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Résumé 

Cette étude considère des systèmes où non seulement la structure moléculaire, mais les 
conditions expérimentales sont impliquées. Les structures chimiques ont été codées par 
des descripteurs locaux ISIDA MA ou ISIDA CGR, ciblant spécifiquement les centres 
actifs et leur environnement le plus proche. Les descripteurs locaux ont été combinés 
avec les paramètres spécifiques des conditions expérimentales, codant ainsi un objet 
chimique particulier. La méthodologie a été appliquée avec succès pour la modélisation 
QSPR des paramètres thermodynamiques et cinétiques des interactions 
intermoléculaires (liaisons halogène et hydrogène), des équilibres tautomères et des 
réactions chimiques (cycloaddition et SN1). La méthode GTM a été appliquée pour la 
première fois pour la modélisation et la visualisation de données chimiques mixtes.La 
méthode sépare avec succès les groupes de données à la fois en raison des structures 
et des conditions. 

 

Résumé en anglais 

This work describes original approaches for predictive chemoinformatics modeling of 
molecular interactions and reactions as a function of the structures of interacting partners 
and of the chemical environment (experimental conditions). Chemical structures have 
been encoded by local ISIDA MA-based or CGR-based descriptors, specifically targeting 
the active centers and their closest environment. The local descriptors have been 
combined with the specific parameters of experimental conditions, thereby encoding a 
particular chemical object. The methodology has been successfully applied for QSPR 
modeling of thermodynamic and kinetic parameters of intermolecular interactions 
(halogen and hydrogen bonds), tautomeric equilibria and chemical reactions 
(cycloaddition and SN1). GTM method has been applied for the first time for QSPR 
modeling and visualization of mixed chemical data. This method successfully separates 
data clusters on account of both chemical structures and experimental conditions.  
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Résumé en français 

La complexité des données chimiques reste un défi pour la modélisation structure-

propriété. En particulier, ceci concerne le développement de modèles prédictifs 

pour les propriétés liées à des centres sélectionnés (atomes ou groupes chimiques), 

par exemple les différents types d'interactions intermoléculaires ou de réactions 

chimiques. Un autre niveau de complexité vient du fait que ces propriétés 

dépendent souvent non seulement de la structure chimique des molécules en 

interaction, mais aussi des conditions expérimentales (solvant et température). 

Afin de décrire correctement cette complexité, les modèles de propriété-

structure associés doivent impliquer des descripteurs caractérisant à la fois les 

aspects structurels et conditionnels. De plus, les structures chimiques doivent de 

préférence être codées par un descripteur local spécial1-2 ciblant spécifiquement 

les centres sélectionnés sur les espèces d'interaction et leur environnement le plus 

proche.  

Cette étude considère des systèmes de niveau de complexité différents dans la 

plupart desquels non seulement la structure moléculaire, mais aussi les conditions 
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expérimentales jouent un rôle significatif (Tableau 1). Le premier exemple est le 

plus simple : il concerne la modélisation de la stabilité de la liaison halogène 

mesurée par la constante d’équilibre de complexes de molécules organiques avec 

le même accepteur (I2) dans un solvant (hexane) à 298K. Dans ce cas, les 

conditions expérimentales sont contrôlées et fixes ; seule l’espèce chimique varie. 

La complexité augmente avec la modélisation de l'énergie libre de liaisons 

hydrogène. Dans ce second exemple, les modèles sont construits sur des données 

obtenues en environnement contrôlé : un solvant de référence (CCl4) et une 

température (298K). Mais cette propriété fait maintenant intervenir deux espèces 

chimiques : l’accepteur et le donneur de liaison hydrogène. Ceux-ci doivent être 

simultanément pris en compte dans les modèles et dans l’évaluation des 

performances de ces modèles. 

Le troisième exemple illustre un niveau de complexité encore supérieur : la 

modélisation des équilibres tautomères. Une molécule peut exister sous plusieurs 

formes qui ne se distinguent que par la position dans la structure chimique, d’un 

ou plusieurs atomes d’hydrogènes. Ces différents états sont les tautomères et leur 

prévalence relative est contrôlée par une constante d’équilibre tautomères. Cette 

constante dépend, en fait, de conditions expérimentales : solvant et température. 

Afin d’en tenir compte explicitement, il est nécessaire d’introduire des variables 

supplémentaires et pertinentes pour les décrire.  

Le dernier exemple traite des réactions de cycloaddition et de SN1, où différents 

réactifs et différentes conditions réactionnelles sont impliqués (Tableau 1). Ce 

projet met en œuvre tous les développements présentés auparavant.  
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Tableau 1. Informations sur les modèles prédictifs développés dans ce travail. 

 Système étudié Propriété 

modélisée 

Objets encodés Descripte

urs 

locaux 

Taille de 

l'ensemb

le 

d'entraîn

ement 

Méthode 

d'appren

issage 

automati

que 

1 Complexes de 

molécules 

organiques avec I2 

dans l'hexanei 

Logarithme de 

constante de 

liaison 

Structure 

moléculaire de la 

molécule 

individuelle 

Basés sur 

MAa 

598 SVM  

MLR 

2 Complexes 1: 1 

entre un donneur de 

liaison H et un 

accepteur de liaison 

H dans CCl4ii 

Energies libres de 

complexes 

Structures 

moléculaires des H-

donneur et H-

accepteur 

Basés sur 

MA  

3373 

 

SVM 

MLR 

3 Équilibre 

tautomères dans 

différents solvants 

Logarithme des 

constantes 

d'équilibre 

Structure 

moléculaire d'un 

tautomère 

sélectionné, solvant 

et température 

Basés sur 

MA  

695 SVM 

GTM  

4 Les réactions de 

cycloaddition (4 + 

2), (3 + 2) et (2 + 2) 

Logarithme de la 

constante de 

vitesse, énergie 

d'activation, 

facteur pré-

exponentiel 

Tous les réactifs et 

produits, solvant et 

température 

Basés sur 

CGR b 

1849 SVM 

GTM 

5 SN1 réactions Logarithme de la 

constante de 

vitesse 

Tous les réactifs et 

produits, solvant et 

température 

Basés sur 

CGR b 

8056 SVM 

GTM 

a descripteurs basés sur des atomes marqués (MA) b descripteurs basés sur graphes condensés de réaction 

(CGR) 

i. Glavatskikh, M., Madzhidov, T., Solov'ev, V., Marcou, G., Horvath, D., Graton, J., ... & Varnek, A. (2016). 

Predictive Models for Halogen‐bond Basicity of Binding Sites of Polyfunctional Molecules. Molecular 
informatics, 35(2), 70-80. 

ii. Glavatskikh, M., Madzhidov, T., Solov'ev, V., Marcou, G., Horvath, D., & Varnek, A. (2016). Predictive 
models for the free energy of hydrogen bonded complexes with single and cooperative hydrogen bonds. 
Molecular informatics, 35(11-12), 629-638. 
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Les modèles ont été construits à l'aide des méthodes SVM (Support Vector 

Machine), MLR (Multiple Linear Regression) et GTM (Generative Topographic 

Mapping). La SVM et la MLR sont des procédés d'apprentissage automatique 

conventionnels largement utilisés en chémoinformatique, tandis que le second, 

initialement développé comme outil de visualisation de données3, a été étendu en 

laboratoire à des tâches de modélisation structure-propriété4-5. Différents types de 

descripteurs locaux (à base de MA et à base de CGR, voir section 2) ont été utilisés 

dans la modélisation de la stabilité des liaisons halogènes, des liaisons hydrogènes 

et des équilibres de réactions chimiques. Pour ces derniers, les descripteurs 

structuraux ont été complétés par des descripteurs spécifiques de solvant et de 

température. 

La thèse comprend sept chapitres. Le premier chapitre d'introduction décrit 

divers descripteurs locaux utilisés dans la modélisation. Le deuxième chapitre 

fournit des informations sur les outils chémoinformatiques utilisés dans cette 

étude. Les chapitres 3 et 4 décrivent des modèles prédictifs pour évaluer les 

stabilités des liaisons halogènes et hydrogènes, respectivement. Les chapitres 5, 6 

et 7 sont consacrés à la modélisation prédictive de certaines propriétés 

thermodynamiques et cinétiques des réactions chimiques : la constante d'équilibre 

tautomère et les constantes de vitesse de la cycloaddition et des réactions SN1. 

1.1 Descripteurs locaux ISIDA pour la modélisation, l'analyse et la 

visualisation de données chimiques 

Les descripteurs locaux utilisés dans ce travail sont des sous-ensembles des 

descripteurs ISIDA1 représentant des fragments de différentes longueurs et 

topologies d'un graphe moléculaire donné. Ces fragments contiennent au moins 
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un atome ou une liaison étiqueté. Deux types de fragments ont été considérés: 

basés sur les atomes marqués et sur le graphe condensé de réaction (voir la Figure 

1).   

Les atomes marqués (MA) sont des atomes d’une structure chimique, annotés pour 

leur pertinence vis-à-vis d’un problème donné. Dans ce travail, ce sont les atomes 

impliqués dans les interactions intermoléculaires. En d’autres termes, ce sont des 

atomes donneurs d'électrons dans des accepteurs de liaison halogène, donneurs et 

accepteurs de proton dans les espèces formant des liaisons hydrogènes, les atomes 

qui perdent / reçoivent des protons dans des équilibres tautomères. 

Quatre scénarios de descripteurs à base de MA ont été considérés2: 

• Séquences d'atomes à partir de l'atome marqué, avec des fragments centrés 

sur l'atome avec l'atome marqué central (MA1). 

• Fragments contenant des atomes marqués (MA2). 

• Fragments avec et sans atomes marqués (MA3).   

• N’utilisant pas les atomes marqués (MA0), également utilisés à des fins de 

comparaison.  

La longueur du vecteur des descripteurs varie en fonction de la stratégie 

sélectionnée. Ainsi, MA0 et MA2 sont des sous-ensembles de MA3, alors que M1 

est un sous-ensemble de MA2.  

Dans le graphe condensé de réaction (CGR)6, les structures de tous les réactifs et 

produits sont fusionnées en un seul graphe (Figure 1, en bas) qui décrit à la fois les 

liaisons chimiques conventionnelles (simples, doubles, aromatiques, ...) et 

dynamiques des liaisons caractérisant des transformations chimiques (par 
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exemple, simple à double, simple brisée, simple créée, etc.). Les fragments 

contenant des liaisons dynamiques ont été utilisés comme descripteurs locaux. 

Les conditions expérimentales ont été codées par 13 paramètres de solvant7 reflétant 

la polarité, la polarisabilité, l'acidité et la basicité, et l’inverse de la température 

(1/T).  

Le vecteur des descripteurs entier pour un processus donné résulte de la 

concaténation de descripteurs de conditions structurelles et expérimentales.  

 

2. Modélisation quantitative de la relation structure / propriété / 

réactivité (QSPR) de différents objets chimiques. 

Le workflow général de modélisation incluait les étapes suivantes: (1) collecte et 

conservation de données, (2) génération de différents ensembles de descripteurs 

ISIDA, (3) sélection du meilleur ensemble de descripteurs en fonction des 

performances des modèles en validation croisée, (4) construction de modèles 

Figure 1. Exemple de structures pour lesquelles des descripteurs locaux basés sur MA (en haut) ou 

basés sur CGR (en bas) ont été générés. En haut: dans le complexe lié à l'hydrogène, les croix 

désignent les Atomes Marqués. En bas: dans le Graphique Condensé codant pour la réaction de 

cycloaddition (4 + 2), les points et les tirets représentent respectivement des liaisons chimiques 

formées et rompues. Quelques exemples de descripteurs générés sont donnés sur la droite. 
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individuels et consensus (pour SVM seulement) impliquant des descripteurs 

sélectionnés, (5) validation externe des modèles. 

2.1 Modélisation QSPR de la constante de liaison des complexes liés à 

l'halogène. 

L'ensemble de données comprenait 598 composés organiques pour lesquels le 

logarithme de la constante de stabilité du complexe 1:1 avec I2 (logKBI2) a été 

mesuré dans l'hexane à 298K. Différents types de modèles de consensus 

correspondant à 4 scénarios possibles de génération de descripteurs à base de MA 

ont été comparés. Les meilleurs descripteurs, de type MA3, conduisent à des 

performances prédictives raisonnables à la fois dans la validation croisée et sur 

l'ensemble externe de 11 composés polyfonctionnels portant 2 ou 3 sites de liaison 

putatifs (Tableau 2 et Figure 2).  

 Tableau 2. Performance prédictive des modèles en validation croisée 5 fois et sur 

l'ensemble externe.  

  

 
SVM  MLR  

RMSE R2 RMSE R2 

5-fois CV 0.39 0.93 0.43 0.92 

Ensemble externe 0.44 0.81 0.56 0.70 

Figure 2. Valeurs de logKBI2 

prédites vs expérimentales pour 

l'ensemble de test externe (à gauche) 

et des exemples d'évaluation de 

logKBI2 pour deux molécules 

polyfonctionnelles (à droite). 
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2.2. Modélisation QSPR de l'énergie libre de liaison hydrogène. 

L'ensemble de données comprenait 3373 paires de complexes 1:1 formant une 

seule liaison hydrogène, pour lesquelles les mesures expérimentales de ΔG (kJ / 

mol) ont été reportées en conditions standard (dans du CCl4 et à 298K). Les 

modèles consensus SVR et MLR, basés sur les descripteurs MA3 les plus 

performants, ont été utilisés pour la prédiction de l'ensemble de test externe de 

629 complexes (R2 = 0.65-0.74, RMSE = 3.2-3.8 (Figure 3)), mesurés dans 

différents solvants puis ramenés au CCl4, et l’ensemble d'essai de 12 complexes 

polyfonctionnels (Figure 4).  

 

 

 

 

Figure 4. Les énergies libres 

prédites vs expérimentales (kJ / 

mol) pour les complexes 1:1 avec 

deux liaisons hydrogènes 

coopératives (à gauche) et les 

deux exemples de ces complexes 

(à droite). 

G
pred

 

G
exp

 

Figure 3.  Les énergies libres 

prédites vs expérimentales (kJ / 

mol) pour l'ensemble de test 

externe de stabilité de la liaison 

hydrogène mesurés dans 

différents solvants. 
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2.3 Modélisation QSPR et visualisation de la constante d'équilibre (logKT) 

de différentes classes de transformations tautomères.  

L'ensemble de données consistait en 695 équilibres tautomères attribués à 10 

classes de transformation distinctes. Les deux modèles de classification prédisant 

le type de tautomérisation et les modèles de régression prédisant le logKT ont été 

obtenus avec les méthodes SVM et GTM. Les modèles impliquant des descripteurs 

locaux MA2 fonctionnent bien sur deux ensembles de tests externes: l'un 

contenant des transformations tautomères connues étudiées dans de nouvelles 

conditions (test set 1, Figure 5) et l'autre contenant de nouvelles transformations, 

au sens de leurs structures chimiques (test set 2, Figure 5).  

Cet ensemble de données a été visualisé sur une carte bidimensionnelle construite 

en utilisant l'approche GTM (Figure 6). Cette carte sépare avec succès différentes 

classes de transformations tautomères et les équilibres différant soit par structure, 

soit par solvant. 

 

Figure 5. Valeurs de constante d'équilibres tautomères pour l'ensemble de transformations étudié 

dans de nouvelles conditions (à gauche) et l’ensemble de test contenant de nouvelles 

transformations (à droite).  
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2.4 Modélisation QSPR des propriétés cinétiques des réactions de 

cycloaddition.  

Le jeu de données incluait 1849 réactions de types (4+2), (3+2) et (2+2), 

associées à leurs valeurs expérimentales de la constante de vitesse (logk), à 1356 

valeurs des énergies d'activation (Ea) et à 1237 valeurs du coefficient pré-

exponentiel (logA). Les descripteurs basés sur les graphes condensés de réactions 

ont été utilisés pour construire des modèles SVM et GTM individuels, suivis de 

leur validation (les valeurs du log k ont été prédites) sur le jeu de test de 200 

réactions sélectionnées aléatoirement dans la base de données. Les énergies 

d'activation et le facteur pré-exponentiel ont été modélisés. Ceux-ci sont utilisés 

pour estimer la constante de vitesse, logk, en suivant une loi d'Arrhenius.   

La Figure 7 représente les paysages d'activité généré par la GTM, pour le logk, 

l’Ea et le logA. Les résultats sont en accord avec des concepts chimiques généraux, 

les réactions à faible logk, projetées dans les zones de faibles logA bas et Ea sont 

caractérisées par d’importantes contraintes stériques (Figure 7, a). Pendant ce 

Figure 6. Paysage de classe GTM (à gauche) et paysage d'activité (au milieu). Les réactions 1 (a, 

b) et 2 (a, b) sont données à droite. Les nombres entre parenthèses correspondent aux valeurs logKT. 
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temps, la distribution des énergies des orbitales frontières des réactions à faible 

logk, projetées dans les zones de fortes valeurs de logA et Ea, sont affectées par 

des substituant électroniquement défavorable (Figure 7, b). 

Sur l’ensembles de tests externes, le modèle de régression basé sur la GTM est 

moins performant que le modèle SVM associé (R2=0.74, RMSE=0.90 (GTM) et 

R2=0.92, RMSE=0.50 (SVM)). Ceci s’explique par le fait que le modèle GTM a 

été optimisé pour prédire les trois propriétés (logk, Ea, logA) simultanément. Au 

contraire de l’approche SVM qui utilise des modèles spécifiques pour chacune des 

propriétés. Néanmoins, les différentes classes de réaction sont bien séparées sur 

la carte GTM, voir Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

a 

log k = -3.55 (403K, benzene) 

b 

log k = -4.2 (313K, dichoroethane) 

Figure 7. Paysages de propriétés GTM pour la constante de vitesse (log k), l'énergie d'activation (Ea) 

et le coefficient pré-exponentiel (log A) pour les réactions de cycloaddition (en haut). Les exemples 

ci-dessous correspondent aux réactions qui caractérisées par des contraintes stériques (a) ou par une 

distribution défavorable des énergies des orbitales frontières (b). 
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2.5 Modélisation QSPR de la constante de vitesse des réactions SN1.  

Un ensemble de 8056 données de réactions SN1 a été utilisé pour construire des 

modèles de régression SVM de leur vitesse de réaction. Les réactions étaient 

codées par des descripteurs intégrant des atomes marqués de type MA3 ou calculés 

sur de structures CGR. Les modèles ont été validés sur deux jeux de données 

supplémentaires: l’un contenant des réactions connues étudiées dans de nouvelles 

conditions (test 1) et l’autre de nouvelles réactions (test 2). Le modèle fonctionne 

de manière similaire sur les deux ensembles de test: R2 
test1= 0.64-0.67, R2 

test2= 

0.55-0.58, RMSE test1 = 0.68-0.70, RMSE test2 = 0.87-0.90.  

 

 

Figure 8. Modélisation des logarithmes de constantes de vitesse : valeurs prédites vs valeurs 

expérimentales pour le jeu de test (à gauche). Séparation de trois classes de réactions (4+2, 3+2, 

2+2) en utilisant la méthode GTM (à droite). 

 

Figure 5. Modélisation des logarithmes de constantes de vitesse : valeurs prédites vs valeurs 

expérimentales pour le test externe étudiées dans de nouvelles conditions (à gauche) et de test externe 

contenant de nouvelles transformations (à droite).  
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Les questions méthodologiques suivantes ont été considérées dans notre travail: 

(1) une stratégie axée sur le processus de génération de descripteurs locaux; (2) 

la sélection et l’élaboration d'une combinaison optimale de descripteurs 

caractérisant la structure chimique, d'une part, et les conditions expérimentales, 

d'autre part; (3) la capacité de la GTM à visualiser et à modéliser des processus 

chimiques entiers (structures et conditions); (4) la capacité des modèles formés 

sur les complexes avec une seule liaison halogène ou hydrogène à prédire la 

stabilité des complexes avec de multiples liaisons de ces types. 

 

 

 

3. Conclusions 

▪ Une combinaison de descripteurs de fragments locaux décrivant des 

structures moléculaires et de descripteurs spéciaux caractérisant les 

conditions expérimentales (solvant et température) a été utilisée avec 

succès pour développer des modèles prédictifs de certains paramètres 

cinétiques et thermodynamiques des liaisons halogènes et hydrogènes, des 

équilibres tautomères et de deux types de réactions chimiques. Les 

descripteurs les plus appropriés pour les réactions chimiques combinant 

plusieurs réactifs et produits sont ceux générés à partir des Graphes 

Condensés de Réaction. Sinon, diverses stratégies utilisant les Atomes 

Marqués ont été recommandées. 

▪ Les modèles construit sur des mesures réalisées sur des complexes 

impliquant une seule liaison halogène ou une seule liaison hydrogène ont pu 
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être utiliser avec succès pour estimer les stabilités des complexes contenant 

plusieurs liaisons de ces types. Cela ouvre des perspectives pour  utiliser ces 

modèles dans la conception assistée par ordinateur de nouveaux systèmes 

supramoléculaires. 

▪ Pour la première fois, la méthode GTM a permis de visualiser des processus 

chimiques décrits par l’ensemble de leurs réactifs et de leurs produits et 

leurs conditions réactionnelles plutôt que par des espèces chimiques 

individuelles. Ainsi, sur l'exemple des équilibres tautomères, il a été montré 

que les espèces mesurées dans différents solvants sont bien séparées sur la 

carte. Dans l'exemple de la cycloaddition, les trois types de réaction sont 

bien séparés aussi.  

▪ Les modèles QSPR développés prédisant les constantes d'équilibre des 

transformations tautomères, la stabilité des liaisons halogène avec I2 et la 

constante de vitesse, le facteur pré-exponentiel et les énergies d'activation 

des réactions de cycloadditions sont disponibles pour les utilisateurs via nos 

plateformes internet https://cimm.kpfu.ru/ et http://infochim.u-

strasbg.fr/webserv/VSEngine.html. 

 

https://cimm.kpfu.ru/
http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
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PART I.  REVIEW, METHODOLOGY AND TOOLS 

 

 

Chapter 1 

 

 

Introduction 

The requirements of modern knowledge-intensive fields of chemistry, such as drug 

development and chemical engineering, are constantly expanding, requiring more elaborated 

techniques and methods. Started by focusing on management of structural information of 

single molecular entities, present-day Chemoinformatics is developing the methods that 

follow the practical interest in predicting properties of compounds in condensed phase and in 

interaction with various partners, and not those of single molecules in vacuum. Consequently, 

tools and approaches maintaining single molecule study is not satisfying for multi-depended 

properties, i.e. the ones that depend on several parameters, or assemblage of molecules, 

bounded by a variety of intermolecular interactions. Exemplary objects are the host-guest 

complexation and molecular recognition, driven by weak interactions and, certainly, chemical 

reactions and chemical equilibria, thermodynamics and kinetics of which depends 

simultaneously on chemical structure and on reaction conditions. The mentioned processes 

represent the interactions incorporating several molecules, the structure of each of which has 

to be taken into thorough consideration. That, however, is not sufficient: for the case of 
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intermolecular interactions (for instance), the interaction of two molecules, possessing 

several putative active sites, could result in different intermolecular complexes, that are not 

possible to differentiate if only the generic structures of the reagents are taken into account. 

The dynamics of the chemical process is thus characterized by the structural localities, directly 

involved into a chemical interaction and forming the active sites. Explicitly accentuated, the 

active sites define the dynamics of a particular chemical interaction. A generic task of 

prediction of the possibility of an interaction hence grow up into a new challenge of prediction 

of interactions with multiple putative active sites, for which one needs to predict which 

centers will interact and their interaction strength.  This level requires a rigorous description 

of structural aspects of all the reagents, altogether with the accounting and explicit designation 

of the local regions signifying the active sites.   

Another degree of freedom comes from the necessity of the reaction condition 

consideration. Indeed, small changes in solvent nature could drastically influence the property, 

in some cases being a determinative factor in the feasibility of the process. A simple solvent 

effect consideration may include a categorical assignment of a solvent to a certain group, such 

as polar/nonpolar or protic/aprotic. However, with regard to chemical reactions or 

intermolecular interactions, this simple approach could not already be sufficient. Indeed, the 

equilibrium or the rate constants remarkably depend on various factors included into the 

reaction conditions, such as solvent’s polarity, solvent’s H-acidity/basicity, temperature, 

pressure, etc. Thus, the new challenge addressed in this work is the necessity of the 

consideration and the description of the experimental conditions, including variety of solvent 

effects the property could depends on.          

Chemical reaction data requires to be analyzed in terms of structural/conditional 

contents, its relationship with each other and with the property and data distribution in a 

chemical space. As an example, for the case of chemical reactions, the arrangement of the 

structural and reaction condition parts according with its influence on the property value, 

helps to understand the nature and the mechanism of the process. The need of such kind of 

analysis of complex data is increasing with the growth of the number of data constituents. A 

tool aimed at data analysis and visualization and used in this study is the Generative 

Topographic Mapping3-4, 8 (GTM). The method provides a visual, 2D-map projected data 

clustering and property distribution which is of great support for large data analysis. In this 

study, for the first time, it is used for complex chemical data modeling and analysis. Apart 

from common structural patterns identification, GTM helped to demonstrate the reaction 
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condition influence, to estimate the quality of the data and the preferable way of its 

description. Moreover, the understanding of the underlying clustering principles contributes 

to revealing of the interrelation of data constituents and are helpful in determination of more 

suitable modeling approach and way of description.  

One of the most demanded practical task, related to chemical processes, is the prediction of 

thermodynamic, kinetic or other parameters of a certain transformation. That could be 

achieved by the Quantitative Structure-Property Relationship (QSPR) modeling, one of the 

main tools of chemoinformatics, the goal of which is to provide an equation that relates an 

object (e.g. chemical reaction) with the value of the property of interest (e.g. rate constant). 

Various algorithms, so-called machine learning methods, have been developed for the QSPR 

modeling, each of which derive the equation in its own way. The mentioned GTM, first 

designed as the tool for data visualization, has been further extended for QSPR modeling, 

allowed a single GTM model to be used for the prediction of different, not necessarily related 

properties. The supervised methods such as Support Vector Machine (SVR) or Multiple 

Linear Regression (MLR), notwithstanding their inability in chemical data visualization, 

though could provide more accurate results of the prediction, since they are built specifically 

for a given property.     

 

 

 

Thus, the challenge of this work is to expand QSPR methodology for problems, where the 

working hypothesis of a "constant" environment does no longer apply: interactions of both 

covalent and non-covalent nature, with different partners in multiple solvents, at various 

temperatures. These processes are characterized by local interactions, that imply the 

representation of both, structural and conditional aspects, along with the explicit designation 

of the dynamics of the process. The complexity of the tasks is raising form intermolecular 

interactions to chemical reactions. 

 The work is divided into two parts, where the first one describes the general methodology 

and the second is devoted to its practical application for different chemical objects. The first 

chapter gives an overview of the existing local descriptors, providing the structural 

characterization of a process, and the descriptors encompassing the solvent effects. The 
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purpose of that section is to select an appropriate way of chemical data representation. As it 

will be discussed in the next section, one of the most convenient types of description for 

complex chemical processes is the ISIDA Marked Atom-based (MA) and the ISIDA Condensed 

Graph of Reaction-based (CGR) fragment descriptors, representing substructures of a 

molecular structure. The second chapter describes the general practices of QSPR modeling 

and the details and particularities of the machine learning methods, used during the study: 

SVM, MLR and GTM. The second part of the thesis, devoted to the practical application, 

consists of five projects. The part of intermolecular interaction modeling starts with halogen 

bonding, where the data represent a set of single molecules measured in unified conditions. 

