N

N

Modeling and visualization of complex chemical data
using local descriptors
Marta Glavatskikh

» To cite this version:

Marta Glavatskikh. Modeling and visualization of complex chemical data using local descriptors.
Cheminformatics. Université de Strasbourg; Kazanskij gosudarstvennyj universitet im. V. I. Ul &nova
(Kazan ), 2018. English. NNT: 2018STRAF008 . tel-01943762

HAL Id: tel-01943762
https://theses.hal.science/tel-01943762
Submitted on 4 Dec 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01943762
https://hal.archives-ouvertes.fr

/’ UNIVERSITE DE STRASBOURG EDS(C

Ecole Doctorale des
Sciences Chimiques

ECOLE DOCTORALE DES SCIENCES CHIMIQUES
[ UMR 7140 ]

TH ESE présentee par :
[ Glavatskikh Marta ]

soutenue le : 09 juillet 2018

pour obtenir le grade de : Docteur de I'université de Strasbourg
Discipline/ Spécialité : Chimie/Chémoinformatique

Modeling and visualization of complex
chemical data using local descriptors

THESE dirigée par :

M. VARNEK Alexandre Professeur, Université de Strasbourg

M. MADZHIDOV Timur Docteur, Université Fédérale de Kazan
RAPPORTEURS :

M. AIRES DE SOUSA Joao Professeur, Université de Lisbonne

M. BONNET Pascal Professeur, Université d’'Orléans

AUTRES MEMBRES DU JURY :
M. ANTIPIN Igor Professeur, Université Fédérale de Kazan



Y Marta GLAVATSKIKH EDSC

- Modeling and Ecole Doctorle dos

visualization of complex
chemical data using local
descriptors

Résumé

Cette étude considére des systémes ou non seulement la structure moléculaire, mais les
conditions expérimentales sont impliquées. Les structures chimiques ont été codées par
des descripteurs locaux ISIDA MA ou ISIDA CGR, ciblant spécifiquement les centres
actifs et leur environnement le plus proche. Les descripteurs locaux ont été combinés
avec les paramétres spécifiques des conditions expérimentales, codant ainsi un objet
chimique particulier. La méthodologie a été appliquée avec succés pour la modélisation
QSPR des paramétres thermodynamiques et cinétiques des interactions
intermoléculaires (liaisons halogéne et hydrogéne), des équilibres tautoméres et des
réactions chimiques (cycloaddition et Sn1). La méthode GTM a été appliquée pour la
premiére fois pour la modélisation et la visualisation de données chimiques mixtes.La
méthode sépare avec succes les groupes de données a la fois en raison des structures
et des conditions.

Résumé en anglais

This work describes original approaches for predictive chemoinformatics modeling of
molecular interactions and reactions as a function of the structures of interacting partners
and of the chemical environment (experimental conditions). Chemical structures have
been encoded by local ISIDA MA-based or CGR-based descriptors, specifically targeting
the active centers and their closest environment. The local descriptors have been
combined with the specific parameters of experimental conditions, thereby encoding a
particular chemical object. The methodology has been successfully applied for QSPR
modeling of thermodynamic and kinetic parameters of intermolecular interactions
(halogen and hydrogen bonds), tautomeric equilibria and chemical reactions
(cycloaddition and Sn1). GTM method has been applied for the first time for QSPR
modeling and visualization of mixed chemical data. This method successfully separates
data clusters on account of both chemical structures and experimental conditions.
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Résumé en fran(;ais

La complexite des donnees chimiques reste un defi pour la modélisation structure-
propriéete. En particulier, ceci concerne le développement de modeles predictifs
pour les proprietes lices a des centres se¢lectionnes (atomes ou groupes chimiques),
par exemple les differents types d'interactions intermoleculaires ou de reactions
chimiques. Un autre niveau de complexite vient du fait que ces proprietes
dependent souvent non seulement de la structure chimique des molecules en
interaction, mais aussi des conditions expérimentales (solvant et temperature).
Afin de decrire correctement cette complexitée, les modeles de propriete-
structure associes doivent impliquer des descripteurs caracterisant a la fois les
aspects structurels et conditionnels. De plus, les structures chimiques doivent de
preférence étre codées par un descripteur local spécial’ ciblant spécifiquement
les centres selectionnes sur les especes d'interaction et leur environnement le plus

proche.

Cette étude considere des systémes de niveau de complexite differents dans la

plupart desquels non seulement la structure moléculaire, mais aussi les conditions
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experimentales jouent un role significatif (Tableau 1). Le premier exemple est le
plus simple : il concerne la modélisation de la stabilite de la liaison halogene
mesurée par la constante d’équilibre de complexes de molécules organiques avec
le méme accepteur (I,) dans un solvant (hexane) a 298K. Dans ce cas, les

conditions expérimentales sont controlees et fixes ; seule I’espece chimique varie.

La complexité¢ augmente avec la modclisation de I'énergie libre de liaisons
hydrogene. Dans ce second exemple, les modeles sont construits sur des donnees
obtenues en environnement controlé : un solvant de référence (CCly) et une
temperature (298K). Mais cette propriéte fait maintenant intervenir deux especes
chimiques : I’accepteur et le donneur de liaison hydrogene. Ceux-ci doivent étre
simultanement pris en compte dans les modeles et dans 1’évaluation des

performances de ces modeles.

Le troisieme exemple illustre un niveau de complexité encore superieur : la
modelisation des equilibres tautomeres. Une molecule peut exister sous plusieurs
formes qui ne se distinguent que par la position dans la structure chimique, d’un
ou plusieurs atomes d’hydrogenes. Ces difféerents etats sont les tautomeres et leur
prévalence relative est controlee par une constante d’equilibre tautomeres. Cette
constante depend, en fait, de conditions experimentales : solvant et temperature.
Afin d’en tenir compte explicitement, il est necessaire d’introduire des variables

supplémentaires et pertinentes pour les decrire.

Le dernier exemple traite des reactions de cycloaddition et de Sy1, ou differents
reactifs et differentes conditions reactionnelles sont impliques (Tableau 1). Ce

projet met en ceuvre tous les déeveloppements presentes auparavant.



Tableau 1. Informations sur les modéles prédictifs développés dans ce travail.

Systéme étudié Propriété Objets encodés Descripte | Taille de | Méthode
modélisée urs I'ensemb | d'appren
locaux le issage
d'entrain | automati
ement que
Complexes de | Logarithme  de | Structure Basés sur 598 SVM
molécules constante de | moléculaire de la MA? MLR
organiques avec I | liaison molécule
dans I'hexane' individuelle
Complexes 1. 1| Energies libres de | Structures Basés sur 3373 SVM
entre un donneur de | complexes moléculaires des H- MA MLR
liaison H et un donneur et H-
accepteur de liaison accepteur
H dans CCI4"
Equilibre Logarithme  des | Structure Basés sur 695 SVM
tautomeres dans | constantes moléculaire d'un MA GTM
différents solvants | d'équilibre tautomere
sélectionné, solvant
et température
Les réactions de | Logarithme de la | Tous les réactifs et | Basés sur 1849 SVM
cycloaddition (4 + | constante de | produits, solvant et | CGR?® GTM
2),(3+2)et(2+2) | vitesse, énergie | température
d'activation,
facteur pré-
exponentiel
Sn1 réactions Logarithme de la | Tous les réactifs et | Basés sur 8056 SVM
constante de | produits, solvant et | CGR?® GTM
vitesse température

3 descripteurs basés sur des atomes marqués (MA) P descripteurs basés sur graphes condensés de réaction

(CGR)

ii.

Glavatskikh, M., Madzhidov, T., Solov'ev, V., Marcou, G., Horvath, D., Graton, ]., ... & Varnek, A. (2016).
Predictive Models for Halogen-bond Basicity of Binding Sites of Polyfunctional Molecules. Molecular
informatics, 35(2), 70-80.
Glavatskikh, M., Madzhidov, T., Solov'ev, V., Marcou, G., Horvath, D., & Varnek, A. (2016). Predictive
models for the free energy of hydrogen bonded complexes with single and cooperative hydrogen bonds.

Molecular informatics, 35(11-12), 629-638.
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Les modeles ont ¢te construits a l'aide des methodes SVM (Support Vector
Machine), MLR (Multiple Linear Regression) et GTM (Generative Topographic
Mapping). La SVM et la MLR sont des procedes d'apprentissage automatique
conventionnels largement utilises en chémoinformatique, tandis que le second,
initialement développé comme outil de visualisation de données’, a été etendu en
laboratoire a des taches de modélisation structure-proprié¢té™”. Différents types de
descripteurs locaux (a base de MA et a base de CGR, voir section 2) ont ete utilises
dans la mode¢lisation de la stabilite des liaisons halogenes, des liaisons hydrogenes
et des équilibres de reactions chimiques. Pour ces derniers, les descripteurs
structuraux ont eté completes par des descripteurs specifiques de solvant et de

température.

La these comprend sept chapitres. Le premier chapitre d'introduction decrit
divers descripteurs locaux utilisés dans la modelisation. Le deuxieme chapitre
fournit des informations sur les outils chéemoinformatiques utilises dans cette
ctude. Les chapitres 3 et 4 decrivent des modeles predictifs pour evaluer les
stabilites des liaisons halogenes et hydrogenes, respectivement. Les chapitres 5, 6
et 7 sont consacrés a la modélisation prédictive de certaines proprietes
thermodynamiques et cinetiques des réactions chimiques : la constante d'équilibre

tautomere et les constantes de vitesse de la cycloaddition et des réeactions Sy1.

1.1 Descripteurs locaux ISIDA pour la modélisation, I'analyse et la

visualisation de données chimiques

Les descripteurs locaux utilises dans ce travail sont des sous-ensembles des
descripteurs ISIDA' représentant des fragments de différentes longueurs et

topologies d'un graphe moléculaire donné. Ces fragments contiennent au moins
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un atome ou une liaison étiqueté. Deux types de fragments ont été considéres:

bases sur les atomes marques et sur le graphe condense de réaction (voir la Figure
1).

Les atomes marqués (MA) sont des atomes d’une structure chimique, annotes pour
leur pertinence vis-a-vis d’un probleme donné. Dans ce travail, ce sont les atomes
. . ! . . . 4 . )

impliques dans les interactions intermoleculaires. En d’autres termes, ce sont des
atomes donneurs d'¢lectrons dans des accepteurs de liaison halogene, donneurs et
accepteurs de proton dans les especes formant des liaisons hydrogenes, les atomes

qui perdent / regoivent des protons dans des equilibres tautomeres.
Quatre scénarios de descripteurs a base de MA ont été considéreés’:

* Séquences d'atomes a partir de I'atome marque, avec des fragments centreés
sur I'atome avec I'atome marque central (MA1).

« Fragments contenant des atomes marques (MA?2).

+ Fragments avec et sans atomes marques (MA3).

* Nutilisant pas les atomes marques (MAO), ¢galement utilises a des fins de

comparaison.

La longueur du vecteur des descripteurs varie en fonction de la stratégie
selectionnée. Ainsi, MAO et MA2 sont des sous-ensembles de MA3, alors que M1

est un sous-ensemble de MA?2.

Dans le graphe condensé de réaction (CGR)®, les structures de tous les réactifs et
produits sont fusionnées en un seul graphe (Figure 1, en bas) qui décrit a la fois les
liaisons chimiques conventionnelles (simples, doubles, aromatiques, ...) et

dynamiques des liaisons caracterisant des transformations chimiques (par
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exemple, simple a double, simple brisce, simple creee, etc.). Les fragments

contenant des liaisons dynamiques ont éte utilisés comme descripteurs locaux.

Les conditions expérimentales ont ete codees par 13 paramétres de solvant’ reflétant

la polarite, la polarisabilite, I'acidite et la basicite, et I'inverse de la temperature

(1/T).

Le vecteur des descripteurs entier pour un processus donné résulte de la

concaténation de descripteurs de conditions structurelles et expérimentales.

+
OH

+

: + +
o @OH K Q ol \ o o=/
+ N o—"
+OQ v

0 0

CHs

H,C H]C 0
Ay — = 2
0 -+ A
M @ N e » e
CH;
0 0  CGR

Figure 1. Exemple de structures pour lesquelles des descripteurs locaux basés sur MA (en haut) ou
basés sur CGR (en bas) ont été¢ générés. En haut: dans le complexe li¢ a I'hydrogene, les croix
désignent les Atomes Marqués. En bas: dans le Graphique Condensé codant pour la réaction de
cycloaddition (4 + 2), les points et les tirets représentent respectivement des liaisons chimiques

formées et rompues. Quelques exemples de descripteurs générés sont donnés sur la droite.

2. Modélisation quantitative de la relation structure / propriété /

réactivité (QSPR) de différents objets chimiques.

Le worktlow général de modelisation incluait les étapes suivantes: (1) collecte et
conservation de donnees, (2) generation de differents ensembles de descripteurs
ISIDA, (3) selection du meilleur ensemble de descripteurs en fonction des

performances des modeles en validation croisee, (4) construction de modeles
13



individuels et consensus (pour SVM seulement) impliquant des descripteurs

selectionnés, (5) validation externe des modeles.

2.1 Modélisation QSPR de la constante de liaison des complexes liés a

I'halogéne.

L'ensemble de données comprenait 598 composes organiques pour lesquels le
logarithme de la constante de stabilite du complexe 1:1 avec I, (logKgp,) a éte
mesuré dans l'hexane a 298K. Différents types de modeles de consensus
correspondant a 4 scenarios possibles de genération de descripteurs a base de MA
ont ¢te compares. Les meilleurs descripteurs, de type MA3, conduisent a des
performances predictives raisonnables a la fois dans la validation croisée et sur
l'ensemble externe de 11 composes polyfonctionnels portant 2 ou 3 sites de liaison

putatifs (Tableau 2 et Figure 2).

Tableau 2. Performance prédictive des modéles en validation croisée 5 fois et sur

I'ensemble externe.

SVM MLR
RMSE R? RMSE R?
5-fois CV 0.39 0.93 0.43 0.92
Ensemble externe 0.44 0.81 0.56 0.70
108K, prec .
30 1.50 Figure 2. Valeurs de logKg,
RMSE = 0.44 Na.
251 Rg=081 N 1.26 prédites vs expérimentales pour
20 108K sy, pred = 0.87 108K gz exp + 0.35 o P
15| oo 7 -0.25 I'ensemble de test externe (a gauche)
1.0 o 0.67 199 et des exemples d'évaluation de
N L
o) . SVM \W logKg,, pour deux molécules
0.0 0 =N 1.46

05 00 05 10 15 20
IOEKEFL exp
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2.2. Modélisation QSPR de I'énergie libre de liaison hydrogéne.

L'ensemble de données comprenait 3373 paires de complexes 1:1 formant une

seule liaison hydrogene, pour lesquelles les mesures expérimentales de AG (k] /
mol) ont eté reportées en conditions standard (dans du CCl, et a 298K). Les
modeles consensus SVR et MLR, basés sur les descripteurs MA3 les plus
performants, ont ete utilises pour la prediction de l'ensemble de test externe de
629 complexes (R* = 0.65-0.74, RMSE = 3.2-3.8 (Figure 3)), mesurés dans
differents solvants puis ramenes au CCly, et 'ensemble d'essai de 12 complexes

polyfonctionnels (Figure 4).

SVM 15 Figure 3. Les énergies libres
AG exp prédites vs expérimentales (kJ /

30 20 10 2 * 10 20 mol) pour I'ensemble de test

externe de stabilité de la liaison

hydrogene mesurés dans

différents solvants.

AG pred

R? =0.74, RMSE = 3.2 kJ/mol

AGpred

Figure 4. Les ¢énergies libres
~ MNH, prédites vs expérimentales (kJ /
Hy ™ mol) pour les complexes 1:1 avec

deux liaisons hydrogéenes

N coopératives (a gauche) et les

deux exemples de ces complexes

-20 -15 -10 5 AG

o0 o= (a droite).
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2.3 Modélisation QSPR et visualisation de la constante d'équilibre (logKr)

de différentes classes de transformations tautomeéres.

L'ensemble de donnees consistait en 695 équilibres tautomeres attribues a 10
classes de transformation distinctes. Les deux modeles de classification predisant
le type de tautomerisation et les modeles de régression predisant le logK; ont été
obtenus avec les methodes SVM et GTM. Les modeles impliquant des descripteurs
locaux MA2 fonctionnent bien sur deux ensembles de tests externes: 1'un
contenant des transformations tautomeres connues étudi¢es dans de nouvelles
conditions (test set 1, Figure 5) et I'autre contenant de nouvelles transformations,

au sens de leurs structures chimiques (test set 2, Figure 5).

Cet ensemble de donneées a été visualisé sur une carte bidimensionnelle construite
en utilisant 'approche GTM (Figure 6). Cette carte separe avec succes differentes
classes de transformations tautomeres et les equilibres differant soit par structure,
soit par solvant.

Test set 1 6 Testset2 12

log K, pred
log K, pred

[ 1 2

log Kr exp
1.

L]
° 3, 6 9

ﬂ o : R . log Ky exp
* J H 9
L i [ ] 1 =7 -6

A GTMR?-0.62 RMSE=0.60
® SVM R2=0.39RMSE=0.76

A GTMGR?=0.65RMSE=1.96
® SVMR2=0.53RMSE=2.2

Figure 5. Valeurs de constante d'équilibres tautoméres pour I'ensemble de transformations étudié
dans de nouvelles conditions (a gauche) et 1’ensemble de test contenant de nouvelles

transformations (a droite).
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O ® KetoEnol ) O %ﬁ e,
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o O

1

- 6.. A 1a. DMSO (0.62)
. ¢ A P 1b. Chloroform (-0.49)
3 jor 3 * ¥
. ’ assical form- - . N @ O
v n . . k | -./ P~
@ @ NitroAci - B ‘“‘< >' 4 — ..:—< :} i
b @ Hydrazine- .1 b 4 )
1a 1 Hydrazone a 2a. Dioxane (-1.52
2b QO @ cranrng 2w O 2b. Ethanol (0.1)

Figure 6. Paysage de classe GTM (a gauche) et paysage d'activité (au milieu). Les réactions 1 (a,

b) et 2 (a, b) sont données a droite. Les nombres entre parenthéses correspondent aux valeurs logK.

2.4 Modélisation QSPR des propriétés cinétiques des réactions de

cycloaddition.

Le jeu de données incluait 1849 reactions de types (412), (3+2) et (212),
associces a leurs valeurs expérimentales de la constante de vitesse (logk), a 1356
valeurs des énergies d'activation (Ea) et a 1237 valeurs du coefficient pre-
exponentiel (logA). Les descripteurs basés sur les graphes condenses de reactions
ont eté utilises pour construire des modeles SVM et GTM individuels, suivis de
leur validation (les valeurs du log k ont ete predites) sur le jeu de test de 200
reactions selectionnees aleatoirement dans la base de donnees. Les ¢nergies
d'activation et le facteur prée-exponentiel ont ete modelises. Ceux-ci sont utilises

pour estimer la constante de vitesse, logk, en suivant une loi d'Arrhenius.

La Figure 7 represente les paysages d'activite genere par la GTM, pour le logk,
I’Ea et le logA. Les resultats sont en accord avec des concepts chimiques generaux,
les reactions a faible logk, projetées dans les zones de faibles logA bas et Ea sont

caracterisces par d’importantes contraintes steriques (Figure 7, a). Pendant ce
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temps, la distribution des énergies des orbitales fronticres des réeactions a faible
logk, projetees dans les zones de fortes valeurs de logA et Ea, sont affectees par

des substituant ¢lectroniquement défavorable (Figure 7, b).

Sur I’ensembles de tests externes, le modele de régression base sur la GTM est
moins performant que le modele SVM associ¢ (R*=0.74, RMSE=0.90 (GTM) et
R’=0.92, RMSE=0.50 (SVM)). Ceci s’explique par le fait que le modele GTM a
ete optimise pour predire les trois proprietes (logk, Ea, logA) simultanement. Au
contraire de ’approche SVM qui utilise des modeles specifiques pour chacune des
proprietes. Néanmoins, les différentes classes de reaction sont bien séparees sur

la carte GTM, voir Figure 8.

log k log A Ea
F o= 3 . # I
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log k = -4.2 (313K, dichoroethane) log k =-3.55 (403K, benzene)

Figure 7. Paysages de propriétés GTM pour la constante de vitesse (log k), I'énergie d'activation (Ea)
et le coefficient pré-exponentiel (log A) pour les réactions de cycloaddition (en haut). Les exemples
ci-dessous correspondent aux réactions qui caractérisées par des contraintes stériques (a) ou par une

distribution défavorable des énergies des orbitales frontiéres (b).
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Figure 8. Modé¢lisation des logarithmes de constantes de vitesse : valeurs prédites vs valeurs
expérimentales pour le jeu de test (a gauche). Séparation de trois classes de réactions (4+2, 3+2,
2+2) en utilisant la méthode GTM (a droite).

2.5 Modélisation QSPR de la constante de vitesse des réactions Syl.

Un ensemble de 8056 données de reactions Syl a ete utilise pour construire des
modeles de regression SVM de leur vitesse de reaction. Les réactions etaient
codées par des descripteurs intégrant des atomes marques de type MA3 ou calcules
sur de structures CGR. Les modeles ont eté valides sur deux jeux de donnees
supplementaires: I’un contenant des réactions connues etudiees dans de nouvelles
conditions (test 1) et ’autre de nouvelles réactions (test 2). Le modele fonctionne

de maniere similaire sur les deux ensembles de test: R? ;= 0.64-0.67, R? . »=

0.55-0.58, RMSE .y = 0.68-0.70, RMSE ., = 0.87-0.90.

Test set 1 ‘ Test set 2
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Figure 5. Mod¢lisation des logarithmes de constantes de vitesse : valeurs prédites vs valeurs
expérimentales pour le test externe étudiées dans de nouvelles conditions (a gauche) et de test externe

contenant de nouvelles transformations (a droite).
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Les questions methodologiques suivantes ont ete consideérces dans notre travail:
(1) une stratégie axée sur le processus de generation de descripteurs locaux; (2)
la selection et I’¢laboration d'une combinaison optimale de descripteurs
caractérisant la structure chimique, d'une part, et les conditions expérimentales,
d'autre part; (3) la capacite de la GTM a visualiser et a modéliser des processus
chimiques entiers (structures et conditions); (4) la capacite des modeles formes
sur les complexes avec une seule liaison halogene ou hydrogene a predire la

stabilité des complexes avec de multiples liaisons de ces types.

3. Conclusions

" Une combinaison de descripteurs de fragments locaux décrivant des
structures moleculaires et de descripteurs speéciaux caracterisant les
conditions experimentales (solvant et température) a éte utilisee avec
succes pour developper des modeles prédictifs de certains parametres
cinetiques et thermodynamiques des liaisons halogenes et hydrogenes, des
equilibres tautomeres et de deux types de reactions chimiques. Les
descripteurs les plus appropries pour les reactions chimiques combinant
plusieurs reactifs et produits sont ceux generés a partir des Graphes
Condensés de Reéaction. Sinon, diverses strategies utilisant les Atomes
Marques ont ete recommandees.

" Les modeles construit sur des mesures realisées sur des complexes

impliquant une seule liaison halogéne ou une seule liaison hydrogéne ont pu
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ctre utiliser avec succes pour estimer les stabilites des complexes contenant
plusieurs liaisons de ces types. Cela ouvre des perspectives pour utiliser ces
modeles dans la conception assistée par ordinateur de nouveaux systemes
supramoleculaires.

Pour la premiere fois, la methode GTM a permis de visualiser des processus
chimiques décrits par ’ensemble de leurs reactifs et de leurs produits et
leurs conditions reactionnelles plutét que par des especes chimiques
individuelles. Ainsi, sur I'exemple des equilibres tautomeres, il a ¢te montre
que les especes mesurees dans differents solvants sont bien separées sur la
carte. Dans l'exemple de la cycloaddition, les trois types de reaction sont
bien sépares aussi.

Les modeles QSPR developpés prédisant les constantes d'equilibre des
transformations tautomeres, la stabilite des liaisons halogene avec I, et la
constante de vitesse, le facteur pré-exponentiel et les énergies d'activation
des réactions de cycloadditions sont disponibles pour les utilisateurs via nos

plateformes  internet  https://cimm.kpfu.ru/ et  http://infochim.u-

strasbqg.fr/webserv/VVSEngine.html.
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PART I. REVIEW, METHODOLOGY AND TOOLS

Chapter 1

Introduction

The requirements of modern knowledge-intensive fields of chemistry, such as drug
development and chemical engineering, are constantly expanding, requiring more elaborated
techniques and methods. Started by focusing on management of structural information of
single molecular entities, present-day Chemoinformatics is developing the methods that
follow the practical interest in predicting properties of compounds in condensed phase and in
interaction with various partners, and not those of single molecules in vacuum. Consequently,
tools and approaches maintaining single molecule study is not satistying for multi-depended
properties, i.e. the ones that depend on several parameters, or assemblage of molecules,
bounded by a variety of intermolecular interactions. Exemplary objects are the host-guest
complexation and molecular recognition, driven by weak interactions and, certainly, chemical
reactions and chemical equilibria, thermodynamics and kinetics of which depends
simultaneously on chemical structure and on reaction conditions. The mentioned processes
represent the interactions incorporating several molecules, the structure of each of which has

to be taken into thorough consideration. That, however, is not sufficient: for the case of
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intermolecular interactions (for instance), the interaction of two molecules, possessing
several putative active sites, could result in different intermolecular complexes, that are not
possible to differentiate if only the generic structures of the reagents are taken into account.
The dynamics of the chemical process is thus characterized by the structural localities, directly
involved into a chemical interaction and forming the active sites. Explicitly accentuated, the
active sites define the dynamics of a particular chemical interaction. A generic task of
prediction of the possibility of an interaction hence grow up into a new challenge of prediction
of interactions with multiple putative active sites, for which one needs to predict which
centers will interact and their interaction strength. This level requires a rigorous description
of structural aspects of all the reagents, altogether with the accounting and explicit designation

of the local regions signifying the active sites.

Another degree of freedom comes from the necessity of the reaction condition
consideration. Indeed, small changes in solvent nature could drastically influence the property,
in some cases being a determinative factor in the feasibility of the process. A simple solvent
effect consideration may include a categorical assighment of a solvent to a certain group, such
as polar/nonpolar or protic/aprotic. However, with regard to chemical reactions or
intermolecular interactions, this simple approach could not already be sufficient. Indeed, the
equilibrium or the rate constants remarkably depend on various factors included into the
reaction conditions, such as solvent’s polarity, solvent’s H-acidity/basicity, temperature,
pressure, etc. Thus, the new challenge addressed in this work is the necessity of the
consideration and the description of the experimental conditions, including variety of solvent

effects the property could depends on.

Chemical reaction data requires to be analyzed in terms of structural/conditional
contents, its relationship with each other and with the property and data distribution in a
chemical space. As an example, for the case of chemical reactions, the arrangement of the
structural and reaction condition parts according with its influence on the property value,
helps to understand the nature and the mechanism of the process. The need of such kind of
analysis of complex data is increasing with the growth of the number of data constituents. A
tool aimed at data analysis and visualization and used in this study is the Generative
Topographic Mapping’* * (GTM). The method provides a visual, 2D-map projected data
clustering and property distribution which is of great support for large data analysis. In this
study, for the first time, it is used for complex chemical data modeling and analysis. Apart
from common structural patterns identification, GTM helped to demonstrate the reaction
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condition influence, to estimate the quality of the data and the preferable way of its
description. Moreover, the understanding of the underlying clustering principles contributes
to revealing of the interrelation of data constituents and are helpful in determination of more

suitable modeling approach and way of description.

One of the most demanded practical task, related to chemical processes, is the prediction of
thermodynamic, kinetic or other parameters of a certain transformation. That could be
achieved by the Quantitative Structure-Property Relationship (QSPR) modeling, one of the
main tools of chemoinformatics, the goal of which is to provide an equation that relates an
object (e.g. chemical reaction) with the value of the property of interest (e.g. rate constant).
Various algorithms, so-called machine learning methods, have been developed for the QSPR
modeling, each of which derive the equation in its own way. The mentioned GTM, first
designed as the tool for data visualization, has been further extended for QSPR modeling,
allowed a single GTM model to be used for the prediction of different, not necessarily related
properties. The supervised methods such as Support Vector Machine (SVR) or Multiple
Linear Regression (MLR), notwithstanding their inability in chemical data visualization,
though could provide more accurate results of the prediction, since they are built specifically

for a given property.

Thus, the challenge of this work is to expand QSPR methodology for problems, where the
working hypothesis of a "constant" environment does no longer apply: interactions of both
covalent and non-covalent nature, with different partners in multiple solvents, at various
temperatures. These processes are characterized by local interactions, that imply the
representation of both, structural and conditional aspects, along with the explicit designation
of the dynamics of the process. The complexity of the tasks is raising form intermolecular

interactions to chemical reactions.

The work is divided into two parts, where the first one describes the general methodology
and the second is devoted to its practical application for different chemical objects. The first
chapter gives an overview of the existing local descriptors, providing the structural

characterization of a process, and the descriptors encompassing the solvent effects. The
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purpose of that section is to select an appropriate way of chemical data representation. As it
will be discussed in the next section, one of the most convenient types of description for
complex chemical processes is the ISIDA Marked Atom-based (MA) and the ISIDA Condensed
Graph of Reaction-based (CGR) fragment descriptors, representing substructures of a
molecular structure. The second chapter describes the general practices of QSPR modeling
and the details and particularities of the machine learning methods, used during the study:
SVM, MLR and GTM. The second part of the thesis, devoted to the practical application,
consists of five projects. The part of intermolecular interaction modeling starts with halogen
bonding, where the data represent a set of single molecules measured in unified conditions.
The topic continues with hydrogen bonding interaction, for which the model predicting the
strength of intermolecularly-bonded complexes of different donors and acceptors was built.
The work continues with even more challenging modeling of chemical reactions. The section
starts with the project of tautomeric equilibria modeling and visualization, accounting for the
impact of reaction condition changes. The section continues with an exhaustive modeling and
visualization of kinetic parameters of reactions of cycloaddition. The final chapter is dedicated
to the modeling of a large set of Syl reactions, where both approaches of structure
representation (CGR-based and MA-based) are employed. Table 1 illustrates the overview of
the application part providing the class of chemical processes, property and the descriptors

and tools that have been employed during the study.
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Table 1. Information about the predictive models developed in this work

Studied system Modeled Encoded Local Training | Machine-
property information | descriptors | setsize | learning
method
Complexes of Logarithm Molecular MA-based ? 598 SVR,
organic molecules | of binding structure of MLR
with Iz in hexane' | constant individual
molecule
1:1 complexes Free Molecular MA-based 3373 SVR,
between H-bond | energies of | structures of MLR
donor and H-bond | complexes both, H-donor
acceptor in CCl4" and H-
acceptor
Tautomeric Logarithm Molecular MA-based 697 SVR,
equilibria in of the structure of GTM
different solvents | equilibrium | one selected
constants tautomer,
solvent and
temperature
The (4+2), (3+2) | Logarithm All reactants | CGR-based ® 1849 SVR,
and (2+2) of the rate and products, GTM
cycloaddition constant, solvent and
reactions activation temperature
energy, pre-
exponential
factor
Sn1 reactions Logarithm All reactants CGR-based 8256 SVR,
of the rate and products, GTM
constant solvent and
temperature

aMarked Atoms (MA) based and ® Condensed Graph of Reaction (CGR) based local descriptors

i.

ii.

Glavatskikh, M., Madzhidov, T., Solov'ev, V., Marcou, G., Horvath, D., Graton, J., ... & Varnek, A.
(2016). Predictive Models for Halogen-bond Basicity of Binding Sites of Polyfunctional Molecules. Molecular
informatics, 35(2), 70-80.
Glavatskikh, M., Madzhidov, T., Solov'ev, V., Marcou, G., Horvath, D., & Varnek, A. (2016). Predictive
models for the free energy of hydrogen bonded complexes with single and cooperative hydrogen bonds.
Molecular informatics, 35(11-12), 629-638.
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Chapter 2

Molecular descriptors for interacting chemical

entities

The Quantitative Structure-Property Relationship (QSPR) presupposes a molecular structure
to be encoded in a way that is, first, adapted for the machine learning algorithm and, second,
convenient for the evaluation of the corresponding structure-property relationship. The
attributes used for the description of a molecule, called descriptors, should be chosen in
accordance with the task, taking into account the nature of the process, its driving force and
the factors that could affect the process. Regarding to the modeled processes, a simplified
categorization could include global processes, referred to the whole structure, for which,
among the scope of possible local interactions, the property-defined ones could not be
specified (solubility). These properties are thus could be considered as depending on the
structure as a whole. Local processes are defined primarily by local interactions of the active
centers (intermolecular binding). Thus, for local processes the interaction centers could be

pointed out.
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This chapter gives an outlook of the variety of descriptors applicable for the QSPR modeling
of local processes (local descriptors). The description of a chemical process includes the
structural and the experimental condition parts. Correspondingly, local descriptors are
referred to chemical structure, and discussed in section 2.1, whereas the parameters, by which
the reaction conditions could be taken into account, are reviewed in section 2.2. A
comprehensive overview of this field is not a goal of the present chapter and the attention will
be paid to the most common, widely-used descriptors conforming the definition of ‘local
descriptors’ i.e. bearing an information about certain atoms or group of atoms. That includes:
substituent constants, quantum-chemical descriptors, electrotopological indices and ISIDA
fragment descriptors. A full comprehensive review of major types of global and local
descriptors, used in chemoinformatics, are given in works and books of R.Todeschini and

V.Consonni’'?,

2.1 Local descriptors for chemical structure representation

2.1.1 Substituent constants

Substituent constants could be proclaimed as the first attempt in classification of local effects
of certain structural groups. A pioneer work belongs to Hammet'', treating the electronic
effect of substituents on the rate and equilibrium constants of organic reactions, and Taft'?,

applying similar approach for derivation of series of constants, differentiated by nature of the

contributed electronic effect.
2.1.1.1 Hammet constants

An American physical chemist Louis Hammett noted that a particular substituent on the
aromatic ring of benzoic acid would affect its acidity in a similar manner as it would affect
other aromatic structures. For instance, a para-nitro group would affect the value of the
dissociation of benzoic acid in a manner similar to that of salicylic acid. That was the beginning
of the concept of substituent constants. The well-known Hammet constants are derived from
the dissociation constants ratio of benzoic acid (K¢) and a corresponding substituted benzoic

acid:

o = log K/KO (D
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Because of the drastic dependence of the dissociation constants upon temperature and the
nature of solvent, the O-constants are specifically given for water solution and at the

temperature of 25° C.

The magnitude of the electronic effect caused by the substituent is influenced by its position
to the carboxylic group. In this way, the 0-constant for para-position will mainly describe the
electronic influence by means of resonance effect, while the 0-constant for ortho-position
will describe both fluctuations via 0 and 7T —bonds. Since the strength of the effects varies

depending on the position of the substituent in the ring, the meta, ortho and para constants,

O, Oo and Op, are distinguished. If the ratio K/ K, is more than one, i.e., the substituent

leads to an increased acidity of the benzoic acid, 0 is positive and the substituent is considered
to be an electron-withdrawing group, if the ratio is less than one, the substituent is electron-
donating and 0 will be negative. Hammett substituent constants are referred to hydrogen and

Oy, is thus equal to zero.

Despite of the empirical derivation from the benzoic acids equilibrium, substituent constants
can be successfully applied for the prediction of the variety of families of reactions in solution,
such as electrophilicity of substituted benzoic esters, the nucleophilicity of anilines, and the
solvolysis of benzyl halides’’. Hammet constants are important constituents in the field of
QSPR modeling and were applied for the modeling of protein-ligand interactions'*,

16-17

interactions with enzymes'”, antitumor and antimalarial activity'®'” as well as toxicology and

mutagenicityl 8,
2.1.1.2 Inductive constants

The electronic constants devised by Hammett reflects three types of electronic influences:

® resonance (mesomeric) effect

e inductive effect: electrostatic influence of a group which is transmitted primarily by

polarization through a chain of neighboring atoms

o field effect: electrical influence of a substituent transmitted through space

The last two are hard to distinguish and usually they are considered to be a unified composite
inductive effect and are treated together. Thus, because of the complexity and unified nature

of the overall electronic constants, the establishing of the way by which the substituent
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influences on the reaction rate and equilibrium is very important, because some chemical
reactions are driven either by the resonance or by the inductive effect. The approaches of
quantitative evaluation of a pure inductive effect were first devised by Taft and Ingold" and
then proceeded in works of Roberts and Moreland®, Holtz—Stock”', Siegel-Kormany?** and

others.

Taft inductive constant

In 1930 Ingold proposed the idea of measurement of an inductive effect through a ratio of

dissociation constants rates of acid and base hydrolysis of acetic acid esters. Developing the

Ingold’s idea, Taft'” derived series of inductive substituent constants (0" constants) estimating

quantitatively an inductive effect and defined as :

kx

kMe

)a (2)

where the indexes A and B refer to acid and base hydrolysis. The factor 2.48 is introduced to
make the 0" values comparable in magnitude to the widely used Hammett constants. A
positive 0" value indicates that the group is electron-withdrawing relative to methyl, while a
negative value indicates electron contribution. In acid and base series of the reactions, the
steric and resonance effects can be considered to be the same: the transition state of both
mechanisms passes through tetrahedral intermediate (Figure 1). The acidic intermediate will
differ from the one of base-catalyzed by one proton, which can not affect the steric factor
significantly. In case of the resonance influence possibility, it will also be involved in both

intermediates and the effect should be nearly the same for both mechanism.

OH OH Figure 1. Transition state for the acid
R ‘éﬂ R, R _éo R1 (a) and base (b) hydrolysis of esters.
OH
b2 _D
a a - - b h

Roberts—Moreland inductive constant

The Robert-Moreland constants? derived from the measurement of the dissociation constants
for a series of 4-substituted bicyclo-[2.2.2]-octane-1-carboxylic acids (Fig. 2). This molecule
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has no unsaturation, hence, the transmission of electrical effects of substituents through the
ring by resonance is not possible and the substituent can induce the inductive effect only.
Moreover, the chosen reference compound is free from conformational effects and no steric
effect is observed, as the substituent and the active site are not in close proximity to each

other. The dissociation constant is measured in 50% ethanol at 25°C.

