data 

SN2 7848 7544 4830 1382 [1] 

E2 1431 1389 1043 843 [1] 
CA 1178 1130 880 679 PhD thesis 

defended in 
KFU 

TAU 905 840 782 367 [1] 
 

Every reaction/equilibria has four layers of associated information: 

• Transformation – description of structural changes in reaction/ equilibria: 

o structures of reagents and products in MDL RDF format(two forms of 

tautomers were stored as reagent and product), 

o atom-to-atom mapping, based on reaction type reported in the source. 

• Conditions – description of media and physical conditions at which reaction 

rate constant was measured 

o temperature (in Celsius)  

o solvent name (only organic solvent for solvent mixtures with water) 

o molar percent of organic solvent in mixture with water (100% for pure 

solvent). Except of DA reactions providing in pure solvents. 

• Reference – the link to the source of information: 

o table in reference book [1] or thesis from which data were taken from, 

o page in reference book [1] or thesis. 

• Property: 

o Reaction rate or equilibria constant. 

The data were collected using InstantJChem tool [187]. Atom-to-atom mapping 

was done manually according to the mechanism or reaction reported at the reference 

book [1]. Sets of reactions kinetics data and tautomeric equilibria were stored separately, 
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since workflows for standardizations are different (molecules in tautomeric equilibria 

dataset should not be tautomerized during standardization).  

The initial dataset was cleaned and converted into our own relational database 

format. As the result 10 903 curated reactions are stored for CA, SN2, E2 reaction and 

tautomeric equilibria. The developed tools and database was shown to be extremely 

useful for curation and storing the data.  

4.2. Modeling procedure 

All QSRR models that are mentioned in this chapter have the same modeling 

procedure. The workflow is shown on the Figure 32.  

 
Figure 32. General modeling workflow  

 

Modeling procedure includes several steps: descriptors preparation, selection of best 

type fragmentation and model parameters, model performance evaluation. 

• Descriptors preparation 

Initial reaction data with implicit hydrogen representation was converted to CGR 

using in-house CGRtools library. Resulting SDF files with CGRs were used for fragment 

descriptors generation by ISIDA Fragmentor program [196]. Augmented atom and 

sequence type descriptors were selected. Minimal and maximal length of fragments 

varied from 2 to 8 in all possible combinations. Descriptors sets containing all possible 

fragments, fragments that having at least one dynamic bond or atom or only dynamic 
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bonds were generated. Additional options like formal charge specification and all possible 

path explorations were optionally used as well. In total 616 descriptors sets were 

generated for each dataset. Fragment descriptors vector was concatenated with 

descriptors of solvent, temperature, percentage of solvent in mixture with water. All 

resulted descriptors sets were used for model building. 

• Selection of best model parameters 

Evaluation of each model was made within standard 5 fold cross-validation 

procedure that was repeated 10 times. Repetitions were made to exclude influence of 

random fluctuations of dataset composition on estimation of model performance. It leads 

to increased time for model preparation that is why checking all sets of fragment 

descriptors with all possible hyper parameters for SVM is impractically long. To avoid 

this time consuming calculation, genetic algorithm [162] was used for the best model 

selection. 10 best models returned after certain number of epochs that differ in kernel 

or/and descriptor set were selected for consensus model. The training set datasets in cross 

validation were used in consensus. Thus, consensus includes 500 individual models: 10 

best combinations of fragment descriptor type with SVM kernel times 50 training sets 

used in cross validation (5 folds times 10 repetitions). 

• Model performance evaluation 

Test set predictions of individual models in consensus within cross-validation 

procedure were averaged and used for statistics calculations. The performance of models 

was defined by standard evaluation metrics R2 and RMSE. Outliers are defined as points 

that have error in prediction that is more than 3*RMSE of model. 

 

 

  



 95 

 

 

 

Chapter 5.  

Models for rate constants of bimolecular nucleophilic 

substitution reactions 
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This chapter is devoted to the modeling of the logarithm of reaction rate (logk) of 

bimolecular nucleophilic substitution reaction. Bimolecular nucleophilic substitution 

reaction is very common and experimentally well-studied type of reaction. Nucleophilic 

substitution (SN) is a fundamental class of reactions in which an electron rich molecule 

called nucleophile attacks the positive or partially positive charged atom of substrate 

molecule to replace a leaving group [197] (see Figure 33.). Bimolecular nucleophilic 

substitution SN2 is referred to subclass of SN reactions where the bond with leaving group 

is broken and the bond with nucleophile is formed synchronously. It is important to note 

that synchronicity is essential feature of SN2 reactions. Nucleophilic substitution reactions 

that proceed monomolecularly through formation of carbocation with following ion 

recombination are usually denoted as SN1.  

Nucleophiles could be either neutral (usually amine or alcohol) or negatively 

charged species (alcoholates, thiolates, halogen or other inorganic salt anions, neutral 

amines). Usually, only reactions with aliphatic carbon in reaction center are called as SN2 

reactions (see example on Figure 33.). Reactions that involve substitution at aromatic or 

unsaturated carbon of substrate atom are usually asynchronous and proceed through 

addition-elimination (SNAr) or elimination-addition (SN1 or benzyne) mechanism and thus 

are not called SN2. One should notice that SN1 (two-stage mechanism with 

monomolecular kinetic equation) and SN2 (one-stage, synchronous with bimolecular 

kinetic equation) mechanism are indeed two extremes that rarely take place in pure state. 

Usually mechanism of reaction is rather complex, having features of both extreme 

reaction types [198]. 

 

Figure 33. Example of SN2 reaction. 

Several attempts were made to build models for SN2 reaction rate constant using 

QSRR approach [2, 96, 139, 141], see Chapter 2.4.3.1. However none of them could 
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predict reactions in different solvents including water-organic solvent mixture and with 

different types of reagents. 

In this chapter we report the information about the dataset containing some 8000 

SN2 reactions proceeding in 43 different solvents and water-organic mixtures at different 

temperatures. The data analysis and visualization were performed with the help of 

Generative Topographic Mapping [199]. For the first time, the Matched Molecular Pairs 

approach [163] was applied to the analysis of substituent effect. A new technique of for 

unbiased validation of the structure-reactivity model was suggested. Finally, results of 

external validation of the proposed model will be discussed.  

5.1. Data description 

Dataset was curated by means of strategy described in section 4.1.3. The curated 

modeling set contains 4830 logk data points for 1382 transformations with the logarithm 

of rate constant varying from -7.68 to 1.65 in 43 different solvents and their mixtures with 

water. Distribution of logk, temperature and solvent is shown on Figure 34. One could 

notice that logk distribution is almost a perfect Gaussian curve whilst temperature 

distribution is highly skewed with expected cliff at 25°C. The most popular solvents were 

ethanol, methanol, acetone often used in mixtures with water and nitrobenzene. Most 

rate constants were measured at several conditions, only 551 reactions have only one 

reported condition; One transformation was measured at more than 100 conditions, 

however for vast majority of reactions less than 10 measurements of rate constant were 

reported. The data set contained 2882 reactions involving neutral nucleophile and 1948 

reactions involving anionic nucleophile.  

 

 

 

 

 

A) 
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Figure 34. Data distribution with respect to (A) rate constant, (B) temperature, (C) 

solvent (dark part is for pure solvent one and light part is for mixture with water), (D) 

experimental conditions per transformation.  

 

5.2. Data visualization and analysis  

Visualization of chemical space is a powerful tool for data analysis of dataset. 

However, for chemical reactions this technique was extremely rarely been used since the 

work of Gasteiger who used Kohonen self-organized maps (SOM) for reaction 

classification [200]. Visualization by SOM dataset of chemical reactions of different types 

was used also for selection of reaction signatures [104].  

Generative Topographic Mapping (GTM) [201] implemented in our laboratory 

[202] have shown its superiority over other visualization methods [199] and have never 

been used for the analysis of reaction space. In this method, the data points originally 

located in D-dimensional space (where D is equal to number of descriptors) are projected 

on 2D latent space (called manifold). The main difference from the other visualization 

method is that objects are projected probabilistically (with different probabilities, called 

responsibilities) to grid nodes of manifold, thus every projected object is indeed 

represented by a distribution on the map. In this case, a position of an object on the map 

are calculated as gravity centers of its probability distributions. Thus, although manifold 

is represented by a set of the nodes (grid of points, like in SOM), the positions of object on 

the GTM map is continuous and not tight to the node positions contrary to SOM.  
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The power of maps in data analysis relies on the possibility to color objects 

according to different criteria. Here, we colored data points according to reaction 

signatures, substrate, and nucleophile nature (see Figure 35). GTM was built using 25x25 

grid, with other parameters set to defaults (12 RBF with width 2.8 and regularization set 

to1) that according to our experience is the best choice. Since we wanted to analyze only 

structural diversity in reaction space, condition descriptors was omitted, sequences of 

length from 2 to 4 containing at least one dynamic atom or bond were used as structural 

descriptors.  
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Figure 35. GTM map on 1394 transformations encoded by ISIDA fragments. 

Objects are colored according to a) reaction center signature (only reaction center atoms 
included), b) substrates, c) nucleophile structure, d) nucleophile type. The most popular 
signatures or molecules are explicitly shown.  

 

- 
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One can see on Figure 35 that GTM map quite effectively separates reactions, 

substrates and nucleophiles chemotypes and nucleophiles classes (anionic and neutral).  

 

5.3. Analysis of substituent effect using Matched Reactions Pairs 

(MRP) 

MMP is well known and widely used approach in medicinal chemistry [163]. MMP 

is defined for a pair of molecules, which are different with a respect of a single group. The 

extension of MMPs to chemical reactions encoded by CGRs is straightforward since 

CGR represents a molecular graph with additional atom and bond labels. Thus, instead 

of comparing a pair of compounds, one can compare a pair of reactions which we’ll 

further call Matched Reaction Pairs (MRP), see Figure 36. It allows to understand how a 

variation in structure of reactants influences a speed or other property of chemical 

reaction. 