The topic continues with hydrogen bonding interaction, for which the model predicting the 

strength of intermolecularly-bonded complexes of different donors and acceptors was built. 

The work continues with even more challenging modeling of chemical reactions. The section 

starts with the project of tautomeric equilibria modeling and visualization, accounting for the 

impact of reaction condition changes. The section continues with an exhaustive modeling and 

visualization of kinetic parameters of reactions of cycloaddition. The final chapter is dedicated 

to the modeling of a large set of SN1 reactions, where both approaches of structure 

representation (CGR-based and MA-based) are employed. Table 1 illustrates the overview of 

the application part providing the class of chemical processes, property and the descriptors 

and tools that have been employed during the study.    
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Table 1. Information about the predictive models developed in this work 

 Studied system Modeled 

property 

Encoded 

information 

Local 

descriptors 

Training 

set size 

Machine-

learning 

method 

1 Complexes of 

organic molecules 

with I2 in hexanei 

Logarithm 

of binding 

constant  

Molecular 

structure of 

individual 

molecule 

MA-based a 598 SVR,  

MLR 

2 1:1 complexes 

between H-bond 

donor and H-bond 

acceptor in CCl4
ii 

Free 

energies of 

complexes 

Molecular 

structures of 

both, H-donor 

and H-

acceptor  

MA-based 3373 

 

SVR, 

MLR 

3 Tautomeric 

equilibria in 

different solvents 

 

 

Logarithm 

of the 

equilibrium 

constants  

Molecular 

structure of 

one selected 

tautomer, 

solvent and 

temperature  

MA-based 697 SVR, 

GTM  

4 The (4+2), (3+2) 

and (2+2) 

cycloaddition 

reactions 

Logarithm 

of the rate 

constant, 

activation 

energy, pre-

exponential 

factor  

All reactants 

and products, 

solvent and 

temperature 

CGR-based b 1849 SVR, 

GTM 

5 SN1 reactions Logarithm 

of the rate 

constant  

All reactants 

and products, 

solvent and 

temperature 

CGR-based 8256 SVR, 

GTM 

a Marked Atoms (MA) based and b Condensed Graph of Reaction (CGR) based local descriptors 

i.   Glavatskikh, M., Madzhidov, T., Solov'ev, V., Marcou, G., Horvath, D., Graton, J., ... & Varnek, A. 

(2016). Predictive Models for Halogen‐bond Basicity of Binding Sites of Polyfunctional Molecules. Molecular 
informatics, 35(2), 70-80. 

ii. Glavatskikh, M., Madzhidov, T., Solov'ev, V., Marcou, G., Horvath, D., & Varnek, A. (2016). Predictive 
models for the free energy of hydrogen bonded complexes with single and cooperative hydrogen bonds. 
Molecular informatics, 35(11-12), 629-638. 
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Chapter 2 

 

 

Molecular descriptors for interacting chemical 

entities 

The Quantitative Structure-Property Relationship (QSPR) presupposes a molecular structure 

to be encoded in a way that is, first, adapted for the machine learning algorithm and, second, 

convenient for the evaluation of the corresponding structure-property relationship. The 

attributes used for the description of a molecule, called descriptors, should be chosen in 

accordance with the task, taking into account the nature of the process, its driving force and 

the factors that could affect the process. Regarding to the modeled processes, a simplified 

categorization could include global processes, referred to the whole structure, for which, 

among the scope of possible local interactions, the property-defined ones could not be 

specified (solubility). These properties are thus could be considered as depending on the 

structure as a whole. Local processes are defined primarily by local interactions of the active 

centers (intermolecular binding). Thus, for local processes the interaction centers could be 

pointed out.  
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This chapter gives an outlook of the variety of descriptors applicable for the QSPR modeling 

of local processes (local descriptors). The description of a chemical process includes the 

structural and the experimental condition parts. Correspondingly, local descriptors are 

referred to chemical structure, and discussed in section 2.1, whereas the parameters, by which 

the reaction conditions could be taken into account, are reviewed in section 2.2. A 

comprehensive overview of this field is not a goal of the present chapter and the attention will 

be paid to the most common, widely-used descriptors conforming the definition of ‘local 

descriptors’ i.e. bearing an information about certain atoms or group of atoms. That includes: 

substituent constants, quantum-chemical descriptors, electrotopological indices and ISIDA 

fragment descriptors. A full comprehensive review of major types of global and local 

descriptors, used in chemoinformatics, are given in works and books of R.Todeschini and 

V.Consonni9-10.  

 

2.1 Local descriptors for chemical structure representation 

2.1.1 Substituent constants 

Substituent constants could be proclaimed as the first attempt in classification of local effects 

of certain structural groups. A pioneer work belongs to Hammet11, treating the electronic 

effect of substituents on the rate and equilibrium constants of organic reactions, and Taft12, 

applying similar approach for derivation of series of constants, differentiated by nature of the 

contributed electronic effect. 

2.1.1.1 Hammet constants 

An American physical chemist Louis Hammett noted that a particular substituent on the 

aromatic ring of benzoic acid would affect its acidity in a similar manner as it would affect 

other aromatic structures. For instance, a para-nitro group would affect the value of the 

dissociation of benzoic acid in a manner similar to that of salicylic acid. That was the beginning 

of the concept of substituent constants. The well-known Hammet constants are derived from 

the dissociation constants ratio of benzoic acid (K0) and a corresponding substituted benzoic 

acid:  

σ = log K
K0

⁄           (1) 
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Because of the drastic dependence of the dissociation constants upon temperature and the 

nature of solvent, the σ-constants are specifically given for water solution and at the 

temperature of 25° C.  

The magnitude of the electronic effect caused by the substituent is influenced by its position 

to the carboxylic group. In this way, the σ-constant for para-position will mainly describe the 

electronic influence by means of resonance effect, while the σ-constant for ortho-position 

will describe both fluctuations via σ and π –bonds. Since the strength of the effects varies 

depending on the position of the substituent in the ring, the meta, ortho and para constants, 

σm, σo and σp, are distinguished.. If the ratio K K0
⁄  is more than one, i.e., the substituent 

leads to an increased acidity of the benzoic acid, σ is positive and the substituent is considered 

to be an electron-withdrawing group, if the ratio is less than one, the substituent is electron-

donating and σ will be negative. Hammett substituent constants are referred to hydrogen and 

σH is thus equal to zero.  

Despite of the empirical derivation from the benzoic acids equilibrium, substituent constants 

can be successfully applied for the prediction of the variety of families of reactions in solution, 

such as electrophilicity of  substituted benzoic esters, the nucleophilicity of anilines, and the 

solvolysis of  benzyl halides13. Hammet constants are important constituents in the field of 

QSPR modeling and were applied for the modeling of protein-ligand interactions14, 

interactions with enzymes15, antitumor and antimalarial activity16-17 as well as toxicology and 

mutagenicity18.  

2.1.1.2 Inductive constants 

The electronic constants devised by Hammett reflects three types of electronic influences: 

• resonance (mesomeric) effect  

• inductive effect: electrostatic influence of a group which is transmitted primarily by 

polarization through a chain of neighboring atoms 

• field effect: electrical influence of a substituent transmitted through space  

The last two are hard to distinguish and usually they are considered to be a unified composite 

inductive effect and are treated together. Thus, because of the complexity and unified nature 

of the overall electronic constants, the establishing of the way by which the substituent 
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influences on the reaction rate and equilibrium is very important, because some chemical 

reactions are driven either by the resonance or by the inductive effect. The approaches of 

quantitative evaluation of a pure inductive effect were first devised by Taft and Ingold19 and 

then proceeded in works of Roberts and Moreland20, Holtz–Stock21, Siegel–Kormany22 and 

others.  

Taft inductive constant 

In 1930 Ingold proposed the idea of measurement of an inductive effect through a ratio of 

dissociation constants rates of acid and base hydrolysis of acetic acid esters. Developing the 

Ingold’s idea, Taft19 derived series of inductive substituent constants (σ* constants) estimating 

quantitatively an inductive effect and defined as : 

𝜎∗ = 1
2.48⁄ × [log(

𝑘𝑥

𝑘𝑀𝑒
)𝑏 − log(

𝑘𝑥

𝑘𝑀𝑒
)𝑎]          (2) 

where the indexes A and B refer to acid and base hydrolysis. The factor 2.48 is introduced to 

make the 𝜎∗ values comparable in magnitude to the widely used Hammett constants. A 

positive 𝜎∗ value indicates that the group is electron-withdrawing relative to methyl, while a 

negative value indicates electron contribution. In acid and base series of the reactions, the 

steric and resonance effects can be considered to be the same: the transition state of both 

mechanisms passes through tetrahedral intermediate (Figure 1). The acidic intermediate will 

differ from the one of base-catalyzed by one proton, which can not affect the steric factor 

significantly.  In case of the resonance influence possibility, it will also be involved in both 

intermediates and the effect should be nearly the same for both mechanism.  

 

Roberts–Moreland inductive constant 

The Robert-Moreland constants20 derived from the measurement of the dissociation constants 

for a series of 4-substituted bicyclo-[2.2.2]-octane-l-carboxylic acids (Fig. 2). This molecule 

Figure 1. Transition state for the acid 

(a) and base (b) hydrolysis of esters. 
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has no unsaturation, hence, the transmission of electrical effects of substituents through the 

ring by resonance is not possible and the substituent can induce the inductive effect only. 

Moreover, the chosen reference compound is free from conformational effects and no steric 

effect is observed, as the substituent and the active site are not in close proximity to each 

other. The dissociation constant is measured in 50% ethanol at 25°C.  

The Roberts–Moreland inductive constant measured in 50% ethanol at 25°C, and defined as:    

𝜎 =  
1

1.464 
( 𝑙𝑜𝑔𝐾 − 𝑙𝑜𝑔𝐾0 )          (3) 

Where 𝐾0 is the dissociation constant of unsubstituted bicyclo-[2.2.2]- octane-l-carboxylic 

acid. The coefficient of 1.464 is given to refer the scale to the Hammett equation. 

 

2.1.1.3 Resonance (mesomeric) constants 

Taft resonance constant  

The application of the well-known Hammett sigma constants referred to meta- and para- 

substitutions sometimes can be limited by the fact that some reactions are mostly driven by 

resonance effect, which is implicitly included into the para- substitution constant and not for 

the meta- one. Thus, the resonance contribution for the series of para-substituted benzene 

derivatives can be simply expressed through the subtraction of the pure inductive contribution 

from the Hammett sigma constant. That was done by Taft12 who proposed the first scale of a 

resonance effect of the given series of compounds:  

𝜎𝑟   =  𝜎 – 𝜎𝑖            (4) 

Where 𝜎𝑖  is the Taft inductive constant (see 2.1.1.2). The resonance constants express the 

influence of the π-bonded electrons of the substituent to the benzene ring due to resonance 

fluctuation. As a measure of withdrawing of the electronic charge, the values of the 𝜎𝑟  are 

Figure 2. The structure of bicyclo-

[2.2.2]-octane-l-carboxylic acids. 
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negative for ortho- and para- groups and positive for the meta- groups. Later on, Taft23 also 

proposed the estimation of 𝜎𝑟  by means of  19F-NMR spectroscopy, where the  19F-chemical 

shift indicates the resonance interaction between the para-substituent and fluorobenzene 

system.  

It should be noticed, that the 𝜎𝑟  resonance scale is only suitable for benzene derivatives as the 

resonance effect in general has a great variability upon the reaction type. Although, the scale 

can provide a general qualitative estimation of resonance ability of a certain substituent. 

Swain-Lupton approach 

The other approach of separate estimation of the inductive and resonance effects was proposed 

by Swain and Lupton. The idea of the authors is that the Hammett constant, which included 

inductive along with the resonance effect, can be represented as a linear combination of both 

contributions with the corresponding parameters: 

𝜎 = 𝑓𝐹 + 𝑟𝑅          (5) 

where the polar component (𝐹) is calculated from the 𝜎𝑚 and 𝜎𝑝 Hammett constants: 𝐹 =

𝑏0 + 𝑏1𝜎𝑚 + 𝑏2𝜎𝑝 (the coefficients are evaluated by least square regression using pKa values 

of bicyclo-[2.2.2]- octane-l-carboxylic acid), and the resonance component 𝑅 is estimated as 

𝜎𝑝 − 0.921𝐹. 

The main assumption hence that the substituent in para-position induce the main resonance 

perturbation. The corresponding 𝐹 and 𝑅 parameters were initially calculated for 43 

substituents and then further expanded to a few hundreds. 

2.1.1.4 Steric constants 

Taft steric constant 

The first steric constant 𝐸𝑠 was defined empirically by Taft as the extension of Hammett 

equation11. 𝐸𝑠 is a measurement of the steric effect caused by the group X and influenced the 

acid-catalyzed hydrolytic rate of esters of substituted acetic acids:  

𝐸𝑠 = log (𝑘𝑋)𝐴 − log (𝑘𝐻)𝐴          (6) 
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where 𝑘𝑋 and 𝑘𝐻 are the rates of substituted and unsubstituted acetic acids esters hydrolysis. 

This scale is based on the assumption that the corresponding rates are influenced mainly by 

steric effects and no polar interruption is introduced. The bulkier the substituent, the more 

negative the 𝐸𝑠 constant value is. 

The 𝐸𝑠 scale succeeded in reproducing of steric effect, giving, at least, qualitative 

approximation for the measured substituent effect. Later on, more unified and revised scales 

have been proposed: Hancock24 corrected the 𝐸𝑠 parameter with the inclusion of the 

hyperconjugation influence of  α-hydrogens, Palm25 enlarged the latter with the C-C and C-

H hyperconjugation effect corrections, Dubois26 proposed a modified scale  defined on the 

basis of more unified reactions and over wider range of substituents. 

Charton steric constant 

Charton found that Taft’s steric constant is linearly dependent on the van der Waals radius of 

substituent, which led to the developments of Charton’s steric parameter. The constant is 

defined as the difference of the corresponding van der Waals radius of substituent X and 

hydrogen atom radius:  

𝑣𝑥 = 𝑅𝑣𝑑𝑤(𝑋) − 𝑅𝑣𝑑𝑤(𝐻)           (7) 

 

υ is defined as the difference between the van der Waals radii of H and substituent X.  

Charton’s steric parameter related to the van der Waals radius of any symmetrical substituent 

(H, Cl, CN) or to the minimum width of asymmetrical ones (CH3, CMe3). Charton also 

defined the minimum and maximum van der Waals radius in order to take into account the 

possibility of conformation of a group thus seeking for the repulsive effect minimization, the 

average of which well correlated to Taft steric constant.   

 

2.1.2 Quantum-chemical descriptors 

2.1.2.1 Atomic charges 

According to the classical chemical theory, the driving force of all chemical reactions is either 

of the electrostatic or of the orbital-control driven nature. Thus, charges are responsible for 
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the whole variety of electrostatic-driven processes. It has been shown that local electron 

densities or charges are essential parameters in description and interpretation of the 

mechanism of chemical reactions and physico-chemical properties27. That is the reason of wide 

usage of charge-based descriptors in QSPR modeling of different physico-chemical properties, 

chemical reactions and weak intra- or intermolecular interactions.  

Most common schemes for atomic charges derivation are based on the population analysis of 

the wave function obtained by quantum-chemical calculation. Several schemes for the analysis 

of the wave function have been proposed. The most common and utilized are Mulliken28 and 

Löwdin29 atomic charges, those based on natural bond orbital theory30 (NBO), the Bader AIM 

theory31 and the ones fitting the point charges such as to produce an intrinsic electrostatic 

potential calculated from the wave function32.  The diversity of the calculation methods is a 

consequence of the fact that none of the values obtained by any of the methods corresponds 

to a directly experimentally measurable quantity. That should be mentioned, however, that 

partial charges could be obtained by empirical methods, such as Gasteiger-Marsilli33.  

Atomic charges have been used as static chemical reactivity indices. One of the most 

commonly used nondirectional indices are net atomic charges, which can be obtained by 

subtracting the number of valence electron belonging to the atom from the total electron 

density on the atom. As a global version of charge-based descriptors, the most positive and 

the most negative net atomic charges and the average absolute atomic charge are often used34-

35.  

Atomic charges have been successfully used as local descriptors for QSPR modeling of 

different physico-chemical properties such as partition octanol-air coefficient36, adsorption 

coefficient37, dopamine and benzodiazepine agonists38, acid dissociation constant (pKa)39-40 

and hydrogen-bong strength prediction41.  

2.1.2.2 Electrophilic and nucleophilic frontier electron densities 

One of the most powerful tool for chemical reactivity interpretation is the frontier molecular 

orbitals theory (FMO), developed by Kenichi Fukui in 1950’s.  The theory is based on the 

consideration of the frontier molecular orbitals, correspondingly, the highest occupied and 

the lowest unoccupied molecular orbitals (HOMO and LUMO), as the ones mainly 

responsible for molecule’s reactivity. Thus, the frontier orbital theory predicts the site of the 
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lowest unoccupied orbital localization to be an electrophilic region, similarly, the site where 

the highest occupied orbital is localized is a nucleophilic region. 

The theory gave rise to many different global and local descriptors which are widely usable 

due to its high information content, wide applicability and easiness of calculation. The most 

common local FMO descriptors are based on the atomic contribution to HOMO or LUMO. 

Thus, an electrophilic frontier electron density 𝐹𝑎
𝐸  indicates how easy the atom a interacts 

with an electrophile. Opposite, a nucleophilic frontier electron density 𝐹𝑎
𝑁 is a measure of 

the atom a to be exposed for the nucleophilic attack. These descriptors are defined as: 

𝐹𝑎
𝐸 =

∑(𝐶 ℎ𝑜𝑚𝑜,𝑗)2

 |𝐸 ℎ𝑜𝑚𝑜|
          and            𝐹𝑎

𝑁 =
∑(𝐶 𝑙𝑢𝑚𝑜,𝑗)2

|𝐸 𝑙𝑢𝑚𝑜| 
          (8) 

where 𝐶ℎ𝑜𝑚𝑜 , 𝑗  and 𝐶 𝑙𝑢𝑚𝑜 , 𝑗 are the coefficients of contributions of the j-atomic orbital of 

the atom a to HOMO and LUMO, and 𝐸 ℎ𝑜𝑚𝑜 𝐸 𝑙𝑢𝑚𝑜 are the energies of the corresponding 

orbitals. The FMO descriptors perform better when HOMO and LUMO are well separated 

in energy and the reaction is fully controlled by the frontier orbitals (which, for example, is 

not the case of aromatic ring system). The examples of the application of the electrophilic and 

nucleophilic frontier electron densities are: modeling of mutagenicity42, antioxidant activity43, 

adsorption of organic compounds on soils44 and porphines and chlorins reactivities45.  

2.1.2.3 Electrophilic, nucleophilic and radical superdelocalizabilities 

Along with the electrophilic and nucleophilic frontier electron densities, another type of 

descriptors derived from the Fukui’s theory are superdelocalizability indices, which can be 

defined as the contribution of the atom a to the stabilization energy in the formation of a 

charge-transfer complex or the ability to form bonds through charge transfer. Thus, the 

electrophilic superdelocalizability (𝑆𝑎
𝐸) describes the interaction with the electrophilic center 

and the nucleophilic superdelocalizability (𝑆𝑎
𝑁) describes the interaction with the nucleophilic 

center: 

 

              𝑆𝑎
𝐸 = 2 × ∑

∑ 𝑐 𝑖,𝑗
2

|𝐸𝑖|

𝑁𝑜𝑐𝑐

𝑖

    𝑎𝑛𝑑     𝑆𝑎
𝑁  = 2 × ∑

∑ 𝑐 𝑖,𝑗
2

|𝐸𝑖|

𝑁𝑚𝑜

𝑁𝑜𝑐𝑐+1

           (9) 
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where 𝑐𝑖,𝑗  are the coefficients of the contribution of the j’s atomic orbital to the i’s molecular 

orbital summed over all occupied/unoccupied molecular orbitals, 𝐸𝑖  is the energy of the i’s 

molecular orbital.  

These are useful parameters to characterize molecular interactions and to compare 

corresponding atoms in different molecules. Electrophilic and nucleophilic 

superdelocalizabilities themselves are local descriptors that describe atom in a molecule, in 

parallel, there are important global descriptors, based on the atomic superdelocalizabilities 

such as maximum, total and average superdelocalizabilities. Superdelocalizabilities are so-

called dynamic reactivity indices, referring to the transition states of the reactions46, while the 

static indices (e.g. charges) describe isolated molecules in their ground state.  

Superdelocalizability indices have been used as descriptors in different works devoted to the 

modeling of physico-chemical parameters or reactivities.  Some of the examples are modeling 

of the acute toxicity of the substituted benzenes47,  modeling of series of benzodioxanes as 

alpha-1-adrenergic antagonists48, of carbonic anhydrase inhibitors49 and of the permeability 

coefficient of aminobenzoates50.   

Radical superdelocalizability is defined as the sum of the electrophilic and nucleophilic 

superdelocalizabilities:  

              𝑆𝑎
𝑅 = 2 × ∑

∑ 𝑐 𝑖,𝑗
2

|𝐸𝑖|
  

𝑁𝑜𝑐𝑐

𝑖

+   2 × ∑
∑ 𝑐 𝑖,𝑗

2

|𝐸𝑖|

𝑁𝑚𝑜

𝑁𝑜𝑐𝑐+1

          (10) 

Radical superdelocalizability refers to radical attack and have been used as an important 

descriptor in the modeling of toxicity of halogenated aliphatic compounds51 , reactions of 

hydroxyl radicals with nucleic acids52,  reactions of hydroxylations of aromatic compounds53 

and carcinogenicity of polycyclic hydrocarbons54.  

2.1.2.4 Atomic polarizability 

Among common local quantum-chemical descriptors, the polarizability indices occupy an 

important place. In general, atomic polarizability is the polarization effect at atomic level, 

where dipole moment µ 𝑖𝑛𝑑,𝑖  is induced on the ith atom: 

µ 𝑖𝑛𝑑,𝑖 = 𝑎𝑖 × 𝐸𝑖            (11) 
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where  𝐸𝑖 is the electric field at the ith atom and 𝑎𝑖  is the corresponding atomic polarizability 

tensor.  

Several methods have been proposed for the atomic polarizability calculation. One of the first 

was developed by Kang55 in which the atomic polarizabilities were obtained from the 

experimental polarizabilities of homologous molecules. The method of Miller56 allows to 

calculate so-called atomic hybrid polarizabilities which take into account the hybridization of 

the atom. These atomic hybrid polarizabilities can be combined to generate bond 

polarizabilities and the average molecular polarizability. The method developed by No57 

proposes to calculate the effective atomic polarizabilities as functions of net atomic charges.  

In addition to the simple atomic polarizabilities, the common descriptors of this family are 

atom-atom polarizability and self-atomic polarizabilities. Atom-atom polarizability is an index 

of chemical reactivity, denoted as 𝜋𝑎𝑏 and calculated from the perturbation theory as:  

 

𝜋𝑎𝑏 = 4 ∑ ∑ ∑ ∑
𝑐𝑖µ,𝑎𝑐𝑗µ,𝑎𝑐𝑖𝑣,𝑏𝑐𝑗𝑣,𝑏

𝐸𝑖 − 𝐸𝑗
          (12)

𝑣µ

𝑁𝑜𝑐𝑐

𝑗

𝑁𝑜𝑐𝑐

𝑖

 

 

where i and j run over the molecular orbitals and µ and v run over the atomic orbitals, 𝑐𝑖µ,𝑎 

denotes the i-th molecular orbital coefficient for atomic orbital μ located on atom a.  

The self-atom polarizability is analogously defined as  

𝜋𝑎𝑏 = 4 ∑ ∑ ∑ ∑
𝑐2

𝑖µ,𝑎 𝑐2
𝑗𝑣,𝑏

𝐸𝑖 − 𝐸𝑗
𝑣µ

𝑁𝑜𝑐𝑐

𝑗

𝑁𝑜𝑐𝑐

𝑖

          (13) 

 

Polarizability indices have been successfully applied for the calculation of the conjugation 

energies58, nuclear spin-spin coupling constants59, treatment of induction effects in molecular 

mechanics simulations60 and carcinogenicity of nitroso-compounds61.   
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2.1.2.5 TAE descriptors based on Bader’s quantum theory of atoms 

in molecules 

The theory of Atoms in Molecules (AIM)  was developed by Bader62  and remains to be 

commonly used and applicable methods for the calculation of atomic and different molecular 

properties and study of molecular interactions. The theory is based on the properties of the 

observable charge distribution of a molecular system and provides a unique mapping between 

the topological elements of a molecular charge distribution and the structural elements, atoms 

and bonds, underlying the notion of molecular structure63. Central to this theory is the 

identification of an atom with a particular region of real space as determined by a fundamental 

topological property of a charge distribution. By appealing to quantum mechanics one finds 

that the atoms so defined possess a unique set of properties and behave as closed physical 

system. In particular, the theory shows that the average value of every mechanical property 

(a property whose associated operator can be expressed in terms of the coordinate and/or 

momentum operators) of some system can be expressed as a sum of corresponding atomic 

contributions. The total energy of a crystal, for example, is equal to the sum of the energies 

of the atoms in the crystal where each atom is a well-defined object in real space. An important 

point of the theory that properties attributed to atoms and functional groups are transferable 

from one molecule to another64. The most applicable and practically used characteristics 

coming from AIM theory are bond critical point properties and atomic properties.  

Bond critical points (BCP) are saddle points in electron density distribution in the region 

between bonded atoms having two negative and one positive eigenvalue of hessian. Several 

BCP properties have been shown to be correlated with experimental molecular properties65. 

For example, the electron density at the BCP correlates with the bond energies, and hence 

provides a measure of bond order66, the potential energy density at the BCP has been shown 

to be highly correlated with hydrogen bond energies67 and theoretically computed proton 

shielding68.  

Atomic properties have been used to recover and directly predict several additive atomic and 

group contributions to molecular properties, including, for example, heats of formation69  

magnetic susceptibility70, molecular volumes71,  dipole moment72, polarizability73-74 and many 

others. Atomic properties have also been used build QSPR models predicting several 

experimental properties including, for example, the pKa of carboxylic acids, anilines and 

phenols75  a wide array of biological and physicochemical properties of the amino acids, and 
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the effects of mutation on protein stability76, NMR spin–spin coupling constants of aromatic 

compounds from the electron delocalization indices77. 

However, the properties of atoms and bonds derived from the QTAIM and based on quantum-

mechanical calculation require significant computational costs. In order to overcome the 

problem, Breneman78 introduced the concept of ‘transferable atom equivalents’ (TAE) – 

atom-based electron density fragments obtained using the AIM approach. The underlying 

concepts for the TAE method is the additivity of atomic properties in Bader’s theory and the 

transferability of topological atoms. A TAE is a mononuclear atomic region of space filled 

with electron density delimited by zero-flux surfaces in the gradient vector field of the 

electron density extracted from a parent molecule at its zero-flux surface. Extracted atoms 

representing a large number of differing combinations of elements, atom types, and 

immediate electronic environments, are stored in a computerized database. A program called 

RECON is then used to assemble the electron densities (and other properties) of a target large 

molecule by matching the appropriate zero-flux surfaces of different TAEs recalled from the 

database79. Once the target molecule is reconstructed by the automated merging of TAEs, the 

molecular descriptors are then calculated by arithmetic or vector sums of the properties of 

the composing TAEs. The reconstructed descriptors include, for example, the total molecular 

energy, the total molecular volume, the electrostatic potential, the molecular dipole moment, 

and the Fukui functions. The TAE approach, being a useful tool in QSAR/QSPR modeling,  

has been proved to be relevant for modeling of  protein-ligand binding affinity80, Mu-opioid 

receptor affinity81, for high-throughput screening82 and molecular surface autocorrelation 

analysis83.  