The Roberts—Moreland inductive constant measured in 50% ethanol at 25°C, and defined as:

1
o= m(logl(—logl(o) (3)

Where Kj is the dissociation constant of unsubstituted bicyclo-[2.2.2]- octane-1-carboxylic

acid. The coefficient of 1.464 is given to refer the scale to the Hammett equation.

Figure 2. The structure of bicyclo-
[2.2.2]-octane-I-carboxylic acids.

o” OH

2.1.1.3 Resonance (mesomeric) constants

Taft resonance constant

The application of the well-known Hammett sigma constants referred to meta- and para-
substitutions sometimes can be limited by the fact that some reactions are mostly driven by
resonance effect, which is implicitly included into the para- substitution constant and not for
the meta- one. Thus, the resonance contribution for the series of para-substituted benzene
derivatives can be simply expressed through the subtraction of the pure inductive contribution
from the Hammett sigma constant. That was done by Taft'> who proposed the first scale of a

resonance effect of the given series of compounds:
o, = 0- 0; (4)

Where 0; is the Taft inductive constant (see 2.1.1.2). The resonance constants express the
influence of the m-bonded electrons of the substituent to the benzene ring due to resonance

fluctuation. As a measure of withdrawing of the electronic charge, the values of the g, are
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negative for ortho- and para- groups and positive for the meta- groups. Later on, Taft” also
proposed the estimation of ¢;. by means of ""F-NMR spectroscopy, where the ""F-chemical
shift indicates the resonance interaction between the para-substituent and fluorobenzene

system.

It should be noticed, that the 0} resonance scale is only suitable for benzene derivatives as the
resonance effect in general has a great variability upon the reaction type. Although, the scale

can provide a general qualitative estimation of resonance ability of a certain substituent.

Swain-Lupton approach

The other approach of separate estimation of the inductive and resonance effects was proposed
by Swain and Lupton. The idea of the authors is that the Hammett constant, which included
inductive along with the resonance effect, can be represented as a linear combination of both

contributions with the corresponding parameters:
o=fF+71R (5)

where the polar component (F) is calculated from the gy, and 0}, Hammett constants: F =
by + b10y, + b, 0y, (the coefficients are evaluated by least square regression using pK, values

of bicyclo-[2.2.2]- octane-l-carboxylic acid), and the resonance component R is estimated as

g, — 0.921F.

The main assurnption hence that the substituent in para—position induce the main resonance

perturbation. The corresponding F and R parameters were initially calculated for 43

substituents and then further expanded to a few hundreds.
2.1.14 Steric constants
Taft steric constant

The first steric constant ES was defined empirically by Taft as the extension of Hammett

equation“. E's is a measurement of the steric effect caused by the group X and influenced the

acid—catalyzed hydrolytic rate of esters of substituted acetic acids:

Es =log(kx)a — log(ky)a (6)
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where ky and Ky are the rates of substituted and unsubstituted acetic acids esters hydrolysis.
This scale is based on the assumption that the corresponding rates are influenced mainly by

steric effects and no polar interruption is introduced. The bulkier the substituent, the more

negative the E's constant value is.

The ES scale succeeded in reproducing of steric effect, giving, at least, qualitative
approximation for the measured substituent effect. Later on, more unified and revised scales
have been proposed: Hancock®™ corrected the ES parameter with the inclusion of the
hyperconjugation influence of a-hydrogens, Palm” enlarged the latter with the C-C and C-
H hyperconjugation effect corrections, Dubois®® proposed a modified scale defined on the

basis of more unified reactions and over wider range of substituents.

Charton steric constant

Charton found that Taft’s steric constant is linearly dependent on the van der Waals radius of
substituent, which led to the developments of Charton’s steric parameter. The constant is
defined as the difference of the corresponding van der Waals radius of substituent X and

hydrogen atom radius:

Uy = RvdW(X) - Rvdw(H) (7)

U is defined as the difference between the van der Waals radii of H and substituent X.
Charton’s steric parameter related to the van der Waals radius of any symmetrical substituent
(H, Cl, CN) or to the minimum width of asymmetrical ones (CH3, CMe3). Charton also
defined the minimum and maximum van der Waals radius in order to take into account the
possibility of conformation of a group thus seeking for the repulsive effect minimization, the

average of which well correlated to Taft steric constant.

2.1.2 Quantum-chemical descriptors
2.1.2.1 Atomic charges

According to the classical chemical theory, the driving force of all chemical reactions is either

of the electrostatic or of the orbital-control driven nature. Thus, charges are responsible for
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the whole variety of electrostatic-driven processes. It has been shown that local electron
densities or charges are essential parameters in description and interpretation of the
mechanism of chemical reactions and physico-chemical properties®. That is the reason of wide
usage of charge-based descriptors in QSPR modeling of different physico-chemical properties,

chemical reactions and weak intra- or intermolecular interactions.

Most common schemes for atomic charges derivation are based on the population analysis of
the wave function obtained by quantum-chemical calculation. Several schemes for the analysis
of the wave function have been proposed. The most common and utilized are Mulliken®® and
Lowdin® atomic charges, those based on natural bond orbital theory* (NBO), the Bader AIM
theory®' and the ones fitting the point charges such as to produce an intrinsic electrostatic
potential calculated from the wave function®. The diversity of the calculation methods is a
consequence of the fact that none of the values obtained by any of the methods corresponds
to a directly experimentally measurable quantity. That should be mentioned, however, that

partial charges could be obtained by empirical methods, such as Gasteiger-Marsilli*’.

Atomic charges have been used as static chemical reactivity indices. One of the most
commonly used nondirectional indices are net atomic charges, which can be obtained by
subtracting the number of valence electron belonging to the atom from the total electron
density on the atom. As a global version of charge-based descriptors, the most positive and

the most negative net atomic charges and the average absolute atomic charge are often used?*

35

Atomic charges have been successfully used as local descriptors for QSPR modeling of

different physico-chemical properties such as partition octanol-air coefficient®, adsorption

t37 )39-40

coefficient”’, dopamine and benzodiazepine agonists®®, acid dissociation constant (pKa

and hydrogen—bong strength prediction“.
2.1.2.2 Electrophilic and nucleophilic frontier electron densities

One of the most powertful tool for chemical reactivity interpretation is the frontier molecular
orbitals theory (FMO), developed by Kenichi Fukui in 1950’s. The theory is based on the
consideration of the frontier molecular orbitals, correspondingly, the highest occupied and
the lowest unoccupied molecular orbitals (HOMO and LUMO), as the ones mainly

responsible for molecule’s reactivity. Thus, the frontier orbital theory predicts the site of the
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lowest unoccupied orbital localization to be an electrophilic region, similarly, the site where

the highest occupied orbital is localized is a nucleophilic region.

The theory gave rise to many different global and local descriptors which are widely usable
due to its high information content, wide applicability and easiness of calculation. The most

common local FMO descriptors are based on the atomic contribution to HOMO or LUMO.
Thus, an electrophilic frontier electron density EE indicates how casy the atom a interacts

with an electrophile. Opposite, a nucleophilic frontier electron density EYN is a measure of

the atom a to be exposed for the nucleophilic attack. These descriptors are defined as:

FaE — Z(C homOvj)2 and

|E homo|

2
FaN — 2(C tumo»J) (8)

|E tumol

where Cromo,Jj and C jymo, J are the coefficients of contributions of the j-atomic orbital of
the atom a to HOMO and LUMO, and E 510 E 13m0 are the energies of the corresponding
orbitals. The FMO descriptors perform better when HOMO and LUMO are well separated
in energy and the reaction is fully controlled by the frontier orbitals (which, for example, is
not the case of aromatic ring system). The examples of the application of the electrophilic and
nucleophilic frontier electron densities are: modeling of mutagenicity“, antioxidant activity*’,

adsorption of organic compounds on soils** and porphines and chlorins reactivities*.

2.1.2.3 Electrophilic, nucleophilic and radical superdelocalizabilities

Along with the electrophilic and nucleophilic frontier electron densities, another type of
descriptors derived from the Fukui’s theory are superdelocalizability indices, which can be
defined as the contribution of the atom a to the stabilization energy in the formation of a
charge-transfer complex or the ability to form bonds through charge transfer. Thus, the

electrophilic superdelocalizability (S, £y describes the interaction with the electrophilic center

and the nucleophilic superdelocalizability (S, Ny describes the interaction with the nucleophilic

center:
Nocc 2 Nmo 2
c4 . Zc. ;
SE =2 x z Yo gnd SN =2x z Lo (g
—~ |E] |E;|
l Nocc+1
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where C; ; are the coefficients of the contribution of the j’s atomic orbital to the i’s molecular

orbital summed over all occupied/unoccupied molecular orbitals, E; is the energy of the 1’s

molecular orbital.

These are useful parameters to characterize molecular interactions and to compare
corresponding  atoms in different molecules.  Electrophilic and  nucleophilic
superdelocalizabilities themselves are local descriptors that describe atom in a molecule, in
parallel, there are important global descriptors, based on the atomic superdelocalizabilities
such as maximum, total and average superdelocalizabilities. Superdelocalizabilities are so-
called dynamic reactivity indices, referring to the transition states of the reactions*’, while the

static indices (e.g. charges) describe isolated molecules in their ground state.

Superdelocalizability indices have been used as descriptors in different works devoted to the
modeling of physico-chemical parameters or reactivities. Some of the examples are modeling

of the acute toxicity of the substituted benzenes*’

, modeling of series of benzodioxanes as
alpha-1-adrenergic antagonists*, of carbonic anhydrase inhibitors*” and of the permeability

coefficient of aminobenzoates®.

Radical superdelocalizability is defined as the sum of the electrophilic and nucleophilic

superdelocalizabilities :

Nocc Nmo
Y2, Y2,
S§=2xz Yoy o2 2 Lo (10)
~ |Ej] |E;
L Nocc+1

Radical superdelocalizability refers to radical attack and have been used as an important
descriptor in the modeling of toxicity of halogenated aliphatic compounds®' , reactions of
hydroxyl radicals with nucleic acids®’, reactions of hydroxylations of aromatic compounds®’

and carcinogenicity of polycyclic hydrocarbons“.

2.1.2.4 Atomic polarizability

Among common local quantum-chemical descriptors, the polarizability indices occupy an

important place. In general, atomic polarizability is the polarization effect at atomic level,

where dipole moment W ;5,4 ; is induced on the ith atom:

Wingi = @; X Ej (11)
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where Ej is the electric field at the ith atom and @; is the corresponding atomic polarizability

tensor.

Several methods have been proposed for the atomic polarizability calculation. One of the first
was developed by Kang> in which the atomic polarizabilities were obtained from the
experimental polarizabilities of homologous molecules. The method of Miller*® allows to
calculate so-called atomic hybrid polarizabilities which take into account the hybridization of
the atom. These atomic hybrid polarizabilities can be combined to generate bond
polarizabilities and the average molecular polarizability. The method developed by No*’

proposes to calculate the effective atomic polarizabilities as functions of net atomic Charges.

In addition to the simple atomic polarizabilities, the common descriptors of this family are

atom-atom polarizability and self-atomic polarizabilities. Atom-atom polarizability is an index

of chemical reactivity, denoted as 7, and calculated from the perturbation theory as:

Nocc Nocc

CiiyaCiuaC Cc
T, = 4 Z z zz ina ]ua iv,bCjv,b (12)

where i and j run over the molecular orbitals and u and v run over the atomic orbitals, ¢;, 4

denotes the i-th molecular orbital coefficient for atomic orbital U located on atom a.

The self-atom polarizability is analogously defined as

Nocc Nocc

S350 ) e

Polarizability indices have been successfully applied for the calculation of the conjugation
energies’®, nuclear spin-spin coupling constants®, treatment of induction effects in molecular

mechanics simulations® and carcinogenicity of nitroso—compounds61
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2.1.2.5 TAE descriptors based on Bader’s quantum theory of atoms

in molecules

The theory of Atoms in Molecules (AIM) was developed by Bader®” and remains to be
commonly used and applicable methods for the calculation of atomic and different molecular
properties and study of molecular interactions. The theory is based on the properties of the
observable charge distribution of a molecular system and provides a unique mapping between
the topological elements of a molecular charge distribution and the structural elements, atoms
and bonds, underlying the notion of molecular structure®’. Central to this theory is the
identification of an atom with a particular region of real space as determined by a fundamental
topological property of a charge distribution. By appealing to quantum mechanics one finds
that the atoms so defined possess a unique set of properties and behave as closed physical
system. In particular, the theory shows that the average value of every mechanical property
(a property whose associated operator can be expressed in terms of the coordinate and/or
momentum operators) of some system can be expressed as a sum of corresponding atomic
contributions. The total energy of a crystal, for example, is equal to the sum of the energies
of the atoms in the crystal where each atom is a well-defined object in real space. An important
point of the theory that properties attributed to atoms and functional groups are transferable
from one molecule to another®. The most applicable and practically used characteristics

coming from AIM theory are bond critical point properties and atomic properties.
g y P prop prop

Bond critical points (BCP) are saddle points in electron density distribution in the region
between bonded atoms having two negative and one positive eigenvalue of hessian. Several
BCP properties have been shown to be correlated with experimental molecular properties®.
For example, the electron density at the BCP correlates with the bond energies, and hence
provides a measure of bond order®, the potential energy density at the BCP has been shown
to be highly correlated with hydrogen bond energies®” and theoretically computed proton
shielding®®.

Atomic properties have been used to recover and directly predict several additive atomic and
group contributions to molecular properties, including, for example, heats of formation®

magnetic susceptibility”, molecular volumes”, dipole moment”, polarizability” "

and many
others. Atomic properties have also been used build QSPR models predicting several
experimental properties including, for example, the pKa of carboxylic acids, anilines and

phenols” a wide array of biological and physicochemical properties of the amino acids, and
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the effects of mutation on protein stability”®, NMR spin—spin coupling constants of aromatic

compounds from the electron delocalization indices””.

However, the properties of atoms and bonds derived from the QTAIM and based on quantum-
mechanical calculation require significant computational costs. In order to overcome the
problem, Breneman” introduced the concept of ‘transferable atom equivalents’ (TAE) —
atom-based electron density fragments obtained using the AIM approach. The underlying
concepts for the TAE method is the additivity of atomic properties in Bader’s theory and the
transferability of topological atoms. A TAE is a mononuclear atomic region of space filled
with electron density delimited by zero-flux surfaces in the gradient vector field of the
electron density extracted from a parent molecule at its zero-flux surface. Extracted atoms
representing a large number of differing combinations of elements, atom types, and
immediate electronic environments, are stored in a computerized database. A program called
RECON is then used to assemble the electron densities (and other properties) of a target large
molecule by matching the appropriate zero-flux surfaces of different TAEs recalled from the
database”™. Once the target molecule is reconstructed by the automated merging of TAEs, the
molecular descriptors are then calculated by arithmetic or vector sums of the properties of
the composing TAEs. The reconstructed descriptors include, for example, the total molecular
energy, the total molecular volume, the electrostatic potential, the molecular dipole moment,
and the Fukui functions. The TAE approach, being a useful tool in QSAR/QSPR modeling,
has been proved to be relevant for modeling of protein-ligand binding affinity®’, Mu-opioid
receptor affinity®', for high-throughput screening®” and molecular surface autocorrelation

analysis83 )
2.1.2.6 Conceptual Density Functional Theory Indices

Among others commonly used local descriptors, Fukui Functions are one of the most popular
in describing molecule’s site selectivity and chemical reactivity. Fukui Functions find their

origin within Conceptual Density Functional Theory (Conceptual DFT) and are defined as:

_ap(r)  dp
~dN(r) dv(r)

f@r) (14)

where p(7) is the electron density at a point r, N (1) is a total number of electrons of the
system at a given external potential V(7). Besides, the Fukui function corresponds to the first

derivative of the electronic chemical potential I with respect to the external potential v(r)
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for a given number of electrons. Depending on the nature of the electron transfer, the Fukui

function for removal of an electron from the molecule, called the Fukui function for
electrophilic attack, is labeled as f ~, and the Fukui function for addition of an electron to the

molecule, called the Fukui function for nucleophilic attack, is labeled as f T are distinguished:

fr)=p@)y — Py (15)
fr@)=p@)ye —p@)y) (16)

where p(1)y is the electron density at a point r for the molecule possessing N electrons (N
corresponds to neutral molecule). Thus, f~ is large in the regions of space where a given
molecule readily donates electrons and f s large in the regions where a molecule accepts
electrons. A reaction thus is likely to occur between regions (or atoms) where f ™ is large in

one molecule and f¥ is large in another reacting molecule.

The evaluation of the Fukui function values is not straightforward and number of methods and
algorithms have been developed in order to ease the calculation. Thus, Yang and Mortier®
proposed three different condensed forms of f (r), based on atomic charges of N, N + 1, and
N — 1 electron systems, Nalewajski** has studied the f (r) indices in respect of Bader’s ‘atom
in molecules’ (AIM) theory, Komorowski et al*® proposed the atomic and group resolution of
f (r) indices based on semiempirical method. The most popular method, proposed by Yang

and Mortier®, based on the condensation of the Fukui functions to atomic resolution:
f7() =q.(N) —qa(N - 1) (17)

f+ (r) = qq(N +1) — q,(N) (18)

where g is the charge on an atom a for a molecule having N electrons. The method has a
simple procedure to calculate the atomic condensed Fukui function indices using a charge
partitioning schemes, e.g. Natural, Mulliken or Hirschfeld Population Analysis. However,
despite of the possibility of using any type of atomic charges, it was shown that Hirschfeld
charges are likely the most accurate®” for Fukui indices calculation. Thus, ranking of atoms
within a molecule in terms of condensed Fukui functions enable the identification of
preferential sites of reactions. Nevertheless, one should remember that the Fukui functions
have a poor performance in handling the hard-hard interactions, but they are the good

descriptors for the soft-soft interactions known to be frontier controlled.
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Characteristic examples of QSRP modeling with Fukui functions included modeling of keto-
enol tautomerism®’, local reactivities during electrophilic, nucleophilic and radical attacks®

and reactivity for protonation reactions®’.

The topic of hard-soft interactions and the derived local chemical reactivity implies a logical
continuation into local softness/hardness introduction. The concepts of a local softness and
hardness, as goes from the name, is the exertion of the principles of softness and hardness in
local sense so as to explain the response of a chemical system to different kinds of reagents.
Thus, while the global properties may explain the reactivity, for understanding selectivity the
local quantities come into the picture. By direct computation of the local parameters one can
probe the sensitivities of different sites in a molecule. The idea is labeled the local hard—soft

acid— base (HSAB) principle in analyzing the site selectivity in a molecule.

The local softness describes the response of any particular site of a chemical species (in terms
of a change in electron density p(r) to any global change in its chemical potential) and is defined

as:

d
s(r) = d—z (20)

The local softness condensed to an atom site say k, can be written as:

s(r)=fSs  (21)
Where f (1) is the Fukui function and S is a global softness, which is the integral of s(r)dr.

Thus, as a result of the relation of S(7) to the Fukui function f(7), the local softness is a
density-functional concept for characterizing a site and carries the information on site
selectivity within a molecule contained in the Fukui function and also the information on
relative reactivity from molecule to molecule contained in the global softness. The Fukui

function may be thought of as the normalized local softness.

An original direct definition of the local hardness starts from the second functional derivative
of the Hohenberg Kohn functional F [p]. This is the sum of the kinetic energy functional T[p]

and the electron repulsion functional Vi, [p] and is defined for all ground-state densities p.

The second derivative is the hardness kernel, the two-variable

(') = d*F[p]
T = ap(ydp(ry

(22)
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The local hardness may then be specified as: 7(r) = 1/N f p(r)n(r,r’") dr'.

However, several definitions of local hardness have been proposed and compared™”'. This
local index is then not a local quantity in the sense the local softness is, since it does not
integrate to the hardness; consequently, its integral over a given region in a molecule won’t

necessarily give a regional global hardness.

Local softness and hardness combined with the Fukui functions is thus a basic package to
evaluate local reactivity and site selectivity. Consequently, the corresponding QSRP modeling

91-92

include: regioselectivity of chemical reactions’ ™, reactivity sequences (intramolecular and

intermolecular) of carbonyl compounds toward nucleophilic attack” and reactivity of

inorganic compounds%%.

2.1.3 Electrotopological indices

In contrast to the computationally expensive quantum-chemical descriptors, Kier and Hall**

8 provided an easier approach to analyse the molecular structure at the atomic level. The
b
descriptors, called electrotopologlcal state indices and encode the electronic as well as the

topological description of the individual constituent atoms of the molecule™, are defined as :

=+ Al =, 2
S=1I+ +Z(dl,+1)2 (23)

where A is the number of atoms, d;; is the topological distance between the ith and the jth

atoms, I; is the intrinsic state of atom, and Alj is a perturbation factor determined by the
influence of the electronic field of a molecule on a particular atom in the molecule. The

intrinsic state of the atom is defined as:

2 2
(/Li) 57 + 1
S;

I; = (24)

where Li is the principal quantum number for atom i, § lv is the number of valence electrons
and §; is the number of sigma electrons. In terms of E-state determination, cach atom has its
pure intrinsic state perturbed by the electronic environment of every other atom in the
molecule. Thus, the intrinsic state encodes the electronic feature of the atom throughout the

embodying of the valence electrons which are the most reactive and involved in chemical

42



reactions and bond formations. Further, the presence of the principal quantum number in the
expression reflects the differences in the electronegativity of the atoms while the adjacency
count of the atom is used to determine its topological features. The ratio of p- and lone-pair
electrons over the count of the valence electrons reflects the electronic accessibility and
richness of the atom and hence indicated a capability to be involved in intermolecular

interactions.

In addition to the individual topological information of an atom, the E-state index can also be
utilized to determine the overall contribution of a particular atomic fragment. These indices,
called E-state parameters, include the valence state of the atoms of the group along with its
hybridization characteristics. Due to the full electronic and topological representation of the
group, the E-state parameters are valuable in distinguishing the influence of a certain

structural group to the activity profile of the molecule.

Due to its universality and simplicity, the original E-state gave raise to voluminous series of
modifications adapted for specific tasks. Thus, the necessity of separated treatment of heavy
atoms and their bonded hydrogens for molecules with highly polar functional groups
determined the development of hydrogen electrotopological state indices (HE-state indices)
complimenting the original E-state indices with electronic and tolopogical information about
the chosen hydrogens. Further, this combination has been used for calculation of molecular

interaction fields with the assumption that the E-state is defined by superimposing 3D fixed

100

grid over the molecule and hence calculated at each of kth grid point'™. Generalizing the E-

state indices, an additional parameter encoding topological and electronic information related

to particular atom types has been proposed as the corresponding sum of E-state values of all

101

atoms of the same atom type in the molecule™'. Finally, a parameter for bond specification

based on the akin bond intrinsic state summed with its perturbation term, has been tentatively

proposed for aimed local bond descriptionloz.

The E-state indices are valuable tools for QSAR studies of biological activities. Thus, it has

been successfully applied for the modeling of antithyroid agents with fewer side effects'”,

mutagenicity of aromatic and heteroaromatic amines'™, anti-inflammatory activity of

105

corticosteroids'® and receptor binding affinity of progestagens106 as well as for modeling of

107 t108.

fundamental properties such as aqueous solubility®’ and 10gP coefficien
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2.1.4 ISIDA fragment descriptors

ISIDA descriptors, the development of the Laboratory of Chemoinformatics in Strasbourg,
represent specific fragments/substructures present in a molecule'”'"? and enhanced with the
possibility of explicit labeling of an active site. Each substructure is associated to an element i
in the descriptor vector, whereas its occurrence in a molecular graph is used as the descriptor
value Di. ISIDA fragments could vary in length, topology and inclusion/omission of additional
options. The topological variation included sequences of atoms and/or bonds and augmented
fragments centered on a certain atom and branching out into concentric circles. The length of
the fragments could vary from 1 (the descriptor elements associated to fragments of length 1
are standing for atom counts) to a user-defined number, meaningful for a particular dataset.
As arule, the size of choice should not be larger than an average molecule’s size. The options

that could be added to the main description included:

® [Formal Charge, permitting to add the information about the formal charge on an atom

behind its symbol in the fragment: N*I.C-N.

® Atom Fairs, types of fragments where two terminal atoms are kept only, with the

corresponding topological distance between them: S-6-0, N-3-C.
® All paths exploration, enumerate all the possibilities of the paths between two atoms.

® Dynamic Charge (CGR-specific option), encode local change in charge of the active center

atoms while chemical reaction.

The ISIDA descriptors propose two mechanisms that allow the "highlighting" of specific
atoms or groups of atoms. The first requires an explicit labeling by the user of the "special"
atoms, this is Marked Atom (MA) strategy. The second mechanism exploits the special status
of ‘dynamic’ bonds in Condensed Graph of Reaction (CGR). The CGR-based fragments are
generated for a pseudomolecule (CGR), incorporating (condensing) the structures of all the
reagents and products. A reaction center is specified by means of special edges, that stand for
‘dynamic’ (broken/formed) bonds. Figure 3 illustrates the concepts of MA- and CGR-

approaches.
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Figure 3. Example of structures for which MA- based (top) or CGR-based (bottom) local fragment descriptors
were generated. Top: in the hydrogen-bonded complex, the stars denote Marked Atoms. Bottom: in the Condensed
Graph encoding the (4+2) cycloaddition reaction, dots and dashes represent, respectively, formed and broken
chemical bonds. Some examples of generated descriptors are given on the right.

The atoms for MA fragments should be labeled with a special flag in a special field of the input
file (SDF). Depending on the task, that could be performed by hand, mapping atoms directly
in a chemical editor and saving the SDF, or by editing the unlabeled SDF, or with the help of
CGR. For the CGR-based fragment, the corresponding input file contains the denotation of
the dynamic bonds, constituting the reaction center. The generation of the CGRs could be

done by hand or by a special soft, identifying the dynamic bonds by atom mapping.

The preferences of the two types of description should rely on the specificity of the modeling
task, i.e. whether the intrinsic nature of the active atoms should be preserved and taken into
account, and on the complexity of a chemical transformation. Thus, the task of intermolecular
interactions (Figure 3, top) implied an explicit consideration of donor/acceptor (D/A)
function of the active atoms, which determines the choice of MA-based descriptors. The
descriptors for donors and acceptors in this case could be generated separately and at the end
concatenated altogether, always in the same strict order, e.g donor’s descriptors-acceptor’s
descriptors, forming a descriptor vector representing a particular D:A complex. In such
manner, the D/A attribution is preserved and will be taken into account by the machine
learning algorithm. With regards to chemical reactions, an indisputable advantage of the
CGRs is the allowance to encode the structures of all the reactants (reagents and products)
altogether with the description of the structural changes. The order of representation of the
reactants does not matter in this case. A demonstrative example of the CGRs application is

the reactions of cycloaddition (Figure 3, bottom) which involved multiple bond
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transformations. It should be noted, however, that structural representation of these reactions
could be done with the MA-based descriptors as well, by simultaneous labeling of all the atoms
of the active center, but the length of the descriptor vector in this case would be too big. In
addition, the attribution of the atoms to diene/dienophile (Diels-Alder case) could be lost, if
the order of the reactants in the database in not strict. The CGR-based representation thus
allows to encode the structures altogether with the active center transformation in a

condensed compact form.

For MA-based fragment descriptors an important parameter that could be varied is the degree
of ‘locality’ of the description. An internal mechanism of regularization of the portion of pure
local fraction included into the MA-based descriptors is implemented by four marked atom

strategies:

" -MAQO strategy generates fragments without introduction of the marked atom labels
and thus gives a general representation of a structure

" -MAI exclusively generates fragments that starts or ends with the marked atom and
hence contains only local fragments

" -MA2 exclusively generates fragments that contain the marked atom and is a pure local
strategy as well

= _MA3 generates all kind of fragments but the marked atom has an explicit label

Figure 4 represent the difference between the strategies.

MAO MAT MA2 MA3
N e N-C-C-C N*-C-C-C N*-C-C-C N*-C-C-C
" C-N-C-C C-C-C-N* C-N*-C-C N-C-C-C
— C-N*-C-C
" C-N-C-C

Figure 4. Examples of ISIDA MA descriptors (sequences of the length 4) generated for different marked atom
strategies.

Correspondingly, MAT1 is the subset of MA2 descriptor space, which, in turn, the subset of

MA3 descriptors altogether with the MAO nonlocal descriptors.

CGR-based descriptors possess similar, but more restricted option of locality degree

regulation:
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® CGRO strategy generates all possible fragments

® CGRI strategy generates only the fragments that contain at least one dynamic bond.

Unlike the CGR-based descriptors, where the fragments are generated for a pseudomolecule,
the generation of MA-based descriptors, is performed for each participant of a chemical
reaction separately, i.e. for a single molecule. For the case of a molecule possessing more than

one marked atom, the two strategies of description are possible:

1. When a local fragment contains more than one labeled atom
2. When local fragments contain one labeled atom and further concatenated with the

fragments containing another labeled atom

The preference depends on the specificity of the task. For the case of a bifunctional molecule
bearing functional groups (atoms) G1 and G2, the molecule could be represented by local
descriptors including both labels (first strategy) or formally represented by two distinct
descriptor species - one with focus/label on G1, the other with focus/label on G2. The second
approach implicates emphasis on different nature and functions of the groups G1 and G2. For
the case of Sy1 dissociation (Figure 5, bottom), the ‘active site’ is the two atoms connected
to the breaking bond, in this case there is no special meaning for these atoms but designating
the place of splitting. The fragments will include two labels simultaneously. No difference in
labels attribution is encoded. The second instance is hydrogen-bond forming molecule (Figure
5, top) with two binding centers, the first of which is the donor of hydrogen (the
corresponding atom is denoted with a green star) and the second is the acceptor of hydrogen
atom (denoted with red star). Both atoms are oxygens, thus their nature and their functions
during the chemical process should be explicitly designated. These atoms are labeled
separately, one by one, and the fragments, generated for each of the atoms then concatenated
with each other, so that the atom’s nature are encoded by the descriptors number, e.g the
descriptors from 1 to 100 reflects the fragments including acceptor atom, the remain
descriptors 101 -200 are the fragments with the donor part. In this manner, the atom’s

functions are preserved and segregated from each other.
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‘l-" Figure 5. Example of the processes
+ where the difference in the active atom
r) No H o=nN" functions are taken or not into
g + account: the reaction of dissociation
+ # (bottom) has same labels on the active
+ atoms so as to pinpoint the location of
R the bond cleavage, whereas the

+ H5C +<:| + hydrogen bond complex (top) has
) + different labels to denote
T - donor/acceptor nature of the atom.

ISIDA property-labeled descriptors. Apart from the explicit labeling of active
atoms/groups, the ISIDA package supports other, more specific, property labeling® '**. It
bears a peculiar information about a particular atom/site that could be maintain alone or

coupled with the other fragment generation schemes. These includes:

® partial charge increment
° logP increment

° topological electrostatic potential coloration

On the considered example, the histogram of the corresponding property is constructed to
estimate the boundaries of the property spectrum to which the atoms are further assigned in
accordance to the value of its property, calculated by ChemAxon'"*. Figure 6 (created by
MarvinView'"), gives an example of logP increment, where the corresponding boundaries

and atoms they cover are differentiated by color.

O AENE
EKE

Figure 6. An example of ISIDA
atomic logP increments. The atoms
are divided into groups, which are

denoted by the color code, in
accordance to their calculated logP
increments.

Partial charge labels in ISIDA descriptors calculated according to Gasteiger’s method based
on the electronegativity of the 0- and 7- bonds. For the logP coloration, the Ghose-
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Grippen''® approach is used, according to which the atoms are classified into 120 categories
according to their element, oxidation state and the surrounding atoms. The topological

electrostatic potential ¥; on each atom i are calculated from the partial charges according to
the formula: V; = qi/do + Zj:ti q]/dij , where @ j are partial charges on atoms i and j, d;;

is the topological distance, and d is empirically determined virtual distance to take into

account the concerned atom charges.

ISIDA fragment descriptors thus propose an efficient way of structural representation.
However, it should be noted that relatively long descriptor vector, coming from an exhaustive

molecular description, could somehow restricts its applicability.

Thus, all the considered types of local descriptors could be used for structural representation
of chemical processes, however, some of them have distinct shortcomings. Thus, the
substituent constants, coming from the experiment and measured only for some of the
groups, could not be served as a universal description and suitable only for homogeneous data
sets of few varying substituents. The quantum-chemical descriptors, correspondingly, require
high computational costs, which is a strong limitation in case of modeling of big data sets. The
electrotopological indices are not expensive computationally, however, they do not reflect
the structural aspects explicitly, and are composed for each atom as the sum of the
corresponding electrotolopogical aspects, thus becoming not interpretable in terms of
chemical structure. Moreover, neither of these descriptor types supports an explicit emphasis
on the active centers. Therefore, ISIDA descriptors offer the best solutions to the above-
mentioned constraints due to fast computation, direct structural representation and various

possibilities of designation of the active sites.
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2.2 Descriptors of the reaction conditions

For most of chemical processes, the influence of the experimental conditions is as important
as the structural impact of the reagents. Thus, the description of the process should explicitly
include the parameters of the solvent medium, temperature, pressure, etc. If for the latter
two the description implies just the corresponding magnitude, the solvent description is more
complex and needs to take into account the specific and nonspecific solvent effects, able to
affect the stability of the formed complex or the transition state, and thus influencing the
property.

Accounting for solvent effects is a conventional task in the field of quantum-chemical
modeling (QM) and molecular mechanics (MM), where the thermodynamic calculations of
chemical, biological or environmental processes referred to the solvated condensed phases.
The solvent models are classified into implicit, explicit and hybrid ones. The earliest attempts
of a solvent effect modeling give rise to the implicit models, where the solvent molecules are
accounted as isotropic polarizable media. Among widely used, the GB/SA'7, PCM'"® and
COSMO'"”"* approaches should be mentioned. These models are computationally cheap and
often provide an acceptable estimation of solvent influence on the process, however, they can
not correctly describe specific interactions (e.g. H-bonds), that is of major importance for
particular solvents (e.g. water), and thus could fail to describe the influence of media in some
systems. More elaborated description is provided by explicit models'?'"'**) which take the
solvent molecules into consideration explicitly, so that, their coordinates and some degrees
of freedom are included. These models (AMOEBA, SIBFA, COS) are mostly used in
molecular mechanics or molecular dynamics simulation. The parametrization and fitting
parameters of these models are therefore derived for a certain solvent group, which, as a
consequence, could lead to inability to reproduce some experimental results. The main
shortcoming of the explicit methods though is its computational demand. The hybrid
QM/MM methods'* "> as follows, incorporate the implicit and explicit approaches, so as to
provide a reasonable accuracy at fair computational costs. In the frame of the hybrid methods,
the energy of the system is composed from the QM-derived energies of the closest to the
solute molecular environment, the MM-derived energies of the distant zones and the
correction term, refer to the interaction QM/MM energy. The latter is the weakest part of

the approach, determining the emergence of various of methods and specific parametrizations
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for the interaction energy calculation, that complicates the application of the approach. The

hybrid methods thus could be tested and used thoroughly, so as to give a reliable result.

In QSPR, it is important to provide the machine learner with enough information about the
solvent properties. Machine learning will then figure out which of the provided solvent
properties appear to correlate with the modeled property of the studied solute(s), and
propose the optimal (non)linear functional form to express the dependence of the latter with
respect to the former. So far, however, there were too few works related to the modeling of
chemical processes with the account for the solvent environment. The one that explicitly
include the solvent parameters is related to the modeling of Sx2 reaction'?®. The solvent media
has been rendered there with the six parameters, standing for polarity and polarizability,
derived on the basis of the works of Born'”” and Kirkwood'*®. These works emphasize the

importance of nonspecific solvation, which is determined by polarity and polarizability. The

former term could be expressed by the three functions of dielectric constant €12 whereas the

polarizability could be represented by the three functions of refractive index n P

The consideration of the solvent effects, however, should be completed with the inclusion of
the specific solvation term. These parameters should meet the following requirement: derived
from the experiment, be measured for a large set of different solvents and not to be biased by
the probe, used during the experiment, but referred to a ‘general’ solute behavior toward a
particular solvent. These preconditions are met for the solvents effect scales, among which

130 is

Kamlet-Taft solvent effect scale is one of the most widely known. The first one, o scale
referred to hydrogen bonding ability of solvents. This scale is based on solvatochromic
parameters, averaged for several probes, so that it has a built-in 'fuzziness' and measure the

ability to donate hydrogen bonds of the solvent molecules to a 'general solute', rather than

BT is based

specifically for the probe employed in the experiment. The second one, 3 scale
on the ultraviolet-visible spectral band of suitable probes. This is again an averaged quantity,
for which the wavenumber shifts of several protic indicators, relative to structurally similar,

132

but aprotic probes, are used. The third value is the 70* value'**, based on the average of values

of the TU =>TU* transition energies for several nitro-substituted aromatic indicators. The
quantity is normalized to give pi* = 0 to cyclohexane and pi* = 1 to dimethylsulfoxide, and,
as for the previous two scales, multiple probes are used to eliminate specific interactions and
spectral anomalies. This value measures a certain ‘blend’ of polarity and polarizability.

Another set of specific interaction-referred scale is the Catalan parameters. Similar to Kamlet-
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b

Taft scales, the Catalan parameters included the solvent polarity/ polarizability (SPP)

solvent basicity (SB)'*’ and solvent acidity (SA)"** measures.

In the frame of this thesis, the solvent effects have been described with the following set of

the experimental parameters:

e four functions of dielectric constant ¢, standing for nonspecific interactions : Born
_e-1 f c—1 f _e-1 f -1

fB . K — 1~ 2 =
¢, Kirkwood 26 +1 e+1 and E+2,

e three functions of the refractive index np?°(n), as well reflecting the nonspecific effects:

-1 nfel (P -h(e-))

n+2’ 92 2n°+1" 0 @2n? +1)(2¢+))

9

e Kamlet-Taft’s o, p and n* parameters

e (atalan’s SPP, SA and SB constants

An additional reaction condition term of temperature has been included as the reversed value:
1/T in Kelvin degrees, as it corresponds to the Arrhenius equation (Ink =1n4 — E A/ pr). In
case of water-organic mixtures, a molar fraction of the organic solvent has been added as a
descriptor. The hierarchical clustering dendrogram of the solvents used in different projects

of this study and based on the 13 chosen solvent parameters is given on Figure 7.
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Chapter 3

QSPR methodology

3.1 Quantitative Structure-Property Relationships (QSPR)

QSPR modeling is the determination of a mathematical relationship between the chemical
structure (or more complex information included in the description) and a modeled

property/ activity:

Property (activity) = f(chemical structure, solvent, T, pressure, ets)

The corresponding structure-related information in the function argument should be encoded
numerically, composing the descriptor vector, defining the position of an object in chemical
space. The object’s numerical description then used to build a QSPR model, embodied the
mentioned mathematical relationship, the goal of which is to be able to predict a certain
property/activity over a wide range of new (in a sense they were not used for a model’s

building) chemical objects.
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A general used for model building procedure of QSPR model building included the following

steps:

ii.