 

 
Figure 36. MMP built with the OCHEM software for molecules (left) and reactions 

encoded by CGR (right).  

 

It should be noted that the reaction rate depends not only on reagents structure but 

also on experimental conditions. It is clear that MRP reflects only structural factor. 

Therefore, only reactions in almost same conditions could be analyzed with MMR. Here, 
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reactions in pure methanol running under ambient conditions (25-35°C) have been 

selected for this analysis.  

For SN2 reaction, substituents effects could be interpreted in the framework of the 

reaction mechanism where an atom of nucleophile possessing lone electron pair or 

bearing negative charge attacks partially positively charged carbon atom which results in 

a leaving group replacement. Thus, electron donating substituents in nucleophile increase 

its reactivity and, hence, a reaction rate. Similarly act electron-acceptor substituents in 

substrate molecule which increase partial positive charge on reacting carbon atom.  
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Figure 37. Examples of Molecular Reaction Pairs for SN2 reactions in methanol at 

ambient temperature. In CGRs, formed and broken bond are shown as crossed and 
circled respectively. a) Reaction rate decreases due to substitution of hydrogen by 
chloride groups in nucleophile. b) Reaction rate constant increases due to replacement of 
metoxy to nitro group in substrate. c) Replacement of hydrogen to methyl group leads to 
small changes in logk depending on the position of the group in aromatic ring of amino-
aromatic nucleophile. d) Substitution by nitro-group in substrate leading to decrease (left) 
or increase (right) of the rate constant. 

 

Figure 37 provides several examples of MRP that fully supports the known 

mechanism and effect of substituents. As expected, substitution of hydrogen in 
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nucleophile by electron acceptor chlorine atom slows down reaction (Figure 37a), 

replacement of electron donating methoxy- to acceptor nitro-group in substrate molecule 

increases its speed (Figure 37b). However, some replacements, e.g., hydrogen to methyl 

group (Figure 37c) lead to small alteration of rate constant in different directions – the 

sign could be either negative or positive depending on position (ortho- or para-). 

Considering that reaction rate is measured with error of almost 0.5 log units (section 

4.1.3.4.), these small logk variations could be attributed to data noise. 

MRP could also be very helpful for analysis of the data quality. If change of 

substituent leads to different in sign changes of reaction rate constant that are greater 

than experimental errors as shown on Figure 37d it could be an indication of plausible 

error in data. For example, strange trend in logk variation for the MRP describing 

substitution of hydrogen by nitro-group in substrate (Figure 37d) was observed. One can 

see that in this case reaction rate constant could either increase or decrease. Indeed, right 

reaction pair on Figure 37d shows acceleration due to nitro-substituent in substrate 

molecule and this fact is fully in line with theoretical concepts of substituent effect for SN2 

reactions. Moreover, these two reactions have halo-acetophenone substrate for which SN2 

reaction mechanism is virtually the most probable. However, in 8 reaction pairs, one of 

which is shown in left part of Figure 37d, substitution of hydrogen by nitro-group leads to 

decrease in reaction rate constant. It is common for SN1 reactions which form carbo-

cationic intermediate that is destabilized by electron-withdrawing substituents. However 

it could also happen to an SN2 reaction with late transition state and great charge 

separation where the bond with leaving group is strongly loosened. Then partial positive 

charge on carbon could be destabilized by electron acceptor and thus even in case of SN2 

reaction electron withdrawing group could slow down reaction. The primary sources 

from which these reactions were taken from were carefully examined and we came to 

conclusion that almost all measurements correspond to SN2 mechanism. However one 

paper [203] was very old (1925), that time mechanism of nucleophilic substitution 

reactions were unknown and it seems that unimolecular reaction have been considered 

bimolecular and thus data were incorrect (strong dependence of rate constant on reagent 

concentration was found for neutral nucleophile that should not take place if reaction rate 

constant of SN2 reaction correctly determined). These data points were excluded from the 

dataset. 
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5.4. Model building and validation 

The collected reactions were encoded by CGRs for which ISIDA fragment 

descriptors were generated. Each solvent was represented by 14 physico-chemical 

parameters accounted for polarity, polarizability, H-acidity and H-donor ability as well as 

molar percent of organic solvent in water to model solvent mixtures (it equal to 100% if 

solvent is pure). Inverse temperature was also used as descrriptor. Variety of fragment 

descriptors of different size and topology were generated, then concatenated with 

conditions descriptors and use in the building of Support Vector Regression models. 

Optimal SVR hyperparameters and the best fragmentation schemes were selected by 

genetic algorithm. Ten best fragmentations that allow creation of models with highest 

predictive performance were selected. For each of them 10 repetitions of 5-fold cross 

validation have been performed, then all models were saved and used in consensus 

predictions. The performance of consensus model in cross-validation is very competitive 

RMSE=0.34 logk units and R2=0.92. Plot of predicted vs experimental values is given in 

Figure 38.  

 

Figure 38. Predicted (with global model) vs experimental logk values. Solid line 
correspond to perfect predictions, doted lines specify margin with values predicted within 
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3·RMSE, dashed lines specify margin with values predicted within 3·RMSEUDP (see 
below), crosses and circles represent reactions with neutral and anionic nucleophile 
reactions correspondingly. Numbers correspond to outliers, that have prediction error > 
3RMSEUDP. 

 

Analysis of outliers shows that 105 data points are predicted with error more than 

3·RMSE. Among those 53 data points correspond to reactions involving anionic 

nucleophile and 52 to neutral nucleophile.  

Further inspection of cross-validation procedure showed that model performance 

estimation is too optimistic. This situation arises from “naïve” cross validation procedure. 

The problem is very straightforward: if two data points correspond to the same reaction 

proceeding under slightly different conditions, the difference in logk value is small. If one 

of these reactions is selected to test set the other to training set, the object from test set will 

be predicted very close to the true value. Hence more similar conditions per 

transformation are reported, more chance to observe too optimistic estimation of the 

model performance in cross-validation.  

In order to avoid this problem we decided to assess model performance only on data 

points which were measured under one condition only (we called them unique data 

points, UDP). As an unbiased estimation of predictive performance one could use 

prediction of UDP in cross-validation. In this case overestimation of predictive 

performance is impossible, since a given reaction in the test set can never occur in 

training set. Among selected 551 UDP, 202 and 349 belong to reactions with anion and 

neutral nucleophiles, correspondingly. Statistical performance of parameters for UDP 

reactions in cross-validation procedure is much closer to experimental error: 

RMSEUDP=0.61 and R2UDP=0.75 (see Figure 39 for predicted vs experimental plot on 

UDPs).  
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Figure 39. Predicted vs experimental values of logk for unique data points. Solid line 
corresponds to perfect predictions, dashed lines specify margin with values predicted 
within 3RMSE, crosses and circles are neutral and anionic nucleophile reactions 
respectively. 

 

5.5. Outliers analysis 

Examination of data points for which difference between predicted and 

experimental values exceeds 3·RMSEUDP reveals 18 outliers, among which only 7 

reactions with neutral nucleophile and 11 with anionic nucleophile.  

Analysis of outliers shows that most of them result from dataset imperfectness and 

modeling procedure used. The errors were caused by the following reasons (reactions are 

drawn in Table 6). 

• Non-continuous dependency of the rate constant on temperature, reaction 1. E.g. 

logk for a given temperature -4.09 (90 °C), -3.81 (100 °C), -3.68 (105 °C), -3.58 

(110 °C), -3.42 (115 °C). Such a small rate constant -3.21 (201 °C) is out of trend 

and model logically predict it as -1.36. 

• Complex structural effects that were not learned by model due to lack of 

representatives. Reaction 5 represents effect of direct polar conjugation for 
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nucleophile, which strongly influences reaction rate however could not be 

captured by a model since it is the only reaction with para-nitroaniline. 

• Transformations possessing rarely occurred structural patterns in dataset are 

outliers (items 16, 11, 6, 3), since the number of instances possessing given 

fragment in the training set is not sufficient to learn the contribution of these 

patterns. E.g. there was only 1 substrate possessing -SO2CH2Cl group (item 16) 

thus it was mispredicted. Such a large rate constant for reaction 11 could be 

explained by anchimeric assistance, due to lack of data this effect is fully neglected 

by the model. Reaction 3 has rare transformation of tertiary amine to quaternary. 

The opposite effect could happen for small size reactants constituted of common 

small fragments (reactions 2, 8, 12, 17, 18). These fragments can hardly 

distinguish the difference between the reactant structure.  

• Solvent could have unexpected influence on the rate constant that is not captured 

by the model. For example, transformation 7 has 3 magnitudes higher logk in 

aprotonic polar DMFA solvent than in protonic methanol and ethanol solvents 

present on training set. Non-continuous dependency of the rate constant on 

solvent mixture composition leads to outlying prediction for reaction 10. 

According to training set data rate speed increases with rise of DMSO percentage 

in mixture with water. For instance,. logk for a given percentage of DMSO in 

water (given in brackets) is the following: 1.07 (81% DMSO), 0.06 (65% DMSO), -

1.01 (46% DMSO), -2.08 (30% DMSO), -2.93 (18% DMSO), -3.66 (8% DMSO), 

-4.09 (2% DMSO). Thus, such a small rate constant for pure DMSO -2.48 (100% 

DMSO) is out of the trend. 

• Mistakes in data source. In primary source (paper [204]) rate constants for items 4, 

9, 13 correspond to reactions of benzylamines while in reference book [1] from 

which data were taken reactions were annotated as phenylamines. Thus in our 

database wrong substrates were annotated. Alkylamine group is stronger 

nucleophile than amine conjugated with phenyl ring and the reaction rate 

constants for the reaction with the latter about 3 orders of magnitude smaller.  