2.1.2.6 Conceptual Density Functional Theory Indices 

Among others commonly used local descriptors, Fukui Functions are one of the most popular 

in describing molecule’s site selectivity and chemical reactivity. Fukui Functions find their 

origin within Conceptual Density Functional Theory (Conceptual DFT) and are defined as: 

𝑓(𝑟) =
𝑑𝒑(𝑟)

𝑑𝑵(𝑟)
=

𝑑µ

𝑑𝝂(𝑟)
          (14) 

where 𝒑(𝑟) is the electron density at a point r, 𝑵(𝑟) is a total number of electrons of the 

system at a given external potential 𝝂(𝑟). Besides, the Fukui function corresponds to the first 

derivative of the electronic chemical potential µ with respect to the external potential 𝝂(𝑟) 
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for a given number of electrons. Depending on the nature of the electron transfer, the Fukui 

function for removal of an electron from the molecule, called the Fukui function for 

electrophilic attack, is labeled as 𝑓−, and the Fukui function for addition of an electron to the 

molecule, called the Fukui function for nucleophilic attack, is labeled as 𝑓+ are distinguished: 

𝑓  −(𝑟) = 𝒑(𝑟)𝑁 − 𝒑(𝑟)𝑁−1          (15) 

𝑓+ (𝑟) = 𝒑(𝑟)𝑁+1 − 𝒑(𝑟)𝑁)          (16) 

 

where 𝒑(𝑟)𝑁  is the electron density at a point r for the molecule possessing N electrons (N 

corresponds to neutral molecule).  Thus, 𝑓−  is large in the regions of space where a given 

molecule readily donates electrons and 𝑓+ is large in the regions where a molecule accepts 

electrons. A reaction thus is likely to occur between regions (or atoms) where 𝑓− is large in 

one molecule and 𝑓+ is large in another reacting molecule. 

The evaluation of the Fukui function values is not straightforward and number of methods and 

algorithms have been developed in order to ease the calculation. Thus, Yang and Mortier84 

proposed three different condensed forms of f (r), based on atomic charges of N, N + 1, and 

N – 1 electron systems, Nalewajski85 has studied the f (r) indices in respect of Bader’s ‘atom 

in molecules’ (AIM) theory, Komorowski et al86 proposed the atomic and group resolution of 

f (r) indices based on semiempirical method. The most popular method, proposed by Yang 

and Mortier84,  based on the condensation of the Fukui functions to atomic resolution: 

𝑓  −(𝑟) = 𝒒𝒂(𝑁) − 𝒒𝒂(𝑁 − 1)          (17) 

𝑓+ (𝑟) = 𝒒𝒂(𝑁 + 1) − 𝒒𝒂(𝑁)          (18) 

where 𝒒𝒂 is the charge on an atom a for a molecule having N electrons. The method has a 

simple procedure to calculate the atomic condensed Fukui function indices using a charge 

partitioning schemes, e.g. Natural, Mulliken or Hirschfeld Population Analysis. However, 

despite of the possibility of using any type of atomic charges, it was shown that Hirschfeld 

charges are likely the most accurate87 for Fukui indices calculation. Thus, ranking of atoms 

within a molecule in terms of condensed Fukui functions enable the identification of 

preferential sites of reactions. Nevertheless, one should remember that the Fukui functions 

have a poor performance in handling the hard-hard interactions, but they are the good 

descriptors for the soft-soft interactions known to be frontier controlled.  
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Characteristic examples of QSRP modeling with Fukui functions included modeling of keto-

enol tautomerism87, local reactivities during electrophilic, nucleophilic and radical attacks88 

and reactivity for protonation reactions89.  

The topic of hard-soft interactions and the derived local chemical reactivity implies a logical 

continuation into local softness/hardness introduction. The concepts of a local softness and 

hardness, as goes from the name, is the exertion of the principles of softness and hardness in 

local sense so as to explain the response of a chemical system to different kinds of reagents. 

Thus, while the global properties may explain the reactivity, for understanding selectivity the 

local quantities come into the picture. By direct computation of the local parameters one can 

probe the sensitivities of different sites in a molecule. The idea is labeled the local hard–soft 

acid– base (HSAB) principle in analyzing the site selectivity in a molecule. 

The local softness describes the response of any particular site of a chemical species (in terms 

of a change in electron density p(r) to any global change in its chemical potential) and is defined 

as:  

𝑠(𝑟) =  
𝑑𝒑

𝑑µ
          (20) 

The local softness condensed to an atom site say k, can be written as: 

𝑠(𝑟) = 𝑓(𝑟)𝑆          (21) 

Where 𝑓(𝑟) is the Fukui function and 𝑆 is a global softness, which is the integral of 𝑠(𝑟)𝑑𝑟.  

Thus, as a result of the relation of  𝑠(𝑟) to the Fukui function  𝑓(𝑟), the local softness is a 

density-functional concept for characterizing a site and carries the information on site 

selectivity within a molecule contained in the Fukui function and also the information on 

relative reactivity from molecule to molecule contained in the global softness. The Fukui 

function may be thought of as the normalized local softness.  

An original direct definition of the local hardness starts from the second functional derivative 

of the Hohenberg Kohn functional 𝐹[𝑝]. This is the sum of the kinetic energy functional T[p] 

and the electron repulsion functional 𝑉∞[𝑝] and is defined for all ground-state densities 𝑝. 

The second derivative is the hardness kernel, the two-variable 

𝜂(𝑟, 𝑟′) =  
𝑑2𝐹[𝑝]

𝑑𝑝(𝑟)𝑑𝑝(𝑟′)
          (22) 
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The local hardness may then be specified as: 𝜂(𝑟) = 1/𝑁 ∫ 𝑝(𝑟) 𝜂(𝑟, 𝑟′) 𝑑𝑟′ . 

However, several definitions of local hardness have been proposed and compared90-91.  This 

local index is then not a local quantity in the sense the local softness is, since it does not 

integrate to the hardness; consequently, its integral over a given region in a molecule won’t 

necessarily give a regional global hardness.   

Local softness and hardness combined with the Fukui functions is thus a basic package to 

evaluate local reactivity and site selectivity. Consequently, the corresponding QSRP modeling 

include: regioselectivity of chemical reactions91-92, reactivity sequences (intramolecular and 

intermolecular) of carbonyl compounds toward nucleophilic attack93 and reactivity of 

inorganic compounds94-95.  

2.1.3 Electrotopological indices  

In contrast to the computationally expensive quantum-chemical descriptors, Kier and Hall96-

98 provided an easier approach to analyse the molecular structure at the atomic level. The 

descriptors, called electrotopological state indices and encode the electronic as well as the 

topological description of the individual constituent atoms of the molecule99, are defined as : 

𝑆 = 𝐼𝑖 + ∆𝐼𝑖 = 𝐼𝑖 + ∑
𝐼𝑗 − 𝐼𝑖

(𝑑𝑖𝑗 + 1)2

𝐴

𝑗=1

          (23) 

where A is the number of atoms, 𝑑𝑖𝑗 is the topological distance between the ith and the jth 

atoms, 𝐼𝑖  is the intrinsic state of atom, and ∆𝐼𝑖 is a perturbation factor determined by the 

influence of the electronic field of a molecule on a particular atom in the molecule. The 

intrinsic state of the atom is defined as: 

𝐼𝑖 =

(2
𝐿𝑖)⁄

2

𝛿𝑖  
𝑣 + 1

𝛿𝑖
          (24) 

where 𝐿𝑖 is the principal quantum number for atom i, 𝛿𝑖  
𝑣  is the number of valence electrons 

and 𝛿𝑖 is the number of sigma electrons. In terms of E-state determination, each atom has its 

pure intrinsic state perturbed by the electronic environment of every other atom in the 

molecule. Thus, the intrinsic state encodes the electronic feature of the atom throughout the 

embodying of the valence electrons which are the most reactive and involved in chemical 
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reactions and bond formations. Further, the presence of the principal quantum number in the 

expression reflects the differences in the electronegativity of the atoms while the adjacency 

count of the atom is used to determine its topological features. The ratio of p- and lone-pair 

electrons over the count of the valence electrons reflects the electronic accessibility and 

richness of the atom and hence indicated a capability to be involved in intermolecular 

interactions.  

In addition to the individual topological information of an atom, the E-state index can also be 

utilized to determine the overall contribution of a particular atomic fragment. These indices, 

called E-state parameters, include the valence state of the atoms of the group along with its 

hybridization characteristics. Due to the full electronic and topological representation of the 

group, the E-state parameters are valuable in distinguishing the influence of a certain 

structural group to the activity profile of the molecule.  

Due to its universality and simplicity, the original E-state gave raise to voluminous series of 

modifications adapted for specific tasks. Thus, the necessity of separated treatment of heavy 

atoms and their bonded hydrogens for molecules with highly polar functional groups 

determined the development of hydrogen electrotopological state indices (HE-state indices) 

complimenting the original E-state indices with electronic and tolopogical information about 

the chosen hydrogens. Further, this combination has been used for calculation of molecular 

interaction fields with the assumption that the E-state is defined by superimposing 3D fixed 

grid over the molecule and hence calculated at each of kth grid point100. Generalizing the E-

state indices, an additional parameter encoding topological and electronic information related 

to particular atom types has been proposed as the corresponding sum of E-state values of all 

atoms of the same atom type in the molecule101. Finally, a parameter for bond specification 

based on the akin bond intrinsic state summed with its perturbation term, has been tentatively 

proposed for aimed local bond description102.   

The E-state indices are valuable tools for QSAR studies of biological activities. Thus, it has 

been successfully applied for the modeling  of antithyroid agents with fewer side effects103, 

mutagenicity of aromatic and heteroaromatic amines104, anti-inflammatory activity of 

corticosteroids105 and receptor binding affinity of progestagens106 as well as  for modeling of 

fundamental properties such as aqueous solubility107 and logP coefficient108.  
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2.1.4 ISIDA fragment descriptors  

ISIDA descriptors, the development of the Laboratory of Chemoinformatics in Strasbourg, 

represent specific fragments/substructures present in a molecule109-112 and enhanced with the 

possibility of explicit labeling of an active site. Each substructure is associated to an element i 

in the descriptor vector, whereas its occurrence in a molecular graph is used as the descriptor 

value Di. ISIDA fragments could vary in length, topology and inclusion/omission of additional 

options. The topological variation included sequences of atoms and/or bonds and augmented 

fragments centered on a certain atom and branching out into concentric circles. The length of 

the fragments could vary from 1 (the descriptor elements associated to fragments of length 1 

are standing for atom counts) to a user-defined number, meaningful for a particular dataset. 

As a rule, the size of choice should not be larger than an average molecule’s size. The options 

that could be added to the main description included:  

• Formal Charge, permitting to add the information about the formal charge on an atom 

behind its symbol in the fragment: N+1-C-N. 

•  Atom Pairs, types of fragments where two terminal atoms are kept only, with the 

corresponding topological distance between them: S-6-0, N-3-C.   

• All paths exploration, enumerate all the possibilities of the paths between two atoms. 

• Dynamic Charge (CGR-specific option), encode local change in charge of the active center 

atoms while chemical reaction.      

 The ISIDA descriptors propose two mechanisms that allow the "highlighting" of specific 

atoms or groups of atoms. The first requires an explicit labeling by the user of the "special" 

atoms, this is Marked Atom (MA) strategy. The second mechanism exploits the special status 

of ‘dynamic’ bonds in Condensed Graph of Reaction (CGR). The CGR-based fragments are 

generated for a pseudomolecule (CGR), incorporating (condensing) the structures of all the 

reagents and products. A reaction center is specified by means of special edges, that stand for 

‘dynamic’ (broken/formed) bonds. Figure 3 illustrates the concepts of MA- and CGR- 

approaches.  
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The atoms for MA fragments should be labeled with a special flag in a special field of the input 

file (SDF). Depending on the task, that could be performed by hand, mapping atoms directly 

in a chemical editor and saving the SDF, or by editing the unlabeled SDF, or with the help of 

CGR. For the CGR-based fragment, the corresponding input file contains the denotation of 

the dynamic bonds, constituting the reaction center. The generation of the CGRs could be 

done by hand or by a special soft, identifying the dynamic bonds by atom mapping.      

The preferences of the two types of description should rely on the specificity of the modeling 

task, i.e. whether the intrinsic nature of the active atoms should be preserved and taken into 

account, and on the complexity of a chemical transformation. Thus, the task of intermolecular 

interactions (Figure 3, top) implied an explicit consideration of donor/acceptor (D/A) 

function of the active atoms, which determines the choice of MA-based descriptors. The 

descriptors for donors and acceptors in this case could be generated separately and at the end 

concatenated altogether, always in the same strict order, e.g donor’s descriptors-acceptor’s 

descriptors, forming a descriptor vector representing a particular D:A complex. In such 

manner, the D/A attribution is preserved and will be taken into account by the machine 

learning algorithm. With regards to chemical reactions, an indisputable advantage of the 

CGRs is the allowance to encode the structures of all the reactants (reagents and products) 

altogether with the description of the structural changes. The order of representation of the 

reactants does not matter in this case. A demonstrative example of the CGRs application is 

the reactions of cycloaddition (Figure 3, bottom) which involved multiple bond 

Figure 3. Example of structures for which MA- based (top) or CGR-based (bottom) local fragment descriptors 

were generated. Top: in the hydrogen-bonded complex, the stars denote Marked Atoms. Bottom: in the Condensed 

Graph encoding the (4+2) cycloaddition reaction, dots and dashes represent, respectively, formed and broken 

chemical bonds. Some examples of generated descriptors are given on the right. 
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transformations. It should be noted, however, that structural representation of these reactions 

could be done with the MA-based descriptors as well, by simultaneous labeling of all the atoms 

of the active center, but the length of the descriptor vector in this case would be too big. In 

addition, the attribution of the atoms to diene/dienophile (Diels-Alder case) could be lost, if 

the order of the reactants in the database in not strict. The CGR-based representation thus 

allows to encode the structures altogether with the active center transformation in a 

condensed compact form.      

For MA-based fragment descriptors an important parameter that could be varied is the degree 

of ‘locality’ of the description. An internal mechanism of regularization of the portion of pure 

local fraction included into the MA-based descriptors is implemented by four marked atom 

strategies:  

▪ -MA0 strategy generates fragments without introduction of the marked atom labels 

and thus gives a general representation of a structure  

▪ -MA1 exclusively generates fragments that starts or ends with the marked atom and 

hence contains only local fragments 

▪ -MA2 exclusively generates fragments that contain the marked atom and is a pure local 

strategy as well   

▪ -MA3 generates all kind of fragments but the marked atom has an explicit label 

Figure 4 represent the difference between the strategies. 

Correspondingly, MA1 is the subset of MA2 descriptor space, which, in turn, the subset of 

MA3 descriptors altogether with the MA0 nonlocal descriptors.  

CGR-based descriptors possess similar, but more restricted option of locality degree 

regulation:  

Figure 4.  Examples of ISIDA MA descriptors (sequences of the length 4) generated for different marked atom 

strategies.  
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• CGR0 strategy generates all possible fragments 

• CGR1 strategy generates only the fragments that contain at least one dynamic bond.  

Unlike the CGR-based descriptors, where the fragments are generated for a pseudomolecule, 

the generation of MA-based descriptors, is performed for each participant of a chemical 

reaction separately, i.e. for a single molecule. For the case of a molecule possessing more than 

one marked atom, the two strategies of description are possible:  

1. When a local fragment contains more than one labeled atom 

2. When local fragments contain one labeled atom and further concatenated with the 

fragments containing another labeled atom  

The preference depends on the specificity of the task. For the case of a bifunctional molecule 

bearing functional groups (atoms) G1 and G2, the molecule could be represented by local 

descriptors including both labels (first strategy) or formally represented by two distinct 

descriptor species - one with focus/label on G1, the other with focus/label on G2. The second 

approach implicates emphasis on different nature and functions of the groups G1 and G2. For 

the case of SN1 dissociation (Figure 5, bottom), the ‘active site’ is the two atoms connected 

to the breaking bond, in this case there is no special meaning for these atoms but designating 

the place of splitting. The fragments will include two labels simultaneously. No difference in 

labels attribution is encoded. The second instance is hydrogen-bond forming molecule (Figure 

5, top) with two binding centers, the first of which is the donor of hydrogen (the 

corresponding atom is denoted with a green star) and the second is the acceptor of hydrogen 

atom (denoted with red star). Both atoms are oxygens, thus their nature and their functions 

during the chemical process should be explicitly designated. These atoms are labeled 

separately, one by one, and the fragments, generated for each of the atoms then concatenated 

with each other, so that the atom’s nature are encoded by the descriptors number, e.g the 

descriptors from 1 to 100 reflects the fragments including acceptor atom, the remain 

descriptors 101 -200 are the fragments with the donor part. In this manner, the atom’s 

functions are preserved and segregated from each other.  
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ISIDA property-labeled descriptors. Apart from the explicit labeling of active 

atoms/groups, the ISIDA package supports other, more specific, property labeling2, 113. It 

bears a peculiar information about a particular atom/site that could be maintain alone or 

coupled with the other fragment generation schemes. These includes:  

• partial charge increment 

• logP increment 

• topological electrostatic potential coloration 

On the considered example, the histogram of the corresponding property is constructed to 

estimate the boundaries of the property spectrum to which the atoms are further assigned in 

accordance to the value of its property, calculated by ChemAxon114. Figure 6 (created by 

MarvinView115), gives an example of logP increment, where the corresponding boundaries 

and atoms they cover are differentiated by color.    

Partial charge labels in ISIDA descriptors calculated according to Gasteiger’s method based 

on the electronegativity of the σ- and π- bonds.  For the logP coloration, the Ghose-

Figure 6. An example of ISIDA 

atomic logP increments. The atoms 

are divided into groups, which are 

denoted by the color code, in 

accordance to their calculated logP 

increments.   

Figure 5. Example of the processes 

where the difference in the active atom 

functions are taken or not into 

account: the reaction of dissociation 

(bottom) has same labels on the active 

atoms so as to pinpoint the location of 

the bond cleavage, whereas the 

hydrogen bond complex (top) has 

different labels to denote 

donor/acceptor nature of the atom.   
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Grippen116 approach is used, according to which the atoms are classified into 120 categories 

according to their element, oxidation state and the surrounding atoms. The topological 

electrostatic potential Vi on each atom i are calculated from the partial charges according to 

the formula: 𝑉𝑖 =
𝑞𝑖

𝑑0
⁄ + ∑

𝑞𝑗

𝑑𝑖𝑗
⁄𝑗≠𝑖  , where 𝑞𝑖,𝑗 are partial charges on atoms i and j, 𝑑𝑖𝑗  

is the topological distance, and 𝑑0 is empirically determined virtual distance to take into 

account the concerned atom charges.  

ISIDA fragment descriptors thus propose an efficient way of structural representation. 

However, it should be noted that relatively long descriptor vector, coming from an exhaustive 

molecular description, could somehow restricts its applicability.  

 

 

 

Thus, all the considered types of local descriptors could be used for structural representation 

of chemical processes, however, some of them have distinct shortcomings. Thus, the 

substituent constants, coming from the experiment and measured only for some of the 

groups, could not be served as a universal description and suitable only for homogeneous data 

sets of few varying substituents. The quantum-chemical descriptors, correspondingly, require 

high computational costs, which is a strong limitation in case of modeling of big data sets. The 

electrotopological indices are not expensive computationally, however, they do not reflect 

the structural aspects explicitly, and are composed for each atom as the sum of the 

corresponding electrotolopogical aspects, thus becoming not interpretable in terms of 

chemical structure. Moreover, neither of these descriptor types supports an explicit emphasis 

on the active centers. Therefore, ISIDA descriptors offer the best solutions to the above-

mentioned constraints due to fast computation, direct structural representation and various 

possibilities of designation of the active sites.          
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2.2  Descriptors of the reaction conditions  

For most of chemical processes, the influence of the experimental conditions is as important 

as the structural impact of the reagents. Thus, the description of the process should explicitly 

include the parameters of the solvent medium, temperature, pressure, etc. If for the latter 

two the description implies just the corresponding magnitude, the solvent description is more 

complex and needs to take into account the specific and nonspecific solvent effects, able to 

affect the stability of the formed complex or the transition state, and thus influencing the 

property.         

Accounting for solvent effects is a conventional task in the field of quantum-chemical 

modeling (QM) and molecular mechanics (MM), where the thermodynamic calculations of 

chemical, biological or environmental processes referred to the solvated condensed phases. 

The solvent models are classified into implicit, explicit and hybrid ones. The earliest attempts 

of a solvent effect modeling give rise to the implicit models, where the solvent molecules are 

accounted as isotropic polarizable media. Among widely used, the GB/SA117, PCM118 and 

COSMO119-120 approaches should be mentioned. These models are computationally cheap and 

often provide an acceptable estimation of solvent influence on the process, however, they can 

not correctly describe specific interactions (e.g. H-bonds), that is of major importance for 

particular solvents (e.g. water), and thus could fail to describe the influence of media in some 

systems. More elaborated description is provided by explicit models121-123, which take the 

solvent molecules into consideration explicitly, so that, their coordinates and some degrees 

of freedom are included. These models (AMOEBA, SIBFA, COS) are mostly used in 

molecular mechanics or molecular dynamics simulation. The parametrization and fitting 

parameters of these models are therefore derived for a certain solvent group, which, as a 

consequence, could lead to inability to reproduce some experimental results. The main 

shortcoming of the explicit methods though is its computational demand. The hybrid 

QM/MM methods124-125, as follows, incorporate the implicit and explicit approaches, so as to 

provide a reasonable accuracy at fair computational costs. In the frame of the hybrid methods, 

the energy of the system is composed from the QM-derived energies of the closest to the 

solute molecular environment, the MM-derived energies of the distant zones and the 

correction term, refer to the interaction QM/MM energy. The latter is the weakest part of 

the approach, determining the emergence of various of methods and specific parametrizations 
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for the interaction energy calculation, that complicates the application of the approach. The 

hybrid methods thus could be tested and used thoroughly, so as to give a reliable result.  

In QSPR, it is important to provide the machine learner with enough information about the 

solvent properties. Machine learning will then figure out which of the provided solvent 

properties appear to correlate with the modeled property of the studied solute(s), and 

propose the optimal (non)linear functional form to express the dependence of the latter with 

respect to the former. So far, however, there were too few works related to the modeling of 

chemical processes with the account for the solvent environment. The one that explicitly 

include the solvent parameters is related to the modeling of SN2 reaction126. The solvent media 

has been rendered there with the six parameters, standing for polarity and polarizability, 

derived on the basis of the works of Born127  and Kirkwood128. These works emphasize the 

importance of nonspecific solvation, which is determined by polarity and polarizability. The 

former term could be expressed by the three functions of dielectric constant ɛ129, whereas the 

polarizability could be represented by the three functions of refractive index nD
20 129.  

The consideration of the solvent effects, however, should be completed with the inclusion of 

the specific solvation term. These parameters should meet the following requirement: derived 

from the experiment, be measured for a large set of different solvents and not to be biased by 

the probe, used during the experiment, but referred to a ‘general’ solute behavior toward a 

particular solvent. These preconditions are met for the solvents effect scales, among which 

Kamlet-Taft solvent effect scale is one of the most widely known. The first one, α scale130 is 

referred to hydrogen bonding ability of solvents. This scale is based on solvatochromic 

parameters, averaged for several probes, so that it has a built-in 'fuzziness' and measure the 

ability to donate hydrogen bonds of the solvent molecules to a 'general solute', rather than 

specifically for the probe employed in the experiment. The second one,  scale131, is based 

on the ultraviolet-visible spectral band of suitable probes. This is again an averaged quantity, 

for which the wavenumber shifts of several protic indicators, relative to structurally similar, 

but aprotic probes, are used. The third value is the π* value132, based on the average of values 

of the π →π* transition energies for several nitro-substituted aromatic indicators. The 

quantity is normalized to give pi* = 0 to cyclohexane and pi* = 1 to dimethylsulfoxide, and, 

as for the previous two scales, multiple probes are used to eliminate specific interactions and 

spectral anomalies. This value measures a certain ‘blend’ of polarity and polarizability. 

Another set of specific interaction-referred scale is the Catalan parameters. Similar to Kamlet-



52 
 

Taft scales, the Catalan parameters included the solvent polarity/ polarizability (SPP)133, 

solvent basicity (SB)133 and solvent acidity (SA)134 measures.  

In the frame of this thesis, the solvent effects have been described with the following set of 

the experimental parameters:  

• four functions of dielectric constant ε, standing for nonspecific interactions : Born 
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• Kamlet–Taft’s α, β and π* parameters  

• Catalan’s SPP, SA and SB constants  

 

An additional reaction condition term of temperature has been included as the reversed value: 

1/T in Kelvin degrees, as it corresponds to the Arrhenius equation (ln 𝑘 = ln 𝐴 − 𝐸𝑎
𝑅𝑇⁄ ). In 

case of water-organic mixtures, a molar fraction of the organic solvent has been added as a 

descriptor.  The hierarchical clustering dendrogram of the solvents used in different projects 

of this study and based on the 13 chosen solvent parameters is given on Figure 7. 
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Chapter 3 

 

 

QSPR methodology 

3.1 Quantitative Structure-Property Relationships (QSPR) 

QSPR modeling is the determination of a mathematical relationship between the chemical 

structure (or more complex information included in the description) and a modeled 

property/activity: 

𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒚 (𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 𝒇(𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑠𝑜𝑙𝑣𝑒𝑛𝑡, 𝑇, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑒𝑡𝑠) 

 

The corresponding structure-related information in the function argument should be encoded 

numerically, composing the descriptor vector, defining the position of an object in chemical 

space.  The object’s numerical description then used to build a QSPR model, embodied the 

mentioned mathematical relationship, the goal of which is to be able to predict a certain 

property/activity over a wide range of new (in a sense they were not used for a model’s 

building) chemical objects.         
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A general used for model building procedure of QSPR model building included the following 

steps: 

i. Data curation and standardizations. This includes rejection of entries associated to 

missing or chemically invalid structures, missing or unreliable experimental endpoints, 

removal of counterions not needed for modeling, conversion of structures into a 

common, standardized representation style (aromatic bonds, split-charge nitro 

groups, etc) and removal of duplicates (complete removal if a same structure is 

associated to conflictingly different experimental values). 

ii. Descriptors calculation. In this work, we used ISIDA fragment (Marked Atom or 

CGR-based) descriptors for structural representation of a chemical object (described in 

section 2.1.4). Accordingly, the descriptor vector is constructed from structural 

fragments of different length with the corresponding occurrences being the 

descriptor’s value. The descriptors’ values are then normalized form 0 to 1.    

iii. Model building. The algorithms used for building of the predictive models called the 

machine learning methods. Whereas there is a diversity of different algorithms, the ones 

chosen for modeling in this work are the state-of-the-art techniques proved its 

efficiency and usability: the Support Vector Machines and Multiple Linear Regression. 