1ii.

iv.

Data curation and standardizations. This includes rejection of entries associated to
missing or chemically invalid structures, missing or unreliable experimental endpoints,
removal of counterions not needed for modeling, conversion of structures into a
common, standardized representation style (aromatic bonds, split-charge nitro
groups, etc) and removal of duplicates (complete removal if a same structure is
associated to conflictingly different experimental values).

Descriptors calculation. In this work, we used ISIDA fragment (Marked Atom or
CGR-based) descriptors for structural representation of a chemical object (described in
section 2.1.4). Accordingly, the descriptor vector is constructed from structural
fragments of different length with the corresponding occurrences being the
descriptor’s value. The descriptors’ values are then normalized form O to 1.

Model building. The algorithms used for building of the predictive models called the
machine learning methods. Whereas there is a diversity of different algorithms, the ones
chosen for modeling in this work are the state-of-the-art techniques proved its
efficiency and usability: the Support Vector Machines and Multiple Linear Regression.
The tool combining both possibilities, regression and visualization, is the Generative
Topographic Mapping. The description of these methods is given in section 3.2. A data
set used for building of the model is called training set

Model validation. This includes cross-validation, performed at the stage of model
building (cross-validation is described in section 3.3.1) and evaluating the model
performance on the training set and external validation. For the latter, some part of data
could be excluded from the initial data set at the beginning or new data could be used.
These data were not involved in model’s building at all. This test set is required to

assess predictive power of the model and its utility.

The constructed model is used for the prediction of the Corresponding property/activity of

unknown or untested structures thus providing, of course depending on the overall accuracy

of the model, a numeric value or a classification belonging of the structures given.
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3.2 Machine Learning algorithms

3.2.1 Support Vector Machine (SVM)

Firstly introduced by V.Vapnik'*"**, Support Vector Machine at its origin is a binary classifier
that finds a separating hyperplane so as to best segregate the two classes (Figure 8). The
hyperplane is constructed in such a way to have the biggest gap between the hyperplane and

the data instances of either side, so that to minimize the chance of misclassification.

Accordingly, the SVM model then categorizes new examples according to which side of the

hyperplane they fall.

Figure 8. An illustration of the SVR algorithm: a
separating hyperplane (denoted with red line) is
drawn so that to separate the objects belong to
different classes with the maximal distance between
the nearest points and the hyperplane.

The method however is suitable not only for linearly separated objects, but for nonlinear task
as well. To perform the separation in this case, a new coordinate is introduced in such a way
that in the resulting higher-dimensional space the classes are easily separated (Figure 9). The
possibility to perform nonlinear separation in case of usage of linear classifier utilizes so called

kernel trick and is widely used in kernel-based methods.

Figure 9. The kernel trick of the SVR: a non-

x X K linear transformation from feature space to
x X * higher-dimensional space where the objects
* ... . ** * are easily separated.
o, :0 = ° . .
L]
L]
® [ ]
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The Support Vector Machines for the regression task implies optimization of the regression

function f(x), which is searched under the following constraint:

ly—=f®l<e (25

here € is the error threshold. The function is optimizing till no errors largen than € are
produced. However, to be able to model data with persisting errors, a proportional cost is

introduced:

§=ly—flx)—¢l (26)
The model is fitted so that to minimize its complexity and the proportional cost.

In this work the Support Vector Regression (SVR) is the main or benchmarking method of
modeling, the developed models of which are the resulting web-implemented output of the

projects.

3.2.2 Multiple Linear Regression (MLR)

Multiple Linear Regression aimed at finding the equation between the property/activity and
the descriptors, encoded the chemical object, with a crucial assumption that the relationship

is linear. That could be represented as follows:

Property = a + [, x descriptorl + B, * descriptor2 ...+ By * descriptorN

The goal thus is to find the intercept & and the corresponding regression coefficient 5, which
could be considered as a contribution of a certain descriptor into the property i.e. measures
the unit change in the dependent variable with the change of the descriptor, so as to fit the

property variation.

The software for MLR in this study is ISIDA QSPR', which combines backward and forward
stepwise variable selection (prior selection of those variables influencing most on the model’s
predictive ability, needed to provide more robust and cost-effective prediction) generating a
large number of linear models forward by the selection of the most robust ones for the
consensus prediction, that is an average of the estimated property values obtained with the

selected individual models.
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3.2.3 Generative Topographic Mapping (GTM)

Generative Topographic Mapping is a method combining the modeling capability along with
data visualization and data analysis tools. Firstly introduced by Bishop® in 1990th, the method
performs a non-linear dimensionality reduction of the D-dimensional data space (where D is
the number of descriptors) onto a 2-dimesional latent space (GTM map) by embedding a
flexible 2D manifold into the D-dimensional data (Figure 10).

Structural
feature space
High-dimensional

2-dimensional
latent space

Figure 10. An illustration of how the data
points are fitted by the GTM manifold (left)
and further projected on the GTM map

(right).

The ‘unfolded’ manifold is a square grid of K nodes. The assignment (mapping) of the nodes

to the manifold points is defined by a mapping function y4(x; W) set up with the help of M
radial basis functions (RBFs).

M 2
YWY = > Wpgexpe2mly - 27)

20
where d goes from 1 to D, W is the M X D weight matrix connecting RBF and data space
points, X, is the center of the m-th RBF. The overall number of the RBFs and the width 0

are the optimizable parameters of the method.

As a probabilistic extension of the Kohonen Self-Organizing Maps, GTM operates with
probabilities of a data object to be mapped into a certain node. Moreover, the object has non-
zero probability over all the nodes. Consequently, it could be characterized by its
probabilities, which are called responsibilities. Responsibilities constitute a responsibility vector,
the main descriptive characteristic of an object, used for class belonging assignation in case of

classification, or property value calculation for the case of regression modeling.

The responsibility of the k-th node for n-th data point t,, is calculated using Bayes’ theorem:
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exp(~ 5 11t — ya G WII1?)
Rnk = ,8 (28)
S, exp(= 5 11t — yaCo WIIP)

Responsibilities are normalized over the grid of nodes and their sum for a given item is equal

to 1.

GTM-based regression and classiﬁcation models

The general procedure of the model building is similar for regression and classification tasks,
as in both cases an object (for simple case — a single molecule) is characterized by the assigned

responsibility vector. The following steps are included:

i.  Obtaining a GTM grid, each node of which will be attributed with the corresponding
responsibilities of every molecule of the training set.

ii.  Defining the property/class value of each node based on the contribution of each
molecule to a certain node (which is molecule’s responsibility) and its corresponding
property/class value. This procedure is called coloration, since the property
distribution will be expressed as the color profile of the map. The same GTM map
hence could be colored differently depending on the training set property/ class values.

iii.  Projecting the test set compounds and calculating its responsibility vectors further used

for the property/ class prediction.

The node property value 4, of GTM regression model (step ii) is calculated as follow:

. N_ AR
Ak _ an—vl ni‘kn (29)
anlen

Ay =) ARig (29.2)

where N is the number of molecules, A, is the experimental property of the n-th molecule,
Ry, is its responsibility in the k-th node (see eq. 28). The calculated node property values are
used for the GTM activity landscape representation (eq. 29.2) — the final result of the map

coloration (detailed below).
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Similarly, GTM classification model attributes a class accessory to each node by averaging

the responsibilities over all training set compounds, then, for any g-th test set compound, the

probability to belong to the i-th class P (C;1q) is calculated according to the formulae:
P(Cl9) = ) P(Clk) X Ry (30)
k

where P(C;| k) is the conditional probability of the class C; for the given node k, calculated

according to the Bayes’ theorem:

P(k|C;) X P(C;)
Yc; P(k|Cj) X P(C))

P(Cilk) = (31)
where P(C;) and P(k|C;) are, respectively, a fraction of compounds of the class C; and a

normalized cumulated responsibility of the class C; in the training set.

GTM visualization

The ability to visualize the data distribution is the main advantage of GTM over the classical
machine learning methods. The method proposes different schemes of representation of data
distribution thus allowing to analyze various aspects of data. The main visualization techniques
used herein are GTM property landscape and GTM class landscape, correspondingly, representing
data form regression or classification side. The landscapes are created according to the
mentioned equations (eq. 29-31) and reflect the node’s property- or class attribution. In
addition, the landscapes are weighted by data density: the more molecules (or more complex
chemical objects) are located near a certain node, the more opaque the color of the node,
correspondingly, if no molecules are projected into a node with any reasonable responsibility,
the node remains to be transparent (blank). Figure 11 shows examples of property- and class
landscapes providing the equilibrium constant distribution and the tautomeric type separation

of 695 tautomeric equilibria (the project is described in section chapter 6).
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Figure 11. Possibilities of GTM visualization: the class landscape (left), representing the separation of 10
different tautomeric classes, and the property landscape (right) characterizing the distribution of the
equilibrium constant values over the map.

3.3 Model quality estimation

3.3.1 Cross-validation and external validation

A QSPR model needs to be validated in order to estimate whether it has a key competence -
the ability to predict the property of new objects. The model performance should not be
evaluated on the data that was used to build the model: indeed, the model would just repeat
the property value/class of the samples that it has just seen and shows a perfect score (if the
samples were not ‘outliers’ constantly mispredicted by the model), but would fail to predict
yet-unseen data. This situation is called overfitting. To avoid overfitting, the model’s
performance is estimated during cross-validation, the procedure that envisages retention of
a part of data and its further usage for model’s evaluation. The initial data is thus divided into
two parts, training set and test set. However, to get unbiased independent predictions for
cach object of the data, all of them should be estimated during test set prediction. To do so,
the portioning of data is performed several times, usually 5, times, correspondingly called 5-

fold cross-validation. Each time the different 5% part of data is retained as a test set, and the
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other 4/5 are used as the training set (Figure 12). That insures the unbiased prediction will

be obtained for each object of the data.

As a rule, the built model should be also estimated on a data set not at all related to the initial
data (used for building) and comes from different source, or, if not possible, randomly chosen
from the initial data before any modeling, and retained. This set, called external test set, is a key

tool for model’s performance analysis and shortcomings revealing.

Fold 3 Fold 4 Fold 5

Fold 2

Fold 1

Test Test

Train
Test Test

Test
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®
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.
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-
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Train Test
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Figure 12. Schematic representation of 5-fold cross-validation procedure. Initial dataset is divided into 5
parts, on each fold a model is trained on 4 parts and is applied to predict the last one. At final, all predicted
values are gathered for statistical evaluation.

3.3.2 Regression- and classification model’s performance criteria

The predictive performance of a regression model (estimating continuous property) is

obtained with the following parameters:

®  Determination coefficient:

Qz (OT‘ Rz) =1- Z(Yexp,i - Ypred,i)z/Z(Yexp,i —-<Y >exp)2 (32)
i=1 i=1

= Root Mean Squared Error:

RMSE = [1/nZ(Yexp,i — Yoreai)?]"/? (33)
i=1



where Yexp and Ypred are, respectively experimental and predicted values of property and

<Y>exp is the mean of experimental values.

Classification models (predicting the label of an object, i.e. active/inactive) estimated here by

the following:

® True Positive Rate:
TPR=TP/P (34)
where TP is the number of True Positive (being positive and predicted as positive)
species while P is the overall number of experimentally positive class species in the
data set.
® True Negative Rate:
TNR =TN/N (35)
where, similarly, TN is the number of True Negative (being negative and predicted as
negative as well) species and N is the number of experimentally negative class species.

® Balanced Accuracy:
_ TPR + TNR

> (36)

3.4 Applicability Domain

Applicability Domain (AD) defines the area of chemical space where the model is presumably
accurate. The concept of Applicability Domain assumes that the objects similar to those used
for model building, will be predicted accurately rather than very different, in terms of
descriptor vector similarity, targets. Figure 13 gives an illustration on the example of 2D

chemical space.
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Figure 13. Representation of the concept
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The definition of the AD is a crucial aspect since the prediction of an object which is being outside

the AD is unreliable and could lead to wrong conclusions and undesired consequences.

A lot of different schemes proposed for the AD determination, that could rely purely on the
descriptors constituents or could be derived from the machine learning method. The

designation of the most appropriate AD is still a matter of discussion.

The AD of all the projects of this study is based on Bounding Box, for each descriptor vector
reckoning the minimum and maximum values encountered in the training set. An object is
considered to be out of AD if at least one of its descriptor values violates the defined min-max
range. The Bounding Box techniques by definition encompasses so-called Fragment Control:
if the data set encoded in structural fragment descriptors, then any molecule of the test set

possessing a new structural fragment considered to be out of AD.
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PART II. RESULTS AND DISCUSSIONS

Chapter 4

QSPR modeling of halogen bond basicity of

binding sites of polyfunctional molecules

Halogen bonding started to attract specific attention across the chemical, biochemical, and
material sciences very recently — this peculiar interaction received its official IUPAC definition
only in 2013"7. Indeed, a predisposition of halogen atoms to behave as nucleophiles due to
their high electronegativity is a well-established understanding, thereupon halogen atoms are
mostly considered as the regions of high electron density. However, their ability to behave as
Lewis acids notwithstanding their intrinsic nature was revealed in the beginning of the 1900%
by the formation of complexes such as Hal,...NH;3 and Hal,.. .OH,"% 1 Nonetheless, the
revelation of the electron density in halogen atoms being anisotropically distributed whenever

the atom is covalently bound to one or more atoms, has emerged only recently™™*!.

A covalently-bonded halogen atom surrounded by the area of rich electron density forming a
belt, orthogonal to the covalent bond, where the electrostatic potential is negative, but at the

same time the electronic distribution anisotropy shapes a region of lower electron density (the

so-called 0-hole) where the potential is frequently positive. This region can form attractive
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interactions with electron-rich sites, determining the ability of halogen atoms to interact with
nucleophiles. Figure 14 gives an illustration, where the color code corresponds to the value

of the electrostatic potential at the surface.

I <0.00900

0.00990

0.02565

0.03825

0.04400

CF.,Cl CF,Br CF,|

Figure 14. The electrostatic potential surfaces of thrifluoromethyl halides where the areas of positive electrostatic
potential correspond the ‘o-holes’ that determine the capability and the activity in halogen-bond interaction.

Accordingly, the scale of halogen bond atoms’ strength to act as Lewis acids is referred as

follows: F < Cl < Br < I. Fluorine, as less polarizable one, is less prone to participate in
halogen bonding and being capable of one only when attached to particularly strong electron-
Withdrawing groups. Iodine therefore is the most active and convenient for experimental

studies.

The role of halogen bonds (XB) is particularly prominent in the areas of crystal engineering'*,
but also important for the elaboration of three-dimensional networks and the formation of

143-144

liquid crystal phases, in different areas such as biological molecules design and

nanotechnologies”'o. The comprehensive outline of recent advances and historical perspective

145

of the field are reviewed in works of Cavallo'*, works of Legon'*® and Priimagi'*’.

Our aim in this project was the development of the universal scale of halogen bond acceptor
strength, i.e. halogen bond basicity, that could be considered as a scale of nucleophilicity as
well. The basicity scale based on the strength of the complexation with diiodine, was the
object of our publication in Molecular Informatics'*® . The asset of the paper is the efficiency
of the developed scale for the prediction of halogen bond strength of not only monofunctional,
but polyfunctional species as well, that expands its applicability toward complex biological
molecules and supramolecular building blocks. Due to their low computational costs, the
developed models are of practical relevance for an efficient screening of large sets of
compounds. In the paper we also discuss the borderline of the applicability of the constructed

scale, providing the examples of molecular species (article’s section 3.2) possessing structural
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features responsible for certain steric effects, affecting the complexation constant, that should
be thus treated cautiously. Apart from the contribution toward halogen-bond driven
processes, one could find the section of comparison of the strength of halogen and hydrogen

bonding to be of particular interest (article’s section 3.4).

The project was done in collaboration with Jerome Graton and Jean-Yves Le Questel
(University of Nantes) providing thorough experimental data, and Vitaly Solov’ev (Institute
of Physical Chemistry, Moscow) conducting the MLR-related part of calculation as well as the

effective constant evaluation by means of ChernEqui149 software.

The corresponding article is given in the end of the section, with the authorization of all

authors.
4.1 Modeled object and property

Herein, the halogen bond (XB) donor molecule is the same for all the complexes, hence, its
structure could be excluded from consideration. The modeled object is thus the structure of

a designated XB acceptor, the active center of which, binding the halogen atom, is attributed.
The modeled property is the complexation constant (log KByy) of an organic molecule,

considered as a Lewis base, with diiodine (I;). The experimental values are referred to 1:1
complexation in hexane at 298K. The structure of a XB acceptor is represented by the Marked
Atom (MA)-based descriptors, where the corresponding marked atom is attributed to the
active site of a molecule, binding with I, All four marked atom strategies of MA-based
descriptors have been tried and compared. In case if molecules possessing two putative

binding centers, the main one has been indicated in the initial source.
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4.2

Modeling workflow

pKI2 Database: 768
molecules

Cleaned Data: 598 logKB,,
values

Generation of the ISIDA
descriptors

Obtaining the Individual
SVM or MLR models

Preparation of the
consensus models (CM)

External test-set : 11
polyfunctional molecules

Figure 15. Workflow of the modeling of the strength of halogen bonding between organic accceptors and
diiodine (logKBiz2).

4.3 Data preparation

Initial data has been reported in the work of Laurence et al.". The log KBy values represented

primary the experimentally measured values in heptane, hexane, cyclohexane and

methylcyclohexane at 298K. Their differences as a result of solvent effects are generally within
the experimental uncertainties'. Some of the log KBy have been experimentally measured

in CCl4, CH2CI2 or CHCI3. In this case, the corresponding values have been recalculated
and referred to hexane by known linear Gibbs energy relationship"'. If a compound had
several reported equilibrium constants values in different solvents, only the primary value in
alkane was selected. Cis/trans-isomers with diverging XB acceptor propensities have been
removed. The structures have been standardized according to the procedure used on our

virtual screening web server (http:/ / infochim.u—strasbg.fr/ webserv) and based on

ChemAxon’s Standardizer"’ (neutralization, isotopes removal, conversion to ‘basic’ aromatic
form etc.) The labeling of the concerned XB active sites, explicitly assigned in the initial
database, has been performed manually. Thus, the training set consisted of 598 organic
molecules of 14 different types of XB acceptor atoms, the weakest of which is the Tt-electronic

carbon and the strongest is the sulfur of thiophosphoryl group (App., part I, Table 1.1).
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The external set consisted of 11 polyfunctional species, collected from the same source, for
which the effective constants (log Kgeff), attributed to the binding that involved all of the active
centers, have been experimentally measured. The measurements performed in solvents,
different from hexane, have been recalculated to the appropriate solvent by known'*! linear

free energy relationships.
4.4 Computational details

The fragmentation schemes included various atom coloration by elements symbol, by CVFF
force field label or by pharmacophoric types (described in section 2.1.4). The considered
fragment topologies were sequences and atom-centered fragments of the minimal length from
2 to 4 and the maximal length from 3 to 8. Overall, 480 descriptor sets (120 for each marked
atom strategy) have been tested. The modeling has been performed by SVR and MLR
methods. The performance of the models has been estimated by the R? and RMSE values in
5-fold cross-validation. The applicability domain control method was Bounding Box. The
most robust SVR and MLR models constituted the consensus SVR (MLR) models (CM),
rendering the property value as the corresponding average of the values, predicted by the
individual models. The prepared consensus SVR and MLR models have been further used for

the prediction of the external test set.

The assessment of log Kgeff values for polyfunctional molecules of the external set was derived
from the predicted log Kgp of each individual active center of a molecule. The corresponding
estimation was done with the help of ChemEqui"’ program simulating a network of chemical
equilibria in solution and designed to handle the cases of simultaneous coexistence of several

mono- and polybinded species.

The details of the computational procedure including the specification of the scanned
descriptor spaces for SVR and MLR, list of the models included into the final web-deployed
consensus SVR model, as well as the detailed workflow of data curation and treatment are

described in the article.
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4.5 Results and discussions

4.4.1 Cross-validation.

The average statistical values in 5-fold cross validation returned by the consensus SVR/MLR
prediction for each marked atom strategy are summarized in Table 2. The best result is
achieved by the MA3 strategy, which explicitly distinguish fragments belonging to the reaction
center and its environment. The MA3 strategy could be seen as the sum of MA2 and MAO
descriptors, where the MA2 describes the immediate surrounding of the active center and

MAO does not pinpoint the active center but generally characterizes the molecule.

Marked Atom SVR MLR
strategy R? RMSE R? RMSE
MAO 0.88 0.48 0.83 0.59
MA1 0.89 0.47 0.87 0.51
MA2 0.91 0.43 0.88 0.49
MA3 0.93 0.39 0.92 0.43

Table 2. The modeling performance of log KBz prediction obtained in 5-fold cross validation on the training set
of 598 molecules.

The MA3 strategy thus has been chosen for the construction of the consensus SVR and MLR
models (the constituting individual models are listed in Appendix, part I, Table I.2) which

were used for the prediction of the external set of 11 polyfunctional molecules.

4.4.2 External validation.

The predicted values obtained by the model for individual binding centers were combined
into the effective constants (log Kgeff), the comparison of which with the experimental values
is given on the Figure 16. The predicted effective constant reproduces the experimental

logKgeff with the RMSE values close to the ones of the cross-validation stage.
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Figure 16. Predicted vs experimental log Kgefr for the external test set of 11 polyfunctional molecules.

4.4.3 Comparison of the strength of halogen and hydrogen bonding

A set of 166 molecules with available H-bonding acceptor strength data against 4-F-phenol in
CCL"* has been used for the evaluation of the relationship between halogen and hydrogen
bonding strength. As expected, the general overall tendency, concerning the predominance
of one or another binding type, could not be observed, however, strong correlations have

been found within specific chemical families (Table 3; App., part I, Table 1.5).

Chemical class a B n Reorr’ S

Oxygen bases (the C=0, -O-, P=0, S=0 sites) -1.07 0.97 85 0.942 0.20

Nitriles -0.89 0.94 11 0.978 0.05
Sulfur bases 1.74 1.39 21 0.904 27

Primary, secondary and tertiary amines 0.61 1.50 13 0.833 0.45
Complexes with aromatic nitrogen -0.5 1.42 36 0.876 0.25

Table 3. Comparison of hydrogen and halogen bond strength. a, b are parameters of linear correlation
logKiz=a+b logerx, S - standard deviation.

This can be explained by the fact that the physico-chemical nature of the acceptor site —
chemical element, hybridization, etc — defines the generic order of the magnitude of the
interactions. Within a given family, the generic acceptor propensity of the center is modulated
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by its chemical context — and it turns out that this modulating effect is comparable for both

H—bonding and XB strength: a same substituent will impact both properties similarly. As it

was determined, for oxygen bases (the C=0O, -O-, P=0, S=0 sites), the log Kpy is lower

than the log Kgyx of the H-bond complexes. An opposite trend is observed for sulfur bases

(the -S-, C=S, P=S sites), for which halogen-bonding is considerably stronger than H-
bonding. Similar regularity is observed for the stability of diiodine complexes with primary,
secondary and tertiary amines, as well as in the case of aromatic nitrogen bases, for which the
stability of diiodine complexation is compatible or higher than the stability of H-bond

complexation.
4.6 Conclusion

This project is a starting point of this thesis, representing the simplest case of the modeling
for the system, where one of the participants and the experimental conditions stay constant.
The modeled property is the binding strength of complexes of organic molecules with diiodine
(I,). The quantitative value of the binding strength serves as the halogen bond basicity scale,
or, more general, as a scale of nucleophilicity of organic molecules. Here we report a
successful QSPR modeling of the halogen bond basicity of 598 organic molecules for which
the binding constants have been measured at unified conditions (hexane, 298K). The structure
of an organic molecule has been characterized by Marked Atom-based descriptors, the
different  labeling  strategies of  which, representing particular levels of
generalization/specification of structural description have been applied and compared. The
MA3 strategy turned out to be the best performer as it combines an explicit characterization
of the active sites with the description of the overall structural arrangement of a molecule.
The cross-validation results of the SVR and MLR individual models built on the MA3-based
descriptors spaces are close to the experimental errors: RMSE=0.39-0.43 (R* =0.92-0.93).
That should be noted, that regardless of the use of the best fragment descriptors, these can
not cover the entire range of different structural and electronic effects playing a role in the
complexation strength, notably the bidentate halogen/hydrogen bond interaction scenarios
occurring in certain conformations. However, during model building, the fitting errors
caused by any types of similar effects are minimized so that their average affect over the
property is below the intrinsic imprecision of the model. Extensively cross-validated

consensus SVR and MLR models have been challenged to predict the effective complexation
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constants of polyfunctional molecules of the external test set. The models showed robust
cross-validation statistics (R2 =0.70-0.81, RMSE=0.44-0.56) and were able to successfully
extrapolate the interaction of polyfunctional compounds with I,, for which the experimental
effective binding constant could be inferred from the individual propensities of all the groups
putatively participating in XB. The comparison of the H-bond and XB complexation constants
does not show any global relationship between these related, but mechanistically quite
different chemical interactions. However, strong piecewise correlations within chemical
families based on the same type of H-bond/XB donor were found, which means that while
the intrinsic HB or XB strength of these centers are uncorrelated, the modulating impact of

the substituents on both HB and XB are comparable.

A predictor of the halogen-bond basicity of acceptor sites of organic molecules was created
on the entire training set and comprises the best performing SVR models (App., part I, Table
1.2). The consensus model is publicly available on the web server: http://infochim.u-

strasbg.fr/webserv/VSEngine.html, altogether with the automatic binding centers labeling

and molecule’s applicability domain estimation.
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Predictive Models for Halogen-bond Basicity of Binding
Sites of Polyfunctional Molecules
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Abstract: Halogen bonding (XE) strength asseses the abili-
ty of an electron-enriched group to be invohed in com-
plexes with polarizable electrophilic halogenated or di-
atomic halogen molecules. Here, we report QO5PR models of
XB of particular relevance for an effident screening of large
sets of compounds. The basidty bk desoibed by pKg, the
decimal logarithm of the experimental 1:1 B :1,) complexa-
tion constant K of arganic compounds (B with diledine ()
as a reference halogenbond donor in alkanes at 298 K
Modeling involved 1SDA fragment desoriptors, wsing SVM
and MLR methods on a set of 598 organic compounds. De-
veloped modds were then challenged to make predictions
far an ectemnal test set of 11 polfunctional compounds for

which unambiguouws assgnment of the measured effective
complesxation constant to spedfic groups out of the puta-
tive acceptor sites ks not granted. At this stage, devdoped
models were used to predict phy; of all putative acceptor
sites, followed by an estimation of the predicted effective
complexation constant udng the Chembgqui program. The
best consensus models perform well both in cros-valida-
tion (root mean squared emror AMSE=039-047 logky,
units) and externa predictions (RMSE=04%9). The S/M
models are implemented on our website (it 29 nischim.u-
strasbg friwebsenyV SEngine html) together with the estima-
tion of their applicability domain and an automatic detec-
tion of potential halogen-bond acceptor atoms.

1 Introduction

Understanding and predicting intermeolecular interaction
strength ks crudal in many fields, such as medidinal dhemis-
try, material sdence, supramolecular chemistry and arystal
engineering, because both proteindigand complexes and
a large part of novel functional structures at the supra-
meclecular level in modemn materials are due to weak inter-
medlecular interactions'® Among those, halogen bonding
has been owerooked during a long period and s now con-
sidered as one of the keys of molecular recognition, foous-
ing espedally attention in the fields of medidnal dhemistry
and molecular design™ The growing importance of the
halogen bond in dchemistry leads to the need for quantita-
tive data, in particular regarding the halogen-bond basidty
of Lewis bases B towards covalently bonded halogen
atoms, through the formation of a halogen-bond comples:.

B+ Hak¥ = B- - -HakY (1

According to the IWPAC definition™, ‘a halogen bond
ocours when there is evidence of a net attractie interac-
tion between an electrophilic region associated with a halo-
gen atom in a molecular entity and a nudeophilic region in
another, or the same, molecular entity’. The nature of XB
mainly considered as electrostatic, based on the attraction
betwesn a region of positive charge located along the axis
af the carbon-halogen bond (or halogen-halogen bond),
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the so-called o-hale™ and some polarizable elecron pair
in - or mon-bonding orbitals of B

Halogen bonding b5 of practical interest because it may
occur in protein-ligand interactions™® with direct inpact
an binding energy and geometry, but ako on the systemic
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properties (pharmacokinetics, selectivity) of a drug candi-
date"™"", In spite of this, XB k much poorly characterized
than hydrogen bonding. This s not surprising since generic
definition of XB covers a vast domain of rather diverse in-
teraction pattemns, in which the relative interplay of electro-
statics (and thereof resulting polarization effects) charge
transfer phenomena and steric effects may strongly vany
The 'Halogen Bond’ thersfore still requires intensive investi-
gations, both esperimental and theoretical, in order to
cover an extended range of chemical diversity and environ-
ments.

The growing interest in halogen bonding has meotivated
researchers to use varous theoretical tools in arder to de-
sribe the XB interaction from a geometric and energetic
paint of view. In the field of gquantum chemistry, numenous
studies devoted to XB have been peformed using both
semi-empirical®™ and ab initic [DFT, HF. MP2Z, REMPZ,
COSD{T)™*"™ approaches.

Obviously, despite their strength in the phenomena de-
scription, the major limitation of these approaches remalns
the size of the studied systems In this regard, QM/MM and
OM/OM’ calculations offer very attractive altermnatives, but
the requirements of sophistication of the comesponding
methodologies still limit their application and only a few
number of studies have been published so far: see paper
by Zhu™® and references therein. For molecular mechanics
studies, relevant force field (FF) parameters for halogen-
bond interactions have been proposed™ " and are still
under development, induding polarizable FF™ or the so-
called podtive extra-point (PEF) representing the o-hale an
the halogen atom by an extra point of positive dharge in
the currently most refined FFs.

Ome of the first OM approadhes applied to biomaolecules
was a DFT calculation™ performed on the active site of
aldose reductase with its brominated IDDS94 inhibitor,
showing that an unexpectedly short Br-0 distance ob-
served im the orystal structure was due to electrastatic at-
tractions involving the bromine o-hole. At the DFT level,
the GGA functionals with additional empirical dispersion
terms (DFT-D3(B970/def2-00VF)) has recently been applied
for XE modeling,®? this level of theary having been proven
to yield reliable non-covalent interaction energies and equi-
librium distances among the functionals tested in a bench-
marking study™ The most interesting insights concerning
XB interaction strengths come from more advanced func-
tionals MO6-2¢, »B9XD, B97-1, B97-2, and B8 family) sup-
ported by Xoray and experimental thenmodynamic
data®+ "

Alongsde DFT - notoriously weak in terms of manage-
ment of dsperdon terms — the most popular and suitable
OM method for intermolecular interactions caloulation is
MFL However, acourate OM caloulations are very difficult
to achieve for this dass of problems: sooner or later, au-
thors™ resorted to empinical comelations between parame-
ters or properties calculable by OM (for esample compo-
nents of the atomic dipole moment of the XB-imeohed
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lndine) and experimental interaction energies. For example,
in the case of iodine-halogen interaction in anystals of dihy-
drothlazolo foxazino jquinalinium oligolodides™ a linear re-
lationship between the local value of electron kinetic
energy at the bond critical point of 1-X halogen bonds and
the experimentally measured dissodation ensrgy O (HA-)
was shown to exist.

To end this brief and certainly non-exhaustive ewocation
af the wvarious theoretical chemistry methods applied to
halogen bonding, it is worth noting that the above QM cal-
cul atiions are often used to compare the results of FF para-
metrizations®™* or to derive the new FF paameters
themsehes"® or new scaring functions™

Degpite the significant theoretical efforts mentioned
abowve, the relationship between first-prindple calculations
and thermodynamic obsenables ks still the major challnge
af molecular modding. Advances in OM or MM modding
aof XB emergy a5 a function of geometry 5 only the first
(and, one may allege easest) step to predict, for example
the equilibrium constant of XB-mediated reversible binding.
There are few tentative empirical methods in this sense,
and all of them have a number of dsadvantages. Quantum
chemical approaches like DFT ar MP2 are able to provide
“delta G* estimates of a reaction — but, in spite of the high
intrinsic cost of OM, this “delta G° only indudes, at best, vi-
brational entropic contributions and lgnores putative large-
scale conformational changes and desolwation entropy
termis. Free Energy Perturbation™ calculations may be af-
fordable but since they are FF based, rdevant FF parame-
ters have to be available for XB in the methodology ap-
plied. Even so, these rather timeconsuming simulations
may be used on the scale of tens of ligands, but are
beyond feasibility in a virual screening context of a mid-
sized or large compound database.

For the latter task, the only sound alternative is to build
a Quantitathe Structure — Property Relationship 25PR)
madel. The main advantages of O5PR models are quidk pre-
diction, easiness of defining possible errors or drawbadks,
abllity to improve model predictivity by updating with new
experimental values.

This waork represents a modest contribution to the un-
derstanding of the extremely vast problem of XB interac-
tions: predictive O5PR modding of the XB acceptor pro-
pensity of dectron-enriched functional groups in interac-
tion with a same XB donor - malecular lodine |, - in hydro-
phobic solvents. Modding thus focuses on the ¥B acceptor
jpartner, therefore not directly addressing the o-hale prob-
lem, and not accounting for the behavior of bound halo-
gens Hal-¥ as a donor in organic compounds. This study is
rendered possible by the existence of a large and diverse
st of guantitative experimental measurements™ of 1:1
(B:1) complexation constant K=1/K;, of organkc com-
pounds [B) with diladine (1)) as a reference halogen-bond
donar in alkanes at 298 K

The logarithm of the equiibium constant  pKas
(=+log K=—logky) at 298 K, in alkanes ks a handy scale
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to estimate halogen-bond accepting strength of functional
groups of organic compounds. it i worth notidng that
Pk comesponding to the logarithm of the dissodation
constant Ky, of dilodine with the halogen-bond acceptor B,
s defimed homogeneously to the common pkg,+ scale of
proton basicity and to the pky,, scale of hydrogen-bond
basidty.

In referencd™ it has been demonstrated that phg,
values can be stralghtforwardly interpreted in terms of
electronic and steric effects, and are seen to follow Ham-
mett™ equations The latter, however only apply within
congeneric series, with only one substituent vaning at
a time. They represent particular instamces of structure-ac-
tivity relationships, but no general Quantitative Structure-
Property model The aim of this paper is spedfically to con-
struct such a modd.

In the oaaft of Q5PR aeation, the most impartant step in
modeling a property P is the cholce of the molecular de-
scriptor vector D, because its elements 0, need to contain
the rdevant chemical information allowing functional cor-
relations P=§0y, O, ..., O} to be discovered by machine
leaming the second key pillar of QSR Robustness and
quality of Q5PR models is defined by the size and diversity
of the training set, e.g. the esamples of molecules m of
measured Pjm) assodated to descoriptors Oim).

BIDA fragment descriptors™™ are counts of colored
substructural molecular fragmenits, derived from 2D chemd-
cal structures. Recent developments,™ coupling the vari-
ous types of fragmentation ([sequences, atom-centered
fragments and triplets of atoms) with wvarous coloring
schemes (atom symbol, pharmacophore type, elecrostatic
and lipophilic properties, afc) and enabling the targeted
counting of local fragment centered on marked atoms in
key fumctional groups resulted in unprecedented versatility
of supported fragmentation schemes, in prindple tunable
to support a vast range of Q5PR models. SIDA terms were
already proven™ to be excellent supports for hydrogen-
bond acceptor propensity prediction - a property strongly
related to the herein targeted XB acceptor strength.

Models were obtained wsing Support Vecor Madhine
(5¥M) and multiple linear regression methods, on a set of
598 organikc monofunctional and polyfunctional XB accept-
ars in which the atom responsible for the interaction/
charge transfer with Lk has been deary identified SVM
madels were generated wsing the evolutionary SWM tuning
strategy™ including sdection of most appropriated de-
sariptor spaces out of the inital st of fragment descriptors
with different marked atom strategies Consensus MLR
modeling was performed wsing the |9DAXSPR program. It
resulted in ensemble of MLR modds issued from different
types of fragment descriptors and different varisble selec-
tion algorithms. After oros-validation, an intrinsic and un-
awoidable step in model building. models were dhallenged
to predict ¥XB acceptor propensities for putative electron-
enriched centers of the polyfunctional compounds in the
external test st Based on predicted pky, of the putative
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acceptor sites, an estimation of the predicted effective
complexation constant was obtained with the help of the
ChemEquif™ program. A consensus of top perfarming SVM
models was implemented on our website (it /inichim.
w-strashg fréwebseneV SEnginehtml) together with the esti-
mation of thelr applicability domain and an automatic de-
tection of potential XB acceptor centers.

2 Computational Procedure

The general procedure i summarzed in the workflow
shown in the Figure 1. The dataset was selected and cura-
ted from the initial database™ fragment descriptors were
prepared induding different marked atom strategies to
label |, acceptor sites, and Q5PR models were built and
aross-validated. The best of these modes were used for
construction of a Consensus Model (OM) that was there-
after validated on the external test set.
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Figure 1. Warkflow fior the (5P modsling of halogen-bond basic-
ity of osganic modecules.