• Another problem revealed from the outlier analysis is based on reactions with 

similar descriptors but different properties. If two very similar reactions with 

drastically different logk are present in the dataset, the both can be mispredicted. 
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This is a case of reactions 14 and 15, which differ only in solvent. Their rate 

constants differ by two powers of magnitude. When one of these reactions is 

selected to test set, the model predicts logk shifted towards reaction rate of the 

training set reaction.  

 

Table 6. Experimental (“exp”) and predicted (“pred”) rate constant logarithms for 

nucleophilic substitution reactions involving anionic nucleophiles.  

N Reaction Conditions Exp Pred 

1 

 

Phenyl-ethanol 
100 %, 201 °C -3.21 -1.36 

2  
methanol 100 

%, 50 °C -4.99 -3.08 

3 
 

methanol 100 
%, 0 °C -1.58 -3.47 

4 

 

toluene 100 %, 
30 °C -3.30 -5.98 

5 

 

methanol 100 
%,0 °C -5.00 -2.85 

6 

 

methanol 100 
%,55 °C -5.70 -3.46 

7 

 

DMFA 100 %, -
20 °C -0.33 -3.08 

8 
 

water 100 %, 25 
°C -5.80 -2.38 

9 

 

toluene 100 %, 
30 °C -2.65 -4.53 
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10  
DMSO 100 %, 

25 °C -2.48 1.33 

11 
 

water 100 %, 0 
°C -2.06 -6.38 

12 
 

DMFA 100 %, 
0 °C 0.29 -1.90 

13 

 

toluene 100 %, 
30 °C -4.01 -6.04 

14 

 

acetonitrile 100 
%, 25 °C -0.32 -2.71 

15 

 

metanol 100 %, 
25 °C -5.57 -3.26 

16 

 

1,4- dioxane 
100 %, 50 °C -2.05 -4.40 

17 
 

ethanol 100 %, 
25 °C -7.48 -5.31 

18  
methanol 100 

%, 20 °C -7.00 -4.73 

 

 

5.6.  Local and global models 

Results reported previous section reveal that model’s performance assessed on the 

reactions with neutral and anionic nucleophiles is similar. Thus, the following parameters 

were obtained in cross-validation: R2=0.91 and 0.91, RMSE=0.39 and 0.3 for anionic 

and neutral nucleophiles, respectively. Similar situation is observed for a subset of unique 

datapoints: R2UDP = 0.75 and 0.74, RMSEUDP = 0.68 and 0.57 for anionic and neutral 

nucleophiles, respectively. So, it was interesting to build models for datasets, containing 

only particular types of reactions (here, with neutral or anionic nucleophiles), we call 

them local models to distinguish from global models built on the entire set. According to 

UDP-based validation local model performance is very close to the global model one 

shown above, RMSEUDP (anion, local model) = 0.72 and RMSEUDP(neutral, local 
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model)=0.59. So, local models behave like global one and splitting of the dataset in two 

separate does not provide any rise in accuracy.  

The question arises: whether solvent descriptors correctly capture solvent effects ? 

From the entire set, we selected 6 subsets of reasonable size for the reactions proceeding 

in particular solvents (nitrobenzene, methanol, ethanol, acetone, water, benzene). The 

models were built on these subsets using only fragment descriptors and unique data 

points. In most of cases, RMSE obtained in cross-validation for particular datasets is 

similar for the global and local models (Figure 40). This means that solvent descriptors 

are rather good to account for solvent effect in logk modeling . Notice that accuracy of 

predictions is not similar for different solvents: prediction error observed for nitrobenzene 

and ethanol subsets is smaller than for other solvents 

 

 

Figure 40. Cross-validated RMSE of global and local models on the subsets 

corresponding to particular solvents. 

 

5.8. Validation on the external set  

For validation of the model, external data set containing 104 Menshutkin reactions 

was collected from the papers published in 1990-2010s. Since the reference book [1] 

serving the data source was dated 1978, external set data don’t overlap with the training 

set ones. Predicton performance was slightly worse than that observed in cross validation 

for UDP (see Figure 41) RMSE=0.8 and R2=0.64. 
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Figure 41. External set prediction by the global model. Solid line corresponds to 

perfect prediction. Dotted line are 3*RMSEUDP away from perfect prediction. (a) 
reactions are labelled according to signature types. (b) Only reactions having reaction 
signatures similar to training set ones are shown. (c) only reactions within bounding box 
AD for, at least, one individual model are retained. (d) only reactions for which 50% of 
individual models were retained by the bounding box AD are shown 

 

All detected outliers contain substituted phenilsulphonate leaving group (Scheme 3). 

Generally reaction rate constant for them was predicted from -3 to -4 log units while 

experimental value (triangles in Figure 41) varied from -3.5 to -0.8. For 34 reactions of 

similar type occurring in the training set, logk never exceeded -2.5 which explains the 

model behavior.  

 
Scheme 3. 
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We tried several applicability domain definitions but none of them was perfect. 

Thus, selecting reactions for which reaction center with its second environment 

equivalent to that in training set reactions (similar to ICClassify narrow signatures [205]), 

Figure 41b, retains only 13% reactions with high RMSE = 0.69 and low R2 = 0.22. At 

the same time reaction center signature with first environment considers all reactions 

lying within AD.  

The “consensus control” applicability domain [160] was also considered. 

According to its definition, consensus prediction is considered unreliable if a given 

reaction is outside of bounding box AD for a certain percentage (50% by default) of 

individual models. This AD was too restrictive although it efficiently discards the outliers. 

If we smooth the consensus control requirements and accept even one individual model 

considering a given reaction within its AD,  this leads to RMSE = 0.61 and R2 = 0.5 with 

32.3% coverage (Figure 41c). Raising threshold to 50% leads to retaining very few similar 

to training set reactions for which, however, logk was perfectly predicted (RMSE = 0.1, 

R2 = 0.98, coverage = 7.5%), Figure 41d.  

 

Conclusions 

The consensus model for the rate constant of SN2 reaction proceeding under 

different reaction conditions has been built using fragment descriptors generated for 

Condensed Graph of Reactions and special descriptors accounting for experimental 

conditions. The model displays a reasonable performance both in cross-validation and on 

the external test set. The global model obtained on the entire set performs similarly to 

local models built on the subsets corresponding to particular solvents or nucleophile 

types. The models are available for the users on our server (cimm.kpfu.ru). 

We have demonstrated that Matched Reaction Pairs approach could efficiently be 

applied for the analysis of substituent effect. It was found that mostly it is fully in line with 

theoretical concepts issued from the reaction mechanism. Detection of unusual 

substituent effect is in MRP analysis, could help to identify either unusual reaction 

mechanism or error in data annotation. Thus, both data visualization and MRP analysis 

could be used as tools facilitating data cleaning process. 
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Chapter  6.  

Modeling of rate constants of bimolecular elimination 

(E2) reactions modeling 
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6.1. Models built on CGR-based reaction descriptors 

Bimolecular elimination reaction (E2) is base-assisted simultaneous reaction of cleavage of 

bonds with electron-withdrawing group and hydrogen near single bond resulting in 

formation of a double bond. As for SN2 reaction, it involves a one-step mechanism in 

which carbon-hydrogen and carbon-leaving group bonds break simultaneously and 

kinetic equation has second-order (first order with respect to substrate and base), Figure 

42. Regioselectivity of reaction with asymmetric substrates follows Zaitsev’s rule [206] 

which states that in the case of possibility of several alkene formation the one with the 

least number of hydrogens on double bond is formed. Moreover, this reaction is 

stereoselective: leaving group and proton should be located in antiperiplanar position for 

effective elimination. The latter explains why different diastereomers form products with 

opposite orientation of substituents of the double bond.  

 

 
Figure 42. Mechanism of E2 reaction. 

 

In comparison to previous modeling, E2 reaction have issues that connected with 

stereochemistry if reaction. Unfortunately, amount of data available for different 

stereoisomers was very low. Moreover, analysis of dataset shows that difference in 

reaction rates of products formation with opposite configuration at double bond was 

similar to interlaboratory experimental error. Therefore, values of reaction rate constants 

related to the same reaction in same condition that differ only in stereochemistry were 

averaged. The initial dataset of 1389 reactions after curation included averaging rate 

constants of reactions with stereoisomers had 1043 entries. The dataset prepared in such 

a way was used for modeling using standard workflow described earlier.  

The results of modeling, as well as all procedures were published in the article in 

Russian Journal of Structural Chemistry (see below).  
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Conclusive remarks 

The first model predicting the rate constant of E2 reaction with different reagents 

and in wide variety of conditions was prepared using fragment descriptors generated for 

Condensed Graph of Reaction and some special descriptors accounting for experimental 

conditions. The predictive performance of the consensus model in cross-validation was 

high enough: RMSE = 0.69 log units, R2 = 0.75. Analysis of outlier was shown that 

model fails to predict logk for reactions involving  substrates with  unique fragments . The 

model was published online. The results supported the universality of the approach.  

 

6.2. Models built on mixture-based reaction descriptors 

The question rises how well the CGR-based descriptors perform in comparison with 

other known descriptor types for reaction. Thus benchmarking study of different 

descriptor types was made. CGR-based fragment descriptors were compared with several 

difference fingerprints calculated by RDKit and proposed in the work [100]. Moreover 

the novel type of descriptors suitable for reaction modeling was introduced. They are 

based on the SiRMS descriptors for compounds mixture [18]. Formally left- and right-

hand side of reaction could be considered as mixture of reactants and products 

respectively and corresponding SiRMS mixture descriptors for them could be calculated. 

Resulting descriptor vector could be combined by concatenation or subtraction. Hence 

three completely orthogonal descriptor generation strategies were compared: difference 

fingerprints, CGR-based fragment descriptors and mixture descriptors for chemical 

reaction. 