The tool combining both possibilities, regression and visualization, is the Generative 

Topographic Mapping. The description of these methods is given in section 3.2. A data 

set used for building of the model is called training set 

iv. Model validation. This includes cross-validation, performed at the stage of model 

building (cross-validation is described in section 3.3.1) and evaluating the model 

performance on the training set and external validation. For the latter, some part of data 

could be excluded from the initial data set at the beginning or new data could be used. 

These data were not involved in model’s building at all. This test set is required to 

assess predictive power of the model and its utility.  

The constructed model is used for the prediction of the corresponding property/activity of 

unknown or untested structures thus providing, of course depending on the overall accuracy 

of the model, a numeric value or a classification belonging of the structures given.  
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3.2 Machine Learning algorithms 

3.2.1 Support Vector Machine (SVM) 

Firstly introduced by V.Vapnik135-136, Support Vector Machine at its origin is a binary classifier 

that finds a separating hyperplane so as to best segregate the two classes (Figure 8). The 

hyperplane is constructed in such a way to have the biggest gap between the hyperplane and 

the data instances of either side, so that to minimize the chance of misclassification.  

Accordingly, the SVM model then categorizes new examples according to which side of the 

hyperplane they fall. 

 

The method however is suitable not only for linearly separated objects, but for nonlinear task 

as well. To perform the separation in this case, a new coordinate is introduced in such a way 

that in the resulting higher-dimensional space the classes are easily separated (Figure 9).  The 

possibility to perform nonlinear separation in case of usage of linear classifier utilizes so called 

kernel trick and is widely used in kernel-based methods.  

   

Figure 8. An illustration of the SVR algorithm: a 

separating hyperplane (denoted with red line) is 

drawn so that to separate the objects belong to 

different classes with the maximal distance between 

the nearest points and the hyperplane.  

Figure 9. The kernel trick of the SVR: a non-

linear transformation from feature space to 

higher-dimensional space where the objects 

are easily separated.   
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The Support Vector Machines for the regression task implies optimization of the regression 

function f(x), which is searched under the following constraint:  

|𝑦 − 𝑓(𝑥)| < 𝜀          (25) 

here  𝜀 is the error threshold. The function is optimizing till no errors largen than  𝜀 are 

produced. However, to be able to model data with persisting errors, a proportional cost is 

introduced:  

𝜉 = |𝑦 − 𝑓(𝑥) − 𝜀|          (26) 

The model is fitted so that to minimize its complexity and the proportional cost.  

 In this work the Support Vector Regression (SVR) is the main or benchmarking method of 

modeling, the developed models of which are the resulting web-implemented output of the 

projects.   

3.2.2 Multiple Linear Regression (MLR)    

Multiple Linear Regression aimed at finding the equation between the property/activity and 

the descriptors, encoded the chemical object, with a crucial assumption that the relationship 

is linear. That could be represented as follows: 

𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒚 = 𝛼 + 𝛽1 ∗ 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟1 + 𝛽2 ∗ 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟2 … + 𝛽𝑁 ∗ 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑁 

The goal thus is to find the intercept 𝛼 and the corresponding regression coefficient 𝛽𝑥, which 

could be considered as a contribution of a certain descriptor into the property i.e. measures 

the unit change in the dependent variable with the change of the descriptor, so as to fit the 

property variation.  

The software for MLR in this study is ISIDA QSPR1, which combines backward and forward 

stepwise variable selection (prior selection of those variables influencing most on the model’s 

predictive ability, needed to provide more robust and cost-effective prediction) generating a 

large number of linear models forward by the selection of the most robust ones for the 

consensus prediction, that is an average of the estimated property values obtained with the 

selected individual models.  
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3.2.3 Generative Topographic Mapping (GTM) 

Generative Topographic Mapping is a method combining the modeling capability along with 

data visualization and data analysis tools. Firstly introduced by Bishop3 in 1990th, the method 

performs a non-linear dimensionality reduction of the D-dimensional data space (where D is 

the number of descriptors) onto a 2-dimesional latent space (GTM map) by embedding a 

flexible 2D manifold into the D-dimensional data (Figure 10). 

 

The ‘unfolded’ manifold is a square grid of K nodes. The assignment (mapping) of the nodes 

to the manifold points is defined by a mapping function 𝑦𝑑(𝑥; 𝑊)  set up with the help of M 

radial basis functions (RBFs).  

𝑦𝑑(𝑥; 𝑊) = ∑ 𝑊𝑚𝑑exp (
‖𝑥 − 𝑥𝑚‖2

2𝜎
)

𝑀

𝑚=1

          (27) 

where d goes from 1 to D, W is the 𝑀 × 𝐷 weight matrix connecting RBF and data space 

points, 𝑥𝑚 is the center of the m-th RBF. The overall number of the RBFs and the width σ 

are the optimizable parameters of the method.   

As a probabilistic extension of the Kohonen Self-Organizing Maps, GTM operates with 

probabilities of a data object to be mapped into a certain node. Moreover, the object has non-

zero probability over all the nodes. Consequently, it could be characterized by its 

probabilities, which are called responsibilities. Responsibilities constitute a responsibility vector, 

the main descriptive characteristic of an object, used for class belonging assignation in case of 

classification, or property value calculation for the case of regression modeling.  

The responsibility of the k-th node for n-th data point 𝑡𝑛 is calculated using Bayes’ theorem:  

Figure 10. An illustration of how the data 

points are fitted by the GTM manifold (left) 

and further projected on the GTM map 

(right). 
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𝑅𝑛𝑘 =
exp (−

𝛽
2

‖𝑡𝑛 − 𝑦𝑑(𝑥𝑘; 𝑊)‖2)

∑ exp (−
𝛽
2

 ‖𝑡𝑛 − 𝑦𝑑(𝑥𝑘; 𝑊)‖2)𝐾
𝑘=1

          (28) 

 

Responsibilities are normalized over the grid of nodes and their sum for a given item is equal 

to 1.  

GTM-based regression and classification models 

The general procedure of the model building is similar for regression and classification tasks, 

as in both cases an object (for simple case – a single molecule) is characterized by the assigned 

responsibility vector. The following steps are included:  

i. Obtaining a GTM grid, each node of which will be attributed with the corresponding 

responsibilities of every molecule of the training set. 

ii. Defining the property/class value of each node based on the contribution of each 

molecule to a certain node (which is molecule’s responsibility) and its corresponding 

property/class value. This procedure is called coloration, since the property 

distribution will be expressed as the color profile of the map. The same GTM map 

hence could be colored differently depending on the training set property/class values.  

iii. Projecting the test set compounds and calculating its responsibility vectors further used 

for the property/class prediction. 

The node property value 𝐴̂𝑘 of GTM regression model (step ii) is calculated as follow:  

𝐴̂𝑘 =
∑ 𝐴𝑛𝑅𝑘𝑛

𝑁
𝑛=1

∑ 𝑅𝑘𝑛
𝑁
𝑛=1

          (29) 

 

 

where N is the number of molecules,  𝐴𝑛 is the experimental property of the n-th molecule, 

𝑅𝑘𝑛 is its responsibility in the k-th node (see eq. 28). The calculated node property values are 

used for the GTM activity landscape representation (eq. 29.2) – the final result of the map 

coloration (detailed below). 

𝐴𝑞 = ∑ 𝐴̂𝑘𝑅𝑘𝑞               (29.2) 
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Similarly, GTM classification model attributes a class accessory to each node by averaging 

the responsibilities over all training set compounds, then, for any q-th test set compound, the 

probability to belong to the i-th class 𝑃(𝐶𝑖|𝑞) is calculated according to the formulae:  

𝑃(𝐶𝑖|𝑞) = ∑ 𝑃(𝐶𝑖|𝑘) × 𝑅𝑞𝑘

𝑘

          (30) 

where P(Ci|k) is the conditional probability of the class Ci for the given node k, calculated 

according to the Bayes’ theorem: 

𝑃(𝐶𝑖|𝑘) =
𝑃(𝑘|𝐶𝑖) × 𝑃(𝐶𝑖)

∑ 𝑃(𝑘|𝐶𝑗) × 𝑃(𝐶𝑗)𝐶𝑗

          (31) 

where 𝑃(𝐶𝑖) and 𝑃(𝑘|𝐶𝑖) are, respectively, a fraction of compounds of the class Ci and  a 

normalized cumulated responsibility of the class Ci in the training set.     

 

GTM visualization 

The ability to visualize the data distribution is the main advantage of GTM over the classical 

machine learning methods. The method proposes different schemes of representation of data 

distribution thus allowing to analyze various aspects of data. The main visualization techniques 

used herein are GTM property landscape and GTM class landscape, correspondingly, representing 

data form regression or classification side. The landscapes are created according to the 

mentioned equations (eq. 29-31) and reflect the node’s property- or class attribution. In 

addition, the landscapes are weighted by data density:  the more molecules (or more complex 

chemical objects) are located near a certain node, the more opaque the color of the node, 

correspondingly, if no molecules are projected into a node with any reasonable responsibility, 

the node remains to be transparent (blank). Figure 11 shows examples of property- and class 

landscapes providing the equilibrium constant distribution and the tautomeric type separation 

of 695 tautomeric equilibria (the project is described in section chapter 6). 
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3.3 Model quality estimation 

3.3.1 Cross-validation and external validation 

A QSPR model needs to be validated in order to estimate whether it has a key competence - 

the ability to predict the property of new objects. The model performance should not be 

evaluated on the data that was used to build the model: indeed, the model would just repeat 

the property value/class of the samples that it has just seen and shows a perfect score (if the 

samples were not ‘outliers’ constantly mispredicted by the model), but would fail to predict 

yet-unseen data. This situation is called overfitting. To avoid overfitting, the model’s 

performance is estimated during cross-validation, the procedure that envisages retention of 

a part of data and its further usage for model’s evaluation. The initial data is thus divided into 

two parts, training set and test set. However, to get unbiased independent predictions for 

each object of the data, all of them should be estimated during test set prediction.  To do so, 

the portioning of data is performed several times, usually 5, times, correspondingly called 5-

fold cross-validation. Each time the different 5th part of data is retained as a test set, and the 

Figure 11. Possibilities of GTM visualization: the class landscape (left), representing the separation of 10 

different tautomeric classes, and the property landscape (right) characterizing the distribution of the 

equilibrium constant values over the map.  
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other 4/5 are used as the training set (Figure 12). That insures the unbiased prediction will 

be obtained for each object of the data.  

As a rule, the built model should be also estimated on a data set not at all related to the initial 

data (used for building) and comes from different source, or, if not possible, randomly chosen 

from the initial data before any modeling, and retained. This set, called external test set, is a key 

tool for model’s performance analysis and shortcomings revealing.  

3.3.2 Regression- and classification model’s performance criteria 

The predictive performance of a regression model (estimating continuous property) is 

obtained with the following parameters: 

▪ Determination coefficient:  

𝑄2 (𝑜𝑟 𝑅2) = 1 −  ∑(𝑌𝑒𝑥𝑝,𝑖 −  𝑌𝑝𝑟𝑒𝑑,𝑖)
2/ ∑(𝑌𝑒𝑥𝑝,𝑖 − < 𝑌 >𝑒𝑥𝑝)2

𝑛

𝑖=1

𝑛

𝑖=1

          (32) 

 

▪ Root Mean Squared Error: 

𝑅𝑀𝑆𝐸 = [1/𝑛 ∑(𝑌𝑒𝑥𝑝,𝑖 − 𝑌𝑝𝑟𝑒𝑑,𝑖)
2

𝑛

𝑖=1

]1/2          (33) 

 

Figure 12. Schematic representation of 5-fold cross-validation procedure. Initial dataset is divided into 5 

parts, on each fold a model is trained on 4 parts and is applied to predict the last one. At final, all predicted 

values are gathered for statistical evaluation.     
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where Yexp and Ypred are, respectively experimental and predicted values of property and 

<Y>exp is the mean of experimental values. 

Classification models (predicting the label of an object, i.e. active/inactive) estimated here by 

the following: 

▪ True Positive Rate:  

𝑇𝑃𝑅 = 𝑇𝑃/𝑃          (34) 

where TP is the number of True Positive (being positive and predicted as positive) 

species while P is the overall number of experimentally positive class species in the 

data set. 

▪ True Negative Rate: 

𝑇𝑁𝑅 = 𝑇𝑁/𝑁          (35) 

where, similarly, TN is the number of True Negative (being negative and predicted as 

negative as well) species and N is the number of experimentally negative class species. 

▪ Balanced Accuracy: 

𝐵𝐴 =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
          (36) 

 

3.4 Applicability Domain 

Applicability Domain (AD) defines the area of chemical space where the model is presumably 

accurate. The concept of Applicability Domain assumes that the objects similar to those used 

for model building, will be predicted accurately rather than very different, in terms of 

descriptor vector similarity, targets. Figure 13 gives an illustration on the example of 2D 

chemical space. 
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The definition of the AD is a crucial aspect since the prediction of an object which is being outside 

the AD is unreliable and could lead to wrong conclusions and undesired consequences.  

A lot of different schemes proposed for the AD determination, that could rely purely on the 

descriptors constituents or could be derived from the machine learning method. The 

designation of the most appropriate AD is still a matter of discussion.  

The AD of all the projects of this study is based on Bounding Box, for each descriptor vector 

reckoning the minimum and maximum values encountered in the training set. An object is 

considered to be out of AD if at least one of its descriptor values violates the defined min-max 

range. The Bounding Box techniques by definition encompasses so-called Fragment Control: 

if the data set encoded in structural fragment descriptors, then any molecule of the test set 

possessing a new structural fragment considered to be out of AD.         

Figure 13.  Representation of the concept 

of applicability domain for the chemical 

space based on two descriptors. The 

prediction of the test compound inside the 

domain is reliable whereas of the 

compound outside the domain the 

prediction is not trustworthy.  
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PART II.  RESULTS AND DISCUSSIONS 

 

 

Chapter 4 

 

 

QSPR modeling of halogen bond basicity of 

binding sites of polyfunctional molecules 

Halogen bonding started to attract specific attention across the chemical, biochemical, and 

material sciences very recently – this peculiar interaction received its official IUPAC definition 

only in 2013137. Indeed, a predisposition of halogen atoms to behave as nucleophiles due to 

their high electronegativity is a well-established understanding, thereupon halogen atoms are 

mostly considered as the regions of high electron density. However, their ability to behave as 

Lewis acids notwithstanding their intrinsic nature was revealed in the beginning of the 1900th 

by the formation of complexes such as Hal2…NH3 and Hal2…OH2
138-139. Nonetheless,  the 

revelation of the electron density in halogen atoms being anisotropically distributed whenever 

the atom is covalently bound to one or more atoms, has emerged only recently140-141.   

A covalently-bonded halogen atom surrounded by the area of rich electron density forming a 

belt, orthogonal to the covalent bond, where the electrostatic potential is negative, but at the 

same time the electronic distribution anisotropy shapes a region of lower electron density (the 

so-called σ-hole) where the potential is frequently positive. This region can form attractive 
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interactions with electron-rich sites, determining the ability of halogen atoms to interact with 

nucleophiles. Figure 14 gives an illustration, where the color code corresponds to the value 

of the electrostatic potential at the surface.   

 

Figure 14. The electrostatic potential surfaces of thrifluoromethyl halides where the areas of positive electrostatic 

potential correspond the ‘σ-holes’ that determine the capability and the activity in halogen-bond interaction.  

Accordingly, the scale of halogen bond atoms’ strength to act as Lewis acids is referred as 

follows: 𝐹 < 𝐶𝑙 < 𝐵𝑟 < 𝐼. Fluorine, as less polarizable one, is less prone to participate in 

halogen bonding and being capable of one only when attached to particularly strong electron-

withdrawing groups. Iodine therefore is the most active and convenient for experimental 

studies.  

The role of halogen bonds (XB) is particularly prominent in the areas of crystal engineering142, 

but also important for the elaboration of three-dimensional networks and the formation of 

liquid crystal phases, in different areas such as biological molecules design143-144 and 

nanotechnologies140. The comprehensive outline of recent advances and historical perspective 

of the field are reviewed in works of Cavallo145, works of Legon146 and Priimagi147.   

Our aim in this project was the development of the universal scale of halogen bond acceptor 

strength, i.e. halogen bond basicity, that could be considered as a scale of nucleophilicity as 

well. The basicity scale based on the strength of the complexation with diiodine,  was the 

object of our publication in Molecular Informatics148 . The asset of the paper is the efficiency 

of the developed scale for the prediction of halogen bond strength of not only monofunctional, 

but polyfunctional species as well, that expands its applicability toward complex biological 

molecules and supramolecular building blocks. Due to their low computational costs, the 

developed models are of practical relevance for an efficient screening of large sets of 

compounds. In the paper we also discuss the borderline of the applicability of the constructed 

scale, providing the examples of molecular species (article’s section 3.2) possessing structural 
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features responsible for certain steric effects, affecting the complexation constant, that should 

be thus treated cautiously. Apart from the contribution toward halogen-bond driven 

processes, one could find the section of comparison of the strength of halogen and hydrogen 

bonding to be of particular interest (article’s section 3.4).        

The project was done in collaboration with Jerome Graton and Jean-Yves Le Questel 

(University of Nantes) providing thorough experimental data, and Vitaly Solov’ev (Institute 

of Physical Chemistry, Moscow) conducting the MLR-related part of calculation as well as the 

effective constant evaluation by means of ChemEqui149 software. 

The corresponding article is given in the end of the section, with the authorization of all 

authors.  

4.1 Modeled object and property 

Herein, the halogen bond (XB) donor molecule is the same for all the complexes, hence, its 

structure could be excluded from consideration. The modeled object is thus the structure of 

a designated XB acceptor, the active center of which, binding the halogen atom, is attributed. 

The modeled property is the complexation constant (log KBI2) of an organic molecule, 

considered as a Lewis base, with diiodine (I2). The experimental values are referred to 1:1 

complexation in hexane at 298K. The structure of a XB acceptor is represented by the Marked 

Atom (MA)-based descriptors, where the corresponding marked atom is attributed to the 

active site of a molecule, binding with I2. All four marked atom strategies of MA-based 

descriptors have been tried and compared.  In case if molecules possessing two putative 

binding centers, the main one has been indicated in the initial source.  
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4.2 Modeling workflow 

 

 

 

 

4.3 Data preparation 

Initial data has been reported in the work of Laurence et al.150. The log KBI2 values represented 

primary the experimentally measured values in heptane, hexane, cyclohexane and 

methylcyclohexane at 298K. Their differences as a result of solvent effects are generally within 

the experimental uncertainties151. Some of the log KBI2 have been experimentally measured 

in CCl4, CH2Cl2 or CHCl3. In this case, the corresponding values have been recalculated 

and referred to hexane by known linear Gibbs energy relationship151. If a compound had 

several reported equilibrium constants values in different solvents, only the primary value in 

alkane was selected. Cis/trans-isomers with diverging XB acceptor propensities have been 

removed. The structures have been standardized according to the procedure used on our 

virtual screening web server (http://infochim.u-strasbg.fr/webserv) and based on 

ChemAxon’s Standardizer152 (neutralization, isotopes removal, conversion to ‘basic’ aromatic 

form etc.) The labeling of the concerned XB active sites, explicitly assigned in the initial 

database, has been performed manually. Thus, the training set consisted of 598 organic 

molecules of 14 different types of XB acceptor atoms, the weakest of which is the π-electronic 

carbon and the strongest is the sulfur of thiophosphoryl group (App., part I, Table I.1).  

Figure 15. Workflow of the modeling of the strength of halogen bonding between organic accceptors and 

diiodine (logKBI2). 

http://infochim.u-strasbg.fr/webserv
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The external set consisted of 11 polyfunctional species, collected from the same source, for 

which the effective constants (log KBeff), attributed to the binding that involved all of the active 

centers, have been experimentally measured. The measurements performed in solvents, 

different from hexane, have been recalculated to the appropriate solvent by known151 linear 

free energy relationships.   

4.4 Computational details 

The fragmentation schemes included various atom coloration by elements symbol, by CVFF 

force field label or by pharmacophoric types (described in section 2.1.4). The considered 

fragment topologies were sequences and atom-centered fragments of the minimal length from 

2 to 4 and the maximal length from 3 to 8. Overall, 480 descriptor sets (120 for each marked 

atom strategy) have been tested. The modeling has been performed by SVR and MLR 

methods. The performance of the models has been estimated by the R2 and RMSE values in 

5-fold cross-validation. The applicability domain control method was Bounding Box. The 

most robust SVR and MLR models constituted the consensus SVR (MLR) models (CM), 

rendering the property value as the corresponding average of the values, predicted by the 

individual models. The prepared consensus SVR and MLR models have been further used for 

the prediction of the external test set.   

The assessment of log KBeff values for polyfunctional molecules of the external set was derived 

from the predicted log KBI2 of each individual active center of a molecule. The corresponding 

estimation was done with the help of ChemEqui153 program simulating a network of chemical 

equilibria in solution and designed to handle the cases of simultaneous coexistence of several 

mono- and polybinded species.  

The details of the computational procedure including the specification of the scanned 

descriptor spaces for SVR and MLR, list of the models included into the final web-deployed 

consensus SVR model, as well as the detailed workflow of data curation and treatment are 

described in the article.    
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4.5 Results and discussions 

4.4.1 Cross-validation.  

The average statistical values in 5-fold cross validation returned by the consensus SVR/MLR 

prediction for each marked atom strategy are summarized in Table 2. The best result is 

achieved by the MA3 strategy, which explicitly distinguish fragments belonging to the reaction 

center and its environment. The MA3 strategy could be seen as the sum of MA2 and MA0 

descriptors, where the MA2 describes the immediate surrounding of the active center and 

MA0 does not pinpoint the active center but generally characterizes the molecule.  

Marked Atom 

strategy 

SVR MLR 

R2 RMSE R2 RMSE 

MA0 0.88 0.48 0.83 0.59 

MA1 0.89 0.47 0.87 0.51 

MA2 0.91 0.43 0.88 0.49 

MA3 0.93 0.39 0.92 0.43 

Table 2. The modeling performance of log KBI2  prediction obtained in 5-fold cross validation on the training set 

of 598 molecules.  

The MA3 strategy thus has been chosen for the construction of the consensus SVR and MLR 

models (the constituting individual models are listed in Appendix, part I, Table I.2) which 

were used for the prediction of the external set of 11 polyfunctional molecules.  

4.4.2 External validation. 

The predicted values obtained by the model for individual binding centers were combined 

into the effective constants (log KBeff), the comparison of which with the experimental values 

is given on the Figure 16.  The predicted effective constant reproduces the experimental 

logKBeff with the RMSE values close to the ones of the cross-validation stage.  
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4.4.3 Comparison of the strength of halogen and hydrogen bonding 

A set of 166 molecules with available H-bonding acceptor strength data against 4-F-phenol in 

CCl4
154

  has been used for the evaluation of the relationship between halogen and hydrogen 

bonding strength. As expected, the general overall tendency, concerning the predominance 

of one or another binding type, could not be observed, however, strong correlations have 

been found within specific chemical families (Table 3; App., part I, Table I.5).   

Chemical class α β n Rcorr
2 s 

Oxygen bases (the C=O, -O-, P=O, S=O sites) -1.07 0.97 85 0.942 0.20 

Nitriles -0.89 0.94 11 0.978 0.05 

Sulfur bases 1.74 1.39 21 0.904 27 

Primary, secondary and tertiary amines 0.61 1.50 13 0.833 0.45 

Complexes with aromatic nitrogen -0.5 1.42 36 0.876 0.25 

Table 3. Comparison of hydrogen and halogen bond strength. a, b are parameters of linear correlation 

logKI2=a+b logBHX, s - standard deviation.  

This can be explained by the fact that the physico-chemical nature of the acceptor site – 

chemical element, hybridization, etc – defines the generic order of the magnitude of the 

interactions. Within a given family, the generic acceptor propensity of the center is modulated 

Figure 16. Predicted vs experimental log KBeff  for the external test set of 11 polyfunctional molecules.  
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by its chemical context – and it turns out that this modulating effect is comparable for both 

H-bonding and XB strength: a same substituent will impact both properties similarly. As it 

was determined, for oxygen bases (the C=O, -O-, P=O, S=O sites), the log KBI2 is lower 

than the log KBHX of the H-bond complexes. An opposite trend is observed for sulfur bases 

(the -S-, C=S, P=S sites), for which halogen-bonding is considerably stronger than H-

bonding. Similar regularity is observed for the stability of diiodine complexes with primary, 

secondary and tertiary amines, as well as in the case of aromatic nitrogen bases, for which the 

stability of diiodine complexation is compatible or higher than the stability of H-bond 

complexation. 

4.6 Conclusion 

This project is a starting point of this thesis, representing the simplest case of the modeling 

for the system, where one of the participants and the experimental conditions stay constant. 

The modeled property is the binding strength of complexes of organic molecules with diiodine 

(I2). The quantitative value of the binding strength serves as the halogen bond basicity scale, 

or, more general, as a scale of nucleophilicity of organic molecules. Here we report a 

successful QSPR modeling of the halogen bond basicity of 598 organic molecules for which 

the binding constants have been measured at unified conditions (hexane, 298K). The structure 

of an organic molecule has been characterized by Marked Atom-based descriptors, the 

different labeling strategies of which, representing particular levels of 

generalization/specification of structural description have been applied and compared. The 

MA3 strategy turned out to be the best performer as it combines an explicit characterization 

of the active sites with the description of the overall structural arrangement of a molecule. 

The cross-validation results of the SVR and MLR individual models built on the MA3-based 

descriptors spaces are close to the experimental errors: RMSE=0.39-0.43 (R2 =0.92-0.93). 

That should be noted, that regardless of the use of the best fragment descriptors, these can 

not cover the entire range of different structural and electronic effects playing a role in the 

complexation strength, notably the bidentate halogen/hydrogen bond interaction scenarios 

occurring in certain conformations. However, during model building, the fitting errors 

caused by any types of similar effects are minimized so that their average affect over the 

property is below the intrinsic imprecision of the model. Extensively cross-validated 

consensus SVR and MLR models have been challenged to predict the effective complexation 
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constants of polyfunctional molecules of the external test set. The models showed robust 

cross-validation statistics (R2 =0.70-0.81, RMSE=0.44-0.56) and were able to successfully 

extrapolate the interaction of polyfunctional compounds with I2, for which the experimental 

effective binding constant could be inferred from the individual propensities of all the groups 

putatively participating in XB. The comparison of the H-bond and XB complexation constants 

does not show any global relationship between these related, but mechanistically quite 

different chemical interactions. However, strong piecewise correlations within chemical 

families based on the same type of H-bond/XB donor were found, which means that while 

the intrinsic HB or XB strength of these centers are uncorrelated, the modulating impact of 

the substituents on both HB and XB are comparable.  

A predictor of the halogen-bond basicity of acceptor sites of organic molecules was created 

on the entire training set and comprises the best performing SVR models (App., part I, Table 

I.2). The consensus model is publicly available on the web server: http://infochim.u-

strasbg.fr/webserv/VSEngine.html, altogether with the automatic binding centers labeling 

and molecule’s applicability domain estimation.  

         

     

http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
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Chapter 5 

 

 

QSPR modeling of the Free Energy of hydrogen-

bonded complexes with single and cooperative 

hydrogen bonds. 