2.1 Data Preparation

Measured pKy, represent primary experimental values mea-
sured in heptane, cydohexane, hexans, methyloydohexane
at 298 K, where the pky, differences as a result of solwent
effect are generally within the esperimental uncertain-
ties ™™ When the solvent k CCL, CHCL or CHCh, the K
values measured in the given solvents were recaloulated to
secondary pKg values in alkanes by established™ linear
Gibbs energy relationships. Molecubes from the inftial data-
base™ reported by IUPAC and commaon names, were first
converted into 2D structures, wsing ChemAxon's Mame to
Structure conversion tool™, with manwal chedkdng and
a posterion comection of wrongly converted structures. Cisf
transdsomers with widely dierging XB acceptor propens-
ties were removed (because ISIDA desoriptors do mot cap-
ture stereochemical information). f a compound had sever-
a reported equilibrium constant values in different sol
vents, only the primary pKg value in the allane was select-
ed. The concerned XB acceptor sites were explidtly report-
ed in the initial database. Labeling of the comesponding
atoms in structures was performed by hand, using Marvin
Sketch™ and the Structure Data File manager EdiSDE™
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Fgure 2. Ranges of pify, for the families of Lewis bases {acfive
sitest - right columin notations]. The left and right boundages of the
baxes indicate the 25th and 75t percentiles; a line within the box
marks the median Eror bars of the boxes indicate the 90th and
10th percentiles

Thuss, the training set contalns 598 organic acceptors in-
duding 14 different types of XB acceptor atoms, each of
them containing from 2 (acceptor: bromine) to 112 faccept-
ar: carbomy O) organic bases, respectively (e Table 51 in
Supporting Information). Within these families, the pkg;
values span different ranges, the namowest being —0.92 to
0.14, for the a-dectronic carbons and the largest s —1.39
to 368, for the sulfur of thiophosphory group Figure 2).
The weakest binding sites are the x-dectronic carbons, the
ether oxygen and the nitile nitrogen, and the strongest
binding sites are the sulfur of thiocarbomyl group, the
amine nitrogen and the oxygen of phosphord group
(Rgure 2}

The 11 polyfunctional organic bases of the initial data-
base, for which experimental equilibrium constant values
were only measured in OCl, CHCL, GHA, therefore being
secondary pky; data, constibuted the external test set. In
order to estimate a predictive power of the models, the
pkyg values predicted for external test set in alkane solvent
were recaloulasted to pKa: in appropriate chilorine-contain-
ing sohent by kmown™ linear Gibbs energy el ationships.
The labeling of the acceptor sites in the training and test
sets have been performed manually according to the data-
base anmotations.
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2.2 Descriptors and Machine Leaming Technigques

The caloulations have been performed wsing the evolution-
ary SVM optimizer™ which supports descriptor space se-
lection alongside with the choice of ikSVM operational pa-
rameters™ [epsilon, kemel type, cost, gammal The SVM
caloulation induded 3000 generations and the best 9
models (Table 52, Supplementary Materal), dharacterized
by @ and RMSE values, were induded in the Corsensus
Maodel (CM). The MLR model building was performed with
the ISIDA OSPR package™® combining forward and back-
ward variable selection technigues. In general, 1600 MLR
models were created and ones with the biggest OF value
were picked. The perfformances of the Consensus Models
far both learning methods were established and compared
thereafter (Table 2).

221 BIDA Descriptor Spaces Used in Explonatory Scamning
This paragraph spedfically describes the fragmentation
schemes uwsed in the preiminary, systematic scan of de-
sariptor spaces, with MLR and SV

Fragment descriptors™™ represent subgraphs of a mo-
lecular graph. Each unigue subgraph ks considered as an &-
ement | of the descoriptor vector, whereas its ocoumrence
count ks used as the descriptor element value 0,

Ouwr working hypothesis ks that the accepting atom and
the nature of its environment chiefly influence halogen-
bonding acceptor strength. Here, the structure of the or-
ganic Lewis base ks the only changing factor, which influen-
ces the variation in pky;. Therefore, we reused the strateqy
employed in the study of hydrogen bonding™ including
marked atoms [MA] which explicithy label the acceptor
atom (Table 1) In such a way, information about both the
acceptor center and s environment b encoded. Four
marked atom strategies were considered :

- Mo marked atom - all fragments are generated (MAG).

- Sequences start with the marked atom, or the central
atom of atom-centered fragments ks the marked atom
(MAT).

— Only fragments containing the marked atom are gener-
ated (MAZ).

- A special flag 5 added to the symbol of the marked
atom and all fragments are generated (MA3).

Table 1. Examples of 15108 descriptors = atomsdbonds sequences of kength 4 - geremed within different maked atom strategies. The
rrarked aom - ane of two niteogen atonms- i Bbelad by "L The fegments ooqinmend Langer than 1 ane shawn in panenthess_

M i A AT
L]
i H-C-C-C 2) W CCMNCCC
[ WL C-WCC
C-H-CL @) C-H*CCC-HLCC

H—
H

] Decumence of the fragments
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a bounding box/fragment control approach™® The bound-
ing box method consists in recording, for each dement O
of the desoriptor wector, the minimal and maximal values
observed ower the training set compounds. Since 0, are
fragment counts, minD) is typlcally 0 for all but ublquitous
substructures occuming at least once in every compound.
Then, if for a given component, the Dy value of the com-
pound M to predict violates the inequality miniD) < OyM)<
max(DY), Le. if M ks “out of box” with respect to its term [ it
will be considered as not predictable by the concemed
local model (in practice, one may allow for a spedfied
number of such violations before exduding M. Howewer,
one must recall that BIDA fragmentation strategies are
open-ended: novel compounds may contain fragments
never encountered in any of the training molecules, which
farmally would increment the vector dimension by adding
novel terms O, . where n ks the training set vector dimen-
sion. Compounds with such novel, “exotic’ fragments are re-
Jected 2 mot predictable according to this ‘fragment con-
trol rule.

The applicability of a consensus model relies on the frac-
tion of applicable individua models (Le. the modds for
which AD doss not discard the given maleculel i this
number is lower than a threshold, the overall CM prediction
ks ignored. For SVM, by defult, the threshold i fived at
50%.

In addition to the applicability oiteria listed above the
web-deployed approach follows the inbuilt applicability
asmessment mechanism, based on a generic trustwaort hiness
amessor accounting for the fraction of applicabl e individual
models 2 above, but also the standard deviation of indi-
vidual predictions.

2.4 Prediction of EMective Complesation Constants far
Palyfunctional Molecules

Classical experimental methods do not allow manitoring
the detalled behavior of polyfunctional molecules, with
mare than one putative XB acceptor competing for interac-
tions with L. The precise degres of involvement in XB of
each of the individual acceptors cannot be determined -
but may be predicted, as our models return group-spedific
Pk values. The magnitude accesible to experimental as-
sesment is, however, the total amount of free and bound-
ed |, - and therefore, only a global, “effective” equilibrium
constant K, can be measured. In order to prove the feasi-
bility of meaningful predictions for polyfuncional mole-
culles, a protocol to generate predicted K values from indi-
vidually predicted pky values of every putative XB accept-
or site has been sat up and applied to an externa valida-
tion st of 11 molecules. This protocol implies the fallowing
steps:

1. Manual curation of polyfunctional compound struc tures.

Since these are polyfuncional, structures were suooes-
sively labdled at each of the putative XB centers For ex-
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ample, 14selenothiane GMILES string C15CC%C1,
where the “1° markers stand for &membered ring do-
sure) ks represented twice in the test set, owing to its
two putative acceptors, sulfur and selenium. Each ks, at
its turn, marked as key atom 17, like in C1[E00C%01
and C15005e11C1, respectively.

2. Standard predictions of XB group-specific pke values
for the labeled training set was undertaken, using both
5vM models (via web server interface) and MLR ap-
proaches.

3. Since the reported experimental effective constants Ke
were not dlways measured in allane solvent, the pre-
dicted (allane solution] pky, values had to be rescaled
by means of appropriate linear relationships™ to
values matching the peculiar solvent in which every K,
was reparted.

4. Ewventually, the predicted log K was estimated as the
kg of the sum of individual solent-rescaled) group-
spedfic constants, which comesponds to the warking
hypothesis that only 1:1 acceptord; complexes contrib-
ute significantly to Ky (no smultaneous binding of mul-
tiple dilodine at diffierent acceptors of a same molecule
owing to the low concentrations used). Altemnatively in
order to chedk whether the above hypothesis is justi-
fied, the (hemEgqui program was applied to simulate
the complete putative network of chemical equilibria in
solution™ . Indeed, since a polyfunctional molecule
bears several potential XB sites, several 1:1, 1:2, etc
complexes can coexist in solution. The program ks de-
signed to derive equilibrium constants on the basis of
physico-chemical measurements, such as calodimetry,
spectroscopy IR, NMR, or electrochemical measure-
ments. The program also allows the caloulation of the
equilibrium concentrations of all dhemical forms in solu-
tiom and ftitration curves of these physico-chemical
methods, if equilibrium constants are known,

5. Esperimental and predicted log K, were plotted and
compared, by means of root-mean-squared error RMSE
and asodated determination coefficlent /.

3 Results and Discussion

3.1 Benchmarking of the Different Marked Atom Strategies
and Relative Model Performance

Individual 5¥M and MLE models were built using the differ-
ent MA strategies. Average 500 RMSE and F of the oon-
sensus models for each strategy are summarized in Table 2.
The first proposed approach MAO doss not pinpoint the
halogen-bonding site and generically describes the mole-
oule MAT and MA2 describe the immediate suroundings
af the acceptor site The last approach, MA3, could be seen
a5 a combination of the two different points of view men-
tioned previoudy it encompasses the whole molecule but
adds the information of the XB acceptor so that the ma-
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Table 2. Predictive performandas of the models in S-fold onoss-vali-
dation involiing the differsnt marksd stom strategies snd without

accounting for models applicablity domain.

www.molinf.com

Mark stom stalgy SV LR OM
SOV RMSE O 5OV RMSE O
MAD [ 0R8 @59 [TE)
AT 047 089 451 087
A2 [iFt] 091 049 .88
MAT 0w 093 043 [V

chine leaming procedure can differentiate atoms of the
same type partidpating or not in halogen bonding.

According to the Table 2, all of the MA strategies perform
quite well Expectedly, the MO strategy is dightly worse
tham others, which pinpoint the active center. The best
models are based on MA3 strategy descriptors, whidch ex-
plidtly distinguish fragments belonging to the reaction
center and those of s environment. The SYM models
slightly outperform consersus MLR models without AD
(Table 2). With AD, predictive performances of the MLR con-
sensus modeks in 5fold cross-walidation are RMSE (50V)=
0386046 and &F BCV) = 00940090, see Table 53 in Support-
ing Information. The nine winning 5VM modds are al
based on MA3I terms, with RMSE (5CV)=040-044 and
QFECV) = 0.91-0.92, see Table 52 in Supporting Information.
They invohe atoms-and-bonds sequences of length be-
tween 2 and 5, & or 7 atoms, in whidh atoms are represent-
ed by atom symbaols and, in some descriptor spaces, anno-
tated by formal charge. The latter ks one of the funcions of
the ISIDA Fragmentor program alowing one to indude
meore chemidcal relevant properties. One model involves
atom pair (AF) counts, Le sequences in which anly first and
last atoms are represented explicithy.

Eventually, since the MA3 strategy seemed to perform
better in general, it was prefared for ensemble modeling
in 5WM and MLR for the prediction of the external test-set
amnd for putting S¥M M model on the web-serer. Com-
jpared to results im Table 2, the 9 kocal modes (Table 52, Sup-
porting Information) evolved by the optimal SYM approach
and combined into the web-deployed CM model are of ab-
solutely comparable proficiency levels, with the RMSE
(CM)=103% and B (CM)=093. Notice that if training sst
compounds are submitted for predicion on the web
senef, 3 consensus of fiffed pky, will be retumed. The
RMSE between retumed and measured values i of 017
units, which corresponds to a determination coeffident of
098

3.2 Owtlier Analysis

Imespectivay of the modeling strategy a consensus set of
outliers emerged : molecules failing to be properly predict-
ed in cos-validation exercise in the sense that the differ-
ence between predicted and experimental pke exceeds
the 5-fold O RMSE value of the model Bventually 32 out-
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liers were observed (Table 54, Supporting Information).
These indude:

» singleton compounds, .. rare representatives of specif-
ic structural patterns. These comprise thiony chiloride,
tetramethylguanidine, sulfolane, 2-flucropyridine, and di-
benzoselenophens.

o MN-butylpymolidine and N-Bopropylpymolidine as  the
only examples of tertiary cyclic amines, as well as bulkily
substituted  aliphatic  amimes (N N-diisobutyd met hyd-
aming, M M-di-n-propylsec-butdaming MN-di-npropyli-
sobutylamine, dilsopropylaming) had Al overpredicted
XB acceptor propensity. This behavior might be reated
to overestimating basicity in a contest in which only the
inductive, basidty-enhandng effect of the alkyl substitu-
enits is leamed by the model. Indeed, primary, secondary
and tertiary amines in which al but one of substituents
are of small wolume witness an increase of XB acceptor
strengths with respect to the dze of the largest substitu-
ent Based on these examples, the model accounts for
the inductive effect of allkyl groups. However, it falls to
propedy account for the fact that in bulky substituents
steric effects force the substituted M atom into a less
basic state, close to planar (5p°) geometry. Fragment de-
soriptors do not explidtly track down steric effects,
albeit the information may in principle, captured by
fragmentation schemes enabling large fragment sizes

» The oppodte steric effedt of enhanced tetrahedral pro-
pensity - and thus enhanced basidty/XB acceptor
strength - ks observed in bridgehead bicydic amines
(e.g., quinudiding). The end wser of the web-deployed
model is therefore advised to expect impredse retums
for such compounds (underestimations for bridgehead
amines by an expected emor of 2.5 logK wnits, overesti-
mation of bulky substituted amines by about one log
uniit).

» Some ds-thioamides and o-aminopyridines which may
form bidentate halogenhydrogen bonds™ as shown
in Figure 3 are akso in the list of outliers (moleoules 4
amd 32 in Table 54). At the same time mast of such po-
tentialy bidentate ligands are reasonably well predicted
by our models. Thus, the average difference between
predicted and observed pk; values for o-amdinopyri-
dines Is abowt 0.11, 0,07 for linear thicamides and 0.09
for cydic thicamides.

H
g . | T \\ /I
|

N I/
w
AT Oy

Fgure L. Bidentated Halogen/Hydrogen bonding s narias, in dis-
thioamides snd o-aminopysdines, mspectively. Arrows display the
sense of polarication, from electron donor to saepbor
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3.3 External Test Set of Polyfunctional Organic Moleoules

Predictions of the effective complesation constant logh,)
were performed for an externa set of 11 organic bases
bearing 2 or 3 putative |, binding sites (Table 3). Figure 4
shows that predicted effective constants reproduce the ex-
perimental loghky very wel RMSE of predicted values are
similar to the oossoalidated (Gble 2) root-mean-sguare
impredsion of the two modds: RMSE=046 [BEVM), 055
{MLF) which comesponds to determination coefficents of
i =0.80 [S¥M), 0.70 [MLF). These are excdlent results for
an external prediction challenge imvalving, furthermaore, sol-
vent-spedfic comections of the directly predicted pRg,
walues

3.4 Comparison of Strength of Halogen and Hydrogen
Baonding
In perspective of our previous waork on hydrogen-bond ac-
ceptor strength modeling ™ it ks interesting to compare XB
acceptor strength to this related, but subtly different kind
of interaction. The present study features 166 molecules
with availlable H-bonding acceptor strength data against 4-
F-phenol in €0, which sered to this purpose

On the overall, there s - as expected — not much comela-
tion between XB and H-bond acceptor propensities (Sup-
|porting Information, Table 54). However, strong comelations
have been found within spedfic families. This can be ex-
plained by the fact that the physico-chemical nature of the
acceptor site - chemical dement, hybridization, etc — de-
fimes the generic order of magnitude of the interactions. XB
amnd H-bonding both concern sharing of polarzable elec-
trons with some ‘electrophilic’ partner, which ks directly de-
pendent by the electronic state of the acceptor site — yet, it
is dependent in different ways: the two interactions di-
wverge with respect to the relative importance of polarza-
tion, charge transfer orbital overdap offects. Howewer,
within a given family the generic acceptor propensity of

[<] o
40 E
A = 0.4
25| @e-D01
g | 1 e T QBT ot 0.25 L
15 Fa
1.0 o

0 -
wo e SVM

an | o7 o0

05 oo o5 1.0 1.3 20
lMam am
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the center is modulated by its chemical context — and it
tums out that this modulating effect is companable for both
H-bonding and XB strength: a same substituent will impact
both properties sinndl arky.

As it was determined, for oxygen bases fthe C=0, -0,
P=0, 5=0 sites), the pky ks lower than the pKgg of the H-
bond complexes An opposite trend is observed for sulfur
bases (the —5—, (=5, P=5 sites), for which halogen-baonding
s considerably stronger tham H-bonding. This ks in line with
the quantum mechanics study by Widken et a™ who
demonstrated that exchanging water in an lodobenzene
complex into dimethylsulfide still provides a gain of 11 kW
meal Smilar trend between halogen- and H-bonding is ob-
sarved for stability of the dilodine complexes with primary,
secondary and tertiary amines, as well as in the case of aro-
matic nitrogen bases, for which the stability of the dil odine
complexation i compatible or higher than the stability of
the H-bond complexation (Table 4).

4 Conclusions

This waork reparts the successful Q5PR modeling of pig; re-
lated to the 1:1 (B :I,) complexation of organic Lewis bases
(B) with dilodine () as the reference Lewks add in dkanes
at 298 K. The models were obtalned using 5VM and ensem-
bz of Multiple Linear Regresions on a set of 598 organic
Lewis bases. After exploring various ISIDA fragmentation
schemes, the optimal desoriptor spaces to host these Q5SPR
madels were found to be marked-atom descriptors of type
3 (which give the alleged XE acceptor and all the substrc-
tures containing it a special status, meaning that they wil
be expliditly asdgned to dedicated descriptor vector ele-
menits). Of course, ISIDA fragment desoriptors are mot able
to explicitly cover all the possible steric and dectronic ef-
fects playing a role in complesation strength, notably the
putatiee bidentate halogen-bond hydrogenbond interac-
tion scenarios ocouming in certain privileged conformations

lagXe ...,

ag . GMSE-L5E 2
SRR R .
a0 10 ey grua = LT 10fE gy o 2 50 o
’ ) .--""ﬁ.
o 2
15- L
10 :
TS - MLR
ayp
AF Lo 95 10 1E 23
105 e

Fgure 4. Pradicted ve experimentsl sffedtive pi,, for the external test set: taldng into scoount fragment contral a5 AD by the SVM

rreethod fleft], and without AID by the MLR methad right).
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Table 3. The extemnal test set- the stahbility anstant for the complexation of |, with pohfunctional organic molecules in 00, CHO, or hep-
tane st 298 K The numbers near the stuctures repessant pil,, values pradicted by the SV methad for the conres pondiing binding sites_
effeclive 1:1 stability constant, logi,
ik paiyfunctionsl hass Sobvent pirescdicbe
Exp S MLA

1 (su ¥ 126 1022 o
2 OHOL, 156 127 e
3 OHOL, 103 165 1462
4 219 204 il ]
-] oL 114 158 1.74
& oa, on? 004 iR ]
7 oa, -0 4 057
8 oq, —{0.58 [ilei] 048
9 heptane 12 184 1.84
10 oa, —047 —00483 o
ST
1" [ L 00, 230 am 274
&
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Table 4. Compaison of Halogen and Hydwmogen bonding™

www.molinf.com

Chemical class ] B on R s
Onygen bases fthe C=0, —0— P=0, -1.07 097 85 0942 020
S} i)

Mitriles —089 094 11 0978 Q05
Sulfur bases 174 139 21 0904 07
Péirmary, seandarty and tertiary 461 150 13 QER% 045
amines

Complenss with aromatic nitrogen  —05 142 36 Q76 025

* g i - parameters of linear cormelation plgy=a+ f plue 0 - the
mnlzrnfmrpuu'lhﬂmz—mhimlmldmt,s—:tﬂﬂud
Jeiath

of given chemotypes. Howewer, the machine leaming pro-
cedure managed to minimize emors due to sudh effects
beow the overall intrinsc impredson of prediction, with
emor  signs  (underprediction of bidentate  interaction
strength and overprediction of analogous examples with-
out the complementary H bond) in agreement with chemi-
cal expectations

Models were extersively oross-validated and challeng ed
to predict effective complexation constants for polfunc-
tional molecules of an external test set In all these tests,
they showed extremely robust ooss-walidation statistics
and were able to successfully extrapolate the interaction of
pohfunctional compounds with I: experimental overall
binding of |, could be inferred from the indhidual propen-
sities of all the groups putatively partidpating in XB. In
spite of these noteworthy successes, it was also observed
that the approach features an important weabness, in
terms of accounting for steric effects — mainly due to the
weak representation in the training data of steric effect-
ridden compounds.

A predictor of the halogen-bond basidty of acceptor
sites of organic molecules was oreated on the base of the
entire training set and the best modeks. The SYM consensus
model is publically avallable on the server: hiopainfochim.
w-strashg friwebseny'VSEngine himl Only an internet access
and browser is required to access the modeks, without any
software installation. The comparson of the hydrogen-
bond and ha ogen-bond complexation constants does mot
show any global rdationship between these related, but
mechanistically quite different chemical interactions. How-
ever, strong plecewise comelations within chemical families
based on a same type of Hbond/¥E donor were found,
which means that while the intrinsic H-bond or XB strength
of these centers are uncorrdated, the modulating impact
af the substituents on both H-bond and XE are compara-
ble.
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Chapter 5

QSPR modeling of the Free Energy of hydrogen-
bonded complexes with single and cooperative

hydrogen bonds.

Discovered first around 100 years ago'”’, hydrogen bond is still object of numerous research
and debates. The reason of this long-lasting interest is determined by the importance of
hydrogen-bond based interactions to a broad spectrum of fields varying from biology to
material science. The topic of hydrogen bond interactions drew particular attention in 1990th
with the boom in developing of supramolecular and crystal engineering researches. Since that
time, the depth and the complexity of the phenomena have expanded drastically. A new
concept of hydrogen bonds has been emerged'® and new aspects of weak hydrogen bonding
occurring in biological systems have been discovered'’. Hydrogen bond in the present time

is interpreted as a region alternating from covalent bonds to van der Waals interactions, ionic

interaction and even Tt-cation interchange.
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The following definition is proposed for the complexity of hyclrogen—basecl interactions: An

X-H~A interaction is called a “hydrogen bond” (HB), if (1) it constitutes a local bond, and (2)
X-H acts as proton donor to A. The energy range of hydrogen bond dissociation varies from
4 to 160 kJ/mol, and the distance up to 3.2A is considered potentially capable of bonding.
Within this range, the nature of the interaction is not constant, but includes electrostatic,
covalent, and dispersion contributions in varying weights. More about the nature and the

156, 158-159

variety of HB interactions could be found in numerous related books , works of

162-163

Desiraju'®'®!, Leiserowitz and Steiner'**, while the biological aspects could be found in

a book of ]effrey and Saenger165 )

Following the line of mono- and polyfunctional intermolecular interactions, this project deals
with the modeling of the strength of hydrogen-bonded complexes. Our paper on this topic
has been published in Molecular Informatics'®. The task is aimed at the modeling of the
strength of both, mono- and polyfunctional hydrogen bonds, which, this time is formed by
different acceptors and different donors. The data set used for modeling is so-far the biggest
used for QSPR study of hydrogen bond strength. Initial data included the measurements of
the same complexes in different solvents, that allows to build linear correlations, so as to go
from the reference solvent to the required one, allowing the comparison of HB strength
relative to different media. The obtained linear correlations have been estimated during the
external validation. The performance of the developed models has been evaluated on two
external sets. The first one was formed by the complexes with single HB, among which there
where donors/acceptors encountered in the training set as well as structurally unknown
molecules. This fact suggests a different from the traditional, ubiquitously applicable for single
molecules, manner of the model’s predictive performance estimation. Here, the external set
complexes have been attributed to four different classes that correspond to a certain degree
of ‘novelty’ of the complex with respect to the training set. Consequently, the model’s

performance has been evaluated for each of the classes.

The work was done in collaboration with Vitaly Solov’ev (Institute of Physical Chemistry,

Moscow) carried out the MLR calculation.

The article is given in the end of this section, with the authorization of all authors.
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5.1 Modeled object and property

The data set, referred to ‘standard’ conditions, was composed of varying donors and acceptors
coupled by single hydrogen bonds. The active site of each participating molecule was
attributed and explicitly marked: correspondingly, this is the donor atom, providing
hydrogen, and the acceptor atom with free electron pair. The Marked Atom (MA)-based
descriptors have been used. The structures of the donor and the acceptor molecules have been
treated separately: for each of the participants the fragment descriptors, including the local
ones, i.e. with the corresponding donor/acceptor (D/A) labels on the active sites, have been
prepared and in the end concatenated altogether, forming an integrated descriptor vector,
representing a particular donor-acceptor complex. The MA3 strategy was the best one in the
previous project with similar task of modeling of the strength of intermolecular complexation,
which could be explained by the fact that the strategy encompasses and describes the whole
molecule but at the same time explicitly distinguish fragments belonging to the reaction

center. Thus, the MA3 strategy is involved herein.

5.2 Modeling workflow

Training dataset: 3373 HB Generation of ISIDA Obtaining and validation

complexes, AG values in CCl, ; > (3CVv) SVM- and MLR-
at 298 K fragment descriptors individual models

Preparation of CMs from .
the most predictive __, | Polyfunctional external test
individual models sets: 12 HB dimer complexes

Monofunctional external «—
test set: 629 HB complexes

Figure 17. Workflow of the modeling of the Gibbs Energy (4G, kJ/mol) of hydrogen bonded complexes of
different donors and acceptors.

5.3 Data preparation

An initial data set consisted of 4002 HB complexes measured in different solvents at several

temperatures has been compiled from the literature'>" 154 167-170 The complexes have been
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attributed with the experimentally estimated AG values for 1:1 complexation. The
measurements were carried out in 17 different organic solvents at the temperatures varying
from 293K to 303K. From this data, a homogeneous set of 3373 complexes, where the
measurements have been carried out in CCly under the standard temperature of 298K, has
been extracted and constituted the training set. The set underwent cleaning and filtering
excluding all inorganic, metalorganic, deuterium containing compounds and salts. The donors

and the acceptors structures underwent a prescribed standardization procedure used on our

virtual screening web server (http://infochim.u-strasbg.fr/webserv) and based on

ChemAxon’s Standardizer!'°?

(neutralization, isotopes removal, conversion to ‘basic’ aromatic
form etc.). The labeling of the active sites of donor molecules have been performed by
SMARTS-based substructure search (by means on an in-house tool using the ChemAxon

substructure search API), whereas the acceptors’ active sites have been detected and marked

by means of the previously developed HB acceptor strength model'” (http://infochim.u-

strasbg.fr/webserv/VSEngine.html). If multiple centers were found, the one with the

strongest acceptor propensity was the kept working hypothesis.

Both external test sets have been collected from the same literature. Monofunctional test
set (test set 1) consisted of 629 complexes with single HBs. Unlike for the training set, where
the strength of the complexes was referred as the Free Energy (AG, kJ/mol) for 1:1
complexation at unified conditions, for monofunctional test set the experimental AG values
were given for different solvents, meaning that the predicted values of AG underwent the
solvent-specific corrections. The corrections have been obtained with the help of linear
solvents correlations, retrieved from the initial data, where some of the complexes, apart
from the values in CCly, had additional measurements in other solvents. The second
external set (test set 2) contains 12 dimers with cooperative HBs (Figure 18) measured at
‘standard’ (meaning the same as for the training set) conditions.

PR Figure 18. An example of complex with two
cooperative hydrogen bonds.
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54 Computational details

Out of four available marked atom strategies, the MA3 strategy was chosen for the modeling,
based on a preliminary MLR study (App., part II, Table 1.5) and on previous experience,
showing it to be the best suited in similar contexts''’. The fragmentation schemes for the SVR
calculation included various atom coloration by elements symbol, by CVFF force field label
or by pharmacophoric types, so that the descriptors are enhanced with an additional
chemically relevant information (see section 2.1.4). The considered fragments topologies were
sequences and atom-centered fragments of the minimal length from 2 to 4 and the maximal
length from 3 to 14. Overall, 64 descriptor sets have been tested, where 40 of which,
producing the individual SVR models of maximal robustness constituted the consensus SVR
model. For MLR, only one atom coloring scheme (by elements) and one fragments topology
(sequences) were used. This resulted in 40 descriptors sets used to build 480 MLR individual

models, the best of which were kept for the consensus prediction.

The prepared consensus SVR and MLR models have been validated on two external test sets.
For the first, monofunctional one, six linear correlations, that relate the AG value in a certain
solvent and in CCly have been prepared: correspondingly, for C,Cl,, Ce¢Hs, CeH;Cl,
CCL;CHs, C,H,Cl,, C¢Hy, (App., part 11, Table 11.1-2). The Pearson correlation coefficient for
the correlations varies from 0.78 to 0.98. Test sets featuring novel combinations of training-
set donor with a training-set acceptor are typically easier to predict than test sets in which a
training-set donor is challenged to interact with a never-encountered acceptor or vice versa.
Eventually, sets featuring new donors in interactions with new acceptors are still a bigger
challenge. Thus, the monofunctional external set could be considered as containing four classes

of complexes attributed to four distinct degrees of ‘novelty’:

*  PAIROUT- both donor and acceptor were featured in some of the training set

complexes, but never together;

. ACCOUT- the acceptor of this pair was not included the training set, but the donor

was present in some HB complexes;

. DONOUT- the donor of this pair was not in the training set, but the acceptor was seen

in some HB complexes;

. BOTHOUT- neither donor nor acceptor were in the training set.
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The model’s predictive performance thus is referred to these four specific classes represent

an increasing degree of difficulty of extrapolation. The AG assessment for the second external

test set with cooperative HBs was calculated with the assumption that the observed

experimental affinity linearly correlates with the sum of individually assessed AG values.

The performance of the models has been estimated by R”and RMSE values. The applicability
domain was defined by Bounding Box. Winning SVR and MLR models constituted the
consensus SVR/MLR models, that predict the property as an average of the values, predicted
by individual SVR (MLR) models.

The details of the computational procedure concerning the specification of the winning
descriptor spaces, the list of the descriptor spaces and the corresponding SVR parameters of
the individual models included into the final consensus SVR model (CM), as well as the
detailed protocol of data curation and treatment are described in the corresponding sections

of the article.

5.5 Results and discussions

5.4.1 Cross-validation

The performance of the individual models has been estimated in three-fold cross-validation
(3CV). Since various descriptors represent various, complementary points of view of the
molecular structure, the individual models using them capture the chemical information of
different nature. Therefore, the combination of the 40 individual SVR models into the SVR
CM model leads to a significant synergetic effect, boosting RMSE to 1.50 and R? to 0.94. The
performance achieved with consensus MLR calculations (RMSE = 2.22 and R* = 0.87), sce

Figure 19, is less impressive. There may be several reasons for this:

a. TheISIDA MLR tool automatically scans through possible fragmentation schemes, but
has no access to the “colored” ISIDA descriptors (described in section 2.1.4) that were
manually added to the pool of candidate SVR descriptor spaces, and were found to
win the competition.

b. Non-linearity seems to play an important role in HB affinity modeling: albeit the linear
kernel was available amongst SVR options, only two models out of the 40 constituting

the CM incorporated this option, and both of their ranks are at the bottom of fitness-
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ranked list. Accounting for model applicability domain slightly improves predictive

performance because of discarding some 10% compounds: RMSEy;r (within AD) =

2.11 kJ/mol.
AGprcd, kJ/ mOl AGpred, k.]/ 1’1’101
10
: o ©
RMSE = 1.50 . 10 { RMSE=2.22 ¥ @%%%@Bm
o. R3, =094 :
_10 4
_20 4
-30
-30 20 -10 0 10 . ; ' '
E E -1 1
AG .y, kJ/mol A v ? 2 .

AG ey, kJ/mol

Figure 19. Predictive performance of the consensus SVR and MLR models achieved in 3-fold cross-validation
on the training set of 3373 hydrogen bonded complexes.

5.4.2 External validation

External test set 1 ( complexes with single hydrogen bond)

Results given in Table 4 show that the predictive performance of both SVR and MLR
consensus models is not as good as the one observed in cross-validation (Figure 19). This can
be explained by the noise caused by the inclusion of solvent corrections as well as the fact that
one third of the compounds are outside of the models’ applicability domain. Discarding these
species resulted in significant decrease of RMSE till 2.5-3.01 k] /mol. The comparison of four
validation scenarios corresponding to different degrees of novelty revealed that the accuracy

of the prediction decreases in order: DONOUT > ACCOUT > BOTHOUT > PAIROUT.

Class Number of Number of outliers RMSE, kJ/mol R?
compounds SVR MLR SVR MLR SVR M LR
PAIROUT 262 6 4 2.17 2.51 0.87 0.83
BOTHOUT 23 1 2 2.18 3.22 0.72 0.41
ACCOUT 257 48 40 3.83 4.36 0.72 0.64

90




DONOUT 87 19 17 4.00 5.09 0.32 0.13
entire test set 1 629 74 69 3.20 3.81 0.74 0.65

Table 4. Predictive performances of consensus SVR and MLR models for different subsets of the external test set
Mol possessing single hydrogen bonds.

The donors and acceptors in PAIROUT complexes did occur in the training set but in different
combinations, this explains a good models performance for this class. Relatively small RMSE
values observed for BOTHOUT subset might be biased by its small size (only 23 H-bond
complexes) and composition: thus, most of the compounds in this subset were measured in
CCly which decreases the inaccuracies linked to data rescaling from one solvent to another.
The largest number of outliers were detected for ACCOUT and DONOUT subsets. Most of
wrong predictions in the ACCOUT subset correspond to rare or weak acceptor centers not
occurred in the training set, specifically, C-H aromatic acids, compounds with halogen atom
acting as acceptor and unsaturated aliphatic or cyclic compounds with double or triple bond
acting as acceptor. The worst results obtained for the DONOUT subset could be explained
by relatively poor diversity of the donor’s class in the training set — over 70% of donors are
phenols. For this reason, almost one third of the compounds of this subset are found out of

AD.
External test set 2 ( complexes with cooperative hydrogen bonds)

The predicted AG values for 12 complexes with cooperative HBs have been assessed from the
sum of the Free energies for individual centers (App., part II, Table II.3) according to the

formulae:

n
AGpred = a Z AG pred, i (37)
i=1
where 7 is the number of HBs (in our case 1 = 2). The parameter & has been fitted by the
least squares method, and equal to 0.60£0.02 for SVR and 0.66%0.04 for MLR predictions.
The corresponding graphic of the predicted vs experimental values is given in Figure 20. Thus,
a reasonable correlation observed for the values with the performance similar to that on the
cross-validation stage: RMSE = 1.63 and 2.68 k] /mol, R> = 0.87 and 0.65 for SVR and MLR,

respectively.
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5.6 Conclusion

By contrast to the previous project where one of the interacting entities remained constant,
this project is devoted to the modeling of the strength of intermolecular complexes formed
by varying donors and acceptors. The structures of the complexes have been represented by
the Marked Atom (MA)-based descriptors, where the corresponding atoms that have been
labeled are the donor and the acceptor of hydrogen. The strength of hydrogen bond
complexation was characterized by the experimental Free Energies (AG, kJ/mol) measured
at ‘standard’ conditions: CCly, 298K. To our knowledge, the data set utilized (3373
complexes) is so far the largest used for hydrogen-bond complexation propensity prediction.
The cross-validation performances of the models are similar (R* =0.87-0.94, RMSE=1.50-
2.22), however still, the MLR method noticeably concede in accuracy. That could be
explained, at first, by the lack of information-rich ‘colored’ descriptor spaces i.e. the ISIDA
descriptors enhanced with an additional chemical information (formal charge, force field
types, etc.) and, at second, by the important role of non-linearity in HB affinity modeling:
thus, out of 40 winning individual SVR models only two of them are based on linear kernel,
nevertheless bearing the lowest rank of the statistical score. Successfully cross-validated SVR
and MLR consensus models have been challenged for the prediction of two external test sets,

the first one of which consisted of complexes with single HBs, measured in either standard
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CCl, or in other solvent, whereas the second test set was constituted by 12 complexes with
cooperative HBs. Apart from the standard model’s performance evaluation encompassing all
the objects of the test set, a fractional model validation has been performed. The latter
considers the test set to be composed of four distinct classes differing by the proportion of
‘novelty’ of the included compounds. It has been shown that the external sets featuring known
partners in novel combinations are indeed easier to predict than sets containing either donors
or acceptors that were never seen at the training stage. Logically, the situation should be even
more tense for the challenge of predicting a set in which neither acceptors nor donors were
met at training stage - however, since that collection was rather small and biased, it was
predicted well. The solvent corrections performed with the obtained linear relationships and

involved in the assessment of AG values of the test set 1 are shown to be a useful tool for the

evaluation of AG for different solvents, not occurred in the training set. The overall
performance referred to the entire test set of single HBs is reasonable: R* =0.65-0.74,
RMSE=3.20-3.81k]/mol. At last, on the example of the test set of polyfunctional molecules
with multiple intermolecular interactions, it has been shown that the sum of HB affinities for
each individual interaction robustly correlates with the observed experimental value (R’
=0.65-0.87, RMSE=1.63-2.68 k]J/mol), which opens a perspective for the model to be

applicable for supramolecular crystal engineering and drug design.

93



www.molin.com

D0z 101002/ minf 201600070

milacular
Informatics

Predictive Models for the Free Energy of Hydrogen
Bonded Complexes with Single and Cooperative Hydrogen

Bonds

Marta Glavatskikh™ ¥ Timur Madzhidow™ Vitaly Solov'ev™ Gilles Marcou™ Dragos Honvath ™ and

Alexandre Vamel®®

Abstract: In this work, we report Q5PR modeling of the
free energy AG of 1:1 hydrogen bond complexes of differ-
ent H-bond acceptors and donors The modding was per-
formed on a large and structurally diverse set of 3373 com-
plexes featuring a single hydrogen bond, for which AG was
measured at 298K in CCl,. The modds were prepared
using Suppaort Vecor Machine and Multiple Linear Regres-
sion, with I5IDA fragment descriptors. The marked atoms
strategy was applied at fragmentation stage, in order cap-
ture the location of H-bond donor and acceptor centers.
Different strategies of model validation have been suggest-
ed, including the targeted omdssion of individual H-bond
acceptors and donors from the tralning set, in order to

dhedk whether the predictive ability of the model 5 not
limited to the interpolation of H band strength between
two already encountered partners. Successfully oross-vali-
dating indhidual models were combined into a consensus
madel, and challenged to predict external test sets of 629
and 12 complexes, in which donor and acceptor fomed
single and cooperative H-bonds, respectively. In all cases,
SVM modds outperform MLR. The SWM consensus modd
performs  well both in 3-fold crossoalidation [RMSE=
150 klfmoll and on the external test sets containing com-
plexes with single [RM5E=3.20klfmol) and cooperative H-
bonds (RMSE= 163 klimal).