Random Forest [153] (RF) machine learning algorithm for model building. For the 

study we needed non-linear regressor efficiently working with very large descriptor space 

(when number of descriptors is substantially larger than number of reactions to model), 

having as few hyperparameters as possible to adjust. RF perfectly suited our need due to 

efficient tackling non-linearities, non-sensitivity to descriptor vector size, and only one 

hyperparameter that is required to be adjusted – ratio of descriptors that is randomly 

selected for tree branching (number of trees in the forest should be as large as possible, we 

used 500, and the other parameters of RF influence poorly and default values could be 

accepted).  
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E2 reactions were used in the benchmarking study. This dataset is not as large as 

SN2 one and reliable results could be obtained in reasonable time. Some of descriptor 

spaces (for example, for based on SiRMS descriptors of mixtures) were extremely large 

and descriptor storage was also an important issue. Moreover, it was decided to reduce 

number of reactions in data set by careful manual examination of the E2 dataset and 

exclude all doubtful data, data where stereoisomery was important, data containing 

structural errors. This was done to ensure that the descriptors indeed reflect the relevant 

information and outliers due to experimental errors does not influence the performance 

metrics. Additionally, fragment control for assessment of model applicability domain was 

used. 

And finally for unbiased estimation of model performance stratified cross-validation 

was used. It includes the following procedure: reactions were united by products formed, 

and in cross-validation for test sets reactions whose products do not coincide with the 

ones in training set were selected. Monte-Carlo algorithm was used for controlling that 

the number of reaction constituting test sets in 5-fold cross-validation was about 20% of 

whole dataset. The paper describing modeling procedure and results of benchmarking 

was published in Journal of Computer-Aided Molecular Design and attached below. 
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Conclusive remarks 

In this section, we described new type of descriptors for chemical reaction based on 

mixture representation of reagents and products. Unlike CGR-based descriptors this 

approach does not require Atom-to –Atom Mapping as a data pre-processing step. One 

could notice that CGR-based and SiRMS mixture descriptors are pretty competitive with 

respect to the model’s quality. The Morgan based difference fingerprints were slightly 

better than CGR-based ISIDA fragments but worse than SiRMS on this particular 

dataset (if AD is taken into account). Other strategies for descriptor generation were 

worse. Accounting for bounding box applicability domain improves the model 

performance for all descriptors, but dramatically reduced the coverage, especially for 

CGR-based ISIDA and SiRMS mixture descriptors. It should be noted that ISIDA 

descriptors were optimized in this study. Fair large-scale benchmarking on an extended 

number of reaction datasets is still needed. 

Reaction-out cross-validation and product-out cross-validation lead to quite 

different ranking of descriptors type according to the models performances. The bias 

introduced in reaction-out cross-validation could drastically affect the conclusions drawn 

on models performance.  
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Chapter 7. 

Modeling of rate constants of Diels-Alder reactions  
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Diels-Alder reactions are one of the most well-known and important reactions in 

chemistry. It belongs to cycloaddition reaction class when two bonds are simultaneously 

formed with ring closure. These reactions are widely used as an efficient tool for cyclic 

system synthesis and especially popular in steroid chemistry. Diels-Alder reactions, called 

also [4+2]π cycloadditions, involve diene and alkene (called dienophile) which 

synchronously break three double bonds with formation of 2 single and unsaturated ring, 

exemplary reaction is shown on Scheme 4. Aromatic compounds with low aromaticity 

energy (furan, anthracene etc.) could also participate in reaction as dienes. Diels-Alder 

reactions proceed in one step without intermediate formation and characterized by 

second-order kinetics. Reactions proceed at room temperature or upon heating, no 

catalyst or irradiation are needed. Reaction has complex regio- and stereoselectivity 

driven by molecular orbital interactions.  Reaction between asymmetric diene and 

dienophile leads to two possible products: endo-product when bulky substituents upon 

interaction are close to each other, and exo-product when they are distant, Figure 43. 

 

Scheme 4. 

 
 

 
Figure 43. Example of endo (top) and exo (bottom) cycloaddition. Notice that the 

products of the reactions are diastereomers. 
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The modeling set contained 880 Diels-Alder reactions measured only in pure 

solvents. In cycloaddition not only initial stereo configuration of reagent molecules, but 

also endo and exo cycloaddition are characterized by different rate constants. So, even 

one reaction with specified stereo configuration of reagents can give two products. 

Typically this information was neglected in the initial sources, but for some reaction 

stereoconfiguration of reagents and products was known. For the latter we found the 

difference between rate constants values, which, fortunately, didn’t exceed 

interlaboratory error of some 0.5 logk units. That’s why, the data on stereoisomers were 

merged and rate constants were averaged. The modeling procedure and results are 

described in the article published in Russian Journal of Structural Chemistry, see below.  
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Conclusions remarks 

 

The CGR-based approach and developed workflow were used to build consensus 

model for Diels-Alder reactions rate constant prediction. The model displays a reasonable 

predictive performance: R2 =0.87 and RMSE = 0.75 log units in cross-validation. The 

model was published on line on http://cimm.kpfu.ru/predictor. 
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Chapter 8.  

Modeling of tautomeric equilibrium constants  
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Tautomerism represents one of the most common phenomenon in organic 

chemistry. According to IUPAC definition, the tautomerism is the easily undergoing 

isomerism of the following general type  

 
The most common form of tautomerism is prototropy (prototropic tautomerism), 

where G is hydrogen. The importance of tautomerism in drug design was pointed out in 

numerous publications [129, 207–212]. The main problem with tautomers is related to 

the fact that each tautomer behaves as an individual chemical compound with its own 

spectral, chemical and physical properties and, at the same time, all tautomers of a given 

compound coexist in dynamic equilibrium. For this reason, identification of molecules 

and its properties that are able to tautomerize can be challenging.  

Since a molecule can exist in several forms with different descriptor vectors and 

structure fingerprints, one have to decide which form should be taken into account in the 

course of modeling or storage in chemical database. It has been reported several times 

that several tautomeric forms of the same compound can be found in the same database, 

and even different prices are given for them [213, 214]. In QSAR studies and chemical 

database management only the most stable (most populated) tautomeric form in water is 

considered mainly. It should however be taken into account that guessing the most stable 

form may sometimes be rather difficult problem, because tautomer equilibrium is known 

to be solvent and temperature dependent. Selecting one of several alternative tautomers is 

usually performed using rules of tautomer canonicalization [215–217]. In structure-based 

drug design several tautomeric forms with energy lying within the given energetic window 

are considered. In this case relative stabilities of tautomers can be estimated using 

quantum- chemical [218, 219] or force-field modeling [220, 221].  

The dataset of tautomeric equilibria was collected from reference book [1]. The 

tautomeric equilibria were represented as reactions that turn one compound to another, 

in order to fit equilibria to the developed approach. In this representation equilibria 

constants belong to one exact direction of process. This required to check additionally 

that left and right parts of the reaction equation are represented in a unified way. E.g. 

keto-enol tautomerism have to be represented only as transformation of ketone into enol. 

Additional problem we came across is, that using dynamic bond concept in initial 

X Y
Z

G

Y Z

X

G
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formulation of CGR [2] with implicit hydrogens, encoding of neutral - zwitter-ion 

tautomeric equilibria produces CGR without any dynamic bond. Therefore, dynamic 

atoms were introduced for description of such reactions.  

Initial curated set of 840 records was curated for modeling, duplicated reactions’ 

rates were averaged and resulted modeling set was divided into training and external set. 

External test set was selected for evaluation of the model and comparison with quantum 

chemistry calculations. As the result 739 equilibria in different conditions were selected 

for training set and 46 equilibria were selected to external test set. Additional comparison 

of the model with commercial Tautomerizer tool (ChemAxon) for prediction of tautomer 

populations in water under room temperature was done. The results of modeling, 

quantum chemistry benchmarking and commercial tool comparison were published in 

the article in Journal of Computer-Aided Molecular Design that is shown below. 
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Conclusive remarks 

In this section we reported the first attempt to model tautomerisation equilibrium 

directly without calculation of acidities of individual tautomers. It was possible since each 

equilibrium was encoded by CGR. Logarithms of equilibrium constants were learned 

directly from the data by standard machine-learning techniques. Two external test sets 

were collected to prove the possibility of model to predict equilibrium constants in new 

reaction conditions or containing new structural moieties correspondingly. External 

validation and cross-validation demonstrated good performance of the model. The 

prediction quality was close to noise in experimental data.  

Along with global model built on whole training set, local models built on particular 

type of tautomerisation were tested. In most of cases, local model lead to lower RMSE 

than the global model. However some tautomerism types are predicted much worse than 

others. This can be explained by small number of datapoints and by its structural 

diversity.  

The comparison with other methods as ChemAxon Tautomerizer plugin or 

quantum chemistry calculations showed that developed approach has higher precision in 

prediction on external test.  

The model was published on-line on the site http://cimm.kpfu.ru/predictor. 

 

 

 

Summing up the results shown in the Chapters 5-8, we could conclude that the 

efficiency of CGR-based and solvent descriptors in modeling of reaction characteristics. 

Prediction errors were found at the level of the data noise. The developed approach was 

used to build models to predict rates of reaction of different classes: substitution (SN2), 

elimination (E2), cycloaddition (Diels-Alder) reactions, which were built for the first time; 

as well as tautomeric equilibrium constant model utilizing new methodology of direct 

prediction without intermediate building of acidity models. 

  



 168 

 

 

 

Chapter 9.  

Modeling of reaction rates of some bioorthogonal 

reactions  
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The last modeling challenge was modeling of biorthogonal reactions. The project 

was initiated within a collaboration with Prof. Frederic Taran, CEA. The initial idea was 

to develop a model to predict reaction rate for dipolar cycloaddition of sydnones to 

strained alkynes. The previous Diels-Alder model was useless for this set, as it does not 

contain reactions of 1,3 dipolar cycloaddition. The training set provided by group of Prof. 