Discovered first around 100 years ago155, hydrogen bond is still object of numerous research 

and debates. The reason of this long-lasting interest is determined by the importance of 

hydrogen-bond based interactions to a broad spectrum of fields varying from biology to 

material science. The topic of hydrogen bond interactions drew particular attention in 1990th 

with the boom in developing of supramolecular and crystal engineering researches. Since that 

time, the depth and the complexity of the phenomena have expanded drastically. A new 

concept of hydrogen bonds has been emerged156 and new aspects of weak hydrogen bonding 

occurring in biological systems have been discovered157. Hydrogen bond in the present time 

is interpreted as a region alternating from covalent bonds to van der Waals interactions, ionic 

interaction and even π-cation interchange.  
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The following definition is proposed for the complexity of hydrogen-based interactions: An 

X-H…A interaction is called a “hydrogen bond” (HB), if (1) it constitutes a local bond, and (2) 

X-H acts as proton donor to A. The energy range of hydrogen bond dissociation varies from 

4 to 160 kJ/mol, and the distance up to 3.2Å is considered potentially capable of bonding. 

Within this range, the nature of the interaction is not constant, but includes electrostatic, 

covalent, and dispersion contributions in varying weights. More about the nature and the 

variety of HB interactions could be found in numerous related books156, 158-159, works of 

Desiraju160-161, Leiserowitz162-163 and Steiner164, while the biological aspects could be found in 

a book of Jeffrey and Saenger165. 

Following the line of mono- and polyfunctional intermolecular interactions, this project deals 

with the modeling of the strength of hydrogen-bonded complexes. Our paper on this topic 

has been published in Molecular Informatics166. The task is aimed at the modeling of the 

strength of both, mono- and polyfunctional hydrogen bonds, which, this time is formed by 

different acceptors and different donors. The data set used for modeling is so-far the biggest 

used for QSPR study of hydrogen bond strength. Initial data included the measurements of 

the same complexes in different solvents, that allows to build linear correlations, so as to go 

from the reference solvent to the required one, allowing the comparison of HB strength 

relative to different media. The obtained linear correlations have been estimated during the 

external validation. The performance of the developed models has been evaluated on two 

external sets. The first one was formed by the complexes with single HB, among which there 

where donors/acceptors encountered in the training set as well as structurally unknown 

molecules. This fact suggests a different from the traditional, ubiquitously applicable for single 

molecules, manner of the model’s predictive performance estimation. Here, the external set 

complexes have been attributed to four different classes that correspond to a certain degree 

of ‘novelty’ of the complex with respect to the training set. Consequently, the model’s 

performance has been evaluated for each of the classes.   

The work was done in collaboration with Vitaly Solov’ev (Institute of Physical Chemistry, 

Moscow) carried out the MLR calculation.  

The article is given in the end of this section, with the authorization of all authors. 
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5.1 Modeled object and property 

The data set, referred to ‘standard’ conditions, was composed of varying donors and acceptors 

coupled by single hydrogen bonds. The active site of each participating molecule was 

attributed and explicitly marked: correspondingly, this is the donor atom, providing 

hydrogen, and the acceptor atom with free electron pair. The Marked Atom (MA)-based 

descriptors have been used. The structures of the donor and the acceptor molecules have been 

treated separately: for each of the participants the fragment descriptors, including the local 

ones, i.e. with the corresponding donor/acceptor (D/A) labels on the active sites, have been 

prepared and in the end concatenated altogether, forming an integrated descriptor vector, 

representing a particular donor-acceptor complex. The MA3 strategy was the best one in the 

previous project with similar task of modeling of the strength of intermolecular complexation, 

which could be explained by the fact that the strategy encompasses and describes the whole 

molecule but at the same time explicitly distinguish fragments belonging to the reaction 

center. Thus, the MA3 strategy is involved herein.       

5.2 Modeling workflow     

 

 

 

 

 

 

 

5.3 Data preparation 

An initial data set consisted of 4002 HB complexes measured in different solvents at several 

temperatures has been compiled from the literature151, 154, 167-170. The complexes have been 

Figure 17. Workflow of the modeling of the Gibbs Energy (ΔG, kJ/mol) of hydrogen bonded complexes of 

different donors and acceptors. 
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attributed with the experimentally estimated ΔG values for 1:1 complexation. The 

measurements were carried out in 17 different organic solvents at the temperatures varying 

from 293K to 303K.  From this data, a homogeneous set of 3373 complexes, where the 

measurements have been carried out in CCl4 under the standard temperature of 298K, has 

been extracted and constituted the training set. The set underwent cleaning and filtering 

excluding all inorganic, metalorganic, deuterium containing compounds and salts. The donors 

and the acceptors structures underwent a prescribed standardization procedure used on our 

virtual screening web server (http://infochim.u-strasbg.fr/webserv) and based on 

ChemAxon’s Standardizer152 (neutralization, isotopes removal, conversion to ‘basic’ aromatic 

form etc.). The labeling of the active sites of donor molecules have been performed by 

SMARTS-based substructure search (by means on an in-house tool using the ChemAxon 

substructure search API), whereas the acceptors’ active sites have been detected and marked 

by means of the previously developed HB acceptor strength model113 (http://infochim.u-

strasbg.fr/webserv/VSEngine.html). If multiple centers were found, the one with the 

strongest acceptor propensity was the kept working hypothesis.  

Both external test sets have been collected from the same literature. Monofunctional test 

set (test set 1) consisted of 629 complexes with single HBs. Unlike for the training set, where 

the strength of the complexes was referred as the Free Energy (ΔG, kJ/mol) for 1:1 

complexation at unified conditions, for monofunctional test set the experimental ΔG values 

were given for different solvents, meaning that the predicted values of ΔG underwent the 

solvent-specific corrections. The corrections have been obtained with the help of linear 

solvents correlations, retrieved from the initial data, where some of the complexes, apart 

from the values in CCl4, had additional measurements in other solvents. The second 

external set (test set 2) contains 12 dimers with cooperative HBs (Figure 18) measured at 

‘standard’ (meaning the same as for the training set) conditions.  

 
 

Figure 18. An example of complex with two 

cooperative hydrogen bonds. 

http://infochim.u-strasbg.fr/webserv
http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
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5.4 Computational details 

Out of four available marked atom strategies, the MA3 strategy was chosen for the modeling, 

based on a preliminary MLR study (App., part II, Table II.5) and on previous experience, 

showing it to be the best suited in similar contexts113. The fragmentation schemes for the SVR 

calculation included various atom coloration by elements symbol, by CVFF force field label 

or by pharmacophoric types, so that the descriptors are enhanced with an additional 

chemically relevant information (see section 2.1.4). The considered fragments topologies were 

sequences and atom-centered fragments of the minimal length from 2 to 4 and the maximal 

length from 3 to 14. Overall, 64 descriptor sets have been tested, where 40 of which, 

producing the individual SVR models of maximal robustness constituted the consensus SVR 

model. For MLR, only one atom coloring scheme (by elements) and one fragments topology 

(sequences) were used. This resulted in 40 descriptors sets used to build 480 MLR individual 

models, the best of which were kept for the consensus prediction.  

The prepared consensus SVR and MLR models have been validated on two external test sets. 

For the first, monofunctional one, six linear correlations, that relate the ΔG value in a certain 

solvent and in CCl4 have been prepared: correspondingly, for C2Cl4, C6H6, C6H5Cl, 

CCl3CH3, C2H4Cl2, C6H12 (App., part II, Table II.1-2). The Pearson correlation coefficient for 

the correlations varies from 0.78 to 0.98. Test sets featuring novel combinations of training-

set donor with a training-set acceptor are typically easier to predict than test sets in which a 

training-set donor is challenged to interact with a never-encountered acceptor or vice versa. 

Eventually, sets featuring new donors in interactions with new acceptors are still a bigger 

challenge. Thus, the monofunctional external set could be considered as containing four classes 

of complexes attributed to four distinct degrees of ‘novelty’: 

     • PAIROUT- both donor and acceptor were featured in some of the training set 

complexes, but never together; 

• ACCOUT- the acceptor of this pair was not included the training set, but the donor 

was present in some HB complexes; 

• DONOUT- the donor of this pair was not in the training set, but the acceptor was seen 

in some HB complexes; 

• BOTHOUT- neither donor nor acceptor were in the training set. 
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The model’s predictive performance thus is referred to these four specific classes represent 

an increasing degree of difficulty of extrapolation. The ΔG assessment for the second external 

test set with cooperative HBs was calculated with the assumption that the observed 

experimental affinity linearly correlates with the sum of individually assessed ΔG values.  

The performance of the models has been estimated by R2 and RMSE values. The applicability 

domain was defined by Bounding Box. Winning SVR and MLR models constituted the 

consensus SVR/MLR models, that predict the property as an average of the values, predicted 

by individual SVR (MLR) models. 

The details of the computational procedure concerning the specification of the winning 

descriptor spaces, the list of the descriptor spaces and the corresponding SVR parameters of 

the individual models included into the final consensus SVR model (CM), as well as the 

detailed protocol of data curation and treatment are described in the corresponding sections 

of the article.    

       

5.5 Results and discussions 

5.4.1 Cross-validation  

The performance of the individual models has been estimated in three-fold cross-validation 

(3CV). Since various descriptors represent various, complementary points of view of the 

molecular structure, the individual models using them capture the chemical information of 

different nature. Therefore, the combination of the 40 individual SVR models into the SVR 

CM model leads to a significant synergetic effect, boosting RMSE to 1.50 and R2 to 0.94. The 

performance achieved with consensus MLR calculations (RMSE = 2.22 and R2 = 0.87), see 

Figure 19, is less impressive. There may be several reasons for this:  

a. The ISIDA MLR tool automatically scans through possible fragmentation schemes, but 

has no access to the “colored” ISIDA descriptors (described in section 2.1.4) that were 

manually added to the pool of candidate SVR descriptor spaces, and were found to 

win the competition. 

b. Non-linearity seems to play an important role in HB affinity modeling: albeit the linear 

kernel was available amongst SVR options, only two models out of the 40 constituting 

the CM incorporated this option, and both of their ranks are at the bottom of fitness-
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ranked list. Accounting for model applicability domain slightly improves predictive 

performance because of discarding some 10% compounds: RMSEMLR (within AD) = 

2.11 kJ/mol.  

 

5.4.2 External validation  

External test set 1 (complexes with single hydrogen bond) 

Results given in Table 4 show that the predictive performance of both SVR and MLR 

consensus models is not as good as the one observed in cross-validation (Figure 19). This can 

be explained by the noise caused by the inclusion of solvent corrections as well as the fact that 

one third of the compounds are outside of the models’ applicability domain. Discarding these 

species resulted in significant decrease of RMSE till 2.5-3.01 kJ/mol. The comparison of four 

validation scenarios corresponding to different degrees of novelty revealed that the accuracy 

of the prediction decreases in order:   DONOUT > ACCOUT > BOTHOUT > PAIROUT. 

 

Class  Number of 

compounds 

Number of outliers RMSE, kJ/mol R2 

SVR MLR SVR MLR SVR M LR 

PAIROUT 262 6 4 2.17 2.51 0.87 0.83 

BOTHOUT 23 1 2 2.18 3.22 0.72 0.41 

ACCOUT 257 48 40 3.83 4.36 0.72 0.64 

Figure 19. Predictive performance of the consensus SVR and MLR models achieved in 3-fold cross-validation 

on the training set of 3373 hydrogen bonded complexes. 

SVR MLR 



91 
 

DONOUT 87 19 17 4.00 5.09 0.32 0.13 

entire test set 1 629 74 69 3.20 3.81 0.74 0.65 

Table 4. Predictive performances of consensus SVR and MLR models for different subsets of the external test set 

№1 possessing single hydrogen bonds.  

The donors and acceptors in PAIROUT complexes did occur in the training set but in different 

combinations, this explains a good models performance for this class. Relatively small RMSE 

values observed for BOTHOUT subset might be biased by its small size (only 23 H-bond 

complexes) and composition: thus, most of the compounds in this subset were measured in 

CCl4 which decreases the inaccuracies linked to data rescaling from one solvent to another. 

The largest number of outliers were detected for ACCOUT and DONOUT subsets. Most of 

wrong predictions in the ACCOUT subset correspond to rare or weak acceptor centers not 

occurred in the training set, specifically, C-H aromatic acids, compounds with halogen atom 

acting as acceptor and unsaturated aliphatic or cyclic compounds with double or triple bond 

acting as acceptor. The worst results obtained for the DONOUT subset could be explained 

by relatively poor diversity of the donor’s class in the training set – over 70% of donors are 

phenols. For this reason, almost one third of the compounds of this subset are found out of 

AD.  

External test set 2 (complexes with cooperative hydrogen bonds) 

The predicted ΔG values for 12 complexes with cooperative HBs have been assessed from the 

sum of the Free energies for individual centers (App., part II, Table II.3) according to the 

formulae: 

𝛥𝐺𝑝𝑟𝑒𝑑 = 𝛼 ∑ ∆𝐺 𝑝𝑟𝑒𝑑, 𝑖

𝑛

𝑖=1

          (37) 

where  𝑛 is the number of HBs (in our case 𝑛 = 2). The parameter 𝛼 has been fitted by the 

least squares method, and equal to 0.60±0.02 for SVR and 0.66±0.04 for MLR predictions. 

The corresponding graphic of the predicted vs experimental values is given in Figure 20. Thus, 

a reasonable correlation observed for the values with the performance similar to that on the 

cross-validation stage: RMSE = 1.63 and 2.68 kJ/mol, R2 = 0.87 and 0.65 for SVR and MLR, 

respectively.  
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5.6 Conclusion 

By contrast to the previous project where one of the interacting entities remained constant, 

this project is devoted to the modeling of the strength of intermolecular complexes formed 

by varying donors and acceptors. The structures of the complexes have been represented by 

the Marked Atom (MA)-based descriptors, where the corresponding atoms that have been 

labeled are the donor and the acceptor of hydrogen. The strength of hydrogen bond 

complexation was characterized by the experimental Free Energies (ΔG, kJ/mol) measured 

at ‘standard’ conditions: CCl4, 298K. To our knowledge, the data set utilized (3373 

complexes) is so far the largest used for hydrogen-bond complexation propensity prediction. 

The cross-validation performances of the models are similar (R2 =0.87-0.94, RMSE=1.50-

2.22), however still, the MLR method noticeably concede in accuracy. That could be 

explained, at first, by the lack of information-rich ‘colored’ descriptor spaces i.e. the ISIDA 

descriptors enhanced with an additional chemical information (formal charge, force field 

types, etc.) and, at second, by the important role of non-linearity in HB affinity modeling: 

thus, out of 40 winning individual SVR models only two of them are based on linear kernel, 

nevertheless bearing the lowest rank of the statistical score. Successfully cross-validated SVR 

and MLR consensus models have been challenged for the prediction of two external test sets, 

the first one of which consisted of complexes with single HBs, measured in either standard 

Figure 20. Predicted (ΔGpred) vs 

experimental (ΔGexp) free energies for 

the 1:1 complexes with two cooperative 

hydrogen bonds. Predicted values were 

estimated by eq. 37.. 
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CCl4, or in other solvent, whereas the second test set was constituted by 12 complexes with 

cooperative HBs. Apart from the standard model’s performance evaluation encompassing all 

the objects of the test set, a fractional model validation has been performed. The latter 

considers the test set to be composed of four distinct classes differing by the proportion of 

‘novelty’ of the included compounds. It has been shown that the external sets featuring known 

partners in novel combinations are indeed easier to predict than sets containing either donors 

or acceptors that were never seen at the training stage. Logically, the situation should be even 

more tense for the challenge of predicting a set in which neither acceptors nor donors were 

met at training stage - however, since that collection was rather small and biased, it was 

predicted well. The solvent corrections performed with the obtained linear relationships and 

involved in the assessment of ΔG values of the test set 1 are shown to be a useful tool for the 

evaluation of ΔG for different solvents, not occurred in the training set. The overall 

performance referred to the entire test set of single HBs is reasonable: R2 =0.65-0.74, 

RMSE=3.20-3.81kJ/mol. At last, on the example of the test set of polyfunctional molecules 

with multiple intermolecular interactions, it has been shown that the sum of HB affinities for 

each individual interaction robustly correlates with the observed experimental value (R2 

=0.65-0.87, RMSE=1.63-2.68 kJ/mol), which opens a perspective for the model to be 

applicable for supramolecular crystal engineering and drug design.   
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Chapter 6 

 

 

QSPR modeling and visualization of tautomeric 

equilibria. 

The complex phenomenon of tautomerism is still a challenge for chemoinformatics and 

computational chemistry in terms of quantitative estimation, mode of transformation and 

representation. Tautomerism is ubiquitous and plays a key role in practically important 

processes including biochemical ones, such as the relation of tautomeric transformations to 

spontaneous mutations as a consequence of mispairing by rare tautomeric forms of purines 

and pyrimidines171-174 and its relation to enzyme-substrate interactions175-176. As for organic 

chemistry, the prevailing conformation of a certain tautomeric form may affect the product 

in a chemical reaction. The field of drug design likewise needs the determination of the 

predominant ligand structure for virtual screening and modeling177-178. The number of works 

devoted to the elucidation of the qualitative and quantitative aspects of tautomerism is still 

being extended178-181. However, most of them are related to quantum chemistry. In spite of 

the importance of this phenomenon, only two software tools dedicated to the assessment of 

the tautomeric population are currently available: the Marvin Tautomerization Plugin182 and 

TauThor/MOKA183. Both of those tools estimate the equilibrium constants in water at room 

temperature using predicted pKa values for all individual tautomeric forms. In many 

important cases, their predictive performance appears, however, to be too low, because of 
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accumulation of errors on the individually predicted pKa terms. Furthermore, the approach 

does not consider varying reaction conditions. Here we propose to treat the problem of 

tautomeric equilibria evaluation directly, based on the experimental KT values and Marked 

Atom-based descriptors characterizing the structure of the molecules and the character of the 

transformation. The data set included 10 different types of tautomeric transformations 

measured in different solvents and temperatures. Presence of reaction conditions allows a full-

blown modeling of the combined structural and reaction condition impact on the equilibrium 

constant as well as to seek for the specific patterns characterizing various types of 

tautomerism. 

This is the first time the Generative Topographic Mapping (described in section 3.2.3) is 

challenged in modeling and visualization of combined structure/conditions chemical data. An 

impact of the reaction conditions on the property could be examined by means of GTM maps 

exploring different subsets of the initial data: involving or not involving the conditional part. 

The initial data set comprised a few tautomeric transformations measured at different solvents 

with significant difference in the equilibrium constant values. These species could be an 

additional criterion for GTM models quality estimation: thus, their successful separation is an 

evidence of the model being able to differentiate these objects in spite of the fact that their 

structures are the same. As a measure of the quality of tautomeric classes separation we 

applied a special characteristic, Г-score184, which can be computed from the GTM class maps 

and hence does not need the property values be measured in the experiment. The SVR method 

is used here for the benchmarking purposes.  

The article related to this project is given in in the end of this section, with the authorization 

of all authors. 

6.1 Modeled object and property 

The modeled item is a prototropic tautomeric transformation, for which the equilibrium 

constant (log KT) referred to a certain solvent/mixture of solvents and temperature is given. 

The transformations are assigned to 10 distinct tautomeric classes (Table 5) the active atoms 

of which, i.e. accepting/donating the hydrogen atom, are attributed and marked. The Marked 

Atom (MA)-based descriptors are used to compare their performance with the CGR-based 

approach, that had been tried previously in our group185. The structural characterization of 

the tautomeric transformation was undertaken by describing the "reference" tautomer of each 
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pair. This "reference" tautomer is chosen as the left side of equilibria listed in Table 5, and 

then coherently applied throughout the work: the "keto" form will be reference for all keto-

enol processes. An example of active atoms labeling is given of Figure 21. That is done, at 

first, in order to avoid repeating description of the same atoms of the second form so that to 

reduce the overall number of descriptors and, at second, to reduce the number of classes for 

the depiction and analysis for the case of GTM classification modeling. Thus, the labeling of 

both active atoms and the preorganized assignation defined by Table 5 allows to fully describe 

a given equilibrium. The descriptor vector has been composed of the fragments with the 

labeled donor atom, the fragments with the labeled acceptor atom and the reactions condition 

descriptors, that were concatenated into a unified descriptor vector representing a single 

tautomeric transformation of a particular type, measured under a certain reaction condition. 

Two types of modeling had been performed: the ‘structural’ and the ‘general’ ones. The 

structural models were referred to the GTM classification task solely and were built on a 

subset of structurally unique transformations, which were 350 out of 695 initial equilibria. 

The experimental conditions were not included into the descriptor vector for the ‘structural’ 

modeling. The ‘general’ modeling has been performed on the initial data of 695. The 

descriptor vector in this case included the structures and the conditions. The performance of 

the GTM for the regression task has been compared with SVR.       

 

 

 

 

 

 

 

 

Figure 21. Example of atom labeling to encode 

a tautomeric process. The right-hand side 

tautomer results from the motion of proton 

from donor atom (red star) to acceptor atom 

(green star) in the left-hand side tautomer. 
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6.2 Modeling workflow    

 

 

 

 

 

 

6.3 Data preparation 

The training set, composed of 695 tautomeric transformations, with the values of the 

logarithm of the equilibrium constant (logKT) measured in different solvents and at different 

temperatures, has been critically selected form the database prepared by Gimadiev et al185. 

The selected dataset contains equilibria for which only two stable tautomeric forms may 

potentially exist. All transformations are assigned to 10 types of tautomerism (Table 5). The 

equilibrium constants for them were measures in 12 pure solvents (water, methanol, ethanol, 

propanol, butanol, cyclohexane, benzene, chlorophorm, DMSO, acetone, DMFA, ethyl 

ether) and 7 different types of water-organic solvent mixtures (water/ethanol, 

water/propanol, water/butanol, water/acetone, water/DMFA, water/DMSO, water/ethyl 

ether) with different proportions of components. The temperatures varied from 233K to 

373K. 

Type of tautomerism 
The number of transformations in the 

DB 

Keto-Enol (I) 271 

Amino-Imino (II) 178 

Figure 22. Workflow of the modeling of tautomeric equilibria constant (log KT).  
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Hydrazine-Hydrazone (III) 12 

Pyridol-Pyridon (IV) 5 

Phenol-Imine - Keto-Amine (V) 33 

Thione-Enol – Keto-Thiol (VI) 10 

Amine-Thione–Imine-Thiol (VII) 18 

Nitro-Aci (VII) 8 

Classical Form - Zwitterion (IX) 28 

Chain-Ring (X) 132 

Table 5. Composition of the DB. The types of tautomerism and the number of transformations in the DB for each 

tautomeric type. 

For some transformations not one, but several different KT values measured at the same 

conditions were reported in the literature. In this case, logKT for a given equilibrium was 

calculated as an average of the related experimental values. The structures were standardized 

by the ChemAxon’s Standardizer utility152 (‘basic aromatization’ was used). 

The subject of unbiased model validation has already been raised in the previous project, 

where four different scenarios of ‘novelty’ of the complex with respect to the training set have 

been introduced (see chapter 5). Regarding to tautomeric transformations, the 

uncertain/biased statistics could arise for a data set comprising structurally identical equilibria 

measured in different reaction conditions. In this case, external prediction of the equilibrium 

constant distinguishes four  scenarios: (1) tautomers present in the training set, to be predicted 

under reaction conditions also seen at training stage (but not in conjunction with those specific 

tautomers), (2) tautomers not in training set to be predicted under conditions already met 

among training examples, (3) tautomers in training set to be predicted under novel conditions 

and eventually, (4) novel tautomers under not yet encountered conditions. Only scenarios 

(2) and (3) were envisaged here, since not enough external data to support the other two was 

available. Thus, two test sets, collected from the same literature170, 185, have been used for 

external validation. The first test set (test set 1) consists of 20 tautomeric transformations 

(App., part III, Table III.1). which have been occurred in the training set, but under different 

reaction conditions. Test set 2 consists of 26 unique transformations (App., part III, Table 

III.2).  without structural duplicates in the training set.  
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The same equilibria of the initial data set were frequently measured under different reaction 

conditions, so the number of the unique transformations (i.e. without considering the same 

structural changes in different solvents as different transformations) in the data base is 350. 

These transformations have been extracted without the reaction condition part and gathered 

into the subset of unique transformations, employed in GTM data analysis for the 

evaluation of the reaction condition influence on data distribution of GTM maps, as well as 

for the estimation of pure structural clustering as the criteria of appropriateness of a certain 

descriptor type.     

6.4 Computational details 

The preliminary scanning of 64 different descriptor spaces has been performed by SVR, the 

MA3 strategy has been used exclusively. The generated structural descriptors have been 

concatenated with the 14 reaction condition parameters for solvent and temperature (described 

in section 2.2) and molar fraction of organic component (for water/organic mixtures). 

The descriptor set producing the SVR models with the highest R2 score has been chosen for 

further evaluation of the remaining labeling strategies. The best descriptor set was based on 

atom-centered fragments of the length 1-3 and has been used for GTM modeling and 

visualization and for the external validation of the obtained individual SVR and GTM 

regression models. The applicability domain method was Fragment Control. 

Γ-score. The clustering performance of the GTM can be estimated by the Γ-score186 which is 

normalized from 0 to 1 and can be calculated for any data set where the information about 

classes is available. The Γ-function takes into account k nearest neighbors of each projection. 

The more neighbors of each point belong to the same class the higher is the Γ-score. Thus, 

this score characterizes the quality of class separation on the map. First, for each compound 

𝒗𝒊, 𝑮(𝒍, 𝒌) should be computed: 

𝐺(𝑙, 𝑘) = 1/𝑘 ∑ 𝑔(𝑣𝑖, 𝑗)

𝑘

𝑗=1

          (38) 

where k is the number of nearest neighbors, 𝑔(𝑣𝑖 , 𝑗) =1 if the jth nearest neighbor of 𝑣𝑖 belong 

to the same class, otherwise 𝑔(𝑣𝑖 , 𝑗) = 0. Then, for each class i,  𝑦𝑖(𝑘) is defined as  
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𝑦𝑖(𝑘) = 1/𝑛𝑖 ∑ 𝐺(𝑙, 𝑘)

𝑛𝑖

𝑙=1

          (39) 

where 𝑛𝑖    is the number of compounds of the class i. And, finally the Γ-score is  

Г(𝑘) = 1/𝑁 ∑ 𝑦𝑖(𝑘)

𝑁

𝑖=1

          (40) 

where N is the number of classes. The k number is set to 7.    

The details of the computational procedure concerning the specification of the scanned 

descriptor spaces, the corresponding SVR and GTM parameters of the individual models, as 

well as the details of data curation and treatment are described in the corresponding sections 

of the article. 

 

6.5 Results and discussions 

6.5.1 Data visualization and analysis with GTM 

Unique structure subset  

The unique data set helps to estimate the influence of the reaction conditions and 

demonstrates the ability of the GTM method to classify different tautomeric types with and 

without specification of reaction conditions. The task of predicting the type of tautomeric 

transformation itself does not have any intrinsic value, because the type of tautomeric 

transformation can be easily extracted from the transformation equation with a well-known 

atom-atom mapping without the need to build any models using machine learning methods. 

Nevertheless, the ability of a given descriptor set to discriminate effectively different types of 

chemical objects indicates its quality and the ability to be used in building and analysis of 

different models. The performance of different marked atom strategies has been analyzed with 

respect to the same descriptor set (the one used herein and after is based on atom-centered 

fragments, see 6.4).  

Figure 23 depicts the GTM classification landscapes for four marked atom strategies for the 

unique structures subset. Different colors in each landscape correspond to 10 types of 

tautomerism (Table 5). The corresponding Balanced Accuracy is close to 1 for all tautomeric 
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classes, which correspond to their good separation on the map (App., part III, Table III.3). 