Keywords: QSPR - hydmogen bonding steength - free enemies of single and conperative hydrogen bonds

1 Introduction

Hydrogen bonding ks a polar interaction imvolving a domor
(HBD) with a positively polarized H atom bound to a heter-
oatom ‘X%, and interacting with the electron lone pairs for
polarizable electrons in molecular orbitaks) of an acceptor
(HBA) - typically a heteroatom *¥*. As a rule, the ¥ and ¥
atoms are O, N, 5,5 ar F.

The thermodynamic guantities such as the stability con-
stant logk, the free energy AG and the enthalpy AH of the
1:1 (HED :HBA) complexation provide a quantitative assess-
ment of Hbond strength. As the hydrogen bonding ks of
crudial importance for protein-digand” protein-DNA and
RMA™™ interactions a5 well as for the field of self-assem-
bling systems™™ a guantitative asessment of H-bond
strength has for a long time been important for the chemi-
«cal community Earlier, the modelling of thermo dynamic pa-
rameters of the 1:1 Hbond complexes has already been
attempted through varous approaches such as quantum
chemical methods™'™ linear freeenergy relationships
(LFERsL"™ '™ empirical comelations™ ™ and gquantitative
structure-property  relationships (Q5PR) wdng results of
quantum chemical calculations as descriptors "' |n-
tramalecular hydrogen bond in agqueows solution has been
studied using Free Energy Perturbation technigue coupled
with Monte-Carlo or Molecular Dynamics simulations =0
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Mozt of C5PR studies are referring to the pig,, scaleé™
as the most often used hydrogen bond scale which is de-
fined as the logarithm of the equilibium constant mea-
sured at 298 K with 4-fluorophenol as a reference H-bond
donor. Thus, Henneman™ reported pK g, models based an
AM1-calculated descriptors built on a small set of 42 aro-
matic N-heterocydes and validated on a test set of 17 com-
pounds, resulting in a mean absolute emor of 017 logk
units. Models by Besssau™ based on density functional
theory were trained on 59 monofuncional nitrogen bases
and walidated on an external test set of 142 compounds
with a root mean squared error (RMSE) of 0.13 [caloulated
from the data reported ™. Klamt™ ™ wsed the COSMO-
RS approach to asses experimental enthalples and free en-
ergies of abowt 300 H-band complexes from the pk,,, data-
base with an accwracy of +2klmol (+035 log K wnits).
Green™ found reasonable linear comdations [ =0.41-
0.97) betwesen pKao measured for 41 HBAs with quantum
chiemi cal topology desoriptors caboulated for the complexes
af these compounds with 5 different HEDs (water, metha-
nol, 4-fluorophenal, serine and methyamine). Ruogiu™ re-
ported pKyo models buillt on a set of 537 compounds and
validated on external test set containing 451 monofunc-
tional and 47 polyfunctional molecules with RMSE=025
and 0.2 kog K units, respectively (comesponding to 1.4 and
1.6 bl mod).

Athough good pk., models were obtained in these
publications, their application is still imited by one same
H-donor. An attempt to model AG and AH on a set of 350
H-bond complexes formed by different donors and accept-
ors was reported in owr sary study™’. in Leave-One-Out
oros-validation, the model for AG demonstrated reasona-
ble prediction performance: FF=089% and RMSE=0.70 kW
ol

In this paper we report O5PR models of complexation
free energy AG bullt on large and structurally divers data-
set of 3373 complexes with single Hbond formed by differ-
ent acceptors and donors. Different validation strategles
have been tested, including the targeted omisson of indi-
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vidual H-bond acceptors and donors from the training set,
in order to chedk whether the prediciive ability of the
model 5 not limited to the interpolation of H bond
strength between two already encountered partners. Devel-
oped models were then successfully applied to predict AG
of the complexes involving both single and cooperative H-
bonds.

2 Computational procedure

The modeling workflow is shown in Figure 1. Experimental
values of Gibbs energy AG for HE complexes formed under
varows conditions Eohent, temperature) were collected
from the lterature ™™ From the inftial dataset we select-
ed a training dataset containing 3373 HE complexes with
single intermolecular hydrogen bond between the HB
donor and acceptor which were measured in Cd, at stan-
dard temperature 298K Remaining compounds formmed
two external test sets: fesf sef 1 containing 629 complexes
with single HBs and fest ser 2 containing 12 complexes
with cooperative HBs measured either in OCL or in other
solvents. For the latter, AG values expected in OCl, were
caloulated by the application of solvent-specific linear
energy relationships Eee section 2.1) to the experimental
Al measured in the given solvent. Different types of the
SIDA local descriptors were generated for the training set
(== section 2.2.1). Thus, eadh acceptor-donor pair was rep-
resented by a descoriptor vector resulting from the concate-
nation of ISIDA fragment count vectors of eadh partner (ac-
ceptor first), for each of the considered fragmentation
schemes. Individual 5WM and MLR modds were than buil
and ooss-validated. Fnally, the best individual models
were used in consensus predictions on external test sets.

2.1 Data Preparation

Training set. An initial dataset containing collection of 4002
experimentally estimated AG values for the 1:1 (HBAHED)
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Figure 1. Modefing warkflos.
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Hydrogen Bond complexes in different sobvents at several
temiperatures was complled from the literature™ = It in-
dudes a set of HEA and HED pairs forming single hydrogen
bond. The measurements were camied out in OO, CC1,
CaiCl CoHy CoHyp CO,CH, GOLH, CHO, CH,, CDCL,
CHCH, GH, H0, CHON, S, CLCH, and CHO sl
vents at the temperature vanding from 293K to 303 K
From this dataset, a homogeneous set of 3665 complexes
im €Cl, at standard temperature 298 K was selected. The set
underwent cleaning and filtering exduding all imonganic,
metalorganic, deuterium containing compounds and salts.
Acceptors and donors were treated separately: eadh subset
was submitted to standardization according to the general
procedure used on owr virtual soreening web server based
on ChemAxon’s Standardizer™ (neutralization, conversion
to predominant tautomeric form, conversion to “basic® ano-
matic representation, efc). In the donor list, the acwal do-
nating center - the H-camying heteroatom — was detected
and marked awmomatically, by means of a SMARTS-based
substructure search, with automated marking of the match-
ing atoms in the structures by means of an in-house devel-
oped tool usng the ThemAxon substructure search AFI.
Automated recognition of the putative H bond acceptors
was based on our previous development of the HE accept-
or strength model™ which ks freely accessible on our virtu-
al soreening  server  (hifpdinfochim u-strasbg friwebsen
VSEnginehtml). This model detects, marks and ranks puta-
tive centers in each molecule by expected HE acceptor pro-
pendty. f multiple centers were found, the one with the
strongest acceptor propensity was the kept working hy-
paothesis. Marking of acceptor and donor centers s needed
for the generation of Marked-Atom (MA) ISIDA fragment
descriptors Some donors and acceptors falled to be -
beled automatically, because they have saveral wery similar
putative donor/acceptor centers, or they are unusual
donors [*pseudoadd” C-H) or weak acceptors (m bonds, ar-
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omatic systems) that are not recognized as putative accept-
ars by our previous model These molecules were labeled
manually. After finishing the labeling procedure, the initial
jpairs were reconstructed and checked manually Finally, the
training set regrouped 3373 cleaned and labeled donor-ac-
ceptor pairs and the comesponding AG values for the equi-
librium reaction (1) in COCL at 298 K

HEAs and HEDs can be categaorized, respectively, into 18
and 15 families according to HE acceptor and donor
groups (Table 1). For the studied HE complexes, the AG
values vary in the ranges of —33.7-+92 kifmol for the
training set and —36.4—+6.8 kifmaol for the external test
sets respectively (Figure 2).

External test sef 1. This set contains 629 complexes with
a single hydrogen bond for which a complexation free an-
engies were measured in s x different sobvents (GO, GH.AQ,
CHy, CHis COLOH, GOLH) within the temperature
range”"" | These AG values nesded to be rescaled to
values comesponding “standard® conditions (T=298 K and
Cl, as solvent). The temperature scaling has been per-
formed only for the complexes for which experimental
values of both AG and enthalpy (AH) were availlable. As-
suming that AH ks independent on the temperature, the
van't Hoff equation was used to obtain AG at 298 K. These
caloulations demonstrated that a temperature comection
for AG is generally within the range of experimental uncer-
taintles and, as such, needs not to be taken into account.

Scaling of AG values to standard solvent (CCL) has been

performed using empircal inear relationships:
AG (in O0,) = a AG (in other solvent) + b (1)

where g and b are coeffidents spedfic to every “other® sol-
vent, and needed calibration, by simple linear regression
based on seres of compounds for which AG were reported

Table 1. Major HB donor and acceptor groups of HBAs and HBDs present in the tainig set.

atceptor gEwup name divnor group e

= N— amine nitrogen H-HH-C armine

=N, arormstic nitmgen H-NH-C, aniline

= C=h— imine nitragen H-M=C irninee

—L=HN nitiile nitmgen Ny aromatic nitrogen
-0 ether, aloohal axygen H-H=5 aromatic fragment
e =iy carbony axygen W00 hydraayl of phenals
P=0 oxygen of phos phany group H-0-C, hypdroayl of alcohol
5=0 oaygen of sulfingd, sulfory] groups H-0-0— [Py

—HO, nite H-0-5i silanol

As=0) arsine H-0-0f=0)- carboxyl

B ] sedenyl H-5Cy tiaalcohal

-5 suifur of sulfide, thiok W50 tiaphenod

= =5 suifur of thiccahanyl group H-Ca allcans

P=5 suifur of thiophosphond goup H-OR=C allcens

r o seleno HC=C ailidine

e =5 S dnriane

P=5e phas phine selenide

:|'|:-d:,.,z [enyresnes, allioenes
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in both solvents. For & studied solvents, the squared Pear-
son comelation coeffident varles from 078 to 098 (e Ta-
bles 51 and 52 in Supplementary Material). For the H-bond
complexes studied in several sohents, an anithmetic aver-
age of the rescaled AG values was taken as the experimen-
tal Adf in O

More spedfically fest set 1 can be considered as contaln-
ing four dasses of novel HEA: HBD complexes, comespond-
ing to four distinct degrees of “novelty” of the pair with re-
spect to the training set:

o PAIROUT - both donor and acceptor were featured in
some of the training set complexes, but never together;

o ACCOUT - the acceptor of this pair was not included
the training set, but the donor was present in some HB
complexes;

# DONOUT - the donor of this pair was not in the training
set, but the acceptor was seen in some HE complexes ;

o BOTHOUT - neither donor mor acceptor were in the
training set.

Extemnal walidation will therefore specifically focus on
these four spedfic dases of external compounds, which
are equivalent to the “complex out, ligand out, protein out
and both out® prediction dhallenges in computational dhe-
mogenomics™ and represent an increasing degres of diffi-
oulty of extrapolation.

External test set 2 A small dataset contains 12 hydrogen-
bonding dimers with two cooperatie hydrogen bonds
(Figure 3 and Table 3 in Supplementany Materia). All com-

Figure 3. Examples of the complecss with two cooperative hydro-
opeen (et

Wibay Online Library

2006 Wilsy-WCH Varlag GmilbH &G KGaA, Welnkm

plexes were standardized and labeled similardy to the train-
ing set.

2.2 Deseriptors and Machine Leaming Techni ques

The caloulations have been performed wsing the ewvolution-
ary SWM optimizer™ which supports descriptor space se-
lection {owt of the considered fragmentation schemes, see
mext paragraph) alongside with the dhoice of ESVME™® op-
erational parameters (epsilon, kemel type cost, gamma).
The 5WM calculation induded 3000 generations and the
best 40 of them (Table 55, Supplementary Material), robust-
ness of which were estimated by &F and RMSE values, were
included in the Corsensus Model (CM)L The MLE modd
building were performed with the BIDA (5PR padage™
combining forward and backward variable sdection tedh-
niques. In general, 7200 MLR meodels were ceated and
ones with the leave-one-out [LOO) oos-validation comela-
tion coeffident Q> 08 and with the residuak
R — oy < 0103 were pldked up. Here RS, ks the squared
determin ation coeffident of a model The performances of
the Consensus Models for both leaming methods were es-
tablished and compared thereafter.

221 BIDA Fragment Deseript ors

Fragment descriptors represent subgraphs of a moleoular
graph. Each unigue subgraph ks considered a5 an element
I of the descriptor vector, whereas its oooumence count s
used as the descriptor element value 0. Considered frag-
ment types were sequences and atom-centered fragments
of varying length. The minimum length of fragments varied
from 2 to 3 and the maximum length from 3 to 14, By de-
fault, the algorithm seanches the shortest posible pass be-
tween two atoms in case of ssquences, but the whole path
exploration option can also be generated. Varlous atom col-
oring schemes - by elements symbals, by OVFF force field
typing, by formal charge and by pharmacophore type -
can be redlized. In the ‘Atom Pair' option only the extremd-
ties of the fragment and the length of the path between
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them are ghen In such a way, &4 desoriptor sets have
been used in the preliminary systematic scan with SVM. For
MLR, only one atom coloring scheme (by elements] and
ane fragments topology (sequences) were used. This result-
ed in 40 descriptors sets wsed to bulld MLR indhidual
madels

Marked atom strategies. Our working hypothesis s that
the acceptor and donor atoms and the nature of their emvi-
ranments chiefly influence both hydrogen-bonding accept-
or and donor strength. in owr previous studies™ we al-
ready used different marked atom strategies supported by
the BIDA software. The strategies indude marked atoms
(MA) to explicitly label the key atoms in donor and accept-
or ™ In such a way, information about both the acceptor
and domor atoms and their environments is encoded. Four
marked atom strategies are available:

— Mo marked atom - al fragments are generated (MAG.

- Sequences start with the marked atom, or the central

atom of atom-centered fragments k& the marked atom

MAlL

Onlly fragmeents contalning the marked atom are gener-

ated (MAZL

- A spedal flag k& added to the symbol of the marked
atom and all fragmenits are generated (MA3).

Out of four avallable marked atom strategies, the MA3
strategy was chosen for modeling, based on preliminary
MLR study (Table 56, Supplement ary Material) and previous
experience showing it to be the best suited in similar con-
texts™** This could be explained by the fact that MA3, on
ane hand, encompasses the whole molecule and, on the
other hand, spedfically foouses the information of the HE
donor and acceptor atoms. The descriptor vector for a HE
complex was generated by concatenation of descriptors of
its acceptor and donor, respectively. Thus, a same molecular
fragmenit will be accounted by two distinct descriptor ele-
ments“™** in the concatenated vector, depending on the
partner from which it stems.

222 Bullding and Validation of the Models

O5%R models were built and wlidated using Support
Vector Machines [SVM) with the LbSVM package™ and
Multiple Linear Regresion with the BIDA QSPR pro-
gram.** The external 3-fold cross validation (3CV) and ad-
ditional external test sets were applied to validate the SVM
and MLE modds Used ernsemble modding implies the
geneation of many Q5FR modds the selection of the
meost relevant ones and followed by their joint application
to test compounds. For each compound from the test set,
the program applies a consersus model (CM), Le, com-
putes the property as an average of estimated values ob-
tained with an enssmble of the models selected at the
training stage exduding outlying predictions
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Predictive performance of modes has besn estimated by
root mean squared aror (RMSE) and squared determination
coeffident [RZ,) estimated in external 3fold cos-valida-
tion or on the extemnal test set and in Leave-One-Out Cross-
walidation (CF)

R or @)= 1= 3 (Vs — VoDV = < ¥ 0)?

RMSE = |_1,-’i'|i[}"._,|1 e A L

Here ¥, and ¥, are, respectively experimental and pre-
dicted values of AG, nis the number of data points, while
=Y = up 15 the mean of experimental values.

SV colowlotions. The buillding of the model was per-
formed with the evolutionary SVM tuning tool™ The tool
was run in default operating mode which means that the
fitmess of SVM regression modeks was determined from re-
peated three-fold coss-walidation. After 3000 generations,
out of the top combinations producing HE modds of maxd-
mal robustness (slected desoiptor space, prescribed
kemel type, epsilon, gamma and cost parameters), the 40
best combinations employing 40 distinct desoriptor spaces
(Table 55 Supplementary Material], with fitness scores (RS,)
between 082 and 0,93 were kept as parent modds for the
web-deployed consensus approacdh.

MLR calculations : The BIDA G5PRS™ program combines
forward™® and badward™ stepwie wariable selection
technigues. It generates large numbers of linear models
starting from the training set, automatically scanning owver
spedfied I190A descriptor types (see section 22.1) and ap-
plying, for each descriptor space, algorithms of forward
stepwise variable sdection. The program sdects the most
relevant models and challenges them to predict a test set
(the left-out part in the 30V iteration). It applies a consensus
madel (CM) to every test compound, Le., computes the
target property as an average of estimated values obtained
with an ensemble of individual models sdected at the
training stage ewcluding outlying predicions according to
Tompson’s rule and values outside of model applicability
domain. Predictions were performed both without and
with model applicability domain (AD) approach which com-
bénes bounding box and fragment control methods. 480 in-
dividual structure-property models were buillt on each fold
of 3CV procedure only the most robust modds with
Fop = 08 and with residuals B, —&F,, < 0.03 were an-
tered in CMs. Here B2, is the squared determination coeffi-
dent of a modd.

2.2 3 Applicability Domain (AD)

Generally, the AD defines an area of chemical space where
the model i presumably accurate™ For extemal predic-
tions, the applicability of each individual model of a CM for
the cument molecule was confined to a fragment count-
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based “bounding box”® The bounding box method con-
sists in recording, for each element 0, of the desciptor
wector, the minimal and maximal walues observed over the
training set compounds Snce 0, are fragment counts,
min{0y) is typically 0 for all but ublquitous substructures oc-
cuming at leat once in every compound Then, if for
a given component, the Oy walue of the compound M to
predict violates the range min(D) < OfM)< max(D) M k&
“out of box® with regpect to its term L However one must
recall that I9DA fragmentation strategles are open-ended:
novel compounds may contain fragments never encoun-
tered in any of the training molecules. In such cases, the
applied “bounding box” rule i smply 0< D{M)< 0, i.e the
presence of any unaccounted fragment counts as one
bounding baox violation. Any malecule M totaling a user-de-
fined threshold of bounding box viclations ks considered as
non-predictable by the individual model

The applicability of a consensus model relies on the frac-
tion of applicable individual models (Le. the modes for
which AD doss not discard the ghen moleculel I this
number is lower than a threshald, the overall CM prediction
s ignored. By default, the threshold is fived at 50% [EVM)
and at 15% (MLR).*=

3 Results and Discussions
3.1 Cros-Validstion on the Training Set

The ISIDA fragment descriptors providing the best predic-
tions in 30V have been used to bulld the OM on the entire
modelling data set. The final MLR CM indudes the 4568 indi-
vidua modds, which were used for predictions on the -
temal test sets (see below). The 40 winning SVM models
(Table 5 in Supplementary Matedal] with RMSE (3CV)
range= 1.60-253 and AL, (3CV) range=0.9-082 consti-
tute the Ch They imvohlre atoms-and-bonds sequences of
the shortest length between 1 and 3 atoms and the largest
length between 2 and 14 atoms, in which atoms are repre-
sented by atom symbol and, in some descriptor spaces,

A ey klrl

HFelng = 1,50
o| Rg 04

Ee k) - =1

il 11
A KTl
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“colored” by formal charge (FC) and force field types
(FFP*. Some models involve atom pair (AP) counts, Le. se-
quences in which only first and last atoms are represented
explicitly. Since various desoriptors represent varous, com-
plementary points of vew of the molecular structure, the
indhddual models udng them are independent, comple-
mentary predictors, each capturing and exploiting dhemical
information of different nature. Therefore, the combination
of the 40 individual SWM models into the SV O modd
(MGble 5, Supplementary Materlal]) lead to a significant syn-
ergetic effect, leading to RMSE=150 and R, =094, re-
sults that are better than those of any stand-alone modd.
The performance achieved with consensus MUR calculations
(RMSE=222 and R, = O.87), see Figure 4, is less impres-
she. There may be several reasons for this:

(a the SIDA MLR tool aumtomatically scans through poss-
ble fragmentation schemes, but has no access to the
“colored” desoriptors that were manually added to the
pool of candidate SVM descriptor spaces, and were
found to win the evolutionary *competition®.

(bl Moninearity seems to play an important role in HB af-
finity modding: albeit the linear kernel was awallable
amongst SVM options, only two models out of the 40
evolutionary “winners® incorporated this option, and
bath rank at the bottom of fitness-ranked list from
Tabde 5

Accounting for mode applicability domain slightly im-
proves predictive performance because of discarding some
10% compounds as it s shown in MLR caloulations: RMSE
(within AD)=2.11 kl/mol The svolutionary SVM model op-
timizer does not consider this option.

3.2 Bwternal Test Set 1 {Complexes with a Single Hydrogen
Bord )

Results gheen in Table 2 show that predictive performance
of both 5VM and MLR consensus modeks 5 not a5 good as

TN N

10 GRdhe - 2,22
B3 Wdd

-1 -in -1 I [
;‘l.i'n'._-:‘-. Lol

Fgure 4. mmﬂmﬂmidnﬂlmh] comnsensus modek achieved in 3-fold cross-validation on the training set contain-

ing 3373 complexes with single hydrogen bond.
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Table 2. Predictive peformances of SVM and MR Consersus Models for different subsets of the extemnal test ot 1 e section 2.1.3).
Class Mumber of mmpounds humiber of cuthes RAEE. ki dmal &,

T MLR T MLR TV MLR

PAIROUT 2 & 4 217 FI 087 [T

BOTHOUT 23 1 2 218 im (5] 041

ACCOUT 7 &8 &0 383 4% arz 064

DONOUT a7 19 17 400 5 03z a1z

entine test set 1 629 ™ 60 320 am 074 06s

observed in crossvalidation [RMSE= 320 and 3.81, respec-
tivelyl. This can be explained by both the nolse in data
(some AG values were measured in “non-standard” solvents
and temperature] and the fact that some compounds are
outside of the applicability domain of the model Thus,
MLR caloulations show that 1/3 of the test set compounds
ks out of AD (Table 8, Supplementary Material). Discarding
these compounds lead to a significant decrease of RMSE
(MLF) to 3.01 kl/maol, see Table 8 in Supplementary Material.
The acouracy of predictions depends on the selected vali-
dation scenario (see section 2.1.2). Thus, RMSE decreases in
the worder: DONOUT > ACCOUT =BOTHOUT = PAIROUT
(Table 2). The donors and acceptors in PAIRDUT complexes
are present in the training set but in different combina-
tions, which explains good models pefformances. Reatively
small RMSE values observed for the BOTHOUT subset might
be biased to its small size (only 3 H-bond complexes) and
composition. Most of the compounds in this subset were
measured in OCl, which limits the inacouracies linked to
the data scaling from one solvent to another one. A large
number of outliers were detected for ACCOUT and
DONOUT subsets (Tables 58-59 in Supplementary Material).
Most of wrong predictions in the ACCOUT subset come-
spond to rare or weak acceptor centers which did mot
ocour in the training set, such a halogen atoms and
double bonds. The warst results obtained for the DONOUT
subset could be explained by relatively poor chemical di-
verdgty of donors in the training set - over 70% of the
donors are phenols. For this reason, almost one third of the
compounds of this subset are found being out of AD
(Table 2, Table 58 in Supplementary Material).

Outliers are compounds for which the difference be-
tween predicted and experimental values was larger than
I*RMSE (3-CV), whidch comesponds to 4.5 klimol EVM) and
6.7 kl'mol (MLR). Out of the 74 outliers of the SV model,
four big dasses might be distinguished: CH aromatic adds,
compounds with a halegen atom acting as acceptor, unsa-
turated diphatic or oydic compounds with double or triple
bonds acting as acceptor, aromatic rings contalning O and
5 atoms (see Table 9 in Supplementary Material). All these
compounds were found out of the applicability d omain.

Besides, some specific examples of poor predictions have
been detected:
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» Complex 1 (Table 3) isan example of steric hindrance ef-
fects, trigpgeing an underestimation of the AG value
Predominant in the training set are phenol-donor exam-
ples substituted by small ortho-alkyls ke methyd, =thyd
ar Hpropy, which hawe a limited impact on the addity
(thus, donor propensity] of the phenol. Thereupon, the
meodel most likey ignored or scaled down contributions
of alky substitwents an phenol rings of donors In this
outlier, however, seric hindrance by alky substituents
overmules any electronic effects — but since examples of
this scenario were not well represented at training
stage, steric hindrance could not be leamed.
The underestimated AG for 1,8-bisfdimethylaminclnaph-
thalene in complex 2 (Table 3) might be an atefact of
the MA3 descriptors strateqy, accounting for bath
marked and unmarked fragments. This molecule con-
tains two dimethyd amino groups linked to aromatic
maoleties, one being marked while the other B un-
marked. The training set contalns 9 complexes of substi-
tuted phenols with acceptors containing dimethylandine
fragmenits; the latter are not marked since they were
not the designed H bond acceptors in those com-
pounds, because more potent acceptor groups were
|present, the basidty of which was enhanced by the con-
Jugation with -NMe,. All these complexes are character-
ized by low AG wvalues (—15.. —& kVmol). The too nega-
tive AG value [(—7.17 k/mol) predicted for the complex
2 can, therdfore be explained by the fact that the
model has mechanically leamed to associate the pres-
ence of unmarked dimethydaniline with strong H band
affinity. & had no examples on the basis of which to
leam that dimethyaniline per se ks a rather weak hydno-
gen bond acceptaor.

» The emor observed for the complex 3 might be ex-
plained by an intramolecular hydrogen bond between
OH and CF fragmenits in the fluorinated alcohol, playing
a role of H-donor. This hypothesis has been checked in
conformational search wsing DFT approach B3LYPR &
316" in the gas phase with the SPARTAN-14 pro-
gram.™" The calculations show that the most stable con-
former, indeed, ks stabilized by OH and OF interactions
(Figure 5). Far this reason, the experimental AG for com-
plex 3 ks less pegative (—0075 ki/mol) compared to the
one of the complex of the same acceptor (dicmane] with
2.2 2-triflucroethanol (—4.6 kimoll or 1,1,1,3.3,3-hexa-
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Table 3. Examples of outliers for the external test ot with single HBs_ A compléte it of outliers 5 provided in Table 9 Suppk & Ma-
teviall
Structure [Experimental Predicted Solvent Sulbset
4, kiimad A, kifimol
"',.J
1 |ﬂ"‘ g 240 325 Cah DONOUT
- L - e
T B L _.-"H-:J’I}:Hl
= - i._| \.‘1
qu o
2 (f'h“{f'j | ’_J 024 -7.17 1.2-0L,CH, ACCOUT
" E"'.h-\"a:{-'"‘“"‘:u i s
F
F e -1
o —'\) .: N r ‘L_ 075 595 CH,; DONOUT
{——- - 0
Gy = EG-:.-' (2)
=1

Rgure 5. 30 structuse of the most stable conformers of H-bond ac-
ceptar in axmplex 3 (Table 3] obtsined iin DFT (B3LYR 631G cal-
culaions in the gas phase

fluoropropranal-2 (—&79kl/moll. The latter molecules
are analogues of the fluorinated aloohaol in complex 3,
but are not able to adopt a pseudocyclic conformation
with intra-molecular H bond, simdlar to that shown in
Figure 5. Since our modd cannot account for conforma-
tional effects condiloning intramolecular Hbonds in the
danor, it predicted a too negative AG with respect to
the experimental value.

3.3 External Test Set 2 (Compleces with Cosperative
Hydrogen Bonds)

Since cooperative hydrogen bonding b5 essentially non-ad-
ditive, its free energy Al was estimated as
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where n ks the number of individual hydrogen bands (in
our case n=2) and AG_,, k a free energy of Hth individual
H-bomds predicted by SWM or MLR models. Eardier, a similar
strateqy was successfully used to assess stability constants
of cooperative metaHigand complexation™ The parameter
@ in (2) fitted by the least squares method (Figures) s
0,60-£0002 (for SYM-based AG,,) and 066+ 0.04 (for MLR
predictions), where RMSE=163 and 268 klfmol, i3, =087
and 085 for SWM and MLR, respectively.

4 Conclusions

This wark reports the Q5PR modeling of the free energy
MG of the complesxation of various hydrogen bond donors
and acceptors under “standard” conditions (OCL solwent,
298 K). The MLR and SWM modds were bullt on structurally
diverse st of 3373 complexes with single H-bond, the larg-
est dataset uwsed so far Spedal marked-atoms strategies
were wsed in order to prepare fragment descaiptors ac-
counting for the local dharacter of hydrogen bonding. The
model was extensively cross-validated and challenged to
predict AG for the HE complesation of extemal test sets
contaliming 629 complexes with a single HE and 12 com-
plexes with two different HBs. Reasonable performance of
consensus With an RMSE=1.50 kl’'mal in 3-fold oross-vali-
dation, the current SWM model dosely matches the per-
formance of previoudy repored plg model (RMSE 3-CV=
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Figure 6. Predicted (AG,J) vi experimental (AG,) free ensmies
for the 1:1 complexes with two cooperative hydrogen bonds. Pre-
dicied vahpes wer estimated by og 2

1.43 kl'mal), focusing on HE acceptor propensity only
Thus, the herein designed procedure using concatenated
fragment counts to desoibe donor-acceptor pairs repre-
sents a ooherent generalization of the previouws, dassical
sing le-partner approach.

The modes were first validated on a test set asssmbling
629 H-bond complexes studied in “non-standard” solvents
and slightly different temperatures This set was voluntary
selected in onder to check the robustness of the modd re-
produce noisy data. In spite of a rather large RMSE value
(3220 k)l ), the determination cosffident for this external
prediction challenges ks reasonable RS, =0.74).

Within this test set, the impact of the presence of indi-
vidual H-bond partners at the training stage on the abiliy
to predict its HE affinity has been explidtly assessed. It has
been shown that - expectedly — starting from a training set
featuring both HE partners in interaction with other mole-
cules (but not the pair itself), the model s readily able to
interpolate the HE affinity for the pair. If ane or, more mark-
edly, both partners are not present at training stage, predic-
tion emor may significantly increase.

Application of a *bounding boo®, limiting the applicabili-
ty domain of the model to compound pairs with fragment
counts within the comesponding ramges covered by train-
ing compounds, triggers a decrease of RMSE by 10-20% at
the cost of rejecting some 1/3 of the items.

BEventually, we showed, on hand of an additional external
compound st of polyfundional hydrogen bonding spedes
allowing for multiple intermolecular interactions, that the
sum of HE affinites for eadh individual interaction is robust-
ly comelated with the observed experimental affinity This
apens a perspective of application of our modds in materi-
al and drug design.
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Chapter 6

QSPR modeling and visualization of tautomeric

equilibria.

The complex phenomenon of tautomerism is still a challenge for chemoinformatics and
computational chemistry in terms of quantitative estimation, mode of transformation and
representation. Tautomerism is ubiquitous and plays a key role in practically important
processes including biochemical ones, such as the relation of tautomeric transformations to
spontaneous mutations as a consequence of mispairing by rare tautomeric forms of purines

117 and its relation to enzyme-substrate interactions' >, As for organic

and pyrimidines
chemistry, the prevailing conformation of a certain tautomeric form may affect the product
in a chemical reaction. The field of drug design likewise needs the determination of the
predominant ligand structure for virtual screening and modeling'77'178. The number of works
devoted to the elucidation of the qualitative and quantitative aspects of tautomerism is still

d178—181

being extende . However, most of them are related to quantum chemistry. In spite of

the importance of this phenomenon, only two software tools dedicated to the assessment of

82 and

the tautomeric population are currently available: the Marvin Tautomerization Plugin1
TauThor/MOKA'3, Both of those tools estimate the equilibrium constants in water at room
temperature using predicted pKa values for all individual tautomeric forms. In many

important cases, their predictive performance appears, however, to be too low, because of
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accumulation of errors on the individually predicted pKa terms. Furthermore, the approach
does not consider varying reaction conditions. Here we propose to treat the problem of
tautomeric equilibria evaluation directly, based on the experimental Ky values and Marked
Atom-based descriptors characterizing the structure of the molecules and the character of the
transformation. The data set included 10 different types of tautomeric transformations
measured in different solvents and temperatures. Presence of reaction conditions allows a full-
blown modeling of the combined structural and reaction condition impact on the equilibrium
constant as well as to seek for the specific patterns characterizing various types of

tautomerism.

This is the first time the Generative Topographic Mapping (described in section 3.2.3) is
challenged in modeling and visualization of combined structure/ conditions chemical data. An
impact of the reaction conditions on the property could be examined by means of GTM maps
exploring different subsets of the initial data: involving or not involving the conditional part.
The initial data set comprised a few tautomeric transformations measured at different solvents
with significant difference in the equilibrium constant values. These species could be an
additional criterion for GTM models quality estimation: thus, their successful separation is an
evidence of the model being able to differentiate these objects in spite of the fact that their

structures are the same. As a measure of the quality of tautomeric classes separation we

applied a special characteristic, I'-score'**, which can be computed from the GTM class maps
and hence does not need the property values be measured in the experiment. The SVR method

is used here for the benchmarking purposes.

The article related to this project is given in in the end of this section, with the authorization

of all authors.
6.1 Modeled object and property

The modeled item is a prototropic tautomeric transformation, for which the equilibrium
constant (log Kr) referred to a certain solvent/mixture of solvents and temperature is given.
The transformations are assigned to 10 distinct tautomeric classes (Table 5) the active atoms
of which, i.e. accepting/donating the hydrogen atom, are attributed and marked. The Marked
Atom (MA)-based descriptors are used to compare their performance with the CGR-based
approach, that had been tried previously in our group'®. The structural characterization of

the tautomeric transformation was undertaken by describing the "reference' tautomer of each
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pair. This "reference" tautomer is chosen as the left side of equilibria listed in Table 5, and
then coherently applied throughout the work: the "keto" form will be reference for all keto-
enol processes. An example of active atoms labeling is given of Figure 21. That is done, at
first, in order to avoid repeating description of the same atoms of the second form so that to
reduce the overall number of descriptors and, at second, to reduce the number of classes for
the depiction and analysis for the case of GTM classification modeling. Thus, the labeling of
both active atoms and the preorganized assignation defined by Table 5 allows to fully describe
a given equilibrium. The descriptor vector has been composed of the fragments with the
labeled donor atom, the fragments with the labeled acceptor atom and the reactions condition
descriptors, that were concatenated into a unified descriptor vector representing a single
tautomeric transformation of a particular type, measured under a certain reaction condition.
Two types of modeling had been performed: the ‘structural’ and the ‘general’ ones. The
structural models were referred to the GTM classification task solely and were built on a
subset of structurally unique transformations, which were 350 out of 695 initial equilibria.
The experimental conditions were not included into the descriptor vector for the ‘structural’
modeling. The ‘general’ modeling has been performed on the initial data of 695. The
descriptor vector in this case included the structures and the conditions. The performance of

the GTM for the regression task has been compared with SVR.

+ OH 0

Figure 21. Example of atom labeling to encode
a tautomeric process. The right-hand side
| | tautomer results from the motion of proton
from donor atom (red star) to acceptor atom
(green star) in the left-hand side tautomer.

|

_+_
Ir=Z
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6.2 Modeling workflow

GTM manifold on

GTM classification models Structural
structural

Unique structures set, 350 >
for tautomeric types
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Figure 22. Workflow of the modeling of tautomeric equilibria constant (log Kr).

6.3 Data preparation

The training set, composed of 695 tautomeric transformations, with the values of the
logarithm of the equilibrium constant (logKt) measured in different solvents and at different
temperatures, has been critically selected form the database prepared by Gimadiev et al'®.

The selected dataset contains equilibria for which only two stable tautomeric forms may
potentially exist. All transformations are assigned to 10 types of tautomerism (Table 5). The

equilibrium constants for them were measures in 12 pure solvents (water, methanol, ethanol,
propanol, butanol, cyclohexane, benzene, chlorophorm, DMSO, acetone, DMFA, ethyl
ether) and 7 different types of water-organic solvent mixtures (water/ethanol,
water/propanol, water/butanol, water/acetone, water/DMFA, water/DMSO, water/ ethyl
ether) with different proportions of components. The temperatures varied from 233K to

373K.

) The number of transformations in the
Type of tautomerism

DB
Keto-Enol (1) 271
Amino-Imino (I1) 178
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Hydrazine-Hydrazone (111) 12

Pyridol-Pyridon (1V) 5
Phenol-Imine - Keto-Amine (V) 33
Thione-Enol — Keto-Thiol (VI) 10

Amine-Thione—Imine-Thiol (VII) 18
Nitro-Aci (V1) 8

Classical Form - Zwitterion (1X) 28
Chain-Ring (X) 132

Table 5. Composition of the DB. The types of tautomerism and the number of transformations in the DB for each
tautomeric type.

For some transformations not one, but several different K; values measured at the same
conditions were reported in the literature. In this case, logKT for a given equilibrium was
calculated as an average of the related experimental values. The structures were standardized

by the ChemAxon’s Standardizer utility'*” (‘basic aromatization’ was used).