Taran contained 18 reaction. In this chapter we will describe the problems we faced and 

the solution proposed. 

The ability to selectively form and break chemical bonds in chemically complex and 

uncontrollable biological media is a long-standing goal of chemists interested in 

modifying biological materials. Biorthogonal chemical reactions [222], which are 

reactions that do not interfere with biological processes, address precisely this challenge 

and therefore they are of major importance in the fields of chemical biology and 

biochemistry. To fulfill the requirements of bioorthogonality, reaction partners must be 

stable and inert towards the plethora of chemical functionalities found in living systems 

while reacting selectively, efficiently and rapidly with each other under physiological 

conditions with no or innocuous by-products. 

Biorthogonal reactions play key roles in modern biochemistry [223, 224]. 1,3-

dipolar cycloaddition reactions like copper-catalyzed azide–alkyne cycloaddition 

(CuAAC) are one of the most extensively studied and used biorthogonal transformations. 

But they were catalyzed by Cu salts, which resulted in a dramatic toxicity of this systems 

for living organisms [225]. New reaction systems based on strain promoted cycloadditions 

were explored [226]. The catalyst addition is not required for them but reaction have 

rather low rate [227].  

Recently sydnones were shown to be a very promising class of biorthogonal 1,3-

diene that can participate cyclization reaction with cyclic alkynes resulting in pyrazole 

formation [228]. This reaction proceeds in two step: cyclization with formation of 

reactive intermediate and retro-Diels-Alder reaction with CO2 cleavage (Figure 44). 

Thermal cycloaddition of sydnones with alkynes require quite harsh conditions and 

proceeds with low regioselectivity [228] while under copper catalysis reaction proceed in 

mild conditions with high yield and selectivity [229–231]. Strained alkynes readily react 
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with sydnones and iminosydnones without catalyst [232–234]. Substituents in sydnone 

ring [6, 235] as well as alkyne nature [233] were shown to have great impact on the 

reaction rate switching it from moderate to ultra-fast. Very recently detailed stopped-flow 

kinetics study of reaction of some sydnones have been performed that supported two-

stage mechanism and rates of cycloaddition and retro-Diels-Alder steps were measured 

[6]. It was shown that for fast reactions of fluorosydnones the second, CO2 release step, 

was rate-limiting.  

 

 
Figure 44. Studied reactions of sydnones with strained alkynes. 

 

Murphy et al [233] performed a DFT study of N-phenyl sydnone and diaryl-

1,2,4,5- tetrazine reaction with different strained alkenes and alkynes: norbornene, 

bicyclo-[6.1.0]-nonyne (BCN), 1,3- and 3,3- dimethylcyclopropene (Cp(1,3) and Cp(3,3)), 

difluorocyclooctyne (DIFO), trans-cyclooctene (TCO), biarylazacyclooctynone (BARAC) 

and dibenzoazacyclooctyne (DIBAC). A two steps mechanism of sydnone-alkyne reaction 

was computationally supported. Using experimental data on N-phenyl sydnone – BCN 

cycloaddition the rate of other reactions based on activation free energy was assessed. 

The reaction rate changes in several orders of magnitude – from 10-7 to 10 М-1s-1 – 

depending on the nature of dienophile (alkyne or alkene). For N-phenyl sydnone the most 

active reaction partners were BARAC and DIBAC due to large strain. However due to 

steric hindrance they have low reaction rates with diaryltetrazine. This observation was 

used to identify two mutually orthogonal reactions, i.e. two sets of alkyne-diene pair, 

namely sydnone-(BARAC or DIBAC) and diaryltetrazine-norbornene, that has almost no 
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cross reactivity. It was supported experimentally. Similarly, in other work of the same 

authors [236] on azide and dimethyltetrazine another mutually orthogonal pair was 

found. The article of Gordon et al. [237] was devoted to the design of the most reactive 

cyclooctynes for the click 1,3-dipolar cycloaddition with azides. They found that generally 

electronically depleted alkynes and steric hindrance in them improved the reaction rate, 

steric hindrance being the most important. The importance of steric strain of alkene or 

alkyne moieties to accelerate kinetics of 1,3-cycloaddition to organic azides or tetrazines 

could be explained by distortion/interaction model [238, 239]. Strained alkenes and 

azides are predistorted toward the Diels–Alder transition structure and thus interact 

easier.  

Thus, by now, major attention was devoted to design of alkynes or alkenes with 

improved reactivity toward strain promoted 1,3-cycloaddition. In this part of the work we 

wanted to create predictive model for reaction rate of sydnones with alkynes and to shed 

light how substituents in sydnone ring influence its reactivity. We collected some 

experimantal data on sydnone-alkyne cycloaddition that was used for assessment of the 

error of computational prediction of reaction rate and revealing the importance of 

electronic and steric effects of substituents of sydnone ring for reaction rate. 

Moreover, in [233], it was shown that the second step on reaction pathway of 

sydnone-strained alkyne cycloaddition has almost no barrier which contradicts with 

kinetic experiments of Liu et al [6]. However, in these two works different sydnones and 

alkynes were studied. Potentially, fast fluoro-N-phenylsydnone reaction with BCN might 

have completely different reaction path than medium-rate reaction of unsubstituted N-

phenylsydnone. In this work we performed QSPR modeling and quantum chemical study 

of fluorosydnone reaction pathway. 

 

9.1. Data set description 

The data on cycloaddition reaction rate were taken from publications of F. Taran’s 

group [229, 234], Figure 44. The collected dataset contains reaction rates at ambient 

temperatures of 15 reactions of sydnones and BCN, 3 reactions of sydnones with TMTH 

(see Table 7).  
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Table 7. Dataset of sydnone-alkyne strain-promoted cycloaddition reaction rate 

constants. R-group position are shown on Figure 44. 

No. R X Cycloalkyne Rate constant 
(tolerance), M-1*sec-

1 

Reference 

1 p-MeO 
C6H4 

H BCN 0.006 (0.001) [235] 

2 p-Me C6H4 H BCN 0.032 (0.001) [6] 

3 C6H5 H BCN 0.027 (0.002) [235] 

4 p-CO2H 
C6H4 

H BCN 0.059 (0.001) [235] 

5 p-CF3 C6H4 H BCN 0.199 (0.002) [235] 

6 p-NO2 

C6H4 
H BCN 0.289 (0.012) [235] 

7 C6H5 CH3 BCN 0.018 (0.002) [235] 

8 C6H5 C6H5 BCN 0.027 (0.001) [235] 

9 C6H5 CF3 BCN 0.008 (0.001) [235] 

10 p-Me C6H4 Cl BCN 0.872 (0.034) [6] 

11 p-Me C6H4 Br BCN 0.592 (0.021) [6] 

12 p-Me C6H4 I BCN 0.306 (0.008) [6] 

13 p-CO2H 
C6H4 

Br BCN 0.798 (0.065) [235] 

14 p-CO2H 
C6H4 

Cl BCN 1.593 (0.034) [235] 

15 p-Me C6H4 F BCN 42 [6] 

16 p-Me C6H4 F TMTH 1500 [6] 

17 p-F C6H4 F TMTH 3500 [6] 

18 p-CF3 C6H4 F TMTH 12000 [6] 

 

From the table one can see that reactions with TMTH have several magnitudes 

higher speed than with BCN and their rate were measured only for the most reactive 

fluorosydnone. We removed from dataset 3 reactions, that have the same reaction rates in 

two articles, but have difference in structure (reactions 10,11,12 in [234] have CH3 group 

in para position of phenyl group, but in previous article [229] they have not). So, out of 

six reactions in the article [229] we kept only 3.  
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9.2. QSRR modeling  

In the beginning of the project the attempt to model rate constants using QSAR 

approach was done. To do it some new, confidential data on reaction rate with BCN was 

given to us by F. Taran’s group. Totally we had 34 data on measurement of rate 

constants of different sydnones and iminosydnones with BCN. The only factor 

influencing the reaction rate was the chemical structure of the sydnones, since the alkyne 

and reaction conditions were kept constant. Thus, there is no need in application of CGR 

approach for the reaction rate prediction and standard QSPR approach could be used. 

The target property of the modeling was the rate constant logarithm. Various structural 

descriptors of different type were applied. The following combinations of 

descriptors/modeling procedure were explored: 

• ISIDA fragment descriptors of different type with SVM machine learning 

method, 

• Quantum-chemical CODESSA descriptors with Multiple Linear Regression 

using CODESSA Pro program [240, 241], 

• Quantum-chemical descriptors based on Bader’s Quantum Theory of 

Atoms in Molecules [242] with Multiple Linear Regression using 

CODESSA 3 program [243], 

• Conceptual DFT theory [244] indices (see Chapter 4.3.3.4 for details) 

calculated for key atoms of sydnone ring on the basis of DFT/PBE/3z by 

Priroda [165] with Multiple Linear Regression. 

However all approaches have shown poor performance (Q2<0.5) on 10-fold cross-

validation. We explain it by following factors: 

• Small and heterogeneous data set - the number of points in the dataset is 

not enough to learn all the factors that influence on reaction. The data set 

appeared to be too heterogeneous, most reactions are slow and 4 had a much 

bigger reaction rate constant than most of the others in the dataset. 

• Obvious feature that influence reaction speed – one can notice that reaction 

rate increases when halogen atom is present in X position. Thus upon descriptor 

selection usually presence of certain halogen becomes an important feature. 

However such model could not predict correctly test set reactions where a sydnone 
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contained another halogen atom. Such effect and small number of high-speed 

representatives makes impossible to learn other features from this dataset. 