However, a visual comparison of the landscapes reveals that the labeling strategies MA1 and 

MA2 separate different classes equally well and better than MA0 and MA3. Thus, the keto-

enol and amino-imino classes of tautomeric transformations are well separated from each 

other and from the other tautomeric types for strategies MA1 and MA2, but not for MA0 and 

MA3 (Table 6). The corresponding Г-scores for MA1 and MA2 are also higher (Table 6) 

resulting in maps with more distinct separation of classes compared to MA0 and MA3 maps, 

where there are more areas of adjoining occupation for different classes. 

 

 

Marked atom strategy Number of descriptors Г-score 

MA0 431 0.55 

MA1 204 0.74 

MA2 232 0.73 

MA3 662 0.52 

Table 6. The separation quality of the classification GTM landscapes of the unique structures subset expressed by 

Г-score. 

The entire data set  

The entire data set, in which different conditions for the same unique transformation are 

included in the description, has been visualized and analyzed in the same way as for the unique 

structure subset above. The corresponding GTM property landscapes, characterizing the 

Figure 23. GTM classification landscapes for four marked atom strategies for the unique structures subset of 350 

equilibria. 
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distribution of log KT, and the GTM maps colored by classes (class landscapes) for four marked 

atom strategies are represented in Figure 24.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In comparison with the maps for the subsets of unique structures presented in Figure 23, the 

maps obtained for the entire data set contain substantially more points, since the individual 

points on them correspond to different combinations of structural changes with reaction 

conditions, i.e. different solvents and temperature. The Balanced Accuracy for all tautomeric 

classes are close to 1 (App., part III, Table III.4), in correspondence with its good separation 

on the maps, especially for the MA1 and MA2 strategies, the Г-scores of which are higher as 

well. These results can be explained by the fact that the MA1 and MA2 fragments are more 

specific for a given type of transformations and therefore different types of equilibria form 

better separated clusters. The comparison with the unique subset maps shows that the 

Figure 24. GTM property (top) landscapes, representing the distribution of the logKT values, and the GTM 

classification (bottom) landscapes, representing the separation of 10 different tautomeric classes, built for the 

entire data set of 697 equilibria. The descriptors spaces for four marked atom strategies are based on atom-

centered fragments of the length 1-3.    

logKT 
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inclusion of the reaction conditions leads to better delimitation of the tautomeric classes: thus, 

the entire set maps possess less areas occupying by several classes where they are closely 

located. This could be derived from different solvent affinity and solubility for different 

chemical transformation, varying structurally within the same tautomeric group, but much 

more on going from one tautomeric class to another. The GTM method thus clusters data on 

account of both structures of transformations and the reaction conditions.  

6.5.2 Cross-validation of the SVR and GTM models 

The performances of the regression SVR and GTM models built on the entire data set for four 

marked atom strategies are shown in Table 7. According to the results, the MA2 and MA1 

strategies lead to the higher predictive performance of GTM models, so as in the case of the 

SVR models. It could be suggested, that the MA0 strategy is worse because of lack of local 

descriptors, explicitly accentuating the active atoms and hence bearing the information about 

the tautomeric type. The weaker performance of MA3 compare to MA1 and MA2 could be 

due to large number of global descriptors, occulting the influence of both important local 

descriptors and descriptors of reaction conditions. Notice also that for the GTM models the 

difference in performances between different strategies is considerably more pronounced than 

for the SVR models. That could also be due to the fact that the SVR method is known to 

perform implicit weighting of descriptors, so unimportant global descriptors get low weights, 

and their adverse effect is minimized. One can also pay attention to the fact that the MA2 

strategy very slightly but consistently outperforms MA1 in both GTM and SVR modeling. A 

putative explanation for this is that the MA2 strategy provides a more detailed description of 

the environment of the active center due to additional descriptors that are important for 

modeling of tautomeric transformations. 

Table 7. The comparison of the performance of SVR and GTM methods for four marked atom strategies. The 

individual model based on ISIDA atom-centered fragments (length 1-3). 

Marked 

atom 

strategy 

Number of 

descriptors 

GTM SVR 

Г-score R2 RMSE R2 RMSE 

MA0 445 0.68 0.72 0.82 0.77 0.76 

MA1 218 0.76 0.83 0.64 0.81 0.68 

MA2 246 0.75 0.84 0.63 0.82 0.67 

MA3 676 0.69 0.78 0.73 0.80 0.71 
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Comparison of R2 and RMSE values, which characterize the predictive performance of the 

models, and the Г-scores, which characterize the quality of class (tautomeric type) separation 

on GTM maps, reveals a consistent correspondence between them: labeling strategies with 

higher Г-score lead to regression models with higher predictive power. A putative explanation 

for this is that the map with higher Г-score is characterized by more uniform distribution of 

data points, which leads to smoother property landscapes with higher predictive power. This 

opens up interesting prospects for using GTM maps for improving the regression models, 

because the construction of GTM maps and the maximization of the Г-score for them does 

not require the knowledge of property values measured in experiment and therefore can be 

performed for virtual datasets of any size.  

6.5.3 GTM solvent separation analysis 

The way in which reaction conditions are shaping the logKT property landscapes can be 

observed by looking at tautomeric equilibria that were studied in different solvents. One can 

expect that if combinations of the same tautomeric transformation with different solvents are 

mapped to nearly the same location in the latent space (2D GTM map), while the difference 

between the values of equilibrium constants for them is significant, then this produces an 

“activity cliff” which hampers the predictive performance of a models. Otherwise, if they are 

mapped onto a broad region in the latent space, then the property landscape is smoother, 

which is favorable for the high predictive performance of the models. To examine this issue, 

of species on the map, a subset of tautomeric transformations that have a considerable 

difference (more than 1 in log scale) between the log KT values measured in different solvents 

have been retrieved. The results are presented in Figure 25 and Table 8. The color of the node 

corresponds to the property value (log KT) based on the responsibility contribution of each 

molecule into the node. According to the obtained picture, the data points are well 

distinguished on all four GTM maps. The GTM model thus correctly recognizes the 

dependency of the property from both chemical structure and the solvent nature. 
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Table 8. Example of tautomeric transformations with considerable log KT difference for different solvents. 

6.5.4 External validation of the SVR and GTM models 

To estimate the predictive performance of GTM and SVR models on external test sets, we 

have chosen the models based on MA2 descriptor set as the one providing the best results. 

The results of the prediction for the first external set (test set 1), assessing the models 

performance as a function of experimental conditions, and the second test set (test set №2) 

assessing the predictive performance for new chemical entities, are given in Figure 26. For 

both sets the predictive quality of the GTM is better than the one obtained with the SVR 

model. For the set 2 comprising new structures, thirteen out of 26 transformations were 

 

 

Solvent logK Tautomeric transformation 

1a DMSO (307K) 0.62 

 

1b Chloroform (307 K) -0.49 

2a Dioxane (293 K) -1.52  

2b Ethanol (293 K) 0.10 

logKT 

Figure 25. The solvent separation of structurally same pairs of tautomeric equilibria (Table 8) with considerable 

difference in logKT values due to measurements in different solvents.   
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found to be out of the model’s applicability domain. Statistical parameters calculated for the 

remaining equilibria within AD show an equivalent performance of both methods (R2 = 0.83 

and 0.82; RMSE= 1.0 and 1.2 log units for GTM and SVR, respectively).       

 

 

6.6 Conclusion 

This project is devoted to the modeling of tautomeric equilibria accounting for different 

experimental conditions. At this level, the constituents that need to be considered are the 

structures of chemical participants, the active centers responsible for chemical transformation 

and the conditions, under which the latter is conducted. The structures have been encoded 

with Marked Atom (MA)-based fragment descriptors, where the labels were assigned to 

atoms donating or accepting hydrogen while the conversion.  

Four marked atom strategies have been tried and compared in the frame of the same descriptor 

type. It was revealed, that the use of labeled (local) fragment descriptors (strategies MA1 and 

MA2) leads to models with better predictive performance for both, SVR and GTM machine 

learning methods, rather than the use of unlabeled (global) fragment descriptors (strategy 

MA0). Moreover, mixing unlabeled and labeled fragment descriptors (strategy MA3) results 

in a deterioration of the predictive performance in comparison with the use of only the labeled 

ones (MA1 and MA2). This can be explained by the important role of local structural factors 

and inessential role of global ones for predicting the constant of tautomeric equilibrium.   

Figure 26. Predictive performance of the models on the external sets of new conditions (test set 1) and new 

structural transformations (test set 2). 
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The GTM method for the first time has been applied for modeling and visualization of data, 

which is more complex than the subsets of single molecules ordinarily used for GTM before. 

The visual GTM analysis, performed using class and property landscapes, has shown that the 

ability of a descriptor set to provide good separation between different classes of tautomeric 

transformations correlates with the overall model’s predictive performance. For both 

methods, the best performance has been obtained with MA1 and MA2 strategies, that provides 

an optimal structural description at the same time not producing a redundant amount of 

descriptors, that could occult the influence of important local or condition descriptors. The 

difference in performances for different strategies is less pronounced for SVR models due to 

the internal mechanism of assigning lower weights to unimportant descriptors in the SVR 

algorithm.  

To quantify the quality of class separation, we applied a special characteristic, Г-score, which 

can be computed from GTM class landscapes. It was shown, that the descriptor sets providing 

higher Г-score values in GTM classification landscapes lead to regression models with higher 

predictive power. This opens up interesting prospects for using GTM maps for improving the 

predictive models for chemical reactions, since building GTMs having the maximization of Г-

score as objective function is a simulation which only requires the knowledge of the reaction 

types and not of their explicit kinetic or thermodynamic parameters.    

The predictive performance of the GTM and SVR models have been compared using two 

external test sets, providing an unbiased assessment of model’s ability in predicting different 

structures or different reaction condition. The GTM models have shown better predictions 

(R2 = 0.62-0.65, RMSE = 0.6-1.96) in comparison with the SVR models (R2 = 0.39-0.53, 

RMSE = 0.76-2.2). The GTM approach therefore can be recommended for building other 

QSPR models, as it combines good predictive performance with the ability to conduct in-

depth visual analysis of data constituent and of the influence of various factors on quantitative 

characteristics of chemical processes. 

The SVR individual model that includes the assessment of the applicability domain and an 

automatic labeling of the active atoms, is freely available on our web-server 

(http://cimm.kpfu.ru/models). 

 

http://cimm.kpfu.ru/models
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Chapter 7 

 

 

QSPR modeling and visualization of kinetics 

properties of cycloaddition reactions. 

Cycloaddition (CA) is a classic reaction in organic chemistry being of a fundamental 

importance for organic synthesis as the main tool for the production of the compounds of 

cyclic architecture. A large variety of cycloaddition reactions arises from the diversity of 

reagents, allows to design cyclic adducts of different size, nature and functions. A high regio- 

and stereo-selectivity of cycloaddition explains its wide application at different stages of 

complex organic synthesis. 

In early works, frontier molecular orbitals (FMO) 187-191 calculated by quantum mechanics 

methods for small congeneric series were widely used for interpretation of thermodynamic 

and kinetic properties of cycloaddition. Most of modeling studies of the kinetics were 

conducted using a time-consuming quantum-chemical calculation. An effort has been made 

to build a linear correlation with experimentally measured physicochemical parameters of the 

reagents192-193. This, however, significantly limits application of the latter to already studied 

molecules.  
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Earlier QSPR modeling of chemical reactions were performed on homogeneous series either 

keeping the solvent, or the structure of the reactants constant194-197. In these studies 

topological indexes198, quantum-chemical194-195, 199 200 or mixed201-203 descriptors for reagents 

were used. These works however were restricted to water or gas media exclusively. Such 

models show high correlation coefficients, but cannot be thought of as universal. For a non-

exhaustive overview of the studies carried out in the field of chemical reactivity one can refer 

to work of A.Warr204,  I.Baskin et al.,205 or earlier works196-197, 206.     

In spite of significant progress in the field, few attempts have yet been made towards more 

extensive consideration of chemical reaction: the first one refer to the classification problem 

in terms of categorical prediction of the conditions (solvent type, catalyst) of the Michael 

addition207. The multicomponent approach of quantitative estimation of the kinetics of 

chemical reactions explicitly considering both reactants and solvents have been applied to the 

modeling of the rate constant of SN2126, 208 and E2209-210 reactions leading to a fairly good 

correlations with the experimental values (R2=0.67-0.79).  

This chapter is devoted to the modeling of kinetic properties of the reactions of cycloadditions 

comprising (4+2), (3+2) and (2+2) types. The considered properties included the rate 

constant (logk), the activation energy (Ea) and the pre-exponential factor (logA). Two 

machine learning methods, SVR and GTM have been involved, where for the latter a unified 

model, eligible for the prediction, visualization and analysis of all three properties, has been 

constructed. 

Chemical structures of reactants and products were encoded by a single Condensed Graph of 

Reaction (CGR) representing a given reaction as a single pseudomolecule (described in detail in 

section 2.1.4). The CGR-based descriptors explicitly characterize the reaction center together 

with its immediate structural neighborhood. The CGR-based descriptors and the reaction 

conditions descriptors have been concatenated resulting in descriptors vector describing the 

entire transformation.  

The prepared models have been exhaustively validated on the external test set comprising 

reactions both structurally different from those in the training set and the same 

transformations measured under different reaction conditions. Different scenarios of logk 

assessment were exploited: direct modeling, application of the Arrhenuis equation and 

temperature-scaled GTM landscapes. 



132 
 

7.1 Computational procedure  

The modeling workflow is shown in Figure 27.  The database of 1849 reactions of 

cycloadditions, for which the logk, Ea and logA values have been measured in different 

solvents and at different temperatures, has been collected from the literature (see 7.1.1). The 

data set has been divided into the training and test set, where the latter has been composed 

out of 200 reactions picked up randomly from the data set. The remaining 1649 reactions 

constituting the training set has been used to build three individual models, correspondingly, 

for logk, Ea and logA prediction. The obtained best SVR and GTM models have been further 

challenged for an exhaustive external prediction of logk on the prepared test set of 200 

reactions. 

 

 

7.1.1 Data preparation 

An initial data set of 2551 reactions of cycloaddition for which all of the reactions contained 

the experimental measurements of the rate constant (logk), 1356 reactions had activation 

energies (Ea, in kJ/mol) and 1237 had pre-exponential factor (logA) values was collected 

manually from the manuscripts of PhD thesis works of Prof. Konovalov’s group from Kazan 

Federal University published in 1970-1990. The data set contained about 85% of Diels-Alder 

Figure 27. Workflow for the modeling of the rate constant (log k), activation energy (Ea) 

and pre-exponential coefficient (log A) of the reactions of cycloaddition. 
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(4+2) cycloaddition, about 8% (3+2) dipolar cyclisation, and 7% (2+2) cycloadditions. The 

measurements were carried out in C6H5CH3, CH3COOC2H5, C6H5OCH3, C6H5NO2, 

CH3CN, C2H5OH, C6H5Cl, THF, CH2Cl2, DMSO, CHCl3, C2H4OC2H4O, C5H11OH, 

C6H5Br, C6H6, CH3COCH3, C6H12 and CH2ClCH2Cl solvents at temperatures varying from 

273 to 423 K. The most frequently occurred dienes for the Diels-Alder series are: condensed 

aromatic cycles, cyclopentadienones, cyclopentadienes and benzofuranes. Among 

dienophiles, the prevailing structures are: maleic acid derivatives, cyanoethylenes, Ph-

substituted ethylenes and benzoquinones. The data set (reagents and products) underwent an 

accustomed standardization protocol using ChemAxon’s Standardizer Utility: basic 

aromatization, isotopes removal, NO2-, NO-, N3-, RRSO2-, CN- group transformation152 

While cyclization due to the reaction mechanism different stereoisomers can be formed. An 

analysis of the rate constants of reactions forming two different stereoisomers have shown that 

logk difference was from 0.01 to 1.0 log values. Based on our previous work209 we considered 

that the difference is too small to be taken into account and comparable with the 

interlaboratory errors. Thus, for the reactions able to form different stereoisomers during 

cyclisation, the logk constants were calculated as a mean of given experimental values. No 

other duplicates were found in the dataset. The 1849 reactions remaining after cleaning have 

been characterized by 1849 values of logk, 1356 values of Ea (kJ/mol) and 1237 values of 

logA, where among the latter there were no reactions without Ea. The prepared data has been 

divided into the training and test sets.  

External test set. The test set consisted of 200 reactions randomly picked from the initial 

data set. For the reactions possessing logA and Ea values and comprised into the test set, the 

corresponding values were not taken into consideration. In such a way, the test set is 

considered to be attributed with 200 experimentally measured logk values solely. Out of 200 

reactions in the test set, there were 57 structurally new transformations, that did not occur 

in the training set. Individual statistics for them is discussed (see 7.2.3). For the most, the 

transformations in the test set were measured once, at one temperature. However, there have 

been 26 reactions with experimental measurements at two different temperatures.  
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The training set hence encompasses the remain 1649 reactions. The histograms of the 

distribution for the three properties for the training set is given on Figure 28. 

7.1.2 Descriptors 

The ISIDA fragment descriptors have been calculated by the in-house ISIDA Fragmentor 

software1, for which the corresponding CGRs were created from the reaction RDF files using 

the in-house CGR Designer tool and were stored in modified SDF format. The length of 

fragments varied for 2 to 14 for sequences and from 2 to 6 for atom-centered fragments. The 

following options were also used at choice: charges on atoms (Formal Charge), accounting 

for the terminal atoms of a fragment exclusively (Atom Pairs), and exploring all possible paths 

instead of shortest paths (DoAllWays). An important option regulating the amount of the 

overall generated CGR fragments is the ‘dynamic bond’. Toggled on, the option produces the 

fragments, that contains the bonds forming/breaking while chemical reaction and omits the 

‘generic’ fragments, not assigned to the reaction center (see section 2.1.4). That could be used 

to generate fragments that describe local environment of the reaction center exclusively. For 

this project, the CGR fragmentation implied the generation of all possible, local and nonlocal, 

fragments. Overall, 728 descriptor sets have been generated for the preliminary SVR 

scanning. Structural descriptors have been concatenated with the 14 descriptors of the 

reaction conditions characterizing solvent and temperature (described in section 2.2).  

Figure 28. Distribution of rate constant, activation energy and pre-exponential factor values in the training set of 

1649 cycloaddition reactions. 
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7.1.3 Building and validation of the models 

SVR modeling  

SVR models were built and validated using the SVR algorithm implemented in the libSVR 

package211. The modeling was performed using the evolutionary SVR optimizer,212 which can 

be used to perform both descriptor space selection and optimization of the operational 

parameters (epsilon, kernel type, cost, gamma) of the SVR method. The procedure, run for 

the training set with logk as a modeled property, generated a total of 6000 models. The 

descriptor set producing SVR individual model of maximal robustness (estimated by the R2 

value) was based on atom-centered fragments of the length 2-3. This descriptor space 

encompassing 688 descriptors (674 of fragments, 14 of the reaction conditions) was used 

further for SVR and GTM models building and their external validation.  

GTM modeling  

The GTM models were built using the evolutionary optimizer212 which supports the choice of 

the operational GTM parameters (the number of RBF kernels, the number of grid points, the 

width factor of radial basis functions, and the regularization coefficient). The descriptor space, 

based on atom-centered fragments of the length 2-3, chosen by the preliminary SVR scanning 

was considered. The genetic optimization procedure included 3000 generations. The 

operational parameters of the GTM method were optimized to predict all three properties, 

logk, Ea and logA with the highest average R2 value. The prepared GTM manifold has been 

used for the visualization of property distribution (property landscapes) and for analysis of 

separation of three different cycloaddition types on the map (class landscape). The description 

and the technique of ‘coloring’ of a GTM manifold with regard to class/property is given in 

section 3.2.3. 

Validation of the models 

The performance of the models has been compared by R2 and RMSE values in 5-fold cross-

validation procedure repeated 10 times after data reshuffling. 

7.1.4 Different scenarios of logk assessment for the test set reactions 

The logk values for the external set of 200 reactions were obtained using three different 

approaches: direct assessment, Arrhenius-based assessment and temperature-scaled GTM 
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landscapes. The direct assessment envisages the application of SVR or GTM logk predictive 

models to the test set reactions.  

In the Arrhenius-based assessment the logk values are calculated using the Arrhenius equation (eq. 

41). The latter implies the usage of predicted Ea and logA values obtained with the help of the 

related SVR or GTM models. 

ln 𝑘 = ln 𝐴 − 𝐸𝑎
𝑅𝑇⁄           (41) 

 

Rate constant is more sensitive to temperature compared to any other individual structural or 

solvent descriptors. This effect could hardly be accounted for by GTM-based model where 

each descriptor has exactly the same weight. Therefore, the temperature-scaled approach has 

been proposed for this purpose. It implies the construction of series of logk GTM landscapes 

each corresponding to a specific temperature range.  

Scaling of logk measured at temperature T1 to temperature T2 can be performed according 

to Van’t Hoff equation: 𝑙𝑜𝑔
𝑘2

𝑘1
=

𝑇2−𝑇1

10
log 𝑦. The temperature coefficient log 𝑦 was 

computed as an average of log 𝑦𝑖  (i = 1 – n) values calculated for n series of reactions, each 

studied at several temperatures. Overall, the reaction rates of 358 reactions in the training set 

ware measured at 2 - 6 different temperatures. The smallest temperature difference in a series 

was 10K and the largest was 110K. The temperature coefficient log 𝑦 varied from 0.08 to 

0.59; its average value was 0.26.  

The entire temperature range (273K-423K) has been divided into 15 subranges of 10K each, 

e.g. from 273K to 283K. For each subrange, the corresponding logk landscape was 

constructed, i.e., each logk was recalculated to median temperature of a subrange (e.g., 278K 

for the range 273K-283K) using Van’t Hoff equation. It should be noted, that the error related 

to temperature deviation of 5K (0.15-0.3 logk unit) is far less than the related RMSE values 

(Table 10). Each of 15 temperature-scaled logk landscapes were calculated from experimental 

logk values of the training set using the Van’t Hoff relationship, log 𝑦 = 0.26 and related 

median subrange temperature. At the validation stage, the program selects particular logk 

landscape that will be used for prediction, corresponding to the external reaction 

temperature.  
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7.2 Results and discussions  

7.2.1 GTM visualization of the training set  

Generative Topographic Map shown on Figure 29 shows well separated zones populated by 

the (4+2), (3+2) and (2+2) cycloaddition reactions. The ratio of sizes of these zones 

correspond to classes occurrences in the training set: thus, the major class (4+2) occupies the 

largest area, the following after is the (3+2) zone, which in turn is slightly bigger than the 

zone populated by (2+2) reactions. A distinct separation of cycloaddition classes on the map 

infers a competency of the chosen descriptors space, able to correctly discriminate reactions 

belonging to different types.   

 

 

 

 

 

 

 

Another technique of GTM visualization is the property landscapes, characterizing the training 

set distribution of a certain property. Figure 30 shows GTM property landscapes for logk, Ea 

and logA, where the gradient from blue to red corresponds to the property value variating 

from low to high (in the range its own for each property). Simultaneous analysis of all three 

landscapes helps to understand decomposition of logk on Arrhenius equation parameters logA 

and Ea (eq. 41). According to collision theory, A is the frequency of collisions in the “correct 

orientation”. Thus, logA values might be related to steric interaction of reactants in a pre-

reaction complex. Activation barrier Ea accounts for electronic and steric effects in the 

transition state.  

 

Figure 29. GTM class landscape 

displaying separation of three different 

types of cycloaddition in the training set 

of 1649 reactions. 
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Table 9. Examples of reactions projected into the zones corresponding to Figure 29.  

Typically, high reaction rates correspond to large logA and small Ea (zone A on the maps) 

whereas low logk values result from a combination of small logA and large Ea (zone B). 

However, in some cases low activation barriers doesn’t compensate too low logA (zone C), 

or, on the contrary, large logA is associated with high activation barriers (zone D).  

Zones Example of reaction logk 

A  2.1 (toluene, 

320 K) 

B  -4.7 (benzene, 

403 K 

C  -4.2 

(dichloroethane, 

313 K) 

D  -3.55 (benzene, 

403 K) 

Figure 30. GTM property landscapes for the rate constant (logk), activation energy (Ea) and the pre-exponential 

coefficient (log A) for the training set of 1649 reactions of cycloaddition. The encircled areas correspond to 

different combinations of logA and Ea contributions into logk. 
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7.2.2 Cross validation of the SVR and GTM models 

The cross-validation result (5CV) for all three properties, logk, Ea (kJ/mol) and logA, for 

SVR and GTM models are shown in Table 10. The SVR modeling involved the construction 

of three different models for each property, whereas for the GTM model predictions were 

assessed with three property landscapes built on one same manifold (see section 7.1.3). The 

performances of SVR models exceed those of GTM model. However, the overall statistics for 

GTM looks reasonable for all three properties.  

 

Property SVR GTM 

R2 RMSE R2 RMSE 

log k 0.94 0.45 0.78 0.86 

Ea 0.92 3.65 0.80 5.92 

log A 0.89 0.36 0.62 0.67 

Table 10. Predictive performance of the SVR models, built separately for each of the property, and a single GTM 

model, universal for all three properties, in 5-fold cross validation for the training set of 1649 reactions of 

cycloaddition. The descriptor space is based on atom-centered fragments of the length 2-3.     

7.2.3 External validation of the SVR and GTM models 

The external test set has been predicted in three different ways (see 7.1.3), two common for 

both, SVR and GTM are (i) the direct logk prediction and (ii) the prediction of the logk using 

the Arrhenius equation (eq. 41) and the predicted values of Ea and logA. The results for both 

strategies are given in Table 11 and Figure 31. The weaker results for the Arrhenius-derived 

logk prediction could be explained, first, by the accumulation of errors and, second, by the 

narrower Applicability Domain (AD). The accumulation error comes from the prediction of 

a property by means of the accessory predicted values. The many are the latter, that bigger is 

the chance of misprediction, affecting the overall accuracy. The second reason is related to 

the fact, that the amount of experimental data for Ea and logA is smaller by one third than for 

logk, meaning less accurate training and a narrower AD. The corresponding statistics 

accounting for AD (Fragment Control) for the Arrhenius-based prediction is much better, 

where the number of the compounds is however shrinked from 200 to 164.  

Method of logk 

assessment  

SVR GTM 

R2 RMSE R2 RMSE 

Direct 0.92 0.50 0.74 0.90 

Direct (AD) 0.96 0.35 0.84 0.74 
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Arrhenius-based 0.72 0.93 0.51 1.23 

Arrhenius-based 

(AD) 

0.93 0.51 0.83 0.79 

Temperature-

scaled GTM 

- - 0.76 0.88 

Table 11. Validation of four different methods of logk assessment on the test set of 200 cycloaddition reactions. 

Notice that only 164 reactions are retained by the Fragment Control applicability domain. 

 

 

 

 

 

 

 

Temperature-scaled logk GTM landscape. Reaction rate assessment with temperature-scaled logk 

landscapes shows a minor predominance over the direct GTM logk prediction (Table 11). 

This trend was confirmed in logk predictions for a set of 13 reactions, each measured at two 

different temperatures (Figure 32). The temperature-scaled approach is less prone to return 

the same rate constant values at different temperatures, showing an overall better 

reproduction of temperature dependence. 

 

 

 

 

 

 

Figure 31. Predicted vs experimental log k values obtained with the direct log k prediction (left) or with the 

Arrhenius-based recalculation (right) for the external test set of 200 reactions of cycloaddition. The statistics 

is given in Table 11.  