The subject of unbiased model validation has already been raised in the previous project,
where four different scenarios of ‘novelty’ of the complex with respect to the training set have
been introduced (see chapter 5). Regarding to tautomeric transformations, the
uncertain/biased statistics could arise for a data set comprising structurally identical equilibria
measured in different reaction conditions. In this case, external prediction of the equilibrium
constant distinguishes four scenarios: (1) tautomers present in the training set, to be predicted
under reaction conditions also seen at training stage (but not in conjunction with those specific
tautomers), (2) tautomers not in training set to be predicted under conditions already met
among training examples, (3) tautomers in training set to be predicted under novel conditions
and eventually, (4) novel tautomers under not yet encountered conditions. Only scenarios
(2) and (3) were envisaged here, since not enough external data to support the other two was
available. Thus, two test sets, collected from the same literature'”” '*° have been used for
external validation. The first test set (test set 1) consists of 20 tautomeric transformations
(App., part 1II, Table Ill.1). which have been occurred in the training set, but under different
reaction conditions. Test set 2 consists of 26 unique transformations (App., part 1ll, Table

11I.2). without structural duplicates in the training set.
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The same equilibria of the initial data set were frequently measured under different reaction
conditions, so the number of the unique transformations (i.e. without considering the same
structural changes in different solvents as different transformations) in the data base is 350.
These transformations have been extracted without the reaction condition part and gathered
into the subset of unique transformations, employed in GTM data analysis for the
evaluation of the reaction condition influence on data distribution of GTM maps, as well as
for the estimation of pure structural clustering as the criteria of appropriateness of a certain

descriptor type.
6.4 Computational details

The preliminary scanning of 64 different descriptor spaces has been performed by SVR, the
MA3 strategy has been used exclusively. The generated structural descriptors have been
concatenated with the 14 reaction condition parameters for solvent and temperature (described

in section 2.2) and molar fraction of organic component (for water/organic mixtures).

The descriptor set producing the SVR models with the highest R* score has been chosen for
further evaluation of the remaining labeling strategies. The best descriptor set was based on
atom-centered fragments of the length 1-3 and has been used for GTM modeling and
visualization and for the external validation of the obtained individual SVR and GTM

regression models. The applicability domain method was Fragment Control.

I'-score. The clustering performance of the GTM can be estimated by the I'-score!®¢ which is

normalized from O to 1 and can be calculated for any data set where the information about
classes is available. The I'-function takes into account k nearest neighbors of each projection.

The more neighbors of each point belong to the same class the higher is the I'-score. Thus,

this score characterizes the quality of class separation on the map. First, for each compound

v;, G(l, k) should be computed:

k
GLI=1/k) gwe))  (38)
=1

where k is the number of nearest neighbors, g(v;, j) =1 if the jth nearest neighbor of v; belong

to the same class, otherwise g(v;,j) = 0. Then, for each class i, y;(k) is defined as
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yit) = 1/m ) 6K (39)
=1

where n; is the number of compounds of the class i. And, finally the I'-score is

N
M) =1/N Y yik)  (40)
i=1

where N is the number of classes. The k number is set to 7.

The details of the computational procedure concerning the specification of the scanned
descriptor spaces, the corresponding SVR and GTM parameters of the individual models, as
well as the details of data curation and treatment are described in the corresponding sections

of the article.

6.5 Results and discussions

6.5.1 Data visualization and analysis with GTM

Unique structure subset

The unique data set helps to estimate the influence of the reaction conditions and
demonstrates the ability of the GTM method to classify different tautomeric types with and
without specification of reaction conditions. The task of predicting the type of tautomeric
transformation itself does not have any intrinsic value, because the type of tautomeric
transformation can be easily extracted from the transformation equation with a well-known
atom-atom mapping without the need to build any models using machine learning methods.
Nevertheless, the ability of a given descriptor set to discriminate effectively different types of
chemical objects indicates its quality and the ability to be used in building and analysis of
different models. The performance of different marked atom strategies has been analyzed with
respect to the same descriptor set (the one used herein and after is based on atom-centered

fragments, see 6.4).

Figure 23 depicts the GTM classification landscapes for four marked atom strategies for the
unique structures subset. Different colors in each landscape correspond to 10 types of

tautomerism (Table 5). The corresponding Balanced Accuracy is close to 1 for all tautomeric
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classes, which correspond to their good separation on the map (App., part Ill, Table III.3).
However, a visual comparison of the landscapes reveals that the labeling strategies MA1 and
MA2 separate different classes equally well and better than MAO and MA3. Thus, the keto-
enol and amino-imino classes of tautomeric transformations are well separated from each
other and from the other tautomeric types for strategies MA1 and MA2, but not for MAO and
MA3 (Table 6). The corresponding I'-scores for MA1 and MA2 are also higher (Table 6)
resulting in maps with more distinct separation of classes compared to MAO and MA3 maps,

where there are more areas of adjoining occupation for different classes.

MAO MA1 MA2 MA3
.
- . ; )
' L ’ > ’
%
. -
4 . =3
B ®
- ¢
- L ®
Keto-Enol Pyridal-Pyridon @ Thione-Enol - Keto-Thiol @ Ciassical form Zwitterion @ Hydrazine-Hydrazone
AminoImino Phenol-imine - Keto-Amine Amine-Thione - Imine-Thiol @ Nitro-Aci . Chain-Ring

Figure 23. GTM classification landscapes for four marked atom strategies for the unique structures subset of 350

equilibria.
Marked atom strategy Number of descriptors I-score
MAO 431 0.55
MA1 204 0.74
MA2 232 0.73
MA3 662 0.52

Table 6. The separation quality of the classification GTM landscapes of the unique structures subset expressed by
I"-score.

The entire data set

The entire data set, in which different conditions for the same unique transformation are
included in the description, has been visualized and analyzed in the same way as for the unique
structure subset above. The corresponding GTM property landscapes, characterizing the
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distribution of log Kr, and the GTM maps colored by classes (class landscapes) for four marked

atom strategies are represented in Figure 24.
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Figure 24. GTM property (top) landscapes, representing the distribution of the logKr values, and the GTM
classification (bottom) landscapes, representing the separation of 10 different tautomeric classes, built for the
entire data set of 697 equilibria. The descriptors spaces for four marked atom strategies are based on atom-
centered fragments of the length 1-3.

In comparison with the maps for the subsets of unique structures presented in Figure 23, the
maps obtained for the entire data set contain substantially more points, since the individual
points on them correspond to different combinations of structural changes with reaction
conditions, i.e. different solvents and temperature. The Balanced Accuracy for all tautomeric
classes are close to 1 (App., part Ill, Table IIl.4), in correspondence with its good separation
on the maps, especially for the MA1 and MA2 strategies, the I'-scores of which are higher as
well. These results can be explained by the fact that the MA1 and MA2 fragments are more
specific for a given type of transformations and therefore different types of equilibria form

better separated clusters. The comparison with the unique subset maps shows that the
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inclusion of the reaction conditions leads to better delimitation of the tautomeric classes: thus,
the entire set maps possess less areas occupying by several classes where they are closely
located. This could be derived from different solvent affinity and solubility for different
chemical transformation, varying structurally within the same tautomeric group, but much
more on going from one tautomeric class to another. The GTM method thus clusters data on

account of both structures of transformations and the reaction conditions.

6.5.2 Cross-validation of the SVYR and GTM models

The performances of the regression SVR and GTM models built on the entire data set for four
marked atom strategies are shown in Table 7. According to the results, the MA2 and MA1
strategies lead to the higher predictive performance of GTM models, so as in the case of the
SVR models. It could be suggested, that the MAO strategy is worse because of lack of local
descriptors, explicitly accentuating the active atoms and hence bearing the information about
the tautomeric type. The weaker performance of MA3 compare to MA1 and MA2 could be
due to large number of global descriptors, occulting the influence of both important local
descriptors and descriptors of reaction conditions. Notice also that for the GTM models the
difference in performances between different strategies is considerably more pronounced than
for the SVR models. That could also be due to the fact that the SVR method is known to
perform implicit weighting of descriptors, so unimportant global descriptors get low weights,
and their adverse effect is minimized. One can also pay attention to the fact that the MA2
strategy very slightly but consistently outperforms MA1 in both GTM and SVR modeling. A
putative explanation for this is that the MA2 strategy provides a more detailed description of
the environment of the active center due to additional descriptors that are important for
modeling of tautomeric transformations.

Table 7. The comparison of the performance of SVR and GTM methods for four marked atom strategies. The
individual model based on ISIDA atom-centered fragments (length 1-3).

Marked Number of GTM SVR
atom descriptors I'-score R? RMSE R? RMSE
strategy
MAO 445 0.68 0.72 0.82 0.77 0.76
MA1 218 0.76 0.83 0.64 0.81 0.68
MA2 246 0.75 0.84 0.63 0.82 0.67
MA3 676 0.69 0.78 0.73 0.80 0.71
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Comparison of R* and RMSE values, which characterize the predictive performance of the

models, and the I'-scores, which characterize the quality of class (tautomeric type) separation

on GTM maps, reveals a consistent correspondence between them: labeling strategies with
higher I'-score lead to regression models with higher predictive power. A putative explanation

for this is that the map with higher I'-score is characterized by more uniform distribution of
data points, which leads to smoother property landscapes with higher predictive power. This
opens up interesting prospects for using GTM maps for improving the regression models,
because the construction of GTM maps and the maximization of the I'-score for them does
not require the knowledge of property values measured in experiment and therefore can be

performed for virtual datasets of any size.

6.5.3 GTM solvent separation analysis

The way in which reaction conditions are shaping the logKy property landscapes can be
observed by looking at tautomeric equilibria that were studied in different solvents. One can
expect that if combinations of the same tautomeric transformation with different solvents are
mapped to nearly the same location in the latent space (2D GTM map), while the difference
between the values of equilibrium constants for them is significant, then this produces an
“activity cliff” which hampers the predictive performance of a models. Otherwise, if they are
mapped onto a broad region in the latent space, then the property landscape is smoother,
which is favorable for the high predictive performance of the models. To examine this issue,
of species on the map, a subset of tautomeric transformations that have a considerable
difference (more than 1 in log scale) between the log Ky values measured in different solvents
have been retrieved. The results are presented in Figure 25 and Table 8. The color of the node
corresponds to the property value (log Kr) based on the responsibility contribution of each
molecule into the node. According to the obtained picture, the data points are well
distinguished on all four GTM maps. The GTM model thus correctly recognizes the

dependency of the property from both chemical structure and the solvent nature.
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Figure 25. The solvent separation of structurally same pairs of tautomeric equilibria (Table 8) with considerable
difference in logKr values due to measurements in different solvents.

Solvent logK Tautomeric transformation

1a DMSO (307K) 0.62

CH,

1b | Chloroform (307 K) -0.49

2a Dioxane (293 K) -1.52

2b |  Ethanol (293 K) 0.10 m@j_u @ [P S
|-‘| H —_— e !:l—r-l

Table 8. Example of tautomeric transformations with considerable log K+ difference for different solvents.

6.5.4 External validation of the SVR and GTM models

To estimate the predictive performance of GTM and SVR models on external test sets, we
have chosen the models based on MA2 descriptor set as the one providing the best results.
The results of the prediction for the first external set (test set 1), assessing the models
performance as a function of experimental conditions, and the second test set (test set No2)
assessing the predictive performance for new chemical entities, are given in Figure 26. For
both sets the predictive quality of the GTM is better than the one obtained with the SVR

model. For the set 2 comprising new structures, thirteen out of 26 transformations were
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found to be out of the model’s applicability domain. Statistical parameters calculated for the
remaining equilibria within AD show an equivalent performance of both methods (R2 = 0.83

and 0.82; RMSE= 1.0 and 1.2 log units for GTM and SVR, respectively).

-
Test set 1 “ 3 Test set 2 = E
4 % R 8 | &8 [}
E 5
2 » . 4 * [ 3
. &H‘_:_‘ - log KT exp _‘, s* ' N N log KT exp
3 2 ..;‘0 T 3 -9 g 3% ® e 3, 6 9
2 d A 4 ¢
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Y A GTM Rr?=0.62 RMSE = 0.60 s | A GTM R?=0.65 RMSE = 1.96
@ SVM r?=0.39 RMSE = 0.76 o | @ SVMR:=053RMSE =22

Figure 26. Predictive performance of the models on the external sets of new conditions (test set 1) and new
structural transformations (test set 2).

6.6 Conclusion

This project is devoted to the modeling of tautomeric equilibria accounting for different
experimental conditions. At this level, the constituents that need to be considered are the
structures of chemical participants, the active centers responsible for chemical transformation
and the conditions, under which the latter is conducted. The structures have been encoded
with Marked Atom (MA)-based fragment descriptors, where the labels were assigned to

atoms donating or accepting hydrogen while the conversion.

Four marked atom strategies have been tried and compared in the frame of the same descriptor
type. It was revealed, that the use of labeled (local) fragment descriptors (strategies MA1 and
MA2) leads to models with better predictive performance for both, SVR and GTM machine
learning methods, rather than the use of unlabeled (global) fragment descriptors (strategy
MAQO). Moreover, mixing unlabeled and labeled fragment descriptors (strategy MA3) results
in a deterioration of the predictive performance in comparison with the use of only the labeled
ones (MA1 and MA?2). This can be explained by the important role of local structural factors

and inessential role of global ones for predicting the constant of tautomeric equilibrium.
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The GTM method for the first time has been applied for modeling and visualization of data,
which is more complex than the subsets of single molecules ordinarily used for GTM before.
The visual GTM analysis, performed using class and property landscapes, has shown that the
ability of a descriptor set to provide good separation between different classes of tautomeric
transformations correlates with the overall model’s predictive performance. For both
methods, the best performance has been obtained with MA1 and MA2 strategies, that provides
an optimal structural description at the same time not producing a redundant amount of
descriptors, that could occult the influence of important local or condition descriptors. The
difference in performances for different strategies is less pronounced for SVR models due to
the internal mechanism of assigning lower weights to unimportant descriptors in the SVR

al gorithm .

To quantify the quality of class separation, we applied a special characteristic, I'-score, which
can be computed from GTM class landscapes. It was shown, that the descriptor sets providing
higher I'-score values in GTM classification landscapes lead to regression models with higher
predictive power. This opens up interesting prospects for using GTM maps for improving the
predictive models for chemical reactions, since building GTMs having the maximization of I'-
score as objective function is a simulation which only requires the knowledge of the reaction

types and not of their explicit kinetic or thermodynamic parameters.

The predictive performance of the GTM and SVR models have been compared using two
external test sets, providing an unbiased assessment of model’s ability in predicting different
structures or different reaction condition. The GTM models have shown better predictions
(R” = 0.62-0.65, RMSE = 0.6-1.96) in comparison with the SVR models (R* = 0.39-0.53,
RMSE = 0.76-2.2). The GTM approach therefore can be recommended for building other
QSPR models, as it combines good predictive performance with the ability to conduct in-
depth visual analysis of data constituent and of the influence of various factors on quantitative

characteristics of chemical processes.

The SVR individual model that includes the assessment of the applicability domain and an
automatic labeling of the active atoms, is freely available on our web-server

(http://cimm.kpfu.ru/models).
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Abstract

Generative Topographic Mapping (GTM) approach was suecessfully used to visuahze, analyze
aﬂﬂmﬁﬂﬂnaqmlﬁmcmmﬁr}ufummﬁmmhmsasafmmﬁbﬂhmm
and expermmental condiions. The modelmp set contaimed 695 enines corresponding to 350 unique
transformations of 10 tawtomenc types, for wioch Er values were measured in different sohvents and at
different temperatures. Two types of GTM-based classification models were tramed: first, 2 “stroctural”
approach focused on separating tautomenic classes, nrespechve on reachion condihions, then a “general”
approach accountmg for both stucture and condibons. In both cases, the cross-wahdated Balanced
Accuracy was close to 1 and the chusters, assem]:hngu[mhhaufpa:hmla:dm were well separated
in 2-dmentional GTM latent space. Diata points comresponding to simalar transformations measured under
different expenimental condifions, are well separated on the maps.

Addihonally, GTM-dnven regression models were found to have their predicine performance
dependent on different scenanos of the selection of local fragment descriptors mrolving special marked
atoms (proton donors or acceptors). The apphcation of local desonptors sigmificantly improves the model
performance in 5-fold cress-vahidahon: BMSE = 0.63 and 0.82 logEr wmts with and without local
deseniptors, respectvely. Thiz trend was as well cbhserved for SVE caleulahons, performed for the
COMparison PUrposes.

Keywords: tautomenc equbbria, (SPR, Generative Topographie Mapping, Support Vector machine
data visuahration

1. Introduction
Generative Topographic Mappmg (GTM) 15 known a5 an efficient method of visnalizafion, analy=is and
modeling of chemical properties ¥ or binlogical activities B~ of mdividual compounds. Here, we apphy
thi= approach to tautomernc processes in which we’ll account for both molecular structure bat also on
experimental condihions (solvent, temperature). Tautomensm 15 one of the most commen process m
organic chermmstry. Accordmg to the IUPAC defimtion, tautomerism 15 an 1somerism of the following

general type:
A =
i .
v e P
Pl =<

Scheme 1. General scheme of a tanfomeric iransformation

The most common form of tautomensm 15 prototropy (prototropic tautomerism), where X represents a
hydrogen atom mugrating from one side of a molecule to another. Tautomensm 15 ivolved mm many
biclogical and chemical processes '], Despite the importance of this phenomenon, to our knowledze
only two software tools are dedicated to the assessment of the tawtomene population- the Maran
Tautomerization Plugin ™ and TanThorWMOEA M. Both tools estimate the equilibrium constants
water at room temperature using predicted pE, vahies for mdnidual tautomenic forms.

Fecently, we reported Support Vector Fegression models bult on ensemble of tautomenie transformations
for which eqmhbrum constants (Kr) were measared directly m different solvent= and at different
temperatures. ') Here we intend to complete these study by tauntomers data analysis and visnalization
using Generative Topographic Mapping (GTM). In confrast to our previous study ™ in which each
tautomeric equbbium was encoded by a Condensed Graphs of Beachon (CGE), here we apply an

1
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altermative methodology based om " ISIDA fragment desenptors focused on the substructhure
imvolved in fautomen=m as appeanng in one of the fwo taufomers in equlibmum. Earlier, frazment
desenptors melodimg labelled (marked) atoms were efficiently nsed in QSPE. modsling of the properties
which related to selected atoms and bonds, such as the strength of halogen 'Y and bydrogen ' bonding.
Motice that many different types of frapments varving by thewr topology, size and content, can be
generated for one same molecular graph, thus forming deseriptor vectors of different length. For a given
fragmentation, this length can also vary as a function of descnptors selection stratezy ['7 based on relafive
degres of focus grven to the marked atonss.

Similar to ™, here we challenge to predict logEr in different solvents and at different
temperature. For this pupose, 15 descriptors characterizing individual solvents or their mxtures with
water, as well as the imverse temperature, were nsed to descnbe expenmmental condiions. The question of
regression and classificaton medel performance potency as a function of the ratio of the lengths of
structural and condition parts of the descriptor vector 1= in focus of this study.

GTM suggested by Bishop '™ as a probabilistic extension of self-organizing maps, served here
for both data visualization and analysis, as well as a model development tool Thus, GTMs may host
landscapes “colored” by properties of known reference objects projected on the map, which allows
predicting the property comesponding to the projection point for any other objects. This property may ba
either categorical or continmous, which leads to classification and regression models [ %9 respectively.
Here, &mupmsmamledmhmldﬂmmodﬂsﬁr&ﬁ'&uﬁahmbﬂmdﬁfumthﬂm
classes, and quantitative logKr prediction, respectively. Prediction propensity of the GTM landscapes was
compared to the Support Vector Regression (SVE) ™7 models, built for benchmarking purposes.

1. Computational procedure.
The modeling workflow 15 illustrated m Figare 1. The data set composed of 695 tantomenzation
transformations, for which the equbibrium constant Ky was measured in different expenmental condiions
was collected from the Literature P8, Some of these equilibria were studied at different experimental
conditions. Thus, the number of unique transformations represented o the 695 items of the expenimental
data set was 350. Modeling was focused both on (reaction condifion-mdependent) leaming of specific
“struchural” features of the 350 covered tautomeric processes, and on “general” predictive modeling of
experimental data, mneluding both stuctural and reachon condition mformation. A key 1ssue of this work
was thus the choice of appropnate desemiptors. To encode the structwral mformation, ISIDA frapment
deseniptors following vanous fragmentation schemes were assessed 1n terms of predictive power, bet

performers being selected m the prelminary SWVE modebng (see section 2.2). In “general” regression and
classification models, structural mformation was supplemented by concatenation of vectors of condibion

descenptors to the stroctural ISIDA fragment counts.

GTM-bazed claszification was used for both “stuctural” and “general”™ modehng scenanos,
whilst GTM and SVE regreszion models served only for “general” predictive mwdeling of logEr as a
function of both structure and conditions. Detanls of data preparstion and modeling procedure are given
below.
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Figurel Worlflow of preparation of “structural” and “general™ models.
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2.1 Data preparation

The dataset comsists of 695 taufomeric transformations of 10 different types (Table 1), for which the
equilibrmm constants K7 were measured in different solvents and at temperatures from 233K to 373K,
was cotically selected from the database prepared by Gimadiev et al ™. Selected dataset contains
equbibna for which only two stable taufomeric forms may potentially exst. The equbbrum constants
were measured m 12 pure solvents (water, methanol, ethanol, propanol, butanol, cvelohexane, benzene
chloroform, DMSO, zcetone, DMFA . diethyl ether) and 7 different types of water-orgame solvent
mixhres {m'mr."ethanal walﬂ'.-‘pmpanul, water/butanol, waterzcetone, water DMFA, water DRSO,
water/diethyl ether) with different proportions of components. For some transformations not one sole but
several different K7 values measured at the same condiions were reported in the literature. In thas case,
legk for a grven equbbrivm was calculated as an average of the related expenimental values. T]:.elargest
difference between the experrmental values enpmating from different sources was 0.9 log umits. The
diztnbuton of the expenmental logEy 1= prven m Figure 2. The structures were standardized by the
ChemAxon’s Standardizer utility (*basic aromatization’ was nsed) 1.

Table 1. Composition of the traiming set.

Type of tautomerism Example of ransformanons The number of

o
Ho p—
Eeto-Enol E 271
]
. ; m —a ™ S
Aming-Tmimno f = 17

PR
— 5-b

- |
Phenol-Imine - Eeto-Amine '_l;_gj 33
T
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Thione-Enol — Keto- Thicl @—{z‘mﬁ @-{_\ 10
L]
Amine ThioneJmine Thiol e — H—L 18
Ha—o,
Nitro-Aci v_,}h’ " .F_,}H' §
Classical Form - Zwitterion Oﬂ-‘—‘ [;" 28

Chain-Ring MT\/\. - ':?Q 132

Total 695

i Figure 1. The distribution of the
. experimental logEr valnes of the
training set.

Extarnal test sets. Tautomenc equlibria for the test sets were collected from Palm’s handbook P*. The
test sef | consisted of 20 tautomenc transformations (Table S1, SM), that have been present in the
training set but measured under different condihons {zolvent, temperature). This set allowed us to assess
the models performance as a funchon of the expenimental condibons. The fest set 2 conmisted of 26
transformations (Table 52, SM) which didn’t ocour m the traiming set. Thas, with this set we could assess
the predictive performance of the models for new chemmcal enfities.

2.2 Dezeriptors

Smee logly 15 a funchon of both structure and experimental condrfions, two kinds of desenptors were
used The structures were encoded by the ISIDA descriptors whereas the condition part was represanted
by 15 parameters describing solvents and temperature.

IEIDA Fragment Descriprors P*) Since each of considered equilibria includes coly two tautomers
{Scheme 2, 1t could be charactenzed by descnptors generated for one of them. In this study, the lefi-hand
form m the sqmlibria shown m Table 1 was systematically used as “desenibed” anhty.

4
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20H o Scheme 2. Example of an equilibrinm where the right-hand
l side tantomer results from the motion of proton from domor

T atom (2) to acceptor atom (1) in the lefi-hand side tantomer.
l ’ — “ ] Information concerning atoms 1 and 2 (“mark afoms™) is
explicitly encoded in local fragment descriptors

Taking info account a particular importance of donor’acceptor atoms, special kinds of “local” ISIDA
desenptors B9 including marked (labeled) atoms P9 were used Mamely, this concems: (i) sequences of
atoms starting from the marked atom, or atom-centered fragments with the central marked atom (MALY;
(i} only fragments contaimmg the marked atom (MA2) and (#if) a combination of fragments with and
without marked atoms (MA3). Fragments without any marked atoms (MAD) were also used for the
comparison purpeses. Thus, MA] descriptors represent a subset of MA2 On the other hand MAJ is a
combination of MAQ and MA? setz. Each frapment comresponds to an element 7 m a deseriptor vector, and
its mumber of cocwrences m the molecule 15 the desenptor value I The fragments generation 15 done by
the in-house software ISIDA Fragmentor B, The size of sequences varied from 2 to § atoms; the mumber
of coordination shells m atom-centered fragments vaned from 1 to 4.

Technically, the donor and the acceptor atoms were identified for the lefi-hand tautomenc form
depicted in Table 1, using the Condensed Graph Reaction approach P For each equilibrium, generated
fragment descriptors were concatenated with the reaction condition descriptors mto one sole descrnptor
wvector.

Deseriptors qf reaction conditions. Reachon condrhon deseniptors include some physico-chemical
parzmeters of solvent, a molar frachon m solventorater puxture and the mverse temperature. The
following 13 sohvent parameters related to thew polanty, polanzability, H-acdity and basicity were
considered: Catalan SPP B, 54 W and SB constants ¥, Camlet-Taft o #¥, p #4, and x* ¥4 constants, 4
e-1 e-1
foa=— Sfe=

functions of dielectric constant £ (Born function £  Kikwood function . 26+1 and
f__s—l -1
]

E'l'l, : E+213fnmﬁmsnfﬂmmﬁacﬁmmimhxnnm{dmn¢adﬁnﬁurﬂmsmnfsimplidty

. } n* -1 nt -1 (n'-De-D
'HI! = = h= .T.lll!
m the followme formmlae). &1 = s £ T 1 T Ot e D Ay O e was

rendered as 1/T {in Eelvin degrees). Figure 3 shows that these descniptors comrectly clustenze different
kind= of solvents (protic nonpolar, aprotic polar, weakly-polar and nonpolar).

|
A full picture is represented in section # of the thezs

Figure 3. Hierarchical clostering dendrogram based om 13 solvent descriptors for different solvents. Color
code of the clusters corresponds to different classes of solvents: polar protic (red), polar aprotic (green) and
weakly polar or nonpolar (bue and purple). Hierarchical agzlomerative costering with complete-link wsing
Enclidian distance was msed.

Selection of optimal types of IS0 A fragments

The optimal topology and the size of ISIDA fragments has been assessed m SVE. caleulations, following

a workflow shown m Figure 4. First, 64 different MA3-labeled types of ISIDA fragments of different

size, topology and informational content (accountmg for the terminal afoms of a frapment exclusively,

explonng all the possible paths, accounting for formal charpes on atoms) have been generated for the
3
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entire transformation set. MA3Y was chosen becanse this was the wimming strategy in our previous works
devoted to the modeling of halogen- ' and hydrogen ' bond binding strength. Fragments of each type
were concatenated with the condiion deseniptors, formmg a deseriptor vector used as an mput m SVE
caleulations (see sechion 2.3). The best indrndual SVE model (out of 64) displaying highest performance
in 5-fold cross-validation repeated 10 times after reshufflmg (10:5-CV) has been selected. I was based
on ISIDA atom-centered frazments of length from 1 fo 3 afoms concatenated with the condition
desenptors. For thas type of fragments, all 4 labeling strategies (MAD — MA3) were considered m firther
SVE and GTM caleulations according to workflow shown on Figure 1.

,M “|,”, |_;_ S actioy of by @21 ndl cascipoon
, Fppom varadurals =t s cmaaztding iz tabmi I
o ted: ducrbw i ek

Frire 1ol 596 2w

R T WL L0 B

Figure 4. Workflow of descriptors selection

2.3 5FR modeling

SVE modeling was performed using the ibSVM package . At the deseriptor selection stage (Figure 4),
the evolutionary optimizer #7 has been used to perform both selection of the descrptor types and
optimization of the operational parameters (epmlon, kernel tvpe, cost, gamma) of the SVE method  After
3000 generations, the produced mdnndual models were renked accordng to the values of determunation
coefficient ( (eq. 7) obtained m 5-fold cross validation and the best model has been selected.

2.4 GTM modeling

The GTM algonthm is implemented 1n the mn-hounse ISIDA-GTM program and supports both regression
and classification modehng (& 1% 2 2 The winmng [SIDA descriptor sef based on atom-centered
fragments of the length 1-3 (see sechion 2.2) was used in conjunction with four abovementioned marked
atom sirategies. The operational GTM parameters (the mumber of EBF kernels, the mumber of grid poinis,
the wudth factor of radial basis funchions, and the regulanzation coefficient) were determmned m the
gmmhmpmmmmmdlmmmmmgmmm
to the regression GTM model for logEr with the highest cross-validated determination coefficient (F (e,
T) have been selected.

GTM property landscapes. Dhistnbuhon of the property over the chemical space can be visualized using
GTM property landscape, in which the “height” Ay, of each node x, of the grid defined in the latent 2D

space can be computed as:
i ~ptitn :

where 4, 15 the property value of the nth molecule, Ry, are probabiliies (“responsibiliies"™) of the
maolecules to be located m the node x,, and N i1s the number of molecules in the data set. If a property
lan.d_q:apeinmuimdinl[},ﬂmhﬁghljkufﬂmt-thmdedemmmmh,nﬁkﬂmmspmy
depends on its occupancy (to be more exact, curmilated responsibilites): the more molecules are located
near a certain node, the more opague 1s the color.

GTM claszs landzcapes

For a data set combining objects of different classes, the correspondmpe GTM map can be colored such as
to reflect the class distmbution. The data set with tautomeric transformations can be separated mto 10
tautomeric groups according to their tantomenc type (Table 1), and projections of the transformations
belongzing to each group are depicted with a cerfamn color. The assignment of a node to a certain class 15
determined by the sum of class responsinlites — the class wath the largest sum defines the class of a node
and thus its color M.

The predictive power to classify new compounds can be estimated following the algonithm
descnbed by Gaspar et al P"‘E] Thus, for any g-th test set compound, the probabality to belong to the i-th
class P{C;|g) 15 calculated according to eq. 2 using its responsibihibies Rz and PG|k} — the condrhonal
probabality of the class € for the given node &

P(Cylg) = Zp PUCi 1K) % Ry @

In twrn, PyCi|k) 15 calculated according to the Bayes' theorem
&
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pic k) = p{k|Cy)xpicy)

wh.ereP(Ci)aniP{qu}are respectively, a frachon of compounds of the class C and a normalized
cumulated of the class £ in the training set. Finally, the class with the largest probability 1s
assign to the gmiven compound In this werk, formulae (2) and (3) were used for each of 10 types of
tautomeric trapsformation n ten separate classification tasks “given tautomerism fype In conirast to other
transformations”. The predictive performance of classification has been assessed m cross-validation.

The performance of the clustering in the latent space can be estimated by [-score ™ which is
normalized from () to 1 and can be calculated for any data set where the information about classes 15
available. The I'-score considers the k nearest neiphbors of each projection. The more neighbors of each
point belong to the same class the igher 15 the I'-score. Thus, this score charactenizes the quality of class
separafion on a map. First, for each compound v , (1, k) should be computed:

G(LI) = 1/k X}, a(ve ) @
where k 1= the number of nearest neighbors, g{vy, j) =1 if the j-th nearest neighbor of 1v; belong to the
same class, otherwise glwy, i) = 0. Then, for each classi (k) is defined as

(k) = 1/m L2, 61 k) ()
where ny 15 the number of compounds of the class i. Finally, the I'-score 15
r{k) = /N T, 3, (k) ()]

where N 15 the pumber of classes. By default, k=35.
Thus, the more clusters correspondmg to a given class are separated on the map, the higher the I'-score 15,

2.5 Building and Validation af the Models

Predictive performance of regression GTM and SVE models has been estmated by root mean squared
error (RMSE) and squared determination coefficient caleulated in cross-vahdation (0°) on the external
test set (%)

Q@ (orR) =1— EimalY eepi— Vpreas* 0

T (Texpi— N P eep

"
RMSE = [t Yoretll a2 ®

Here ¥, and ¥ are, respectively, expenmental and predicted vahoes of logkT, m is the number of data
points, while <¥=,. 15 the mean of expermental valoes.
Performance of the classificabon GTM moedels has been estimated by balanced acowracy (BA)
caleulated m 10F5-CV
BA = 0.53%TP/P + TNN}, @
where TP (TN) and P (N} are, respectrvely, oumber of true posifives {frue negatives) and the overall
mumber of posihves (negatives).

2.0 Applicability Demain (AD}

Generally, the AD defines an area of a chemical space where the model is presumably accurate ™. For
external predichons, the appheabality of each indiadual model for the current molecule was confined to a
“bounding box™ ¥ based on fragment counts. The bounding box method consists in recording, for each
element 1) of the descnptor vector, the mmimal and maxmmal values observed over the frammng set
compounds. If for a grven component, M, the predicted value I viclates the range minyDy) = DyM) =
maxiDy, M 15 “out of box”™ with respect to 1fs term i. However, one must recall that ISIDA fragmentation
stratepies are open-ended: novel compounds moy confain fragpments never epcountered m any of the
traimng molecules. In such cases, the applied “bounding box™ male 1s sumply 0=Di(M)=0, Le. the presence
of any unmaccounted fragment means the bounding box violation.
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3. Results and Discussions

Data visualization and analysis with GTM

Figure 5 depicts structwral class landscape (7op), general class landscapes (middle) and general property
landscape (bottom) for four marked atom strategies. In GTM class landscapes, different colors comrespond
to 10 types of tautomenism The comesponding Balanced Accuracy values for the classification tasks
“given tautomenc type by contrast to all others™ 15 close to 1 for all types of tautomerism (see Table S3 in
Supporting Matenal) which correspond to their excellent separation on the map. However, the clusters
populated by different transformation types are better separated m the latent space of MAl and MA2
descnptors (T = 0.77 and 0.73, respectively) rather than in the latent space of the MAO and MA3
descniptors (T = 0.55 and 0.52, respectively). Similarly, in the “general” class landscape (Figure 5,
middle) BA values are close to 1 (see Table S4 m Supporting Matenal) whereas the I" parameter 15 larger
for MA1 and MA?2 (0.76 and 0.75, respectively) than for MAO and MA3 (0.68 and 0.69, respectively).
These results can be explained by the fact that the MA] and MA? fragments are more specific for a given
type of transformation and therefore different types of equlibnia form well separated clusters. The
property landscape (Figure 5, bottom), hihglightinh the areas of low and high logKr values, provides with
a complementary w1 ®
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Figure 5. GTM class landscapes (fop, middie) and property landscapes (bottom) for four different Iabelling
schemes built with mixed stroctural/solvent descriptors on the entire training set (middle, bottom) and with
structural descriptors on the umique structures data set (fop). Differemt colors correspond to 10
tantomerization classes for the class landscapes and to different logKy values for the property landscapes.
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Table 2. Example of tantomeric fransformations with considerable solvent effect on logK

Solvent logk Tantomeric transformation
1a DMS0 (34K 0.62 N
Lkt
It |  Chloroform (34 K) D40
™ €k
Za Dioxane (20 E) 152 -, .
b Ethanol (20 E) 0.10 e 3L ,__;—--,__E_,';

An mteresting feature of the “general” maps 15 thewr abibty to dishingmish data peomts
comresponding to the same stuchoe of tautomers but different experymentzl condibions (solvents
temperature). To lustrate thiz, we sslected two eqmbbna shown mn Table 2. The egulibium I 15 of
chain-nng type for which logEyr vanes from 0.62 in DMSO to 049 in chloroform. For amino-mming
tautomenic transformation 2, logKy vanes from -1.52 m dioxane to 0.10 in ethancl. As one may see from
Figure 5, these data points are well distimpuished on “general” GTMs.

GTM and SVR regression models
The performances of SVE and GTM-based regression models are grven in Table 3. One may see that
cross-validation, SVE and GIM performed smmlardy for the same marked atom strategy. The
performance largely depends on the descmiptors type: the models imvolving only local MAL and MA2
descniptors  performed  better than the model mvehang only global MAD desenptors or mixed
{globallocal) MAY type. That could be explained by the fact that the ratio of descrniptors standmg for
structures and for the reachon conditons are more balanced for MAL and MA? types.

The plots of predicted v experimental equhbrium constants for the winmmg MA? strategy reveal
a series of data points {(encircled in Figure &) for which SVE significantly underestimates logKr, whereas
GTM predichons are of reasonable accuracy.
For estimation of the predictive performance of GTM and SVE on the external test sets 1 and 2, only the
maodels based on the MA? desenptors, prowviding with the best results at the cross-validaton step, have
been selected Results shown in Figure 7 clearly indicate that on both external test sets GTM models
perform considerably better (Le., higher B? and lower EMSE walues) compared to related SVE models.
Motice that m test 2, thirtesn out of 26 transformations were found to be out of the model’s Applicabibity
Domain (AD). Stafistical parameters calculated for the remaming equibbna within AD show spmilar
performance of GTM and SVE (B! = 0.83 and 0.82; EMSE= 1.0 and 1.2 log unis for GTM and SVE.
respectively).

Companson of the K* and RMSE valoes, which characterize the predictive performance of GTM
and SVE models, and the I'-scores, which charactenze the clusters separation on GTM maps, reveals a
correspendence between them (see Table 3} descrptor sets with higher I'-score lead to regression models
with higher predictive power.

Table 3. Performance of SVE and GTM models for four marked atom siratemies.

Marked Number of GTM SVR
atom dezeriptors I[-score E: EAMSE R? EAISE
strategy
MAD 445 0.68 0.72 0.82 0.77 0.76
MAl 218 0.76 0.83 064 081 0.68
AMAZ M 0.75 0.84 063 0.82 067
AMA3 576 0.69 0.78 073 0.80 071
9
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Figure 6. Performance of SVR (IgT) and GTM (righ) models buili on MA? descriptors im cross-validation
(10x5-CV): predicted vs experimental logKr valoes.
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Figure 7. External validation of SVR and GTM models built om MA? descriptors on the extermal test sets 1
(/1) and 2 (righs): predicted vs experimental logET valmes.

3. Conclusion

The obtaned results show that GTM could efficiently be used for visualization and analysis of ensembles
of complex chemical processes, considening both molecular structure and expenmental conditions. On 2-
dinsensional maps descnbing the chemdcal space of taufomenc processes, the zones comesponding to 10
tautomenic classes are well separated. Moreover, the data points cormrespondmg to the same tautomenc
transformations mezsured in different solvents are well separated on the map.