Our attempt to manually select descriptors according to knowledge of mechanism 

failed as well and we never managed to build a model with moderate performance. Thus 

we came to conclusion that the dataset has low modelability for QSPR approach 

application due to its composition. Thus, we turned toward quantum-chemical 

calculations to estimate the reaction rate.  

The work was divided into two parts: development of the workflow for direct 

calculation of transition state Gibbs free energy with following reaction rate constant 

calculation and revealing the structural effects responsible for reaction rate. The tasks 

were solved using dataset given in Table 7. 

 

9.3. Details of quantum chemical calculations 

In this sections the computational approaches used for calculation will be described.  

9.3.1.  Energy and geometry optimization  

Density Functional Theory (DFT) [118, 119] calculations were made in Priroda 11 

program [165] with PBE exchange and correlation functional [126] and built-in triple-

zeta split valence basis set (called 3z, equivalent of Schäfer’s TZVP basis [167]). 

Relativistic effects were neglected since for molecules under study it has minor 

importance. Priroda11 is probably one of the fastest DFT code due to efficient evaluation 

of density functional exchange-correlation terms based on the expansion of the electron 

density over auxiliary basis set [166]. The program was used since computational 

efficiency was of major importance for the study. 

Geometry optimization for reagents, intermediates and products as well as saddle 

point optimization were performed using built-in quasi-Newton-Raphson procedure and 

BFGS hessian update scheme. Scanning along plausible reaction coordinate was used to 

localize good structural guess for transition state. The scanning procedure was 

constrained local optimization with one coordinate N1…Calkyne set externally. Its value 

changed from 2.1 to 3.1 with step size 0.1 Å. Geometry optimization was followed by 

frequency calculation to control correct structure of hessian: discussed structures of 

reagents, products and intermediate had no imaginary frequency, transition state 
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geometry had one large imaginary frequency. The correctness of transition states was also 

checked by intrinsic reaction coordinate (IRC) following approach.  

For 3 reactions full reaction paths were calculated. First stage transition state (TS1) 

was localized and optimized using aforementioned procedure. The intermediate was 

found during the intrinsic reaction coordinate downhill movement, followed by local 

optimization. The intermediate geometry was used to localize a second stage transition 

state (TS2). The N1-O5 bond elongation was used as reaction coordinate, as it is the most 

sensitive to geometry changes occurring in the intermediate. For scan procedure step size 

was 0.01 Å, since TS2 is very structurally similar to intermediate. Geometry of TS2 was 

found by saddle point optimization of the highest energy structure obtained during the 

scanning procedure. IRC procedure supported that TS2 belong to reaction minimal 

energy pathway, descent from TS2 in one direction reproduces the intermediated while 

in the other direction it converges to the final product molecules. 

Solvation free energy was calculated for some structures by IEF-PCM model [4, 

169] with SMD parameters for non-electrostatic terms [170] using Gaussian program 

[171]. In this case geometry optimization and hessian calculation was performed in 

Gaussian program [171] too using PBEPBE/6-311++G(d,p) method.  

 

9.3.2. Procedure for transition state detection 

The workflow used for semi-automatic first transition state detection is schematically 

represented on Figure 45. The detailed descriptions of each step are given below. 

 

Initial conformers 
generation and 

optimization using 
MMFF94 force field

Optimization  of 
conformers using 

PM6

Optimization of 
conformers using 

DFT PBE/TZVP

Pre-reaction 
complexes 
formation

Transition states 
localization

Intrinsic reaction 
coordinates 

following procedure
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Figure 45. Schematic representation of the workflow for TS1 detection. 

 

Initial conformers generation 

All structures were drawn following the same numeration of sydnone ring atoms. 

ChemAxon Calculator Plugin cxcalc was used to generate up to 500 conformers with 

diversity limit 0.1 Å with subsequent optimization using MMFF94 force field.  

PM6 optimization 

All structures obtained from previous step were optimized using PM6 semi-empiric 

method using MOPAC 11 program [245]. Duplicated conformers (with RMSD <0.1 Å) 

were removed using simple Perl script that aligns molecules according to principal 

components of inertia with following RMSD calculation (developed at N.N.Vorozhtsov 

Institute of Organic Chemistry, Novosibirsk, Russia, available at 

http://limor1.nioch.nsc.ru/quant/program/conformers/conformers.html). Remaining 

conformers were ranked by energy and 100 most stable conformers were chosen for 

further calculations. 

Reagent structure optimization using DFT 

All structures obtained from PM6 optimization were optimized in PBE/3z in 

Priroda11. The lowest energy conformer was selected to continue with the next step. The 

selected conformer geometry was optimized until no frequency of the hessian was 

imaginary. 

Pre-reaction complexes formation  

There are 4 possible orientations of reagents to form TS1, that could be considered 

as 2 pairs of enantiomers, Figure 46. However when CO2 is cleaved the product is 

formed as racemic mixture of two enantiomers.  

Four possible orientations of reagents were generated using in-house Python script 

in a way that distance between reaction center atoms (C3…C1 and N1…C2 or C2…C1 

and N1…C2, depending on orientation, atomic numbering is given on Figure 46) was 3.1 

Å, i.e. much greater than in transition state. Guess for first transition state was found 

using scanning procedure in Priroda11 varying distance between reaction center atoms 

from 3.1 Å to 2.1 Å with step size 0.1 Å. For the structure with the lowest energy hessian 

was calculated, and saddle point optimization started.  
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Pair of enantiomeric structures of transition states should have the same energies. 

However, due to some fluctuations, structures of them obtained using 4 different 

orientations of reagents usually had slightly different energies. For further analysis the 

lowest energy transition state among four was selected. The selected structure hessian was 

calculated and the presence of a single large imaginary frequency was checked. The 

correctness of transition state was checked using Intrinsic Reactional Coordinate 

following (IRC) procedure.  

 

 
Figure 46. Four possible pre-reaction complexes diene and dienophile 
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9.3.3. Activation free energy calculation 

Free energy of molecule and transition state formation was calculated using built-in 

thermochemical calculation in rigid ideal rotator and harmonic oscillator approximation 

at 298 K in Priroda11 program, including zero-point vibrational energy corrections 

[165].  

Formula Eq. 6 was used for calculation of activation free energy on the basis of 

quantum chemical calculations:  

Eq. 6     ∆∆Gg = ∆G=��`� − (∆G=��
��7C6C@+∆G=��

A ^�C@)   

Calculation of activation free energy based on experimentally measured reaction 

rate was done using formula Eq. 7 based on Eyring equation of Transition state theory 

Eq. 8: 

Eq. 7      𝑘 = 𝜅 ¢_`
a
𝑒
£∆∆¤e

NO       

Eq. 8      ∆∆𝐺g = −𝑅𝑇ln	( ^∗a
¥¢_`

)     

where k - rate constant; κ – transmission coefficient (here, κ=1); T - Temperature in 

Kelvin; KB -Boltzmann constant; ∆∆G≠ - Difference of free energies of reagents and TS at 

298.15 K; h - Planck constant; R - gas constant. 

 

9.3.4. Conceptual DFT indices  

Different Conceptual DFT [244] indices were used in the work to reveal structural 

factors responsible for reaction rate. Electrophilicity index, ω, measures the stabilization 

energy when system acquires an additional electronic charge [246]: 

𝜔 =
𝜇=

2𝜂
 

where μ is electronic chemical potential, and η – chemical hardness. They could be 

expressed in terms of HOMO (εHOMO) and LUMO (εLUMO) energies as: 

𝜇 = (𝜀©ª«ª + 𝜀¬­«ª)/2 

𝜂 = 𝜀¬­«ª − 𝜀©ª«ª 

The HOMO and LUMO energies were obtained within DFT scheme [118] for 

sydnone molecules.  

Fukui indices are used to characterize atom ability to share/withdraw electronic 

charge. For calculation of Fukui nucleophilicity 𝐹°K, elecrophilicity 𝐹°± and radical attack 
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susceptibility 𝐹°² indices of atom A single point calculations of molecules with added and 

removed electron were done:  

𝐹°K = 𝑃°(𝑁) − 𝑃°(𝑁 − 1) 

𝐹°± = 𝑃°(𝑁 + 1) − 𝑃°(𝑁) 

𝐹°² = 0.5 ∗ 𝑃°(𝑁 + 1) − 𝑃°(𝑁 − 1) 

where 𝑃°(𝑀) – Hirshfield charge on the atom A in molecule with M electrons, 𝑁 - 

number of electrons in neutral molecule. Geometry of cation and anion-radical molecules 

were approximated to the one corresponding to the lowest energy structure of the neutral 

molecule. 

 

9.4. Reaction pathway investigation 

The full reaction path was explored for reactions 2, 15 and 16 in Table 7 whose 

kinetic measurements using stopped-flow technique was performed in reference [6]. The 

procedure included scanning along reaction coordinate, optimization of transition state, 

intrinsic coordinate following to unite transition state with reagents and products. 

Energetic profile of reaction is shown on Figure 47. N1-O5 length could serve a good 

approximation for reaction coordinate, it smoothly elongates along the reaction path: 

1.379 Å in reagents, 1.414 Å in TS1, 1.546 Å in intermediate and 1.721 Å in TS2 of 

reaction 15. 
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Figure 47. Reaction pathways for reaction 2 (dashed red line), 15 (solid black line) 

and 16 (dashed blue line). Relative free energies at 298K of molecules with respect to 
reagents are shown. Structure of reagents, transition states and intermediate for reaction 
15 is shown. Substituent R of sydnone and almost all atoms of BCN are omitted for the 
sake of clarity. Bond orders correspond to molecule representation on Figure 44.  

 

One can see from Figure 47 that the limiting step of reaction 15 is the first transition 

state (TS1), intermediate is lower in free energy than reagents by 21 kcal/mol. According 

to our calculation, intermediate is very unstable since it is separated from products by 

transition state (TS2) with a tiny barrier (some 1 kcal/mol). Intermediate decomposition 

is exergonic by some 85 kcal/mol. The same is true for the much slower reaction 2. 