Arrhenius-based 

logk assessment 

Direct logk 

assessment 

Figure 32. The comparison of the predictive accuracy for the direct GTM log k calculation and the 

temperature-scaled GTM landscape, for the subset of 26 reactions of cycloaddition measured at different 

temperatures.  

GTM-based temperature-
scaled approach 

GTM-based direct logk 
prediction 

R2=0.90 
RMSE=0.48 

R2=0.94 
RMSE=0.39 
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Subset of unique structural transformations. 

Since the external test set has been randomly chosen from the initial data set, it includes 

reactions already occurred in the training set but proceeding under different reaction 

conditions. That may lead to an overestimation of model’s predictive performance, due to 

occurrence of same reactions in both training and test sets. Thus, individual statistics for the 

structures, never encountered in the training set provides an unbiased assessment of the 

model’s predictive ability with regard to new structures. Among 200 external set’s reactions, 

only 57 transformations didn’t occur in the training set. Table 11 shows that only direct logk 

assessment with SVM model leads to reasonable correlation between predicted and 

experimental values: R2 = 0.72 which is close to the determination coefficient on the 

validation stage for the entire test set. On the other hand, application of the Arrhenius-based 

SVR assessment as well as GTM-based models result in relatively poor predictions R2 < 0.5. 

 

Log k predictive 

method 

SVR GTM 

R2 RMSE R2 RMSE 

Direct 0.72 0.80 0.38 1.21 

Arrhenius-based 0.33 1.26 -0.48 1.87 

Temperature-

corrected GTM 

- - 0.40 1.15 

Table 12. The comparison of the direct , Arrhenius-based and temperature-scaled logk assessment for the subset 

of 57 unique structural transformations.  

 

 

 

 

Figure 33. Performances of SVR and GTM models 

for the subset of unique structural transformations 

(57 reactions) obtained with the direct log k 

prediction method. The statistics is given in Table 12. 

Direct log k 
assessment 
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7.3 Conclusion 

This project is devoted to the modeling of reactions of cycloaddition, with structurally varying 

reagents, measured at different reaction conditions. Involvement of multiple atoms and bonds 

during the chemical transformation needs an efficient way of structural description. Here the 

structures have been encoded with the Condensed Graph of Reaction (CGR), that explicitly 

designates the bonds forming/breaking while the reaction transformation. The data set of 

1849 reactions, comprised of (4+2), (3+2) and (2+2) types of cycloaddition, has been 

attributed with three experimentally measured properties: rate constants (logk), activation 

energies (Ea, kJ/mol) pre-exponential coefficients (logA).  

Demonstrated a strong ability in the managing of structural/condition chemical data in the 

previous project of tautomeric equilibria modeling, the GTM method is challenged here in 

prediction of several kinetic properties with one single GTM model. The SVR models have 

been built individually for each property. The cross-validation R2 range for the GTM model 

is 0.62-0.80 and for the SVR models is 0.89-0.94.  

The external validation has been performed on a set of 200 molecules, randomly picked from 

the initial dataset. Two common ways of logk estimation have been fulfilled: the direct 

prediction with the corresponding logk models, and the Arrhenius-based recalculation 

through the predicted Ea and logA values. For both methods, the direct prediction is more 

accurate than the Arrhenius-based assessment (RMSEdirect = 0.5 (SVR) and 0.9 (GTM); 

RMSEArrhenius = 0.93 (SVR) and 1.23 (GTM)), which is mostly related to the fact that the 

amount of data for logA and Ea is much less, than for the logk training set, meaning narrower 

AD. Thus, Fragment Control AD significantly improved the performance of both SVR and 

GTM models.  

The overall results of SVR method, having the mechanism of implicit ranging of descriptors 

according to their impact, are better, than for a single unified GTM model, where all the 

descriptors are taken into relatively equal account. To enhance the predictive ability of GTM 

with respect to temperature, the temperature-scaled landscapes have been constructed. The 

performance of the approach was the same as for the direct logk GTM assessment, with a 

slight improvement in temperature dependency reproduction with regard to 13 reactions 

measured at two different temperatures (RMSEdirect = 0.48, RMSEtemperature-scaled  =  0.39). 
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Using a single GTM map provides another advantage: thus, since the distribution of the 

reactions are the same for each property, it is possible to analyze the dependencies of the 

properties and the structural features they could be determined by. Thus, simultaneous 

analysis of property landscapes for logk, logA and Ea helped to identify different types of 

reactions with respect to the interplay between the Arrhenius parameters logA and Ea. With 

respect to class separation, the three classes, (4+2), (3+2) and (2+2) are well-separated on 

the map, occupying the areas proportional to their share in the training set. 

The SVR individual models for the rate constant, activation energy and pre-exponential 

coefficient, supporting the choice of solvent and temperature, are freely available on our web-

server: http://cimm.kpfu.ru/models. 

http://cimm.kpfu.ru/models
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Chapter 8 

 

 

QSPR modeling of the rate constant of SN1 

reactions. 

In this chapter we report predictive models for the rate constant of SN1 reactions involving 

both Marked Atom-based and the Condensed Graph of Reaction-based approaches. 

Unimolecular nucleophilic substitution (SN1) is a reaction with a two-stage mechanism, in 

which the heterolytic bond cleavage of a neutral molecule precedes the reaction with the 

nucleophile (Figure 37). Since the rate-determining step of a bond cleavage involves only a 

substrate, SN1 is the first-order reaction.  

The factors affecting the rate constant of SN1 reactions were investigated in numerous 

quantum mechanical calculations of different levels (HF, MP2, G2)211-215. These works are 

useful in investigation of various factors, such as electronic effects of substituent or size of the 

molecule, influencing the rate constant. The molecular dynamics allows to go further and 

investigate the reaction process altogether with solvent effects: these works216-217 help to 

evaluate the effects of the solvation energy (water only) to the feasibility of the reaction 

process. Some of the experimental studies were devoted to the substituent effects192 or certain 

steric influence218 (ortho-effect). However, all these studies were performed on small series 

of reactions and did not account for solvent effects, or only water medium was considered.  
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In order to generalize the substituent effects on the rate constant, several scales have been 

proposed. Thus, the α constants introduced by Uggerud219 has been designed to rationalize 

the substituent effects of the alkyl groups. A comprehensive nucleofugality scale has been 

proposed by Mayr220-221 and Denegri213, 222. Later on, the applicability of this scale was 

expanded for the prognosis of the preferable, SN1 or Sn2, mechanism223. It should be noted, 

however, that the borderline between SN1 and SN2 mechanisms is the subject of considerable 

controversy. Thus, opposed to Ingold224, considering the two mechanism to be distinct, 

discrete processes it has been ascertained that the clear-cut distinction for many cases could 

not be established due to gradual transformation of one mechanism into the other. The 

borderline cases of the concurrent SN1 - SN2 reactions have been pointed out for benzylation 

of pyridines214, benzophenones and benzhydrols223, arylbromoethanes225, tosylates226-227 and 

4-methoxybenzyl derivatives228. To interpret these interjacent cases, Winstein’s and Sneen 

developed a concept of different types of ion pairs intermediates229-232. Schleyer and Bentley 

criticized this concept and suggested that there is a gradation of transition states between the 

SN1 and SN2 extremes233-234. The differentiation of the mechanism, however, to a fair degree 

of accuracy could be delineated by the lifetimes of the potential intermediates235-236. The 

abovementioned scales could be a useful tool for reactivity analysis only within a congeneric 

series of substrates reacting under similar conditions. The first attempt to develop a more 

generalized model  was performed by Kravtsov et al.237 on a set of 1661 reactions studied in 

different solvents. The model involving fragmental descriptors and Fukui indices for 

structures and solvent descriptors performed well in cross-validation (R2 = 0.75 and RMSE 

= 0.61 logk units).  

The goal of this work is to build a model for the rate constant of SN1 reactions applicable for 

a wide variety of structures and accounting for reaction conditions. A large data set of 8056 

reactions, representing the first dissociation step of SN1 reactions (Figure 37), was used in 

SVR model building. The molecules have been classified according to the atoms attached to 

the cleaved bond (C-Hal, C-C, etc). The GTM method was employed for the purposes of 

data visualization. The most robust SVR model was applied to two external test sets, 

evaluating the model performance to predict new structures and new reaction conditions.   

8.1 Computational procedure 

The workflow of the rate constant modeling is given in Figure 34. The training set of 8056 

reactions of dissociation, has been encoded by CGR-based and MA-based fragment 
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descriptors. The best descriptor space for MA and CGR approaches, producing the most 

robust SVR models has been chosen for the prediction of two external test sets.   

 

8.1.1 Data preparation 

The data set of 11748 transformation measured in 28 different solvents under the temperature 

range from 202K to 528K, has been collected form the literature25, 170. For each of the 

reaction, the experimental rate constant value (logk) has been attributed. The transformations 

have been represented as the first step of SN1 reaction, the heterolytic bond dissociation 

(Figure 37). The measurements have been carried out in: CH2OHCHOHCH2OH, 

CH2ClCH2Cl, C2H4OC2H4O, CF3CH2OH, CH2ClCH2OH, (CH₃)₃COH, CH3COOH, 

CH3CN, C2H5COHCH3, C4H9OH, CH2OHCH2OH, C2H5OH, C2H5OC2H5, NH2COH, 

D2O, C6H11OH, DMSO, CH3OH, C6H5NO2, DMF, C8H17OH, THF, C3H7OH, 

CH3CHOHCH3, CH3COCH3, H20, C4H8SO2 and C6H5CH3. An accustomed standardization 

protocol of ChemAxon’s Standardizer Utility has been applied: basic aromatization, NO2-, 

NO-, N3-, RRSO2-, CN- group transformation152.   The data set underwent an exhaustive 

cleaning protocol of removing duplicates, inorganic and wrong-drawn compounds. For more 

nearly 2000 compounds, the reaction rate has been assigned to the catalytic reaction and for 

some of the cases the catalyst (carbonic acids’ salts) significantly influenced the reaction rate. 

As the structure of the catalyst is not included into consideration, these reactions have been 

removed. The data set contained a lot of duplicates, when the reactions are the same in terms 

of both, structure and condition, but the experimental rate constant for them were different. 

Figure 34. Workflow of the modeling of the rate constant of the dissociation step of 

Sn1 reactions.  
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The amount of these species with respect to the corresponding difference in log k values is 

shown in Figure 35. The molecules of the first series (the logk difference is within 0.1-1) that 

had same structures and same reaction conditions have been merged and an average logk value 

has been assigned. For the cases with logk difference more than 1, all the duplicates have been 

removed.  

 

The prepared data set of 8456 heterolytic dissociations could be classified in five classes, upon 

the basis of the type of breaking bond,correspondingly:  

• class 1: C-Hal (Hal=F,Cl,Br,I),  ~50% of the data 

• class 2: C-O, ~45% of the data   

• class 3: C-C, ~3% of the data  

• class 4: C-S, ~1,5% of the data 

• class 5: S-O and S-N, ~0.5% of the data        

This classification will be further used for the GTM visualization. 

The data set has been divided into the training and test set data. Two external sets, each 

containing 200 dissociations have been prepared. The first one consists of the transformations 

that have been already occurred in the training set, but under different reaction conditions. 

This set is aimed at assessing the model’s ability to predict the rate constant in new reaction 

conditions. The second test set comprised the structures which are different from the ones in 

the training set and thus assessing the model’s ability to manage with structurally new 

transformations. The training set included the remaining 8056 reactions. The histograms of 

logk distribution of the training set is given in Figure 36.  

Figure 35. Occurrence frequency distribution 

histogram indication the amount of duplicates 

with a certain (log unit) difference in log k 

values.   
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8.1.2 Descriptors 

Both types of ISIDA descriptors, MA-based and the CGR-based, have been used (described in 

section 2.1.4). For the MA-based descriptors, the atom neighboring to the leaving group was 

marked only (Figure 37).  

 

 

The CGR-based fragments have been counted by the in-house ISIDA Fragmentor software1, 

for which the corresponding CGRs were created from the reaction RDF files using the in-

house CGR Designer tool and were stored in modified SDF format. The labeling of the 

structure for MA descriptors was performed through the CGR, the ‘dynamic charge’ option 

of which allows unambiguously locate the atom acquiring positive or negative charge during 

the reaction. The degrees of ‘locality’ and the thoroughness of structural description are 

represented in various marked atom strategies for the MA-based descriptors and in toggling 

the ‘dynamic bonds only’ option for CGR-based fragments (see section 2.1.4). The most 

detailed structural description was involved herein: correspondingly, the MA3 strategy and 

local and nonlocal CGR-based fragments. The length of a chosen topology varied from 1 (the 

fragment standing for atom’s count) to 8 for sequences and from 1 to 4 for atom-centered 

Figure 36. The distribution of the rate 

constant (log k) for the training set of 

8056 Sn1 reactions.  

Figure 37. Performed 

structural encoding of 

Sn1 reactions by MA-

based and CGR-based 

ISIDA fragment 

descriptors with the 

examples of generated 

fragments of different 

length (right). 
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fragments. The Formal Charge, Atom Pairs and DoAllWays options were also used. The 

structural descriptors have been concatenated with 14 reaction condition parameters 

reflecting solvent and temperature (described in section 2.2). Overall, 270 CGR- and MA-based 

descriptor spaces have been generated and examined.  

8.1.3 Building and validation of the models 

SVR modeling  

SVR models were built and validated using the SVR algorithm implemented in the libSVR 

package211. The modeling was performed using the evolutionary SVR optimizer212. The 

procedure run for the training set and generated a total of 3000 models. The best descriptor 

spaces for each descriptor type (MA or CGR), producing the SVR individual models of 

maximal robustness (selected descriptor space, prescribed kernel type, epsilon, gamma and 

cost parameters), have been chosen for the cross-validation comparison performance and the 

external test sets prediction. The winning CGR descriptor set is based on sequences of atom 

and bonds of the length from 1 to 5, accounting for the charge of the atom (‘Formal Charge 

option) and encompasses 1186 descriptors overall. The winning MA descriptor set is based 

on atom-centered fragments of atoms and bonds of the length 1-4, accounts for atom’s charges 

and encompasses 996 descriptors.  

Validation of the models 

The performances of the two SVR models have been compared by R2 and RMSE values in 5-

fold cross-validation procedure repeated 10 times after data reshuffling and on external 

validation on two external test sets. 

8.2 Results and discussions  

8.2.1 GTM visualization of the training set  

The GTM method has been employed for data visualization. The training set reactions were 

classified according to the type of cleaved heterolytic bond: C-Hal, C-O, C-C, C-S or S-O 

(S-N). Since experimental conditions had no impact on this analysis, a subset of 1820  

reactions differed only by their structures were considered. The GTM manifold has been built 
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on the CGR-based descriptors with default parameters. Figure 38 shows that all 5 classes of 

reactions are well separated on the map. 

 

 

8.2.2 Cross validation of the SVR models 

The performance of the two winning SVR models are represented in Table 13.The CGR-

based descriptors explicitly describe the reaction center, corresponding to the breaking bond. 

The MA-based descriptors took into account an atom neighboring to the leaving group. It 

means that for the MA-based descriptors, the structure of the leaving group was encoded, but 

it’s association with the active center was not specified. Similar performance of both models 

suggests that both strategies of reaction center encoding provide with similar description of a 

reaction. 

Descriptors Descriptor space 
№ of 

descriptors 
R2 RMSE 

CGR 
Sequences of atoms and bonds, length 1-5 

accounting for formal charge 
1186 0.84 0.52 

MA 
Atom-centered fragment of the length 1-4, 

accounting for formal charge 
996 0.85 0.51 

Table 13. Predictive performance of the best individual SVR models in 5-fold cross-validation for the training set 

of 8056 SN1 reactions. 

8.2.3 External validation of the SVR models 

The results of the external validation are shown in Table 14 and Figure 39. The predictions 

for reactions already occurred in the training set (test set 1) are slightly better than for 

Figure 38. GTM class separation for the 

training set of 8056 Sn1 reactions. The 

classes are formed in accordance with the 

bond that breaks while the dissociation. 
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structurally new reactions (test set 2). The performances of both descriptor types are similar, 

as it was observed on the cross-validation stage.  

That should also be noted, that for some of the reactions a concurrent SN1-SN2 mechanism 

could emerge (examples are given in ‘Introduction’ of this section), thereby the experimental rate 

constant would be affected by the competitive mechanism, that would lead to experimental 

uncertainties. Furthermore, the SN1 mechanism is often accompanied with the rival E1 

reaction, that could complicate the retrieving of ‘pure’ SN1 rate constants. The mentioned 

facts should be taken into account when reckoning the expected predictive accuracy of any 

SN1 model.  

 

Table 14. Predictive performance of the SVR models on the external test sets of new conditions (test set №1) and 

new structural transformations (test set №2). The predicted property is the Sn1 rate constant. 

 

 

 

 

 

 

8.3 Conclusion 

A large dataset of 8056 SN1 reactions proceeding in various solvents and at different 

temperature has been collected from the literature. The data was visualized with the help of 

 
CGR MA 

R2 RMSE R2 RMSE 

Test set 1 0.64 0.70 0.67 0.68 

Test set 2 0.58 0.87 0.55 0.90 

Figure 39. Predicted vs experimental values of the Sn1 rate constant for the external sets of new 

reaction conditions (test set №1) and new structural transformations (test set №2). 

Test set 1 Test set 2 
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Generative Topographic Mapping. Reactions with different types of reaction centers were 

well separated on the map.  

Predictive SVR models for the rate constants of SN1 reactions were built using two types of 

descriptors: Condensed Graph of Reaction-based and Marked Atoms-based. Both types of 

models performed well in cross-validation (RMSE = 0.51-0.52) and on the external test sets. 

The model predicts logk better for the reactions with new conditions (RMSE = 0.68-0.70) 

than for the reactions with new structures (RMSE = 0.87-0.90).  
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Chapter 9 

 

 

Models implementation. 

 

Halogen bond basicity of organic molecules. 

The model predicting the strength of halogen bonding between an organic molecule and 

diiodine (log KI2) is available on the web-server http://infochim.u-

strasbg.fr/webserv/VSEngine.html. The SVR consensus model consist of 9 best individual 

models with fitness score (R2) from 0.903 to 0.920. The detailed information about the 

employed descriptors spaces is given in Appendix (part I, Table I.2).  

The model allows: 

• An automated detection of the main halogen bond acceptor 

• Prediction with/without accounting for Applicability Domain (Figure 40, encircled in 

blue) 

• Estimation of the level of trust of the prediction, ranged from ‘poor’ to ‘good’ (Figure 

40, encircled in green) 

http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
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The model is suitable for the prediction of both mono- and polyfunctional species. For the 

latter, the model should be provided with an input file (.sdf) with labeled active centers, one 

label per one molecule. Thus, a molecule with two binding centers should be written in the 

input file twice, with the first labeled active atom and with the second. 

 Tautomeric equilibria of different tautomeric classes. 

The model predicts tautomeric equilibrium constant (log KT) and is available on the web-

server https://cimm.kpfu.ru/.  The SVR consensus model consists of ten best individual models 

with R2 ranging from 0.75 to 0.82. The employed descriptors spaces are listed in Appendix 

(part III, Table III.5). Ten tautomeric classes are supported (see Table 5). The prediction is 

rendered for the left-to-right type of equilibria, as listed in Table 5, and not vice versa. That 

means that the user is expected to write ketone transforming to enol to obtain a keto-enol 

equilibrium constant, the enol-ketone query would not pass. The models are based on Marked 

Atom descriptors. The labeling of the corresponding atoms is done automatically. The model 

supports:  

• Various reaction conditions: solvent, mixture of solvents, temperature (Figure 41, a) 

Figure 40. Web-implementation of the predictive model for halogen bond strength.  

https://cimm.kpfu.ru/
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• Estimation of the level of trust of the prediction (Figure 41, b) 

 

 

    

 

 

 

 

 

 

 

 

 

Kinetic properties of cycloaddition reactions 

Three SVR individual models devoted to the kinetic properties of reactions of (4+2), (3+2) 

and (2+2) cycloadditions are available on the web server https://cimm.kpfu.ru/.  The models 

are built on atom-centered CGR-based fragments of the length 2-3. Three properties are 

considered: the rate constant (logk), the activation energy (Ea) and the pre-exponential factor 

(logA). The performances of the models are given in Table 10. For each of the model, 

variability of the reaction conditions (solvent, temperature) (Figure 42, a) as well as the 

estimation of the level of trust of the prediction are supported (Figure 42, b).  

 

 

Figure 41. Web-implementation of the predictive model for tautomeric equilibrium constant. 

a 

b 

https://cimm.kpfu.ru/
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Figure 42. Web-implementation of the predictive models for kinetic properties of cycloaddition reactions. 

a 

b 
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Conclusion 

This thesis has been devoted to the modeling and visualization of chemical interactions with 

the aid of local descriptors, identifying and explicitly distinguishing the dynamic nature of 

molecular sites, directly involved into a chemical process. The consideration has been carried 

out with respect to the sophistication of the modeled chemical object, correspondingly from 

intermolecular interactions to chemical reactions, varying reagents and different reaction 

conditions of which have been explicitly taken into account.  

The developed methodology represents a chemical interaction by local fragment descriptors, 

encoding structural features of the interacting molecules, coupled with special 

physicochemical parameters of the experimental conditions (solvent, solvent mixtures, 

temperature). The Marked Atom (MA)-based and the Condensed Graph of Reaction (CGR)-

based ISIDA fragment descriptors have been employed. The MA-based local descriptors have 

been chosen for the description of chemical processes, the active site of which involved no 

more than two atoms, since otherwise, the length of the descriptor vector could be too large. 

These were the cases of intermolecular interactions and tautomeric equilibria. For the case of 

chemical reactions, involving different reactants and undergoing multiple bond cleavage-

formation, the CGR-based fragments, enable to efficiently encode chemical transformation in 

a condensed, concise form, have been used. The local approach has been successfully used to 

predict different thermodynamic and kinetic properties of halogen and hydrogen bonding, 

tautomeric equilibria, cycloaddition and SN1 reactions. The accuracy of the developed QSPR 

models are close to experimental errors. 
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It has been demonstrated, that the models, trained on the complexes with single halogen or 

hydrogen bonds were able to predict stabilities of the complexes with multiple bonds of these 

types. This opens a perspective to use the models in computer-aided drug- and supramolecular 

systems design.  

For the first time, the GTM method has been employed to model and visualize entire chemical 

processes instead of individual species. Thus, on the example of tautomeric equilibria it was 

shown that the species, measured in different solvents are well separated on the map, meaning 

that the GTM-based model could successfully perceive the dependence of the modeled 

property as a function of two equally important components, the structural and the reaction 

conditions one. The capability of GTM in building one single model able to predict different 

kinetic properties of chemical reactions has been demonstrated on the example of 

cycloaddition. For the classification task, employed in the projects devoted to tautomeric 

equilibria, cycloaddition and SN1 reactions, a good class-determination performance, resulting 

in a perfect visual separation of the classes on the GTM map, has been accomplished.     

 

The developed QSPR models for the prediction of the stability of halogen-bonded 

complexes with I2,  of the equilibrium constant of tautomeric transformations and of the rate 

constant, activation energy and the pre-exponential factor of cycloaddition reactions are 

publicly available via our internet-platforms https://cimm.kpfu.ru/ and http://infochim.u-

strasbg.fr/webserv/VSEngine.html. The implementation incorporates an automatic detection 

and labeling of the active atoms, or CGR generation, as well as the applicability domain 

estimation. 

https://cimm.kpfu.ru/
http://infochim.u-strasbg.fr/webserv/VSEngine.html
http://infochim.u-strasbg.fr/webserv/VSEngine.html
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Appendix. Part I 

 

 

QSPR modeling of halogen bond basicity of 

binding sites of polyfunctional molecules. 

Supporting Materials. 

 

Table I.1. Chemical families of 598 compounds of the training set. 

- the π-electronic carbons (alkyl benzenes, alkenes and cycloalkenes) 

-  the ether oxygen (cyclic and acyclic ethers) 

- the carbonyl oxygen (aldehydes, carbonates, esters, ketones, amides, carbamates, 

lactams, ureas)  

- the oxygen of phosphoryl group (phosphoramides, phosphine oxides, 

phosphonates, 

 phosphates) 

- the oxygen of sulfinyl group (sulfates, sulfoxides, sulfites) 

- the amine nitrogen (primary, secondary and tertiary amines) 

- the aromatic nitrogen (pyridins, quinolins, pyrazines, phenanthrolines, thiazoles, 

 imidazols) 

- the nitrile nitrogen (nitriles) 

- the sulfur ((di)sulfides, thiols, thiophenols) 
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- the sulfur of thiocarbonyl group (thioamides, thioureas, thiocarbonates, 

dithioxamides, 

 thioketones) 

- the sulfur of thiophosphoryl group (thiophosphines, thiophosphates, 

thiophosphonates) 

- the selenium of selenides 

- the bromine of bromoalkanes 

- the iodine of iodoalkanes 

 

 

Table I.2. SVM model building parameters emerging from the evolutionary libSVM 

parametrization strategy. 

Descriptor Space LibSVM setup 
5CV 

RMSE 

5CV 

Q2 

IAB2-5_P-MA3 
-s 3 -t 2 -c 29.96 -e 0.287 -g 0.103 -r 

0.8 
0.41 0.918 

IAB2-5_P-FC-

MA3 

-s 3 -t 2 -c 298.87 -e 0.287-g 0.010   

-r 6.7 
0.40 0.920 

IAB2-6_P-FC-

MA3 

-s 3 -t 2 -c 298.87 -e 0.430 -g 0.007 

-r 5.0 
0.42 0.914 

IAB2-5_FC-MA3 
-s 3 -t 2 -c 221.41 -e 0.717 -g 0.003 

-r -7.6 
0.41 0.918 

IAB2-6_FC-MA3 
-s 3 -t 2 -c 492.75  -e 0.717 -g 0.007  

-r 5.0 
0.43 0.911 

IAB2-5-MA3 
-s 3 -t 2 -c 364.10  -e 0.574 -g 0.008  

-r 5.0 
0.42 0.913 

IAB2-6_P-MA3 
-s 3 -t 2 -c 7.39  -e 0.287 -g 0.200  -r 

7.9 
0.44 0.903 

IAB2-7_FC-MA3 
-s 3 -t 2 -c 2.46 -e 0.574 -g 0.126 -r 

-10.0 
0.44 0.904 

IAB2-6_AP-FC-

MA3 

-s 3 -t 2 -c 812.41 -e 0.287 -g 0.003 

-r -10.0 
0.44 0.906 
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Table I.3. Predictive performances of the MLR consensus models in 5-fold cross-validation 

involving the different marked atom strategies using bounding box and fragment control AD 

approaches. 

Mark atom 

strategy 

MLR CM with AD 

5CV RMSE Q2 

MA0 0.46 0.902 

MA1 0.39 0.930 

MA2 0.36 0.944 

MA3 0.36 0.942 

 

 

Table I.4. The list of outliers. The third column contains name, solvent and log KI2 value 

correspondingly. 