Prediction performance of GTM and SVM regression models largely depend on the type of local
descniptors  deterouning relative importance of the marked atoms (that accept/dopate hydrogen) m
desenbing tautomenc equlibnia. For the studied dataset, the winming descriptors were of MA? type,

Interﬁhmgl}r,thatmdmh.unaccmaqafbnﬂﬂ}mMsmmmmmﬂimmhmmﬂl
the I'-scores, charactenizing the quality of clusters separation on 2D maps. This opens an interesting

perspective for using the maps to assess the quality of related regression models whatever machine-
learmng method 1= wsed.
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Chapter 7

QSPR modeling and visualization of kinetics

properties of cycloaddition reactions.

Cycloaddition (CA) is a classic reaction in organic chemistry being of a fundamental
importance for organic synthesis as the main tool for the production of the compounds of
cyclic architecture. A large variety of cycloaddition reactions arises from the diversity of
reagents, allows to design cyclic adducts of different size, nature and functions. A high regio-
and stereo-selectivity of cycloaddition explains its wide application at different stages of

complex organic synthesis.

In carly works, frontier molecular orbitals (FMO) """

calculated by quantum mechanics
methods for small congeneric series were widely used for interpretation of thermodynamic
and kinetic properties of cycloaddition. Most of modeling studies of the kinetics were
conducted using a time-consuming quantum-chemical calculation. An effort has been made
to build a linear correlation with experimentally measured physicochemical parameters of the

reagents'””'”. This, however, significantly limits application of the latter to already studied

molecules.
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Earlier QSPR modeling of chemical reactions were performed on homogeneous series either
keeping the solvent, or the structure of the reactants constant”*'”’. In these studies

]194-195, 199 200 5y g ed?01-203 descriptors for reagents

topological indexes'”, quantum-chemica
were used. These works however were restricted to water or gas media exclusively. Such
models show high correlation coefficients, but cannot be thought of as universal. For a non-
exhaustive overview of the studies carried out in the field of chemical reactivity one can refer

to work of A.Warr’”, I.Baskin et al.,?* or earlier works'?®1%7>20¢,

In spite of significant progress in the field, few attempts have yet been made towards more
extensive consideration of chemical reaction: the first one refer to the classification problem
in terms of categorical prediction of the conditions (solvent type, catalyst) of the Michael
addition’”’. The multicomponent approach of quantitative estimation of the kinetics of
chemical reactions explicitly considering both reactants and solvents have been applied to the
modeling of the rate constant of Sx2'?% 2% and E22%?1° reactions leading to a fairly good
correlations with the experimental values (R*=0.67-0.79).

This chapter is devoted to the modeling of kinetic properties of the reactions of cycloadditions
comprising (4+2), (3+2) and (2+2) types. The considered properties included the rate
constant (logk), the activation energy (Ea) and the pre-exponential factor (logA). Two
machine learning methods, SVR and GTM have been involved, where for the latter a unified
model, eligible for the prediction, visualization and analysis of all three properties, has been

constructed.

Chemical structures of reactants and products were encoded by a single Condensed Graph of
Reaction (CGR) representing a given reaction as a single pseudomolecule (described in detail in
section 2.1.4). The CGR-based descriptors explicitly characterize the reaction center together
with its immediate structural neighborhood. The CGR-based descriptors and the reaction
conditions descriptors have been concatenated resulting in descriptors vector describing the

entire transformation.

The prepared models have been exhaustively validated on the external test set comprising
reactions both structurally different from those in the training set and the same
transformations measured under different reaction conditions. Different scenarios of logk
assessment were exploited: direct modeling, application of the Arrhenuis equation and

temperature-scaled GTM landscapes.
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7.1 Computational procedure

The modeling workflow is shown in Figure 27. The database of 1849 reactions of
cycloadditions, for which the logk, Ea and logA values have been measured in different
solvents and at different temperatures, has been collected from the literature (see 7.1.1). The
data set has been divided into the training and test set, where the latter has been composed
out of 200 reactions picked up randomly from the data set. The remaining 1649 reactions
constituting the training set has been used to build three individual models, correspondingly,
for logk, Ea and logA prediction. The obtained best SVR and GTM models have been further
challenged for an exhaustive external prediction of logk on the prepared test set of 200

reactions.

Training set; 1649 Generation of ISIDA Prelminary $VR scanning:
reactions of —|  CGR fragment — | best descriptor space
cycloaddition descriptors selection
_

v v

Obtaining one GTM Obtaining threeindividual

manifold: log k, Ea and SVYRmodels: log k, Ea and

log A prediction log A prediction

' !

External validation (200 reactions]:
« Directlog k prediction (SVR.GTM|)
« Arrheniusrecalculation (SVR, GTM])
+ Temperature-scaled GTM landscape (GTM only)

Figure 27. Workflow for the modeling of the rate constant (log k), activation energy (Ea)
and pre-exponential coefficient (log A) of the reactions of cycloaddition.

7.1.1 Data preparation

An initial data set of 2551 reactions of cycloaddition for which all of the reactions contained
the experimental measurements of the rate constant (logk), 1356 reactions had activation
energies (Ea, in kJ/mol) and 1237 had pre-exponential factor (logA) values was collected
manually from the manuscripts of PhD thesis works of Prof. Konovalov’s group from Kazan

Federal University published in 1970-1990. The data set contained about 85% of Diels-Alder
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(47+2) cycloaddition, about 8% (3+2) dipolar cyclisation, and 7% (2+2) cycloadditions. The
measurements were carried out in C¢H;CH;, CH3;COOC,H;, CqH;OCH;, C¢H;NO,,
CH;CN, C,H;OH, C.H:Cl, THF, CH,Cl,, DMSO, CHCl;, C,H,0C,H,O, CsH;,OH,
Ce¢H;sBr, C¢Hy, CH;COCH3, CeHj; and CH,CICH,Cl solvents at temperatures varying from
273 to 423 K. The most frequently occurred dienes for the Diels-Alder series are: condensed
aromatic cycles, cyclopentadienones, cyclopentadienes and benzofuranes. Among
dienophiles, the prevailing structures are: maleic acid derivatives, cyanoethylenes, Ph-
substituted ethylenes and benzoquinones. The data set (reagents and products) underwent an
accustomed  standardization protocol using ChemAxon’s Standardizer Utility: basic

aromatization, isotopes removal, NO,- NO-, N3-, RRSO,-, CN- group transformation'?

While cyclization due to the reaction mechanism different stereoisomers can be formed. An
analysis of the rate constants of reactions forming two different stereoisomers have shown that
logk difference was from 0.01 to 1.0 log values. Based on our previous work®” we considered
that the difference is too small to be taken into account and comparable with the
interlaboratory errors. Thus, for the reactions able to form different stereoisomers during
cyclisation, the logk constants were calculated as a mean of given experimental values. No
other duplicates were found in the dataset. The 1849 reactions remaining after cleaning have
been characterized by 1849 values of logk, 1356 values of Ea (kJ/mol) and 1237 values of
logA, where among the latter there were no reactions without Ea. The prepared data has been
divided into the training and test sets.

External test set. The test set consisted of 200 reactions randomly picked from the initial
data set. For the reactions possessing logA and Ea values and comprised into the test set, the
corresponding values were not taken into consideration. In such a way, the test set is
considered to be attributed with 200 experimentally measured logk values solely. Out of 200
reactions in the test set, there were 57 structurally new transformations, that did not occur
in the training set. Individual statistics for them is discussed (see 7.2.3). For the most, the
transformations in the test set were measured once, at one temperature. However, there have

been 26 reactions with experimental measurements at two different temperatures.
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The training set hence encompasses the remain 1649 reactions. The histograms of the

distribution for the three properties for the training set is given on Figure 28.

4 -7 6 5 4 3 2 -1 0 1 2 3 4 5 10 20 30 a0 50 60 70 80 %0 100

log k Ea, 3/mol log A

Figure 28. Distribution of rate constant, activation energy and pre-exponential factor values in the training set of
1649 cycloaddition reactions.

7.1.2 Descriptors

The ISIDA fragment descriptors have been calculated by the in-house ISIDA Fragmentor
software', for which the corresponding CGRs were created from the reaction RDF files using
the in-house CGR Designer tool and were stored in modified SDF format. The length of
fragments varied for 2 to 14 for sequences and from 2 to 6 for atom-centered fragments. The
following options were also used at choice: charges on atoms (Formal Charge), accounting
for the terminal atoms of a fragment exclusively (Atom Pairs), and exploring all possible paths
instead of shortest paths (DoAllWays). An important option regulating the amount of the
overall generated CGR fragments is the ‘dynamic bond’. Toggled on, the option produces the
fragments, that contains the bonds forming/breaking while chemical reaction and omits the
‘generic’ fragments, not assigned to the reaction center (see section 2.1.4). That could be used
to generate fragments that describe local environment of the reaction center exclusively. For
this project, the CGR fragmentation implied the generation of all possible, local and nonlocal,
fragments. Overall, 728 descriptor sets have been generated for the preliminary SVR
scanning. Structural descriptors have been concatenated with the 14 descriptors of the

reaction conditions characterizing solvent and temperature (described in section 2.2).
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7.1.3 Building and validation of the models

SVR modelin g

SVR models were built and validated using the SVR algorithm implemented in the libSVR
package?'". The modeling was performed using the evolutionary SVR optimizer,”'” which can
be used to perform both descriptor space selection and optimization of the operational
parameters (epsilon, kernel type, cost, gamma) of the SVR method. The procedure, run for
the training set with logk as a modeled property, generated a total of 6000 models. The
descriptor set producing SVR individual model of maximal robustness (estimated by the R
value) was based on atom-centered fragments of the length 2-3. This descriptor space
encompassing 688 descriptors (674 of fragments, 14 of the reaction conditions) was used

further for SVR and GTM models building and their external validation.

GIM modeling

The GTM models were built using the evolutionary optimizer®'? which supports the choice of
the operational GTM parameters (the number of RBF kernels, the number of grid points, the
width factor of radial basis functions, and the regularization coefficient). The descriptor space,
based on atom-centered fragments of the length 2-3, chosen by the preliminary SVR scanning
was considered. The genetic optimization procedure included 3000 generations. The
operational parameters of the GTM method were optimized to predict all three properties,
logk, Ea and logA with the highest average R? value. The prepared GTM manifold has been
used for the visualization of property distribution (property landscapes) and for analysis of
separation of three different cycloaddition types on the map (class landscape). The description
and the technique of ‘coloring’ of a GTM manifold with regard to class/property is given in

section 3.2.3.

Validation ofthe models

The performance of the models has been compared by R? and RMSE values in 5-fold cross-

validation procedure repeated 10 times after data reshufﬂing.

7.1.4 Different scenarios of logk assessment for the test set reactions

The 10g1< values for the external set of 200 reactions were obtained using three different

approaches: direct assessment, Arrhenius-based assessment and temperature-scaled GTM
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landscapes. The direct assessment envisages the application of SVR or GTM logk predictive

models to the test set reactions.

In the Arrhenius-based assessment the logk values are calculated using the Arrhenius equation (eq.
41). The latter implies the usage of predicted Ea and logA values obtained with the help of the
related SVR or GTM models.

Ink =InA-Ee/p. (41)

Rate constant is more sensitive to temperature compared to any other individual structural or
solvent descriptors. This effect could hardly be accounted for by GTM-based model where
each descriptor has exactly the same weight. Therefore, the temperature-scaled approach has
been proposed for this purpose. It implies the construction of series of logk GTM landscapes

each corresponding toa specific temperature range.

Scaling of loglz measured at temperature T1 to temperature T2 can be performed according

k2 T2-T1
to Van’t Hoff equation: logﬁ =0 logy. The temperature coefficient logy was

computed as an average of logy; (i = 1 — n) values calculated for n series of reactions, each
studied at several temperatures. Overall, the reaction rates of 358 reactions in the training set
ware measured at 2 - 6 different temperatures. The smallest temperature difference in a series
was 10K and the largest was 110K. The temperature coefficient l0g y varied from 0.08 to

0.59; its average value was 0.26.

The entire temperature range (273K-423K) has been divided into 15 subranges of 10K each,
e.g. from 273K to 283K. For each subrange, the corresponding logk landscape was
constructed, i.e., each logk was recalculated to median temperature of a subrange (e.g., 278K
for the range 273K-283K) using Van’t Hoff equation. It should be noted, that the error related
to temperature deviation of 5K (0.15-0.3 logk unit) is far less than the related RMSE values
(Table 10). Each of 15 temperature-scaled logk landscapes were calculated from experimental
logk values of the training sct using the Van’t Hoff relationship, logy = 0.26 and related
median subrange temperature. At the validation stage, the program selects particular logk
landscape that will be used for prediction, corresponding to the external reaction

ternperature.

136



7.2 Results and discussions

7.2.1 GTM visualization of the training set

Generative Topographic Map shown on Figure 29 shows well separated zones populated by
the (4+2), (3+2) and (2+2) cycloaddition reactions. The ratio of sizes of these zones
correspond to classes occurrences in the training set: thus, the major class (4+2) occupies the
largest area, the following after is the (3+2) zone, which in turn is slightly bigger than the
zone populated by (2+2) reactions. A distinct separation of cycloaddition classes on the map
infers a competency of the chosen descriptors space, able to correctly discriminate reactions

belonging to different types.

o
Figure 29. GTM class landscape
displaying separation of three different
types of cycloaddition in the training set
of 1649 reactions.
4+2 3+2 242

Another technique of GTM visualization is the property landscapes, characterizing the training
set distribution of a certain property. Figure 30 shows GTM property landscapes for logk, Ea
and logA, where the gradient from blue to red corresponds to the property value variating
from low to high (in the range its own for each property). Simultaneous analysis of all three
landscapes helps to understand decomposition of logk on Arrhenius equation parameters logA
and Ea (eq. 41). According to collision theory, 4 is the frequency of collisions in the “correct
orientation”. Thus, logA values might be related to steric interaction of reactants in a pre-
reaction complex. Activation barrier Ea accounts for electronic and steric effects in the

transition state.
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Figure 30. GTM property landscapes for the rate constant (logk), activation energy (Ea) and the pre-exponential
coefficient (log A) for the training set of 1649 reactions of cycloaddition. The encircled areas correspond to
different combinations of logA and Ea contributions into logk.

Zones Example of reaction logk

A v N 2.1  (toluene,

. - OO0 320 K)
B "o ° -4.7  (benzene,

H3C. 7 . ‘;/;¥o )H:C ‘T“. \[;;HoH 403 K

C - -4.2

O Qe O (dichloroethane,

O = C r i 313K)
D -3.55 (benzene,

403 K)

Table 9. Examples of reactions projected into the zones corresponding to Figure 29.

Typically, high reaction rates correspond to large logA and small Ea (zone A on the maps)
whereas low logk values result from a combination of small logA and large Ea (zone B).
However, in some cases low activation barriers doesn’t compensate too low logA (zone C),

or, on the contrary, large logA is associated with high activation barriers (zone D).
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7.2.2 Cross validation of the SYR and GTM models

The cross-validation result (5CV) for all three properties, logk, Ea (k]/mol) and logA, for
SVR and GTM models are shown in Table 10. The SVR modeling involved the construction
of three different models for each property, whereas for the GTM model predictions were
assessed with three property landscapes built on one same manifold (see section 7.1.3). The
performances of SVR models exceed those of GTM model. However, the overall statistics for

GTM looks reasonable for all three properties.

Property SVR GTM
R? RMSE R? RMSE
log k 0.94 0.45 0.78 0.86
Ea 0.92 3.65 0.80 5.92
log A 0.89 0.36 0.62 0.67

Table 10. Predictive performance of the SVR models, built separately for each of the property, and a single GTM
model, universal for all three properties, in 5-fold cross validation for the training set of 1649 reactions of
cycloaddition. The descriptor space is based on atom-centered fragments of the length 2-3.

7.2.3 External validation of the SVR and GTM models

The external test set has been predicted in three different ways (see 7.1.3), two common for
both, SVR and GTM are (i) the direct logk prediction and (ii) the prediction of the logk using
the Arrhenius equation (eq. 41) and the predicted values of Ea and logA. The results for both
strategies are given in Table 11 and Figure 31. The weaker results for the Arrhenius-derived
logk prediction could be explained, first, by the accumulation of errors and, second, by the
narrower Applicability Domain (AD). The accumulation error comes from the prediction of
a property by means of the accessory predicted values. The many are the latter, that bigger is
the chance of misprediction, affecting the overall accuracy. The second reason is related to
the fact, that the amount of experimental data for Ea and logA is smaller by one third than for
logk, meaning less accurate training and a narrower AD. The corresponding statistics
accounting for AD (Fragment Control) for the Arrhenius-based prediction is much better,

where the number of the compounds is however shrinked from 200 to 164.

Method of logk SVR GTM
assessment R? RMSE R? RMSE
Direct 0.92 0.50 0.74 0.90
Direct (AD) 0.96 0.35 0.84 0.74
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Arrhenius-based 0.72 0.93 0.51 1.23
Arrhenius-based 0.93 0.51 0.83 0.79
(AD)
Temperature- - - 0.76 0.88
scaled GTM

Table 11. Validation of four different methods of logk assessment on the test set of 200 cycloaddition reactions.
Notice that only 164 reactions are retained by the Fragment Control applicability domain.

. 8 .
Direct logk B Arrhenius-based ?
s <
assessment & logk assessment W
4 . a |
logk exp logk exp
-8 6 8 -8 6 8
-8 -8

Figure 31. Predicted vs experimental log k values obtained with the direct log k prediction (left) or with the
Arrhenius-based recalculation (right) for the external test set of 200 reactions of cycloaddition. The statistics
is given in Table 11.

Temperature-scaled logk GTM landscape. Reaction rate assessment with temperature-scaled logk
landscapes shows a minor predominance over the direct GTM logk prediction (Table 11).
This trend was confirmed in logk predictions for a set of 13 reactions, each measured at two
different temperatures (Figure 32). The temperature-scaled approach is less prone to return
the same rate constant values at different temperatures, showing an overall better

reproduction of temperature dependence.

GTM-based direct logk GTM-based temperature-

prediction 2 scaled approach L2
logk exp - o |44 logk exp . o AA -
8 -6 -74.-'” ﬁ-z aa o ) 4| | -8 6 -_4.—-” -2 AAA 0 2 4
B N
AL a AAT AN Ty
AAA N &-’—\Aﬁ P

logk pred

R?=0.90
RMSE=0.48

-6

-8

logk pred

R%2=0.94
RMSE=0.39

Figure 32. The comparison of the predictive accuracy for the direct GTM log k calculation and the
temperature-scaled GTM landscape, for the subset of 26 reactions of cycloaddition measured at different
temperatures.
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Subset of unique structural transformations.

Since the external test set has been randomly chosen from the initial data set, it includes
reactions already occurred in the training set but proceeding under different reaction
conditions. That may lead to an overestimation of model’s predictive performance, due to
occurrence of same reactions in both training and test sets. Thus, individual statistics for the
structures, never encountered in the training set provides an unbiased assessment of the
model’s predictive ability with regard to new structures. Among 200 external set’s reactions,
only 57 transformations didn’t occur in the training set. Table 11 shows that only direct logk
assessment with SVM model leads to reasonable correlation between predicted and
experimental values: R* = 0.72 which is close to the determination coefficient on the
validation stage for the entire test set. On the other hand, application of the Arrhenius-based

SVR assessment as well as GTM-based models result in relatively poor predictions R? <0.5.

Log k predictive SVR GTM
method R? RMSE R? RMSE
Direct 0.72 0.80 0.38 1.21
Arrhenius-based 0.33 1.26 -0.48 1.87
Temperature- - - 0.40 1.15
corrected GTM

Table 12. The comparison of the direct , Arrhenius-based and temperature-scaled logk assessment for the subset
of 57 unique structural transformations.

Direct log k
assessment 2 )
logk exp E Figure 33. Performances of SVR and GTM models
. . o 0 54 z . . for the subset of unique structural transformations
i i ’ § e (57 reactions) obtained with the direct log k
prediction method. The statistics is given in Table 12.
o SVM
5 A GIM
2
K
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7.3 Conclusion

This project is devoted to the modeling of reactions of cycloaddition, with structurally varying
reagents, measured at different reaction conditions. Involvement of multiple atoms and bonds
during the chemical transformation needs an efficient way of structural description. Here the
structures have been encoded with the Condensed Graph of Reaction (CGR), that explicitly
designates the bonds forming/breaking while the reaction transformation. The data set of
1849 reactions, comprised of (4+2), (3+2) and (2+2) types of cycloaddition, has been
attributed with three experimentally measured properties: rate constants (logk), activation

energies (Ea, k]/mol) pre-exponential coefficients (logA).

Demonstrated a strong ability in the managing of structural/condition chemical data in the
previous project of tautomeric equilibria modeling, the GTM method is challenged here in
prediction of several kinetic properties with one single GTM model. The SVR models have
been built individually for each property. The cross-validation R* range for the GTM model
is 0.62-0.80 and for the SVR models is 0.89-0.94.

The external validation has been performed on a set of 200 molecules, randomly picked from
the initial dataset. Two common ways of logk estimation have been fulfilled: the direct
prediction with the corresponding logk models, and the Arrhenius-based recalculation
through the predicted Ea and logA values. For both methods, the direct prediction is more
accurate than the Arrhenius-based assessment (RMSEgee = 0.5 (SVR) and 0.9 (GTM);
RMSE shenivs = 0.93 (SVR) and 1.23 (GTM)), which is mostly related to the fact that the
amount of data for logA and Ea is much less, than for the logk training set, meaning narrower
AD. Thus, Fragment Control AD significantly improved the performance of both SVR and
GTM models.

The overall results of SVR method, having the mechanism of implicit ranging of descriptors
according to their impact, are better, than for a single unified GTM model, where all the
descriptors are taken into relatively equal account. To enhance the predictive ability of GTM
with respect to temperature, the temperature-scaled landscapes have been constructed. The
performance of the approach was the same as for the direct logk GTM assessment, with a
slight improvement in temperature dependency reproduction with regard to 13 reactions

measured at two different temperatures (RMSEgiecc = 0.48, RMSE ciperature-scaled = 0.39).
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Using a single GTM map provides another advantage: thus, since the distribution of the
reactions are the same for each property, it is possible to analyze the dependencies of the
properties and the structural features they could be determined by. Thus, simultaneous
analysis of property landscapes for logk, logA and Ea helped to identify different types of
reactions with respect to the interplay between the Arrhenius parameters logA and Ea. With
respect to class separation, the three classes, (4+2), (3+2) and (2+2) are well-separated on

the map, occupying the areas proportional to their share in the training set.

The SVR individual models for the rate constant, activation energy and pre-exponential
coefficient, supporting the choice of solvent and temperature, are freely available on our web-

server: http: // cimm.kpfu.ru/ models.
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Chapter 8

QSPR modeling of the rate constant of Syl

reactions.

In this chapter we report predictive models for the rate constant of Sx1 reactions involving
both Marked Atom-based and the Condensed Graph of Reaction-based approaches.
Unimolecular nucleophilic substitution (Sx1) is a reaction with a two-stage mechanism, in
which the heterolytic bond cleavage of a neutral molecule precedes the reaction with the
nucleophile (Figure 37). Since the rate-determining step of a bond cleavage involves only a

substrate, Sy1 is the first-order reaction.

The factors affecting the rate constant of Syl reactions were investigated in numerous
quantum mechanical calculations of different levels (HF, MP2, G2)*'"*"*. These works are
useful in investigation of various factors, such as electronic effects of substituent or size of the

molecule, influencing the rate constant. The molecular dynamics allows to go further and

216-217

heip to

investigate the reaction process altogether with solvent effects: these works

evaluate the effects of the solvation energy (water only) to the feasibility of the reaction

192

process. Some of the experimental studies were devoted to the substituent effects’”” or certain

218

steric influence”® (ortho-effect). However, all these studies were performed on small series

of reactions and did not account for solvent effects, or only water medium was considered.
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In order to generalize the substituent effects on the rate constant, several scales have been

proposed. Thus, the a constants introduced by Uggerud®'” has been designed to rationalize

the substituent effects of the alkyl groups. A comprehensive nucleofugality scale has been

220-221 :213, 222

proposed by Mayr and Denegri . Later on, the applicability of this scale was
expanded for the prognosis of the preferable, Sy1 or Sn2, mechanism??. It should be noted,
however, that the borderline between Sy1 and Sy2 mechanisms is the subject of considerable
controversy. Thus, opposed to Ingold*”*, considering the two mechanism to be distinct,
discrete processes it has been ascertained that the clear-cut distinction for many cases could
not be established due to gradual transformation of one mechanism into the other. The

borderline cases of the concurrent Sx1 - Sx2 reactions have been pointed out for benzylation

223 226-227

of pyridines*"*, benzophenones and benzhydrols*”’, arylbromoethanes*”, tosylates and
4-methoxybenzyl derivatives”®. To interpret these interjacent cases, Winstein’s and Sneen
developed a concept of different types of ion pairs intermediates” . Schleyer and Bentley
criticized this concept and suggested that there is a gradation of transition states between the
Sx1 and Sy2 extremes””**. The differentiation of the mechanism, however, to a fair degree
of accuracy could be delineated by the lifetimes of the potential intermediates®?*. The
abovementioned scales could be a useful tool for reactivity analysis only within a congeneric
series of substrates reacting under similar conditions. The first attempt to develop a more

1.237 on a set of 1661 reactions studied in

generalized model was performed by Kravtsov et a
different solvents. The model involving fragmental descriptors and Fukui indices for
structures and solvent descriptors performed well in cross-validation (R* = 0.75 and RMSE

= 0.61 logk units).

The goal of this work is to build a model for the rate constant of Sy1 reactions applicable for
a wide variety of structures and accounting for reaction conditions. A large data set of 8056
reactions, representing the first dissociation step of Sy1 reactions (Figure 37), was used in
SVR model building. The molecules have been classified according to the atoms attached to
the cleaved bond (C-Hal, C-C, etc). The GTM method was employed for the purposes of
data visualization. The most robust SVR model was applied to two external test sets,

evaluating the model performance to predict new structures and new reaction conditions.
8.1 Computational procedure

The workflow of the rate constant modeling is given in Figure 34. The training set of 8056

reactions of dissociation, has been encoded by CGR-based and MA-based fragment
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descriptors. The best descriptor space for MA and CGR approaches, producing the most

robust SVR models has been chosen for the prediction of two external test sets.

Training set: 8056 log k
values for Sn1 reactions

Generation of ISIDA CGR
and ISIDA MA descriptors

Obtaining and validation
of Individual SVR models

External test-set : 200
reactions with new
structural transformations

Selection of the best
individual SVR model for
ISIDA CGR and ISIDA MA

External test-set : 200
reactions with new
reaction conditions

Figure 34. Workflow of the modeling of the rate constant of the dissociation step of
Sn1 reactions.

8.1.1 Data preparation

The data set of 11748 transformation measured in 28 different solvents under the temperature
range from 202K to 528K, has been collected form the literature® ', For each of the
reaction, the experimental rate constant value (logk) has been attributed. The transformations
have been represented as the first step of Sx1 reaction, the heterolytic bond dissociation
(Figure 37). The measurements have been carried out in: CH,OHCHOHCH,OH,
CH,CICH,Cl, C,H,OC,H,O, CF;CH,OH, CH,CICH,OH, (CH3)3sCOH, CH;COOH,
CH;CN, C,H;COHCH;, C,H,OH, CH,OHCH,OH, C,H;OH, C,H;OC,Hs;, NH,COH,
D,O, CeH,;OH, DMSO, CH,;OH, C(H;NO, DMF, CgH,;OH, THF, C;H,;OH,
CH;CHOHCH;, CH3COCHs3, H,0, C;HgSO, and C¢H;CH;. An accustomed standardization
protocol of ChemAxon’s Standardizer Utility has been applied: basic aromatization, NO,-,
NO-, N3-, RRSO,-, CN- group transformation'”’. The data set underwent an exhaustive
cleaning protocol of removing duplicates, inorganic and wrong-drawn compounds. For more
nearly 2000 compounds, the reaction rate has been assigned to the catalytic reaction and for
some of the cases the catalyst (carbonic acids’ salts) significantly influenced the reaction rate.
As the structure of the catalyst is not included into consideration, these reactions have been
removed. The data set contained a lot of duplicates, when the reactions are the same in terms

of both, structure and condition, but the experimental rate constant for them were different.
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The amount of these species with respect to the corresponding difference in log k values is
shown in Figure 35. The molecules of the first series (the logk difference is within 0.1-1) that
had same structures and same reaction conditions have been merged and an average logk value
has been assigned. For the cases with logk difference more than 1, all the duplicates have been

removed.
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Figure 35. Occurrence frequency distribution
histogram indication the amount of duplicates
with a certain (log unit) difference in log k
values.
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The prepared data set of 8456 heterolytic dissociations could be classified in five classes, upon

the basis of the type of breaking bond,correspondingly:

e class 1: C-Hal (Hal=F,Cl,Br,I), ~50% of the data
e class 2: C-O, ~45% of the data

e class 3: C-C, ~3% of the data

e class 4: C-S, ~1,5% of the data

® class 5: S-O and S-N, ~0.5% of the data

This classification will be further used for the GTM visualization.

The data set has been divided into the training and test set data. Two external sets, cach
containing 200 dissociations have been prepared. The first one consists of the transformations
that have been already occurred in the training set, but under different reaction conditions.
This set is aimed at assessing the model’s ability to predict the rate constant in new reaction
conditions. The second test set comprised the structures which are different from the ones in
the training set and thus assessing the model’s ability to manage with structurally new
transformations. The training set included the remaining 8056 reactions. The histograms of

logk distribution of the training set is given in Figure 36.
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8.1.2 Descriptors

Both types of ISIDA descriptors, MA-based and the CGR-based, have been used (described in
section 2.1.4). For the MA-based descriptors, the atom neighboring to the leaving group was
marked only (Figure 37).

H‘i “ HaCuce . Figure 37. Performed
HiC -q N structural encoding of
- . + o + Z w Sn1 reactions by MA-

based and CGR-based

ISIDA MA ISIDA fragment
[> descriptors with the
H;C_ , Cl examples of generated
H4C. J’j fragments of different
T N j\ length (right).

A

ISIDA CGR examples of generated fragments

The CGR-based fragments have been counted by the in-house ISIDA Fragmentor software',
for which the corresponding CGRs were created from the reaction RDF files using the in-
house CGR Designer tool and were stored in modified SDF format. The labeling of the
structure for MA descriptors was performed through the CGR, the ‘dynamic charge’ option
of which allows unambiguously locate the atom acquiring positive or negative charge during
the reaction. The degrees of ‘locality’ and the thoroughness of structural description are
represented in various marked atom strategies for the MA-based descriptors and in toggling
the ‘dynamic bonds only’ option for CGR-based fragments (see section 2.1.4). The most
detailed structural description was involved herein: correspondingly, the MA3 strategy and
local and nonlocal CGR-based fragments. The length of a chosen topology varied from 1 (the

fragment standing for atom’s count) to 8 for sequences and from 1 to 4 for atom-centered
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fragments. The Formal Charge, Atom Pairs and DoAllWays options were also used. The
structural descriptors have been concatenated with 14 reaction condition parameters
reflecting solvent and temperature (described in section 2.2). Overall, 270 CGR- and MA-based

descriptor spaces have been generated and examined.
8.1.3 Building and validation of the models

SVR modelin g

SVR models were built and validated using the SVR algorithm implemented in the libSVR
package?!'. The modeling was performed using the evolutionary SVR optimizer®'”. The
procedure run for the training set and generated a total of 3000 models. The best descriptor
spaces for each descriptor type (MA or CGR), producing the SVR individual models of
maximal robustness (selected descriptor space, prescribed kernel type, epsilon, gamma and
cost parameters), have been chosen for the cross-validation comparison performance and the
external test sets prediction. The winning CGR descriptor set is based on sequences of atom
and bonds of the length from 1 to 5, accounting for the charge of the atom (‘Formal Charge
option) and encompasses 1186 descriptors overall. The winning MA descriptor set is based
on atom-centered fragments of atoms and bonds of the length 1-4, accounts for atom’s charges

and encompasses 996 descriptors.

Validation of the models

The performances of the two SVR models have been compared by R? and RMSE values in 5-
fold cross-validation procedure repeated 10 times after data reshufﬂing and on external

validation on two external test sets.

8.2 Results and discussions

8.2.1 GTM visualization of the training set

The GTM method has been employed for data visualization. The training set reactions were
classified according to the type of cleaved heterolytic bond: C-Hal, C-O, C-C, C-S or S-O
(S5-N). Since experimental conditions had no impact on this analysis, a subset of 1820

reactions differed only by their structures were considered. The GTM manifold has been built
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on the CGR-based descriptors with default parameters. Figure 38 shows that all 5 classes of

reactions are well separated on the map.

v - — "
| of |
C-Hal . .
Figure 38. GTM class separation for the
® co training set of 8056 Sn1 reactions. The
- i classes are formed in accordance with the
. bond that breaks while the dissociation.
e @ c<
C-5
S-N(0)

8.2.2 Cross validation of the SVR models

The performance of the two winning SVR models are represented in Table 13.The CGR-
based descriptors explicitly describe the reaction center, corresponding to the breaking bond.
The MA-based descriptors took into account an atom neighboring to the leaving group. It
means that for the MA-based descriptors, the structure of the leaving group was encoded, but
it’s association with the active center was not specified. Similar performance of both models

suggests that both strategies of reaction center encoding provide with similar description ofa

reaction.
. . M of
Descriptors Descriptor space . R2 RMSE
descriptors
Sequences of atoms and bonds, length 1-5
CGR 1186 0.84 0.52

accounting for formal charge

Atom-centered fragment of the length 1-4,
MA ) 996 0.85 0.51
accounting for formal charge

Table 13. Predictive performance of the best individual SVR models in 5-fold cross-validation for the training set
of 8056 Swn1 reactions.

8.2.3 External validation of the SVR models

The results of the external validation are shown in Table 14 and Figure 39. The predictions

for reactions already occurred in the training set (test set 1) are slightly better than for
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structurally new reactions (test set 2). The performances of both descriptor types are similar,

as it was observed on the cross-validation stage.

That should also be noted, that for some of the reactions a concurrent Sy1-Sy2 mechanism

could emerge (examples are given in ‘Introduction’ of this section), thereby the experimental rate

constant would be affected by the competitive mechanism, that would lead to experimental

uncertainties. Furthermore, the Sx1 mechanism is often accompanied with the rival E1

reaction, that could complicate the retrieving of ‘pure’ Sy1 rate constants. The mentioned

facts should be taken into account when reckoning the expected predictive accuracy of any

Sx1 model.
CGR MA
R? RMSE R? RMSE
Test set 1 0.64 0.70 0.67 0.68
Test set 2 0.58 0.87 0.55 0.90

Table 14. Predictive performance of the SVR models on the external test sets of new conditions (test sez Ne1) and
new structural transformations (test set Ne2). The predicted property is the Snl rate constant.

Test set 1 Test set 2
2 - 2 -
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Figure 39. Predicted vs experimental values of the Sn1l rate constant for the external sets of new
reaction conditions (test set NeI) and new structural transformations (test set Ne2).

8.3 Conclusion

A large dataset of 8056 Sy1 reactions proceeding in various solvents and at different

temperature has been collected from the literature. The data was visualized with the help of
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Generative Topographic Mapping. Reactions with different types of reaction centers were
well separated on the map.

Predictive SVR models for the rate constants of Sy1 reactions were built using two types of
descriptors: Condensed Graph of Reaction-based and Marked Atoms-based. Both types of
models performed well in cross-validation (RMSE = 0.51-0.52) and on the external test sets.
The model predicts logk better for the reactions with new conditions (RMSE = 0.68-0.70)
than for the reactions with new structures (RMSE = 0.87-0.90).
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Chapter 9

Models implementation.

Halogen bond basicity of organic molecules.

The model predicting the strength of halogen bonding between an organic molecule and

diiodine  (log  Kp) is  available on the web-server  http://infochim.u-

strasbg.fr/ webserv/ VSEngine.html. The SVR consensus model consist of 9 best individual

models with fitness score (R?) from 0.903 to 0.920. The detailed information about the

employed descriptors spaces is given in Appendix (part I, Table I.2).
The model allows:

« An automated detection of the main halogen bond acceptor

« Prediction with/without accounting for Applicability Domain (Figure 40, encircled in
blue)

« Estimation of the level of trust of the prediction, ranged from “poor’ to ‘good’ (Figure

40, encircled in green)
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global consensus is preferred
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- None of the local models have applicability domains
i L 248 [MEDIEN covering this compound
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containing molecule within applicability domain -
global consensus is preferred
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prediction of the minority containing compound inside

their applicability domain
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Figure 40. Web-implementation of the predictive model for halogen bond strength.

The model is suitable for the prediction of both mono- and polyfunctional species. For the
latter, the model should be provided with an input file (.sdf) with labeled active centers, one
label per one molecule. Thus, a molecule with two binding centers should be written in the

input file twice, with the first labeled active atom and with the second.

Tautomeric equilibria of different tautomeric classes.

The model predicts tautomeric equilibrium constant (log Kr) and is available on the web-

server https://cimm.kpfu.ru/. The SVR consensus model consists of ten best individual models

with R” ranging from 0.75 to 0.82. The employed descriptors spaces are listed in Appendix
(part III, Table III.5). Ten tautomeric classes are supported (see Table 5). The prediction is
rendered for the left-to-right type of equilibria, as listed in Table 5, and not vice versa. That
means that the user is expected to write ketone transforming to enol to obtain a keto-enol
equilibrium constant, the enol-ketone query would not pass. The models are based on Marked
Atom descriptors. The labeling of the corresponding atoms is done automatically. The model

supports:

« Various reaction conditions: solvent, mixture of solvents, temperature (Figure 41, a)
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« Estimation of the level of trust of the prediction (Figure 41, b)

Models @
a = | Tautomeric equilibrium constant prediction X -
Temperature: 306 #" (K)
200 273 298 400
Pressure: 1 (atm)
1 6
Solvents
= | tetrachloromethane X w
Selected solvents:
tetrachloromethane: 100%
e | W Total: 100%
Tautomeric equilibrium constant prediction, 306 K, 1 atm, tetrachloromethane (100 %)

Predicted t sigma [Modeled -0.66 £0.02
site atoms: 2, 3]:

Trust of prediction Optimal
[Modeled site atoms: 2, 3]:
Distrust reason [Modeled
site atoms: 2, 3]:

Figure 41. Web-implementation of the predictive model for tautomeric equilibrium constant.