Solvent effect that was accounted by IEF-PCM model [4] shown almost no influence on 

the reaction barrier due to compensation. In reaction 16 between fluorosydnone and 

TMTH TS2 was not localized at all.  

Liu at al [6] experimentally observed the existence of an instable intermediate 

during the reaction. However, they estimated the second step reaction rate in the range 

0.02 to 0.98 s-1 depending on alkyne and concluded that this second step becomes rate 
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limiting. The discrepancy with the computed free energy clearly points toward yet 

undefined entropic effects that are balancing the two steps of the reaction. A possible 

hypothesis is that the solvent water molecules play an active role in the studied reactions. 

With the present set of approximations, our results show that there is no qualitative 

difference between reaction paths for fast reaction of fluorosydnones (X=F) and much 

slower reaction of unsubstituted (X=H) sydnones: both are characterized by an unstable 

intermediate. This is also in qualitative agreements with the observations reported by 

Narayanam et al [233] for unsubstituted sydnones with strained alkynes.  

 

9.5. Assessment of rate constant 

The study of Liu et al [6] reported that the first step of the reaction is strongly 

affected by the nature of the sydnone. The main result is that the rate of the first step of 

the reaction is so fast, if it involves a fluorosydnones, that the second step became the 

limiting.  This second step seems marginally affected by the nature of the sydnone and 

much more by the nature of the strained alkyne, ranging from 0.02 s-1 to 1 s-1. However, 

these variations are order of magnitudes smaller than those that affect the reaction rate of 

the first step when varying the nature of the sydnone, ranging from 42 Mole-1.s-1 to 12000 

Mole-1.s-1.  

This explains the paradoxe that the effective rate of reaction (rate of product 

formation) seems to be mostly driven by the nature of the sydnone and the rate of the first 

step (see Table 7). The first step is so fast and the transformation is so irreversible that it 

produces a large accumulation of the instable intermediate. In turn, this produces a 

massive imbalance that pushes toward the generation of the final products. Moreover, 

according to description of HPLC experiment in author’s previous studies [235] rate 

constants reported in Table 7 represent the speed of conversion of reagents. The latter 

depends only on first step rate constant.   

Hence, from practical point of view the first step rate constant is the most relevant.  

Experimental measurements of rate constants are time-consuming and expensive 

while the variability of structure is rather big. For practical application it is important to 

find a way to quantitatively assess the rate constants of some reaction. We attempted to 

find activation free energies for all reactions under study and compare predicted values 

with experimental ones. The goal was to assess the quality of quantum-chemical 
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estimation of reaction kinetic characteristics. For all reaction under study TS1 was 

identified and its activation energy was calculated as difference between free energy of 

TS1 and reagents. However, due to large number of reactions under study, 

conformational lability of interacting compounds and many possible orientations of 

reagents to form transition state, an automatic approach for the detection of TS1 was 

needed (described in details in Chapter 4.3.3.2). The approach includes (i) 

conformational sampling of initial compounds, (ii) subsequent elimination of local 

minimum geometries by semi-empiric and DFT calculations, (iii) pre-orientation of 

reagents to form a valid guess for TS1, (iv) energy screening along the reaction 

coordinate, (v) optimization of TS1, (vi) selection of lowest energy structure of TS1, (vii) 

manual examination of TS1 structure, correction and recalculation if required.  

Free energies of activation, ΔΔG≠calc, were predicted for all reactions under study 

using described quantum chemical approach. For comparison, “experimental” values of 

free energies, ΔΔG≠exp, of activation were calculated using Transition State theory and 

Eyring equation (see Chapter 4.3.3.3) from measured rate constants. The comparison of 

these two quantities is given on Figure 48. 

 
Figure 48. Free energies of activations predicted by quantum chemical calculations 

and calculated from experimental values using Eyring formula. Numbers corresponds to 

reactions in Table 7. Dashed line corresponds to perfect prediction, solid line represent 

linear correlation. 
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As one can see, quantum chemical calculations in gas phase well describe activation 

free energy of sydnones cycloaddition to strained alkynes. Root mean squared deviation 

between predicted and experimental values is 1.97 kcal/mol, the plot predicted vs 

experimental is shown on Figure 48. Considering that the accuracy of the free energy 

measures is about 1 kcal/mol, the agreement between the models and the experiments is 

reasonable and is comparable to what is expected using common DFT functional [11]. 

Moreover, the calculated value could contain error due to approximate nature of 

Transition State theory. The saddle point optimization is more error-prone than local 

minima geometry optimization. One can notice that some systematic overestimation of 

activation free energy takes place. Systematic error could be taken into account using 

linear correlation and in this case the error of prediction can be lower. The correlation 

coefficient, r=0.84 and RMSE (vs correlation line) = 1.53 kcal/mol. Thus, the developed 

workflow open perspectives for relatively fast and cheap (in comparison with 

experimental measurement) computational screening of reaction partners to identify the 

most reactive ones. 

 

9.6 Structural factors responsible for reaction rate  

Quantum chemical assessment of reaction rate based on the developed semi-

automatic approach is reliable but computational resource-consuming task since the 

whole calculation could take some days per CPU core. The most complicated is the 

localization and optimization of transition state. For real application one needs to reduce 

search space and find factors responsible for high reactivity. Our attempt to build QSPR 

models failed since the resulting models have mediocre predictive ability according to 

cross-validation procedure.  

Conceptual Density Functional Theory (DFT) indexes [244] are often used to 

analyze cycloaddition reactions [117, 247]. In order to reveal structural factors 

influencing on the rate constant we looked for correlations within the largest series of 

reactions of different sydnones with the same alkyne – BCN. However, for reaction under 

study neither sydnone electrophilicity index [246] nor chemical potential (calculated as 

half-sum of HOMO and LUMO energies) nor chemical hardness (calculated as HOMO 

– LUMO gap) correlates with reaction rate. Hereafter HOMO and LUMO energies are 
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obtained using DFT scheme, however our test has shown that the conclusions are not 

affected if Hartree-Fock calculations (HF/6-311+G**) are used instead. Atomic charges 

do not correlate with reaction rate as well.  

Analysis of orbital symmetries and energies shows that electrons are transferred 

from HOMO of alkyne to LUMO of sydnone (Figure 49) in agreement with earlier 

publication by Liang et al [236] studied azide and tetrazine cycloaddition to alkynes. In 

the series of reactions with BCN there is no valid correlation of LUMO of sydnone with 

reaction rate, Figure 50a. Unlike the work of Domingo [117] no correlation with charge 

transfer was found. So even within this congeneric group there is no evidence that orbital 

interaction is the major factor affecting reaction rate. 

 
Figure 49. Comparison of HOMO and LUMO energies and symmetries for 

reactions 2, 15, 16. HOMO and LUMO energies are obtained using DFT scheme on 

PBE/3z (TZVP) level. 
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Figure 50. Dependency of rate constant on (a) LUMO energy of sydnones and (b) 

Fukui nucleophilicity on C3 atom. Reaction numbers corresponding to Table 7 is shown 

next to points. 

 

We suggested that sydnone-alkyne reaction could be charge controlled. Fukui 

nucleophilicity, electrophilicity, radical attack susceptibility using Conceptual DFT [244] 

for 5 core atoms of sydnones were calculated and used to find correlations with logk of 

sydnones – BCN cycloaddition. Only one unbiased correlation was found between logk 

and nucleophilicity of C3 atom with R2 = 0.43 (Figure 50b). However, one could notice 

that correlation  was mainly caused by fluorosydnone-BCN reaction 15. The deletion of 

the latter point will lead to dramatic drop of correlation coefficient. Thus, charge control 

does not play the major role in these cycloaddition reactions.  

The result leads us to conclusion that there is a complex interplay of  structural 

factors that cannot be caught by simple linear correlations. To avoid any additional effect 

reaction rate in small congeneric series of  reactions of  sydnones having different 
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substituents X and the same R with BCN (reactions 3, 10-12, 15) and fluorosydnones 

(X=F) having different R with TMTH (reactions 16-18) was analyzed.  

Results for reaction of BCN with halo-sydnones (3, 10-12, 15) given on Figure 51 in 

blue show significant variation of electrostatic charges on С3 atom, which change from 

negative (X = H) to positive value (X = F), whereas the charge on N2 atom slightly varies 

as a function of substituents. In this series, the logarithm of the cycloaddition rate (logk) 

well correlates with the C3 charges (Figure 51a), r=0.98 and RMSE = 0.13 logk, p value 

4·10-4. At the same time no correlation with LUMO energy was observed (Figure 51b).  

Variation of  aryl substituents at N3 atom in sydnones in reaction 16-18 (with 

TMTH, in red on Figure 51a), doesn’t lead to significant variations of  charge at C3 atom 

(Figure 51a). One could notice that the rate of  reaction with TMTH is affected to charge 

variation in greater extent than BCN. Thus electron nature of  substituents on sydnone 

ring will have stronger influence on reaction with TMTH. On the other hand, LUMO 

energy in this series decreases from -3.57 to -3.05 eV which could partially explain 

considerable raise of  the rate constant (Figure 51b). One should take into account that 

correlation coefficient is not big enough (0.86) and 3 points are too few to make robust 

conclusions. 
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Figure 51. Dependency of rate constant of congeneric series of halo-sydnones on (a) 

charge of C3 atom of sydnone and (b) LUMO of sydnone. Correlations are shown as 

dashed lines. Red point and lines correspond to reactions with TMTH, blue ones to 

reactions with BCN. 