 Structure Molecule Title 

1 

 

Tetramethylguanidine, Hept, 4,37 

2 

 

N,N-Diisobutylmethylamine, Hept, 1,45 

3 

 

2-Dimethylaminopyridine, cHex, 0,95 
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4 

 

2-Amino-4,6-dichloropyrimidine, CCl4, 

2,03 

5 

 

 Thionyl chloride, CCl4, -0,76 

6 

 

Dichlorophenylphosphane_sulfide, CCl4, -

0,56 

7 

 

Trimethylphosphane_sulfide, CCl4, 3,60 

8 

 

N,N-Diisobutyl-n-propylamine, Hept, 1,11 

9 

 

1,3-Diethyl-1,3-imidazolidine-2-thione, 

CH2Cl2, 3,40 
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10 

 

Betta-propiolactone, CCl4, -1,02 

 

 Structure Molecule Title 

11 

 

Carbimazole, CH2Cl2, 2,95 

12 

 

1,1,3,3-Tetramethyl-2-thiourea, Hept, 

4,00 

13 

 

N-Butylpyrrolidine, Hept, 4,20 

14 

 

N,N-Di-n-propylsec-butylamine, Hept, 

2,00 
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15 

 

Sulfolane, CCl4, -0,12 

16 

 

N-Isopropylpyrrolidine, Hept, 4,23 

17 

 

2-Fluoropyridine, Hept, 0,43 

18 

 

1,3,5,5-Tetramethyl-2-thiohydantoin, 

CH2Cl2, 1,20 

19 

 

Dibenzoselenophene, CCl4, 0,28 

20 

 

2-Methyl-2-thiazoline, CCl4, 3,18 
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     Structure Molecule Title 

21 

 

Triethoxyphosphane_sulfide, cHex, 1,26 

22 

 

N,N-Dimethylthiocarbamoyl_chloride, Hept, 

1,16 

23 

 

Triethylphosphane_sulfide, CCl4, 3,68 

24 

 

1,3-Dithianecyclohexane-2-thione, CHCl3, 1,36 

25 

 

4-Dimethylaminopyridine, Hept, 3,78 

26 

 

Dimethylamine, Hept, 3,71 
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27 

 

N,N-Di-n-propylisobutylamine, Hept, 2,06 

28 

 

 Piperidine, Hept, 3,85 

29 

 

N,N-Dimethylcyclohexylamine, Hept, 3,99 

30 

 

Tetrahydropyran, Hept, 0,40 

 

 Structure Molecule Title 

31 

 

Diisopropylamine, Hept, 2,85 

32 

 

Pyrrolidine-2-thione, CH2Cl2, 4,01 



187 
 

 

 

 

Table I.5. Halogen bond versus Hydrogen bond  

Here, logKBI2 is logarithm of stability constant of the 

1:1 complexation of organic Lewis bases with I2 in 

heptane, cyclohexane, hexane or methylcyclohexane 

at 298K, 

logKBHX is logarithm of stability constant of the 1:1 

hydrogen bonding of the same organic bases with 4-

F-phenol in CCl4 at 298K. 
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4.0

 

oxygen bases: C=O, -O-, P=O, 

S=O 

logKBI2 

 

logKBHX 

n = 85 

s = 0.20, Rcorr
2 = 0.942 

logKBI2 = - 1.07 + 0.97logKBHX 

primary, secondary and tertiary 

amines 

n = 13 

s = 0.45, Rcorr
2 = 0.833 

logKBI2 = 0.61 + 1.50logKBHX 

logKBHX 

logKBI2 logKBI2 

logKBHX 

n = 21 

s = 0.27, Rcorr
2 = 0.904 

logKBI2 = 1.74 + 1.39logKBHX 

sulfur bases: -S-, C=S, 

P=S 
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logKBI2 

logKBHX 

n = 11 

s = 0.05, Rcorr
2 = 0.978 

logKBI2 = -0.89 + 0.94logKBHX 

nitrogen bases: nitriles 

logKBI2 

logKBHX 

logKBI2 = - 0.50 + 1.42logKBHX 

n = 36 

s = 0.25, Rcorr
2 = 0.876 

aromatic nitrogen bases: Nsp2 
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Appendix. Part II 

 

 

QSPR modeling of the Free Energy of hydrogen-

bonded complexes with single and cooperative 

hydrogen bonds. Supporting Materials. 

Table II.1. Linear correlations for the Gibbs energies of Hydrogen bonding measured in 

different solvents in temperature range 293 - 298 K. Verical axis corresponds to the 

complexation in CCl4. r is Pearson correlation coefficient. 

  

y = 0.9746x + 0.4249
r = 0.98
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Table II.2. Linear Gibbs energy relationships for the Gibbs energy of H-bonding: the parameters 

of the linear equation G (in CCl4) = a G (in solvent) + b, where R is Pearson correlation 

coefficient, the temperature range is 293 - 298 K 

no. solvent a ± a b ± b R2 s n 

1 C2Cl4 0.975 ±0.027 0.42 ±0.29 0.982 0.70 25 

2 C6H6 1.024 ±0.034 1.44 ±0.30 0.916 1.62 87 

3 C6H5Cl 1.089 ±0.062 0.02 ±0.66 0.951 1.13 18 

4 CCl3CH3 0.962 ±0.066 2.14 ±0.89 0.922 1.36 20 

5 1,2-C2H4Cl2 1.109 ±0.063 3.07 ±0.51 0.783 1.95 86 

6 C6H12 0.891 ±0.020 0.64 ±0.19 0.929 1.71 145 

 

 

Table II.3. Experimental and predicted by SVM model complexation free energies ∆G of the 

external test set with two cooperative H-bonds (dimers set).  

y = 1.0893x + 0.0156
r = 0.97
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r=0.96

-25

-20

-15

-10

-5

0

-30 -20 -10 0

ССl4-CH3CCl3

y = 1.1092x - 3.0692
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Structures Experimental G  Predicted ∆G per 

individual bond 

Predicted G a 

 

  

-2.89 -4.45 -5.34 

 

  

-6.2 -7.06 -8.47 

 

  

-14.58 -11.76 -14.11 

 

  

-11.23 -9.28 -11.14 

 

-14.53 -11.69 -14.03 
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-19.87 -15.30 -18.35 

 

  

-13.89 -11.12 -13.35 

 

  

-14.04 -10.21 -12.25 

 

  

-8.58 -8.81 -10.57 
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-6.45 -7.38 -8.85 

 

  

-14.83 -11.09 -13.30 

 

  

-11.58 -10.89 -13.07 

 Gpred  = 0.6* Σ Gpred,i 

 

Table II.4. SVM model building parameters emerging from the evolutionary libSVM 

parameterization strategy. 

Descriptor space LibSVM setup 3CV RMSE 3CV Q2 

IIRB-MA3--FC-1-4 -s 3 -t 1 -c 0.01005184 -e 1.208808 

-g 1.041811 -r 6.9 

1.60 0.93 

IIRA-MA3-FF-P-FC-1-4 -s 3 -t 1 -c 1 -e 0.604404 -g 

0.2255989 -r 6.7 

1.61 0.93 

IIRAB-MA3--1-3 -s 3 -t 1 -c 0.4065697 -e 1.208808 -

g 0.1595604 -r 3.2 

1.66 0.92 

IIAB-MA3--1-3 -s 3 -t 1 -c 0.003345965 -e 

1.813212 -g 1.60849 -r 7.7 

1.65 0.93 
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IAB-MA3-FF-FC-2-6 -s 3 -t 2 -c 403.4288 -e 1.208808 -g 

0.02113487 -r -4.2 

1.68 0.92 

IIRAB-MA3-FF-FC-1-3 -s 3 -t 2 -c 134.2898 -e 1.208808 -g 

0.03769055 -r -8.6 

1.71 0.92 

IA-MA3-FF-FC-2-6 -s 3 -t 1 -c 0.1826835 -e 3.02202 -g 

0.4574021 -r 8.2 

1.69 0.92 

IIRA-MA3-FF-1-3 -s 3 -t 1 -c 0.004991594 -e 

1.813212 -g 0.8649552 -r 8.3 

1.70 0.92 

IAB-MA3-FF-P-FC-AP-

2-14 

-s 3 -t 2 -c 6002.912 -e 1.208808 -g 

0.01445564 -r -8.7 

1.65 0.93 

IIAB-MA3--FC-1-3 -s 3 -t 1 -c 0.4965853 -e 1.208808 -

g 1.141204 -r 9 

1.66 0.93 

IAB-MA3--P-FC-AP-FC-

2-14 

-s 3 -t 1 -c 0.1826835 -e 3.626424 -

g 0.458963 -r 3.6 

1.72 0.92 

IIRA-MA3-FF-FC-1-3 -s 3 -t 1 -c 0.01005184 -e 1.208808 

-g 1.546994 -r 5.6 

1.75 0.92 

IIRA-MA3-FF-P-1-4 -s 3 -t 1 -c 0.1652989 -e 3.626424 -

g 0.8285236 -r 9.1 

1.77 0.91 

IIA-MA3-FF-1-3 -s 3 -t 2 -c 2980.958 -e 1.813212 -g 

0.05798813 -r -1.3 

1.79 0.91 

IIAB-MA3-FF-FC-1-3 -s 3 -t 2 -c 4447.067 -e 1.813212 -g 

0.04713464 -r -1.7 

1.77 0.91 

IA-MA3-FF-2-6 -s 3 -t 1 -c 0.0450492 -e 4.835232 -

g 0.3077967 -r 3.2 

1.82 0.91 

IIRB-MA3--1-4 -s 3 -t 2 -c 19930.37 -e 2.417616 -g 

0.08263579 -r -8.9 

1.81 0.91 

IA-MA3-FF-P-FC-2-15 -s 3 -t 1 -c 0.67032 -e 2.417616 -g 

2.75392 -r 9 

1.74 0.92 

IA-MA3-FF-FC-AP-2-5 -s 3 -t 1 -c 4.481689 -e 4.230828 -g 

0.5732196 -r 9.5 

1.73 0.92 

IAB-MA3--P-FC-AP-2-14 -s 3 -t 2 -c 18.17415 -e 1.208808 -g 

0.07017611 -r 0.9 

1.88 0.90 

IAB-MA3-FF-P-FC-2-14 -s 3 -t 1 -c 0.5488116 -e 3.02202 -g 

0.8004951 -r 8.3 

1.72 0.92 

IIA-MA3-FF-FC-1-3 -s 3 -t 2 -c 14.87973 -e 1.208808 -g 

0.08614339 -r 10.1 

1.90 0.90 

IAB-MA3-FF-FC-AP-2-5 -s 3 -t 1 -c 1 -e 5.439636 -g 

0.4101905 -r 6.7 

1.77 0.91 
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IAB-MA3--FC-AP-FC-2-

9 

 

-s 3 -t 2 -c 221.4064 -e 2.417616 -g 

0.05948169 -r 3 

 

1.91 

 

0.90 

IIAB-MA3-FF-1-3 -s 3 -t 2 -c 1808.042 -e 2.417616 -g 

0.00000005180399 -r 4.1 

1.93 0.90 

IIRA-MA3--P-1-5 -s 3 -t 2 -c 8.16617 -e 2.417616 -g 

0.03170207 -r 1.3 

2.08 0.88 

III-MA3-FF-FC-3-5 -s 3 -t 1 -c 0.02237077 -e 6.648444 

-g 0.8064668 -r 9.9 

1.94 0.90 

IIRA-MA3--FC-1-4 -s 3 -t 1 -c 0.05502322 -e 1.208808 

-g 0.006016901 -r 8 

2.14 0.87 

IIRAB-MA3-FF-1-3 -s 3 -t 1 -c 12.18249 -e 1.208808 -g 

1.50794 -r 3.4 

1.84 0.91 

IAB-MA3--FC-AP-2-9 -s 3 -t 2 -c 8103.084 -e 3.02202 -g 

0.0005244257 -r 9.1 

1.92 0.90 

IA-MA3-FF-P-2-15 -s 3 -t 0 -c 1.105171 -e 1.813212 -g 

0.02405992 -r -10 

2.20 0.87 

IIRA-MA3--1-4 -s 3 -t 2 -c 1211.967 -e 4.230828 -g 

0.07828205 -r -10 

2.14 0.87 

IAB-MA3-FF-2-6 -s 3 -t 1 -c 0.009095277 -e 

4.835232 -g 1.692345 -r -2.1 

2.11 0.88 

IAB-MA3--FC-2-10 -s 3 -t 0 -c 0.8187308 -e 4.835232 -

g 0.01504444 -r -10 

2.22 0.87 

IIRAB-MA3--FC-1-3 -s 3 -t 1 -c 1.221403 -e 3.626424 -g 

1.00341 -r 2.4 

1.93 0.90 

IIB-MA3--1-4 -s 3 -t 1 -c 0.1652989 -e 5.439636 -

g 2.193162 -r 0.7 

2.23 0.86 

IIA-MA3-FF-P-FC-1-4 -s 3 -t 2 -c 445.8578 -e 6.04404 -g 

0.07517971 -r -10 

2.32 0.85 

IIA-MA3--1-4 -s 3 -t 2 -c 44.70118 -e 1.208808 -g 

0.01610162 -r 1.8 

2.43 0.84 

IA-MA3-FF-FC-AP-FC-

2-5 

-s 3 -t 2 -c 5.473947 -e 4.835232 -g 

0.06745895 -r -9.9 

2.53 0.82 

IA-MA3--FC-AP-FC-2-11 -s 3 -t 2 -c 54.59815 -e 2.417616 -g 

0.001289735 -r -1.7 

2.49 0.83 
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Table II.5. Predictive performances of the MLR consensus models in 3-fold cross-validation 

involving the different marked atom strategies without accounting for the models applicability 

domain. 

Descriptor 

strategy 

MLR CM 

3CV RMSE 3CV R2
det 

MA0 2.73 0.796 

MA2 2.48 0.832 

MA3 2.30 0.855 

Here R2
det is the squared determination coefficient of 3CV predictions 

 

 

Table II.6. Predictive performances of the MLR consensus models in 3-fold cross-validation 

using bounding box and fragment control AD approaches. The MA3 type of descriptors were 

used. 

MLR CM with AD 

3CV RMSE 3CV R2
det npred 

a 

2.11 0.880 3084 

a the number of species within D. R2
det is the squared determination coefficient of 3CV predictions 

 

Table II.7. Predictive performances of the MLR Consensus Model for different classes of the 

external test set accounting for the model’s applicability domain. 

 

Class name 

Number of 

compounds 

Number of 

predicted 

compounds 

RMSE R2
det 

PAIROUT 262 262 2.51 0.830 

BOTHOUT 23 11 3.63 - 

ACCOUT 257 105 3.34 0.735 

DONOUT 99 44 4.35 0.164 

Solvent CCl4 287 179 3.63 0.637 

Solvent Other 354 243 2.45 0.843 

entire test set 629 422 3.01 0.759 
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Table S9. Outliers detected for the external test-set with single H-bonds.  

 

 Structure 
Experimental 

∆G a 

Predicted 

∆G b Solvent Subset c 

1 

 

  

2.40 -3.25 C6H12 DONOUT 

2 

 

 

 

-0.75 -5.95 C6H12 DONOUT 

3 

 

  

0.24 -7.17 
1,2-

Cl2C2H4 
ACCOUT 

4 

 

  

-6.90 -12.51 CCl4 ACCOUT 
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5 

 

 
 

5.52 -0.52 C6H12 DONOUT 

6 

 

  

-13.47 -18.69 
1,2-

Cl2C2H4 
ACCOUT 

7 

 

  

6.84 -2.30 C6H12 DONOUT 

8 

 

  

6.36 -2.62 C6H12 DONOUT 

9 

 

  

2.30 -3.66 CCl4 ACCOUT 
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10 

 

  

4.40 -5.06 CCl4 ACCOUT 

11 

 

  

0.75 -4.40 CCl4 DONOUT 

12 

 

  

0.64 -6.98 CCl4 DONOUT 

13 

 

  

5.87 -7.62 CCl4 DONOUT 

14 

 

  

1.56 -10.24 CCl4 DONOUT 
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15 

 

  

1.77 -6.84 CCl4 DONOUT 

16 

 

  

6.28 0.54 CCl4 ACCOUT 

17 

 

  

3.64 -3.66 CCl4 ACCOUT 

18 

 

  

0.63 -5.82 CCl4 ACCOUT 

19 

 

  

1.26 -5.31 CCl4 ACCOUT 
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20 

 

  

0.30 -4.85 CCl4 ACCOUT 

21 

 

  

2.07 -4.85 CCl4 ACCOUT 

22 

 

  

2.21 -4.85 CCl4 ACCOUT 

23 

 

  

2.32 -4.85 CCl4 ACCOUT 

24 

 

  

2.05 -4.47 CCl4 ACCOUT 
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25 

 

  

2.66 -4.47 CCl4 ACCOUT 

26 

 

  

2.45 -4.57 CCl4 ACCOUT 

27 

 

  

2.44 -4.57 CCl4 ACCOUT 

28 

 

  

2.83 -4.57 CCl4 ACCOUT 

29 

 

  

2.18 -4.57 CCl4 ACCOUT 
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30 

 

  

1.84 -4.41 CCl4 ACCOUT 

31 

 

  

2.01 -4.41 CCl4 ACCOUT 

32 

 

  

1.56 -4.52 CCl4 ACCOUT 

33 

 

  

2.82 -4.52 CCl4 ACCOUT 

34 

 

  

2.62 -4.52 CCl4 ACCOUT 
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35 

 

  

2.89 -4.52 CCl4 ACCOUT 

36 

 

  

1.77 -3.46 CCl4 ACCOUT 

37 

 

  

4.60 -3.72 CCl4 ACCOUT 

38 

 

  

2.51 -4.06 CCl4 ACCOUT 

39 

 

  

2.01 -3.50 CCl4 ACCOUT 
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40 

 

  

3.72 -3.82 CCl4 ACCOUT 

41 

 

  

3.18 -3.84 CCl4 ACCOUT 

42 

 

  

3.05 -3.94 CCl4 ACCOUT 

43 

 

  

3.01 -4.11 CCl4 ACCOUT 

44 

 

  

2.64 -4.32 CCl4 ACCOUT 
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45 

 

  

2.30 -3.65 CCl4 ACCOUT 

46 

 

  

3.64 -1.71 CCl4 BOTHOUT 

47 

 

  

6.28 0.67 CCl4 ACCOUT 

48 

 

  

3.65 -3.16 CCl4 ACCOUT 

49 

 

  

3.08 -4.53 CCl4 ACCOUT 
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50 

 

  

4.85 -5.21 CCl4 ACCOUT 

51 

 

  

4.22 -4.47 CCl4 ACCOUT 

52 

 

  

4.68 -4.23 CCl4 ACCOUT 

53 

 

  

3.31 -4.80 CCl4 ACCOUT 

54 

 

  

3.82 -4.55 CCl4 ACCOUT 
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55 

 

  

1.26 -4.22 CCl4 ACCOUT 

56 

 

  

-4.49 2.15 C6H12 DONOUT 

57 

 

  

-3.67 2.41 C6H12 PAIROUT 

58 

 

  

-4.09 2.39 C6H12 DONOUT 

59 

 

  

-6.35 2.64 C6H12 DONOUT 
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60 

 

  

-3.20 2.40 C6H12 DONOUT 

61 

 

  

-19.83 -11.98 CCl4 PAIROUT 

62 

 

  

-25.67 -18.21 
1,2-

Cl2C2H4 
ACCOUT 

63 

 

  

-34.22 -14.84 CCl4 PAIROUT 

64 

 

  

-20.38 -11.34 C6H6 ACCOUT 
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65 

 

  

-14.09 -7.96 CCl3CH3 DONOUT 

66 

 

  

-21.37 -15.83 
1,2-

Cl2C2H4 
PAIROUT 

67 

 

  

-22.90 -16.33 
1,2-

Cl2C2H4 
PAIROUT 

68 

 

  

-15.31 -10.16 
1,1,1-

Cl3CCH3 
DONOUT 

69 

 

  

-31.31 -13.73 CCl4 ACCOUT 
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70 

 

  

-25.86 -14.07 CCl4 ACCOUT 

71 

 

  

-4.18 1.25 CCl4 DONOUT 

72 

 

  

-6.26 2.49 C6H12 DONOUT 

73 

 

  

-13.81 -7.75 CCl4 PAIROUT 

74 

 

  

-13.30 -3.57 CCl4 DONOUT 

a experimental G values were recalculated to CCl4 using linear correlations (see Table S1) 

b SVM method has been used.  

c see annotations in section 2.1.2. 
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Appendix. Part III 

 

 

QSPR modeling and visualization of tautomeric 

equilibria. Supporting Materials. 

 

Table III.1. External test set 1.  

№ External test set №1 T, °C Solvent Log 

KT 

exp 

Log KT 

pred 

SVM/GTM 

1  

  

20 Methanol 0.63 0.39/-0.26 

2  

 

 

50 Methanol -

1.21 

-0.68/-0.71 

3  25 Acetonitrile 0.15 0.07/0.34 
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4  

  

20 1,4-Dioxan -1.4 -1.27/-1.26 

5  

  

55 DMSO 0.36 0.22/0.20 

6  

  

55 DMSO -

0.31 

0.31/0.54 

7  

  

20 Water 2.96 3.01/3.66 

8  

  

60 Water 0.03 -0.17/-0.21 

9  

  

30 Chloroform -

0.44 

-0.27/-0.48 
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10  

  

20 Water 

(97%) 

0.13 -0.12/-0.01 

11  

  

20 Ethanol 

(61%) 

-

0.92 

-0.39/-0.34 

12  

  

30 Methanol -0.6 -0.9/-0.77 

13  

  

30 1-Propanol -1 -1.01/-1.27 

14  

  

10 Toluene -

0.32 

-0.09/-0.22 

15  

  

40 Toluene 0.96 -0.12/-0.01 
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16  

  

50 Acetone 0.01 -0.27/-0.32 

17  

  

20 Water 1.53 -1.34/-0.21 

18  

  

49.8 DMSO -

0.31 

-0.01/-0.31 

29  

  

25.1 Tetracloro

methane 

-

0.13 

-0.17/-0.07 

20  

  

37 Tetracloro

methane 

-

0.69 

-0.01/-0.19 

 

Table III.2. External test set 2. 

№ External test set №2 T, 

°C 

Solvent Log 

KT 

exp 

Log KT 

pred 

SVM/GT

M 

AD 
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1  

 

20 Water 3.48 3.46/3.18 

 

out 

2  

 

 

26 Acetone 0.31 0.14/0.86 out 

3  

 

 

35 Water 0 -1.47/-

0.96 

out 

4  

 

 

60 Nitroben

zene 

1.38 1.19/1.2 in 

5  

 
 

20 Water 3.7 -2.39/-

0.44 

out 

6  

 

 

20 Water 0.69 -1.34/-

0.2 

in 

7  

 

 

35 Water 1.99 -

1.91/0.25 

out 
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8  

 

 

25 Water 8.6 7.55/8.3 in 

9  

 

 

25 Water -4.9 -5.61/-

5.8 

out 

10  

 

 

25 Water 0.7 -3.61/-

3.56 

out 

11  

 

 

0 Water -1.4 -2.01/-

3.56 

out 

12  

 

 

20 Water 5.83 4.12/3.79 in 

13  

 

 

20 Ethanol 0.29 -0.32/-

0.33 

out 
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14  

 

 

20 Ethanol 0.6 -

0.10/0.01 

in 

15  

 

 

20 Acetone 0.19 0.65/-

0.08 

out 

16  

 

 

20 Water -1.67 -1.39/-

0.2 

in 

17  

 

 

25 Ethanol 0.03 0.13/-

0.03 

in 

18  

 

 

10 Toluene -0.22 -0.21/-

0.01 

in 

19  

 

 

25 Water 0.31 0.34/0.21 in 
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20  

 

 

60 BromoB

enzene 

0.27 0.18/0.06 in 

21  

 

 

35 Acetonitr

ile 

-0.17 -0.01/-

0.56 

in 

22  

 

 

35 1,4-

Dioxan 

1.42 0.39/0.33 in 

23  

 

 

70 DMSO -1.28 0.51/0.47 in 

24  100 Water -6.96 -2.19/-

2.55 

out 

25  100 Water -6.95 -2.19/-

2.55 

out 

26 

 

100 Water -0.69 -0.88/-

0.27 

out 
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Table III.3. Balanced accuracy for GTM class maps for the unique data set (the classes with the 

number of objects more than 10 are considered only). 

Balanced Accuracy 

(BA) 
ISIDA M0 ISIDA M1 ISIDA M2 ISIDA M3 

Keto-enol 0.975 1 1 1 

Amine-imine 0.984 0.997 0.946 0.993 

Hydrazine-Hydrazone 1 1 1 1 

Ph-imine-keto-amine 0.998 1 1 0.998 

Thion-ol-keto-thiol 1 1 1 1 

Am-thion-im-thiol 1 1 1 1 

Nutro-aci 1 1 1 1 

Classic-zwitterion 0.904 0.989 0.992 0.990 

Chain-ring 0.948 1 1 1 

 

 

Table III.4. Balanced accuracy for GTM class maps for the entire data set (the classes with the 

number of objects more than 10 are considered only). 

Balanced Accuracy 

(BA) 
ISIDA M0 ISIDA M1 ISIDA M2 ISIDA M3 

Keto-enol 0.999 0.982 0.999 0.998 

Amine-imine 0.997 0.999 0.999 0.998 

Hydrazine-Hydrazone 1 1 1 1 

Ph-imine-keto-amine 1 1 1 0.999 

Thion-ol-keto-thiol 1 1 1 1 

Am-thion-im-thiol 1 1 1 1 

Nutro-aci 1 1 1 1 

Classic-zwitterion 0.993 0.992 0.994 0.995 

Chain-ring 1 0.991 0.998 0.998 
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Table III.5. SVR individual models constituting the web-deployed consensus model. Model 

building parameters emerged from the evolutionary libSVM parametrization strategy. 

Descriptor set LibSVM setup 5CV R2 
5CV 

RMSE 

 IAB-MA2--P-2-14 
-s 3 -t 2 -c 2.446919e+02 -p 1.576160e-01 -g 

6.167045e-02 -r -5.9 
0.83 0.65 

IIAB-MA2—FC-1-

3 

-s 3 -t 2 -c 2.704264e+02 -p 3.152320e-01 -g 

2.622281e-03 -r -0.5 
0.83 0.66 

IAB-MA2---P-AP-

2-14 

-s 3 -t 2 -c 3.311545e+01 -p 3.152320e-01 -g 

7.793662e-02 -r 5.5 
0.81 0.68 

IIAB-MA2—FC-1-

3 

-s 3 -t 0 -c 3.320117e+00 -p 4.728480e-01 -g 

6.962674e-03 -r -10.0 
0.76 0.75 

IAB-MA2—FC-2-

10 

-s 3 -t 2 -c 3.311545e+01 -p 3.152320e-01 -g 

3.356975e-02 -r 9.7 
0.80 0.70 

IA-MA2—1-4 
-s 3 -t 2 -c 1.808042e+03 -p 3.152320e-01 -g 

4.553438e-04 -r 4.3 
0.82 0.67 

IAB-MA2—FC-2-

14 

-s 3 -t 1 -c 3.011942e-01 -p 1.576160e-01 -g 

4.419572e-01 -r 2.8 
0.78 0.71 

IAB-MA2—2-10 
-s 3 -t 2 -c 2.214064e+02 -p 3.152320e-01 -g 

3.745244e-02 -r -6.3 
0.82 0.68 

IAB-MA2—P-AP-

2-14 

-s 3 -t 1 -c 3.311545e+01 -p 3.152320e-01 -g 

2.799525e-01 -r 3.1 
0.80 0.69 

IAB-MA2—P-2-10 
-s 3 -t 0 -c 2.013753e+00 -p 1.576160e-01 -g 

7.174630e-03 -r -10.0 
0.75 0.79 

 

 