Kinetic properties of cycloaddition reactions

Three SVR individual models devoted to the kinetic properties of reactions of (4+2), (3+2)

and (2+2) cycloadditions are available on the web server https://cimm.kpfu.ru/. The models

are built on atom-centered CGR-based fragments of the length 2-3. Three properties are
considered: the rate constant (logk), the activation energy (Ea) and the pre-exponential factor
(logA). The performances of the models are given in Table 10. For each of the model,
variability of the reaction conditions (solvent, temperature) (Figure 42, a) as well as the

estimation of the level of trust of the prediction are supported (Figure 42, b).
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a Models @

= | Cycloaddition (pre-exponential factor)
= | Cycloaddition (rate constant) X -

% | Cycloaddition (activation energy)

Temperature: 303 # (K)

200 273 298 400

Pressure: 1 (atm)

1 6

Solvents

% benzene | X a

butan-2-ol
[} SEdt @
pentan-1-ol

propan-2-ol

cyclohexane

Cycloaddition (pre-exponeniial factor), 303 K, 1 aim, benzene (100 %)

Predicted * sigma: 4.98 0.00
Trust of prediction: Optimal
Distrust reason:

Cycloaddition (rate consiant), 303 K, 1 atm, benzene (100 %)

Predicted t sigma: -6.19 £ 0.04
Trust of prediction: Optimal
Distrust reasen:

Cycloaddition (activation energy), 303 K, 1 aim, benzene (100 %)

Predicted * sigma: 68.17 £ 0.01
Trust of prediction: Optimal
Distrust reason:

Figure 42. Web-implementation of the predictive models for kinetic properties of cycloaddition reactions.
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Conclusion

This thesis has been devoted to the modeling and visualization of chemical interactions with
the aid of local descriptors, identifying and explicitly distinguishing the dynamic nature of
molecular sites, directly involved into a chemical process. The consideration has been carried
out with respect to the sophistication of the modeled chemical object, correspondingly from
intermolecular interactions to chemical reactions, varying reagents and different reaction

conditions of which have been explicitly taken into account.

The developed methodology represents a chemical interaction by local fragment descriptors,
encoding structural features of the interacting molecules, coupled with special
physicochemical parameters of the experimental conditions (solvent, solvent mixtures,
temperature). The Marked Atom (MA)-based and the Condensed Graph of Reaction (CGR)-
based ISIDA fragment descriptors have been employed. The MA-based local descriptors have
been chosen for the description of chemical processes, the active site of which involved no
more than two atoms, since otherwise, the length of the descriptor vector could be too large.
These were the cases of intermolecular interactions and tautomeric equilibria. For the case of
chemical reactions, involving different reactants and undergoing multiple bond cleavage-
formation, the CGR-based fragments, enable to efficiently encode chemical transformation in
a condensed, concise form, have been used. The local approach has been successfully used to
predict different thermodynamic and kinetic properties of halogen and hydrogen bonding,
tautomeric equilibria, cycloaddition and Sy1 reactions. The accuracy of the developed QSPR

models are close to experimental errors.
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It has been demonstrated, that the models, trained on the complexes with single halogen or
hydrogen bonds were able to predict stabilities of the complexes with multiple bonds of these
types. This opens a perspective to use the models in computer-aided drug— and supramolecular

systems design.

For the first time, the GTM method has been employed to model and visualize entire chemical
processes instead of individual species. Thus, on the example of tautomeric equilibria it was
shown that the species, measured in different solvents are well separated on the map, meaning
that the GTM-based model could successfully perceive the dependence of the modeled
property as a function of two equally important components, the structural and the reaction
conditions one. The capability of GTM in building one single model able to predict different
kinetic properties of chemical reactions has been demonstrated on the example of
cycloaddition. For the classification task, employed in the projects devoted to tautomeric
equilibria, cycloaddition and Sy1 reactions, a good class-determination performance, resulting

in a perfect visual separation of the classes on the GTM map, has been accomplished.

The developed QSPR models for the prediction of the stability of halogen-bonded
complexes with I, of the equilibrium constant of tautomeric transformations and of the rate
constant, activation energy and the pre-exponential factor of cycloaddition reactions are

publicly available via our internet-platforms https://cimm.kpfu.ru/ and http://infochim.u-

strasbq.fr/webserv/VSEngine.html. The implementation incorporates an automatic detection

and labeling of the active atoms, or CGR generation, as well as the applicability domain

estimation.
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Appendix. Part 1

QSPR modeling of halogen bond basicity of
binding sites of polyfunctional molecules.

Supporting Materials.

Table 1.1. Chemical families of 598 compounds of the training set.

- the m-electronic carbons (alkyl benzenes, alkenes and cycloalkenes)

- the ether oxygen (cyclic and acyclic ethers)

- the carbonyl oxygen (aldehydes, carbonates, esters, ketones, amides, carbamates,

lactams, ureas)

- the oxygen of phosphoryl group (phosphoramides, phosphine oxides,
phosphonates,

phosphates)

- the oxygen of sulfinyl group (sulfates, sulfoxides, sulfites)

- the amine nitrogen (primary, secondary and tertiary amines)

- the aromatic nitrogen (pyridins, quinolins, pyrazines, phenanthrolines, thiazoles,

imidazols)

- the nitrile nitrogen (nitriles)

- the sulfur ((di)sulfides, thiols, thiophenols)
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- the sulfur of thiocarbonyl group (thioamides, thioureas, thiocarbonates,
dithioxamides,
thioketones)

- the sulfur of thiophosphoryl group (thiophosphines, thiophosphates,

thiophosphonates)

- the selenium of selenides

- the bromine of bromoalkanes

- the iodine of iodoalkanes

Table 1.2. SVM model
parametrization strategy.

building parameters emerging from the evolutionary libSVM

) ] 5CV 5CV
Descriptor Space LibSVM setup
RMSE Q?
-s3-t2-c29.96 - 0.287 -g 0.103 -r
IAB2-5_P-MA3 0.41 0.918
0.8
IAB2-5 P-FC- -s 3 -t2-c298.87 -e 0.287-g 0.010
0.40 0.920
MA3 -r6.7
IAB2-6_P-FC- -s3-t2-c298.87 -e 0.430 -g 0.007
0.42 0.914
MA3 -r5.0
-s3-t2-c221.41-e0.717 -g 0.003
IAB2-5 FC-MA3 0.41 0.918
-r-7.6
-s3-t2-c492.75 -e 0.717 -g 0.007
IAB2-6_FC-MA3 0.43 0.911
-r5.0
-s3-t2-c364.10 -e 0.574 -g 0.008
IAB2-5-MA3 0.42 0.913
-r5.0
-s3-t2-c7.39 -e0.287 -g 0.200 -r
IAB2-6_P-MA3 0.44 0.903
7.9
-$3-t2-c2.46-e0.574-90.126 -r
IAB2-7_FC-MA3 0.44 0.904
-10.0
IAB2-6_AP-FC- -s3-t2-c812.41 -e 0.287 -g 0.003
0.44 0.906
MA3 -r-10.0

180




Table 1.3. Predictive performances of the MLR consensus models in 5-fold cross-validation
involving the different marked atom strategies using bounding box and fragment control AD
approaches.

Mark atom MLR CM with AD
strategy 5CV RMSE Q?
MAO 0.46 0.902
MA1 0.39 0.930
MA2 0.36 0.944
MA3 0.36 0.942

Table 1.4. The list of outliers. The third column contains name, solvent and log KI2 value
correspondingly.

Structure ’ Molecule Title ‘
1 o Tetramethylguanidine, Hept, 4,37
3
HzC—N
NH1
HyC—N
\
CHj
2 N,N-Diisobutylmethylamine, Hept, 1,45

3 2-Dimethylaminopyridine, cHex, 0,95
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2-Amino-4,6-dichloropyrimidine, CCl4,

1 N)\N 2,03
AL

Thionyl chloride, CCl4, -0,76

Cl
1
O0—S
A
Cl
N Dichlorophenylphosphane_sulfide, CCI4, -
Cl—F|>—_-s1 0,56
Trimethylphosphane_sulfide, CCl4, 3,60
CH,
.
S—P——CH,4
I
CHj
e N,N-Diisobutyl-n-propylamine, Hept, 1,11

1,3-Diethyl-1,3-imidazolidine-2-thione,
f CH2CI2, 3,40
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10

Betta-propiolactone, CCl4, -1,02

Structure

Molecule Title

11 |/CH3 Carbimazole, CH2CI2, 2,95
OYO
1S N
=
/
HsC
12 o 1,1,3,3-Tetramethyl-2-thiourea, Hept,
3
He—N 4,00
>:s1
H3C—N
\
CH3
13 e N-Butylpyrrolidine, Hept, 4,20
N
14 N,N-Di-n-propylsec-butylamine, Hept,

2,00
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15

Sulfolane, CCl4, -0,12

Y
16 N-I | lidine, Hept, 4,23
Ho oHy sopropylpyrrolidine, Hep
\(
O
17 2-Fluoropyridine, Hept, 0,43
F
]
@
18 1,3,5,5-Tetramethyl-2-thiohydantoin,
CH2CI2, 1,20
HsC\N>%O
-
\
1S CH,4
19 Dibenzoselenophene, CCl4, 0,28
Se
20 2-Methyl-2-thiazoline, CCl4, 3,18
CHg
1
SN
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Structure Molecule Title

21 Triethoxyphosphane_sulfide, cHex, 1,26
1S\ (0] CH
\P/ ~_ 3
e o %
Hoo—
22 N,N-Dimethylthiocarbamoyl_chloride,  Hept,
H,C
\ 1,16
N——CHg
! s:<
cl
23 Triethylphosphane_sulfide, CCl4, 3,68
/S
P
H3C P CH3
~~—
H3CJ
24 1 1,3-Dithianecyclohexane-2-thione, CHCI3, 1,36
E\s S
S
25 4-Dimethylaminopyridine, Hept, 3,78
H3C\ /CH3
N
N
26 Dimethylamine, Hept, 3,71
H3C\N __CHg
H
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27 Hacfcj/% N,N-Di-n-propylisobutylamine, Hept, 2,06
N
Kc‘:H3
28 Piperidine, Hept, 3,85
N
i
29 N,N-Dimethylcyclohexylamine, Hept, 3,99
HyC_ _CHs
N
30 Tetrahydropyran, Hept, 0,40
(o)
Structure ‘ Molecule Title
31 o Diisopropylamine, Hept, 2,85
3
—
NH1
H3CA<
CH,4
32 Pyrrolidine-2-thione, CH2CI2, 4,01
1
S
HN
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Table 1.5. Halogen bond versus Hydrogen bond
Here, logKai2 is logarithm of stability constant of the
1:1 complexation of organic Lewis bases with I2 in
heptane, cyclohexane, hexane or methylcyclohexane
at 298K,

logKeHx is logarithm of stability constant of the 1:1
hydrogen bonding of the same organic bases with 4-
F-phenol in CCl4 at 298K.

logKB[2

25 -
2.0 -
15 -
1.0 -
0.5 |
0.0 -
05 1,

-1.0 1.2

s=0.20, R,.” = 0.942
lOgKBIZ =-1 07 + 09710gK] HX

00 05 10 15 20 25 30 35

logKBHX

logKBIZ

4.0 -

3.5 1
3.0 1
2.5 4

2.0
n=13

s=0.45, R,,>=0.833
1OgKBI2 = 061 + 1-5010gKBHX

15

1.0 1

0519

1.0 15 2.0
1OgKBHX

lOgKBIQ

4.0 -

3.5 -

3.0 1

2.5 1

2.0 -

15

1.0

sulfur bases:

S-, C=S,

n=21
s=0.27, R..’ = 0.904
logKBIz =1.74 + 1.39logKBHX
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logKBIZ

3.5 1

3.0 1

2.5 1

2.0 1

15 1

1.0 1

aromatic nitrogen bases: Nyp2
Q

060

0]
(0]

o n=36

o

o s=0.25, R, = 0.876
% logKBIZ =- 050 + 1'4210gKBHX

1.0 15 2.0 2.5
lOgKBHX

0.5 1

0.0 1

-0.5 A

logKBI 2

nitrogen bases: nitriles

$=0.05, R.,,> = 0.978
logKBIZ - —089 + O94lOgKBH

B

. 1. 1.
0.5 0 logKBHX 5

188




Appendix. Part 11

QSPR modeling of the Free Energy of hydrogen-
bonded complexes with single and cooperative
hydrogen bonds. Supporting Materials.

Table I11.1. Linear correlations for the Gibbs energies of Hydrogen bonding measured in

different solvents in temperature range 293 - 298 K. Verical axis corresponds to the
complexation in CCla. r is Pearson correlation coefficient.

CCl, - C,Cl, CCl, - CgH,

\i
=
[en]

[REY
(W1

y = 0.9746x + 0.4249 y =1.0236x - 1.4371
r=0.98 r=0.96

N
(en]
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CCl, - C{HCI CCl,-CH,CCl,
I T T 0 I T T O
-20 -30 -20 -10 . 0
’ J
. ’ ’
Pd
'S 15
’ v 410
4 20 {/" 20
y = 1.0893x + 0.0156 25 0/y= 0.9615x - 2.1432 e
r=0.97 r=0.96 2
CCl, - 1,2-C,H,Cl, CCl, - C6H12
f T T T 0 1 10

¢ y=1.1092x-3.0692 __ y = 0.8913x + 0.637
r=0.88 = r=0.96

g © »nn o

NN R

Table 11.2. Linear Gibbs energy relationships for the Gibbs energy of H-bonding: the parameters
of the linear equation AG (in CCls) = a 4G (in solvent) + b, where R is Pearson correlation
coefficient, the temperature range is 293 - 298 K

no. solvent a+Aa b+ Ab R? s n
1 CoCly 0.975 +0.027 0.42 +0.29 0.982 0.70 25
2 CsHs 1.024 +0.034 1.44 +0.30 0.916 1.62 87
3 CsHsCl 1.089 +0.062 0.02 £0.66 0.951 1.13 18
4 CCI3CHs 0.962 +0.066 2.14 £0.89 0.922 1.36 20
5 1,2-C2H4Cl2 1.109 £0.063 3.07 £0.51 0.783 1.95 86
6 CesH12 0.891 +0.020 0.64 +0.19 0.929 1.71 145

Table 11.3. Experimental and predicted by SVM model complexation free energies AG of the
external test set with two cooperative H-bonds (dimers set).
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Structures Experimental AG Predicted AG per  Predicted AG 2

individual bond

F F
F——F F—1—F
F——F F—1—F
. S -2.89 -4.45 -5.34
HO/‘§O1 HO/\O
YT YT 2 7.06 8.47
=Y A YT L1458 -11.76 -14.11
) ) -11.23 -9.28 -11.14
CH4 CH4
10 O:<
NH nH2 1453 -11.69 -14.03
(0] O:<
CH, CH,
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[

[

>//N / -19.87 -15.30 -18.35
(6]

O

ZHﬁi -13.89 “11.12 -13.35
(0]

ZHNCD -14.04 -10.21 -12.25

-8.58 -8.81 -10.57
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CH4

1o:< o:<
NH NH2
-6.45 -7.38
s—= s—<
CH,4 CH,4
74 /| 74 /|
N, BN X -14.83 -11.09
Q Q -11.58 -10.89
N
H 01 3 ¢}

-8.85

-13.30

-13.07

a AGpred =0.6*% AGpred’i

Table 11.4. SVM model building parameters emerging from the evolutionary libSVM

parameterization strategy.

1.813212 -g 1.60849 -r 7.7

Descriptor space LibSVM setup 3CV RMSE 3CV Q?

IIRB-MA3--FC-1-4 -s3-t1-c0.01005184 -e 1.208808 1.60 0.93
-9 1.041811 -r 6.9

IIRA-MA3-FF-P-FC-1-4 -s3-t1-c1-e0.604404 g 1.61 0.93

0.2255989 -r 6.7

IIRAB-MAS3--1-3 -s3-t1-c0.4065697 -e 1.208808 - 1.66 0.92
g 0.1595604 -r 3.2

IIAB-MA3--1-3 -s3-t1-c0.003345965 -e 1.65 0.93
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IAB-MA3-FF-FC-2-6 | -s 3 -t 2 -c 403.4288 - 1.208808 -g 1.68 0.92
0.02113487 -r -4.2
IIRAB-MA3-FF-FC-1-3 | -5 3 -t 2 -c 134.2898 -e 1.208808 -g 1.71 0.92
0.03769055 -r -8.6
IA-MA3-FF-FC2-6 | -s3-t 1 ¢ 0.1826835 -¢ 3.02202 -g 1.69 0.92
0.4574021 -r 8.2
IIRA-MA3-FF-1-3 -5 3 -t 1 -c 0.004991594 -¢ 1.70 0.92
1.813212 -g 0.8649552 -r 8.3
IAB-MA3-FF-P-FC-AP- | -s 3 -t 2 -c 6002.912 -e 1.208308 -g 1.65 0.93
2-14 0.01445564 -r -8.7
IIAB-MA3--FC-1-3 | -s3 -t 1 -c 0.4965853 -¢ 1.208808 - 1.66 0.93
g 1.141204 -r 9
IAB-MA3--P-FC-AP-FC- | -5 3 -t 1 -c 0.1826835 -¢ 3.626424 - 1.72 0.92
2-14 g 0.458963 -r 3.6
IIRA-MA3-FF-FC-1-3 | -s3 -t 1 -c 0.01005184 -e 1.208808 1.75 0.92
-9 1.546994 -1 5.6
IIRA-MA3-FF-P-1-4 | -s3-t 1 -c 0.1652989 -¢ 3.626424 - 1.77 0.91
g 0.8285236 -r 9.1
IIA-MA3-FF-1-3 -s3-12 - 2980.958 -¢ 1.813212 g 1.79 0.91
0.05798813 -r -1.3
IIAB-MA3-FF-FC-1-3 | -s 3 -t 2 -c 4447.067 -e 1.813212 g 1.77 0.91
0.04713464 -r -1.7
IA-MA3-FF-2-6 -53-t1-C0.0450492 -¢ 4.835232 - 1.82 0.91
g 0.3077967 -r 3.2
IIRB-MA3--1-4 -s3-t2-c 19930.37 ¢ 2.417616 -g 1.81 0.91
0.08263579 -r -8.9
IA-MA3-FF-P-FC-2-15 | -s3-t1-c 0.67032 -€ 2.417616 -g 1.74 0.92
2.75392 - 9
IA-MA3-FF-FC-AP-2-5 | -5 3 -t 1 -c 4.481689 -¢ 4.230828 -g 1.73 0.92
0.5732196 -r 9.5
IAB-MA3--P-FC-AP-2-14 | -s 3 -t 2 ¢ 18.17415 -¢ 1.208808 g 1.88 0.90
0.07017611 -r 0.9
IAB-MA3-FF-P-FC-2-14 | -s 3 -t 1 -c 0.5488116 -¢ 3.02202 -g 172 0.92
0.8004951 -r 8.3
IIA-MA3-FF-FC-1-3 | -s3-t2 -c 14.87973 -¢ 1.208808 -g 1.90 0.90
0.08614339 -r 10.1
IAB-MA3-FF-FC-AP-2-5 s3-t1-c1-e5.439636 -g 1.77 0.91

0.4101905 -r 6.7
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IAB-MA3--FC-AP-FC-2- | -s 3 -t 2 -¢ 221.4064 -e 2.417616 -g 1.91 0.90
9 0.05948169 -r 3
IIAB-MA3-FF-1-3 -s3-12 -C 1808.042 -€ 2.417616 g 1.93 0.90
0.00000005180399 -r 4.1
lIRA-MA3--P-1-5 -s3-t2-c 8.16617 -€ 2.417616 -g 2.08 0.88
0.03170207 -r 1.3
I-MA3-FF-FC-3-5 | -s 3 -t 1 -c 0.02237077 -e 6.648444 1.94 0.90
-g 0.8064668 -r 9.9
IIRA-MA3--FC-1-4 | -s 3 -t 1 -c 0.05502322 -e 1.208808 2.14 0.87
-g 0.006016901 -r 8
IIRAB-MA3-FF-1-3 | -s3-t1-c 12.18249 -¢ 1.208808 -g 1.84 0.91
1.50794 -r 3.4
IAB-MA3--FC-AP-2-9 | -s3-t2 -c 8103.084 -e 3.02202 -g 1.92 0.90
0.0005244257 -r 9.1
IA-MA3-FF-P-2-15 | -s3-t0-c 1.105171 -e 1.813212 g 2.20 0.87
0.02405992 -r -10
IIRA-MA3--1-4 -s3-t2-c 1211.967 -e 4.230828 -g 2.14 0.87
0.07828205 -r -10
IAB-MA3-FF-2-6 -5 3 -t 1 -c 0.009095277 -¢ 2.11 0.88
4.835232 -g 1.692345 -r -2.1
IAB-MA3--FC-2-10 | -s 3 -t 0 -c 0.8187308 -€ 4.835232 - 2.22 0.87
g 0.01504444 -r -10
IRAB-MA3--FC-1-3 | -s 3 -t 1 -c 1.221403 -€ 3.626424 g 1.93 0.90
1.00341 -r 2.4
11B-MA3--1-4 -s3-t1-c 0.1652989 -€ 5.439636 - 2.23 0.86
92.193162 -1 0.7
NA-MA3-FF-P-FC-1-4 | -s3-t2-C 445.8578 -€ 6.04404 -g 2.32 0.85
0.07517971 -r -10
A-MA3--1-4 -5 3 -2 -c 44.70118 -e 1.208808 -g 2.43 0.84
0.01610162 -r 1.8
IA-MA3-FF-FC-AP-FC- | -5 3 -t 2 -C 5.473947 -¢ 4.835232 -g 253 0.82
2-5 0.06745895 -r -9.9
IA-MA3--FC-AP-FC-2-11 | -s 3 -t 2 -¢ 54.59815 -¢ 2.417616 -g 2.49 0.83

0.001289735 -r -1.7
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Table 11.5. Predictive performances of the MLR consensus models in 3-fold cross-validation
involving the different marked atom strategies without accounting for the models applicability

domain.
Descriptor MLR CM
strategy 3CV RMSE 3CV R
MAO 2.73 0.796
MA2 2.48 0.832
MA3 2.30 0.855

Here R%et is the squared determination coefficient of 3CV predictions

Table 11.6. Predictive performances of the MLR consensus models in 3-fold cross-validation
using bounding box and fragment control AD approaches. The MA3 type of descriptors were

used.
MLR CM with AD
3CV RMSE 3CV R%t Npred
2.11 0.880 3084

4the number of species within D. Rt is the squared determination coefficient of 3CV predictions

Table 11.7. Predictive performances of the MLR Consensus Model for different classes of the

external test set accounting for the model’s applicability domain.

Number of Number of RMSE R2get
Class name | compounds predicted
compounds
PAIROUT 262 262 2.51 0.830
BOTHOUT 23 11 3.63 -
ACCOUT 257 105 3.34 0.735
DONOUT 99 44 4.35 0.164
Solvent CCly 287 179 3.63 0.637
Solvent Other 354 243 2.45 0.843
entire test set 629 422 3.01 0.759
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Table S9. Outliers detected for the external test-set with single H-bonds.

Experimental Predicted

Structure AG 2 AGD Solvent Subset
X o+
1 2.40 -3.25 C6H12  DONOUT
F
F F
2 -0.75 -5.95 C6H12 DONOUT
N
K/CH HO
:
1,2-
[ B/© 0.24 TAT cpacans  ACCOUT
HC” ' cH/ CH,
H,G
o A JH
Se
X
4 © -6.90 -12.51 CCl4 ACCOUT
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NFi,
O 5.52 052
10

C6H12 DONOUT
5
. G
SC\N CH,
6 Qﬁ 1347 -18.69 L2 AccouT
N e, “ ¢ ' ' Cl2C2H4
H3C\N/CH3 HaC\NH2
1
7 6.84 -2.30 C6H12 DONOUT
H3C\N/CH3 Nfi,
1
8 6.36 -2.62 C6H12 DONOUT
oH
9 -3.66 CCl4 ACCOUT
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10

4.40

-5.06

CCl4

ACCOUT

11

0.75

-4.40

CCl4

DONOUT

12

Cl

Cl

0.64

-6.98

CCl4

DONOUT

13

Cl

Cl
2
Cl Cl

Cl

5.87

-7.62

CCl4

DONOUT

14

CHa o,

1.56

-10.24

CCl4

DONOUT
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15 e L o 1.77 -6.84 CCl4 DONOUT
| 9 i
o
16 © 6.28 0.54 CCl4 ACCOUT
A F .
17 »e ' 3.64 -3.66 CCl4 ACCOUT
CH, G
10 AN
18 . 0.63 -5.82 CCl4 ACCOUT
HsC
M
19 1.26 -5.31 CCl4 ACCOUT
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Qm

§ )

s

20 0.30 -4.85 CCl4 ACCOUT
4 HH

21 @ @ 2.07 -4.85 CCl4 ACCOUT
Br FH

22 @ © 2.21 -4.85 CCl4 ACCOUT
1 HH

23 @ © 2.32 -4.85 CCl4 ACCOUT
S

1Cl
24 2.05 -4.47 CCl4 ACCOUT

CH,
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1Br

O

25 M 2.66 447 CCl4  ACCOUT
CH,
H
H3C
% E © 2.45 457 cCl4 ACCOUT
r
CH,
HH
H,C
27 E © 2.44 457 CCl4  ACCOUT
CH3
S
1CI
28 ‘>,CH3 2.83 457 cCl4  ACCOUT
H3C
G
29 © 2.18 457 cCl4  ACCOUT
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CHj3
30 1CI+CH3 1.84 -4.41 CCl4 ACCOUT
CH3
M
CH,
31 1Br+CH3 2.01 4.41 CCl4 ACCOUT
CHj
FH
32 e~ 1.56 452 CCl4 ACCOUT
H
33 A~ © 2.82 452 CCl4 ACCOUT
H
34 MO~ © 2.62 452 CCl4 ACCOUT
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35 NS 2.89 -4.52 CCl4 ACCOUT
oH
36 © @ 1.77 -3.46 CCl4 ACCOUT
1
oi
1H,C—
37 _\_\ 4.60 -3.72 CCl4 ACCOUT
CH,
GH
CH,
1T
38 2.51 -4.06 CCl4 ACCOUT
\
CH,
oH
cH
39 Koo~ _F © 2.01 -3.50 CCl4  ACCOUT
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e

HZC:(f‘_
40 M 3.72 -3.82 CCl4  ACCOUT
CH3
&
CH,
41 Hzc=9:<; 3.18 -3.84 cCl4 ACCOUT
CH,
HH
CH,
42 /:a_f 3.05 -3.94 ccla ACCOUT
H3C
S
H,C CH,
43 >:e:/ 3.01 411 ccla ACCOUT
H3C
S
H,C CH,
44 \Fé:< 264 -4.32 cCl4 ACCOUT
H3C CH3
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45 2.30 -3.65 CCl4  ACCOUT
N
OH
2
HO
46 © \© 3.64 171 CCl4  BOTHOUT
1
H3C\o
%o
47 6.28 0.67 CCl4  ACCOUT
: 0
48 e N QZ 3.65 -3.16 CCl4  ACCOUT
AH
49 Hac/\/\/\/Esr1 © 3.08 -4.53 CCl4 ACCOUT
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50 ‘>—<_ 4.85 5.21 CCl4 ACCOUT
HaC CH,
F
G
CH,
1
51 4.22 -4.47 cCl4 ACCOUT
F
G
52 © 4.68 -4.23 cCl4 ACCOUT
1
F
GH
53 @ (? 331 -4.80 cCl4 ACCOUT
1
F
FH
54 NN 3.82 455 ccla ACCOUT
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Ny /CH
55 MO~ 1.26 4.22 CCl4 ACCOUT
H;
L
(6]
56 O /© -4.49 2.15 C6H12  DONOUT
2H2N
NE
57 O/ﬁ -3.67 2.41 C6H12  PAIROUT
@
CH,
L
58 O %ZN\© -4.09 2.39 C6H12  DONOUT
O1
CH,
o/ﬁ
59 K/q -6.35 2.64 C6H12  DONOUT
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Cl

60 | -3.20 2.40 C6H12  DONOUT
1
/CHS (ﬁ_|
H,C—N cl cl
61 ./ -19.83 -11.98 CCl4  PAIROUT
\CH3
HC_ _CHs i
N
62 "N 25,67 1821 1,2- ACCOUT
)\ Cl Cl ' ' CI2C2H4
—
1O N cl
CH, JH
H,C—N cl cl
63 o -34.22 -14.84 CCl4 PAIROUT
H,C—N cl cl
CH3 al
Fr
CH,
Cl Cl
Hzc\N)k,\p
64 -20.38 -11.34 C6H6 ACCOUT
Cl
Cl
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65 -14.09 796  CCI3CH3 DONOUT
2
S
P
66 " 21.37 115.83 1.2- PAIROUT
(J Cl2C2H4
1N Cl Cl
S
P
N 1,2-
67 gj ) ) -22.90 1633 oiptons  PAIROUT
1 Cl
TH;; F OH2
10 N F X
68 U -15.31 -10.16 LL-  ponouT
' ' CI3CCH3
6 7 -31.31 13.73 CCl4  ACCOUT
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4 F
70 ”ﬁc\/\/n\/\/c”ﬁ :@i
;

r -25.86 -14.07 CCl4  ACCOUT
:
0]
71 O ©:j© -4.18 1.25 CCl4  DONOUT
(0]
CH,
]
72 O -6.26 2.49 C6H12 ~ DONOUT
1 H,N
2
CH, Jh
Hy,C—N
73 >:S1 -13.81 -7.75 CCl4  PAIROUT
Hy,C—N
CHs .
0 OH
HO
74 -13.30 -3.57 CCl4  DONOUT

2experimental AG values were recalculated to CCls using linear correlations (see Table S1)

b S\/M method has been used.

¢ see annotations in section 2.1.2.
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Appendix. Part 111

QSPR modeling and visualization of tautomeric

equilibria. Supporting Materials.

Table 111.1. External test set 1.

212

Ne External test set Mol T, °C Solvent Log Log Kt
Kt pred
exp | SVM/IGTM

1 CH. o 20 Methanol | 0.63 | 0.39/-0.26

OH

30— 2 5

2 R -
30 1 CHj,
70 5 6

CHj

CH,4 4
6
2 50 Methanol - -0.68/-0.71
1.21

Hc\/8 2 cHy' HO>:z>7

W 'j3c o ) Oe\—CH

3 CH, .| 25 | Acetonitrile | 0.15 | 0.07/0.34

OH

SU— 2 i/
2 — _

30 1 CH,

50 4 7
CH,
CHj, 6




L R B 20 | 1,4-Dioxan | -1.4 | -1.27/-1.26
1DO\\KDWS 13 //Og
7HN/§\\O 16 ., 12 O}/S\l'\ﬁ
SI /1 1| /3
ot 5H3C\N3 55 DMSO 0.36 | 0.22/0.20
%c\m ‘\2 o |1 i
S 55 DMSO - 0.31/0.54
0.31
20 Water 2.96 | 3.01/3.66
60 Water 0.03 | -0.17/-0.21
8 ! f 4\N5 8 - /4 NE
Ho 9 2 6 o 2 =
o) , _CH° 30 Chloroform - -0.27/-0.48
H/ H/ 0.44
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10 fc e 20 Water 0.13 | -0.12/-0.01
Do s (97%)
f,o\P4S3 . 50\P//O2
Ho/w\m 3Hs/1\CM
11 20 Ethanol - -0.39/-0.34
) ) (61%) 0.92
| ‘\_\7’7 - . | ‘\g_{ofig
Ay i “ W
12 30 Methanol -0.6 -0.9/-0.77
13 30 1-Propanol | -1 | -1.01/-1.27
14 10 Toluene - -0.09/-0.22
0.32
15 40 Toluene 0.96 | -0.12/-0.01
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16 50 Acetone 0.01 | -0.27/-0.32
17 20 Water 1.53 | -1.34/-0.21
I 1 ﬁ* 1
10| \ 2 10 \6 \2
o /3 R AN A
18 49.8 DMSO - -0.01/-0.31
; o o, 0.31
1H3C 4 6
29 25.1 | Tetracloro - -0.17/-0.07
; %o off methane | 0.13
1H3C 4 6
20 37 Tetracloro - -0.01/-0.19
o ol methane | 0.69
hs 4 8 o
9 7 5
Table 111.2. External test set 2.
Ne External test set Ne2 T, | Solvent | Log LogKr | AD
°C Ky pred
exp | SVM/GT
M
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@

~

20

Water

3.48

3.46/3.18

out

26

Acetone

0.31

0.14/0.86

out

NH

(2]

35

Water

-1.47/-
0.96

out

60

Nitroben
zene

1.38

1.19/1.2

20

Water

3.7

-2.39/-
0.44

out

—_—

>

o

20

Water

0.69

-1.34/-
0.2

(2]

35

Water

1.99

1.91/0.25

out
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8 25 Water 8.6 7.55/8.3 | in
3 K
4S:< e 1HN:<
NH12 sH
9 & & 25 Water -4.9 -5.61/- | out
13%’\“{4 15 iN«a 58
10 4 4 25 Water 0.7 -3.61/- | out
| |
zoéNl 3 HO/Nl\ 3 3.56
11 . 0 Water -14 -2.01/- | out
(ol 8 5
_/ o CH, 3.56
20_1N }er
——CHgs ———> / .
A I;iO /1/N—Oﬂ
O_N\ 4
o 2
12 20 Water 5.83 | 4.12/3.79 | in
4| 3\ 8 4| 3\ £ 8
N 0 HNC 7z o
St f
13 20 Ethanol 0.29 -0.32/- | out
. 0.33
7H,C—O 7H,C—O 3
\/OH \/SH
N 0P\
3 5o_CH36 2 O—CH,|s
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14 W B A 20 Ethanol 0.6 - in
@ Q 0.10/0.01
SO\}/OH AO\P/SH
S//\‘ O//E.Sj
15 NN NN 20 | Acetone | 0.19 0.65/- out
’ A ‘ ’ 2 /’Nu ‘ )
16 Water -1.67 -1.39/- in
0.2
17 Ethanol 0.03 0.13/- in
0.03
18 Toluene | -0.22 -0.21/- in
0.01
19 Water 0.31 |0.34/0.21 | in
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20 60 | BromoB | 0.27 | 0.18/0.06 | in
enzene
21 35 | Acetonitr | -0.17 -0.01/- in
ile 0.56
22 35 1,4- 1.42 |0.39/0.33 | in
Dioxan
23 70 DMSO -1.28 | 0.51/0.47 | in
o A AASY
24 100 Water -6.96 -2.19/- | out
Hy G e 03 :i.|.:. 2.55
\_ T IHQEZ\Mi
25 100 Water -6.95 -2.19/- | out
'H,C-.__'E_lﬁ': HO 255
\.-. T |H,C:H‘-
26 100 Water -0.69 -0.88/- | out
0.27
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Table 111.3. Balanced accuracy for GTM class maps for the unique data set (the classes with the

number of objects more than 10 are considered only).

Balanced Accuracy

(BA) ISIDA MO ISIDA M1 ISIDA M2 ISIDA M3

Keto-enol 0.975 1 1 1

Amine-imine 0.984 0.997 0.946 0.993
Hydrazine-Hydrazone 1 1 1 1

Ph-imine-keto-amine 0.998 1 1 0.998
Thion-ol-keto-thiol 1 1 1 1
Am-thion-im-thiol 1 1 1 1
Nutro-aci 1 1 1 1

Classic-zwitterion 0.904 0.989 0.992 0.990
Chain-ring 0.948 1 1 1

Table 111.4. Balanced accuracy for GTM class maps for the entire data set (the classes with the

number of objects more than 10 are considered only).

Balanced Accuracy

(BA) ISIDA MO ISIDA M1 ISIDA M2 ISIDA M3
Keto-enol 0.999 0.982 0.999 0.998
Amine-imine 0.997 0.999 0.999 0.998
Hydrazine-Hydrazone 1 1 1 1
Ph-imine-keto-amine 1 1 1 0.999
Thion-ol-keto-thiol 1 1 1 1
Am-thion-im-thiol 1 1 1 1
Nutro-aci 1 1 1 1
Classic-zwitterion 0.993 0.992 0.994 0.995
Chain-ring 1 0.991 0.998 0.998
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Table I11.5. SVR individual models constituting the web-deployed consensus model. Model
building parameters emerged from the evolutionary libSVM parametrization strategy.

S5CV

Descriptor set LibSVM setup 5CV R?
RMSE

-5 3-t2-c 2.446919e+02 -p 1.576160e-01 -g
IAB-MA2--P-2-14 0.83 0.65
6.167045e-02 -r -5.9

IAB-MA2—FC-1- -5 3 -t 2 - 2.704264e+02 -p 3.152320e-01 -g 083 0.6
3 2.622281e-03 -r -0.5 ' '

IAB-MA2---P-AP- -5 3 -t 2 - 3.311545e+01 -p 3.152320e-01 -g 081 068
2-14 7.793662e-02 -r 5.5 ' '

IAB-MA2—FC-1- -5 3 -t 0 -C 3.320117e+00 -p 4.728480e-01 -g 076 075
3 6.962674e-03 -r -10.0 ' '

IAB-MA2—FC-2- -5 3 -t 2 - 3.311545e+01 -p 3.152320e-01 -g 0.80 070
10 3.356975e-02 -r 9.7 ' '

-s 3 -t2-c 1.808042e+03 -p 3.152320e-01 -g
IA-MA2—1-4 0.82 0.67
4.553438e-04 -r 4.3

IAB-MA2—FC-2- -s 3 -t1-c3.011942e-01 -p 1.576160e-01 -g
14 4.419572e-01 -r 2.8

0.78 0.71

-s 3 -t 2 -C 2.214064e+02 -p 3.152320e-01 g
IAB-MA2—2-10 0.82 | 0.68
3.745244¢-02 -1 -6.3

IAB-MA2—P-AP- -5 3-t1-c3.311545e+01 -p 3.152320e-01 -g
2-14 2.799525e-01 -r 3.1

0.80 0.69

-5 3-t0-c 2.013753e+00 -p 1.576160e-01 -g
IAB-MA2—P-2-10 0.75 0.79
7.174630e-03 -r -10.0
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