 

Larger steric strain of alkyne in TMTH compared to BCN affects both charges on 

triple bond carbon atoms (-0.663 and -0.652 in BCN and -0.636 for both atoms in 

TMTH) and HOMO energy (-5.88 eV in BCN and -5.15 eV in TMTH, Figure 49). The 

latter effect favors larger reactivity of TMTH. 

DFT calculations of the transition state of the cycloaddition of sydnones with BCN 

reveals an increase of the distance between alkyne C atom and C3 atom (Calkyne-C3) with 

the size of the substituent at C4 atom: 2.283, 2.345 and 2.348 Å for X = H, F and I, 

respectively, Figure 4.3.6-4. This could be explained by steric repulsion between 

substituent X and aliphatic CH2 group next to triple bond in the alkyne moiety in the 

transition state. The shortest contact H…I (3.486 Å) in transition state TS1 is almost 

equal to the sum of the Pauling vdW radii of H and I (3.4 Å). While fluorine atom is 
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almost located in the plane of sydnone ring in TS1, iodine atom deviates from it avoiding 

sterical clashes, Figure 52. The sums of valence angels for reactions 15, 2, 10, 11, 12 are 

353.6, 353.2, 351.9, 351.5, 351.2 correspondingly. This measure can evaluate steric 

tension in TS1. As one can see sydnone with F is even more planar in TS1 than sydnone 

with H. We can consider that negative charge on F atom and positive charge on 

hydrogens of alkyne can form weak hydrogen bond in this phase, that reduces energy of 

TS1.  

These observations are opposite to suggestions by Liang et al [236] that 

electronically more reactive electrophiles should be sterically more encumbered. Indeed, 

on one hand, iodo-sydnone, sterically more encumbered than fluoro-sydnone, is less 

reactive than the latter due to weaker electron acceptor ability and, on the other hand,  

steric repulsion of halogen with alkyne molecule. But, indeed, fluorine change to more 

bulky electron-withdrawing substituent could lead to drastic loss of reaction rate. Thus, 

reaction 9 involving sydnone with X=CF3 is drastically slower than 10 with X=Cl, 

despite atomic charges on C3 are close (C3 charge is 0.0093 when X=CF3, 0.0042 for 

X=Cl, 0.0891 for X=F). 

In the context of rational design of highly reactive substrates, our calculations result 

in the following conclusions: 

1. Strong electron acceptor X at C3 atom increases its positive charge and, 

thus, improves its affinity to alkyne in cycloaddition. However, this substituent should not 

be bulky because it may cause steric hindrance to alkyne in the transition state. In this 

context, fluorine substituent at C4 represents an optimal choice. However, other flat 

acceptors could be a good alternative as well. 

2. Strong electron acceptor at N3 atom weakly affects charge distribution in 

sydnone moiety, but decreases its LUMO energy, which, in turn, favors cycloaddition, 

especially in reaction with TMTH. Thus, one can expect that nitro-groups or other 

strong electron withdrawing substituents in benzene ring R will strongly favor reaction.  

3. Compared to BCN, more sterically strained TMTH has higher HOMO 

energy which explains its better reactivity. 



 189 

 
Figure 52. Transition state of  cycloaddition reaction between sydnone 1b (X=I) and 

BCN. Only few atoms of  both reactants are shown for clarity. Dashed line shows steric 

contacts H…I between halogen atom of  sydnone and H atoms attached to one of  

carbons at the triple bond of  alkyne, dotted lines indicate new single bonds forming in 

this reaction.  

 

Conclusions 

Extensive quantum chemical study of sydnone-alkyne cycloaddition reaction have 

been performed. Quantum-chemical exploration of reaction pathway have supported 

previous findings [233] on similar systems that despite reaction have formally two-step 

mechanism the second step has a tiny barrier and intermediate is located substantially 

lower in energetic scale than reagents. The intermediate was observed experimentally on 

the same systems by Liu et al [6]. They discovered that the second step of the reaction 

was the limiting step, in contrast to our results. Yet, for practical application, the effective 

reaction rates are reporting the consumption of the reagents which is controlled by the 

rate of the first step of the reaction. Besides, this rate of the first step is much more 

variable with the nature of the reagents than the second step. This is confirmed by our 

quantum-chemical calculations well reproducing experimental data on reaction kinetics 

based on Transition State theory. The root-mean squared deviation between quantum-

chemically calculated activation free energies and the value that was recalculated from 

experimental data on reaction rate constant using Eyring equantion on 18 reaction of 

sydnone-alkyne cycloaddition is lower than 2 kcal/mol. We did not have yet a satisfactory 

understanding of the mechanism of the second step of the reaction. But, since our results 

are not changed using an implicit solvation model, it is possible that some solvent water 

molecules play an active role in the process.  
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From the other hand, such a good reproducibility of activation free energy and as a 

consequence reasonable prediction of rate constant by quantum chemical calculations 

gives a powerful tool for relatively cheap screening of possible reagents. Application of 

developed workflow could be used to computationally prove hypothesis on reactivity of 

certain pairs of sydnone and alkyne. Only the most promising candidates could be 

synthesized and their reaction rate could be experimentally measured. 

To reduce search space in this work the structural factors important for reaction 

rate were analyzed. The absence of clear correlation within whole dataset of reactions 

could be explained by complex interplay of effects responsible for reaction rate and some 

experimental noise in reaction rate constant measurement. However, in restricted series 

of reactions some correlations could be found that made possible to reveal three major 

factors affecting reaction rate. First, large positive charge on C3 atom guarantees faster 

reactions (atom numbering according to Figure 47). This charge itself is mainly affected 

by electron withdrawing ability of substituent at this atom (X) and partially on the 

electron withdrawing ability of substituent at N2 atom (R). On the other hand, bulky 

substituents at C3 atom lead to sterical hindrance to approaching reagents and 

complicate transition state formation. Thus, only sterically unencumbered electron 

withdrawing groups could be used at C3 atom to gain reaction speed. Since LUMO of 

sydnone is participating in orbital interactions, its energy is an important factor 

influencing rate constant. The lower the energy of LUMO the greater is rate of reaction. 

Mostly LUMO energy is affected by π-electron withdrawing ability of substituent R. 

Thus, usage of stronger electron acceptors will favor reaction. Being augmented by 

proposed workflow for fast screening of reaction rate these recommendations provide an 

efficient tool to the design of more active agents for bioorthogonal click reactions. 

The quality of correlation between free energy of activation calculated quantum-

chemically and estimated from experimental value of rate constant using Eyring equation 

shows from one side that developed quantum-chemical approach reproduces the energy 

rather well in absolute scale (less than 2 kcal/mol). From the other side, having such good 

description the correlation coefficient is not large (r is 0.84, that means that determination 

coefficient would be at most 0.6). The reason could be noise in data and in this case it will 

explain why we failed to build QSPR model on the dataset – high level of noise in 
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addition to other problem such as imbalances and heterogeneity of dataset prevented 

building predictive model.  

 

  



 192 

 

 

 

Chapter 10.  

General conclusions 
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1. The first database of chemical reaction kinetic and thermodynamic properties was 

collected. Information on more than 10 000 chemical reactions involving structure, 

solvent, temperature, and rate constants of bimolecular nucleophilic substitution, 

bimolecular elimination, cycloaddition (Diels-Alder reactions) and tautomeric equilibrium 

constants was annotated from reference books and PhD thesis defended in Kazan Federal 

University.  

2. The workflow for reaction standardization and curation was proposed and the 

tools required for it was developed. Some tools are based on approach of Condensed 

Graph of Reaction. The latter was extended by notion of dynamic atom to extend its 

applicability to wider range of reactions. The approach to store CGRs in SDF format was 

proposed. The toolbox developed includes CGR hashing, reaction center detection and 

hashing, workflows for AAM checking and conditions verification. 

3. The workflow for reaction property modeling was proposed. It incorporates usage 

of  Condensed Graph of  Reaction based fragment descriptors for encoding chemical 

transformation in combination with solvent and temperature descriptors to represent 

reaction conditions. Having descriptor vector one can use any machine learning method 

for model creation (SVM and RF were tried). Using developed approach the model 

predicting the rate or equilibrium constants of  reactions involving various reagents, which 

occur in many organic solvents and water-organic mixtures were built the first time. It is 

shown that the RMSE of  prediction is comparable with the level of  experimental noise. 

The analysis of  prediction errors also shows that the quality of  the model is sufficiently 

high for the identification of  data errors and objects with the unique structure with 

respect to this set of  reactions. 

4. New type of  descriptors for chemical reactions based on mixture representations 

of  reagents and products using SiRMS approach was proposed. Different types of  

structural descriptors of  chemical reactions were benchmarked on cleaned E2 reaction 

dataset. It showed that for this particular dataset three best structural descriptors are 

SiRMS mixture descriptors, CGR-based ISIDA fragment descriptors and Morgan 

fingerprint-based difference reaction fingerprint.  

5. The study has clearly shown the importance of  correct validation scheme for 

unbiased estimation of  predictive performance of  chemical reaction. Two different 
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strategies that are superior to classic cross-validation were proposed: the first one based on 

calculating predictive performance metrics only on point for which reaction property was 

measured in only one condition, the second one based on stratified product-out cross-

validation. It was shown that these strategies avoid too optimistic estimation of  models 

performance.  

6. Predictive models for rate constants of bimolecular nucleophilic substitution, 

bimolecular elimination, and Diels-Alder reactions, as well as tautomeric equilibrium 

constants were built. The models were published on-line on server developed specially for 

chemical reactions.  

7. To predict sydnone-alkyne cycloaddition reaction rate constant the workflow 

based on quantum-chemical calculations and semi-automatic identification of transition 

state was developed. QSPR modeling of this dataset failed. Using quantum chemistry 

approach, activation free energy of reactions under study were reproduced with some 2 

kcal/mol accuracy. To speed up selection of optimal reagents for these cycloadditions, 

most important factors affecting the reaction rates were reported. 
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